
(19) United States
US 2007 OO64694A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0064694 A1
Ziedman (43) Pub. Date: Mar. 22, 2007

(54) SYSTEM AND METHOD FOR CONNECTING
A LOGIC CIRCUIT SIMULATION TO A
NETWORK

(76) Inventor: Robert M. Ziedman, Cupertino, CA
(US)

Correspondence Address:
MACPHERSON KWOK CHEN & HEID LLP
2O33 GATEWAY PLACE
SUTE 4OO
SAN JOSE, CA 95110 (US)

Appl. No.: 11/557,053 (21)

(22) Filed: Nov. 6, 2006

Related U.S. Application Data

(63) Continuation of application No. 10/044.217, filed on
Nov. 19, 2001, which is a continuation-in-part of
application No. 09/751,573, filed on Dec. 28, 2000,
now Pat. No. 7,050,962.

(60) Provisional application No. 60/193,169, filed on Mar.
28, 2000.

Publication Classification

Int. C.
H04L 2/56 (2006.01)
U.S. Cl. .. 370/389; 370/466

(51)

(52)

(57) ABSTRACT

A system and method for connecting a running logic circuit
simulation to a network running at a higher speed that
includes a computer for receiving data packets from the
network and storing the received data packets in a first
buffer. The computer next transmits the received data pack
ets to an electronic circuit in the logic circuit simulation at
a slower speed. The computer also receives data packets
from the electronic device under simulation, and stores the
data packets received from the electronic device under
simulation in a second buffer. The computer then transmits
the data packets received from the electronic device under
simulation to the network at a higher speed.

MOLASSESSOFTWARE w 7 -300
W32N Molassesstart routine 4.

5

W32N MolassesBuffer routine, threadi
Packet Reception Shared Buffer in

(W32N PacketRead Memory 60
routine) (RPacketPackOarray)

64
58

Ethernet 62 Shared Buffer in Packet Transmission EPP
NC Memory (PORT32 PacketSend Parale

(standard (XpacketPack1 array) routine) Port
off-the- (standard
shelf off-the

hardware) PORT32 MolassesBuffer routine, thread 2 shelf
hardware)

Shared Buffer in Packet Reception
Memory (PORT32 PacketRead

(RPacketPack1 array) routine)
76 - - S68 66 72

Packet Transmission Shared Buffer in
(W32N PacketSend Memory 70

routine) (XpacketPack0 array)

74 -- W32N Molassesstop routine 94

Patent Application Publication Mar. 22, 2007 Sheet 1 of 8 US 2007/0064694 A1

Customer
device On

WorkStation 1

10BaseT
Ethernet Over
twisted pair

emulator

bi-directional
interface

WorkStation 2 C running
Molasses Code

FIG. 1

12

normal
device
I/O

19A
19B

bi-directional
I/O

27 Logic to emulate Customer
device

Ethernet
MAC

LOgic to emulate
bi-directional interface

26

internal
buS I/O internal buS

interface

18

FIG. 2

US 2007/0064694 A1 Patent Application Publication Mar. 22, 2007 Sheet 2 of 8

US 2007/0064694 A1

88 opoulušis`s) opou ºsodiºn 2 [@][LGET98 ?o º 900 – –] º HººT
79

E?-?e appevod lan

Patent Application Publication Mar. 22, 2007 Sheet 3 of 8

US 2007/0064694 A1

909Z09| 09

Patent Application Publication Mar. 22, 2007 Sheet 4 of 8

US 2007/0064694 A1 Mar. 22, 2007 Sheet 5 of 8 ion icat Patent Application Publ

an an - r - r - a as a

US 2007/0064694 A1 Patent Application Publication Mar. 22, 2007 Sheet 6 of 8

EHWM|-JOS SESSWTOW|

| — — — — —

US 2007/0064694 A1

B

s

l

Patent Application Publication Mar. 22, 2007 Sheet 7 of 8

Patent Application Publication Mar. 22, 2007 Sheet 8 of 8 US 2007/0064694 A1

920
10BaseT

Ethernet Over
twisted pair

WorkStation 2 Workstation running
Molasses COde and
device Simulation

FIG. 9

US 2007/0064694 A1

SYSTEMAND METHOD FOR CONNECTING A
LOGIC CIRCUIT SIMULATION TO A NETWORK

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

0001. The present application is a continuation-in-part
application of copending U.S. patent application, entitled
METHOD FOR CONNECTING A HARDWARE EMU
LATOR TO A NETWORK, Ser. No. 09/751,573, filed on
Dec. 28, 2000.

BACKGROUND OF THE INVENTION

0002 Prior to reducing an integrated circuit design to a
form Suitable for fabrication, the integrated circuit design is
often simulated in Software on a computer, and emulated in
hardware to allow the design to be optimized and debugged.
Typically, using a hardware description language (e.g.,
VHDL), the circuit designer prepares a hardware description
of the integrated circuit, which is then compiled into a
Software model to be simulated on a computer (e.g., an
engineering workstation). Often, the hardware description
can also be compiled into a hardware model that can be
emulated in a hardware emulator. A hardware emulator
Suitable for Such use typically includes field programmable
gate arrays (FPGAs) that serve as a breadboard for imple
menting the integrated circuit design. Both the simulation
and the emulator typically run at a slower speed than a
computer network (e.g., an Ethernet network).
0003) When an integrated circuit that has a computer
network interface is simulated or emulated, network activi
ties are usually simulated or emulated at the speed of the
circuit emulator or the circuit simulation. When using a
circuit emulator, a conventional network-emulation device
is typically connected to a port of the circuit emulator. The
circuit emulator receives data packets from the network
emulation device, re-packages the data and transmits the
re-packaged data back at the speed of the circuit emulator.
The re-packaged data is then received by the network
emulation device, which inspects the re-packaged data to
determine if the integrated circuit under emulation in the
circuit emulator correctly sends and receives data packets.
However, on balance, such a conventional network-emula
tion device does not emulate network behavior accurately
and correctly.
0004 Alternatively, another conventional technique for
connecting a circuit emulator to the network requires slow
ing down the network, receiving signals from the slowed
network and translating the signals into Suitable electrical
signals in the form that the circuit emulator can accept. The
circuit emulator, which typically operates at a slower speed
than the network, can also send packets to the slowed
network. However, because the network is designed to
operate at a different speed, timing issues may arise in Such
a slowed network. These timing issues may require further
modification to the network to resolve. Such modifications
are undesirable because the modified network may not
adequately represent network characteristics. Because not
all network devices can be slowed to the circuit emulator
speed, the circuit emulator is typically also limited to
communication with a small Subset of devices on the net
work.

0005 Shortcomings of an emulation are typically also
present in a logic circuit simulation.

Mar. 22, 2007

SUMMARY OF THE INVENTION

0006 The present invention allows a logic circuit simu
lator ("circuit simulation') running on a host processor to
connect to a computer network at full network speed. The
present invention provides a method and an apparatus for
transferring data packets between a circuit simulation and
the network. In one embodiment, an interface software
program also installed on a host computer (e.g., a personal
computer) is provided to handle communication between the
network and the circuit simulator. The network can be, for
example, an Ethernet network.
0007 According to the present invention, data packets
addressed to a device under simulation, or alternatively,
addressed to a workstation connected to the network through
the circuit simulation, is received and stored in buffers of the
host computer. (In one example, a workstation is connected
to a network through a simulated network interface.) The
interface Software in the host computer repackages the data
packet into a second format for transmission to the simulated
device at the speed of the circuit simulation. Under this
arrangement, the interface Software in the host computer
need not send to the circuit simulation, for example, the
preamble required to synchronize the clocks of the network
and the circuit simulation, because the circuit simulation is
usually not capable of providing an analog interface required
to respond to the preamble. Similarly, the interface software
in the host computer repackages the data packets received
from the circuit simulation into proper format for transmis
sion to the network at full network speed. Under this
arrangement, the existing memory in the host computer is
used to buffer data packets communicated between the
circuit simulation and the network, so that data packets
received from the network at network speed are transmitted
to the circuit simulation at a slower speed, and data packets
received from the circuit simulation at the slower speed is
provided to the network at full network speed.
0008. In one embodiment, the present invention allows
the interface software of a host computer to individually
examine a data packet of a conventional off-the-shelf inter
face card to identify the beginning and the end of the packet.
When the beginning and the end of a data packet can be
identified, the interface software of the host computer
ignores data packets not addressed to the simulated circuit.
Consequently, compared to the prior art, a much smaller
amount of buffer memory is required. This arrangement
loses data packets only in the occasional event of a buffer
overflow, thus effectively preventing network connection
loss.

0009. In one embodiment, the interface software of the
host computer is implemented as a multithreaded program
having, in one instance, two executing threads. One thread
is a task that receives data packets from the network inter
face card, stores the received data packets in a buffer,
retrieves the stored data for repackaging, and sends the
repackaged data over a simulation interface to the circuit
simulation. Another thread is a task that receives packets
from the simulation interface, repackages the data into a
network data packet and sends the network data packet over
the network interface card to the network.

0010. In another embodiment, the interface software of
the host computer is implemented as a multithread program
including four executing threads. One thread is a task that

US 2007/0064694 A1

receives data packets from the network, and stores the
received data packets in a buffer. A second thread is a task
that polls the buffer for the received data packets. This
second thread repackages the data packets and sends the
repackaged packets over the simulation interface to the
circuit simulation. A third thread is a task that receives data
packets from the circuit simulation over the simulation
interface and stores the received packets in a second buffer.
A fourth thread is a task that polls the second buffer for the
data packets received from the circuit simulation. This
fourth thread repackages these data packets and sends the
repackaged packets over the network interface to the net
work.

0011. In yet another embodiment, the interface software
of the host computer is also implemented as a multithread
program, as in the previous embodiment, except that the
second buffer is eliminated and the third and fourth tasks are
combined into a single task executing as a single thread. In
this embodiment, the single task receives data packets from
the simulation interface from the circuit simulation, repack
ages the data packets received and sends the repackaged
packets over the network interface to the network. This
approach is possible because a circuit simulation runs at a
much slower speed than the network, such that a data packet
received from the circuit simulation can be repackaged and
sent to the network before the next data packets arrival from
the circuit simulation.

0012 Further features and advantages of various embodi
ments of the invention are described in the detailed descrip
tion below, which is given by way of example only.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 shows a configuration including first work
station 10, second workstation 20, host computer 30 and
circuit emulator 12, in accordance with the present inven
tion.

0014 FIG. 2 is a block diagram showing one configura
tion of circuit emulator 12, during an emulation of a network
interface card.

0015 FIG. 3 is a block diagram 300 showing the func
tions performed by Molasses program 50, in accordance
with one embodiment of the present invention.
0016 FIG. 4 shows a user interface Mainscreen 80 in
Molasses program 50.

0017 FIG. 5 shows a test setup suitable for a self-test in
Molasses program 50, involving three personal computers
(PC)
0018 FIG. 6 is a block diagram 600 showing the func
tions performed by Molasses program 40, in accordance
with a second embodiment of the present invention.
0019 FIG. 7 is a block diagram 700 showing the func
tions performed by Molasses program 750, in accordance
with a third embodiment of the present invention.
0020 FIG. 8 is a block diagram 800 showing the func
tions performed by Molasses program 850, in accordance
with a fourth embodiment of the present invention.
0021 FIG. 9 shows a configuration including first work
station 920 and host computer 930.

Mar. 22, 2007

0022. In the following detailed description, to simplify
the description, like elements are provided like reference
numerals.

DETAILED DESCRIPTION

0023 The present invention is illustrated in the following
using first, as an example, an emulation of a network
interface device. At a latter part of this description, the
present invention is illustrated, by way of another example,
a simulation of a network interface device. FIG. 1 shows a
configuration including first workstation 10, second work
station 20, host computer 30 and circuit emulator 12. In this
embodiment, a network interface card is emulated in circuit
emulator 12, which interfaces with first workstation 10 over
a conventional internal bus (e.g., a PCI bus). The network
interface card emulated is intended to operate as a network
interface of a workstation, such as workstation 10. However,
circuit emulator 12 does not operate at the full network
speed the network interface card is intended. Circuit emu
lator 12 is connected to host computer 30 over bidirectional
interface 22, Such as a conventional personal computer (PC)
parallel port. Host computer 30 runs an interface program
"Molasses” which is discussed in further detail below in
conjunction with FIG. 4. Host computer 30 connects to
conventional computer network 24 (e.g., 10BaseT Ethernet
over twisted pair) using a conventional network interface.
Workstation 20 communicates with host computer 30 over
computer network 24 using conventional network protocols.
Host computer 30 can be, for example, a desktop PC running
Windows 95 or Windows 98 and equipped with a 10baseT
Ethernet controller card and two parallel ports. A proprietary
parallel port interface can be used for faster transfer speeds
or easier connection to circuit emulator 12. In one embodi
ment, host computer 30 includes an Intel Pentium class
processor and is equipped with 32 Mbytes of DRAM and
500 Mbytes of hard disk space. Host computer 30 also
includes Media Access Controller (“MAC) drivers, parallel
port drivers and the NDIS API (Network Driver Interface
Specification—Application Program Interface). MAC driv
ers interface the operating system to the Ethernet card
hardware. The parallel port drivers allow the operating
system to interact with the parallel port hardware, and the
NDIS API allows functional enhancements to network driv
ers in the operating system. Host computer 30 also includes
a Graphical Users Interface (“GUI) and a packet capture,
buffering and transmission application program as part of
the “Molasses' program, which will be described in further
detail later. Workstations 10 and 20 can each be any con
ventional workstation, including a PC running the Windows
98 operating system.
0024. Alternatively, the network interface card can also
be simulated in a circuit simulation running on host com
puter 30. Host computer 30 also runs a version of the
interface program “Molasses” (e.g., Molasses program 750
or 850) which is discussed in further detail below in con
junction with FIG. 7 or FIG. 8.
0025 FIG. 2 is a block diagram of one configuration of
circuit emulator 12 during an emulation of the network
interface card. As shown in FIG. 2, circuit emulator 12
provides logic circuit 18 that couples circuit emulator 12’s
circuit to bi-directional interface 22, an emulated Ethernet
MAC 26, interface 23 to internal bus 21, and logic circuit 27,
which is the remainder of the emulated network interface

US 2007/0064694 A1

card. Cable assemblies 19A and 19B connect the input
terminals and the output terminals (“I/O terminals’) of
Ethernet MAC 26 and logic circuit 18. Logic circuit 18
translates the signals of Ethernet MAC 26 (communicated
over cable assemblies 19A) into the signals of bi-directional
interface 22 for transmitting to host computer 30. In one
embodiment, computer network 24 includes a conventional
hub providing 10baseT connections. Alternatively, computer
network 24 can also include a switch, which selectively
transmits data packet based on destination addresses. Use of
a Switch can reduce packet traffic at a particular connection,
and thus reduce the buffer requirements at the connected
devices (e.g., host computer 30). Providing a switch at host
computer 30’s connection to computer network 24 also
simplifies the Molasses program 50 running on host com
puter 30. In this configuration, emulator 12s connection to
workstation 10 over internal bus 21 allows examination of
signals in logic circuits 18 and 27 for debugging purpose.
0026 FIG. 3 is a block diagram 300 showing the func
tions performed by Molasses program 50, in accordance
with one embodiment of the present invention. Molasses
program 50 includes a graphical user interface illustrated in
FIG. 4 by Mainscreen 80. As shown in FIG. 4, Mainscreen
80 allows the user to specify an Ethernet NIC (act 82) and
a port address for bidirectional interface 22 connected to
emulator 12 (act 84). Status line 92 displays continuously
information about packets being processed by Molasses
program 50. The amount of information to be shown on
status line 92 can be selected using verbose mode option 86
and silent mode option 88. The user can also specify a log
file (act 90) to record information such as the value of each
byte in each data packet, a count or the nature of errors that
occur, or comments that the user may wish to add. The log
file can be used for future reference and debugging purposes.
0027. Referring back to FIG. 3, Molasses program 50
interfaces with network interface card (NIC) 74, which
provides host computer 30’s access to computer network 24,
and interface 72, which couples host computer 30 through
bidirectional interface 22 to circuit emulator 12. In this
embodiment, interface 72 can be a conventional parallel port
operating under the conventional EPP standard. Once the
parameters of Mainscreen 80 are set, Mainscreen 80 calls
“W32N MolassesStart” routine 52. Routine 52 creates
simultaneous threads running "W32N MolassesBuffer
routine 54 and “PORT32 MolassesBuffer routine 56,
respectively. W32N MolassesBuffer routine 54 receives
packets from the Ethernet NIC 74 (via a W32N PacketRead
routine 58), stores the received packets into receive buffer 60
(“RPacketPack0) in host computer 30’s main memory.
Subsequently, the received packets in buffer 60 are trans
ferred to transmit buffer 62 (“XPacketPack1), from which
they are then transmitted to interface 72 via
“PORT32 PacketSend routine 64.
PORT32 MolassesBuffer routine 56 receives packets from
interface 72 (via “PORT32 PacketRead” routine 66), stores
the packets into receive buffer 68 (“RPacketPack1). Sub
sequently, routine 56 then transfers the data packets in buffer
68 to a transmit buffer 70 (“XPacketPack0), which are then
transmitted to the Ethernet NIC 74 via “W32N PacketSend’
routine 76. Molasses program 50 converts data packet
formats, when necessary. For example, the preamble that is
used in a packet for synchronizing the clock signals of the
network and the emulated device is removed before being
forwarded to circuit emulator 12 over interface 72.

Mar. 22, 2007

0028 Mainscreen 80 calls “W32N Molassesstop” rou
tine 94 to terminate execution of both threads 54 and 56.

0029 FIG. 6 is a block diagram 600 showing the func
tions performed by Molasses program 40, in accordance
with a second embodiment of the present invention. As in
Molasses program 50 of FIG. 3, Molasses program 40 of
FIG. 6 interfaces with network interface 74, which provides
host computer 30’s access to computer network 24, and
interface 72, which couples host computer 30 to bidirec
tional interface 22 to circuit emulator 12. Interface 72 can be
implemented by a conventional parallel port operating
under, for example, the EPP standard. Once the parameters
of Mainscreen 80 (FIG. 4) are set, Mainscreen 80 calls
“W32N Molasses.Start routine 52, which creates four
threads 120, 122, 124 and 126. Thread 120 executes
“W32 PacketRead’ routine 58, which receives data packets
from Ethernet NIC 74 and stores the received data packet
into shared buffer 128 in the main memory of the host
computer 30. Thread 122 executes “Port32 PacketSend’
routine 64, which polls shared buffer 128 for the received
data packets, repackages these data packets and sends them
to circuit emulator 12 over emulation interface (parallel
port) 72. Thread 124 executes “Port32 PacketRead’ routine
66, which receives data packets from circuit emulator 12
over parallel port 72 and stores the received data packet into
shared buffer 130. Thread 126 executes a
“W32N PacketSend” routine 76, which polls shared buffer
130 for data packets, repackages the data packets and sends
them into network 24 over Ethernet NIC 74.

0030. Because circuit emulator 12 typically runs at a
speed much slower than devices on network 24, an alterna
tive embodiment combines threads 124 and 126 and elimi
nates shared buffer 130, taking advantage that
W32N PacketSend routine 76 can complete repackaging
and sending out a data packet to network 24 before arrival
of the next data packet from circuit emulator 12 over parallel
port 72.
0031 Mainscreen 80 calls “W32N Molassesstop” rou
tine 94 to terminate execution of both threads 120, 122, 124
and 126.

0032) The size of each of buffers 60, 62. 68 and 70, 128
and 130 can be changed dynamically. Even then, a buffer
overflow condition can occasionally occur, resulting in data
packets being discarded. Typically, discarding an incomplete
packet risks losing a network connection. However, there is
no risk of losing a network connection under the present
invention, because only whole packets are discarded.
0033. As mentioned above, the present invention is also
applicable to a circuit simulation of the network interface
device. FIG. 9 shows a configuration including first work
station 920 and host computer 930. In this embodiment, a
network interface card is simulated in a circuit simulation
program running on host computer 930. Circuit simulation
does not operate at the full network speed the network
interface card is intended. Host computer 930 runs the
interface program “Molasses' concurrently with the circuit
simulation program. Host computer 930 connects to con
ventional computer network 924 (e.g., 10BaseT Ethernet
over twisted pair) using a conventional network interface.
Workstation 920 communicates with host computer 930
over computer network 924 using conventional network
protocols. Host computer 930 can be, for example, a desktop

US 2007/0064694 A1

PC running Windows 95 or Windows 98 and equipped with
a 10baseTEthernet controller card. In one embodiment, host
computer 930 includes an Intel Pentium class processor and
is equipped with 32 Mbytes of DRAM and 500 Mbytes of
hard disk space. Host computer 930 also includes Media
Access Controller (“MAC) drivers, parallel port drivers
and the NDIS API (Network Driver Interface Specifica
tion—Application Program Interface). MAC drivers inter
face the operating system to the Ethernet card hardware. The
NDIS API allows functional enhancements to network driv
ers in the operating system. A programming language inter
face (PLI) supported by the circuit simulation program
allows the circuit simulation program to interact with the
Molasses software. Workstation 920 can each be any con
ventional workstation, including a PC running the Windows
98 operating system.

0034 FIG. 7 is a block diagram 700 showing the func
tions performed by Molasses program 750, in accordance
with a third embodiment of the present invention that can be
implemented in the configuration of FIG. 9 Molasses pro
gram 750 can include a graphical user interface similar to
that illustrated in FIG. 4 by Mainscreen 80. As in Molasses
program 50, Molasses program 750 interfaces with network
interface card (NIC) 74, which provides host computer
930’s access to computer network 24, and simulation inter
face 772, which provides a program interface in host com
puter 930 to a circuit simulation running on host computer
930 concurrently with Molasses program 50. In this embodi
ment, simulation interface 772 can be a conventional pro
gramming language interface (PLI), an interprocess com
munication mechanism (e.g., a socket), a client-server type
interface, or any other suitable software interface. For
example, hardware description languages, such as Verilog or
VHDL, provide Support for programming interfaces. In
particular, under Verilog, which is standardized by the
Institute of Electrical and Electronics Engineers (IEEE),
defines a PLI interface through which a compiled C Lan
guage program can communicate with a running circuit
simulation.

0035. Once the parameters of Mainscreen 80 are set,
Mainscreen 80 calls “W32N Molasses Start” routine 752.
Routine 752 creates simultaneous threads running
“W32N MolassesBuffer” routine 754 and “SIM Molasses
Buffer routine 756, respectively. AS in
W32N MolassesBuffer routine 54 discussed above,
W32N MolassesBuffer routine 754 receives packets from
the Ethernet NIC 74 (via the same W32N PacketRead
routine 58 discussed above), stores the received packets into
receive buffer 60 in host computer 930s main memory.
Subsequently, the received packets in buffer 60 are trans
ferred to transmit buffer 62, from which they are then
transmitted to simulation PLI 772 via “SIM PacketSend’
routine 764. SIM MolassesBuffer routine 756 receives
packets from simulation PLI 772 (via “SIM PacketRead”
routine 766), stores the packets into receive buffer 68.
Subsequently, routine 56 then transfers the data packets in
buffer 68 to a transmit buffer 70, which are then transmitted
to the Ethernet NIC 74 via “W32N PacketSend' routine 76.
As in Molasses program 50 above, Molasses program 750
converts data packet formats, when necessary. For example,
the preamble that is used in a packet for synchronizing the
clock signals of the network and the emulated device is
removed before being forwarded to the circuit simulation

Mar. 22, 2007

over simulation PLI 772. Mainscreen 80 calls
“W32N Molassesstop” routine 794 to terminate execution
of both threads 754 and 756.

0036 FIG. 8 is a block diagram 800 showing the func
tions performed by Molasses program 840, in accordance
with a fourth embodiment of the present invention that can
also be implemented in the configuration of FIG. 9. As in
Molasses program 750 of FIG. 7, Molasses program 840 of
FIG. 8 interfaces with network interface 74, which provides
host computer 930’s access to computer network 24, and
simulation PLI 772, which couples host computer 930 to the
running circuit simulation. Once the parameters of Main
screen 80 (FIG. 4) are set, Mainscreen 80 calls
“W32N Molasses.Start routine 852, which creates four
threads 820, 822, 824 and 826. Thread 820 executes
“W32 PacketRead’ routine 58, which receives data packets
from Ethernet NIC 74 and stores the received data packet
into shared buffer 128 in the main memory of the host
computer 930. Thread 822 executes “SIM PacketSend’
routine 864, which polls shared buffer 128 for the received
data packets, repackages these data packets and sends them
to the running circuit simulation over simulation PLI 772.
Thread 824 executes “SIM PacketRead’ routine 866, which
receives data packets from the running circuit simulation
over simulation PLI 772 and stores the received data packet
into shared buffer 130. Thread 826 executes a
“W32N PacketSend” routine 76, which polls shared buffer
130 for data packets, repackages the data packets and sends
them into network 24 over Ethernet NIC 74.

0037 As in circuit emulator 12, because a circuit simu
lation typically runs at a speed much slower than devices on
network 24, an alternative embodiment combines threads
824 and 826 and eliminates shared buffer 130, taking
advantage that W32N PacketSend routine 76 can complete
repackaging and sending out a data packet to network 24
before arrival of the next data packet from the circuit
simulation emulator 12 over simulation PLI 772.

0038. Mainscreen 80 calls “W32N Molassesstop” rou
tine 894 to terminate execution of threads 820, 822, 824 and
826.

0039) Molasses programs 50, 40, 750 and 840 each
include a test program for self-test. FIG. 5 shows a test setup
suitable for use with the self-test involving PCs 501,502 and
503. For brevity, this test program is described with respect
to Molasses program 50. Description herein regarding
Molasses program 50 is equally applicable to Molasses
program 40. The test program has two modes of operation—
“initiate” and “respond. PC502 runs Molasses program 50,
configured to address two Ethernet network interface cards,
rather than the bi-directional interface, as in FIG. 1. PC 501
runs the test Software in initiate mode, generating and
sending Ethernet packets of varying size to PC 502 via local
area network 504 (e.g., Ethernet with 10BaseT connections)
at step 521. At step 522, Molasses program 50 of PC 502
receives the packets from PC 501 using one of its two
network interface cards, and then forwards the received
packets to PC 503 over network 505, which is coupled to the
other one of its network interface cards. PC 503 runs the test
Software in respond mode, taking each packet received from
PC502 (step 523) and re-transmitting it back to PC502 over
local area network 505 (step 524). At step 525, Molasses
software of PC 502 then forwards the received packet from

US 2007/0064694 A1

PC503 to PC 501 over local area network 504. There, at step
526, under initiate mode, the test software on PC 501
compares the returned packet to the packet it transmitted at
step 521. Any mismatch of these packets is reported as an
error. In one embodiment, a timer can be set in /18-second
increments to specify the frequency of packet generation in
PC 102.

0040. A user interface is provided by the test program to
self-test Molasses program 50. The user interface displays
an appropriate amount of information, based on a user's
selection of silent mode or verbose mode. Through this user
interface, a user can vary a packet throughput rate, effectuate
an overflow condition in any of buffers 60, 62. 68, 70, 128
and 130, or test for timing and throughput problems. A status
line is provided in the user interface to continuously update
information about packets processed by Molasses program
50, such as the number of packets sent and received, the
current value of the timer, an error count, and other status
information desired. In addition, a log file can be specified
to record the value of each byte of each packet, errors that
occurred, and comments that the user may wish to add using
a comment line in the user interface. The recorded informa
tion may be used for future reference and debugging.
0041. The test program also provides a test for accessing
circuit emulator 12 through a bidirectional interface (e.g., a
parallel port). In one embodiment, an industry standard
parallel port conforming to the enhanced parallel port (EPP)
standard is provided. The test program allows a user to read
and write 8-bit addresses and 8-bit data patterns via the
parallel port to circuit emulator 12. In one test, data is
continuously written to and read back from circuit emulator
12 and compared. Any mismatch between the written data
and the read back data is reported as an error.
0.042 Various modifications and adaptations of the opera
tions described here would be apparent to those skilled in the
art based on the above disclosure. Many variations and
modifications within the scope of the present invention are
therefore possible. The present invention is set forth by the
following claims.

1-24. (canceled)
25. A method for simulating an electronic device that

interacts with a network, the simulation being carried out by
a program executing in a host computer, the simulation
includes simulating the electronic device's interaction with
the network, the method comprising executing instructions
on the host computer for:

(a) receiving data packets designating the electronic
device as recipient from the network through a network
interface; and

(b) transmitting the data packets to the simulation through
a software interface to provide data packets for simu
lating the electronic device's interaction with the net
work.

26. The method of claim 25, the instructions further
comprising instructions for storing the data packets received
from the network in a buffer allocated in the memory of the
host computer.

27. The method of claim 26, the instructions further
comprising instructions for changing the size of the buffer at
run time.

Mar. 22, 2007

28. The method of claim 26, the instructions further
comprising instructions to cause to be discarded packets of
data when the buffer is full.

29. The method of claim 26, the instructions further
comprising instructions for keeping a record of the data
packets received from the network.

30. The method of claim 29, the instructions further
comprising instructions for displaying the record.

31. The method of claim 29, the instructions further
comprising instructions for storing the record in a file.

32. The method of claim 25, the instructions further
comprising instructions for recording the throughput of the
data packets.

33. The method of claim 25, the instructions further
comprising instructions for modifying the packets to make
the packets suitable for receipt by the simulation.

34. The method of claim 33, wherein modifying includes
removing a preamble from a data packet.

35. The method of claim 25, wherein the instructions for
receiving data packets from the network, and the instruc
tions for transmitting the data packets to the simulation are
executed in a single thread.

36. The method of claim 25, wherein the instructions for
receiving data packets from the network is executed in a first
thread, and the instructions for transmitting the data packets
to the simulation is executed in a second thread.

37. A method for simulating an electronic device that
interacts with a network, the simulation of the electronic
device being carried out by a program executing in a host
computer, the simulation including simulating the electronic
device's interaction with the network, the method compris
ing executing on the host computer instructions for:

(a) receiving data packets designating the electronic
device as a source through a software interface from the
simulation of the electronic device's interaction with
the network; and

(b) transmitting the data packets to the network through a
network interface.

38. The method of claim 37, the instructions further
comprising instructions for storing the data packets received
from the simulation in a buffer allocated in the memory of
the host computer.

39. The method of claim 38, the instructions further
comprising instructions for changing the size of the buffer at
run time.

40. The method of claim 38, the instructions further
comprising instructions to cause to be discarded packets of
data when the buffer is full.

41. The method of claim 37, the instructions further
comprising instruction for keeping a record of the data
packets received from the simulation.

42. The method of claim 41, the instructions further
comprising instructions for displaying the record.

43. The method of claim 41, the instructions further
comprising instructions for storing the record in a file.

44. The method of claim 37, the instructions further
comprising instructions for recording the throughput of the
data packets.

45. The method of claim 37, the instructions further
comprising instructions for modifying the data packets to
make the packets suitable for receipt by the network.

46. The method of claim 45, wherein modifying includes
inserting a preamble in a data packet.

US 2007/0064694 A1

47. The method of claim 37, wherein the instructions for
receiving data packets from the simulation and the instruc
tions for transmitting the data packets received from the
simulation to the network are executed in a single thread.

48. The method of claim 37, wherein the receiving data
packets from the simulation is executed in a first thread and
the transmitting the data packets to the network is executed
in a second thread.

49. A computer-readable medium for use in a simulation
of an electronic device, wherein the simulation is to be
carried out by a program executing in a host computer, and
wherein the simulation of the electronic device includes
simulating the electronic device's interaction with the net
work; the computer-readable medium comprising computer
executable instructions to be executed on the host computer
for:

(a) receiving data packets designating the electronic
device as a recipient from the network through a
network interface; and

(b) transmitting the data packets to the simulation through
a software interface to provide data packets for simu
lating the electronic device's interaction with the net
work.

50. The computer-readable medium of claim 49, further
comprising computer instructions for storing the data pack
ets received from the network in a buffer allocated in the
memory of the host computer.

51. The computer-readable medium of claim 50, further
comprising computer-executable instructions for changing
the size of the buffer at run time.

52. The computer-readable of medium claim 50, further
comprising computer-executable instructions for discarding
packets of data when the buffer is full.

53. The computer-readable medium of claim 49, further
comprising computer instructions for keeping a record of the
data packets.

54. The computer-readable medium of claim 53, further
comprising computer-executable instructions for displaying
the record.

55. The computer-readable medium of claim 53, further
comprising computer-executable instructions for storing the
record in the storage medium.

56. The computer-readable medium of claim 49, further
comprising computer-executable instructions for recording
the throughput of the data packets.

57. The computer-readable medium of claim 49, further
comprising computer-executable instructions for modifying
the data packets for receipt by the simulation.

58. The computer-readable medium of claim 57, wherein
the computer-executable instructions for modifying includes
computer-executable instructions for removing a preamble
from a data packet.

Mar. 22, 2007

59. A computer-readable medium for use in a simulation
of an electronic device, wherein the simulation is to be
carried out by a program executing in a host computer, and
wherein the simulation of the electronic device includes
simulating the electronic device's interaction with the net
work; the computer-readable medium comprising computer
executable instructions to be executed on the host computer
for:

(a) receiving data packets designating the electronic
device as a source through a software interface from the
simulation of the electronic device's interaction with
the network; and

(b) transmitting the data packets received from the simu
lation to the network through a network interface.

60. The computer-readable medium of claim 59, further
comprising computer-executable instructions for storing the
data packets received from the simulation in a buffer allo
cated in the memory of the host computer.

61. The computer-readable medium of claim 60, further
comprising computer-executable instructions for changing
the size of the buffer at run time.

62. The computer-readable medium of claim 60, further
comprising computer-executable instructions for discarding
packets of data when the buffer is full.

63. The computer-readable medium of claim 59, further
comprising computer-executable instructions for keeping a
record of the data packets.

64. The computer-readable medium of claim 63, further
comprising computer-executable instructions for displaying
the record.

65. The computer-readable medium of claim 63, further
comprising computer-executable instructions for storing the
record in the storage medium.

66. The computer-readable medium of claim 59, further
comprising computer-executable instructions for recording
the throughput of the data packets.

67. The computer-readable medium of claim 59, further
comprising computer-executable instructions for modifying
the data packets to make the packets Suitable for receipt by
the network.

68. The computer-readable medium of claim 67, wherein
computer-executable instructions for modifying includes
computer-executable instructions for inserting a preamble in
a data packet.

