(12) PÂTENT ABRIDGMENT (11) Document No. AU-B-66503/94 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 683060 (54) Title CATALYST COMPOSITION FOR ALKENE OLIGOMERISATION AND CO-OLIGOMERISATION International Patent Classification(s) (51)⁵ C07C 002/34 B01J 031/22 (21) Application No. : 66503/94 (22) Application Date: 26.04.94 (87) PCT Publication Number: W094/25416 (30) Priority Data (31) Number (32) Date (33) Country 93201229 28.04.93 EP EUROPEAN PATENT OFFICE (EP) (43) Publication Date: 21.11.94 (44) Publication Date of Accepted Application: 30.10.97 (71) Applicant(s) SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. (72) Inventor(s) MICHAEL JOHN DOYLE; HERO JAN HEERES (74) Attorney or Agent SPRUSON & FERGUSON , GPO Box 3898, SYDNEY NSW 2001 (56) Prior Art Documents **WO 91/09882** (57) Claim - 1. A catalyst composition when used for alkene oligomerisation, comprising a first component which is a substituted-bis(cyclopentadienyl) titanium, zirconium or hafnium compound, also containing a substituent which is attached to the metal and which is capable of reacting with a cation and a second component which is a compound having a bulky and labile anion which is substantially non-coordinating under the reaction conditions and a cation, characterized in that the substituted bis-cyclopentadienyl ligand pair is bis-tetramethylcyclopentadienyl. - 12. A process for the preparation of linear alpha alkenes having 4 to 24 carbon atoms by oligomerisation or co-oligomerisation of ethene and/or an alpha ketone having 3 to 10 carbon atoms in the presence of a catalyst composition as claimed in any one of claims 1 to 11. OPI DATE 21/11/94 APPLN. ID 66503/94 10 DATE 05/01/95 PCT NUMBER PCT/EP94/01430 \mathbf{n} (51) International Patent Classification 5: C07C 2/34, B01J 31/22 (11) International Publication Number: A1 WO 94/25416 (43) International Publication Date: 10 November 1994 (10.11.94) (21) International Application Number: PCT/EP94/01430 (22) International Filing Date: 26 April 1994 (26.04.94) (30) Priority Data: 93201229.7 28 April 1993 (28.04.93) EP (34) Countries for which the regional or international application was filed: GB et al. SHELL INTERNATIONALE RESEARCH (71) Applicant: MAATSCHAPPIJ B.V. [NL/NL]; Carel van Bylandtlaan 30, NL-2596 HR The Hague (NL). (72) Inventors: DOYLE, Michael, John; Badhuisweg 3, NL-1031 CM Amsterdam (NL). HEERES, Hero, Jan; Badhuisweg 3, NL-1031 CM Amsterdam (NL). (81) Designated States: AU, BR, CA, CN, CZ, FI, JP, KR, NO, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published With international search report. 683060 #### (54) Title: CATALYST COMPOSITION FOR ALKENE OLIGOMERISATION AND CO-OLIGOMERISATION #### (57) Abstract A catalyst composition comprising a first component which is a substituted bis(cyclopentadienyl)titanium, zirconium or hafnium compound, also containing a substituent which is attached to the metal and which is capable of reacting with a cation and a second component which is a compound having a bulky and labile anion which is substantially non-coordinating under the reaction conditions and a cation, wherein the substituted bis-cyclopentadienyl ligand pair is bis-tetramethylcyclopentadienyl. 10 15 20 25 30 # CATALYST COMPOSITION FOR ALKENE OLIGOMERISATION AND CO-OLIGOMERISATION This invention relates to a novel catalyst composition and to its use in the oligomerisation and co-oligomerisation of one or more alkenes, in particular alpha alkenes. More in particular, the invention relates to the oligomerisation of ethene. Polymerisation processes of olefins, including alkenes, such as the production of polyethylene from ethene, whereby soluble catalyst systems of the Ziegler-Natta type are used, are well known. In particular, oligomerisation processes of lower olefins to higher olefins are also well known. For example, from GB-A-1353873 it is known that C_4 - C_{20} linear alpha olefins can be prepared from ethene by oligomerisation in the presence of a nickel containing catalyst. The product linear alpha olefins, in particular those having 6-10 carbon atoms, are in great demand as intermediates in the preparation of detergents, lubricant additives and polyolefins. However, the oligomerisation reaction also produces less valuable products, such as internal olefins and branched olefins and olefins having a number of carbon atoms outside the range of 4-24. By further processing, these by-products can be converted to the desired linear alpha olefins. EP-A-0277003 and EP-A-0277004 both disclose catalyst compositions for the polymerisation and copolymerisation of olefins, comprising a combination of a first component which is a bis(cyclopentadienyl)titanium, zirconium or hafnium compound containing a substituent which is attached to the metal and which is capable of reacting with a cation, and a second component which is a compound having a bulky and labile anion which is substantially non-coordinating under the reaction conditions and a cation, capable of donating a proton. The two cyclopentadienyl groups may be substituted. The products according to these documents are true polymers, having a molecular weight of above 10 15 20 25 100000 (when determined in the Examples). Consequently, no attention is paid to properties which are important to olefins having a number of carbon atoms of less than 30, such as linearity and the position of the double bond. The present Applicant's EP-A-0443686 and EP-B-0526943 both disclose methods for the co-oligomerisation of ethene with at least one other alpha olefin in the presence of a catalyst composition as broadly described above, wherein one or both of the cyclopenta-dienyl groups may be substituted. The preferred and only exemplified substituted ligand pair is bis-pentmethylcyclopenta-dienyl. The product oligomers still contain a substantial proportion of the less valuable branched olefins and internal olefins. It has now been found that catalyst compositions as described above, wherein the ligand pair is bis-tetramethylcyclopentadienyl, are particularly useful in the oligomerisation or co-oligomerisation of ethene and other lower alkenes to higher alkenes, in that they effect a more preferential production of the linear alpha alkenes of the range having 4-24 carbon atoms and more in particular 6-10 carbon atoms. Accordingly, the present invention provides a catalyst composition comprising - a first component which is a substituted bis(cyclopentadienyl)titanium, zirconium or hafnium compound, also containing a substituent which is attached to the metal and which is capable of reacting with a cation and - a second component which is a compound having a bulky and labile anion which is substantially non-coordinating under the reaction conditions and a cation, - characterized in that the substituted bis-cyclopentadienyl ligand pair is bis-tetramethylcyclopentadienyl. The first component of the catalyst composition according to the invention is preferably a compound of the general formula $(Cp^*)_2MR_1R_2$ wherein $(Cp^*)_2$ is the bis-tetramethylcyclopentadienyl PCT/EP94/01430 5 10 15 20 25 30 ligand pair, M is a metal chosen from the group of titanium, zirconium or hafnium and R_1 and R_2 are identical or different and selected from unsubstituted or substituted hydrocarbyl groups, Λ hydrogen and halogen. Preferably, R_1 and R_2 are alkyl groups, typically of from 1 to 5 carbon atoms, such as methyl. Preferred metals are zirconium or hafnium. The most preferred first component of the catalyst composition according to the present invention is bis-tetramethylcyclopenta-dienyl zirconium dimethyl. Complexes such as the first component according to the invention can be prepared for example by the routes described in "Chemistry of Organo-Zirconium and Hafnium Compounds", by Lappert et al., 1986, published by John Wiley & Sons, Chichester, England. The second component of the catalyst composition according to the invention is preferably an ionic combination of a bulky anion containing a plurality of boron atoms and a proton-donating cation, the anion being such that it is substantially non-coordinating under the reaction conditions employed. Thus, it is intended that the anion should not coordinate, or at least coordinate only weakly, to the bis(cyclopentadienyl) metal entity of the first component. The boron-containing non-coordinating anion is preferably a carborate anion, suitably a carborate anion of the formula B₁₁CH₁₂-. Such carborates are known and can be prepared by methods such as that of Shelly et al, J. Am. Chem. Soc. 107 (1985) 5955-5959. Other bulky boron containing anions may also be used, such as a tetrakisrfluorophenyl) boron anion. The proton-donating cation is preferably a quaternary ammonium cation such as a trial-kylammonium cation, for example tri-n-butylammonium cation. Alternatively a cation may be used which is not protondonating, such as a metal cation e.g. a silver ion, or a triphenylcarbenium ion. The catalyst composition may be formed by mixing together the two components, preferably in solution in a suitable solvent such as toluene, chlorobenzene, an alkane or an alkene, to form a liquid catalyst system. The two components are generally employed in substantially equimolar amounts, although the molar ratio of the first component to the second component may vary within the range of from 0.1 to 5.0. Such a quantity of the catalyst system is usually employed in the reaction mixture as to contain from 10⁻¹ to 10⁻⁷ gram atoms, in particular from 10⁻³ to 10⁻⁵ gram atoms, of the metal per mole of olefine to be reacted. The catalyst composition may be formed prior to its introduction to the reaction vessel, or it may be formed in situ. The invention also provides the use of this catalyst composition in oligomerisation or co-oligomerisation, in particular for the preparation of linear alpha alkenes having 4-24 carbon atoms by oligomerisation or co-oligomerisation of ethene and/or an alpha alkene having 3-10 carbon atoms. The oligomerisation reaction according to the invention can be carried out in batch or continuous operation. The oligomerisation reaction is generally, although not necessarily, carried out in an inert liquid which is suitably also the solvent for the catalyst components. The reaction is suitably carried out at an elevated temperature, preferably in the range of from 20 to 175°C, more preferably at 50 to 150°C. The reaction is suitably carried out under conditions of moderately elevated pressure, preferably in the range of from 100 to 10000 kPa, more preferably from 500 to 6000 kPa. The optimum conditions of temperature and pressure used in a particular reaction system in order to maximise the yield of the desired linear alpha alkenes can be readily established by those skilled in the art, but it has been found that conditions of between 70-120°C and between 1000-3000 kPa are particularly advantageous in this respect with the catalyst systems of the present invention. The starting reactants may be supplied to the reactor together with an inert diluent, such as nitrogen or helium when the reactant is gaseous, and a liquid solvent, e.g. the same solvent as that of the catalyst components, when the reactant is in the liquid form. 10 15 20 35 The reaction is preferably carried out in the absence of air or moisture. Reaction times of from 1 minute to 5 hours have been found to be suitable, depending on the activity of the catalyst system and on the reaction conditions. After a suitable reaction time, a conventional catalyst deactivating agent such as water, methanol, or another alcohol, may be added if desired to the reaction mixture in order to terminate the reaction. Alternatively, the reaction can simply be terminated by the introduction of air. The product mixed alkenes are preferentially linear alpha alkenes having a chain length within the range of 5 to 24 carbon atoms, of which those having between 6 and 10 carbon atoms in the chain are particularly preferred. They may be suitably recovered by distillation and separation techniques known in the art. If desired, unconverted starting material and oligomeric products having a molecular weight outside the desired molecular weight may be recovered, processed if necessary and recycled to be used as starting material in a subsequent oligomerisation reaction. The invention will be further illustrated by the following examples. #### Examples 1 to 4: oligomerisation of ethene The procedures were carried out with rigorous exclusion of oxygen and moisture. Catalyst liquurs were prepared by dissolving in toluene, as First Component, in 30 ml, 0.25 mmol of (Cp*), MR, wherein M is 25 zirconium, R_2 is dimethyl and $(Cp^*)_2$ is: in comparative Example 1: bis-pentamethylcyclopentadienyl; in comparative Example 2: bis-methylcyclopentadienyl; in comparative Example 3: bis-cyclopentadienyl; 30 bis-tetramethylclopentadienyl; in Example 4: and as Second Component, in 70 ml, in all cases 0.05 mmol of Bu3NHB11CH12 (tri-n-butylammonium 1-carbadodecaborate). The Second Component of the catalytic composition was first added to an autoclave of 500 ml, followed by pressurising the autoclave with ethene to 1000 kPa, and heating to 90 °C. 10 Subsequently, the reaction was started by adding the First Component of the catalytic composition. Pressure was maintained at 1000 kPa during the reaction by continuously recharging of consumed ethene. At the end of the (predetermined) reaction time, the reaction was terminated by water injection. The product distribution was determined by gas-liquid chromatography. The amount of ethene consumed during the reaction, the amounts of $\rm C_4$, $\rm C_6$ - $\rm C_{10}$ and $\rm C_{12+}$ olefins produced, and the wt% distribution of alpha-, beta- and branched hexenes are given in Table 1. TABLE 1 | Example | 1 | 2 | 3 | 4 | | |-------------------------|------|------|------|------|----| | Reaction time | | | | | | | (min) | 3 | 103 | 102 | 23 | | | thene consumed | | | | | | | (g) | 25 | 25 | 25 | 25 | | | Product C ₄ | | | | | | | olefin (g) | 0.9 | 2.0 | 1.6 | 1.2 | | | Product C | | | | | | | olefins (g) | 3.8 | 7.0 | 5.2 | 4.9 | | | hexene (g) | 1.1 | 2.3 | 1.7 | 1.4 | 5° | | roduct C ₁₂₊ | | | | | | | olefins (g) | 20.3 | 16.0 | 18.2 | 18.9 | | | istribution of | | | | | | | exenes (wt%) | | | | | | | 1-hexene | 81.8 | 57.9 | 43.5 | 98.8 | | | 2-hexene | 17.6 | 39.4 | 53.2 | 1.1 | | | 2-ethyl- | | | | | | | 1-butene | 0.7 | 2.7 | 3.3 | 0.1 | | 10 #### Examples 5 to 8: co-oligomerisation of ethene with pentene The procedure in comparative Examples 5-7 and in Example 8 was the same as that of comperative Examples 1 to 3 and Example 4, respectively, except that the First and Second Components of the catalyst composition were dissolved in 15 and 60 ml of toluene respectively and that, together with the Second Component, 210 mmol of 1-pentene (co-monomer for reacting with the ethene) was injected into the autoclave. Comparative Example 7 differed in that the amounts of toluene and 1-pentene used were 300 ml and 91 mmol, respectively. The amount of ethene consumed during the reaction, the amounts of C_4 , C_{6+8+10} , C_{7+9+11} and C_{12+} olefins produced, and the wt% distribution of alpha-, beta- and branched hexenes and heptenes are given in Table 2. TABLE 2 | Example | | 5 | 6 | 7 | 8 | |-------------------------------------|-------|------|------|------|------| | Reaction time (min) | 4 | 4 | 150 | 30 | 38 | | Ethene consumed (g) | 2 | 25 | 25 | 34 | 25 | | Product C ₄ olefin (g) | | 0.2 | 0.8 | 5.0 | 1.2 | | Product C ₆₊₈₊₁₀ olefins | (g) | 0.8 | 2.9 | 9.8 | 5.2 | | hexene | (g) | | 1.0 | 4.3 | 1.6 | | Product C ₇₊₉₊₁₁ olefins | (g) | 4.5 | 2.7 | 1.6 | 2.5 | | heptene | | 1.4 | 1.0 | 0.8 | 0.8 | | Product C ₁₂₊ olefins | (g) 2 | 24.5 | 21.6 | 18.0 | 18.3 | | Distribution of hexenes | (wt%) | | | | | | 1-hexene | 8 | 39.8 | 60.3 | 36.0 | 98.8 | | 2-hexene | 1 | 10.2 | 38.9 | 62.4 | 1.1 | | 2-ethyl-1-butene | | 0.0 | 8.0 | 1.6 | 0.1 | | Distribution of heptenes | (wt%) | | | | | | 1-heptene | 8 | 36.3 | 57.6 | 36.2 | 97.6 | | 2-heptene | 1 | 13.4 | 31.6 | 55.7 | 1.1 | | 2-ethyl-1-pentene | | 0.3 | 10.8 | 8.1 | 1.3 | From these Examples it is apparent, that catalyst compositions according to the invention, when used in the oligomerisation of ethene (Example 4) and in the co-oligomerisation of ethene and pentene (Example 8), have the advantage above comparative catalyst compositions of promoting the selectivity of the reaction towards linear alpha-olefin reaction products and of suppressing the formation of branched and internal olefins. ### The claims defining the invention are as follows: - 1. A catalyst composition when used for alkene oligomerisation, comprising a first component which is a substituted-bis(cyclopentadienyl) titanium, zirconium or hafnium compound, also containing a substituent which is attached to the metal and which is capable of reacting with a cation and a second component which is a compound having a bulky and labile anion which is substantially non-coordinating under the reaction conditions and a cation, characterized in that the substituted bis-cyclopentadienyl ligand pair is bis-tetramethylcyclopentadienyl. - 2. A catalyst composition according to claim 1, characterized in that the first component of the catalyst is a compound of the general formula $(Cp^*)_2MR_1R_2$, wherein $(Cp^*)_2$ is the bis-tetramethyl-cyclopentadienyl ligand pair, M is a metal chosen from the group of titanium, zirconium or hafnium and R_1 and R_2 are two identical or different groups selected from unsubstituted or substituted hydrocarbyl groups, alkyloxy groups, hydrogen or halogen. - 3. A catalyst composition according to claim 2, characterized in that R_1 and R_2 are unsubstituted alkyl groups of from 1 to 5 carbon atoms. - 4. A catalyst composition according to claim 3, characterized in that the first component of the catalyst is bis(tetramethylcyclopentadienyl)zirconium dimethyl. - 5. A catalyst composition according to any one of claims 1 to 4, characterized in 20 that the second component of the catalyst is a ionic combination of a bulky anion containing a plurality of boron atoms which is substantially non-coordinating under the reaction conditions employed, with a cation. - 6. A catalyst composition according to claim 5, characterized in that the boron-containing non-coordinating anion is a carborate anion. - 7. A catalyst composition according to claim 6, characterized in that the carborate anion is of the formula $B_{11}CH_{12}$. - 8. A catalyst composition according to any one of claims 5 to 7, characterized in that the cation is a proton-donating cation. - 9. A catalyst composition according to claim 8, characterized in that the proton-30 donating cation is a quaternay ammonium cation. - 10. A catalyst according to any one of claims 5 to 7, characterized in that the cation is a silver ion. - 11. A catalyst composition, substantially as hereinbefore described with reference to any one of the Examples. - 12. A process for the preparation of linear alpha alkenes having 4 to 24 carbon atoms by oligomerisation or co-oligomerisation of ethene and/or an alpha ketone having 3 to 10 carbon atoms in the presence of a catalyst composition as claimed in any one of claims 1 to 11. 13. A linear alpha alkene produced by the process of claim 12. Dated 28 July, 1997 Shell International B.V. Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON 5 # INTERNATIONAL SEARCH REPORT Inte. Inal Application No. | | | | FG1/EF 34/01430 | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|--| | A. CLASS | SIFICATION OF SUBJECT MATTER C07C2/34 B01J31/22 | | | | | According | to International Patent Classification (IPC) or to both national cl | assification and IPC | | | | 1 | S SEARCHED | | | | | IPC 5 | documentation searched (classification system followed by classification COTC BOIJ COSF | (ication symbols) | | | | Documenta | ation searched other than minimum documentation o the extent the | hat such documents are include | led in the fields searched | | | Electronic | data hase consulted during the international search (name of data | hase and, where pracucal, se | arch terms used) | | | C. DOCUM | MENTS CONSIDERED TO BE RELEVANT | <u> </u> | | | | Category * | Citation of document, with indication, where appropriate, of th | e relevant passages | Relevant to claim No. | | | X | WO,A,91 09882 (EXXON CHEMICAL P
July 1991
see page 10, line 6
see page 15, line 16 - line 35 | ATENT) 11 | 1-5,8,9 | | | | see claim 1 | | | | | Y | | 6,7,11 | | | | Y | EP,A,O 443 686 (SHELL) 18 Septer
see claims 1,13 | 6,7,11 | | | | A | EP,A,O 447 880 (TOSOH CORPORATION September 1991 | | | | | Furt | her documents are listed in the continuation of box C. | Pateni family mer | nbers are listed in annex. | | | * Special cal | legories of cited documents: | | | | | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. E' earlier document but published on or after the international filing date. 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). 'O' document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone. 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone cannot be considered to involve an inventive step when the document is combined to involve an inventive step when the document is combined to involve an inventive step when the document is considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled. | | | | | | "P" docume | ent published prior to the international filing date but
an the priority date claimed | in the art. '&' document member of | | | | Date of the | actual completion of the international search | Date of mailing of the | interiornal search report | | | 30 | 0 June 1994 | | 16 . 07. 94 | | | Name and n | nating address of the ISA Buropean Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, For (+ 41-70) 340-3034 | Authorized officer Thion, M | | | 1 ## INTERNATIONAL SEARCH REPORT information on patent family members Inte. onal Application No PCT/EP 94/01430 | Patent document cited in search report | Publication date | Patent family member(s) | | Publication date | |--|------------------|----------------------------------|---|--| | WO-A-9109882 | 11-07-91 | AU-B-
AU-A-
CA-A-
EP-A- | 643255
7181191
2072752
0507876 | 11-11-93
24-07-91
03-07-91
14-10-92 | | EP-A-0443686 | 28-08-91 | CN-A-
JP-A- | 1054987
4211616 | 02-10-91
03-08-92 | | EP-A-0447880 | 25-09-91 | JP-A-
US-A- | 3258812
5100983 | 19-11-91
31-03-92 |