Title: GATEWAY TO TRANSACTION PROCESSING NETWORK

Abstract: A method and apparatus for processing credit card transactions over the Internet, includes an application program interface (API) that converts a simple ASCII transaction message from a merchant (122) to the message spec required by the transaction processor (200, 300). The API also encrypts the transaction message so that the transaction is secure over the Internet and manages the message traffic between merchant and transaction processor. In a second preferred embodiment, a merchant sends a simple ASCII transaction message via a Secured Sockets Layer (SSL) Internet connection. In preferred embodiments, redundant connections are set up between the merchant and the transaction processor, allowing a transaction to continue being processed if one of the connections fails.
For two-letter codes and other abbreviations, refer to the “Guidance Notes on Codes and Abbreviations” appearing at the beginning of each regular issue of the PCT Gazette.
GATEWAY TO TRANSACTION PROCESSING NETWORK
BACKGROUND OF THE INVENTION

Field of the Invention

This invention pertains generally to the field of electronic payment processing, and more particularly to improved gateways through which transaction processing networks can be reached.

Related Art

There are primarily two ways for a merchant to get credit card transaction data to a transaction processor (either a bank computer or a third party aggregator) dial-up or leased line. The dial-up world is well established and offers the quickest out-of-the-box solution. Merchants purchase or lease a point-of-sale (POS) terminal such as those sold by VERIFONE and dial a 1-800 number for transaction processing. Recently, personal computers (PCs) have made inroads into this area by making available enhanced capabilities and functions. However, such PC-based terminals are still limited to "dial-up" connectively to a processor's network – thus forcing them to emulate a POS terminal.

The second option for a merchant wishing to process credit card transactions is to lease a dedicated circuit into the transaction processor's network. Such a lease may cost between $500 and $800 per month or more, depending upon the telecommunications carrier. This option requires a merchant to obtain the message specification (the "message spec") from the transaction processor, write and update custom software to adhere to the message spec, and certify their custom code on the processor's network. This can be time consuming and expensive, but some merchants are willing to go through this effort for two reasons. First, it allows them to develop a custom solution to fit their individual needs. Second, the typical transaction time is reduced to 3-4 seconds because the set-up time associated with 'modem training' is eliminated.

What is needed is a solution that combines the strengths and eliminates the weaknesses of these two options. More specifically, what is needed is a method and apparatus for processing credit card transactions that eliminates the delay
associated with 'modem training' without requiring the expense associated with a
dedicated circuit connecting a merchant to a transaction processor and/or writing
software to conform to a transaction processor's message spec.

SUMMARY OF THE INVENTION

The present inventions meet the aforementioned need to a great extent
by providing an apparatus and method for processing credit card transactions over the
Internet. Using the Internet reduces the cost associates with credit card transaction
processing because most merchants either already have an Internet connection or can
establish access via an Internet service provider (ISP) at low relatively low cost as
compared to a leased line. In one preferred embodiment, a gateway comprising an
application program interface (API) is integrated into a merchant's system. The
gateway may comprise a separate physical device on the merchant's network, or may
comprise software that is integrated into the merchant's existing code, or may
comprise a remote computer reachable via the public switched telephone network.
The API accepts a simple ASCII transaction message from the merchant and converts
it to the message spec required by the transaction processor. The API also encrypts
the transaction message so that the transaction is secure over the Internet and manages
the message traffic between the merchant and transaction processor. In a second
preferred embodiment, a merchant sends a simple ASCII transaction message to the
gateway, which then translates the message to the required message spec and encrypts
the transactions. In preferred embodiments, redundant connections are set up between
the merchant and the transaction processor, allowing transactions to continue being
processed if one of the connections fails.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing and other features and advantages of the inventions will
be more readily understood with reference to the following drawings in which:

Figure 1 is a hardware block diagram of a transaction processing
system with a gateway integrated into a merchant's network. a remote gateway
reachable via the public switch telephone network, a single user gateway and a multiple-terminal merchant network including a gateway according to preferred embodiments of the present inventions.

Figure 2 is a drawing of a main display window according to a preferred embodiment of the present invention.

Figure 3 is a drawing of a configuration window according to a preferred embodiment of the present invention.

Figure 4 is a drawing of a snap shot window according to a preferred embodiment of the present invention.

Figure 5 is a drawing of an HTTP interface window according to a preferred embodiment of the present invention.

Figure 6 is a drawing of a test window according to a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will be discussed with referenced to preferred embodiments of gateways to transaction processing networks. Specific details, such as the format of messages, type of hardware, etc., are set forth in order to provide a thorough understanding of the present invention. The preferred embodiments discussed herein should not be understood to limit the invention.

A block diagram of a preferred embodiment of a transaction processing system 100 is illustrated in Figure 1. In the system 100, a customer computer 110 is connected to a merchant computer 122 through an Internet connection 121. As used herein, a "merchant computer" is a computer having promotional and/or catalog materials thereon. Merchant computers may be owned by a merchant and/or be physically present at the merchant's premises, or may comprise a remote third party host computer. The merchant computer 122 forms part of the merchant system 120. The customer computer 110 views the promotional materials (e.g., on-line catalogs, etc.) from the merchant computer 122. If the customer indicates a desire to purchase a
product or service promoted by the merchant computer 122, the merchant computer 122 initiates a payment transaction.

It should be noted that the present invention is not limited to sales based on Internet advertising. Traditional retail transactions are also supported. In such a case, the customer computer 110 and the Internet link 121 to the merchant computer 122 are not necessary; instead, the merchant computer 122 may be linked to point-of-sale credit card readers (not shown in Figure 1), from which payment information is obtained. Other types of sales, such as telemarketing (in which the merchant computer receives credit card information from operators who key in credit card information received from a customer) are also supported.

The merchant computer 122 initiates a transaction by sending a transaction message to application software on the transaction gateway computer 124 via the merchant's network 123. In preferred embodiments, the message sent by the merchant computer 122 to the transaction gateway computer 124 is in unencrypted ASCII form. An example of such a message is provided below:

\[
\begin{align*}
\$123.94 \\
12345678912345670199 \\
12345679 \\
12345 \\
\end{align*}
\]

In the above example, the first line of the message represents the amount, $123.94. The second number represents the credit card number, with the last four digits representing the month (01=January) and the year (1999) of expiration for the credit card. The third number represents the merchant identification number, and the fourth number presents the terminal identification number.

The above message may be sent from the merchant computer 122 to the transaction gateway computer 124 in an unencrypted form because the merchant computer 122 and the transaction gateway computer 124 share the same physical network 123. In a preferred embodiment, the network 123 supports TCP/IP. To initiate a transaction, the merchant computer 122 simply opens a socket to the
transaction gateway computer 124, sends the above-described ASCII message, listens for a response on the same socket, and closes the socket once the message has been sent.

The use of a separate transaction gateway computer 124 allows the merchant computer 122 to use a different operating system than that used by the transaction gateway computer 124. The ability to tolerate operating system differences is important to those merchants having investments in existing software that they would like to integrate with the transaction gateway. However, it is also possible for both the merchant application and the transaction gateway API to run on the same physical device as discussed further below.

Upon receipt of the ASCII transaction message from the merchant computer 122, the transaction gateway computer 124 translates the message from the ASCII format in which it is received into the message spec required by the transaction processor. Once the message has been translated, the transaction gateway computer 124 issues simultaneous connection requests via Internet connection 125 to each of two externally reachable servers 224a,b and 324a,b, which are connected to server farms 200, 300. It is possible to have more than two farms 200, 300. The farms 200, 300 are in geographically remote locations so that physical anomalies (e.g. communications lines breakages, long distance carrier problems, etc.) at one location will not have an impact at the other locations. Geographically remote as used herein means at least in separate buildings, more preferably in locations served by different telephone company exchanges; more preferably in locations having different area codes; and even more preferably still in locations served by different "bell company" local telephone service providers.

When an externally reachable server 224a,b, 324a,b from each server farm 200, 300 replies to the connection request, the transaction gateway computer 124 establishes a client/server socket connection to the responding server 224, 324 via the corresponding router 134, 136. Whichever socket is established first becomes the default gateway/path for the session. The second socket is used for
backup/redundancy. If at some point the default socket fails, pending transactions are immediately sent by the gateway through the second socket to the backup server.

As soon as the socket is established, it is encrypted through public and private key exchanges between the transaction gateway computer 124 and the servers 224, 324(a,b). Every socket that is set up has a unique key pair. Because the keys for each socket are unique, intermixing transactions at the transport level is impossible. Also, since public and private key exchange is used in the key exchange, there is no "master" key that can be compromised and exploited – thus, security is enhanced. In a preferred embodiment, the keys are generated using commercially available crypto-engines such as engine available from Microsoft under license from RSA. It is also preferable to support both domestic 128 bit keys as well as the exportable 40 bit keys. If the 128 bit key is available, it will be used first. If not, the API searches for the 40 bit key. This is done to accommodate U.S. dollar transactions originating overseas from locations such as U.S. military bases. As higher strength keys are introduced (e.g., 256 or 512 bit keys), they can easily be incorporated. If no key is present, the socket setup will fail and the socket connection be broken so that there is no chance of passing unencrypted credit card information over the Internet.

When the transaction message has been received by a server 224, 324 from the transaction gateway computer 124, the server sends the transaction request to a transaction host 210, 310, which in turn switch the transaction to a bank computer (indicated as VISA, MC, AMEX, ETC. in Figure 1). The bank computer sends its reply to the server 210, 310, which then passes the response to the externally reachable server to 224a,b, 324a,b. The reply is then sent along a reverse path to the merchant computer 124 to complete the transaction.

After a transaction has completed, the gateway computer 124 keeps both sockets "alive" for approximately 5 min. by sending keep-alive messages over the socket at 30 sec. Intervals. If no new transaction message is received from the merchant computer 122 in this interval, the API closes the sockets. If a socket has remained open for 24 hours, the gateway computer 124 automatically issues a new key.
request and exchanges the new key with the server 224, 324 to maintain socket security.

The gateway computer 124 can support two types of transaction processing, both Host Capture and Terminal based. The chief difference between the modes is how they handle the settlement process. Host Capture is the easiest to implement and the best choice for those replacing a leased line with the gateway computer 124 and selling goods in the traditional retail environment in which the goods or services have been delivered to the customer so that the merchant is allowed to "settle" the transaction. In this mode, the transaction process will retain a copy of the transaction and settle the transaction on behalf of the merchant automatically without any further intervention by the merchant computer 122.

The other mode of operation, Terminal based, operates the same as Host Capture except that the merchant initiates settlement of the transaction. In this mode, the transaction processor passed the authorization response back to the merchant computer 122 and does not store the transaction for automatic settlement. This mode is most applicable for merchants selling goods on the Internet where future delivery/shipment of goods is commonplace. Since VISA and MasterCard regulations stipulate that a cardholder may not be charged until the merchant has shipped or delivered the goods, most Internet merchants must operate in this mode – otherwise they have opened themselves up for possible consumer "chargebacks". The following modes and commands are supported via the gateway computer 124:

<table>
<thead>
<tr>
<th>Host Capture</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth Only</td>
<td>Auth Only</td>
</tr>
<tr>
<td>AVS Only</td>
<td>AVS Only</td>
</tr>
<tr>
<td>Sale</td>
<td>Sale</td>
</tr>
<tr>
<td>Credit</td>
<td>Settlement</td>
</tr>
<tr>
<td>Force</td>
<td>And within settlement one can issue a:</td>
</tr>
<tr>
<td>Void Batch or item in Batch</td>
<td>Credit</td>
</tr>
<tr>
<td>Clear Batch</td>
<td>Force</td>
</tr>
<tr>
<td>Manually initiate settlement</td>
<td>Void</td>
</tr>
</tbody>
</table>
Although not shown on Figure 1, frame relay routers are also included outside the firewall 142, 144 on each of the server farms 200, 300. These routers are present to accommodate existing customers who wish to continue using existing frame relay connections. Figure 1 also illustrates a dedicated, point-to-point T1 connection 135 between the Internet routers 134, 136 (there is also a dedicated frame relay connection, not shown in Figure 1, between the frame relay routers on each of the farms 200, 300). These dedicated connections 135 are provided to handle a situation in which one of the firewalls 142, 144 are down. Because the dedicated connections 135 are "upstream" of the firewalls 142, 144, a transaction intended to pass through one firewall may be routed through the other firewall when the intended firewall is down.

In addition to performing the functions described above, the transaction gateway computer 124 also provides the user with an interface through which traffic between the merchant computer 122, transaction gateway computer 124 and servers 24, 324 may be monitored. Figure 2 illustrates the main screen 250 presented on the gateway computer 124.

The two indicators in the upper left corner of the screen 250, the script indicated 251 and HTTP indicator 252, change to green when there is a connection to the server via that protocol. The script interface should be thought of as the "transactional" one and the HTTP interface as the "informational" one. An explanation of the contents of the general window 260, the link stats window 270 and the event display window 280 of screen 250 follows below.

The general window 260 displays the following:

Max Connections: The maximum number of connections that have been established to the gateway computer 124 from the merchant computer 122.

Current Connections: Number of open connections between the gateway computer 124 and merchant compute 122.

Script Lines Processed: The actual number of lines ASCII text that have been processed by the gateway computer 124.

The link stats window 270 displays the following:
Version: Version release of gateway computer API software.
Key Strength: Indicates either 128-bit (U.S. Domestic) or 40-bit (exportable).
Processed: Number of total transactions processed of all types – auth, settle, etc.

Avg Host Time: The average transaction time for switching the transaction from the gateway computer 124 server, through the Internet, through the transaction processing network, to the remote network (VISA, MasterCard, Amex, etc.), back through the transaction processing network, back through the Internet, and back again to the gateway computer 124.

Auths: Number of credit card authorizations (VISA, MasterCard, Amex, Discover, etc.) processed.
Debits: Number of debit transactions processed.
Checks: Number of check verifications that have been switched out of SCAN.

Batch: There are three types of "batch" transactions available when one is configured for Host Capture processing; this is a summary counter for all three. One has the ability to clear an open batch (that is delete it), view the "totals" for an open batch for each transaction type (VISA, MC, Amex…), and view the "totals" for a previous batch.

Frequency: Number of "frequency" transactions (a unique to one transaction processor, NOVA Corporation loyalty product) that have been processed.
Terminate Settle: Number of Terminal Based settlement transactions that have been processed.
Hybrid Settle: If set up to uses Hybrid (host capture/auto close), one has the ability to manually initiate the settlement of one’s batch file. This counts the number of terminal based settlements initiated from the merchant.

EGC: Number of Electronic Gift Certificates or Electronic Cash Rebates that have been processed.
The event window 280 displays only high level events that occurs within the operation of gateway computer 124. This window shows that version 1.01 of the software is running, and that both the Script interface and the HTTP interface are listening for connections.

As mentioned previously, it is possible for the gateway API software to run on the same computer as the merchant's software. The gateway API software may also run on a computer running other applications. In order to accommodate multiple applications on a single computer, the gateway API allows the user to configure the ports on which the gateway API operates via a configuration window 350, shown in Figure 3. By default, the Script Port listens on port 8101 for connections while the HTTP Port listens on port 80. Since both of these are configurable (by entering the desired port assignments in the respective dialog boxes 351, 352, the user may customize the installation to their specific needs and not "conflict" with other applications that may be running on the same host. For example, if the gateway API is installed on a server that is also running Microsoft's Internet Information Server (IIS), IIS will also be "listening" on port 80 for HTTP connections. In this case, the user can configure the gateway API HTTP interface to listen on an alternate port (port 81, for example) so as not to conflict with IIS. The "Debug Mode" (check box 353) is not intended to be used in an operational environment and will not be described further herein.

The "Write Log to File" option (check box 35) is a "higher level" debugging tool. When this option is selected, anything that appears in the event display window 280 of the main screen 250 will be written to a file located in a subdirectory on the computer on which the gateway API is running. The file name will be the type YYYYMMDD.LOG (where YYYY = the year, MM = the month and DD = the day of the month). Lastly, there is a check box 355 entitled "Send To Development Host," that works in connection with the "Reg Key" button 356. By default, the gateway API is configured to send transaction to a transaction processor's development systems. This is done to ensure that all users of gateway API go through the transaction processor's certification process prior to going into "production." Once
this certification has been completed, the user of the gateway API will be sent a 22
digit alphanumeric Registration Key that will enable the gateway API to be used for
production traffic. Without the key, traffic will only flow to the development systems.
This protects the transaction processor from improper or unauthorized use of the
gateway API and also enables the merchant to integrate the gateway API into their
environment and perform testing without the worry of accidently sending transactions
to a credit card bank.

Also available is a "SnapShot" window 400, shown in Figure 4, that
displays all open connections to the gateway API. The purpose of the "SnapShot"
window 400 is to give the system administrator of the gateway API the ability to view
open connections to the gateway API at any "SnapShot" in time. By default, the
"SnapShot" is sorted by source IP address and socket for display. The "Context #"
field 402 is a rolling transaction counter for that socket. They will increment from 1
to 655335 and then wrap back to 1. Every time a remote server calls gateway API
"create_context" command, a new "context" and socket is assigned. The "Interface #"
field 404 is another counter that shows the logical interface number and the order that
each socket was assigned. The "Create Time" field 406 is the system time that the
socket was opened. Finally, the "In Time" 407 and "Out Time" 408 indicators show
the time of the last transaction processed on each socket by the gateway API server.

The difference in these two times is the processing time on the transaction processor's
network and the associated external network (Visa, MasterCard, Amex). The
"refresh" button 440 is provided to update the screen 400 as this is a static "SnapShot"
in time.

The final function that is available from the on the gateway API is the
"Clear Stats" operation. If the "Clear Stats" operations is selected from a pull down menu (not shown), all the counters in the gateway API are initialized to their starting
values. This is useful during system integration and testing.
HTTP Interface

The gateway API's HTTP interface serves two purposes. First, the HTTP interface provides a mechanism to remotely view the current transactional statistics on the gateway API server. This was done to enable remote monitoring of the gateway API server from anywhere within the merchant's domain. Anyone that has network access to the server will be able to retrieve this statistical information. The General and NOVALink Statistics section in the Web Browser directly correspond with those on the gateway API server.

Also, a "test transaction" button 801 as shown in the window 800 of Figure 6, has been added to enable the sending of a "canned" test transaction to the transaction processor's network. In this way, one can test the end-to-end connectivity between the gateway API server and the transaction processor's network via the Internet. The "canned" transaction will be recognized by the transaction processor's hosts as a test transaction and be thrown away once answered. An example of the response from a canned transaction is shown the HTTP interface window 500 of Figure 5. The canned transactions should always give an "approved" transaction.

The embodiment described above functions as a gateway that connects the merchant's network to a transaction processing network. Although the above embodiment is an improvement over prior art gateway products, a still further improvement may be realized by "moving" the transaction gateway computer 124 from the merchant's network to the server farms 200, 300 at the positions occupied by transaction gateway computers 124' as shown in Figure 1. In this scheme, the merchant computer 122 simply sends the same ASCII transaction message to the transaction gateway computers 124' via a secure socket layer (SSL) connection over the Internet. The transaction gateway computers 124' are modified to accept the message from the merchant computer 122 in an encrypted format, unencrypt the message and transmit the message to a server 210, 310 via the firewall 142, 144. This arrangement still allows a merchant to send a simple ASCII message over an Internet (SSL) connection, but allows this to be accomplished without the need for
maintaining a separate transaction gateway computer 124 at the merchant's (or the merchant's ISP provider's) site.

Another preferred embodiment involves a single user computer 510 as shown in Figure 1. The single user computer 510 may be particularly applicable in small business situations, such as the receptionist's desk in a doctor's office. The software running on computer 510 comprises two portions. A first portion consists of a gateway API similar to the one that runs on the gateway computer 124, with the appropriate modifications to accept input from the second portion of the software rather than for a separate merchant computer. The first portion accepts an ASCII message (which need not be formatted because it will come from the second portion of the software running on the same physical machine), translates the ASCII message into the appropriate message spec, encrypts the translated message and transmits it via the Internet to the externally reachable servers 224a,b, 324a,b. The second portion of the software running on the computer 510, which may be supplied by the merchant, constitutes the operator interface (in whatever form is desired by the merchant) and the code necessary to construct the ASCII message which is to be transferred to the first portion of the software.

Another preferred embodiment 701 involves a network 703 to which a number of user terminals 702 and a transaction gateway computer 700 are attached. This embodiment is believed to be particularly applicable to a telemarketing operation in which many operators are present at a single physical location and are processing "card not presnt" transactions. Each terminal 702 are configured with a web browser program (e.g., Microsoft Internet Explorer), which is pointed at a user interface application resident on the terminal (which is different from the traditional situation in which the terminal logs onto a host computer). The user interface application cues a user such as a telemarketer to enter the required information and then constructs an ASCII message, which is then sent in un-encrypted form (because the network 703 is trusted/secure) to the gateway transaction computer 700. It should be noted that the user interface application may be simplified if used in a situation where only "card not present" transactions are being processed. The gateway transaction computer 700
again performs a similar functions to the gateway transaction computer 124 in addition to interfacing with the web-browserable user interface application on the terminals 702 to accept the ASCII message. The gateway computer 124 may batch several transactions from multiple terminals 702. One feature of this embodiment is that all transactions appear to the bank or third party aggregator to originate from the same terminal.

Yet another embodiment involves a plurality of remote terminals 601, which preferably comprise notebook personal computers, connected to a gateway transaction computer 600 by dial-in connections over the PSTN (public switched telephone network). The embodiment is believed to be particularly applicable to a company employing traveling salesmen. Each salesman may carry a portable computer 601, which runs a user interface application in any number of formats preferably specified and/or supplied by the merchant. The user interface application constructs an ASCII message and transmits the message over the PSTN to gateway computer 600. It should be noted that no encryption is necessary as the same level of security is provided by prior art POS terminals discussed above that send unencrypted transaction information to bank computers over the PSTN. The gateway computer 600 inputs the ASCII message from the PSTN, translates it into the desired message spec, encodes the translated message, and transmits it to a server 224a-b, 324a-b via the Internet. This configuration allows traveling salesmen to call in transactions to the "home office" as necessary from any convenient phone line.

While the invention has been described in detail in connection with the preferred embodiments known at the time, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
WHAT IS CLAIMED IS:

1. A method for processing credit card transactions comprising the steps of:
 accepting a transaction message from a merchant computer in ASCII form
 translating the transaction message into a message format accepted by a credit
 card transaction processing computer;
 encrypting the translated transaction message;
 transmitting the encrypted message to a credit card transaction processing
 computer.

2. The method of Claim 1, wherein the encrypted message is transmitted through
 the Internet.

3. The method of Claim 1, further comprising the step of establishing a primary
 socket connection to the credit card processing computer through the Internet, wherein
 the transmitting step is performed by transmitting the encrypted message to the credit
 card transaction processing computer through the socket connection.

4. The method of Claim 3, further comprising the steps of:
 establishing at least one redundant socket connection to at least one redundant
 transaction processing computer; and
 transmitting the encrypted message to the redundant transaction processing
 computer via the redundant socket connection if the primary socket connection fails.

5. The method of Claim 4, wherein the redundant transaction processing
 computer and the primary transaction processing computer are in geographically
 remote locations.
6. The method of Claim 1, wherein the encryption step includes the step of exchanging public and private keys with the transaction processing computer.

7. A system for processing credit card transactions, the system comprising:

 a merchant computer, said merchant computer configured to receive payment information;

 a transaction gateway computer, said transaction gateway computer being connected to the merchant computer, said transaction gateway computer being configured to perform the steps of:

 accepting a transaction message from the merchant computer in ASCII form;

 translating the transaction message into a message format accepted by a credit card transaction processing computer;

 encrypting the translated transaction message;

 transmitting the encrypted message to a credit card transaction processing computer.

8. The system of Claim 7, wherein the encrypted message is transmitted through the Internet.

9. The system of Claim 7, wherein the processor is further configured to perform the step of establishing a primary socket connection to the credit card processing computer through the Internet, and wherein the transmitting step is performed by transmitting the encrypted message to the credit card transaction processing computer through the socket connection.
10. The system of Claim 9, wherein the processor is further configured to perform
the steps of:

 establishing at least one redundant socket connection to at least one redundant
transaction processing computer; and

 transmitting the encrypted message to the redundant transaction processing
computer via the redundant socket connection if the primary socket connection fails.

11. The system of Claim 10, wherein the redundant transaction processing
computer and the primary transaction processing computer are in geographically
remote locations.

12. The system of claim 7, wherein the encryption step includes the step of
exchanging public and private keys with the transaction processing computer.

13. A method of processing credit card transaction from a merchant computer, the
method comprising the steps of:

 supplying a gateway application program interface to a network comprising the
merchant computer, the gateway application program interface being configured to
accept transaction messages in ASCII format, translate the transaction message into a
format supported by a transaction processor; and

 processing translated transaction message sent by the application program
interface.

14. The method of Claim 13, wherein the supplying step is performed by installing
the application program interface on a separate host computer attached to the network.

15. The method of Claim 13, wherein the supplying step is performed by installing
the application program interface on the merchant computer.

16. The method of Claim 13, wherein translated transaction messages are sent in
encrypted form over the Internet.
17. The method of Claim 16, wherein the transaction message is encrypted using public and private key encryption.

18. A method of processing credit card transaction from a merchant computer, the method comprising the steps of:

 accepted an encrypted ASCII transaction message from a merchant computer over the Internet;

 decrypting the transaction message;

 translating the transaction message into a format accepted by a transaction processing computer; and

 transmitting the translated transaction message to the transaction processing computer.

19. A method for transmitting a credit card transaction to a bank computer comprising the steps of:

 forming a transaction message in ASCII form at a merchant computer;

 transmitting the ASCII message to a gateway transaction computer in unencrypted form over a secure network;

 translating the ASCII message to a message specification required by a third party aggregator at the gateway transaction computer;

 encrypting the translated message at the gateway transaction computer;

 transmitting the encrypted message to a third party aggregator computer from the gateway computer via the Internet;

 transmitting the contents of the encrypted message to a bank computer from the third party aggregator computer.
20. The method of Claim 19, further including the step of providing a user interface that is viewable with a web browser at the merchant computer, the user interface being configured to perform the forming step based on input from a user.

21. A method for transmitting a credit card transaction to a bank computer comprising the steps of:

 forming a transaction message in ASCII form at a merchant computer;

 transmitting the ASCII message to a gateway transaction computer in unencrypted form over the public switched telephone network using a modem;

 translating the ASCII message to a message specification required by a third party aggregator at the gateway transaction computer.

 encrypting the translated message at the gateway transaction computer;

 transmitting the encrypted message to a third party aggregator computer from the gateway computer via the Internet;

 transmitting the contents of the encrypted message to a bank computer from the third party aggregator computer.
Queue Snapshot Table

<table>
<thead>
<tr>
<th>Context</th>
<th>Interface</th>
<th>IP Address</th>
<th>In Time</th>
<th>Out Time</th>
<th>Create Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>100.1.14.130, 1052</td>
<td>9/7/99 7:30:52 AM</td>
<td>9/7/99 7:30:52 AM</td>
<td>9/7/99 7:28:10 AM</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>100.1.14.130, 1058</td>
<td>9/7/99 7:30:56 AM</td>
<td>9/7/99 7:30:56 AM</td>
<td>9/7/99 7:28:31 AM</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>100.1.14.130, 1064</td>
<td>9/7/99 7:31:01 AM</td>
<td>9/7/99 7:31:01 AM</td>
<td>9/7/99 7:28:44 AM</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>100.1.14.130, 1070</td>
<td>9/7/99 7:31:05 AM</td>
<td>9/7/99 7:31:05 AM</td>
<td>9/7/99 7:28:53 AM</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>100.1.14.130, 1076</td>
<td>9/7/99 7:31:10 AM</td>
<td>9/7/99 7:31:10 AM</td>
<td>9/7/99 7:29:02 AM</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>100.1.14.130, 1088</td>
<td>9/7/99 7:31:18 AM</td>
<td>9/7/99 7:31:18 AM</td>
<td>9/7/99 7:29:23 AM</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>100.1.14.130, 1100</td>
<td>9/7/99 7:31:30 AM</td>
<td>9/7/99 7:31:30 AM</td>
<td>9/7/99 7:29:43 AM</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>100.1.14.130, 1106</td>
<td>9/7/99 7:31:35 AM</td>
<td>9/7/99 7:31:37 AM</td>
<td>9/7/99 7:29:51 AM</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>100.1.14.130, 1112</td>
<td>9/7/99 7:31:42 AM</td>
<td>9/7/99 7:31:42 AM</td>
<td>9/7/99 7:30:01 AM</td>
</tr>
</tbody>
</table>
NOVA Script Server v1.01 (100.1.14.130)
9/7/99 7:44:44 AM

000-Host Response:
PARAM_RESPONSE_CODE=AA
PARAM_AUTH_SOURCE=0
PARAM_CAP_CODE=0
PARAM_AMEX_CAP_CODE=2
PARAM_APPROVAL_CODE=N44032
PARAM_TRANS_DATE=090799
PARAM_TRANS_TIME=074452
PARAM_RECORD_NBR=000
PARAM_AVS_RESPONSE=
PARAM_AUTH_RESPONSE=APPROVAL
PARAM_PS2000_DATA=X

5/6
FIGURE 6/6

![Image of a table showing NOVA Script Server statistics]

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOVALink Statistics</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>1.01</td>
</tr>
<tr>
<td>Key Strength</td>
<td>128 bits</td>
</tr>
<tr>
<td>Processed</td>
<td>11</td>
</tr>
<tr>
<td>Avg Host Response</td>
<td>0.00s</td>
</tr>
<tr>
<td>Authorizations</td>
<td>11</td>
</tr>
<tr>
<td>Debits</td>
<td>0</td>
</tr>
<tr>
<td>Checks</td>
<td>0</td>
</tr>
<tr>
<td>Batch</td>
<td>0</td>
</tr>
<tr>
<td>Frequency</td>
<td>0</td>
</tr>
<tr>
<td>Terminal Settlements</td>
<td>0</td>
</tr>
<tr>
<td>Hybrid Settlements</td>
<td>0</td>
</tr>
<tr>
<td>EGC</td>
<td>0</td>
</tr>
<tr>
<td>General Statistic</td>
<td></td>
</tr>
<tr>
<td>Script Lines Processed</td>
<td>121</td>
</tr>
<tr>
<td>Max Connections</td>
<td>11</td>
</tr>
<tr>
<td>Current Connections</td>
<td>0</td>
</tr>
</tbody>
</table>
INTernational search report

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : G06F 17/60
US CL : 705/78

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 705/16,17,21,39,40,78,79

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EAST USPAT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5,978,840 A (NGUYEN et al) 02 November 1999 (02.11.1999), Column 7, line 1 - Column 108, line 45.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>US 5,933,812 A (MEYER et al) 03 August 1999 (03.08.1999), Column 6, line 35 - Column 26, line 63.</td>
<td>1-21</td>
</tr>
<tr>
<td>A, P</td>
<td>US 6,029,150 A (KRAVITZ) 22 February 2000 (22.02.2000), Column 7, line 7 - Column 49, line 55.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>US 5,677,955 A (DOGETT et al) 14 October 1997 (14.10.1997), Column 7, line 13 - Column 21, line 15.</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>US 5,794,234 A (CHURCH et al) 11 August 1998 (11.08.1998), Column 3, line 25 - Column 40, line 45.</td>
<td>1-21</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be combined with one or more other such documents, such combination being obvious to a person skilled in the art
 & document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

29 DEC 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703)305-3230

Authorized officer
James Trammel
Telephone No. (703) 305-9700

Form PCT/ISA/210 (second sheet) (July 1998)