

HU000030871T2

(19) **HU**

(11) Lajstromszám: **E 030 871**

(13) **T2**

MAGYARORSZÁG
Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM **SZÖVEGÉNEK FORDÍTÁSA**

(21) Magyar ügyszám: **E 10 774095**

(22) A bejelentés napja: **2010. 10. 26.**

(51) Int. Cl.: **C07K 16/24**

(2006.01)

A61K 393/95

(2006.01)

(96) Az európai bejelentés bejelentési száma:
EP 20100774095

(86) A nemzetközi (PCT) bejelentési szám:

PCT/US 10/054148

(97) Az európai bejelentés közzétételi adatai:
EP 2493925 A1 2011. 05. 12.

(87) A nemzetközi közzétételi szám:

WO 11056600

(97) Az európai szabadalom megadásának meghirdetési adatai:
EP 2493925 B1 2016. 11. 23.

(30) Elsőbbségi adatai:

254982 P

2009. 10. 26.

US

381287 P

2010. 09. 09.

US

(73) Jogosult(ak):

Amgen Inc., Thousand Oaks, CA 91320 (US)

(72) Feltaláló(k):

TOWNE, Jennifer, E., Seattle Washington 98117 (US)

CHENG, Janet, D., Seattle Washington 98119 (US)

O'NEILL, Jason, C., Brier Washington 98036 (US)

ZHANG, Yu, Shoreline Washington 98177 (US)

SUN, Yu, Seattle Washington 98125 (US)

CERNE, Heather, Seattle Washington 98115 (US)

PIPER, Derek, E., Santa Clara California 95051 (US)

KETCHEM, Randal, R., Snohomish Washington 98296 (US)

(74) Képviselő:

SBGK Szabadalmi Ügyvivői Iroda, Budapest

(54)

Humán IL-23 antigént kötő proteinek

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szabadalmi Egyezmény 99. cikk(1))

A fordítást a szabadalmas az 1995. évi XXXIII. törvény 84/H. §-a szerint nyújtotta be. A fordítás tartalmi helyességét a Szellemi Tulajdon Nemzeti Hivatala nem vizsgálta.

(11)

EP 2 493 925 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
23.11.2016 Bulletin 2016/47

(21) Application number: **10774095.3**(22) Date of filing: **26.10.2010**

(51) Int Cl.:
C07K 16/24 (2006.01) **A61K 39/395** (2006.01)

(86) International application number:
PCT/US2010/054148

(87) International publication number:
WO 2011/056600 (12.05.2011 Gazette 2011/19)

(54) **HUMAN IL-23 ANTIGEN BINDING PROTEINS**

HUMANE IL-23 ANTIGEN-BINDUNGSPROTEINE

PROTÉINES DE LIAISON À UN ANTIGÈNE IL-23 HUMAIN

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
 PL PT RO RS SE SI SK SM TR**

(30) Priority: **26.10.2009 US 254982 P**
09.09.2010 US 381287 P

(43) Date of publication of application:
05.09.2012 Bulletin 2012/36

(73) Proprietor: **Amgen Inc.**
Thousand Oaks, CA 91320 (US)

(72) Inventors:
 • **TOWNE, Jennifer, E.**
Seattle
Washington 98117 (US)
 • **CHENG, Janet, D.**
Seattle
Washington 98119 (US)
 • **O'NEILL, Jason, C.**
Brier
Washington 98036 (US)
 • **ZHANG, Yu**
Shoreline
Washington 98177 (US)
 • **SUN, Yu**
Seattle
Washington 98125 (US)
 • **CERNE, Heather**
Seattle
Washington 98115 (US)
 • **PIPER, Derek, E.**
Santa Clara
California 95051 (US)

- **KETCHEM, Randal, R.**
Snohomish
Washington 98296 (US)

(74) Representative: **Dörries, Hans Ulrich**
df-mp Dörries Frank-Molnia & Pohlman
Patentanwälte Rechtsanwälte PartG mbB
Theatinerstrasse 16
80333 München (DE)

(56) References cited:
WO-A1-2008/103432 WO-A1-2008/103473
WO-A2-2007/005955 WO-A2-2007/076524
WO-A2-2009/082624 US-A1- 2007 048 315

- **BEYER B M ET AL: "Crystal Structures of the Pro-Inflammatory Cytokine Interleukin-23 and Its Complex with a High-Affinity Neutralizing Antibody", JOURNAL OF MOLECULAR BIOLOGY, LONDON, GB, vol. 382, no. 4, 17 October 2008 (2008-10-17), pages 942-955, XP025409951, ISSN: 0022-2836, DOI: DOI:10.1016/J.JMB.2008.08.001 [retrieved on 2008-08-07]**
- **MABRY ROBERT ET AL: "Engineering of stable bispecific antibodies targeting IL-17A and IL-23", PROTEIN ENGINEERING DESIGN & SELECTION, vol. 23, no. 3, March 2010 (2010-03), pages 115-127, XP002616663, ISSN: 1741-0126**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- LONBERG ET AL: "Fully human antibodies from transgenic mouse and phage display platforms", CURRENT OPINION IN IMMUNOLOGY, ELSEVIER, OXFORD, GB, vol. 20, no. 4, 1 August 2008 (2008-08-01) , pages 450-459, XP023612045, ISSN: 0952-7915, DOI: DOI:10.1016/J.COI.2008.06.004 [retrieved on 2008-07-21]
- RUDIKOFF S ET AL: "Single amino acid substitution altering antigen-binding specificity", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 79, 1 March 1982 (1982-03-01), pages 1979-1983, XP007901436, ISSN: 0027-8424, DOI: 10.1073/PNAS.79.6.1979
- WINKLER K ET AL: "Changing the antigen binding specificity by single point mutations of an anti-p24 (HIV-1) antibody", THE JOURNAL OF IMMUNOLOGY, THE AMERICAN ASSOCIATION OF IMMUNOLOGISTS, US, vol. 165, no. 8, 15 October 2000 (2000-10-15), pages 4505-4514, XP002579393, ISSN: 0022-1767
- G. Tonel ET AL: "Cutting Edge: A Critical Functional Role for IL-23 in Psoriasis", The Journal of Immunology, vol. 185, no. 10, 18 October 2010 (2010-10-18), pages 5688-5691, XP055203326, ISSN: 0022-1767, DOI: 10.4049/jimmunol.1001538

Description**BACKGROUND**

5 [0001] Interleukin 23 (IL-23), a heterodimeric cytokine, is a potent inducer of pro-inflammatory cytokines. IL-23 is related to the heterodimeric cytokine Interleukin 12 (IL-12) both sharing a common p40 subunit. In IL-23, a unique p19 subunit is covalently bound to the p40 subunit. In IL-12, the unique subunit is p35 (Oppmann et al., *Immunity*, 2000, 13: 713-715). The IL-23 heterodimeric protein is secreted. Like IL-12, IL-23 is expressed by antigen presenting cells (such as dendritic cells and macrophages) in response to activation stimuli such as CD40 ligation, Toll-like receptor agonists and pathogens. IL-23 binds a heterodimeric receptor comprising an IL-12R β 1 subunit (which is shared with the IL-12 receptor) and a unique receptor subunit, IL-23R. The IL-12 receptor consists of IL-12R β 1 and IL-12R β 2. IL-23 binds its heterodimeric receptor and signals through JAK2 and Tyk2 to activate STAT1, 3, 4 and 5 (Parham et al., *J. Immunol.* 2002, 168:5699-708). The subunits of the receptor are predominantly co-expressed on activated or memory T cells and natural killer cells and also at lower levels on dendritic cells, monocytes, macrophages, microglia, keratinocytes and 10 synovial fibroblasts. IL-23 and IL-12 act on different T cell subsets and play substantially different roles in vivo.

15 [0002] IL-23 acts on activated and memory T cells and promotes survival and expansion of the T cell subset, Th17. Th17 cells produce proinflammatory cytokines including IL-6, IL-17, TNF α , IL-22 and GM-CSF. IL-23 also acts on natural killer cells, dendritic cells and macrophages to induce pro-inflammatory cytokine expression. Unlike IL-23, IL-12 induces the differentiation of naïve CD4+ T cells into mature Th1 IFN γ -producing effector cells, and induces NK and cytotoxic T 20 cell function by stimulating IFN γ production. Th1 cells driven by IL-12 were previously thought to be the pathogenic T cell subset in many autoimmune diseases, however, more recent animal studies in models of inflammatory bowel disease, psoriasis, inflammatory arthritis and multiple sclerosis, in which the individual contributions of IL-12 versus IL-23 were evaluated have firmly established that IL-23, not IL-12, is the key driver in autoimmune/inflammatory disease (Ahern et al., *Immun. Rev.* 2008 226:147-159; Cua et al., *Nature* 2003 421:744-748; Yago et al., *Arthritis Res and Ther.* 2007 9(5): R96). It is believed that IL-12 plays a critical role in the development of protective innate and adaptive immune responses to many intracellular pathogens and viruses and in tumor immune surveillance. See Kastelein, et al., *Annual Review of Immunology*, 2007, 25: 221-42; Liu, et al., *Rheumatology*, 2007, 46(8): 1266-73; Bowman et al., *Current Opinion in Infectious Diseases*, 2006 19:245-52; Fieschi and Casanova, *Eur. J. Immunol.* 2003 33:1461-4; Meeran et al., *Mol. Cancer Ther.* 2006 5: 825-32; Langowski et al., *Nature* 2006 442: 461-5. As such, IL-23 specific inhibition (sparing IL-12 or the shared p40 subunit) should have a potentially superior safety profile compared to dual inhibition of IL-12 and IL-23.

25 [0003] Therefore, use of IL-23 specific antagonists that inhibit human IL-23 (such as antibodies that bind at least the unique p19 subunit or bind both the p19 and p40 subunits of IL-23) that spare IL-12 should provide efficacy equal to or greater than IL-12 antagonists or p40 antagonists without the potential risks associated with inhibition of IL-12. Murine, 30 humanized and phage display antibodies selected for inhibition of recombinant IL-23 have been described; see for example US Patent 7,491,391, WIPO Publications WO1999/05280, WO2007/0244846, WO2007/027714, WO 2007/076524, WO2007/147019, WO2008/103473, WO 2008/103432, WO2009/043933 and WO2009/082624. However, there is a need for fully human therapeutic agents that are able to inhibit native human IL-23. Such therapeutics are 35 highly specific for the target, particularly in vivo. Complete inhibition of the in vivo target can result in lower dose formulations, less frequent and/or more effective dosing which in turn results in reduced cost and increased efficiency. The 40 present invention provides such IL-23 antagonists.

SUMMARY

45 [0004] Antigen binding proteins that bind IL-23, particularly native human IL-23, are provided. The human IL-23 antigen binding proteins can reduce, inhibit, interfere with, and/or modulate at least one of the biological responses related to IL-23, and as such, are useful for ameliorating the effects of IL-23 related diseases or disorders. IL-23 antigen binding proteins can be used, for example, to reduce, inhibit, interfere with and/or modulate IL-23 signaling, IL-23 activation of Th17 cells, IL-23 activation of NK cells, or inducing production of proinflammatory cytokines.

50 [0005] Herein provided is an antigen binding protein that binds to human IL-23, wherein said antigen binding protein comprises:

(i)

55 (a) a heavy chain variable region comprising
a CDRH1 having SEQ ID NO:91,
a CDRH2 having SEQ ID NO: 92 and

a CDRH3 having SEQ ID NO:93,

and a light chain variable region comprising

5 a CDRL1 having SEQ ID NO:62,
a CDRL2 having SEQ ID NO:63 and
a CDRL3 having SEQ ID NO:64;

or

10 (b) a heavy chain variable region comprising

a CDRH1 having SEQ ID NO:109,
a CDRH2 having SEQ ID NO: 116 and
a CDRH3 having SEQ ID NO:111,

15 and a light chain variable region comprising

a CDRL1 having SEQ ID NO:80,
a CDRL2 having SEQ ID NO:81 and
a CDRL3 having SEQ ID NO:76;

and wherein said antigen binding protein according to (a) or (b) binds to human IL-23 with a K_D of $\leq 5 \times 10^{-12}$ M;
or

25 (ii) a heavy chain variable region of SEQ ID NO:31 and a light chain variable region of SEQ ID NO:1; or a heavy
chain variable region of SEQ ID NO:46 or 153 and a light chain variable region of SEQ ID NO:15;
wherein said antigen binding protein is a monoclonal antibody, a recombinant antibody, a chimeric antibody, a
multispecific antibody, or an antibody fragment thereof.

30 [0006] Also provided are expression systems, including cell lines, for the production of IL-23 antigen binding proteins
and medical uses for treating diseases related to human IL-23.

[0007] Some of the antigen binding proteins that bind IL-23 described herein comprise at least one heavy chain variable
region comprising a CDRH1, a CDRH2 and a CDRH3 selected from the group consisting of: a CDRH1 that differs by
no more than one amino acid substitution, insertion or deletion from a CDRH1 as shown in TABLE 3; a CDRH2 that
differs by no more than three, two or one amino acid substitutions, insertions and/or deletions from a CDRH2 as shown
35 in TABLE 3; a CDRH3 that differs by no more than three, two or one amino acid substitutions, insertions and/or deletions
from a CDRH3 as shown in TABLE 3; and comprising at least one light chain variable region comprising a CDRL1, a
CDRL2 and a CDRL3 selected from the group consisting of: a CDRL1 that differs by no more than three, two or one
amino acid substitutions, insertions and/or deletions from a CDRL1 as shown in TABLE 3; a CDRL2 that differs by no
more than one amino acid substitution, insertion or deletion from a CDRL2 as shown in TABLE 3; a CDRL3 that differs
40 by no more than one amino acid substitution, insertion or deletion from a CDRL3 as shown in TABLE 3. Also described
herein are isolated antigen binding proteins comprising: a CDRH1 selected from the group consisting of SEQ ID NO:
94, 97, 100, and 103; a CDRH2 selected from the group consisting of SEQ ID NO: 95, 98, 101, 104, 107, and 110; a
CDRH3 selected from the group consisting of SEQ ID NO: 96, 99, 102, and 105; a CDRL1 selected from the group
45 consisting of SEQ ID NO: 65, 68, 71, and 74; a CDRL2 selected from the group consisting of SEQ ID NO:66, 69, 72,
75, and 78; and a CDRL3 selected from the group consisting of SEQ ID NO: 67, 70 and 73. Also described herein are
isolated antigen binding proteins comprising: a CDRH1 selected from the group consisting of SEQ ID NO: 106, 112,
and 115; a CDRH2 selected from the group consisting of SEQ ID NO: 113, 118, 120, 121, and 122; a CDRH3 selected
50 from the group consisting of SEQ ID NO: 108, 114, 117, and 119; a CDRL1 selected from the group consisting of SEQ
ID NO: 77, 83, 85, 86, 87, 88, 89 and 90; a CDRL2 selected from the group consisting of SEQ ID NO: 81; and a CDRL3 selected
from the group consisting of SEQ ID NO: 79, 82 and 84. Also described herein is an isolated antigen-binding protein that comprises at least one
heavy chain variable region and at least one light chain variable region. Also described herein is an isolated antigen-
binding protein as described above that comprise at least two heavy chain variable regions and at least two light chain
variable regions. In one embodiment the antigen binding protein is coupled to a labeling group.

[0008] Also described herein are isolated antigen binding proteins that bind IL-23 selected from the group consisting
of a) an antigen binding protein having CDRH1 of SEQ ID NO:129, CDRH2 of SEQ ID NO:132, CDRH3 of SEQ ID
NO:136, and CDRL1 of SEQ ID NO:123, CDRL2 of SEQ ID NO:81, and CDRL3 of SEQ ID NO: 76; b) an antigen binding
protein having CDRH1 of SEQ ID NO:131, CDRH2 of SEQ ID NO: 134, CDRH3 of SEQ ID NO:137 and CDRL1 of SEQ
ID NO:124, CDRL2 of SEQ ID NO:126 and CDRL3 of SEQ ID NO:128; c) a) an antigen binding protein having CDRH1

of SEQ ID NO:130, CDRH2 of SEQ ID NO:133, CDRH3 of SEQ ID NO:99 and CDRL1 of SEQ ID NO:68, CDRL2 of SEQ ID NO:69, and CDRL3 of SEQ ID NO:67; and d) an antigen binding protein having CDRH1 SEQ ID NO:91, CDRH2 SEQ ID NO: 135, CDRH3 SEQ ID NO:138 and CDRL1 SEQ ID NO:125, CDRL2 SEQ ID NO:127, and CDRL3 SEQ ID NO:64.

5 [0009] Also described herein are isolated antigen binding proteins that bind IL-23 comprising at least one heavy chain variable region and at least one light chain variable region, selected from the group consisting of: a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 99-110 of SEQ ID NO:34 and heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-110 of SEQ ID NO:36; and a light chain variable region comprising amino acid residues 23-36, 52-62 and 97-105 of SEQ ID NO:4 ; a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-114 of SEQ ID NO:38; and a light chain variable region comprising amino acid residues 23-34, 50-61 and 94-106 of SEQ ID NO:7; a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-114 of SEQ ID NO:40; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 94-106 of SEQ ID NO:9; a heavy chain variable region comprising amino acid residues 31-35, 50-66 and 99-114 of SEQ ID NO:42; and a light chain variable region comprising amino acid residues 23-34, 50-61 and 94-106 of SEQ ID NO:11; a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 98-107 of SEQ ID NO:44; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:13; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100-109 of SEQ ID NO:48; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:17; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 101-109 of SEQ ID NO:50; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:19; a heavy chain variable region comprising amino acid residues 31-35, 50-65 and 98-107 of SEQ ID NO: 52; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 98-107 of SEQ ID NO:21; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100-109 of SEQ ID NO:54; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:23; a heavy chain variable region comprising amino acid residues 31-37, 52-67 and 100-109 of SEQ ID NO:56; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:25; and a heavy chain variable region comprising amino acid residues 31-37, 52-57 and 100-109 of SEQ ID NO:58; and a light chain variable region comprising amino acid residues 24-34, 50-56 and 89-97 of SEQ ID NO:27.

30 [0010] Described herein is an isolated antigen binding protein that binds IL-23 comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region sequence differs by no more than 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions, additions and/or deletions from a heavy chain variable region sequence as shown in TABLE 2; and wherein the light chain variable region sequence differs by no more than 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions, additions and/or deletions from a light chain variable region sequence as shown in TABLE 1.

35 [0011] Also described herein is an isolated antigen binding protein that binds IL-23 selected from the group consisting of a) a heavy chain variable region of SEQ ID NO:140 and a light chain variable region of SEQ ID NO: 30; b) a heavy chain variable region of SEQ ID NO:141 and a light chain variable region of SEQ ID NO:61; c) a heavy chain variable region of SEQ ID NO:142 and a light chain variable region of SEQ ID NO:4; and d) a heavy chain variable region of SEQ ID NO:143 and a light chain variable region of SEQ ID NO:139.

40 [0012] Also described herein is an isolated antigen binding protein comprising a heavy chain variable region comprising of an amino acid sequence having at least 90%, 95%, 96%, 97%, 98% or 99% sequence identity to SEQ ID NO:31, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56 and 58; and a light chain variable region comprising an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 1, 4, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27. Also described herein is an isolated antigen binding protein comprising a heavy chain variable region selected from the group consisting of SEQ ID NO: 44, 48, 50, 52, 54, 56, and 58 and a light chain variable region selected from the group consisting of SEQ ID NO:13, 17, 19, 21, 23, 25, and 27. Also described herein is an isolated antigen binding protein comprising a heavy chain variable region selected from the group consisting of SEQ ID NO: 34, 36, 38, 40 and 42, and a light chain variable region selected from the group consisting of SEQ ID NO: 4, 7, 9 and 11.

45 [0013] Described herein is an isolated antigen binding protein that binds IL-23 comprising a heavy chain variable region and a light chain variable region selected from the group consisting of: a) a heavy chain variable region of SEQ ID NO:34 or 36 and a light chain variable region of SEQ ID NO:4; b) a heavy chain variable region of SEQ ID NO:38 and a light chain variable region of SEQ ID NO: 7; c) a heavy chain variable region of SEQ ID NO:40 and a light chain variable region of SEQ ID NO:9; d) a heavy chain variable region of SEQ ID NO:42 and a light chain variable region of SEQ ID NO: 11; e) a heavy chain variable region of SEQ ID NO:44 and a light chain variable region of SEQ ID NO:13; f) a heavy chain variable region of SEQ ID NO:48 and a light chain variable region of SEQ ID NO:17; g) a heavy chain variable region of SEQ ID NO:50 and a light chain variable region of SEQ ID NO: 19; h) a heavy chain variable region of SEQ ID NO:52 and a light chain variable region of SEQ ID NO:21; i) a heavy chain variable region of SEQ ID NO:54 and a light chain variable region of SEQ ID NO:23; j) a heavy chain variable region of SEQ ID NO:56 and a light chain variable region of SEQ ID NO:25; and k) a heavy chain variable region of SEQ ID NO:58 and a light chain variable region of SEQ

ID NO:27.

[0014] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contacts 30, 31, 32, 49, 50, 52, 53, 56, 92 and 94 of SEQ ID NO:15, wherein the residue contacts have a difference value of greater than or equal to 10 Å² as determined by solvent exposed surface area. The residue contacts may comprise residues 31-35, 54, 58-60, 66, and 101-105 of SEQ ID NO:46..

[0015] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises residue contacts 31-34, 51, 52, 55, 68, 93 and 98 of SEQ ID NO:1, wherein the residue contacts have a difference value of greater than or equal to 10 Å² as determined by solvent exposed surface area. The residue contacts may comprise residues 1, 26, 28, 31, 32, 52, 53, 59, 76, 101, 102 and 104-108 of SEQ ID NO:31.

[0016] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5 Å or less from residues 32-35, 54, 58-60, 66 and 101-105 of SEQ ID NO:46, as determined by X-ray crystallography. The antigen binding protein may be 5 Å or less from residues 31-35, 54, 56, 58-60, 66 and 101-105 of SEQ ID NO:46.

[0017] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5 Å or less from residues 30-32, 49, 52, 53, 91-94 and 96 of SEQ ID NO:15, as determined by X-ray crystallography.

[0018] The antigen binding protein may be 5 Å or less from residues 30-32, 49, 50, 52, 53, 56, 91-94 and 96 of SEQ ID NO:15.

[0019] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein when the antigen binding protein is bound to human IL-23, the antigen binding protein is 5 Å or less from residues 26-28, 31, 53, 59, 102 and 104-108 of SEQ ID NO:31, as determined by X-ray crystallography. The antigen binding protein may be 5 Å or less from residues 1, 26-28, 30-32, 52, 53, 59, 100, and 102-108 of SEQ ID NO:31.

[0020] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23, said antigen binding protein is 5 Å or less from residues 31-34, 51, 52, 55, 68 and 93 of SEQ ID NO:1 as determined by X-ray crystallography. The antigen binding protein may be 5 Å or less from residues 29, 31-34, 51, 52, 55, 68, 93 and 100 of SEQ ID NO:1.

[0021] The antigen binding protein of the invention is a monoclonal antibody, a recombinant antibody, a human antibody, a chimeric antibody, a multispecific antibody, or an antibody fragment thereof. In another embodiment the antibody fragment is a Fab fragment, a Fab' fragment, a F(ab')2 fragment, a Fv fragment, a diabody, or a single chain antibody molecule. In yet another embodiment the antigen binding protein is a human antibody. In still another embodiment the antigen binding protein is a monoclonal antibody. In another embodiment the antigen binding protein is of the IgG1-, IgG2- IgG3- or IgG4-type. In yet another embodiment the antigen binding protein is of the IgG1- or IgG2-type.

[0022] An isolated nucleic acid molecule encoding an antigen binding protein as claimed is also provided, wherein the nucleic acid comprises the heavy chain variable region nucleic acid SEQ ID NO: 32 and the light chain variable region nucleic acid SEQ ID NO: 2, or the heavy chain variable region nucleic acid SEQ ID NO: 47 and the light chain variable region nucleic acid SEQ ID NO: 16. Also described herein is an isolated nucleic acid molecule wherein at least one heavy chain variable region is encoded by an isolated nucleic acid molecule selected from the group consisting of SEQ ID NOs: 35, 37, 39, 41, 43, 45, 49, 51, 53, 55, 57, 59 and 152 and at least one light chain variable region is encoded by an isolated nucleic acid molecule selected from the group consisting of SEQ ID NOs: 5, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, and 28. In another embodiment is provided a nucleic acid molecule encoding an antigen binding protein as claimed wherein the nucleic acid molecule is operably linked to a control sequence. In another embodiment is provided a vector comprising a nucleic acid molecule as claimed. In yet another embodiment is provided a host cell comprising the nucleic acid molecule as claimed. In another embodiment is provided a host cell comprising the vector claimed. In yet another embodiment the isolated polynucleotide is sufficient for use as a hybridization probe, PCR primer or sequencing primer that is a fragment of the nucleic acid molecule as described above or its complement.

[0023] Also provided is a method of making the antigen binding protein as claimed, comprising the step of preparing said antigen binding protein from a host cell that secretes said antigen binding protein.

[0024] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein the covered patch formed when the antigen binding protein is bound to human IL-23 comprises a residue contact within residues 46-58, a residue contact within residues 112-120, and a residue contact within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID NO:145, wherein the residue contact has a difference value greater than or equal to 10 Å² as determined by solvent exposed surface area. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve or thirteen residue contacts within residues 46-58, one, two, three, four, five, six, seven, eight, nine or ten residue contacts within residues 112-120, and one, two, three, four, five, six, seven, eight or nine residue contacts within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID NO:145. The covered patch formed when the antigen binding protein binds to

human IL-23 may comprise a residue contact within residues 121-125 of the human IL-23p40 subunit as described in SEQ ID NO:147. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise one, two, three, four or five residue contacts within residues 121-125 of the human IL-23p40 subunit as described in SEQ ID NO:147. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise residue contacts 46, 47, 49, 50, 53, 112-116, 118, 120, 155, 156, 159, 160, and 163 of SEQ ID NO:145. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise residue contacts 46, 47, 49, 50, 53, 112-118, 120, 155, 156, 159, 160, and 163 of SEQ ID NO:145. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise residues 46, 47, 49, 50, 53-55, 57, 58, 112-116, 118-120, 155, 156, 159, 160, 162 and 163 of SEQ ID NO:145. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise residue contact 122 of the human IL-23p40 subunit as described in SEQ ID NO:147. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise residue contacts 122 and 124 of the human IL-23p40 subunit as described in SEQ ID NO:147. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise residue contact 121-123 and 125 of the human IL-23p40 subunit as described in SEQ ID NO:147. The covered patch formed when the antigen binding protein is bound to human IL-23 may comprise residue contact 121-123, 125 and 283 of the human IL-23p40 subunit as described in SEQ ID NO:147.

[0025] Also described herein is an isolated antigen binding protein that binds human IL-23, wherein when said antigen binding protein is bound to human IL-23 said antigen binding protein is 5Å or less from a residue within residues 46-58, from a residue within residues 112-123, and from a residue within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID NO:145, as determined by X-ray crystallography. When the antigen binding protein is bound to human IL-23, the antigen binding protein may be 5Å or less from one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve or thirteen residues within residues 46-58, from one, two, three, four, five, six, seven, eight, nine or ten, residues within residues 112-123, and from one, two, three, four, five, six, seven, eight or nine residues within residues 155-163 of the human IL-23p19 subunit as described in SEQ ID NO:145. When the antigen binding protein is bound to human IL-23 the antigen binding protein may be 5Å or less from residues 46-50, 113-116, 120, 156, 159, 160 and 163 of SEQ ID NO:145. When the antigen binding protein is bound to human IL-23, the antigen binding protein may be 5Å or less from residues 46-50, 112-120, 156, 159, 160 and 163 of SEQ ID NO:145. When the antigen binding protein is bound to human IL-23, the antigen binding protein may be 5Å or less from residues 46-50, 53, 112-120, 156, 159, 160 and 163 of SEQ ID NO:145. When the antigen binding protein is bound to human IL-23, the antigen binding protein may be 5Å or less from residues 46-50, 53-55, 58, 113-116, 120, 121, 156, 159, 160, 162 and 163 of SEQ ID NO:145. When the antigen binding protein is bound to human IL-23, the antigen binding protein may be 5Å or less from residues 46-51, 53-55, 57, 58, 112-116, 118-121, 123, 155, 156, 159, 160, 162 and 163 of SEQ ID NO:145. When the antigen binding protein is bound to human IL-23 the antigen binding protein may be 5Å or less from a residue within residues 121-125, of the human IL-23p40 subunit as described in SEQ ID NO:147, as determined by X-ray crystallography. When the antigen binding protein is bound to human IL-23, said antigen binding protein may be 5 Å or less from residues 122 and 124 of SEQ ID NO:147. When the antigen binding protein is bound to human IL-23, the antigen binding protein may be 5 Å or less from residues 121-123 and 125 of SEQ ID NO:147.

[0026] Also provided is an isolated antigen binding protein as claimed wherein the antigen binding protein has at least one property selected from the group consisting of; a) reducing human IL-23 activity in a STAT-luciferase assay; b) reducing production of a proinflammatory cytokine; c) having a Koff rate of $\leq 5 \times 10^{-6}$ 1/s; and d) having an IC50 of ≤ 400 pM.

[0027] A pharmaceutical composition comprising at least one antigen binding protein as claimed and pharmaceutically acceptable excipient is provided. In one embodiment is provided a pharmaceutical composition further comprises a labeling group or an effector group. In yet another embodiment is provided a pharmaceutical composition wherein the labeling group is selected from the group consisting of isotopic labels, magnetic labels, redox active moieties, optical dyes, biotinylated groups and predetermined polypeptide epitopes recognized by a secondary reporter. In yet another embodiment is provided a pharmaceutical composition wherein the effector group is selected from the group consisting of a radioisotope, radionuclide, a toxin, a therapeutic group and a chemotherapeutic group.

[0028] Also provided is an antigen binding protein as claimed for use in treating or preventing a condition associated with IL-23 in a patient, wherein the condition is selected from the group consisting of an inflammatory disorder, a rheumatic disorder, an autoimmune disorder, an oncological disorder and a gastrointestinal disorder, or multiple sclerosis, rheumatoid arthritis, cancer, psoriasis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, systemic lupus erythematosus, psoriatic arthritis, autoimmune myocarditis; type 1 diabetes and ankylosing spondylitis. In still another embodiment of the medical use the isolated antigen-binding protein is administered alone or as a combination therapy.

[0029] Also provided is an antigen binding protein as claimed for use in therapy wherein said antigen binding protein reduces IL-23 activity in a patient and an antigen binding protein as claimed for use for , wherein said IL-23 activity is inducing production of a proinflammatory cytokine.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030]

5 FIGURE 1A: Results of STAT-luciferase reporter assay using recombinant human IL-23. All antibodies completely inhibited recombinant human IL-23

FIGURE 1B: Results from STAT-luciferase reporter assay using native human IL-23. Only half of those antibodies that completely inhibited recombinant human IL-23 were able to completely inhibit native human IL-23

10 DETAILED DESCRIPTION

[0031] The present invention provides compositions, and medical uses relating to IL-23 antigen binding proteins, including molecules that antagonize IL-23, such as anti-IL-23 antibodies, antibody fragments, and antibody derivatives, e.g., antagonistic anti-IL-23 antibodies, antibody fragments, or antibody derivatives. Also provided are polynucleotides, 15 and derivatives and fragments thereof, comprising a sequence of nucleic acids that encodes the antigen binding protein as claimed plasmids and vectors comprising such nucleic acids, and cells or cell lines comprising such polynucleotides and/or vectors and plasmids. Also provided is a method of making, the antigen binding proteins, as claimed and medical use for treating a condition mediated by IL-23, and for antagonizing a biological activity of IL-23, in vivo or in vitro.

[0032] Unless otherwise defined herein, scientific and technical terms used in connection with the present invention 20 shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and 25 commonly used in the art. The methods and techniques of the present invention are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001) and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow and Lane Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990). Enzymatic 30 reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The terminology used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

[0033] The polynucleotide and protein sequences of the p19 subunit of human IL-23 (SEQ ID NOS: 144 and 145), the 35 shared p40 subunit (SEQ ID NOS: 146 and 147), the human IL-23 receptor heterodimeric subunits IL-12R β 1 (SEQ ID NOS: 150 and 151) and IL-23R (SEQ ID NOS: 148 and 149), are known in the art, see for example, GenBank Accession Nos. AB030000; M65272, NM_005535, NM_144701, as are those from other mammalian species. Recombinant IL-23 and IL-23 receptor proteins including single chain and Fc proteins as well as cells expressing the IL-23 receptor have 40 been described or are available from commercial sources. (see for example, Oppmann et al., Immunity, 2000, 13: 713-715; R&D Systems, Minneapolis, Minnesota; United States Biological, Swampscott, Massachusetts; WIPO Publication No. WO 2007/076524). Native human IL-23 can be obtained from human cells such as dendritic cells using methods known in the art including those described herein.

[0034] IL-23 is a heterodimeric cytokine comprised of a unique p19 subunit that is covalently bound to a shared p40 45 subunit. The p19 subunit comprises four α -helices, "A", "B", "C" and "D" in an up-up-down-down motif joined by three intra-helix loops between the A and B helices, between the B and C helices and between the C and D helices, see Oppmann et al., Immunity, 2000, 13: 713-715 and Beyer, et al., J Mol Biol, 2008, 382(4): 942-55. The A and D helices of 4 helical bundle cytokines are believed to be involved with receptor binding. The p40 subunit comprises three beta-sheet sandwich domains, D1, D2 and D3 (Lupardus and Garcia, J. Mol. Biol., 2008, 382:931-941).

[0035] The term "polynucleotide" includes both single-stranded and double-stranded nucleic acids and includes genomic DNA, RNA, mRNA, cDNA, or synthetic origin or some combination thereof which is not associated with sequences 50 normally found in nature. Isolated polynucleotides comprising specified sequences may include, in addition to the specified sequences, coding sequences for up to ten or even up to twenty other proteins or portions thereof, or may include operably linked regulatory sequences that control expression of the coding region of the recited nucleic acid sequences, and/or may include vector sequences. The nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. The modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2',3'-dideoxyribose, and internucleotide linkage modifications such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoro-

anilothioate, phosphoranylilate and phosphoroamidate.

[0036] The term "oligonucleotide" means a polynucleotide comprising 100 or fewer nucleotides. In some embodiments, oligonucleotides are 10 to 60 bases in length. In other embodiments, oligonucleotides are 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 nucleotides in length. Oligonucleotides may be single stranded or double stranded, e.g., for use in the construction of a mutant gene. Oligonucleotides may be sense or antisense oligonucleotides. An oligonucleotide can include a detectable label, such as a radiolabel, a fluorescent label, a hapten or an antigenic label, for detection assays. Oligonucleotides may be used, for example, as PCR primers, cloning primers or hybridization probes.

[0037] The terms "polypeptide" or "protein" means a macromolecule having the amino acid sequence of a native protein, that is, a protein produced by a naturally-occurring and non-recombinant cell; or it is produced by a genetically-engineered or recombinant cell, and comprise molecules having the amino acid sequence of the native protein, or molecules having one or more deletions from, insertions to, and/or substitutions of the amino acid residues of the native sequence. The term also includes amino acid polymers in which one or more amino acids are chemical analogs of a corresponding naturally-occurring amino acid and polymers. The terms "polypeptide" and "protein" encompass IL-23 antigen binding proteins (such as antibodies) and sequences that have one or more deletions from, additions to, and/or substitutions of the amino acid residues of the antigen binding protein sequence. The term "polypeptide fragment" refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length native protein. Such fragments may also contain modified amino acids as compared with the native protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments may be at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, or 450 amino acids long. Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains. In the case of an IL-23 antigen binding protein, such as an antibody, useful fragments include but are not limited to one or more CDR regions, a variable domain of a heavy or light chain, a portion of an antibody chain, a portion of a variable region including less than three CDRs, and the like.

[0038] "Amino acid" includes its normal meaning in the art. The twenty naturally-occurring amino acids and their abbreviations follow conventional usage. See, Immunology-A Synthesis, 2nd Edition, (E. S. Golub and D. R. Gren, eds.), Sinauer Associates: Sunderland, Mass. (1991). Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as [alpha]-, [alpha]-disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides. Examples of unconventional amino acids include: 4-hydroxyproline, [gamma]-carboxyglutamate, [epsilon]-N,N,N-trimethyllysine, [epsilon]-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, [sigma]-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the righthand direction is the carboxyl-terminal direction, in accordance with standard usage and convention.

[0039] The term "isolated protein" refers to a protein, such as an antigen binding protein (an example of which could be an antibody), that is purified from proteins or polypeptides or other contaminants that would interfere with its therapeutic, diagnostic, prophylactic, research or other use. As used herein, "substantially pure" means that the described species of molecule is the predominant species present, that is, on a molar basis it is more abundant than any other individual species in the same mixture. In certain embodiments, a substantially pure molecule is a composition wherein the object species comprises at least 50% (on a molar basis) of all macromolecular species present. In other embodiments, a substantially pure composition will comprise at least 80%, 85%, 90%, 95%, or 99% of all macromolecular species present in the composition. In certain embodiments, an essentially homogeneous substance has been purified to such a degree that contaminating species cannot be detected in the composition by conventional detection methods and thus the composition consists of a single detectable macromolecular species.

[0040] A "variant" of a polypeptide (e.g., an antigen binding protein such as an antibody) comprises an amino acid sequence wherein one or more amino acid residues are inserted into, deleted from and/or substituted into the amino acid sequence relative to another polypeptide sequence. Variants include fusion proteins. A "derivative" of a polypeptide is a polypeptide that has been chemically modified in some manner distinct from insertion, deletion, or substitution variants, e.g., via conjugation to another chemical moiety.

[0041] The terms "naturally occurring" or "native" as used throughout the specification in connection with biological materials such as polypeptides, nucleic acids, host cells, and the like, refers to materials which are found in nature, such as native human IL-23. In certain aspects, recombinant antigen binding proteins that bind native IL-23 are provided. In this context, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as described herein. Methods and techniques for the production of recombinant proteins are well known in the art.

[0042] The term "antibody" refers to an intact immunoglobulin of any isotype, or a fragment thereof that can compete with the intact antibody for specific binding to the target antigen, and includes, for instance, chimeric, humanized, fully human, and bispecific antibodies. An antibody as such is a species of an antigen binding protein. Unless otherwise indicated, the term "antibody" includes, in addition to antibodies comprising two full-length heavy chains and two full-

length light chains, derivatives, variants, fragments, and muteins thereof, examples of which are described below. An intact antibody generally will comprise at least two full-length heavy chains and two full-length light chains, but in some instances may include fewer chains such as antibodies naturally occurring in camelids which may comprise only heavy chains. Antibodies may be derived solely from a single source, or may be "chimeric," that is, different portions of the antibody may be derived from two different antibodies as described further below. The antigen binding proteins, antibodies, or binding fragments may be produced in hybridomas, by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies.

[0043] The term "functional fragment" (or simply "fragment") of an antibody or immunoglobulin chain (heavy or light chain), as used herein, is an antigen binding protein comprising a portion (regardless of how that portion is obtained or synthesized) of an antibody that lacks at least some of the amino acids present in a full-length chain but which is capable of specifically binding to an antigen. Such fragments are biologically active in that they bind specifically to the target antigen and can compete with other antigen binding proteins, including intact antibodies, for specific binding to a given epitope. In one aspect, such a fragment will retain at least one CDR present in the full-length light or heavy chain, and in some embodiments will comprise a single heavy chain and/or light chain or portion thereof. These biologically active fragments may be produced by recombinant DNA techniques, or may be produced by enzymatic or chemical cleavage of antigen binding proteins, including intact antibodies. Fragments include, but are not limited to, immunologically functional fragments such as Fab, Fab', F(ab')2, Fv, domain antibodies and single-chain antibodies, and may be derived from any mammalian source, including but not limited to human, mouse, rat, camelid or rabbit. It is contemplated further that a functional portion of the antigen binding proteins disclosed herein, for example, one or more CDRs, could be covalently bound to a second protein or to a small molecule to create a therapeutic agent directed to a particular target in the body, possessing bifunctional therapeutic properties, or having a prolonged serum half-life.

[0044] The term "compete" when used in the context of antigen binding proteins (e.g., neutralizing antigen binding proteins or neutralizing antibodies) means competition between antigen binding proteins as determined by an assay in which the antigen binding protein (e.g., antibody or immunologically functional fragment thereof) under test prevents or inhibits specific binding of a reference antigen binding protein (e.g., a ligand, or a reference antibody) to a common antigen (e.g., an IL-23 protein or a fragment thereof). Numerous types of competitive binding assays can be used, for example: solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see, e.g., Stahli et al., 1983, *Methods in Enzymology* 92:242-253); solid phase direct biotin-avidin EIA (see, e.g., Kirkland et al., 1986, *J. Immunol.* 137:3614-3619) solid phase direct labeled assay, solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, 1988, *Antibodies, A Laboratory Manual*, Cold Spring Harbor Press); solid phase direct label RIA using I-125 label (see, e.g., Morel et al., 1988, *Molec. Immunol.* 25:7-15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al., 1990, *Virology* 176:546-552); and direct labeled RIA (Moldenhauer et al., 1990, *Scand. J. Immunol.* 32:77-82). Typically, such an assay involves the use of purified antigen bound to a solid surface or cells bearing either of these, an unlabelled test antigen binding protein and a labeled reference antigen binding protein.

[0045] Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein. Usually the test antigen binding protein is present in excess. Antigen binding proteins identified by competition assay (competing antigen binding proteins) include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur. Usually, when a competing antigen binding protein is present in excess, it will inhibit specific binding of a reference antigen binding protein to a common antigen by at least 40%, 45%, 50%, 55%, 60%, 65%, 70% or 75%. In some instance, binding is inhibited by at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more.

[0046] The term "epitope" or "antigenic determinant" refers to a site on an antigen to which an antigen binding protein binds. Epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. Epitope determinants may include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl or sulfonyl groups, and may have specific three dimensional structural characteristics, and/or specific charge characteristics. An epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35 amino acids in a unique spatial conformation. Epitopes can be determined using methods known in the art.

IL-23 Antigen Binding Proteins

[0047] An "antigen binding protein" as used herein means a protein that specifically binds a specified target antigen; the antigen as provided herein is IL-23, particularly human IL-23, including native human IL-23. Antigen binding proteins as provided herein interact with at least a portion of the unique p19 subunit of IL-23, detectably binding IL-23; but do not bind with any significance to IL-12 (e.g., the p40 and/or the p35 subunits of IL-12), thus "sparing IL-12". As a consequence,

the antigen binding proteins provided herein are capable of impacting IL-23 activity without the potential risks that inhibition of IL-12 or the shared p40 subunit might incur. The antigen binding proteins may impact the ability of IL-23 to interact with its receptor, for example by impacting binding to the receptor, such as by interfering with receptor association. In particular, such antigen binding proteins totally or partially reduce, inhibit, interfere with or modulate one or more biological activities of IL-23. Such inhibition or neutralization disrupts a biological response in the presence of the antigen binding protein compared to the response in the absence of the antigen binding protein and can be determined using assays known in the art and described herein. Antigen binding proteins provided herein inhibit IL-23-induced proinflammatory cytokine production, for example IL-23-induced IL-22 production in whole blood cells and IL-23-induced IFN γ expression in NK and whole blood cells. Reduction of biological activity can be about 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more.

[0048] An antigen binding protein may comprise a portion that binds to an antigen and, optionally, a scaffold or framework portion that allows the antigen binding portion to adopt a conformation that promotes binding of the antigen binding protein to the antigen. Examples of antigen binding proteins include antibodies, antibody fragments (e.g., an antigen binding portion of an antibody), antibody derivatives, and antibody analogs. The antigen binding protein can comprise an alternative protein scaffold or artificial scaffold with grafted CDRs or CDR derivatives. Such scaffolds include, but are not limited to, antibody-derived scaffolds comprising mutations introduced to, for example, stabilize the three-dimensional structure of the antigen binding protein as well as wholly synthetic scaffolds comprising, for example, a biocompatible polymer. See, for example, Korndorfer et al., *Proteins: Structure, Function, and Bioinformatics*, (2003) Volume 53, Issue 1:121-129; Roque et al., *Biotechnol. Prog.*, 2004, 20:639-654. In addition, peptide antibody mimetics ("PAMs") can be used, as well as scaffolds based on antibody mimetics utilizing fibronectin components as a scaffold.

[0049] Certain antigen binding proteins described herein are antibodies or are derived from antibodies. Such antigen binding proteins include, but are not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies, antibody mimetics, chimeric antibodies, humanized antibodies, human antibodies, antibody fusions, antibody conjugates, single chain antibodies, and fragments thereof, respectively. In some instances, the antigen binding protein is an immunological fragment of an antibody (e.g., a Fab, a Fab', a F(ab')2, or a scFv). The various structures are further described and defined herein.

[0050] Certain antigen binding proteins may comprise one or more CDRs as described herein (e.g., 1, 2, 3, 4, 5, 6 or more CDRs). In some instances, the antigen binding protein comprises (a) a polypeptide structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide structure. The polypeptide structure can take a variety of different forms. For example, it can be, or comprise, the framework of a naturally occurring antibody, or fragment or variant thereof, or may be completely synthetic in nature. Examples of various polypeptide structures are further described below.

[0051] An antigen binding protein of the invention is said to "specifically bind" its target antigen when the dissociation equilibrium constant (KD) is $\leq 10^{-8}$ M. The antigen binding protein specifically binds antigen with "high affinity" when the KD is $\leq 5 \times 10^{-9}$ M, and with "very high affinity" when the the KD is $\leq 5 \times 10^{-10}$ M. In one embodiment the antigen binding protein will bind to human IL-23 with a KD of $\leq 5 \times 10^{-12}$ M, and in yet another embodiment it will bind with a KD $\leq 5 \times 10^{-13}$ M. In another embodiment of the invention, the antigen binding protein has a KD of $\leq 5 \times 10^{-12}$ M and an Koff of about $\leq 5 \times 10^{-6}$ 1/s. In another embodiment, the Koff is $\leq 5 \times 10^{-7}$ 1/s.

[0052] Another aspect provides an antigen binding protein having a half-life of at least one day in vitro or in vivo (e.g., when administered to a human subject). In one embodiment, the antigen binding protein has a half-life of at least three days. In another embodiment, the antibody or portion thereof has a half-life of four days or longer. In another embodiment, the antibody or portion thereof has a half-life of eight days or longer. In another embodiment, the antibody or antigen binding portion thereof is derivatized or modified such that it has a longer half-life as compared to the underderivatized or unmodified antibody. In another embodiment, the antigen binding protein contains point mutations to increase serum half life, such as described in WIPO Publication No. WO 00/09560.

[0053] In embodiments where the antigen binding protein is used for therapeutic applications, an antigen binding protein can reduce, inhibit, interfere with or modulate one or more biological activities of IL-23, such inducing production of proinflammatory cytokines. IL-23 has many distinct biological effects, which can be measured in many different assays in different cell types; examples of such assays and known and are provided herein.

[0054] Some of the antigen binding proteins that are provided have the structure typically associated with naturally occurring antibodies. The structural units of these antibodies typically comprise one or more tetramers, each composed of two identical couplets of polypeptide chains, though some species of mammals also produce antibodies having only a single heavy chain. In a typical antibody, each pair or couplet includes one full-length "light" chain (in certain embodiments, about 25 kDa) and one full-length "heavy" chain (in certain embodiments, about 50-70 kDa). Each individual immunoglobulin chain is composed of several "immunoglobulin domains", each consisting of roughly 90 to 110 amino acids and expressing a characteristic folding pattern. These domains are the basic units of which antibody polypeptides are composed. The amino-terminal portion of each chain typically includes a variable region that is responsible for antigen recognition. The carboxy-terminal portion is more conserved evolutionarily than the other end of the chain and

is referred to as the "constant region" or "C region". Human light chains generally are classified as kappa and lambda light chains, and each of these contains one variable region and one constant domain (CL1).z Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon chains, and these define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. IgG has several subtypes, including, but not limited to, IgG1, IgG2, IgG3, and IgG4. IgM subtypes

5 include IgM, and IgM2. IgA subtypes include IgA1 and IgA2. In humans, the IgA and IgD isotypes contain four heavy chains and four light chains; the IgG and IgE isotypes contain two heavy chains and two light chains; and the IgM isotype contains five heavy chains and five light chains. The heavy chain constant region (CH) typically comprises one or more domains that may be responsible for effector function. The number of heavy chain constant region domains will depend on the isotype. IgG heavy chains, for example, each contains three CH region domains known as CH1, CH2 and CH3.

10 The antibodies that are provided can have any of these isotypes and subtypes, for example, the IL-23 antigen binding protein is of the IgG1, IgG2, or IgG4 subtype. If an IgG4 is desired, it may also be desired to introduce a point mutation (CPSCP->CPPCP) in the hinge region as described in Bloom et al., 1997, Protein Science 6:407) to alleviate a tendency to form intra-H chain disulfide bonds that can lead to heterogeneity in the IgG4 antibodies. Antibodies provided herein that are of one type can be changed to a different type using subclass switching methods. See, e.g., Lantto et al., 2002, Methods Mol. Biol. 178:303-316.

15 **[0055]** In full-length light and heavy chains, the variable and constant regions are joined by a "J" region of about twelve or more amino acids, with the heavy chain also including a "D" region of about ten more amino acids. See, e.g., Fundamental Immunology, 2nd ed., Ch. 7 (Paul, W., ed.) 1989, New York: Raven Press. The variable regions of each light/heavy chain pair typically form the antigen binding site.

20 **[0056]** Variable Regions described and/or claimed

[0057] Various heavy chain and light chain variable regions (or domains) described and/or claimed herein are depicted in TABLES 1 and 2. Each of these variable regions may be attached, for example, to heavy and light chain constant regions described above. Further, each of the so generated heavy and light chain sequences may be combined to form a complete antigen binding protein structure.

25 **[0058]** Described and/or claimed herein are antigen binding proteins that contain at least one heavy chain variable region (VH) selected from the group consisting of VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15 and VH16 and/or at least one light chain variable region (VL) selected from the group consisting of VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, and VL16 as shown in TABLES 1 and 2 below.

30 **[0059]** Each of the heavy chain variable regions listed in TABLE 2 may be combined with any of the light chain variable regions shown in TABLE 1 to form an antigen binding protein. In some instances, the antigen binding protein includes at least one heavy chain variable region and/or one light chain variable region from those listed in TABLES 1 and 2. In some instances, the antigen binding protein includes at least two different heavy chain variable regions and/or light chain variable regions from those listed in TABLES 1 and 2. The various combinations of heavy chain variable regions may be combined with any of the various combinations of light chain variable regions.

35 **[0060]** In other instances, the antigen binding protein contains two identical light chain variable regions and/or two identical heavy chain variable regions. As an example, the antigen binding protein may be an antibody or immunologically functional fragment that comprises two light chain variable regions and two heavy chain variable regions in combinations of pairs of light chain variable regions and pairs of heavy chain variable regions as listed in TABLES 1 and 2. Examples 40 of such antigen binding proteins comprising two identical heavy chain and light chain variable regions include: Antibody A VH14/ VL14; Antibody B VH9/ VL9; Antibody C VH10/ VL10; Antibody D VH15/ VL15; Antibody E VH1/ VL1, Antibody F VH11/ VL11; Antibody G VH12/ VL12; Antibody H VH13/ VL13; Antibody I VH8/ VL8; Antibody J VH3/ VL3; Antibody K VH7/ VL7; Antibody L VH4/ VL4; Antibody M VH5/ VL5 and Antibody N VH6/ VL6.

45 **[0061]** Some antigen binding proteins that are described comprise a heavy chain variable region and/or a light chain variable region comprising a sequence of amino acids that differs from the sequence of a heavy chain variable region and/or a light chain variable region selected from TABLES 1 and 2 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 50 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid. The light and heavy chain variable regions, in some antigen binding proteins, comprise sequences of amino acids that have at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequences provided in TABLES 1 and 2. Still other antigen binding proteins, e.g., antibodies or immunologically functional fragments, also include variant heavy chain region forms and/or variant light chain region forms as described herein.

55 **[0062]** The term "identity" refers to a relationship between the sequences of two or more polypeptide molecules or two or more polynucleotides, as determined by aligning and comparing the sequences. "Percent identity" means the percent of identical residues between the amino acids or nucleotides in the compared molecules and is calculated based on the size of the smallest of the molecules being compared.

TABLE 1
Exemplary Variant Light Chain Region Sequences

		FR1	CDR1	FR2	CDR2	FR3	CDR3	FR4
5	V _l 1	QSVLTQPPSVGAPGQRTISCTGSSNTGAGYDVHWWYQQPGTAKLIIYGSGNRPGVDPDRSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLGWWFGGGTKLTVL	SEQ ID NO:1					
	V _l 2	QSVLTQPPSVGAPGQRTISCTGSSNTGAGYDVHWWYQQPGTAKLIIYGSNNRPGVDPDRSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLGWWFGGGTKLTVL	SEQ ID NO:3					
	V _l 3	QAVLTQPPSSLASPGASASLTCTLRSGINVGTYRIWYQQKPGSPQQYLLRYKSDSDKQQGSGVPSRFSGSKDASANAGILLISGLQSEDEADYYCMIWHSSASVFGGGTKLTVL	SEQ ID NO:4					
10	V _l 4	QAVLTQPPSSLASPGASASLTCTLRSGINVGTYRIWYQQKPGSPQQYLLRYKSDSDKQQGSGVPSRFSGSKDASANAGILLISGLQSEDEADYYCMIWHSSASVFGGGTKLTVL	SEQ ID NO:4					
	V _l 5	QPVLTQPPSSASASLGASVTLTCTLNSSGSDYKVWDYQQRPGKGPRFVMRVGTGGIVGSKGDGIPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGADHGGSNFVYVFGTGTKVTL	SEQ ID NO:7					
	V _l 6	QPVLTQPPSSASASLGASVTLTCTLNSSGSDYKVWDYQQRPGKGPRFVMRVGTGGIVGSKGEIPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGADHGGSNFVYVFGTGTKVTL	SEQ ID NO:9					
15	V _l 7	QPELTQPPSSASASLGASVTLTCTLNSSGSDYKVWDYQQLRPGKGPRFVMRVGTGGIVGSKGEIPDRFSVLGSGLNRSLTIKNIQEEDESDYHCGADHGGSNFVYVFGTGTKVTL	SEQ ID NO:11					
	V _l 8	DIQLTPSPSSVSASVGDRVITCRASQGIAGWLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSTDFLTISLQPEDFATYYCQQQADSFPPTFGGGTKVEIK	SEQ ID NO:13					
	V _l 9	DIQMTQSPSSVSASVGDRVITCRASQVISSWLAWYQQKPGKAPNLLIYAASSLQSGVPSRFSGSGSTDFLTISLQPEDFATYYCQQQANSFPFTFGPGTKVDFK	SEQ ID NO:15					
20	V _l 10	DIQMTQSPSSVSASVGDRVITCRASQGSSSWFAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSTDFLTISLQPEDFATYYCQQQANSFPFTFGPGTKVDFK	SEQ ID NO:17					
	V _l 11	DSQMTQSPSSVSASVGDRVITCRASQG/SSWFAWYQQKPGQAPNLLIYAASSLQSGVPSRFSGSGSTEFLTISLQPEDFATYYCQQQANSFPFTFGPGTKVDFK	SEQ ID NO:19					
	V _l 12	DIQMTQSPSSVSASVGDRVITCRAGQVISSWLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSTDFLTISLQPDDFATYYCQQQATSFPLTFGGGKVEIK	SEQ ID NO:21					
25	V _l 13	DIQMTQSPSSVSASVGDRVITCRASQGFSGLAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSTDFLTISLQPEDFATYYCQQQANSFPFTFGPGTKVDFK	SEQ ID NO:23					
	V _l 14	DIQLTQSPSSVSASVGDRVITCRASQVISSWFAWYQQKPGKAPNLLIYAASSLQSGVPSRFSGSGSTDFLTISLQPADFATYYFCQQQANSFPFTFGPGTKVDFK	SEQ ID NO:25					
	V _l 15	DIQMTQSPSSVSASVGDRVITCRASQGSSSWFAWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSTDFLTISLQPEDFATYYCQQQANSFPFTFGPGTKVDFK	SEQ ID NO:27					
30	V _l 16	DIQMTQSPSSLSASVGDRVITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSTEFLTISLQPEDFATYYCLQHNSYPPTFGQGKVEIE	SEQ ID NO:29					

TABLE 2
Exemplary Variant Heavy Chain Region Sequences

		FR1	CDRH1	FR2	CDRH2	FR3	CDRH3	FR4
35	V _h 1	QVQLVESGGVYQPGRSRLSCAASGFTFSSYGMHWRQAPGKGLEWVAVIYDGSNEYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGYTSSWYPDAFD/WGQGTMVTVSS	SEQ ID NO:31					
	V _h 2	QVQLVESGGVYQPGRSRLSCAASGFTFSSYGMHWRQAPGKGLEWVAVIYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGYSSWYPDAFD/WGQGTMVTVSS	SEQ ID NO:33					
	V _h 3	QVQLVESGGVYQPGRSRLSCAASGFTFSSYGMHWRQAPGKGLEWVAVISFDGSLKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARERTTLSGSYFDWGGTIVTVSS	SEQ ID NO:34					
40	V _h 4	QVQLVESGGVYQPGRSRLSCAASGFTFSSYAMHWRQAPGKGLEWLSVISHDGSIKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARERTTLSGSYFDWGGTIVTVSS	SEQ ID NO:36					
	V _h 5	EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMWVRQAPGKGLEWVSYISSRSSTIYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARIAAGGFHYYYALDWGGTTIVTVSS	SEQ ID NO:38					
	V _h 6	EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYSMNWVRQAPGKGLEWVSYISSSSSTRYHADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARIAAGPWGYYYAMDWGGTTIVTVSS	SEQ ID NO:40					
	V _h 7	EVQLVESGGGLVQPGGSLRLSCVSGFTFSSFSMMWVRQAPGKGLEWVSYISSRSSTIYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARIAAGPWGYYYAMDWGGTTIVTVSS	SEQ ID NO:42					
45	V _h 8	QVQLQESGPGLVKPSETLSLCTVSGGSISYFWSWIRQAPGKGLEWIGLYTSGSTNYNPSLKSRTMSLTSKQFSLKLSVTAAATAVYYCARDRGYYYGVDWGGTTIVTVSS	SEQ ID NO:44					
	V _h 9	QVQLQESGPGLVKPSQTLSLCTVSGGSISGGYYWSWIRQHPGKGLEWIGHYSGNTYYNPSLKSRTSVDTSKNQFSLKLSVTAAATAVYYCARNRGYYYGMDWGGTTIVTVSS	SEQ ID NO:46					
	V _h 10	QVQLQESGPGLVKPSETLSLCTVSGGSISGGYYWSWIRQHPGKGLEWIGYIYSGSTYYNPSLKSRTISVDTSKNQFSLKLSVTAAATAVYYCARDRGHYYGMDWGGTTIVTVSS	SEQ ID NO:48					
50	V _h 11	QVQLQESGPGLVKPSETLSLCTVSGGSISGGYYWSWIRQHPGKGLEWIGYIYSGSTYYNPSLKSRTISVDTSKNQFSLKLSVTAAATAVYYCARDRGHYYGMDWGGTTIVTVSS	SEQ ID NO:50					
	V _h 12	QVQLQESGPGLVKPSETLSLCTVSGDSISYFWSWIRQPPGKGLEWLGYIYSGSTYYNPSLKSRTISVDTSKNQFSLKLSVTAAATAVYYCTRDRGSYYGSDWGGTTIVTVSS	SEQ ID NO:52					
	V _h 13	QVQLQESGPGLVKPSETLSLCTVSGGSISGGYYWSWIRQHPGKGLEWIGYIYSGSTYYNPSLKSRTISVDTSKNQFSLKLSVTAAATAVYYCARNRGYYYGMDWGGTTIVTVSS	SEQ ID NO:54					
55	V _h 14	QVQLQESGPGLVKPSETLSLCTVSGGSISGGYYWSWIRQHPGKGLEWIGYIYSGSTYYNPSLKSRTMSVDTSKNQFSLKLSVTAAATAVYYCAKNRGFYGMWDWGGTTIVTVSS	SEQ ID NO:56					
	V _h 15	QVQLQESGPGLVKPSETLSLCTVSGGSISGGYYWSWIRQHPGKGLEWIGYIYSGSTYYNPSLKSRTISVDTSKNQFSLKLSVTAAATAVYYCARDRGHYYGMDWGGTTIVTVSS	SEQ ID NO:58					
	V _h 16	QVQLVESGGVYQPGRSRLSCAASGFTFSSYGMHWRQAPGKGLEWVALIYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARNTVTIYNYGMDWGGTTIVTVSS	SEQ ID NO:60					

For these calculations, gaps in alignments (if any) must be addressed by a particular mathematical model or computer program (i.e., an "algorithm"). Methods that can be used to calculate the identity of the aligned nucleic acids or polypeptides include those described in Computational Molecular Biology, (Lesk, A. M., ed.), 1988, New York: Oxford University Press; Biocomputing Informatics and Genome Projects, (Smith, D. W., ed.), 1993, New York: Academic Press; Computer

5 Analysis of Sequence Data, Part I, (Griffin, A. M., and Griffin, H. G., eds.), 1994, New Jersey: Humana Press; von Heinje, G., 1987, Sequence Analysis in Molecular Biology, New York: Academic Press; Sequence Analysis Primer, (Gribskov, M. and Devereux, J., eds.), 1991, New York: M. Stockton Press; and Carillo et al., 1988, SIAM J. Applied Math. 48:1073.

10 [0063] In calculating percent identity, the sequences being compared are aligned in a way that gives the largest match between the sequences. The computer program used to determine percent identity is the GCG program package, which includes GAP (Devereux et al., 1984, Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, WI). The computer algorithm GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined. The sequences are aligned for optimal matching of their respective amino acid or nucleotide (the "matched span", as determined by the algorithm). A gap opening penalty (which is calculated as 3x the average diagonal, wherein the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see, Dayhoff et al., 1978, Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., 1992, Proc. Natl. Acad. Sci. U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm.

15 [0064] Recommended parameters for determining percent identity for polypeptides or nucleotide sequences using the GAP program are the following: Algorithm: Needleman et al., 1970, J. Mol. Biol. 48:443-453; Comparison matrix: BLOSUM 62 from Henikoff et al., 1992, *supra*; Gap Penalty: 12 (but with no penalty for end gaps), Gap Length Penalty: 4, Threshold of Similarity: 0. Certain alignment schemes for aligning two amino acid sequences may result in matching 20 of only a short region of the two sequences and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.

25 [0065] The heavy and light chain variable regions disclosed herein include consensus sequences derived from groups of related antigen binding proteins. The amino acid sequences of the heavy and light chain variable regions were analyzed for similarities. Four groups emerged, one group having kappa light chain variable regions, (V_H9/ V_L9, V_H10/ V_L10, V_H11/ V_L11, V_H13/ V_L13, V_H14/ V_L14 and V_H15/ V_L15) and three groups having lambda light chain variable regions: lambda group 1 (V_H5/ V_L5, V_H6/ V_L6 and V_H7/ V_L7), lambda group 2 (V_H3/ V_L3 and V_H4/ V_L4), and lambda group 3 (V_H1/ V_L1 and V_H2/ V_L2). Light chain germlines represented include VK1/A30 and VK1/L19. Light chain lambda germlines represented include VL1/1e, VL3/3p, VL5/5c and VL9/9a. Heavy chain germlines represented include VH3/3-30, VH3/3-30.3, VH3/3-33, VH3/3-48, VH4/4-31 and VH4/4-59. As used herein, a "consensus sequence" refers to amino acid sequences having conserved amino acids common among a number of sequences and variable amino acids that vary within given amino acid sequences. Consensus sequences may be determined using standard phylogenetic analyses of the light and heavy chain variable regions corresponding to the IL-23 antigen binding proteins disclosed herein.

30 [0066] The light chain variable region consensus sequence for the kappa group is DX₁QX₂TQSPSSVSASVGDRVTITCRASQGX₃X₄SX₅WX₆AWYQQKPGX₇APX₈LLIYAASSLQSGVPSR FS GSX₉SGTX₁₀FTLTISLQPX₁₁DFATYX₁₂CQQANSFPFTFGPGTKVDX₁₃K (SEQ ID NO:30) where X₁ is selected from I or S; X₂ is selected from M or L; X₃ is selected from G or V and X₄ is selected from S, F or I; X₅ is selected from S or G; X₆ is selected from F or L; X₇ is selected from K or Q; X₈ is selected from K, N or S; X₉ is selected from G or V; X₁₀ is selected from D or E, X₁₁ is selected from E or A; X₁₂ is selected from Y or F; and X₁₃ is selected from I, V or F.

35 [0067] The light chain variable region consensus sequence for lambda group 1 is QPX₁LTQPPSASASLGASVTLTCTLX₂SGYSDYKVDWYQX₃RPGKGPRFVMRVGTGGX₄VGSKGX₅GI PDRFSVLGSGLNRX₆LTIKNIQEEDESDYHCGADHGSGX₇NFVYVFGTGTKVTVL (SEQ ID NO:61) where X₁ is selected from V or E; X₂ is selected from N or S; X₃ is selected from Q or L and X₄ is selected from I or T; X₅ is selected from D or E; X₆ is selected from Y or S; and X₇ is selected from S or N.

40 [0068] The light chain variable region consensus sequence for lambda group 3 is QSVLTQPPSVSGAPGQRVTISCTGSSNX₁GAGYDVHWYQQX₂PGTAPKLLIYGSX₃NRPSGVPDFR SG SKSGTSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTX₄RLTVL (SEQ ID NO:139) where X₁ is selected from T or I; X₂ is selected from V or L; X₃ is selected from G or N and X₄ is selected from R or K.

45 [0069] The heavy chain variable region consensus sequence for the kappa group is QVQLQESGPLVKPSQLSLTCTVSGGSIX₁SGGYYWX₂WIRQHPKGLEWIGX₃X₄YSGX₅X₆YYNP SLK SRX₇TX₈SVDTSX₉NQFSLX₁₀LSSVTAADTAVYYCAX₁₁X₁₂RGX₁₃YYGMDVWGQGTTVTVSS (SEQ ID NO:140) where X₁ is selected from N or S; X₂ is selected from S or T; X₃ is selected from Y or H and X₄ is selected from Y or H;

X_5 is selected from S or N; X_6 is selected from S or T; X_7 is selected from V or I; X_8 is selected from I or M; X_9 is selected from K or Q; X_{10} is selected from K or S, X_{11} is selected from R or K; X_{12} is selected from D or N; and X_{13} is selected from H, F or Y.

[0070] The heavy chain variable region consensus sequence for lambda group 1 is
 5 EVQLVESGGGLVQPGGSLRLSCX₁X₂SGFTFSX₃X₄SMNWVRQAPGKGLEWVSYISSX₅SSTX₆YX₇AD SV

KGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARRIAAGX₈X₉X₁₀YYYAX₁₁DVWGQGTTVTVSS (SEQ ID NO:141) where X_1 is selected from A or V; X_2 is selected from A or V; X_3 is selected from T or S and X_4 is selected from Y or F; X_5 is selected from S or R; X_6 is selected from R or I; X_7 is selected from H, Y or I; X_8 is selected from P or G; X_9 is selected from W or F; X_{10} is selected from G or H and X_{11} is selected from M or L.

[0071] The heavy chain variable region consensus sequence for lambda group 2 is
 10 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYX₁MHWVRQAPGKGLEWX₂X₃VISX₄DGSX₅KYYAD SV
 KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARERTTSGSYFDYWGQGTLVTVSS (SEQ ID NO:142) where X_1 is selected from G or A; X_2 is selected from V or L; X_3 is selected from A or S and X_4 is selected from F or H and X_5 is selected from L or I.

[0072] The heavy chain variable region consensus sequence for lambda group 3 is
 15 QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNX₁YYADSV KG
 RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGYX₂SSWYPDAFDIWGQGTMVTVSS (SEQ ID NO: 143) where X_1 is selected from E or K and X_2 is selected from T or S.

20 Complementarity determining regions

[0073] Complementarity determining regions or "CDRs" are embedded within a framework in the heavy and light chain variable regions where they constitute the regions responsible for antigen binding and recognition. Variable domains of immunoglobulin chains of the same species, for example, generally exhibit a similar overall structure; comprising relatively 25 conserved framework regions (FR) joined by hypervariable CDR regions. An antigen binding protein can have 1, 2, 3, 4, 5, 6 or more CDRs. The variable regions discussed above, for example, typically comprise three CDRs. The CDRs from heavy chain variable regions and light chain variable regions are typically aligned by the framework regions to form a structure that binds specifically on a target antigen (e.g., IL-23). From N-terminal to C-terminal, naturally-occurring light and heavy chain variable regions both typically conform to the following order of these elements: FR1, CDR1, FR2, 30 CDR2, FR3, CDR3 and FR4. The CDR and FR regions of exemplary light chain variable domains and heavy chain variable domains are highlighted in TABLES 1 and 2. It is recognized that the boundaries of the CDR and FR regions can vary from those highlighted. Numbering systems have been devised for assigning numbers to amino acids that occupy positions in each of these domains. Complementarity determining regions and framework regions of a given antigen binding protein may be identified using these systems. Numbering systems are defined in Kabat et al., Sequences 35 of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication No. 91-3242, 1991, or Chothia & Lesk, 1987, J. Mol. Biol. 196:901-917; Chothia et al., 1989, Nature 342:878-883. Other numbering systems for the amino acids in immunoglobulin chains include IMGT® (the international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 2005, 29:185-203); and AHo (Honegger and Pluckthun, J. Mol. Biol. 2001, 309(3):657-670). The CDRs provided herein may not only be used to define the antigen binding domain of 40 a traditional antibody structure, but may be embedded in a variety of other polypeptide structures, as described herein.

[0074] The antigen binding proteins disclosed herein are polypeptides into which one or more CDRs may be grafted, inserted, embedded and/or joined. An antigen binding protein can have, for example, one heavy chain CDR1 ("CDRH1"), and/or one heavy chain CDR2 ("CDRH2"), and/or one heavy chain CDR3 ("CDRH3"), and/or one light chain CDR1 ("CDRL1"), and/or one light chain CDR2 ("CDRL2"), and/or one light chain CDR3 ("CDRL3"). Some antigen binding 45 proteins include both a CDRH3 and a CDRL3. Specific embodiments generally utilize combinations of CDRs that are non-repetitive, e.g., antigen binding proteins are generally not made with two CDRH2 regions in one variable heavy chain region, etc. Antigen binding proteins may comprise one or more amino acid sequences that are identical to or that differ from the amino acid sequences of one or more of the CDRs presented in TABLE 3 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, 50 insertion or substitution of one amino acid. The CDRs in some antigen binding proteins comprise sequences of amino acids that have at least 80%, 85%, 90%, 91%, 92, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to CDRs sequence listed in TABLE 3. In some antigen binding proteins, the CDRs are embedded into a "framework" region, which orients the CDR(s) such that the proper antigen binding properties of the CDR(s) is achieved.

TABLE 3

Exemplary CDRH and CDRL Sequences		
Exemplary CDRL Sequences		
CDRL1	CDRL2	CDRL3
TGSSNTGAGYDVH SEQ ID NO: 62	GSGNRPS SEQ ID NO:63	QSYDSSLGWW SEQ ID NO: 64
TGSSNIGAGYDVH SEQ ID NO:65	GSNNRPS SEQ ID NO:66	MIWHSSASV SEQ ID NO:67
TLRSGINVGTYRIY SEQ ID NO:68	YKSDSDKQQGS SEQ ID NO:69	GADHGGSNFVYV SEQ ID NO:70
TLNSGYSDYKV SEQ ID NO:71	VGTGGIVGSKGD SEQ ID NO:72	GADHGSGNNFVYV SEQ ID NO:73
TLSSGYSDYKV SEQ ID NO:74	VGTGGIVGSKGE SEQ ID NO:75	QQANSFPFT SEQ ID NO:76
RASQGFSGWLA SEQ ID NO:77	VGTGGTVGSKGE SEQ ID NO:78	QQATSFPLT SEQ ID NO:79
RASQVISSWLA SEQ ID NO:80	AASSLQS SEQ ID NO:81	QQADSFPP SEQ ID NO:82
RASQVISSWFA SEQ ID NO:83		LQHNSYPPT SEQ ID NO:84
RASQGSSSWFA SEQ ID NO:85		
RASQGISSWFA SEQ ID NO:86		
RAGQVISSWLA SEQ ID NO:87		
RASQGIAGWLA SEQ ID NO:88		
RASQGIRNDLG SEQ ID NO:89		
Exemplary CDRH Sequences		
CDRH1	CDRH2	CDRH3
SYGMH SEQ ID NO:91	VIWYDGSNEYYADSVKG SEQ ID NO:92	DRGYTSSWYPDAFDI SEQ ID NO:93
SYAMH SEQ ID NO:94	VIWYDGSNKYYADSVKG SEQ ID NO:95	DRGYSSSWYPDAFDI SEQ ID NO:96
TYSMN SEQ ID NO:97	VISFDGSLKYYADSVKG SEQ ID NO:98	ERTTLSGSYFDY SEQ ID NO:99
SYSMN SEQ ID NO:100	VISHDGSIKYYADSVKG SEQ ID NO:101	RIAAAGGFHYYYALDV SEQ ID NO:102
SFSMN SEQ ID NO:103	YISSLRSSTIYIADSVKG SEQ ID NO:104	RIAAAGPWGYYYAMDV SEQ ID NO:105
SGGYYWT SEQ ID NO:106	YISSLSSSTRYHADSVKG SEQ ID NO:107	NRGYYYGMDV SEQ ID NO:108
SGGYYWS SEQ ID NO:109	YISSLRSSTIYYADSVKG SEQ ID NO:110	NRGFYYGMDV SEQ ID NO:111
SYFWS SEQ ID NO:112	YIYYSGNTYYNPSLKS SEQ ID NO:113	DRGHYYGMDV SEQ ID NO:114
TYYWS SEQ ID NO:115	HIHYSGNTRYNPSLKS SEQ ID NO:116	DRGSYYGSDY SEQ ID NO:117
	YIYYSGSTYYNPSLKS SEQ ID NO:118	DRGYYYGVDV SEQ ID NO: 119
	YIYYSGSSYYNPSLKS SEQ ID NO:120	ENTVTIYYNYGMDV SEQ ID NO:6

(continued)

Exemplary CDRH Sequences		
CDRH1	CDRH2	CDRH3
	YIYYSGSTNYNPSLKS SEQ ID NO:121	
	LIYTSGSTNYNPSLKS SEQ ID NO:122	
	LIWYDGSNKYYADSVKG SEQ ID NO: 90	

[0075] Described and/or claimed herein are CDR1 regions comprising amino acid residues 23-34 of SEQ ID NOs: 7 and 11; amino acid residues 24-34 of SEQ ID NOs: 9, 13, 15, 17, 19 21, 23, 25, 27 and 29; amino acid residues 23-36 of SEQ ID NOs: 1, 3 and 4; amino acid residues 31-35 of SEQ ID NOs: 31, 33, 34, 38, 40, 44, 52 and 60 and amino acid residues 31-37 or SEQ ID NOs: 46, 48, 50, 54, 56 and 58.

[0076] CDR2 regions are described and/or claimed herein comprising amino acid residues 50-56 of SEQ ID NOs: 9, 13, 15, 17, 19, 21, 23, 25, 27 and 29; amino acid residues 50-61 of SEQ ID NOs: 7 and 11; amino acid residues 52-62 of SEQ ID NO: 4; amino acid residues 50-65 of SEQ ID NOs: 31, 33, 44 and 52; amino acid residues 50-66 of SEQ ID NOs: 36, 38, 40, 42 and 60; amino acid residues 52-58 of SEQ ID NOs: 1 and 3 and amino acid residues 52-67 of SEQ ID NOs: 46, 48, 50, 54, 56 and 58.

[0077] CDR3 regions comprising amino acid residues 89-97 of SEQ ID NOs: 13, 15, 17, 19, 21, 23, 25, 27 and 29; amino acid residues 91-101 of SEQ ID NOs: 1 and 3; amino acid residues 94-106 of SEQ ID NOs: 7, 9 and 11; amino acid residues 98-107 of SEQ ID NOs: 44 and 52; amino acid residues 97-105 of SEQ ID NO: 4; amino acid residues 99-110 of SEQ ID NOs: 34 and 36; amino acid residues 99-112 of SEQ ID NO: 112; amino acid residues 99-113 of SEQ ID NOs: 31 and 33; amino acid residues 99-114 of SEQ ID NOs: 38, 40 and 42; amino acid residues 100-109 of SEQ ID NOs: 46, 48, 54, 56 and 58; and amino acid residues 101-019 of SEQ ID NO: 50; are also described and/or claimed herein.

[0078] The CDRs disclosed herein include consensus sequences derived from groups of related sequences. As described previously, four groups of variable region sequences were identified, a kappa group and three lambda groups. The CDRL1 consensus sequence from the kappa group consists of RASQX₁X₂SX₃WX₄A (SEQ ID NO:123) where X₁ is selected from G or V; X₂ is selected from I, F or S; X₃ is selected from S or G and X₄ is selected from F or L. The CDRL1 consensus sequence from lambda group 1 consists of TLX₁SGYSDYKVD (SEQ ID NO:124) wherein X₁ is selected from N or S. The CDRL1 consensus sequences from lambda group 3 consists of TGSSSNX₁GAGYDVH (SEQ ID NO:125) wherein X₁ is selected from I or T.

[0079] The CDRL2 consensus sequence from lambda group 1 consists of VGTGGX₁VGSKGX₂ (SEQ ID NO: 126) wherein X₁ is selected from I or T and X₂ is selected from D or E. The CDRL2 consensus sequence from lambda group 3 consists of GSX₁NRPS (SEQ ID NO:127) wherein X₁ is selected from N or G.

[0080] The CDRL3 consensus sequences include GADHGSGX₁NFVYV (SEQ ID NO:128) wherein X₁ is S or N.

[0081] The CDRH1 consensus sequence from the kappa group consists of SGGYYWX₁ (SEQ ID NO:129) wherein X₁ is selected from S or T. The CDRH1 consensus sequence from lambda group 1 consists of X₁X₂SMN (SEQ ID NO:131) wherein X₁ is selected from S or T and X₂ is selected from Y or F. The CDRH1 consensus sequence from lambda group 2 consists of SYX₁MH (SEQ ID NO:130), wherein X₁ is selected from G or A.

[0082] The CDRH2 consensus sequence from the kappa group consists of X₁IX₂YSGX₃X₄YYNPSLKS (SEQ ID NO:132) wherein X₁ is selected from Y or H; X₂ is selected from Y or H; X₃ is selected from S or N and X₄ is selected from T or S. The consensus sequence from lambda group 1 consists of YISSX₁SSTX₂YX₃ADSVKG (SEQ ID NO:134) wherein X₁ is selected from R or S, X₂ is selected from I or R, X₃ is selected from I, H or Y. The consensus sequence from lambda group 2 consists of VISX₁DGSX₂KYYADSVKG (SEQ ID NO:133) wherein X₁ is F or H and X₂ is L or T.

[0083] The CDRH2 consensus sequence from lambda group 3 consists of VIWYDGSNX₁YYADSVKG (SEQ ID NO:135) wherein X₁ is selected from K or E.

[0084] The CDRH3 consensus sequence from the kappa group consists of X₁RGX₂YYGMDV (SEQ ID NO:136) wherein X₁ is selected from N or D and X₂ is selected from H, Y or F. The CDRH3 consensus sequence from lambda group 1 consists of RIAAAGX₁X₂X₃YYYAX₄DV (SEQ ID NO:137) wherein X₁ is selected from G or P; X₂ is selected from F or W; X₃ is selected from H or G and X₄ is selected from L and M. The CDRH3 consensus sequence from lambda group 3 consists of DRGYX₁SSWYPDAFDI (SEQ ID NO:138) wherein X₁ is selected from S or T.

Monoclonal Antibodies

[0084] The antigen binding proteins that are provided include monoclonal antibodies that bind to IL-23. Monoclonal antibodies may be produced using any technique known in the art, e.g., by immortalizing spleen cells harvested from the transgenic animal after completion of the immunization schedule. The spleen cells can be immortalized using any technique known in the art, e.g., by fusing them with myeloma cells to produce hybridomas. Myeloma cells for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). Examples of suitable cell lines for use in mouse fusions include Sp-20, P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XXO Bul; examples of cell lines used in rat fusions include R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210. Other cell lines useful for cell fusions are U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6.

[0085] In some instances, a hybridoma cell line is produced by immunizing an animal (e.g., a transgenic animal having human immunoglobulin sequences) with an IL-23 immunogen; harvesting spleen cells from the immunized animal; fusing the harvested spleen cells to a myeloma cell line, thereby generating hybridoma cells; establishing hybridoma cell lines from the hybridoma cells, and identifying a hybridoma cell line that produces an antibody that binds an IL-23 polypeptide while sparing IL-12. Such hybridoma cell lines, and anti-IL-23 monoclonal antibodies produced by them, are aspects of the present disclosure.

[0086] Monoclonal antibodies secreted by a hybridoma cell line can be purified using any technique known in the art. Hybridomas or mAbs may be further screened to identify mAbs with particular properties, such as the ability to inhibit IL-23-induced activity.

Chimeric and Humanized Antibodies

[0087] Chimeric and humanized antibodies based upon the foregoing sequences are also provided. Monoclonal antibodies for use as therapeutic agents may be modified in various ways prior to use. One example is a chimeric antibody, which is an antibody composed of protein segments from different antibodies that are covalently joined to produce functional immunoglobulin light or heavy chains or immunologically functional portions thereof. Generally, a portion of the heavy chain and/or light chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For methods relating to chimeric antibodies, see, for example, US Patent No. 4,816,567; and Morrison et al., 1985, Proc. Natl. Acad. Sci. USA 81:6851-6855. CDR grafting is described, for example, in US Patent Nos. 6,180,370, 5,693,762, 5,693,761, 5,585,089, and 5,530,101.

[0088] One useful type of chimeric antibody is a "humanized" antibody. Generally, a humanized antibody is produced from a monoclonal antibody raised initially in a non-human animal. Certain amino acid residues in this monoclonal antibody, typically from non-antigen recognizing portions of the antibody, are modified to be homologous to corresponding residues in a human antibody of corresponding isotype. Humanization can be performed, for example, using various methods by substituting at least a portion of a rodent variable region for the corresponding regions of a human antibody (see, e.g., US Patent Nos. 5,585,089, and No. 5,693,762; Jones et al., 1986, Nature 321:522-525; Riechmann et al., 1988, Nature 332:323-27; Verhoeyen et al., 1988, Science 239:1534-1536).

[0089] In certain embodiments, constant regions from species other than human can be used along with the human variable region(s) to produce hybrid antibodies.

Fully Human Antibodies

[0090] Fully human antibodies are also provided. Methods are available for making fully human antibodies specific for a given antigen without exposing human beings to the antigen ("fully human antibodies"). One specific means provided for implementing the production of fully human antibodies is the "humanization" of the mouse humoral immune system. Introduction of human immunoglobulin (Ig) loci into mice in which the endogenous Ig genes have been inactivated is one means of producing fully human monoclonal antibodies (mAbs) in mouse, an animal that can be immunized with any desirable antigen. Using fully human antibodies can minimize the immunogenic and allergic responses that can sometimes be caused by administering mouse or mouse-derivatized mAbs to humans as therapeutic agents.

[0091] Fully human antibodies can be produced by immunizing transgenic animals (usually mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production. Antigens for this purpose typically have six or more contiguous amino acids, and optionally are conjugated to a carrier, such as a hapten. See, e.g., Jakobovits et al., 1993, Proc. Natl. Acad. Sci. USA 90:2551-2555; Jakobovits et al., 1993, Nature 362:255-258; and Brugermann et al., 1993, Year in Immunol. 7:33. In one example of such a method, transgenic animals are produced

by incapacitating the endogenous mouse immunoglobulin loci encoding the mouse heavy and light immunoglobulin chains therein, and inserting into the mouse genome large fragments of human genome DNA containing loci that encode human heavy and light chain proteins. Partially modified animals, which have less than the full complement of human immunoglobulin loci, are then cross-bred to obtain an animal having all of the desired immune system modifications.

5 When administered an immunogen, these transgenic animals produce antibodies that are immunospecific for the immunogen but have human rather than murine amino acid sequences, including the variable regions. For further details of such methods, see, for example, WIPO patent publications WO96/33735 and WO94/02602. Additional methods relating to transgenic mice for making human antibodies are described in US Patent Nos. 5,545,807; 6,713,610; 6,673,986; 6,162,963; 5,545,807; 6,300,129; 6,255,458; 5,877,397; 5,874,299 and 5,545,806; in WIPO patent publications WO91/10741, WO90/04036, and in EP 546073B1 and EP 546073A1.

10 [0092] The transgenic mice described above contain a human immunoglobulin gene minilocus that encodes un rearranged human heavy ([mu] and [gamma]) and [kappa] light chain immunoglobulin sequences, together with targeted mutations that inactivate the endogenous [mu] and [kappa] chain loci (Lonberg et al., 1994, *Nature* 368:856-859). Accordingly, the mice exhibit reduced expression of mouse IgM or [kappa] and in response to immunization, and the 15 introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG [kappa] monoclonal antibodies (Lonberg et al., *supra*; Lonberg and Huszar, 1995, *Intern. Rev. Immunol.* 13: 65-93; Harding and Lonberg, 1995, *Ann. N.Y Acad. Sci.* 764:536-546). The preparation of such mice is described in detail in Taylor et al., 1992, *Nucleic Acids Research* 20:6287-6295; Chen et al., 1993, *International Immunology* 5:647-656; Tuillion et al., 1994, *J. Immunol.* 152:2912-2920; Lonberg et al., 1994, *Nature* 368:856-859; Lonberg, 20 1994, *Handbook of Exp. Pharmacology* 113:49-101; Taylor et al., 1994, *International Immunology* 6:579-591; Lonberg and Huszar, 1995, *Intern. Rev. Immunol.* 13:65-93; Harding and Lonberg, 1995, *Ann. N.Y Acad. Sci.* 764:536-546; Fishwild et al., 1996, *Nature Biotechnology* 14:845-85. See, further United States Patent No. 5,545,806; No. 5,569,825; No. 5,625,126; No. 5,633,425; No. 5,789,650; No. 5,877,397; No. 5,661,016; No. 5,814,318; No. 5,874,299; and No. 25 5,770,429; as well as United States Patent No. 5,545,807; WIPO Publication Nos. WO 93/1227; WO 92/22646; and WO 92/03918. Technologies utilized for producing human antibodies in these transgenic mice are disclosed also in WIPO 30 Publication No. WO 98/24893, and Mendez et al., 1997, *Nature Genetics* 15:146-156. For example, the HCo7 and HCo12 transgenic mice strains can be used to generate anti-IL-23 antibodies.

[0093] Using hybridoma technology, antigen-specific human mAbs with the desired specificity can be produced and selected from the transgenic mice such as those described above. Such antibodies may be cloned and expressed using 35 a suitable vector and host cell, or the antibodies can be harvested from cultured hybridoma cells.

[0094] Fully human antibodies can also be derived from phage-display libraries (such as disclosed in Hoogenboom et al., 1991, *J. Mol. Biol.* 227:381; Marks et al., 1991, *J. Mol. Biol.* 222:581; WIPO Publication No. WO 99/10494). Phage display techniques mimic immune selection through the display of antibody repertoires on the surface of filamentous bacteriophage, and subsequent selection of phage by their binding to an antigen of choice.

35 **Bispecific or Bifunctional Antigen Binding Proteins**

[0095] A "bispecific," "dual-specific" or "bifunctional" antigen binding protein or antibody is a hybrid antigen binding protein or antibody, respectively, having two different antigen binding sites, such as one or more CDRs or one or more 40 variable regions as described above. In some instances they are an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Multispecific antigen binding protein or "multispecific antibody" is one that targets more than one antigen or epitope. Bispecific antigen binding proteins and antibodies are a species of multispecific antigen binding protein antibody and may be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai and Lachmann, 1990, *Clin. Exp. Immunol.* 79:315-321; Kostelny et al., 1992, *J. Immunol.* 148:1547-1553.

Immunological Fragments

[0096] Antigen binding proteins also include immunological fragments of an antibody (e.g., a Fab, a Fab', a F(ab')₂, or a scFv). A "Fab fragment" is comprised one light chain (the light chain variable region (V_L) and its corresponding 50 constant domain (C_L)) and one heavy chain (the heavy chain variable region (V_H) and first constant domain (C_{H1})). The heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule. A "Fab' fragment" contains one light chain and a portion of one heavy chain that also contains the region between the C_{H1} and C_{H2} domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab' fragments to 55 form an F(ab')₂ molecule. A "F(ab')₂ fragment" thus is composed of two Fab' fragments that are held together by a disulfide bond between the two heavy chains. A "Fv fragment" consists of the variable light chain region and variable heavy chain region of a single arm of an antibody. Single-chain antibodies "scFv" are Fv molecules in which the heavy and light chain variable regions have been connected by a flexible linker to form a single polypeptide chain, which forms

an antigen binding region. Single chain antibodies are discussed in detail in WIPO Publication No. WO 88/01649, U.S. Patent Nos. 4,946,778 and No. 5,260,203; Bird, 1988, *Science* 242:423; Huston et al., 1988, *Proc. Natl. Acad. Sci. U.S.A.* 85:5879; Ward et al., 1989, *Nature* 334:544; de Graaf et al., 2002, *Methods Mol Biol.* 178:379-387; Kortt et al., 1997, *Prot. Eng.* 10:423; Kortt et al., 2001, *Biomol. Eng.* 18:95-108 and Kriangkum et al., 2001, *Biomol. Eng.* 18:31-40.

5 A "Fc" region contains two heavy chain fragments comprising the C_H1 and C_H2 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the C_H3 domains. [0097] Also included are domain antibodies, immunologically functional immunoglobulin fragments containing only the variable region of a heavy chain or the variable region of a light chain. In some instances, two or more V_H regions are covalently joined with a peptide linker to create a bivalent domain antibody. The two V_H regions of a bivalent domain antibody may target the same or different antigens. Diabodies are bivalent antibodies comprising two polypeptide chains, wherein each polypeptide chain comprises V_H and V_L domains joined by a linker that is too short to allow for pairing between two domains on the same chain, thus allowing each domain to pair with a complementary domain on another polypeptide chain (see, e.g., Holliger et al., *Proc. Natl. Acad. Sci. USA* 90:6444-48, 1993 and Poljak et al., *Structure* 2:1121-23, 1994). Similarly, tribodies and tetrabodies are antibodies comprising three and four polypeptide chains, 10 respectively, and forming three and four antigen binding sites, respectively, which can be the same or different. Maxibodies comprise bivalent scFvs covalently attached to the Fc region of IgG₁, (see, e.g., Fredericks et al., 2004, *Protein Engineering, Design & Selection*, 17:95-106; Powers et al., 2001, *Journal of Immunological Methods*, 251:123-135; Shu et al., 1993, *Proc. Natl. Acad. Sci. USA* 90:7995-7999; Hayden et al., 1994, *Therapeutic Immunology* 1:3-15).

20 Various Other Forms

[0098] Also provided are variant forms of the antigen binding proteins disclosed above, some of the antigen binding proteins having, for example, one or more conservative amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in TABLES 1 and 2.

25 [0099] Naturally-occurring amino acids may be divided into classes based on common side chain properties: hydrophobic (norleucine, Met, Ala, Val, Leu, Ile); neutral hydrophilic (Cys, Ser, Thr, Asn, Gln); acidic (Asp, Glu); basic (His, Lys, Arg); residues that influence chain orientation (Gly, Pro); and aromatic (Trp, Tyr, Phe).

30 [0100] Conservative amino acid substitutions may involve exchange of a member of one of these classes with another member of the same class. Conservative amino acid substitutions may encompass non-naturally occurring amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics and other reversed or inverted forms of amino acid moieties. Such substantial modifications in the functional and/or biochemical characteristics of the antigen binding proteins described herein may be achieved by creating substitutions in the amino acid sequence of the heavy and light chains that differ significantly in their effect on maintaining (a) the structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulkiness of 35 the side chain.

35 [0101] Non-conservative substitutions may involve the exchange of a member of one of the above classes for a member from another class. Such substituted residues may be introduced into regions of the antibody that are homologous with human antibodies, or into the non-homologous regions of the molecule.

40 [0102] In making such changes, according to certain embodiments, the hydropathic index of amino acids may be considered. The hydropathic profile of a protein is calculated by assigning each amino acid a numerical value ("hydropathy index") and then repetitively averaging these values along the peptide chain. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

45 [0103] The importance of the hydropathic profile in conferring interactive biological function on a protein is understood in the art (see, e.g., Kyte et al., 1982, *J. Mol. Biol.* 157:105-131). It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within ± 2 is included. In some aspects, those which are within ± 1 are included, and in other aspects, those within ± 0.5 are included.

50 [0104] It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functional protein or peptide thereby created is intended for use in immunological embodiments, as in the present case. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigen binding or immunogenicity, that is, with a biological property of the protein.

55 [0105] The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine

(+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5±1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5) and tryptophan (-3.4). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within ±2 is included, in other embodiments, those which are within ±1 are included, and in still other embodiments, those within ±0.5 are included. In some instances, one may also identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as "epitopic core regions."

[0106] Exemplary conservative amino acid substitutions are set forth in TABLE 4.

10

TABLE 4

Conservative Amino Acid Substitutions											
Residue	Sub		Residue	Sub		Residue	Sub		Residue	Sub	
Ala	Ser		Gln	Asn		Leu	Ile, Val		Thr	Ser	
Arg	Lys		Glu	Asp		Lys	Arg, Gln, Glu		Trp	Tyr	
Asn	Gln,		Gly	Pro		Met	Leu, Ile		Tyr	Trp,	
	His									Phe	
Asp	Glu		His	Asn, Gln		Phe	Met, Leu, Tyr		Val	Ile, Leu	
Cys	Ser		Ile	Leu, Val		Ser	Thr		Thr	Ser	
Residue = Original Residue Sub = Exemplary Substitution											

25

[0107] A skilled artisan will be able to determine suitable variants of polypeptides as set forth herein using well-known techniques. One skilled in the art may identify suitable areas of the molecule that may be changed without destroying activity by targeting regions not believed to be important for activity. The skilled artisan also will be able to identify residues and portions of the molecules that are conserved among similar polypeptides. In further embodiments, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.

30

[0108] Additionally, one skilled in the art can review structure-function studies identifying residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues important for activity or structure in similar proteins. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues.

35

[0109] One skilled in the art can also analyze the 3-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of such information, one skilled in the art may predict the alignment of amino acid residues of an antibody with respect to its three dimensional structure. One skilled in the art may choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues may be involved in important interactions with other molecules. Moreover, one skilled in the art may generate test variants containing a single amino acid substitution at each desired amino acid residue. These variants can then be screened using assays for IL-23 activity, (see examples below) thus yielding information regarding which amino acids can be changed and which must not be changed. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acid positions where further substitutions should be avoided either alone or in combination with other mutations.

40

[0110] A number of scientific publications have been devoted to the prediction of secondary structure. See, Moult, 1996, Curr. Op. in Biotech. 7:422-427; Chou et al., 1974, Biochem. 13:222-245; Chou et al., 1974, Biochemistry 13:211-222; Chou et al., 1978, Adv. Enzymol. Relat. Areas Mol. Biol. 47:45-148; Chou et al., 1979, Ann. Rev. Biochem. 47:251-276; and Chou et al., 1979, Biophys. J. 26:367-384. Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins that have a sequence identity of greater than 30%, or similarity greater than 40% often have similar structural topologies. The recent growth of the protein structural database (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See, Holm et al., 1999, Nucl. Acid. Res. 27:244-247. It has been suggested (Brenner et al., 1997, Curr. Op. Struct. Biol. 7:369-376) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate.

45

[0111] Additional methods of predicting secondary structure include "threading" (Jones, 1997, Curr. Opin. Struct. Biol.

50

55

7:377-387; Sippl et al., 1996, *Structure* 4:15-19), "profile analysis" (Bowie et al., 1991, *Science* 253:164-170; Grabskov et al., 1990, *Meth. Enzym.* 183:146-159; Grabskov et al., 1987, *Proc. Nat. Acad. Sci.* 84:4355-4358), and "evolutionary linkage" (See, Holm, 1999, *supra*; and Brenner, 1997, *supra*).

[0112] In some embodiments, amino acid substitutions are made that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter ligand or antigen binding affinities, and/or (4) confer or modify other physicochemical or functional properties on such polypeptides, such as maintaining the structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation; maintaining or altering the charge or hydrophobicity of the molecule at the target site, or maintaining or altering the bulkiness of a side chain.

[0113] For example, single or multiple amino acid substitutions (in certain embodiments, conservative amino acid substitutions) may be made in the naturally-occurring sequence. Substitutions can be made in that portion of the antibody that lies outside the domain(s) forming intermolecular contacts). In such embodiments, conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the parent sequence (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the parent or native antigen binding protein). Examples of art-recognized polypeptide secondary and tertiary structures are described in *Proteins, Structures and Molecular Principles* (Creighton, Ed.), 1984, W. H. New York: Freeman and Company; *Introduction to Protein Structure* (Branden and Tooze, eds.), 1991, New York: Garland Publishing; and Thornton et al., 1991, *Nature* 354:105.

[0114] Additional variants include cysteine variants wherein one or more cysteine residues in the parent or native amino acid sequence are deleted from or substituted with another amino acid (e.g., serine). Cysteine variants are useful, *inter alia* when antibodies (for example) must be refolded into a biologically active conformation. Cysteine variants may have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.

[0115] The heavy and light chain variable region and CDRs that are disclosed can be used to prepare antigen binding proteins that contain an antigen binding region that can specifically bind to an IL-23 polypeptide. "Antigen binding region" means a protein, or a portion of a protein, that specifically binds a specified antigen, such as the region that contains the amino acid residues that interact with an antigen and confer on the antigen binding protein its specificity and affinity for the target antigen. An antigen binding region may include one or more CDRs and certain antigen binding regions also include one or more "framework" regions. For example, one or more of the CDRs listed in TABLE 3 can be incorporated into a molecule (e.g., a polypeptide) covalently or noncovalently to make an immunoadhesion. An immunoadhesion may incorporate the CDR(s) as part of a larger polypeptide chain, may covalently link the CDR(s) to another polypeptide chain, or may incorporate the CDR(s) noncovalently. The CDR(s) enable the immunoadhesion to bind specifically to a particular antigen of interest (e.g., an IL-23 polypeptide).

[0116] Other antigen binding proteins include mimetics (e.g., "peptide mimetics" or "peptidomimetics") based upon the variable regions and CDRs that are described herein. These analogs can be peptides, non-peptides or combinations of peptide and non-peptide regions. Fauchere, 1986, *Adv. Drug Res.* 15:29; Veber and Freidinger, 1985, *TINS* p. 392; and Evans et al., 1987, *J. Med. Chem.* 30:1229. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce a similar therapeutic or prophylactic effect. Such compounds are often developed with the aid of computerized molecular modeling. Generally, peptidomimetics are proteins that are structurally similar to an antigen binding protein displaying a desired biological activity, such as the ability to bind IL-23, but peptidomimetics have one or more peptide linkages optionally replaced by a linkage selected from, for example: -CH₂NH-, -CH₂S-, -CH₂CH₂-, -CH-CH-(cis and trans), -COCH₂-, -CH(OH)CH₂-, and -CH₂SO-, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may be used in certain embodiments to generate more stable proteins. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Giersch, 1992, *Ann. Rev. Biochem.* 61:387), for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.

[0117] Derivatives of the antigen binding proteins that are described herein are also provided. The derivatized antigen binding proteins can comprise any molecule or substance that imparts a desired property to the antigen binding protein or fragment, such as increased half-life in a particular use. The derivatized antigen binding protein can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold) bead), or a molecule that binds to another molecule (e.g., biotin or Streptavidin)), a therapeutic or diagnostic moiety (e.g., a radioactive, cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antigen binding protein for a particular use (e.g., administration to a subject, such as a human subject, or other *in vivo* or *in vitro* uses). Examples of molecules that can be used to derivatize an antigen binding protein include albumin (e.g., human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antigen binding proteins can be prepared using techniques well known in the art. In one embodiment, the antigen binding protein is conjugated or otherwise linked to transthyretin (TTR) or a TTR variant. The

TTR or TTR variant can be chemically modified with, for example, a chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols and polyvinyl alcohols.

[0118] Other derivatives include covalent or aggregative conjugates of IL-23 antigen binding proteins with other proteins or polypeptides, such as by expression of recombinant fusion proteins comprising heterologous polypeptides fused to the N-terminus or C-terminus of an IL-23 antigen binding protein. For example, the conjugated peptide may be a heterologous signal (or leader) polypeptide, e.g., the yeast alpha-factor leader, or a peptide such as an epitope tag. IL-23 antigen binding protein-containing fusion proteins can comprise peptides added to facilitate purification or identification of the IL-23 antigen binding protein (e.g., poly-His). An IL-23 antigen binding protein also can be linked to the FLAG peptide as described in Hopp et al., 1988, Bio/Technology 6:1204; and US Patent No. 5,011,912. The FLAG peptide is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody (mAb), enabling rapid assay and facile purification of expressed recombinant protein. Reagents useful for preparing fusion proteins in which the FLAG peptide is fused to a given polypeptide are commercially available (Sigma, St. Louis, MO).

[0119] Oligomers that contain one or more IL-23 antigen binding proteins may be employed as IL-23 antagonists. Oligomers may be in the form of covalently-linked or non-covalently-linked dimers, trimers, or higher oligomers. Oligomers comprising two or more IL-23 antigen binding proteins are contemplated for use, with one example being a homodimer. Other oligomers include heterodimers, homotrimers, heterotrimers, homotetramers, heterotetramers, etc. Oligomers comprising multiple IL-23-binding proteins joined via covalent or non-covalent interactions between peptide moieties fused to the IL-23 antigen binding proteins, are also included. Such peptides may be peptide linkers (spacers), or peptides that have the property of promoting oligomerization. Among the suitable peptide linkers are those described in US Patent Nos. 4,751,180 and 4,935,233. Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote oligomerization of IL-23 antigen binding proteins attached thereto. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in WIPO Publication No. WO 94/10308; Hoppe et al., 1994, FEBS Letters 344:191; and Fanslow et al., 1994, Semin. Immunol. 6:267-278. In one approach, recombinant fusion proteins comprising an IL-23 antigen binding protein fragment or derivative fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric IL-23 antigen binding protein fragments or derivatives that form are recovered from the culture supernatant.

[0120] Such oligomers may comprise from two to four IL-23 antigen binding proteins. The IL-23 antigen binding protein moieties of the oligomer may be in any of the forms described above, e.g., variants or fragments. Preferably, the oligomers comprise IL-23 antigen binding proteins that have IL-23 binding activity. Oligomers may be prepared using polypeptides derived from immunoglobulins. Preparation of fusion proteins comprising certain heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al., 1991, Proc. Natl. Acad. Sci. USA 88:10535; Byrn et al., 1990, Nature 344:677; and Hollenbaugh et al., 1992 "Construction of Immunoglobulin Fusion Proteins", in Current Protocols in Immunology, Suppl.4, pages 10.19.1-10.19.11.

[0121] Also included are dimers comprising two fusion proteins created by fusing an IL-23 antigen binding protein to the Fc region of an antibody. The dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the gene fusion in host cells transformed with the recombinant expression vector, and allowing the expressed fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer. Such Fc polypeptides include native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising Fc moieties (and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns. One suitable Fc polypeptide, described in WIPO Publication No. WO 93/10151 and US Patent Nos. 5,426,048 and 5,262,522, is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human IgG1 antibody. Another useful Fc polypeptide is the Fc mutein described in US Patent No. 5,457,035, and in Baum et al., 1994, EMBO J. 13:3992-4001. The amino acid sequence of this mutein is identical to that of the native Fc sequence presented in WIPO Publication No. WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala. The mutein exhibits reduced affinity for Fc receptors.

50 Glycosylation

[0122] The antigen binding protein may have a glycosylation pattern that is different or altered from that found in the native species. As is known in the art, glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.

[0123] Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri-peptide sequences asparagine-X-serine and

asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tri-peptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

[0124] Addition of glycosylation sites to the antigen binding protein is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tri-peptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites). For ease, the antigen binding protein amino acid sequence may be altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

[0125] Another means of increasing the number of carbohydrate moieties on the antigen binding protein is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in PCT Publication No. WO 87/05330, and in Aplin and Wriston, 1981, CRC Crit. Rev. Biochem., pp. 259-306.

[0126] Removal of carbohydrate moieties present on the starting antigen binding protein may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al., 1987, Arch. Biochem. Biophys. 259:52 and by Edge et al., 1981, Anal. Biochem. 118:131. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., 1987, Meth. Enzymol. 138:350. Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., 1982, J. Biol. Chem. 257:3105. Tunicamycin blocks the formation of protein-N-glycoside linkages.

[0127] Hence, aspects include glycosylation variants of the antigen binding proteins wherein the number and/or type of glycosylation site(s) has been altered compared to the amino acid sequences of the parent polypeptide. In certain embodiments, antigen binding protein variants comprise a greater or a lesser number of N-linked glycosylation sites than the parent polypeptide. Substitutions that eliminate or alter this sequence will prevent addition of an N-linked carbohydrate chain present in the parent polypeptide. For example, the glycosylation can be reduced by the deletion of an Asn or by substituting the Asn with a different amino acid. Antibodies typically have a N-linked glycosylation site in the Fc region.

Labels And Effector Groups

[0128] Antigen binding proteins may comprise one or more labels. The term "label" or "labeling group" refers to any detectable label. In general, labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which may be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles); c) redox active moieties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, β -galactosidase, luciferase, alkaline phosphatase); e) biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.).

In some embodiments, the labeling group is coupled to the antigen binding protein *via* spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art. Examples of suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β -galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labeling group is coupled to the antigen binding protein *via* spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and may be used as is seen fit.

[0129] The term "effector group" means any group coupled to an antigen binding protein that acts as a cytotoxic agent. Examples for suitable effector groups are radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I). Other suitable groups include toxins, therapeutic groups, or chemotherapeutic groups. Examples of suitable groups include calicheamicin, auristatins, geldanamycin and maytansine. In some embodiments, the effector group is coupled to the antigen binding protein *via* spacer arms of various lengths to reduce potential steric hindrance.

Polynucleotides Encoding IL-23 Antigen Binding Proteins

[0130] Polynucleotides that encode the antigen binding proteins described herein, or portions thereof, are also described and/or claimed herein including polynucleotides encoding one or both chains of an antibody, or a fragment, derivative, mutoin, or variant thereof, polynucleotides encoding heavy chain variable regions or only CDRs, polynucleotides sufficient for use as hybridization probes, PCR primers or sequencing primers for identifying, analyzing, mutating or amplifying a polynucleotide encoding a polypeptide, anti-sense nucleic acids for inhibiting expression of a polynucleotide, and complementary sequences of the foregoing. The polynucleotides can be any length. They can be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 85, 95, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 750, 1,000, 10,000, 15,000, 30,000, 50,000 or more nucleic acids in length, including all values in between, and/or can comprise one or more additional sequences, for example, regulatory sequences, and/or be part of a larger polynucleotide, for example, a vector. The polynucleotides can be single-stranded or double-stranded and can comprise RNA and/or DNA nucleic acids and artificial variants thereof (e.g., peptide nucleic acids).

[0131] Polynucleotides encoding certain antigen binding proteins, or portions thereof (e.g., full length antibody, heavy or light chain, variable domain, or a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, or CDRL3) may be isolated from B-cells of mice that have been immunized with IL-23 or an immunogenic fragment thereof. The polynucleotide may be isolated by conventional procedures such as polymerase chain reaction (PCR). Phage display is another example of a known technique whereby derivatives of antibodies and other antigen binding proteins may be prepared. In one approach, polypeptides that are components of an antigen binding protein of interest are expressed in any suitable recombinant expression system, and the expressed polypeptides are allowed to assemble to form antigen binding protein molecules. Phage display is also used to derive antigen binding proteins having different properties (i.e., varying affinities for the antigen to which they bind) via chain shuffling, see Marks et al., 1992, *BioTechnology* 10:779.

[0132] Due to the degeneracy of the genetic code, each of the polypeptide sequences depicted herein are also encoded by a large number of other polynucleotide sequences besides those provided. For example, heavy chain variable domains provided herein in may be encoded by polynucleotide sequences SEQ ID NOs: 32, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, or 59. Light chain variable domains may be encoded by polynucleotide sequences SEQ ID NOs: 2, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or 28. One of ordinary skill in the art will appreciate that the present application thus provides adequate written description and enablement for each degenerate nucleotide sequence encoding each antigen binding protein.

[0133] An aspect further provides polynucleotides that hybridize to other polynucleotide molecules under particular hybridization conditions. Methods for hybridizing nucleic acids, basic parameters affecting the choice of hybridization conditions and guidance for devising suitable conditions are well-known in the art. See, e.g., Sambrook, Fritsch, and Maniatis (2001, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Current Protocols in Molecular Biology, 1995, Ausubel et al., eds., John Wiley & Sons, Inc.. As defined herein, a moderately stringent hybridization condition uses a prewashing solution containing 5x sodium chloride/sodium citrate (SSC), 0.5% SDS, 1.0 mM EDTA (pH 8.0), hybridization buffer of about 50% formamide, 6x SSC, and a hybridization temperature of 55°C (or other similar hybridization solutions, such as one containing about 50% formamide, with a hybridization temperature of 42°C), and washing conditions of 60°C, in 0.5x SSC, 0.1% SDS. A stringent hybridization condition hybridizes in 6x SSC at 45°C, followed by one or more washes in 0.1x SSC, 0.2% SDS at 68°C. Furthermore, one of skill in the art can manipulate the hybridization and/or washing conditions to increase or decrease the stringency of hybridization such that polynucleotides comprising nucleic acid sequences that are at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to each other, including all values in between, typically remain hybridized to each other.

[0134] Changes can be introduced by mutation into a polynucleotide, thereby leading to changes in the amino acid sequence of a polypeptide (e.g., an antigen binding protein or antigen binding protein derivative) that it encodes. Mutations can be introduced using any technique known in the art, such as site-directed mutagenesis and random mutagenesis. Mutant polypeptides can be expressed and selected for a desired property. Mutations can be introduced into a polynucleotide without significantly altering the biological activity of a polypeptide that it encodes. For example, substitutions at non-essential amino acid residues. Alternatively, one or more mutations can be introduced into a polynucleotide that selectively change the biological activity of a polypeptide that it encodes. For example, the mutation can quantitatively or qualitatively change the biological activity, such as increasing, reducing or eliminating the activity and changing the antigen specificity of an antigen binding protein.

[0135] Another aspect provides polynucleotides that are suitable for use as primers or hybridization probes for the detection of nucleic acid sequences. A polynucleotide can comprise only a portion of a nucleic acid sequence encoding a full-length polypeptide, for example, a fragment that can be used as a probe or primer or a fragment encoding an active portion (e.g., an IL-23 binding portion) of a polypeptide. Probes based on the sequence of a nucleic acid can be used to detect the nucleic acid or similar nucleic acids, for example, transcripts encoding a polypeptide. The probe can comprise a label group, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be

used to identify a cell that expresses the polypeptide.

Methods of Expressing Antigen Binding Proteins

5 [0136] The antigen binding proteins provided herein may be prepared by any of a number of conventional techniques. For example, IL-23 antigen binding proteins may be produced by recombinant expression systems, using any technique known in the art. See, e.g., Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, Kennet et al.(eds.) Plenum Press, New York (1980); and Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1988).

10 [0137] Expression systems and constructs in the form of plasmids, expression vectors, transcription or expression cassettes that comprise at least one polynucleotide as described above are also provided herein, as well host cells comprising such expression systems or constructs. As used herein, "vector" means any molecule or entity (e.g., nucleic acid, plasmid, bacteriophage or virus) suitable for use to transfer protein coding information into a host cell. Examples of vectors include, but are not limited to, plasmids, viral vectors, non-episomal mammalian vectors and expression vectors, for example, recombinant expression vectors. Expression vectors, such as recombinant expression vectors, are useful for transformation of a host cell and contain nucleic acid sequences that direct and/or control (in conjunction with the host cell) expression of one or more heterologous coding regions operatively linked thereto. An expression construct may include, but is not limited to, sequences that affect or control transcription, translation, and, if introns are present, affect RNA splicing of a coding region operably linked thereto. "Operably linked" means that the components to which the term is applied are in a relationship that allows them to carry out their inherent functions. For example, a control sequence, e.g., a promoter, in a vector that is "operably linked" to a protein coding sequence are arranged such that normal activity of the control sequence leads to transcription of the protein coding sequence resulting in recombinant expression of the encoded protein.

15 [0138] Another aspect provides host cells into which an expression vector, such as a recombinant expression vector, has been introduced. A host cell can be any prokaryotic cell (for example, *E. coli*) or eukaryotic cell (for example, yeast, insect, or mammalian cells (e.g., CHO cells)). Vector DNA can be introduced into prokaryotic or eukaryotic cells *via* conventional transformation or transfection techniques. For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced polynucleotide can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die), among other methods.

20 [0139] Antigen binding proteins can be expressed in hybridoma cell lines (e.g., in particular antibodies may be expressed in hybridomas) or in cell lines other than hybridomas. Expression constructs encoding the antigen binding proteins can be used to transform a mammalian, insect or microbial host cell. Transformation can be performed using any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus or bacteriophage and transducing a host cell with the construct by transfection procedures known in the art, as exemplified by US Patent Nos. 4,399,216; 4,912,040; 4,740,461; 4,959,455. The optimal transformation procedure used will depend upon which type of host cell is being transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, mixing nucleic acid with positively-charged lipids, and direct microinjection of the DNA into nuclei.

25 [0140] Recombinant expression constructs typically comprise a polynucleotide encoding a polypeptide. The polypeptide may comprise one or more of the following: one or more CDRs such as provided herein; a light chain variable region; a heavy chain variable region; a light chain constant region; a heavy chain constant region (e.g., C_H1, C_H2 and/or C_H3); and/or another scaffold portion of an IL-23 antigen binding protein. These nucleic acid sequences are inserted into an appropriate expression vector using standard ligation techniques. In one embodiment, the heavy or light chain constant region is appended to the C-terminus of a heavy or light chain variable region provided herein and is ligated into an expression vector. The vector is typically selected to be functional in the particular host cell employed (*i.e.*, the vector is compatible with the host cell machinery, permitting amplification and/or expression of the gene can occur). In some embodiments, vectors are used that employ protein-fragment complementation assays using protein reporters, such as dihydrofolate reductase (see, for example, U.S. Pat. No. 6,270,964). Suitable expression vectors can be purchased, for example, from Invitrogen Life Technologies (Carlsbad, CA) or BD Biosciences (San Jose, CA). Other useful vectors for cloning and expressing the antibodies and fragments include those described in Bianchi and McGrew, 2003, Biotech. Biotechnol. Bioeng. 84:439-44. Additional suitable expression vectors are discussed, for example, in Methods Enzymol., vol. 185 (D. V. Goeddel, ed.), 1990, New York: Academic Press.

[0141] Typically, expression vectors used in any of the host cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively referred to as "flanking sequences" in certain embodiments will typically include one or more of the following nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the polynucleotide encoding the polypeptide to be expressed, and a selectable marker element. The expression vectors that are provided may be constructed from a starting vector such as a commercially available vector. Such vectors may or may not contain all of the desired flanking sequences. Where one or more of the flanking sequences described herein are not already present in the vector, they may be individually obtained and ligated into the vector. Methods used for obtaining each of the flanking sequences are well known to one skilled in the art.

[0142] Optionally, the vector may contain a "tag"-encoding sequence, *i.e.*, an oligonucleotide molecule located at the 5' or 3' end of the IL-23 antigen binding protein coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis), or another "tag" such as FLAG®, HA (hemagglutinin influenza virus), or myc, for which commercially available antibodies exist. This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification or detection of the IL-23 antigen binding protein from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified IL-23 antigen binding protein by various means such as using certain peptidases for cleavage.

[0143] Flanking sequences may be homologous (*i.e.*, from the same species and/or strain as the host cell), heterologous (*i.e.*, from a species other than the host cell species or strain), hybrid (*i.e.*, a combination of flanking sequences from more than one source), synthetic or native. As such, the source of a flanking sequence may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be activated by, the host cell machinery.

[0144] Flanking sequences useful in the vectors may be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein will have been previously identified by mapping and/or by restriction endonuclease digestion and can thus be isolated from the proper tissue source using the appropriate restriction endonucleases. In some cases, the full nucleotide sequence of a flanking sequence may be known. Here, the flanking sequence may be synthesized using the methods described herein for nucleic acid synthesis or cloning.

[0145] Whether all or only a portion of the flanking sequence is known, it may be obtained using polymerase chain reaction (PCR) and/or by screening a genomic library with a suitable probe such as an oligonucleotide and/or flanking sequence fragment from the same or another species. Where the flanking sequence is not known, a fragment of DNA containing a flanking sequence may be isolated from a larger piece of DNA that may contain, for example, a coding sequence or even another gene or genes. Isolation may be accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation using agarose gel purification, Qiagen® column chromatography (Qiagen, Chatsworth, CA), or other methods known to the skilled artisan. The selection of suitable enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art.

[0146] An origin of replication is typically a part of those prokaryotic expression vectors purchased commercially, and the origin aids in the amplification of the vector in a host cell. If the vector of choice does not contain an origin of replication site, one may be chemically synthesized based on a known sequence, and ligated into the vector. For example, the origin of replication from the plasmid pBR322 (New England Biolabs, Beverly, MA) is suitable for most gram-negative bacteria, and various viral origins (*e.g.*, SV40, polyoma, adenovirus, vesicular stomatitis virus (VSV), or papillomaviruses such as HPV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it also contains the virus early promoter).

[0147] A transcription termination sequence is typically located 3' to the end of a polypeptide coding region and serves to terminate transcription. Usually, a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly-T sequence. While the sequence is easily cloned from a library or even purchased commercially as part of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein.

[0148] A selectable marker gene encodes a protein necessary for the survival and growth of a host cell grown in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, *e.g.*, ampicillin, tetracycline, or kanamycin for prokaryotic host cells; (b) complement auxotrophic deficiencies of the cell; or (c) supply critical nutrients not available from complex or defined media. Specific selectable markers are the kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene. Advantageously, a neomycin resistance gene may also be used for selection in both prokaryotic and eukaryotic host cells.

[0149] Other selectable genes may be used to amplify the gene that will be expressed. Amplification is the process wherein genes that are required for production of a protein critical for growth or cell survival are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Examples of suitable selectable markers for

mammalian cells include dihydrofolate reductase (DHFR) and promoterless thymidine kinase genes. Mammalian cell transformants are placed under selection pressure wherein only the transformants are uniquely adapted to survive by virtue of the selectable gene present in the vector. Selection pressure is imposed by culturing the transformed cells under conditions in which the concentration of selection agent in the medium is successively increased, thereby leading to the amplification of both the selectable gene and the DNA that encodes another gene, such as an antigen binding protein that binds to IL-23. As a result, increased quantities of a polypeptide such as an antigen binding protein are synthesized from the amplified DNA.

[0150] A ribosome-binding site is usually necessary for translation initiation of rRNA and is characterized by a Shine-Dalgarno sequence (prokaryotes) or a Kozak sequence (eukaryotes). The element is typically located 3' to the promoter and 5' to the coding sequence of the polypeptide to be expressed.

[0151] In some cases, such as where glycosylation is desired in a eukaryotic host cell expression system, one may manipulate the various pre- or pro-sequences to improve glycosylation or yield. For example, one may alter the peptidase cleavage site of a particular signal peptide, or add prosequences, which also may affect glycosylation. The final protein product may have, in the -1 position (relative to the first amino acid of the mature protein), one or more additional amino acids incident to expression, which may not have been totally removed. For example, the final protein product may have one or two amino acid residues found in the peptidase cleavage site, attached to the amino-terminus. Alternatively, use of some enzyme cleavage sites may result in a slightly truncated form of the desired polypeptide, if the enzyme cuts at such area within the mature polypeptide.

[0152] Expression and cloning will typically contain a promoter that is recognized by the host organism and operably linked to the molecule encoding an IL-23 antigen binding protein. Promoters are untranscribed sequences located upstream (*i.e.*, 5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control transcription of the structural gene. Promoters are conventionally grouped into one of two classes: inducible promoters and constitutive promoters. Inducible promoters initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, such as the presence or absence of a nutrient or a change in temperature. Constitutive promoters, on the other hand, uniformly transcribe a gene to which they are operably linked, that is, with little or no control over gene expression. A large number of promoters, recognized by a variety of potential host cells, are well known. A suitable promoter is operably linked to the DNA encoding a heavy chain variable region or a light chain variable region of an IL-23 antigen binding protein by removing the promoter from the source DNA by restriction enzyme digestion and inserting the desired promoter sequence into the vector.

[0153] Suitable promoters for use with yeast hosts are also well known in the art. Yeast enhancers are advantageously used with yeast promoters. Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, those obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, retroviruses, hepatitis-B virus, and Simian Virus 40 (SV40). Other suitable mammalian promoters include heterologous mammalian promoters, for example, heat-shock promoters and the actin promoter.

[0154] Additional promoters which may be of interest include, but are not limited to: SV40 early promoter (Benoist and Chambon, 1981, *Nature* 290:304-310); CMV promoter (Thornsen et al., 1984, *Proc. Natl. Acad. U.S.A.* 81:659-663); the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., 1980, *Cell* 22:787-797); herpes thymidine kinase promoter (Wagner et al., 1981, *Proc. Natl. Acad. Sci. U.S.A.* 78:1444-1445); promoter and regulatory sequences from the metallothioneine gene (Prinster et al., 1982, *Nature* 296:39-42); and prokaryotic promoters such as the beta-lactamase promoter (Villa-Kamaroff et al., 1978, *Proc. Natl. Acad. Sci. U.S.A.* 75:3727-3731); or the tac promoter (DeBoer et al., 1983, *Proc. Natl. Acad. Sci. U.S.A.* 80:21-25). Also of interest are the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: the elastase I gene control region that is active in pancreatic acinar cells (Swift et al., 1984, *Cell* 38:639-646; Ornitz et al., 1986, *Cold Spring Harbor Symp. Quant. Biol.* 50:399-409; MacDonald, 1987, *Hepatology* 7:425-515); the insulin gene control region that is active in pancreatic beta cells (Hanahan, 1985, *Nature* 315:115-122); the immunoglobulin gene control region that is active in lymphoid cells (Grosschedl et al., 1984, *Cell* 38:647-658; Adames et al., 1985, *Nature* 318:533-538; Alexander et al., 1987, *Mol. Cell. Biol.* 7:1436-1444); the mouse mammary tumor virus control region that is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, *Cell* 45:485-495); the albumin gene control region that is active in liver (Pinkert et al., 1987, *Genes and Devel.* 1:268-276); the alpha-feto-protein gene control region that is active in liver (Krumlauf et al., 1985, *Mol. Cell. Biol.* 5:1639-1648; Hammer et al., 1987, *Science* 253:53-58); the alpha 1-antitrypsin gene control region that is active in liver (Kelsey et al., 1987, *Genes and Devel.* 1:161-171); the beta-globin gene control region that is active in myeloid cells (Mogram et al., 1985, *Nature* 315:338-340; Kollias et al., 1986, *Cell* 46:89-94); the myelin basic protein gene control region that is active in oligodendrocyte cells in the brain (Readhead et al., 1987, *Cell* 48:703-712); the myosin light chain-2 gene control region that is active in skeletal muscle (Sani, 1985, *Nature* 314:283-286); and the gonadotropin releasing hormone gene control region that is active in the hypothalamus (Mason et al., 1986, *Science* 234:1372-1378).

[0155] An enhancer sequence may be inserted into the vector to increase transcription by higher eukaryotes. Enhancers

are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are relatively orientation and position independent, having been found at positions both 5' and 3' to the transcription unit. Several enhancer sequences available from mammalian genes are known (e.g., globin, elastase, albumin, alpha-feto-protein and insulin). Typically, however, an enhancer from a virus is used. The SV40 enhancer, the 5 cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers known in the art are exemplary enhancing elements for the activation of eukaryotic promoters. While an enhancer may be positioned in the vector either 5' or 3' to a coding sequence, it is typically located at a site 5' from the promoter. A sequence encoding an 10 appropriate native or heterologous signal sequence (leader sequence or signal peptide) can be incorporated into an expression vector, to promote extracellular secretion of the antibody. The choice of signal peptide or leader depends 15 on the type of host cells in which the antibody is to be produced, and a heterologous signal sequence can replace the native signal sequence. Examples of signal peptides that are functional in mammalian host cells include the following: the signal sequence for interleukin-7 described in US Patent No. 4,965,195; the signal sequence for interleukin-2 receptor described in Cosman et al., 1984, *Nature* 312:768; the interleukin-4 receptor signal peptide described in EP Patent No. 0367 566; the type I interleukin-1 receptor signal peptide described in U.S. Patent No. 4,968,607; the type II interleukin-1 receptor signal peptide described in EP Patent No. 0 460 846.

[0156] After the vector has been constructed, the completed vector may be inserted into a suitable host cell for 20 amplification and/or polypeptide expression. The transformation of an expression vector for an antigen binding protein into a selected host cell may be accomplished by well known methods including transfection, infection, calcium phosphate co-precipitation, electroporation, microinjection, lipofection, DEAE-dextran mediated transfection, or other known techniques. The method selected will in part be a function of the type of host cell to be used. These methods and other 25 suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001).

[0157] A host cell, when cultured under appropriate conditions, synthesizes protein that can be subsequently collected 30 from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is not secreted). The selection of an appropriate host cell will depend upon various factors, such as desired expression levels, 35 polypeptide modifications that are desirable or necessary for activity (such as glycosylation or phosphorylation) and ease of folding into a biologically active molecule.

[0158] Mammalian cell lines available as hosts for expression are well known in the art and include, but are not limited to, 40 immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines. In certain embodiments, cell lines may be selected through determining which cell lines have high expression levels and constitutively produce antigen binding 45 proteins with IL-23 binding properties. In another embodiment, a cell line from the B cell lineage that does not make its own antibody but has a capacity to make and secrete a heterologous antibody can be also selected.

Use Of Human IL-23 Antigen Binding Proteins For Diagnostic And Therapeutic Purposes

[0159] Antigen binding proteins are useful for detecting IL-23 in biological samples and identification of cells or tissues 40 that produce IL-23. Antigen binding proteins that specifically bind to IL-23 may be used in diagnosis and/or treatment of diseases related to IL-23 in a patient in need thereof. For one, the IL-23 antigen binding proteins can be used in diagnostic assays, e.g., binding assays to detect and/or quantify IL-23 expressed in blood, serum, cells or tissue. In addition, IL-23 antigen binding proteins can be used to reduce, inhibit, interfere with or modulate one or more biological activities of 45 IL-23 in a cell or tissue. Thus antigen binding proteins that bind to IL-23 may have therapeutic use in ameliorating diseases related to IL-23.

Indications

[0160] The present invention also relates to the use of IL-23 antigen binding proteins for use in the prevention or 50 therapeutic treatment of medical disorders, such as those disclosed herein. The IL-23 antigen binding proteins are useful to treat a variety of conditions in which IL-23 is associated with or plays a role in contributing to the underlying disease or disorder or otherwise contributes to a negative symptom.

[0161] Conditions effectively treated by IL-23 antigen binding proteins play a role in the inflammatory response. Such 55 inflammatory disorders include periodontal disease; lung disorders such as asthma; skin disorders such as psoriasis, atopic dermatitis, contact dermatitis; rheumatic disorders such as rheumatoid arthritis, progressive systemic sclerosis (scleroderma); systemic lupus erythematosus; spondyloarthritis including ankylosing spondylitis, psoriatic arthritis, enteropathic arthritis and reactive arthritis. Also contemplated is uveitis including Vogt-Koyanagi-Harada disease, idiopathic anterior and posterior uveitis, and uveitis associated with spondyloarthritis. Use of IL-23 antigen binding proteins is also contemplated for the treatment of autoimmune disorders including multiple sclerosis; autoimmune myocarditis; type 1

diabetes and autoimmune thyroiditis.

[0162] Degenerative conditions of the gastrointestinal system are treatable or preventable with IL-23 antigen binding proteins. Such gastrointestinal disorders including inflammatory bowel disease: Crohn's disease, ulcerative colitis and Celiac disease.

5 [0163] Also included are use of IL-23 antigen binding proteins in treatments for graft-versus-host disease, and complications such as graft rejection, resulting from solid organ transplantation, such as heart, liver, skin, kidney, lung or other transplants, including bone marrow transplants.

10 [0164] Also provided herein are medical uses for using IL-23 antigen binding proteins to treat various oncologic disorders including various forms of cancer including colon, stomach, prostate, renal cell, cervical and ovarian cancers, and lung cancer (SCLC and NSCLC). Also included are solid tumors, including sarcoma, osteosarcoma, and carcinoma, such as adenocarcinoma and squamous cell carcinoma, esophageal cancer, gastric cancer, gall bladder carcinoma, leukemia, including acute myelogenous leukemia, chronic myelogenous leukemia, myeloid leukemia, chronic or acute lymphoblastic leukemia and hairy cell leukemia, and multiple myeloma.

15 **Diagnostic Methods**

[0165] The antigen binding proteins of the described can be used for diagnostic purposes to detect, diagnose, or monitor diseases and/or conditions associated with IL-23. Examples of methods useful in the detection of the presence of IL-23 include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).

20 [0166] For diagnostic applications, the antigen binding protein typically will be labeled with a detectable labeling group. Suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., ^3H , ^{14}C , ^{15}N , ^{35}S , ^{90}Y , ^{99}Tc , ^{111}In , ^{125}I , ^{131}I), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β -galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). The labelling group may be coupled to the antigen binding protein *via* spacer arms of various lengths to reduce potential steric hindrance. Various methods for labelling proteins are known in the art and may be used.

25 [0167] Other diagnostic methods are described for identifying a cell or cells that express IL-23. The antigen binding protein may be labeled with a labeling group and the binding of the labeled antigen binding protein to IL-23 is detected. The binding of the antigen binding protein to IL-23 may be detected *in vivo*. The IL-23 antigen binding protein may be isolated and measured using techniques known in the art. See, for example, Harlow and Lane, 1988, *Antibodies: A Laboratory Manual*, New York: Cold Spring Harbor (ed. 1991 and periodic supplements); John E. Coligan, ed., 1993, *Current Protocols In Immunology* New York: John Wiley & Sons.

30 [0168] Other methods for detecting the presence of a test molecule that competes for binding to IL-23 with the antigen binding proteins are described. An example of one such assay would involve detecting the amount of free antigen binding protein in a solution containing an amount of IL-23 in the presence or absence of the test molecule. An increase in the amount of free antigen binding protein (i.e., the antigen binding protein not bound to IL-23) would indicate that the test molecule is capable of competing for IL-23 binding with the antigen binding protein. The antigen binding protein may be labeled with a labeling group. Alternatively, the test molecule is labeled and the amount of free test molecule is monitored in the presence and absence of an antigen binding protein.

35 [0169] **Medical uses Pharmaceutical Formulations, Routes Of Administration**

[0170] Pharmaceutical compositions that comprise a therapeutically effective amount of one or a plurality of the antigen binding proteins and a pharmaceutically acceptable excipient, diluent, carrier, solubilizer, emulsifier, preservative, and/or adjuvant are provided. In addition, medical uses of treating a patient by administering such pharmaceutical composition are included. The term "patient" includes human patients. The terms "treat" and "treatment" encompass alleviation or prevention of at least one symptom or other aspect of a disorder, or reduction of disease severity, and the like. The term "therapeutically effective amount" or "effective amount" refers to the amount of an IL-23 antigen binding protein determined to produce any therapeutic response in a mammal. Such therapeutically effective amounts are readily ascertained by one of ordinary skill in the art.

40 [0171] An antigen binding protein need not affect a complete cure, or eradicate every symptom or manifestation of a disease, to constitute a viable therapeutic agent. As is recognized in the pertinent field, drugs employed as therapeutic agents may reduce the severity of a given disease state, but need not abolish every manifestation of the disease to be regarded as useful therapeutic agents. Similarly, a prophylactically administered treatment need not be completely effective in preventing the onset of a condition in order to constitute a viable prophylactic agent. Simply reducing the impact of a disease (for example, by reducing the number or severity of its symptoms, or by increasing the effectiveness of another treatment, or by producing another beneficial effect), or reducing the likelihood that the disease will occur or worsen in a subject, is sufficient. Certain medical uses provided herein comprise administering to a patient the antigen

binding proteins claimed herein in an amount and for a time sufficient to induce a sustained improvement over baseline of an indicator that reflects the severity of the particular disorder.

[0172] As is understood in the pertinent field, pharmaceutical compositions comprising the molecules of the invention are administered to a patient in a manner appropriate to the indication. Pharmaceutical compositions may be administered by any suitable technique, including but not limited to, parenterally, topically, or by inhalation. If injected, the pharmaceutical composition can be administered, for example, via intra-articular, intravenous, intramuscular, intralesional, intraperitoneal or subcutaneous routes, by bolus injection, or continuous infusion. Localized administration, e.g. at a site of disease or injury is contemplated, as are transdermal delivery and sustained release from implants. Delivery by inhalation includes, for example, nasal or oral inhalation, use of a nebulizer, inhalation of the antagonist in aerosol form, and the like. Other alternatives include eyedrops; oral preparations including pills, syrups, lozenges or chewing gum; and topical preparations such as lotions, gels, sprays, and ointments.

[0173] Use of antigen binding proteins in *ex vivo* procedures also is contemplated. For example, a patient's blood or other bodily fluid may be contacted with an antigen binding protein that binds IL-23 *ex vivo*. The antigen binding protein may be bound to a suitable insoluble matrix or solid support material.

[0174] Advantageously, antigen binding proteins are administered in the form of a composition comprising one or more additional components such as a physiologically acceptable carrier, excipient or diluent. Optionally, the composition additionally comprises one or more physiologically active agents for combination therapy. A pharmaceutical composition may comprise an IL-23 antigen binding protein together with one or more substances selected from the group consisting of a buffer, an antioxidant such as ascorbic acid, a low molecular weight polypeptide (such as those having fewer than 10 amino acids), a protein, an amino acid, a carbohydrate such as glucose, sucrose or dextrins, a chelating agent such as EDTA, glutathione, a stabilizer, and an excipient. Neutral buffered saline or saline mixed with conspecific serum albumin are examples of appropriate diluents. In accordance with appropriate industry standards, preservatives such as benzyl alcohol may also be added. The composition may be formulated as a lyophilizate using appropriate excipient solutions (e.g., sucrose) as diluents. Suitable components are nontoxic to recipients at the dosages and concentrations employed. Further examples of components that may be employed in pharmaceutical formulations are presented in any Remington's Pharmaceutical Sciences including the 21st Ed. (2005), Mack Publishing Company, Easton, PA.

[0175] Kits for use by medical practitioners include an IL-23 antigen binding protein and a label or other instructions for use in treating any of the conditions discussed herein. The kit may include a sterile preparation of one or more IL-23 binding antigen binding proteins, which may be in the form of a composition as disclosed above, and may be in one or more vials.

[0176] Dosages and the frequency of administration may vary according to such factors as the route of administration, the particular antigen binding proteins employed, the nature and severity of the disease to be treated, whether the condition is acute or chronic, and the size and general condition of the subject. Appropriate dosages can be determined by procedures known in the pertinent art, e.g. in clinical trials that may involve dose escalation studies.

[0177] A typical dosage may range from about 0.1 μ g/kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage may range from 0.1 μ g/kg up to about 30 mg/kg, optionally from 1 μ g/kg up to about 30 mg/kg, optionally from 10 μ g/kg up to about 10 mg/kg, optionally from about 0.1 mg/kg to 5 mg/kg, or optionally from about 0.3 mg/kg to 3 mg/kg.

[0178] Dosing frequency will depend upon the pharmacokinetic parameters of the particular human IL-23 antigen binding protein in the formulation used. Typically, a clinician administers the composition until a dosage is reached that achieves the desired effect. The composition may therefore be administered as a single dose, or as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion *via* an implantation device or catheter. Appropriate dosages may be ascertained through use of appropriate dose-response data. An IL-23 antigen binding protein of the invention may be administered, for example, once or more than once, e.g., at regular intervals over a period of time. In particular embodiments, an IL-23 antigen binding protein is administered over a period of at least a month or more, e.g., for one, two, or three months or even indefinitely. For treating chronic conditions, long-term treatment is generally most effective. However, for treating acute conditions, administration for shorter periods, e.g. from one to six weeks, may be sufficient. In general, the antigen binding protein is administered until the patient manifests a medically relevant degree of improvement over baseline for the chosen indicator or indicators.

[0179] It is contemplated that an IL-23 antigen binding protein be administered to the patient in an amount and for a time sufficient to induce an improvement, preferably a sustained improvement, in at least one indicator that reflects the severity of the disorder that is being treated. Various indicators that reflect the extent of the patient's illness, disease or condition may be assessed for determining whether the amount and time of the treatment is sufficient. Such indicators include, for example, clinically recognized indicators of disease severity, symptoms, or manifestations of the disorder in question. In one embodiment, an improvement is considered to be sustained if the subject exhibits the improvement on at least two occasions separated by two to four weeks. The degree of improvement generally is determined by a physician, who may make this determination based on signs, symptoms, biopsies, or other test results, and who may also employ questionnaires that are administered to the subject, such as quality-of-life questionnaires developed for a given disease.

[0180] Particular embodiments of medical uses and compositions of the invention involve the use of the IL-23 antigen binding protein and one or more additional IL-23 antagonists, for example, two or more antigen binding proteins of the invention, or an antigen binding protein of the invention and one or more other IL-23 antagonists. Also provided are IL-23 antigen binding proteins administered alone or in combination with other agents useful for treating the condition with which the patient is afflicted. Examples of such agents include both proteinaceous and non-proteinaceous drugs. Such agents include therapeutic moieties having anti-inflammatory properties (for example, non-steroidal anti-inflammatory agents, steroids, immunomodulators and/or other cytokine inhibitors such as those that antagonize, for example, IFN- γ , GM-CSF, IL-6, IL-8, IL-17, IL-22 and TNFs), or of an IL-23 antigen binding protein and one or more other treatments (e.g., surgery, ultrasound, or treatment effective to reduce inflammation). When multiple therapeutics are co-administered, dosages may be adjusted accordingly, as is recognized or known in the pertinent art. Useful agents that may be combined with IL-23 antigen binding proteins include those used to treat, for example, Crohn's disease or ulcerative colitis, such as aminosalicylate (for example, mesalamine), corticosteroids (including prednisone), antibiotics such as metronidazole or ciprofloxacin (or other antibiotics useful for treating, for example, patients afflicted with fistulas), and immunosuppressives such as azathioprine, 6-mercaptopurine, methotrexate, tacrolimus and cyclosporine. Such agent(s) may be administered orally or by another route, for example via suppository or enema. Agents which may be combined with IL-23 binding proteins in treatment of psoriasis include corticosteroids, calcipotriene and other vitamin D derivatives, acitretin and other retinoic acid derivatives, methotrexate, tacrolimus, and cyclosporine used topically or systemically. Such agents can be administered simultaneously, consecutively, alternately, or according to any other regimen that allows the total course of therapy to be effective.

[0181] In addition to human patients, IL-23 antigen binding proteins are useful in the treatment of non-human animals, such as domestic pets (dogs, cats, birds, primates, etc.), domestic farm animals (horses, cattle, sheep, pigs, birds, etc.). In such instances, an appropriate dose may be determined according to the animal's body weight. For example, a dose of 0.2-1 mg/kg may be used. Alternatively, the dose is determined according to the animal's surface area, an exemplary dose ranging from 0.1-20 mg/m², or more preferably, from 5-12 mg/m². For small animals, such as dogs or cats, a suitable dose is 0.4 mg/kg. IL-23 antigen binding protein (preferably constructed from genes derived from the recipient species) is administered by injection or other suitable route one or more times per week until the animal's condition is improved, or it may be administered indefinitely.

[0182] The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting the scope of the appended claims.

EXAMPLES

Example 1

35 Generation of Human IL-23 Antibodies

[0183] XenoMouse™ technology (Amgen, Thousand Oaks, CA) was used to develop human monoclonal antibodies that recognize and inhibit native human IL-23 activity while sparing human IL-12. The antibodies also recognize and inhibit recombinant cynomolgous IL-23 but do not recognize murine or rat IL-23.

[0184] Antibodies were selected for recognition and complete inhibition of native human IL-23 obtained from human monocyte-derived dendritic cells (MoDCs), using the STAT-luciferase reporter assay described below. Human monocytes were isolated from peripheral blood mononuclear cells from healthy donors using negative selection (Monocyte Isolation Kit II, Miltenyi Biotec, Auburn, CA). MoDCs were generated by culturing monocytes with human GM-CSF (50 ng/ml) and human IL-4 (100 ng/ml) for 7 days in RPMI 1640 with 10% fetal bovine serum complete medium. MoDCs were then washed twice with PBS followed by stimulation with human CD40L (1 μ g/ml) for an additional 48 hours. CD40L-stimulated MoDC supernatant contains IL-23, IL-12 and IL-12/23p40. ELISAs are used to determine the amount of IL-12p70 (R&D System, Minneapolis, MN), IL-23 (eBiosciences, San Diego, CA) and IL-12/23p40 (R&D Systems). The STAT-luciferase assay responds to IL-23 and not to IL-12 or to free IL-12/23p40, therefore the assay could be used with crude supernatants to assess IL-23 activity. For use in the NK cell assay, described below, the native human IL-23 crude supernatant was purified using an IL-23 affinity column followed by size exclusion chromatography. Concentration was determined using an IL-23 specific ELISA (eBiosciences).

[0185] The purified antibody supernatants were also tested against recombinant human (rhu) IL-23 and recombinant cynomolgous (cyno) IL-23 in the STAT-luciferase assay. Of the antibodies tested that completely inhibited recombinant human IL-23, only half of those antibodies recognized and completely inhibited native human IL-23. Recognition and complete inhibition of recombinant human IL-23 was not predictive of, nor correlated to, recognition and complete inhibition of native human IL-23. As shown in FIGURES 1A and 1B, of the antibody supernatants that completely inhibited recombinant human IL-23, only half of those antibodies completely inhibited native human IL-23. Those antibodies that recognized and completely inhibited native human IL-23 were selected for further characterization.

EXAMPLE 2

Functional Assays

5 a) STAT-luciferase assay

[0186] It is known that IL-23 binds its heterodimeric receptor and signals through JAK2 and Tyk2 to activate STAT 1, 3, 4 and 5. In this assay, cells transfected with a STAT/luciferase reporter gene are used to assess the ability of the IL-23 antibodies to inhibit IL-23-induced bioactivity.

10 **[0187]** Chinese hamster ovary cells expressing human IL-23 receptor are transiently transfected with STAT-luciferase reporter overnight. IL-23 antibodies are serially diluted (12 points of 1:4 serial dilutions starting at 37.5 μ g/ml) into 96 well plates. Native human IL-23 (preparation method is described in Example 1) is added to each well at a concentration of 2 ng/ml and incubated at room temperature for 15-20 minutes. The transiently transfected cells are added (8×10^3 cells) to a final volume of 100 μ l/well and incubated for 5 hours at 37°C, 10% CO₂. Following incubation, cells are lysed using 100 μ L/well Glo Lysis buffer (1x) (Promega, Madison, Wisconsin) at room temperature for 5 minutes. Fifty microliters of cell lysate is added to a 96 well plate along with 50 μ L Bright-Glo luciferase substrate (Promega) and read on a luminometer.

15 **[0188]** Statistical analysis can be performed using GraphPad PRISM software (GraphPad Software, La Jolla, CA). Results can be expressed as the mean \pm standard deviation (SD).

20 **[0189]** As seen in TABLE 5, all IL-23 antibodies potently and completely inhibited native human IL-23-induced STAT/luciferase reporter in a dose dependent manner. The antibodies also potently and completely inhibited recombinant human (rhu) IL-23 and recombinant cyno (cyno) IL-23. The antibodies all had IC₅₀ values in the picomolar range.

25 **TABLE 5.** Table of mean IC₅₀ (pM) values for IL-23 antibodies in the STAT-luciferase assay.

	Native hull-23		rhull-23		Cyno IL-23	
antibody	IC ₅₀ +/-SD	Repeats	IC ₅₀ +/-SD	Repeats	IC ₅₀ +/-SD	Repeats
A	114+/-70	3	190+/-99	3	379+/-213	3
B	45+/-5	4	100+/-59	4	130+/-60	3
C	107+/-31	3	211+/-93	3	376+/-89	3
D	65+/-5	3	107+/-30	3	184+/-77	3
E	140+/-52	3	142+/-52	3	188+/-59	3
F	86+/-47	4	187+/-116	4	366+/-219	4
G	156+/-74	5	296+/-133	5	421+/-174	5
H	192+/-35	4	253+/-184	4	1024+/-533	4
I	208+/-33	3	338+/-140	3	650+/-42	3
J	83+/-54	2	36+/-6	2	56+/-2	2
K	71+/-38	3	43+/-20	3	61+/-10	3
L	113+/-80	3	23+/-7	3	47+/-1	3
M	34+/-11	2	40+/-8	2	56+/-6	2
N	361+/-164	3	145	1	238	1

50 b) NK cell assay

[0190] It is known that IL-23 acts on natural killer cells to induce expression of pro-inflammatory cytokines, such as interferon γ (IFNy). In this assay, human primary natural killer (NK) cells are used to assess the ability of the IL-23 antibodies to inhibit IL-23-induced IFNy activity in cells expressing the native receptor for human IL-23.

55 **[0191]** NK cells are isolated from multiple human donors via negative selection (NK Cell Isolation Kit, Miltenyi Biotec, Auburn, CA). Purified NK cells (1×10^6 cells/ml) are added to 6 well plates in RPMI 1640 plus 10% fetal bovine serum complete medium supplemented with recombinant human IL-2 (10ng/ml, R&D Systems, Minneapolis, MN), to a final volume of 10ml/well. Cells are cultured for 7 days at 37°C, 5% CO₂. The IL-2-activated NK cells are then stimulated with

rhull-23 or cyto IL-23 (10 ng/ml) and recombinant human IL-18 (20ng/ml, R&D Systems, Minneapolis, MN) in the presence of serial dilutions (11 points of 1:3 serial dilutions starting at 3 μ g/ml) of IL-23 antibodies for 24 hours. IFN γ levels are measured in the supernatant by IFN γ ELISA (R&D Systems, Minneapolis, MN) according to manufacturer's instructions.

5 [0192] Statistical analysis can be performed using GraphPad PRISM software. Results can be expressed as the mean \pm standard deviation (SD).

10 [0193] As seen in TABLE 6, all antibodies potently inhibited rhull-23 and cyto IL-23-induced IFN γ expression in NK cells in a dose dependent manner. The antibodies all had IC₅₀ values in the picomolar range. The assay was performed on a subset of antibodies using native human IL-23 (30 μ g/ml, preparation method is described in Example 1) and rhull-18 (40 ng/ml, R&D Systems) and yielded the results shown in TABLE 6. Consistent with the selection for IL-23 specific antibodies, these anti-IL-23 antibodies had no effect on IL-12 stimulated IFN γ production in NK cells using the assay described above, whereas an IL-12p35 specific neutralizing antibody, mAb219 (R&D Systems, Minneapolis, MN) potently inhibited recombinant human IL-12.

15 **TABLE 6.** Table of mean IC₅₀ (pM) values for IL-23 antibodies in the NK cell assay.

antibody	Native hull-23		rhull-23		Cyno IL-23	
	IC ₅₀ +/-SD	Repeats	IC ₅₀ +/-SD	Repeats	IC ₅₀ +/-SD	Repeats
A			42+/-12	2	31+/-21	2
B	85+/-30	2	48+/-30	3	19+/-8	2
C			32+/-19	4	29+/-16	2
D			37+/-21	2	29+/-19	2
E	158+/-50	2	57+/-14	3	21+/-3	2
F			25+/-15	2	21+/-17	2
G	152+/-72	2	45+/-30	3	23+/-8	2
H			29+/-28	2	33+/-17	2
I			69	1	52	1
J			4+/-3	2	5+/-3	2
K			7+/-2	2	8+/-6	2
L			3+/-1	2	4+/-1	2
M			8	1	12	1

40 **c) Human Whole Blood Assay**

45 [0194] Human whole blood is collected from multiple healthy donors using Refludan[®] (Bayer Pittsburgh, PA) as an anti-coagulant. The final concentration of Refludan[®] in whole blood is 10 μ g/ml. A stimulation mixture of rhull-23 or cyto IL-23 (final concentration 1 ng/ml) + rhull-18 (final concentration 20 ng/ml) + rhull-2 (final concentration 5 ng/ml) in RPMI 1640 + 10% FBS, is added to a 96 well plate, final volume 20 μ l/well. Serially diluted IL-23 antibodies (11 points of 1:3 serial dilutions starting from 3 μ g/ml) are added at 20 μ l/well and incubated with the stimulation mixture for 30 minutes at room temperature. Whole blood is then added (120 μ l/well) and the final volume adjusted to 200 μ l/well with RPMI 1640 + 10% FBS. The final concentration of whole blood is 60%. The plates are incubated for 24 hours at 37°C, 5% CO₂. Cell free supernatants are harvested and IFN γ levels are measured from the supernatants by IFN γ ELISA (R&D Systems) according to manufacturer's instructions.

50 [0195] Statistical analysis can be performed using GraphPad PRISM software. Results can be expressed as the mean \pm standard deviation (SD).

[0196] As seen in TABLE 7, all antibodies potently inhibited rhull-23-induced and cyto-IL-23-induced IFN γ expression in whole blood cells in a dose dependent manner. The antibodies all had IC₅₀ values in the picomolar range.

TABLE 7. Table of mean IC₅₀ (pM) values for IL-23 antibodies in the IFN γ human whole blood assay

antibody	rhIL-23		Cyno IL-23	
	IC ₅₀ +/-SD	Repeats	IC ₅₀ +/-SD	Repeats
B	117+/-94	7	161+/-95	6
E	29+/-8	3	54+/-33	3
G	53+/-13	3	93+/-44	3
F	66+/-13	3	166+/-189	3
D	88+/-6	3	110+/-14	3
C	97+/-31	3	186+/-194	3

15 **d) IL-22 assay**

5 [0197] It is known that IL-23 is a potent inducer of proinflammatory cytokines. IL-23 acts on activated and memory T cells and promotes the survival and expansion of Th17 cells which produce proinflammatory cytokines including IL-22. In this assay, human whole blood is used to assess the ability of the IL-23 antibodies to inhibit IL-23-induced IL-22 production.

10 [0198] A whole blood assay is conducted in the same manner as described above with the modification of using rhIL-23 or cynoIL-23 at 1ng/ml and rhIL-18 at 10ng/ml to induce IL-22 production. IL-22 concentration is determined by IL-22 ELISA (R&D Systems, Minneapolis, MN).

15 [0199] As seen in TABLE 8, the antibodies potently inhibited rhIL-23-induced and cyno IL-23-induced IL-22 production in whole blood cells in a dose dependent manner. The antibodies all had IC₅₀ values in the picomolar range.

TABLE 8. Table of mean IC₅₀ (pM) values for IL-23 antibodies in the IL-22 human whole blood assay

antibody	rhIL-23		Cyno IL-23	
	IC ₅₀ +/-SD	Repeats	IC ₅₀ +/-SD	Repeats
B	117+/-68	4	113+/-65	3
E	87+/-109	3	56+/-60	3
G	83+/-59	3	66+/-45	3

Example 3**Determining the Equilibrium Dissociation Constant (K_D) for anti-IL-23 Antibodies Using KinExA Technology**

40 [0200] Binding affinity of rhIL-23 to IL-23 antibodies is evaluated using a kinetic exclusion assay (KinExA assay, Sapidyne Instruments, Inc., Boise, ID). Normal human serum (NHS)-activated Sepharose 4 fast flow beads (Amersham Biosciences, part of GE Healthcare, Uppsala, Sweden), are pre-coated with rhIL-23 and blocked with 1 m Tris buffer with 10mg/mL BSA. 50pM of IL-23 antibody is incubated with rhIL-23 (12 points of 1:2 dilutions starting from 800 pM) at room temperature for 72 hours before it is run through the rhIL-23-coated Sepharose beads. The amount of the bead-bound antibody was quantified by fluorescent (Cy5) labeled goat anti-human-Fc antibody (Jackson Immuno Research, West Grove, Pa.). The binding signal is proportional to the amount of free antibody at equilibrium.

45 [0201] The dissociation equilibrium constant (K_D) and the association rate (K_{on}) are obtained from curve fitting using KinExA Pro software. The dissociation rate (K_{off}) is derived from: K_D=K_{off}/K_{on}

50 [0202] As seen in TABLE 9, the antibodies have high affinity for binding to human IL-23. All had K_D values in the low to sub pM range.

TABLE 9 Table of K_D (pM), K_{on} (1/MS) and K_{off}(1/s) rates

Antibody	KD (pM)	Kon (1/MS)	Koff (1/s)
E	0.131	9.12E+05	1.4E-07
D	0.126	1.72E+06	2.2E-07

(continued)

Antibody	KD (pM)	Kon (1/MS)	Koff (1/s)
B	3.99	1.17E+06	4.7E-06
C	2.56	1.36E+06	4.1E-06
F	2.62	5.69E+05	1.5E-06
L	1.08	3.34E+06	3.7E-06
G	2.00	4.00E+05	8.1E-07

Example 4**Structure Determination using X-Ray Crystallography**

[0203] One way to determine the structure of an antibody-antigen complex is by using X-ray crystallography, see for example, Harlow and Lane Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990), p.23. The crystal structure of IL-23 has been determined, (see Lupardus and Garcia, *J Mol Biol*, 2008, 382: 931-941) and the crystal structure of an IL-23/Fab complex has been disclosed, (see Beyer et al. *J Mol Biol*, 2008, 382(4): 942-55). Structural determination of IL-23 with Fab fragments of antibodies claimed herein was obtained using X-ray crystallography.

Protein for crystallization

[0204] A recombinantly derived human IL-23 heterodimer was used for the crystallization studies (see Beyer et al., *supra*). The sequence of the human p19 subunit comprised of residues 20-189 of SEQ ID NO: 145, the signal sequence of SEQ ID NO:154 and a C-terminal 6-His tag SEQ ID NO:155. The sequence of the human p40 subunit was mutated from asparagine to glutamine at position 222 of SEQ ID NO:147 in order to prevent glycosylation at this site (Beyer, et al., *supra*).

[0205] Fabs derived from Antibody B and Antibody E were expressed on an IgG1 scaffold that incorporated a caspase cleavage site. The Fabs were processed by means of protease cleavage.

Complex formation and crystallization

[0206] The IL-23-Antibody B Fab complex was made by mixing a 2X molar excess of the Antibody B Fab with the human heterodimeric IL-23 described above. The complex was purified by size exclusion chromatography to remove excess Antibody B Fab and concentrated to ~12 mg/ml for crystallization. The IL-23- Antibody B Fab complex crystallized in 0.1 M Hepes pH 7, 8% PEG 8000.

[0207] The IL-23-Antibody E Fab complex was made by mixing a 2X molar excess of the Antibody E Fab with the human heterodimeric IL-23 described above. The complex was methylated using a JBS Methylation Kit according to manufacturer's instructions (Jena Bioscience, Jena, Germany). The complex was then treated with PNGase to deglycosylate the protein. Following these treatments, the complex was purified by size exclusion chromatography to remove excess Antibody E Fab and concentrated to 13.5 mg/ml for crystallization. The IL-23-Antibody E Fab complex crystallized in 0.1 M Tris pH 8.5, 0.2 M magnesium chloride, 15% PEG 4000.

Data collection and structure determination

[0208] IL-23-Antibody B Fab crystals grew in the P2₁ space group with unit cell dimensions a=70.93, b=71.27, c=107.37 Å, β =104.98° and diffract to 2.0 Å resolution. The IL-23- Antibody B Fab structure was solved by molecular replacement with the program MOLREP (CCP4, The CCP4 suite: programs for protein crystallography. *Acta Crystallogr D Biol Crystallogr*, 1994, 50(Pt 5): p. 760-3) using the IL-23 structure (Beyer et al. *supra*) as the starting search model. Keeping the IL-23 solution fixed, an antibody variable domain was used as a search model. Keeping the IL-23-antibody variable domain solution fixed, an antibody constant domain was used as a search model. The complete structure was improved with multiple rounds of model building with Quanta and refinement with cnx (Brunger, et al., *Acta Crystallogr D Biol Crystallogr*, 1998, 54(Pt 5): p. 905-21).

[0209] Distances between protein atoms were calculated using the program PyMOL (DeLano, W.L. The PyMOL Graphics System. Palo Alto, 2002) (Schrodinger, LLC; New York, NY)). Amino acids were chosen if at least one atom

was located within the required distance threshold to the partner protein.

[0210] Boundaries of the A, B, C and D helices of the p19 subunit of IL-23 when bound to the Antibody B Fab include A helix residues 28-47, B helix residues 86-105, C helix residues 119-134 and D helix residues 154-187 of SEQ ID NO:145.

[0211] The regions of interaction on the IL-23p19 subunit when bound to the Antibody B Fab include residues within Ser46-Glu58, Glu112-Glu123 and Pro155-Phe163 of SEQ ID NO:145.

[0212] IL-23p19 subunit amino acid residues with atoms 4 Å or less from the Antibody B Fab include Ser46, Ala47, His48, Pro49, Leu50, His53, Met54, Asp55, Glu58, Pro113, Ser114, Leu115, Leu116, Pro120, Val121, Trp156, Leu159, Leu160, Arg162 and Phe163 of SEQ ID NO:145. IL-23p19 amino acid residues with atoms between 4 Å and 5 Å from the Antibody B Fab include Val51, Arg57, Glu112, Asp118, Ser119, Gln123, Pro155 of SEQ ID NO:145.

[0213] IL-23p40 subunit amino acid residues with atoms 4 Å or less from the Antibody B Fab include Glu 122 and Lys 124 of SEQ ID NO:147.

[0214] The Antibody B Fab heavy chain amino acid residues with atoms 4 Å or less from the IL-23 heterodimer include Gly32, Gly33, Tyr34, Tyr35, His54, Asn58, Thr59, Tyr60, Lys66, Arg101, Gly102, Phe103, Tyr104 and Tyr105 of SEQ ID NO:46. The Antibody B Fab heavy chain amino acid residues with atoms ≤ 5 Å from the IL-23 heterodimer include Ser31, Gly32, Gly33, Tyr34, Tyr35, His54, Ser56, Asn58, Thr59, Tyr60, Lys66, Arg101, Gly102, Phe103, Tyr104 and Tyr105 of SEQ ID NO:46.

[0215] The Antibody B Fab light chain amino acid residues with atoms 4 Å or less from the IL-23 heterodimer include Ser30, Ser31, Trp32, Tyr49, Ser52, Ser53, Ala91, Asn92, Ser93, Phe94, and Phe96 of SEQ ID NO:15. The Antibody B Fab light chain amino acid residues with atoms ≤ 5 Å from the IL-23 heterodimer include Ser30, Ser31, Trp32, Tyr49, Ala50, Ser52, Ser53, Ser56, Ala91, Asn92, Ser93, Phe94, and Phe96 of SEQ ID NO:15.

[0216] The IL-23-Antibody E Fab complex crystals grew in the P222₁ space group with unit cell dimensions a=61.60, b=97.59, c=223.95 Å and diffract to 3.5 Å resolution. The IL-23-Antibody E Fab complex structure was solved by molecular replacement with the program Phaser (CCP4, *supra*) using the IL-23 structure, an antibody variable domain, and an antibody constant domain as the three starting search models, as described above. The complete structure was improved with multiple rounds of model building with Quanta and refinement with cnx (Brunger, et al., *supra*). The Antibody E Fab constant domain was left out of the final refined structure due to very poor electron density for that portion of the protein.

[0217] The regions of interaction on the IL-23p19 subunit identified when bound to the Antibody E Fab include residues within Ser46-His53, Glu112-Val120 and Trp156-Phe163 of SEQ ID NO:145.

[0218] IL-23p19 amino acid residues with atoms 4 Å or less from the Antibody E Fab include Ser46, Ala47, His48, Pro49, Leu50, Glu112, Pro113, Ser114, Leu115, Leu116, Pro117, Asp118, Ser119, Pro120, Trp156, Leu159, Leu160 and Phe163 of SEQ ID NO:145. IL-23p19 amino acid residues with atoms between 4 Å and 5 Å from the Antibody E Fab include His53 of SEQ ID NO:145.

[0219] IL-23p40 amino acid residues with atoms 4 Å or less from the Antibody E Fab include Lys121, Glu 122, Pro123 and Asn 125 of SEQ ID NO:147.

[0220] The Antibody E Fab heavy chain amino acid residues with atoms 4 Å or less from the IL-23 heterodimer include Gly26, Phe27, Thr28, Ser31, Tyr53, Tyr59, Tyr102, Ser104, Ser105, Trp106, Tyr107, and Pro108 of SEQ ID NO:31. The Antibody E Fab heavy chain amino acid residues with atoms ≤ 5 Å from the IL-23 heterodimer include Gln1, Gly26, Phe27, Thr28, Ser30, Ser31, Tyr32, Trp52, Tyr53, Tyr59, Arg100, Tyr102, Thr103, Ser104, Ser105, Trp106, Tyr107, and Pro108 of SEQ ID NO:31.

[0221] The Antibody E Fab light chain amino acid residues with atoms 4 Å or less from the IL-23 heterodimer include Ala31, Gly32, Tyr33, Asp34, Tyr51, Gly52, Asn55, Lys68, and Tyr93 of SEQ ID NO:1. The Antibody B Fab light chain amino acid residues with atoms ≤ 5 Å from the IL-23 heterodimer include Thr29, Ala31, Gly32, Tyr33, Asp34, Tyr51, Gly52, Asn55, Lys68, Tyr93, and Trp100 of SEQ ID NO:1.

Example 5

Determination of IL-23-Antibody Complex Contact Residues through Solvent Accessible Surface Area Differences

[0222] The residue contacts in the paratope (the portion of the antibody that recognizes the antigen) and the portion of the antigen that it binds bound by the paratope in a human IL-23-Antibody B Fab complex and in a human IL-23-Antibody E Fab complex were determined using solvent accessible surface area differences. The solvent accessible surface area calculations were performed using Molecular Operating Environment (Chemical Computing Group, Montreal, Quebec).

[0223] The solvent accessible surface area differences of the paratope residues in the IL-23-Antibody B Fab complex were calculated by setting the Antibody B Fab residues as the desired set. The structural information obtained in Example 4 for the IL-23-Antibody B Fab complex was used and the residue solvent accessible surface area of the amino acid residues of the Antibody B Fab in the presence of the IL-23 heterodimer were calculated and represent the "bound

areas" for the set.

[0224] The residue solvent accessible surface area of each of the Antibody B Fab residues in the absence of the IL-23 antigen were calculated and represent the "free areas" of the set.

[0225] The "bound areas" were then subtracted from the "free areas" resulting in the "solvent exposed surface area difference" for each residue in the set. The Antibody B Fab residues that had no change in surface area, or a zero difference, had no contact with the residues of the IL-23 antigen when complexed. The Antibody B Fab residues that had a difference value $\geq 10 \text{ \AA}^2$ were considered to be in significant contact with residues in the IL-23 antigen such that these Antibody B Fab residues were at least partially to completely occluded when the Antibody B Fab was bound to human IL-23. This set of Antibody B Fab residues make up the "covered patch", the residues involved in the structure of the interface when Antibody B Fab is bound to human IL-23, see Tables 10 and 11. The Antibody B Fab residues in this covered patch may not be involved in binding interactions with residues of the IL-23 antigen, but mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody B Fab to human IL-23. With the exception of Tyr49, all of the residues are located in the CDR regions of the Antibody B Fab light and heavy chains. These residues were also within 5 \AA or less of the IL-23 antigen when bound to the Antibody B Fab, as described in Example 4.

Table 10 Solvent Accessibility Surface Area Differences for Antibody B Fab Light Chain

Residue AHO Number	Residue Position SEQ ID NO:15	Solvent exposed surface area difference (\AA^2)
Ser32	Ser30	44.9
Ser33	Ser31	41.1
Trp40	Trp32	79.0
Tyr57	Tyr49	40.7
Ala58	Ala50	20.3
Ser68	Ser52	43.6
Ser69	Ser53	38.9
Ser72	Ser56	19.1
Asn110	Asn92	34.0
Phe135	Phe94	51.4

35

Table 11 Solvent Accessibility Surface Area Differences for Antibody B Fab Heavy Chain

Residue AHO Number	Residue Position SEQ ID NO:46	Solvent exposed surface area difference (\AA^2)
Ser33	Ser31	18.2
Gly34	Gly32	49.5
Gly38	Gly33	33.8
Tyr39	Tyr34	51.4
Tyr40	Tyr35	30.7
His59	His54	29.5
Asn67	Asn58	66.7
Thr68	Thr59	26.0
Tyr69	Tyr60	59.4
Lys75	Lys66	32.6
Arg110	Arg101	47.2
Gly111	Gly102	21.7
Phe112	Phe103	35.5
Tyr133	Tyr104	83.0

(continued)

Residue AHO Number	Residue Position SEQ ID NO:46	Solvent exposed surface area difference (Å ²)
Tyr134	Tyr105	91.7

[0226] The solvent accessible surface area differences of the residues in the IL-23-Antibody E Fab complex were calculated as described above. The Antibody E Fab residues that had a difference value $\geq 10 \text{ Å}^2$ were considered to be in significant contact with residues in the IL-23 antigen and these Antibody E Fab residues were at least partially to completely occluded when the Antibody E Fab was bound to human IL-23. This set of Antibody E Fab residues make up the covered patch, the residues involved in the structure of the interface when the Antibody E Fab is bound to human IL-23, see Tables 12 and 13. The Antibody E Fab residues in this covered patch may not be involved in binding interactions with residues of the IL-23 antigen, but mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody E Fab to human IL-23. For the most part, these covered patch residues were located within the CDR regions of the Antibody E Fab heavy and light chains. These residues were also within 5Å or less of the IL-23 antigen when bound to the Antibody E Fab, as described in Example 4.

Table 12 Solvent Accessibility Surface Area Differences for Antibody E Fab Light Chain

Residue AHO Number	Residue Position SEQ ID NO:1	Solvent exposed surface area difference (Å ²)
Ala33	Ala31	11.6
Gly34	Gly32	51.2
Tyr39	Tyr33	47.2
Asp40	Asp34	36.8
Tyr57	Tyr51	16.1
Gly58	Gly52	11.1
Asn69	Asn55	29.4
Lys82	Lys68	20.1
Tyr109	Tyr93	27.3
Ser135	Ser98	11.3

Table 13 Solvent Accessibility Surface Area Differences for Antibody E Fab Heavy Chain

Residue AHO Number	Residue Position SEQ ID NO:31	Solvent exposed surface area difference (Å ²)
Gln1	Gln1	41.1
Gly27	Gly26	24.6
Thr30	Thr28	82.2
Ser33	Ser31	40.7
Tyr39	Tyr32	30.7
Trp59	Trp52	11.3
Tyr60	Tyr53	44.7
Tyr69	Tyr59	42.4
Lys86	Lys76	17.4
Gly111	Gly101	12.8
Tyr112	Tyr102	103.1
Ser114	Ser104	21.0
Ser115	Ser105	91.4

(continued)

Residue AHO Number	Residue Position SEQ ID NO:31	Solvent exposed surface area difference (Å ²)
Trp131	Trp106	145.0
Tyr132	Tyr107	71.6
Pro133	Pro108	20.4

5 [0227] The solvent accessible surface area differences of the portion of the IL-23 heterodimer bound by the paratope of the Antibody B Fab were calculated by setting the IL-23 heterodimer residues as the desired set. The structural information obtained in Example 4 for the Antibody B Fab-IL-23 complex was used and the residue solvent accessible surface area of the amino acid residues of the IL-23 heterodimer in the presence of the Antibody B Fab were calculated and represent the bound areas for the set.

10 [0228] The residue solvent accessible surface area of each of the IL-23 heterodimer residues in the absence of the Antibody B Fab were calculated and represent the free areas of the set.

15 [0229] As described above, the bound areas were subtracted from the free areas resulting in the solvent exposed surface area difference for each IL-23 residue. The IL-23 heterodimer residues that had no change in surface area, or a zero difference, had no contact with the residues of the Antibody B Fab when complexed. The IL-23 heterodimer residues that had a difference value ≥ 10 Å² were considered to be in significant contact with residues of the Antibody B Fab and these IL-23 heterodimer residues were at least partially to completely occluded when the human IL-23 heterodimer was bound to the Antibody B Fab. This set of IL-23 heterodimer residues make up the covered patch, the residues involved in the structure of the interface when the human IL-23 heterodimer is bound to the Antibody E Fab, see Table 14. The IL-23 heterodimer residues in this covered patch may not all be involved in binding interactions with residues on the Antibody B Fab, but mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody B Fab to human IL-23. These residues are also within 4Å or less from the Antibody B Fab, as described Example 4.

30 **Table 14** Solvent Accessibility Surface Area Differences for IL-23 heterodimer residues

p19 residues (SEQ ID NO:145)	Solvent exposed surface area difference (Å ²)
Ser46	26.5
Ala47	12.7
Pro49	59.6
Leu50	122.2
His53	47.8
Met54	13.9
Asp55	20.5
Arg57	14.6
Glu58	96.5
Glu112	29.7
Pro113	64.8
Ser114	30.0
Leu115	31.4
Leu116	60.0
Asp118	14.4
Ser119	19.7
Pro120	64.7
Pro155	19.4
Typ156	61.9

(continued)

p19 residues (SEQ ID NO:145)	Solvent exposed surface area difference (Å ²)
Leu159	72.8
Leu160	27.0
Arg162	14.4
Phe163	67.5
p40 residues (SEQ ID NO:147)	
Glu122	29.1
Lys124	60.9

[0230] The solvent accessible surface area differences of the portion of the IL-23 heterodimer bound by the paratope of the Antibody E Fab were calculated as described above. The IL-23 heterodimer residues that had a difference value $\geq 10 \text{ \AA}^2$ were considered to be in significant contact with residues of the Antibody E Fab and these IL-23 heterodimer residues were at least partially to completely occluded when the human IL-23 heterodimer was bound to the Antibody E Fab. This set of IL-23 heterodimer residues make up the covered patch, the residues involved in the structure of the interface when the human IL-23 heterodimer is bound to the Antibody E Fab, see Table 15. The IL-23 heterodimer residues in this covered patch may not all be involved in binding interactions with residues on the Antibody E Fab, but mutation of any single residue within the covered patch could introduce energetic differences that would impact the binding of Antibody E Fab to human IL-23. These residues are also within 5Å or less from the Antibody E Fab, as described in Example 4.

Table 15 Solvent Accessibility Surface Area Differences for IL-23 heterodimer residues

p19 residues (SEQ ID NO:145)	Solvent exposed surface area difference (Å ²)
Ser46	18.7
Ala47	14.9
Pro49	79.8
Leu50	99.5
His53	61.2
Glu112	62.8
Pro113	45.7
Ser114	69.5
Leu115	50.3
Leu116	127.2
Pro117	54.1
Asp118	37.0
Pro120	18.8
Pro155	16.9
Trp156	140.7
Leu159	21.8
Leu160	17.0
Phe163	56.6
p40 residues (SEQ ID NO:147)	
Lys121	86.2

(continued)

5	p40 residues (SEQ ID NO:147)	
	Glu122	21.8
	Pro123	22.1
	Asn125	26.7
10	Arg283	22.6

<110> Towne, Jennifer

Cheng, Janet

O'Neill, Jason

Zhang, Yu

15 Sun, Yu

Cerne, Heather

Piper, Derek

Ketchem, Randal

20 <120> HUMAN IL-23 ANTIGEN BINDING PROTEINS

<130> A-1529-WO-PCT

25 <140> to be assigned

<141> 2010-10-26

<150> 61/381,287

<151> 2010-09-09

30 <150> 61/254,982

<151> 2009-10-26

<160> 155

35 <170> PatentIn version 3.5

<210> 1

<211> 111

<212> PRT

40 <213> Homo sapiens

<400> 1

45

50

55

1 Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
 5 10 15

5 20 25 30
 Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Thr Gly Ala Gly

10 35 40 45
 Tyr Asp Val His Trp Tyr Gln Gln Val Pro Gly Thr Ala Pro Lys Leu

15 50 55 60
 Leu Ile Tyr Gly Ser Gly Asn Arg Pro Ser Gly Val Pro Asp Arg Phe

20 65 70 75 80
 Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu

25 85 90 95
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser

30 100 105 110
 Leu Ser Gly Trp Val Phe Gly Gly Thr Arg Leu Thr Val Leu

<210> 2

<211> 333

<212> DNA

30 <213> Homo sapiens

<400> 2

35 cagtctgtgc tgacgcagcc gccctcagtg tctggggccc cagggcagag ggtcaccatc 60
 tcctgcactg ggagcagctc caacaccggg gcaggttatg atgtacactg gtaccagcaa 120
 gttccaggaa cagcccccaa actcctcatt tatggtagcg gcaatcgcc ctcaggggtc 180
 40 cctgaccgat tctctggctc caagtctggc acctcagcct ccctggccat cactggactc 240
 caggctgagg atgaggctga ttattactgc cagtcctatg acagcagcct gagtggttgg 300
 gtgttcggcg gagggaccag gctgaccgtc ctg 333

45

<210> 3

<211> 111

<212> PRT

50 <213> Homo sapiens

<400> 3

55

1 Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
 5 10 15

5 20 25 30
 Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly

10 35 40 45
 Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu

15 50 55 60
 Leu Ile Tyr Gly Ser Asn Asn Arg Pro Ser Gly Val Pro Asp Arg Phe

20 65 70 75 80
 Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu

25 85 90 95
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser

30 100 105 110
 Leu Ser Gly Trp Val Phe Gly Gly Thr Lys Leu Thr Val Leu

<210> 4

<211> 115

<212> PRT

30 <213> Homo sapiens

<400> 4

35 1 Gln Ala Val Leu Thr Gln Pro Ser Ser Leu Ser Ala Ser Pro Gly Ala
 5 10 15

40 20 25 30
 Ser Ala Ser Leu Thr Cys Thr Leu Arg Ser Gly Ile Asn Val Gly Thr

45

50

55

EP 2 493 925 B1

Tyr Arg Ile Tyr Trp Tyr Gln Gln Lys Pro Gly Ser Pro Pro Gln Tyr
35 40 45

5 Leu Leu Arg Tyr Lys Ser Asp Ser Asp Lys Gln Gln Gly Ser Gly Val
50 55 60

10 Pro Ser Arg Phe Ser Gly Ser Lys Asp Ala Ser Ala Asn Ala Gly Ile
65 70 75 80

15 Leu Leu Ile Ser Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys
85 90 95

20 Met Ile Trp His Ser Ser Ala Ser Val Phe Gly Gly Gly Thr Lys Leu
100 105 110

25 Thr Val Leu
115

<210> 5

<211> 345

25 <212> DNA

<213> Homo sapiens

<400> 5

30 caggctgtgc tgactcagcc gtcttccctc tctgcatctc ctggagcatc agccagtctc 60
acctgcacct tacgcagtgg catcaatgtt ggtacctaca ggtataactg gtaccagcag 120
aagccaggg a gtcctccca gtatctcctg aggtacaaat cagactcaga taagcagcag 180
35 ggctctggag tccccagccg cttctctgga tccaaagatg cttcggccaa tgcaggatt 240
ttactcatct ctgggctcca gtctgaggat gaggctgact attactgtat gatttggcac 300
40 agcagcgctt cggattcgg cggagggacc aagctgaccg tccta 345

<210> 6

<211> 14

45 <212> PRT

<213> Homo sapiens

<400> 6

50 Glu Asn Thr Val Thr Ile Tyr Tyr Asn Tyr Gly Met Asp Val
1 5 10

<210> 7

<211> 116

55 <212> PRT

<213> Homo sapiens

<400> 7

1 Gln Pro Val Leu Thr Gln Pro Pro Ser Ala Ser Ala Ser Leu Gly Ala
 5 10 15

5 Ser Val Thr Leu Thr Cys Thr Leu Asn Ser Gly Tyr Ser Asp Tyr Lys
 20 25 30

10 Val Asp Trp Tyr Gln Gln Arg Pro Gly Lys Gly Pro Arg Phe Val Met
 35 40 45

Arg Val Gly Thr Gly Gly Ile Val Gly Ser Lys Gly Asp Gly Ile Pro
 50 55 60

15 Asp Arg Phe Ser Val Leu Gly Ser Gly Leu Asn Arg Tyr Leu Thr Ile
 65 70 75 80

20 Lys Asn Ile Gln Glu Glu Asp Glu Ser Asp Tyr His Cys Gly Ala Asp
 85 90 95

25 His Gly Ser Gly Ser Asn Phe Val Tyr Val Phe Gly Thr Gly Thr Lys
 100 105 110

Val Thr Val Leu
 115

30 <210> 8

<211> 348

<212> DNA

<213> Homo sapiens

35 <400> 8

cagcctgtgc tgactcagcc accttctgca tcagcctccc tgggagcctc ggtcacactc 60

40 acctgcaccc tgaacagcgg ctacagtgtatataaagtgg actggtagcca gcagagacca 120

ggaaaggggcc cccggtttgc gatgcgagtgc ggcactgggtggattgtggatccaagggg 180

gatggcatcc ctgatcgctt ctcagtcttggctcaggcc tgaatcggtatctgaccatc 240

45 aagaatatcc aggaagagga tgagagtgc taccactgtggccatcgatggatcc 300

agcaacttcg tgtatgtctt cggactggg accaaggta ccgtccata 348

50 <210> 9

<211> 116

<212> PRT

<213> Homo sapiens

55 <400> 9

EP 2 493 925 B1

Gln Pro Val Leu Thr Gln Pro Pro Ser Ala Ser Ala Ser Leu Gly Ala
 1 5 10 15

5 Ser Val Thr Leu Thr Cys Thr Leu Ser Ser Gly Tyr Ser Asp Tyr Lys
 20 25 30

10 Val Asp Trp Tyr Gln Gln Arg Pro Gly Lys Gly Pro Arg Phe Val Met
 35 40 45

15 Arg Val Gly Thr Gly Gly Ile Val Gly Ser Lys Gly Glu Gly Ile Pro
 50 55 60

20 Asp Arg Phe Ser Val Leu Gly Ser Gly Leu Asn Arg Tyr Leu Thr Ile
 65 70 75 80

Lys Asn Ile Gln Glu Glu Asp Glu Ser Asp Tyr His Cys Gly Ala Asp
 85 90 95

25 His Gly Ser Gly Asn Asn Phe Val Tyr Val Phe Gly Thr Gly Thr Lys
 100 105 110

30 Val Thr Val Leu
 115

<210> 10

<211> 348

<212> DNA

35 <213> Homo sapiens

<400> 10

40 cagcctgtgc tgactcagcc accttctgca tcagcctccc tgggagcctc ggtcacactc 60
 acctgcaccc tgagcagcgg ctacagtgtatataaagtgg actggtagcca gcagagacca
 gggaaagggcc cccggtttgt gatgcgagtg ggcactggtg ggattgtggg atccaagggg 120
 45 gaaggcatcc ctgatcgctt ctcagtcggcc ggctcaggcc tgaatcggtt cctgaccatc 240
 aagaacatcc aggaagagga tgagagtgc taccactgtg gggcagacca tggcagtggg 180
 aacaacttcg tgtatgtctt cggaactggg accaagggtca ccgtccta 300
 50

<210> 11

<211> 116

<212> PRT

55 <213> Homo sapiens

<400> 11

EP 2 493 925 B1

Gln Pro Glu Leu Thr Gln Pro Pro Ser Ala Ser Ala Ser Leu Gly Ala
1 5 10 15

5 Ser Val Thr Leu Thr Cys Thr Leu Ser Ser Gly Tyr Ser Asp Tyr Lys
20 25 30

10 Val Asp Trp Tyr Gln Leu Arg Pro Gly Lys Gly Pro Arg Phe Val Met
35 40 45

15 Arg Val Gly Thr Gly Gly Thr Val Gly Ser Lys Gly Glu Gly Ile Pro
50 55 60

Asp Arg Phe Ser Val Leu Gly Ser Gly Leu Asn Arg Ser Leu Thr Ile
65 70 75 80

20 Lys Asn Ile Gln Glu Glu Asp Glu Ser Asp Tyr His Cys Gly Ala Asp
85 90 95

25 His Gly Ser Gly Ser Asn Phe Val Tyr Val Phe Gly Thr Gly Thr Lys
100 105 110

30 Val Thr Val Leu
115

35 <210> 12
<211> 348
<212> DNA
<213> Homo sapiens

40 <400> 12

cagcctgagt tgactcagcc accttctgca tcagcctccc tgggagcctc ggtcacactc 60
acctgcaccc tgagcagcgg ctacagtgtatataaagtgg actggtagcca gctgagacca 120
ggaaagggcc cccggtttgt gatgcgagtg ggcactggtg ggactgttgg atccaagggg 180
gaaggcatcc ctgatcgctt ctcagtcggcc tgaatcggtc cctgaccatc 240
aagaacatcc aggaagagga tgagagtgcac taccactgtg gggcagacca tggcagtgg 300
agcaacttcg tgtatgtctt cggaactggg accaaggtaa ccgtccta 348

50 <210> 13
<211> 107
<212> PRT
<213> Homo sapiens

55 <400> 13

EP 2 493 925 B1

Asp Ile Gln Leu Thr Pro Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ala Gly Trp
 20 25 30

10 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

15 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

20 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asp Ser Phe Pro Pro
 85 90 95

25 Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
 100 105

25 <210> 14
 <211> 321
 <212> DNA
 <213> Homo sapiens

30 <400> 14

35 gacatccagt tgaccccgtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
 atcacttgtc gggcgagtca gggtattgcc ggctggtag cctggtatca gcagaaacca 120
 gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtccatca 180
 40 agttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
 gaagatttg caacttacta ttgtcaacag gctgacagtt tccctccac tttcggcgga 300
 gggaccaagg tggagatcaa a 321

45 <210> 15
 <211> 107
 <212> PRT
 <213> Homo sapiens

50 <400> 15

EP 2 493 925 B1

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Val Ile Ser Ser Trp
 20 25 30

10 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Ser Leu Leu Ile
 35 40 45

15 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Val Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

20 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Phe
 85 90 95

25 Thr Phe Gly Pro Gly Thr Lys Val Asp Phe Lys
 100 105

30 <210> 16

<211> 321

<212> DNA

30 <213> Homo sapiens

40 <400> 16

35 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgttaggaga cagagtcacc 60

atcaacttgtc gggcgagtca ggttattagc agctggtag cctggtatca gcagaaacca 120

gggaaagccc cttagcctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180

40 agttcagcg gcagtgtatc tggacagat ttcactctca ccatcagcag cctgcagcct 240

gaagattttg caacttacta ttgtcaacag gctaacagtt tccattcac tttcggccct 300

gggaccaaag tggatttcaa a 321

45 <210> 17

<211> 107

<212> PRT

50 <213> Homo sapiens

<400> 17

EP 2 493 925 B1

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ser Ser Ser Trp
 20 25 30

10 Phe Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

15 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

20 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

25 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Phe
 85 90 95

30 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
 100 105

<210> 18

<211> 321

<212> DNA

30 <213> Homo sapiens

<400> 18

35 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgttaggaga cagagtcacc 60
 atcacttgta gggcgagtca gggaaatggc agctggtttgc cctggtatca gcagaaacca 120
 gggaaagccc caaaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
 40 agttcagcg gcagtggatc tgggacagac ttcactctca ccatcagcag cctgcagcct 240
 gaagattttgc caacttacta ttgtcaacag gctaacagtt tccattcac tttcggccct 300
 gggacccaaag tggatatcaa a 321

45 <210> 19

<211> 107

<212> PRT

50 <213> Homo sapiens

<400> 19

Asp Ser Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
 20 25 30

10 Phe Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Asn Leu Leu Ile
 35 40 45

15 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

20 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

25 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Phe
 85 90 95

30 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
 100 105

<210> 20

<211> 321

<212> DNA

30 <213> Homo sapiens

<400> 20

35 gacagccaga tgacccagtc tccatcttcc gtgtctgcct ctgttaggaga cagagtcacc 60

atcaacttgtc gggcgagtca gggttattagc agctggtttg cctggtatca gcagaaacca 120

gggcaagccc ctaacccctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180

40 agttcagcgc gcagtggatc tgggacagaa ttcactctca ccatcagcag cctgcagcct 240

gaagattttg caacttacta ttgtcaacag gctaacagtt tcccattcac tttcggccct 300

gggacccaaag tggatatcaa a 321

45

<210> 21

<211> 107

<212> PRT

50 <213> Homo sapiens

<400> 21

55 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Gly Gln Val Ile Ser Ser Trp
 20 25 30

5 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

10 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

15 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Thr Ser Phe Pro Leu
 85 90 95

20 Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
 100 105

<210> 22

<211> 321

25 <212> DNA

<213> Homo sapiens

<400> 22

30 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgttaggaga cagagtcacc 60
 atcaacttgtc gggcggtca ggttattagc agctggtag cctggtatca gcagaaacca 120
 35 gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatcg 180
 aggttcagcg gcagtggatc tggacagat ttcactctca ccatcagcag cctgcagcct 240
 gacgattttg caacttacta ttgtcaacag gctaccagtt ttcccctcac tttcggcgga 300
 40 gggaccaagg tggagatcaa a 321

<210> 23

<211> 107

45 <212> PRT

<213> Homo sapiens

<400> 23

50

55

EP 2 493 925 B1

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Phe Ser Gly Trp
 20 25 30

10 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 15 50 55 60

20 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

25 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Phe
 85 90 95

30 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
 100 105

35 <210> 24

<211> 321

<212> DNA

<213> Homo sapiens

35 <400> 24

30 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
 atcacttgtc gggcgagtca gggtttttagc ggttggtttag cctggtatca gcagaaaacca 120
 40 gggaaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
 aggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
 45 gaagattttg caacttacta ctgtcaacag gctaacagtt tcccattcac tttcggccct 300
 gggacccaaag tggatatcaa a 321

50 <210> 25

<211> 107

<212> PRT

<213> Homo sapiens

55 <400> 25

EP 2 493 925 B1

Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Val Ile Ser Ser Trp
20 25 30

10 Phe Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Asn Leu Leu Ile
35 40 45

15 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

20 Ala Asp Phe Ala Thr Tyr Phe Cys Gln Gln Ala Asn Ser Phe Pro Phe
85 90 95

25 Thr Phe Gly Pro Gly Thr Lys Val Asp Val Lys
100 105

25 <210> 26
<211> 321
<212> DNA
<213> Homo sapiens

30 <400> 26

35 gacatccagt tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
atcacttgtc gggcgagtca ggttattagc agctggtttgc cctggtatca gcagaaacca 120
gggaaagccc ctaacccct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
40 agttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
gcagatttg caacttactt ttgtcaacag gctaacagtt tccattcac tttcggccct 300
gggacccaaag tggatgtcaa a 321

45 <210> 27
<211> 107
<212> PRT
<213> Homo sapiens

50 <400> 27

EP 2 493 925 B1

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ser Ser Ser Trp
 20 25 30

10 Phe Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

15 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

20 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Phe
 85 90 95

25 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
 100 105

<210> 28

<211> 321

<212> DNA

30 <213> Homo sapiens

<400> 28

35 gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgttaggaga cagagtccacc 60

40 atcacttgtc gggcgagtca gggtagtagc agctggtttgc cctggtatca acagaaacca 120
 gggaaagccc caaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
 aggttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240
 gaagattttg caacttacta ttgtcaacag gctaacagtt tcccattcac tttcgccct 300
 45 gggacccaaag tggatatcaa a 321

<210> 29

<211> 107

50 <212> PRT

<213> Homo sapiens

<400> 29

55

	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Val	Gly
1						5					10					15
5																
	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gln	Gly	Ile	Arg	Asn	Asp
					20						25					30
10																
	Leu	Gly	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Arg	Leu	Ile
					35					40						45
15																
	Tyr	Ala	Ala	Ser	Ser	Leu	Gln	Ser	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly
						50				55						60
20																
	Ser	Gly	Ser	Gly	Thr	Glu	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro
					65				70		75					80
25																
	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Leu	Gln	His	Asn	Ser	Tyr	Pro	Pro
						85				90						95
30																
	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Glu					
						100				105						
35																
	<210> 30															
	<211> 108															
	<212> PRT															
40	<213> Artificial															
	<220>															
	<223> Consensus Sequence															
45																
	<220>															
	<221> MISC_FEATURE															
	<222> (2)..(2)															
50	<223> Xaa can be Ile or Ser															
55	<220>															
	<221> MISC_FEATURE															
	<222> (4)..(4)															
	<223> Xaa can be Met or Leu,															
60																
	<220>															
	<221> MISC_FEATURE															
	<222> (29) .. (29)															
65	<223> Xaa can be Gly or Val															
70	<220>															
	<221> MISC_FEATURE															
	<222> (30)..(30)															
	<223> Xaa can be Ser, Phe or Ile															
75																
	<220>															
	<221> MISC_FEATURE															
	<222> (32)..(32)															
80	<223> Xaa can be Ser or Gly															

<220>
 <221> MISC_FEATURE
 <222> (34)..(34)
 <223> Xaa can be Phe or Leu

5

<220>
 <221> MISC_FEATURE
 <222> (43)..(43)
 <223> Xaa can be Lys or Gln

10

<220>
 <221> MISC_FEATURE
 <222> (46)..(46)
 <223> Xaa can be Lys, Asn or Ser

15

<220>
 <221> MISC_FEATURE
 <222> (67)..(67)
 <223> Xaa can be Gly or Val

20

<220>
 <221> MISC_FEATURE
 <222> (71)..(71)
 <223> Xaa can be Asp or Glu

25

<220>
 <221> MISC_FEATURE
 <222> (82)..(82)
 <223> Xaa can be Glu or Ala

30

<220>
 <221> MISC_FEATURE
 <222> (88)..(88)
 <223> Xaa can be Try or Phe

35

<220>
 <221> MISC_FEATURE
 <222> (107)..(107)
 <223> Xaa can be Ile, Val or Phe

40

<400> 30

Asp Xaa Gln Xaa Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

45

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Xaa Xaa Ser Xaa
 20 25 30

50

55

Trp Xaa Ala Trp Tyr Gln Gln Lys Pro Gly Xaa Ala Pro Xaa Leu Leu
 35 40 45

5 Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser
 50 55 60

10 Gly Ser Xaa Ser Gly Thr Xaa Phe Thr Leu Thr Ile Ser Ser Leu Gln
 65 70 75 80

Pro Xaa Asp Phe Ala Thr Tyr Xaa Cys Gln Gln Ala Asn Ser Phe Pro
 85 90 95

15 Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Xaa Lys
 100 105

20 <210> 31
 <211> 124
 <212> PRT
 <213> Homo sapiens

25 <400> 31

Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
 1 5 10 15

30 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

35 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

40 Ala Val Ile Trp Tyr Asp Gly Ser Asn Glu Tyr Tyr Ala Asp Ser Val
 50 55 60

45 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80

50 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

55 Ala Arg Asp Arg Gly Tyr Thr Ser Ser Trp Tyr Pro Asp Ala Phe Asp
 100 105 110

Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
 115 120

55 <210> 32
 <211> 372
 <212> DNA

<213> Homo sapiens

5	<400> 32	caggtgcagc tggggaggc gtggtccagc ctgggaggc cctgagactc	60
	tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct	120	
	ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atggaagtaa tgaatactat	180	
10	gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat	240	
	ctgcaa atga acagcctgag agccgaggac acggctgtgtt attactgtgc gagagatcg	300	
	gggtataccca gtagctggta ccctgatgct tttgatatct ggggccaagg gacaatggtc	360	
15	accgtctctt ca	372	

<210> 33

<211> 124

20 <212> PRT

<213> Homo sapiens

<400> 33

25 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

30 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

40 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80 85 90

Ala Arg Asp Arg Gly Tyr Ser Ser Ser Trp Tyr Pro Asp Ala Phe Asp
 100 105 110

Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser

55 <210> 34
<211> 121
<212> PRT
<213> *Homo sapiens*

EP 2 493 925 B1

<400> 34

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

5 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

10 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

15 Ala Val Ile Ser Phe Asp Gly Ser Leu Lys Tyr Tyr Ala Asp Ser Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80

20 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
25 30 35

25 Ala Arg Glu Arg Thr Thr Leu Ser Gly Ser Tyr Phe Asp Tyr Trp Gly
100 105 110

Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 35
<211> 363
<212> DNA
35 <213> *Homo sapiens*

<400> 35

40	caggtgcagc tggtggagtc tggggaggc gtggtccagc ctgggaggtc cctgagactc	60
	tcctgtgcag cctctggatt caccttcagt agctatggca tgcactgggt ccgccaggct	120
	ccaggcaagg ggctggagtg ggtggcagtt atatcatttg atggaagtct taaatactat	180
45	gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa caccctgtat	240
	ctgcaaatga acagcctgag agctgaggac acggctgtgtt attactgtgc gagagaacgg	300
	actactttaa gtgggagcta ctttactac tggggccagg gaaccctggt caccgtctcc	360
50	tca	363

55 <210> 36
 <211> 121
 <212> PRT
 <213> *Homo sapiens*

<400> 36

EP 2 493 925 B1

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
 1 5 10 15

5 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

10 Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
 35 40 45

Ser Val Ile Ser His Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val
 50 55 60

15 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80

20 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

25 Ala Arg Glu Arg Thr Thr Leu Ser Gly Ser Tyr Phe Asp Tyr Trp Gly
 100 105 110

Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120

30 <210> 37
 <211> 363
 <212> DNA
 <213> Homo sapiens

35 <400> 37

caggtgcagc tgggtggagtc tgggggaggc gtggccagc ctgggaggc cctgagactc 60
 40 tcctgtgcag cctctggatt caccttcagt agctatgcc a tgcactgggt ccgccaggct 120
 ccaggcaagg ggctggagtg gttgtcagtt atatcacatg atgaaatgt taaatactat 180
 gcagactccg tgaaggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
 45 ctgcaa atga acagcctgag agctgaggac acggctgtgt attactgtgc gagagaacgg 300
 actactctaa gtgggagcta ctttactac tggggccagg gaaccctggt caccgtctcc 360
 tca 363

50 <210> 38
 <211> 125
 <212> PRT
 <213> Homo sapiens

55 <400> 38

EP 2 493 925 B1

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

5 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

10 Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

15 Ser Tyr Ile Ser Ser Arg Ser Ser Thr Ile Tyr Ile Ala Asp Ser Val
 50 55 60

20 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
 65 70 75 80

25 Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

30 Ala Arg Arg Ile Ala Ala Gly Gly Phe His Tyr Tyr Tyr Ala Leu
 100 105 110

35 Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 115 120 125

<210> 39
 <211> 375
 <212> DNA
 35 <213> Homo sapiens

<400> 39

40 gaggtgcagc tgggggagtc tggggggaggc ctggcacagc ctggggggtc cctgagactc 60
 tcctgtgcag cctctggatt caccttcagt agctatagta tgaactgggt ccgccaggct
 ccagggaagg ggctggagtg gtttcgtac attagtagta ggagtagtac catatacatc
 45 gcagactctg tgaagggccg attcaccatc tccagagaca atgccaagaa ctcactgtat
 ctgcaaatga acagcctgag agacgaagac acggctgtgt attactgtgc gagacggata
 gcagcagctg gtgggttcca ctactactac gctttggacg tctggggcca agggaccacg
 50 gtcaccgtct cctca 360
 375

<210> 40
 <211> 125
 <212> PRT
 55 <213> Homo sapiens

<400> 40

EP 2 493 925 B1

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

5 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30

10 Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

15 Ser Tyr Ile Ser Ser Ser Ser Thr Arg Tyr His Ala Asp Ser Val
50 55 60

20 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80

25 Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

30 Ala Arg Arg Ile Ala Ala Gly Pro Trp Gly Tyr Tyr Tyr Ala Met
100 105 110

25 Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125

35 <210> 41
<211> 375
<212> DNA
<213> Homo sapiens

40 <400> 41

gaggtgcagc tgggtggagtc tggggggaggc ttggtaacaac ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt acctatacgca tgaactgggt ccgccaggct 120
ccagggaaagg ggctggagtg ggtttcatac attagtagcgca gtagtagtac cagataccac 180
gcagactctg tgaaggggccg attcaccatc tccagagaca atgccaagaa ctcactgtat 240
ctgcaaatga acagcctgag agacgaggac acggctgtgt attactgtgc gagacgtata 300
gcagcagctg gtccgtgggg ctactactac gctatggacg tctggggcca agggaccacg 360
gtcaccgtct cctca 375

50 <210> 42
<211> 125
<212> PRT
<213> Homo sapiens

55 <400> 42

1 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 5 10 15

5 Ser Leu Arg Leu Ser Cys Val Val Ser Gly Phe Thr Phe Ser Ser Phe
 10 20 25 30

10 Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 15 35 40 45

15 Ser Tyr Ile Ser Ser Arg Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val
 20 50 55 60

20 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
 25 65 70 75 80

25 Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
 30 85 90 95

30 Ala Arg Arg Ile Ala Ala Ala Gly Pro Trp Gly Tyr Tyr Tyr Ala Met
 35 100 105 110

35 Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 40 115 120 125

40 <210> 43
 45 <211> 375
 <212> DNA
 <213> Homo sapiens

50 <400> 43

55 gaggtgcagc tgggtggagtc tggggggaggc ttgggtacagc ctggggggtc cctgagactc 60
 60 tcctgtgtag tctctggatt caccttcagt agtttagca tgaactgggt ccgccaggct 120
 65 ccagggaaagg ggctggagtg ggtttcatac attagtagtc gtagtagtac cataatactac 180
 70 gcagactctg tgaaggggccg attcaccatc tccagagaca atgccaagaa ctcactgtat 240
 75 ctgcaaatga acagcctgag agacgaggac acggctgtgt attattgtgc gagacgtata 300
 80 gcagcagctg gtccgtgggg ctactactac gctatggacg tctggggcca agggaccacg 360
 85 gtcaccgtct cctca 375

90 <210> 44
 <211> 118
 <212> PRT
 <213> Homo sapiens

95 <400> 44

1 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
 5 10 15

5 20 25 30
 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Thr Tyr

10 35 40 45
 Tyr Trp Ser Trp Ile Arg Gln Pro Ala Gly Lys Gly Leu Glu Trp Ile

15 50 55 60
 Gly Leu Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys

20 65 70 75 80
 Ser Arg Val Thr Met Ser Leu Asp Thr Ser Lys Asn Gln Phe Ser Leu

25 85 90 95
 Arg Leu Thr Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala

30 100 105 110
 Arg Asp Arg Gly Tyr Tyr Gly Val Asp Val Trp Gly Gln Gly Thr

115
 Thr Val Thr Val Ser Ser

35 <210> 45
 <211> 354
 <212> DNA
 <213> Homo sapiens

40 <400> 45

caggtgcagc tgcaggagtc gggcccagga ctggtaagc cttcgagac cctgtccctc 60
 acctgcactg tctctggtgg ctccatcagt acttactact ggagctggat ccggcagccc 120
 gcccggaaagg gactggagtg gattgggctt atctatacca gtgggagcac caactacaac 180
 ccctccctca agagtcgagt caccatgtca ttagacacgt ccaagaacca gttctccctg 240
 aggctgacct ctgtgaccgc cgccggacacg gccgtttatt actgtgcgag agatcggtgg 300
 tactactacg gtgtggacgt ctggggccag gggaccacgg tcaccgtctc ctca 354

45 <210> 46
 <211> 120
 <212> PRT
 <213> Homo sapiens

50 <400> 46

55

1 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly
 20 25 30

10 Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

15 Trp Ile Gly His Ile His Tyr Ser Gly Asn Thr Tyr Tyr Asn Pro Ser
 50 55 60

20 Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

25 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

30 Cys Ala Lys Asn Arg Gly Phe Tyr Tyr Gly Met Asp Val Trp Gly Gln
 100 105 110

Gly Thr Thr Val Thr Val Ser Ser
 115 120

35 <210> 47
 <211> 360
 <212> DNA
 <213> Homo sapiens

40 <400> 47

caggtgcagc tgcaggagtc gggcccagga ctggtaagc cttcacagac cctgtccctc 60
 acctgcactg tctctgggtgg ctccatcagc agtgggtggtt actactggag ctggatccgc 120
 cagcacccag ggaagggcct ggagtggatt gggcacatcc attacagtgg gaacacctac 180
 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaatcagttc 240
 tccctgaaac ttagctctgt gactgccgcg gacacggccg tgtattactg tgcgaaaaat 300
 cgcgggttct actacggtat ggacgtctgg ggccaaggga ccacggtcac cgtctcctca 360

50 <210> 48
 <211> 120
 <212> PRT
 <213> Homo sapiens

55 <400> 48

EP 2 493 925 B1

1 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 5 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Asn Ser Gly
 20 25 30

10 Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

15 Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Ser Tyr Tyr Asn Pro Ser
 50 55 60

20 Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Gln Asn Gln Phe
 65 70 75 80

25 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

30 Cys Ala Arg Asp Arg Gly His Tyr Tyr Gly Met Asp Val Trp Gly Gln
 100 105 110

Gly Thr Thr Val Thr Val Ser Ser
 115 120

35 <210> 49
 <211> 360
 <212> DNA
 <213> Homo sapiens

40 <400> 49

45 caggtgcagc tgcaggagtc gggcccgagga ctggtaaagc cttcacagac cctgtccctc 60

50 acctgcactg tctctggtgg ctccatcaac agtggtggtt actactggag ctggatccgc 120

55 cagcacccag ggaaggccct ggagtggatt gggtacatct attacagtgg gagctcctac 180

60 tacaacccgt ccctcaagag tcgagttacc atatcgttag acacgtctca gaaccagttc 240

65 tccctgaagc tgagctctgt gactgccgac gacacggccg tgtattactg tgcgagagat 300

70 cgggggcact actacggtat ggacgtctgg ggccaaggga ccacggtcac cgtctcctca 360

75 <210> 50
 <211> 120
 <212> PRT
 <213> Homo sapiens

80 <400> 50

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly
 20 25 30

10 Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

15 Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser
 50 55 60

20 Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

25 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

30 Cys Ala Arg Asp Arg Gly His Tyr Tyr Gly Met Asp Val Trp Gly Gln
 100 105 110

35 Gly Thr Thr Val Thr Val Ser Ser
 115 120

40 <210> 51
 <211> 360
 <212> DNA
 <213> Homo sapiens

45 <400> 51

50 caggtgcagc tgcaggagtc gggcccagga ctggtaagc cttcacagac cctgtccctc 60
 acctgcactg tctctgggtgg ctccatcagt agtgggtggtt actactggag ctggatccgc 120
 cagcacccag ggaagggcct ggagtggatt gggtacattt attacagtgg gagcacctac 180
 tacaacccgt ccctaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240
 tccctgaagc tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgagagat 300
 cggggccact actatggaat ggacgtctgg ggccaaggga ccacggcac cgtctcctca 360

55 <210> 52
 <211> 118
 <212> PRT
 <213> Homo sapiens

55 <400> 52

EP 2 493 925 B1

1 Gln Val Gln Leu Gln Glu Ser Gly Pro Arg Leu Val Lys Pro Ser Glu
 5 10 15

5 20 25 30
 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Asp Ser Ile Ser Ser Tyr

10 35 40 45
 Phe Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu

15 50 55 60
 Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys

20 65 70 75 80
 Ser Arg Val Thr Ile Ser Ile Asp Thr Ser Lys Asn Gln Phe Ser Leu

25 85 90 95
 Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Thr

30 100 105 110
 Arg Asp Arg Gly Ser Tyr Tyr Gly Ser Asp Tyr Trp Gly Gln Gly Thr

35 115
 Leu Val Thr Val Ser Ser

40 <210> 53
 <211> 354
 <212> DNA
 <213> Homo sapiens

45 <400> 53

50 caggtgcagc tgcaggagtc gggcccaaga ctggtaagc cttcgagac cctgtccctc 60
 acctgcactg tctctggta ctccatcagt agttacttct ggagctggat ccggcagccc 120
 ccagggagg gactggagtg gcttgggtat atctattaca gtgggagcac caactacaac 180
 ccctccctca agagtcgagt caccatatca atagacacgt ccaagaacca gttctccctg 240
 aagctgagct ctgtgaccgc tgcggacacg gccgtgtatt actgtacgag agatcggggg 300
 agctactacg gatctgacta ctggggccag ggaaccctgg tcaccgtctc ctca 354

55 <210> 54
 <211> 120
 <212> PRT
 <213> Homo sapiens

<400> 54

1 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly
 20 25 30

10 Gly Tyr Tyr Trp Thr Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

15 Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Asn Thr Tyr Tyr Asn Pro Ser
 50 55 60

20 Leu Lys Ser Arg Ile Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

25 Ser Leu Ser Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

30 Cys Ala Arg Asn Arg Gly Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln
 100 105 110

Gly Thr Thr Val Thr Val Ser Ser
 115 120

35 <210> 55
 <211> 360
 <212> DNA
 <213> Homo sapiens

40 <400> 55

45 caggtgcagc tgcaggagtc gggcccagga ctggtaagc cttcacagac cctgtccctc 60
 acctgcactg tctctgggtgg ctccatcagc agtgggtggtt actactggac ctggatccgc 120
 cagcacccag ggaagggcct ggagtggatt ggttacatct attacagtgg gaacacctac 180
 tacaacccgt ccctcaagag tcgaattacc atatcagtgg acacgtctaa gaaccaggta 240
 tccctgagcc ttagctctgt gactgccgac gacacggccg tgtattactg tgcgagaaat 300
 cgcgggtact actacggtat ggacgtctgg ggccaaggga ccacggtcac cgtctcctca 360

50 <210> 56
 <211> 120
 <212> PRT
 <213> Homo sapiens

55 <400> 56

EP 2 493 925 B1

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly

20 25 30

10 Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

15 Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser
 50 55 60

20 Leu Lys Ser Arg Val Thr Met Ser Val Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

25 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

30 Cys Ala Lys Asn Arg Gly Phe Tyr Tyr Gly Met Asp Val Trp Gly Gln
 100 105 110

35 Gly Thr Thr Val Thr Val Ser Ser
 115 120

<210> 57

<211> 360

<212> DNA

35 <213> Homo sapiens

<400> 57

40 caggtgcagc tgcaggagtc gggcccgagga ctggtaagc cttcacagac cctgtccctc 60
 acctgcactg tctctggtgg ctccatcagc agtggtggtt actactggag ctggatccgc 120
 cagcacccag ggaagggcct ggagtggatt gggtacatct attacagtgg gagcacctac 180
 45 tacaacccgt ccctcaagag tcgagttacc atgtcagtagt acacgtctaa gaaccagttc 240
 tccctgaaac tgagctctgt gactgcccg gacacggccg tgtattactg tgcgaaaaat 300
 cgcggttct actacggtat ggacgtctgg ggccaaggga ccacggtcac cgtctcctca 360

50 <210> 58
 <211> 120
 <212> PRT
 55 <213> Homo sapiens
 <400> 58

EP 2 493 925 B1

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Asn Ser Gly
 20 25 30

10 Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

15 Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Ser Tyr Tyr Asn Pro Ser
 50 55 60

Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

20 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

25 Cys Ala Arg Asp Arg Gly His Tyr Tyr Gly Met Asp Val Trp Gly Gln
 100 105 110

Gly Thr Thr Val Thr Val Ser Ser
 115 120

30 <210> 59
 <211> 360
 <212> DNA
 <213> Homo sapiens

35 <400> 59

caggtgcagc tgcaggagtc gggcccagga ctggtaaagc cttcacagac cctgtccctc 60
 acctgcactg tctctggtgg ctccatcaat agtggtggtt actactggag ctggatccgc 120
 cagcacccag ggaagggcct ggagtggatt gggtacatct attacagtgg gagcagctac 180
 tacaacccgt ccctcaagag tcgagttacc atatcagttg acacgtctaa gaaccagttc 240
 tccctgaagc ttagttctgt gactgcccg gacacggccg tgtattactg tgcgagagat 300
 cgggggcact actacggtat ggacgtctgg ggccaaggga ccacggtcac cgtctcctca 360

40 <210> 60
 <211> 123
 <212> PRT
 <213> Homo sapiens

45 <400> 60

50

EP 2 493 925 B1

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

5 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

10 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

15 Ala Leu Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

20 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

25 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

30 Ala Arg Glu Asn Thr Val Thr Ile Tyr Tyr Asn Tyr Gly Met Asp Val
100 105 110

25 Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120

35 <210> 61
<211> 116
<212> PRT
<213> Artificial

40 <220>
<223> Consensus Sequence

45 <220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa can be Val or Glu

50 <220>
<221> MISC_FEATURE
<222> (25)..(25)
<223> Xaa can be Asn or Ser

55 <220>
<221> MISC_FEATURE
<222> (38)..(38)
<223> Xaa can be Gln or Leu

<220>
<221> MISC_FEATURE
<222> (55)..(55)
<223> Xaa can be Ile or Thr

<220>

<221> MISC_FEATURE
 <222> (61)..(61)
 <223> Xaa can be Asp or Glu

5 <220>
 <221> MISC_FEATURE
 <222> (77)..(77)
 <223> Xaa can be Tyr or Ser

10 <220>
 <221> MISC_FEATURE
 <222> (101)..(101)
 <223> Xaa can be Ser or Asn

15 <400> 61

20 Gln Pro Xaa Leu Thr Gln Pro Pro Ser Ala Ser Ala Ser Leu Gly Ala
 1 5 10 15

25 Ser Val Thr Leu Thr Cys Thr Leu Xaa Ser Gly Tyr Ser Asp Tyr Lys
 20 25 30

30 Val Asp Trp Tyr Gln Xaa Arg Pro Gly Lys Gly Pro Arg Phe Val Met
 35 40 45

35 Arg Val Gly Thr Gly Gly Xaa Val Gly Ser Lys Gly Xaa Gly Ile Pro
 50 55 60

40 Asp Arg Phe Ser Val Leu Gly Ser Gly Leu Asn Arg Xaa Leu Thr Ile
 65 70 75 80

45 Lys Asn Ile Gln Glu Glu Asp Glu Ser Asp Tyr His Cys Gly Ala Asp
 85 90 95

50 His Gly Ser Gly Xaa Asn Phe Val Tyr Val Phe Gly Thr Gly Thr Lys
 100 105 110

55 Val Thr Val Leu
 115

45 <210> 62
 <211> 14
 <212> PRT
 <213> Homo sapiens

50 <400> 62

55 Thr Gly Ser Ser Ser Asn Thr Gly Ala Gly Tyr Asp Val His
 1 5 10

55 <210> 63
 <211> 7
 <212> PRT

<211> 11
 <212> PRT
 <213> Homo sapiens

5 <400> 69

Tyr Lys Ser Asp Ser Asp Lys Gln Gln Gly Ser
 1 5 10

10 <210> 70
 <211> 13
 <212> PRT
 <213> Homo sapiens

15 <400> 70

Gly Ala Asp His Gly Ser Gly Ser Asn Phe Val Tyr Val
 1 5 10

20 <210> 71
 <211> 11
 <212> PRT
 <213> Homo sapiens

25 <400> 71

Thr Leu Asn Ser Gly Tyr Ser Asp Tyr Lys Val
 1 5 10

30 <210> 72
 <211> 12
 <212> PRT
 <213> Homo sapiens

35 <400> 72

Val Gly Thr Gly Gly Ile Val Gly Ser Lys Gly Asp
 1 5 10

40 <210> 73
 <211> 13
 <212> PRT
 <213> Homo sapiens

45 <400> 73

Gly Ala Asp His Gly Ser Gly Asn Asn Phe Val Tyr Val
 1 5 10

50 <210> 74
 <211> 11
 <212> PRT
 <213> Homo sapiens

55 <400> 74

Thr Leu Ser Ser Gly Tyr Ser Asp Tyr Lys Val
 1 5 10

<210> 75
 <211> 12
 <212> PRT
 <213> Homo sapiens

5

<400> 75

Val Gly Thr Gly Gly Ile Val Gly Ser Lys Gly Glu
 1 5 10

10

<210> 76
 <211> 9
 <212> PRT
 <213> Homo sapiens

15

<400> 76

Gln Gln Ala Asn Ser Phe Pro Phe Thr
 1 5

20

<210> 77
 <211> 11
 <212> PRT
 <213> Homo sapiens

25

<400> 77

Arg Ala Ser Gln Gly Phe Ser Gly Trp Leu Ala
 1 5 10

30

<210> 78
 <211> 12
 <212> PRT
 <213> Homo sapiens

35

<400> 78

Val Gly Thr Gly Gly Thr Val Gly Ser Lys Gly Glu
 1 5 10

40

<210> 79
 <211> 9
 <212> PRT
 <213> Homo sapiens

45

<400> 79

Gln Gln Ala Thr Ser Phe Pro Leu Thr
 1 5

50

<210> 80
 <211> 11
 <212> PRT
 <213> Homo sapiens

55

<400> 80

EP 2 493 925 B1

Arg Ala Ser Gln Val Ile Ser Ser Trp Leu Ala
1 5 10

5 <210> 81
<211> 7
<212> PRT
<213> Homo sapiens

10 <400> 81
10

Ala Ala Ser Ser Leu Gln Ser
1 5

15 <210> 82
<211> 9
<212> PRT
<213> Homo sapiens

20 <400> 82
20

Gln Gln Ala Asp Ser Phe Pro Pro Thr
1 5

25 <210> 83
<211> 11
<212> PRT
<213> Homo sapiens

30 <400> 83
30

Arg Ala Ser Gln Val Ile Ser Ser Trp Phe Ala
1 5 10

35 <210> 84
<211> 9
<212> PRT
<213> Homo sapiens

40 <400> 84
40

Leu Gln His Asn Ser Tyr Pro Pro Thr
1 5

45 <210> 85
<211> 11
<212> PRT
<213> Homo sapiens

50 <400> 85
50

Arg Ala Ser Gln Gly Ser Ser Trp Phe Ala
1 5 10

55 <210> 86
<211> 11
<212> PRT
<213> Homo sapiens

EP 2 493 925 B1

<400> 86

Arg Ala Ser Gln Gly Ile Ser Ser Trp Phe Ala
1 5 10

5

<210> 87

<211> 11

<212> PRT

<213> Homo sapiens

10

<400> 87

Arg Ala Gly Gln Val Ile Ser Ser Trp Leu Ala
1 5 10

15

<210> 88

<211> 11

<212> PRT

20

<213> Homo sapiens

<400> 88

Arg Ala Ser Gln Gly Ile Ala Gly Trp Leu Ala
1 5 10

25

<210> 89

<211> 11

<212> PRT

30

<213> Homo sapiens

<400> 89

Arg Ala Ser Gln Gly Ile Arg Asn Asp Leu Gly
1 5 10

35

<210> 90

<211> 17

<212> PRT

40

<213> Homo sapiens

<400> 90

Leu Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15

45

Gly

50

<210> 91

<211> 5

<212> PRT

<213> Homo sapiens

<400> 91

Ser Tyr Gly Met His
1 5

<210> 92
 <211> 17
 <212> PRT
 <213> Homo sapiens

5
 <400> 92

Val Ile Trp Tyr Asp Gly Ser Asn Glu Tyr Tyr Ala Asp Ser Val Lys
 1 5 10 15

10

Gly

<210> 93
 <211> 15
 <212> PRT
 <213> Homo sapiens

15
 <400> 93
 20

Asp Arg Gly Tyr Thr Ser Ser Trp Tyr Pro Asp Ala Phe Asp Ile
 1 5 10 15

25
 <210> 94
 <211> 5
 <212> PRT
 <213> Homo sapiens

30
 <400> 94

Ser Tyr Ala Met His
 1 5

35
 <210> 95
 <211> 17
 <212> PRT
 <213> Homo sapiens

40
 <400> 95

Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys
 1 5 10 15

45
 Gly

50
 <210> 96
 <211> 15
 <212> PRT
 <213> Homo sapiens

<400> 96

Asp Arg Gly Tyr Ser Ser Ser Trp Tyr Pro Asp Ala Phe Asp Ile
 1 5 10 15

55
 <210> 97
 <211> 5

EP 2 493 925 B1

<212> PRT

<213> Homo sapiens

<400> 97

5

Thr Tyr Ser Met Asn
1 5

<210> 98

10 <211> 17

<212> PRT

<213> Homo sapiens

<400> 98

15

Val Ile Ser Phe Asp Gly Ser Leu Lys Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15

20

Gly

<210> 99

<211> 12

<212> PRT

25 <213> Homo sapiens

<400> 99

30

Glu Arg Thr Thr Leu Ser Gly Ser Tyr Phe Asp Tyr
1 5 10

<210> 100

<211> 5

<212> PRT

35 <213> Homo sapiens

<400> 100

40

Ser Tyr Ser Met Asn
1 5

<210> 101

<211> 17

<212> PRT

45 <213> Homo sapiens

<400> 101

50

Val Ile Ser His Asp Gly Ser Ile Lys Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15

Gly

55

<210> 102

<211> 16

<212> PRT

<213> Homo sapiens

EP 2 493 925 B1

<400> 102

Arg Ile Ala Ala Ala Gly Gly Phe His Tyr Tyr Tyr Ala Leu Asp Val
1 5 10 15

5

<210> 103
<211> 5
<212> PRT
<213> Homo sapiens

10

<400> 103

Ser Phe Ser Met Asn
1 5

15

<210> 104
<211> 17
<212> PRT
<213> Homo sapiens

20

<400> 104

Tyr Ile Ser Ser Arg Ser Ser Thr Ile Tyr Ile Ala Asp Ser Val Lys
1 5 10 15

25

Gly

<210> 105
<211> 16
<212> PRT
<213> Homo sapiens

30

<400> 105

35

Arg Ile Ala Ala Ala Gly Pro Trp Gly Tyr Tyr Tyr Ala Met Asp Val
1 5 10 15

40

<210> 106
<211> 7
<212> PRT
<213> Homo sapiens

45

<400> 106

Ser Gly Gly Tyr Tyr Trp Thr
1 5

50

<210> 107
<211> 17
<212> PRT
<213> Homo sapiens

55

<400> 107

EP 2 493 925 B1

Tyr Ile Ser Ser Ser Ser Ser Thr Arg Tyr His Ala Asp Ser Val Lys
1 5 10 15

5 Gly

<210> 108
<211> 10
<212> PRT
10 <213> Homo sapiens

<400> 108

15 Asn Arg Gly Tyr Tyr Gly Met Asp Val
1 5 10

<210> 109
<211> 7
<212> PRT
20 <213> Homo sapiens

<400> 109

25 Ser Gly Gly Tyr Tyr Trp Ser
1 5

<210> 110
<211> 17
<212> PRT
30 <213> Homo sapiens

<400> 110

35 Tyr Ile Ser Ser Arg Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15

Gly

40 <210> 111
<211> 10
<212> PRT
<213> Homo sapiens

45 <400> 111

Asn Arg Gly Phe Tyr Tyr Gly Met Asp Val
1 5 10

50 <210> 112
<211> 5
<212> PRT
<213> Homo sapiens

55 <400> 112

Ser Tyr Phe Trp Ser
1 5

EP 2 493 925 B1

<210> 113
<211> 16
<212> PRT
<213> Homo sapiens

5
<400> 113

Tyr Ile Tyr Tyr Ser Gly Asn Thr Tyr Tyr Asn Pro Ser Leu Lys Ser
1 5 10 15

10
<210> 114
<211> 10
<212> PRT
<213> Homo sapiens

15
<400> 114

Asp Arg Gly His Tyr Tyr Gly Met Asp Val
1 5 10

20
<210> 115
<211> 5
<212> PRT
<213> Homo sapiens

25
<400> 115

Thr Tyr Tyr Trp Ser
1 5

30
<210> 116
<211> 16
<212> PRT
<213> Homo sapiens

35
<400> 116

His Ile His Tyr Ser Gly Asn Thr Tyr Tyr Asn Pro Ser Leu Lys Ser
1 5 10 15

40
<210> 117
<211> 10
<212> PRT
<213> Homo sapiens

45
<400> 117

Asp Arg Gly Ser Tyr Tyr Gly Ser Asp Tyr
1 5 10

50
<210> 118
<211> 16
<212> PRT
<213> Homo sapiens

55
<400> 118

EP 2 493 925 B1

Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Ser
1 5 10 15

5 <210> 119
<211> 10
<212> PRT
<213> Homo sapiens

10 <400> 119

Asp Arg Gly Tyr Tyr Gly Val Asp Val
1 5 10

15 <210> 120
<211> 16
<212> PRT
<213> Homo sapiens

20 <400> 120

Tyr Ile Tyr Tyr Ser Gly Ser Ser Tyr Tyr Asn Pro Ser Leu Lys Ser
1 5 10 15

25 <210> 121
<211> 16
<212> PRT
<213> Homo sapiens

30 <400> 121

Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser

35 1 5 10 15

40 <210> 122
<211> 16
<212> PRT
<213> Homo sapiens

45 <400> 122

Leu Ile Tyr Thr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser
1 5 10 15

50 <210> 123
<211> 11
<212> PRT
<213> Artificial

55 <220>
<223> Consensus sequence

<220>

<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa can be Gly or Val

5 <220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa can be Ile, Phe or Ser

10 <220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Xaa can be Ser or Gly

15 <220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Xaa can be Phe or Leu.

20 <400> 123

Arg Ala Ser Gln Xaa Xaa Ser Xaa Trp Xaa Ala
1 5 10

25 <210> 124
<211> 12
<212> PRT
<213> Artificial

30 <220>
<223> Consensus sequence

<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa can be Asn or

<400> 124

40 Thr Leu Xaa Ser Gly Tyr Ser Asp Tyr Lys Val Asp
1 5 10

<210> 125
<211> 14
<212> PRT
<213> Artif

<220>
<223> Consensus sequence

50 <220>
<221> MISC_FEATURE
<222> (7)..(7)

Thr Gly Ser Ser Ser Asn Xaa Gly Ala Gly Tyr Asp Val His
 1 5 10

5 <210> 126
 <211> 12
 <212> PRT
 <213> Artificial

10 <220>
 <223> Consensus sequence

15 <220>
 <221> MISC_FEATURE
 <222> (6)..(6)
 <223> Xaa can be Ile or Thr

20 <220>
 <221> MISC_FEATURE
 <222> (12)..(12)
 <223> Xaa can be Asp or Glu

<400> 126

25 Val Gly Thr Gly Gly Xaa Val Gly Ser Lys Gly Xaa
 1 5 10

30 <210> 127
 <211> 7
 <212> PRT
 <213> Artificial

35 <220>
 <223> Consensus sequence

40 <220>
 <221> MISC_FEATURE
 <222> (3)..(3)
 <223> Xaa can be Asn or Gly

<400> 127

Gly Ser Xaa Asn Arg Pro Ser
 1 5

45 <210> 128
 <211> 13
 <212> PRT
 <213> Artificial

50 <220>
 <223> Consensus sequence

55 <220>
 <221> MISC_FEATURE
 <222> (8)..(8)
 <223> Xaa can be Ser or Asn

<400> 128

Gly Ala Asp His Gly Ser Gly Xaa Asn Phe Val Tyr Val
 1 5 10

5 <210> 129
 <211> 7

<212> PRT
 <213> Artificial

10 <220>
 <223> Consensus sequence

15 <220>
 <221> MISC_FEATURE
 <222> (7)..(7)
 <223> Xaa can be Ser or Thr

<400> 129

20 Ser Gly Gly Tyr Tyr Trp Xaa
 1 5

25 <210> 130
 <211> 5
 <212> PRT
 <213> Artificial

<220>
 <223> Consensus sequence

30 <220>
 <221> MISC_FEATURE
 <222> (3)..(3)
 <223> Xaa can be Gly or Ala

35 <400> 130

Ser Tyr Xaa Met His
 1 5

40 <210> 131
 <211> 5
 <212> PRT
 <213> Artificial

45 <220>
 <223> Consensus sequence

50 <220>
 <221> MISC_FEATURE
 <222> (1)..(1)
 <223> Xaa can be Ser or The

55 <220>
 <221> MISC_FEATURE
 <222> (1)..(1)
 <223> Xaa can be Ser or Thr

<220>

<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa can be Ser or Thr

5 <220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa can be Tyr or Phe

10 <400> 131

Xaa Xaa Ser Met Asn
1 5

15 <210> 132
<211> 16
<212> PRT
<213> Artificial

20 <220>
<223> Consensus sequence

25 <220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa can be Tyr or His

30 <220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa can be Thr or His

35 <220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Xaa can be Ser or Asn

40 <220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Xaa can be Thr or Ser

<400> 132

45 Xaa Ile Xaa Tyr Ser Gly Xaa Xaa Tyr Tyr Asn Pro Ser Leu Lys Ser
 1 5 10 15

50 <210> 133
<211> 17
<212> PRT
<213> Artificial

<220>
<223> Consensus sequence

<220>
<221> MISC_FEATURE
<222> (4)..(4)

<223> Xaa can be Phe or His

<220>

<221> MISC_FEATURE

5 <222> (8)..(8)

<223> Xaa can be Leu or Thr

<400> 133

10 Val Ile Ser Xaa Asp Gly Ser Xaa Lys Tyr Tyr Ala Asp Ser Val Lys
 1 5 10 15

15 Gly

<210> 134

<211> 17

<212> PRT

<213> Artificial

20 <220>

<223> Consensus sequence

25 <220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Xaa can be Arg or Ser

30 <220>

<221> MISC_FEATURE

<222> (9)..(9)

<223> Xaa can be Ile or Arg

35 <220>

<221> MISC_FEATURE

<222> (11)..(11)

<223> Xaa can be Ile, His or Try

40 <400> 134

 Tyr Ile Ser Ser Xaa Ser Ser Thr Xaa Tyr Xaa Ala Asp Ser Val Lys
 1 5 10 15

45 Gly

<210> 135

<211> 17

<212> PRT

50 <213> Artificial

<220>

<223> Consensus sequence

55 <220>

<221> MISC_FEATURE

<222> (9)..(9)

<223> Xaa can be Lys or Glu

5
<400> 135

Val Ile Trp Tyr Asp Gly Ser Asn Xaa Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15

10 Gly

<210> 136

<211> 10

<212> PRT

<213> Artificial

15 <220>

<223> Consensus sequence

20 <220>

<221> MISC_FEATURE

<222> (1)..(1)

25 <223> Xaa can be Asn or Asp

<220>

<221> MISC_FEATURE

<222> (4)..(4)

25 <223> Xaa can be His, Tyr or Phe

<400> 136

30 Xaa Arg Gly Xaa Tyr Tyr Gly Met Asp Val
1 5 10

<210> 137

<211> 16

<212> PRT

35 <213> Artificial

<220>

<223> Consensus sequence

40 <220>

<221> MISC_FEATURE

<222> (7)..(7)

45 <223> Xaa can be Gly or Phe

<220>

<221> MISC_FEATURE

<222> (8)..(8)

50 <223> Xaa can be Phe or Trp

<220>

<221> MISC_FEATURE

<222> (9)..(9)

55 <223> Xaa can be His or Gly

<220>

<221> MISC_FEATURE

<222> (14)..(14)

55 <223> Xaa can be Leu and Met

5 <400> 137

Arg Ile Ala Ala Ala Gly Xaa Xaa Xaa Tyr Tyr Tyr Ala Xaa Asp Val
 1 5 10 15

10 <210> 138

<211> 15

<212> PRT

<213> Artificial

15 <220>

<223> Consensus sequence

20 <220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Xaa can be Ser or Thr

25 <400> 138

Asp Arg Gly Tyr Xaa Ser Ser Trp Tyr Pro Asp Ala Phe Asp Ile
 1 5 10 15

30 <210> 139

<211> 112

<212> PRT

<213> Artificial

35 <220>

<223> Consensus Sequence

<220>

<221> MISC_FEATURE

<222> (29)..(29)

40 <223> Xaa can be Ile or Thr

<220>

<221> MISC_FEATURE

<222> (41)..(41)

<223> Xaa can be Val or Leu

45 <220>

<221> MISC_FEATURE

<222> (54)..(54)

<223> Xaa can be Gly or Asn

50 <220>

<221> MISC_FEATURE

<222> (107)..(107)

<223> Xaa can be Arg or Lys

<400> 139

1 Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
 5 10 15

5 20 25 30
 Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Xaa Gly Ala Gly

10 35 40 45
 Tyr Asp Val His Trp Tyr Gln Gln Xaa Pro Gly Thr Ala Pro Lys Leu

15 50 55 60
 Leu Ile Tyr Gly Ser Xaa Asn Arg Pro Ser Gly Val Pro Asp Arg Phe

65 70 75 80
 Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu

20 85 90 95
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser

25 100 105 110
 Leu Ser Gly Trp Val Phe Gly Gly Thr Xaa Arg Leu Thr Val Leu

<210> 140

<211> 120

<212> PRT

30 <213> Artificial

<220>

<223> Consensus Sequence

35 <220>

<221> MISC_FEATURE

<222> (30)..(30)

<223> Xaa can be And or Ser

40 <220>

<221> MISC_FEATURE

<222> (37)..(37)

<223> Xaa can be Ser or Thr

45 <220>

<221> MISC_FEATURE

<222> (52)..(52)

<223> Xaa can be Tyr or His

50 <220>

<221> MISC_FEATURE

<222> (54)..(54)

<223> Xaa can be Tyr or His

55 <220>

<221> MISC_FEATURE

<222> (58)..(58)

<223> Xaa can be Ser or Asn

<220>
<221> MISC_FEATURE
<222> (59)..(59)
<223> Xaa can be Ser or Asn

5

<220>
<221> MISC_FEATURE
<222> (69)..(69)
<223> Xaa can be Ser or Thr

10

<220>
<221> MISC_FEATURE
<222> (71)..(71)
<223> Xaa can be Val or Ile

15

<220>
<221> MISC_FEATURE
<222> (77)..(77)
<223> Xaa can be Ile or Met

20

<220>
<221> MISC_FEATURE
<222> (83)..(83)
<223> Xaa can be Lys or Gln

25

<220>
<221> MISC_FEATURE
<222> (99)..(99)
<223> Xaa can be Arg or Lys

30

<220>
<221> MISC_FEATURE
<222> (100)..(100)
<223> Xaa can be Asp or Asn

35

<220>
<221> MISC_FEATURE
<222> (103)..(103)
<223> Xaa can be His, Phe or Try

40

<400> 140

45

50

55

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Xaa Ser Gly
 20 25 30

10 Gly Tyr Tyr Trp Xaa Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

15 Trp Ile Gly Xaa Ile Xaa Tyr Ser Gly Xaa Xaa Tyr Tyr Asn Pro Ser
 50 55 60

20 Leu Lys Ser Arg Xaa Thr Xaa Ser Val Asp Thr Ser Xaa Asn Gln Phe
 65 70 75 80

25 Ser Leu Xaa Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

25 Cys Ala Xaa Xaa Arg Gly Xaa Tyr Tyr Gly Met Asp Val Trp Gly Gln
 100 105 110

Gly Thr Thr Val Thr Val Ser Ser
 115 120

30 <210> 141
 <211> 125
 <212> PRT
 <213> Artificial

35 <220>
 <223> Consensus Sequence

40 <220>
 <221> MISC_FEATURE
 <222> (23)..(23)
 <223> Xaa can be Ala or Val

45 <220>
 <221> MISC_FEATURE
 <222> (24)..(24)
 <223> Xaa can be Ala or Val

50 <220>
 <221> MISC_FEATURE
 <222> (31)..(31)
 <223> Xaa can be Thr or Ser

55 <220>
 <221> MISC_FEATURE
 <222> (32)..(32)
 <223> Xaa can be Tyr or Phe

<220>

<221> MISC_FEATURE
<222> (54)..(54)
<223> Xaa can be Ser or Arg

5 <220>
<221> MISC_FEATURE
<222> (58)..(58)
<223> Xaa can be Arg or Ile

10 <220>
<221> MISC_FEATURE
<222> (60)..(60)
<223> Xaa can be His, Try or Ile

15 <220>
<221> MISC_FEATURE
<222> (105)..(105)
<223> Xaa can be Pro or Gly

20 <220>
<221> MISC_FEATURE
<222> (106)..(106)
<223> Xaa can be Trp or Phe

25 <220>
<221> MISC_FEATURE
<222> (107)..(107)
<223> Xaa can be Gly or His

30 <220>
<221> MISC_FEATURE
<222> (112)..(112)
<223> Xaa can be Met or Leu

35 <400> 141

40

45

50

55

1 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 5 10 15

5 Ser Leu Arg Leu Ser Cys Xaa Xaa Ser Gly Phe Thr Phe Ser Xaa Xaa
 20 25 30

10 Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

15 Ser Tyr Ile Ser Ser Xaa Ser Ser Thr Xaa Tyr Xaa Ala Asp Ser Val
 50 55 60

20 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
 65 70 75 80

25 Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

30 Ala Arg Arg Ile Ala Ala Ala Gly Xaa Xaa Xaa Tyr Tyr Tyr Ala Xaa
 100 105 110

35 Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 115 120 125

<210> 142

<211> 121

<212> PRT

<213> Artificial

35

<220>

<223> Consensus Sequence

40

<220>

<221> MISC_FEATURE

<222> (33)..(33)

<223> Xaa can be Gly or Ala

45

<220>

<221> MISC_FEATURE

<222> (48)..(48)

<223> Xaa can be Val or Leu

50

<220>

<221> MISC_FEATURE

<222> (49)..(49)

<223> Xaa can be Ala or Ser

55

<220>

<221> MISC_FEATURE

<222> (53)..(53)

<223> Xaa can be Phe or His

<220>
 <221> MISC_FEATURE
 <222> (57)..(57)
 <223> Xaa can be Leu or Ile

5

<400> 142

10 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

15

Xaa Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Xaa
 35 40 45

20

Xaa Val Ile Ser Xaa Asp Gly Ser Xaa Lys Tyr Tyr Ala Asp Ser Val
 50 55 60

25

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80

30

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Glu Arg Thr Thr Leu Ser Gly Ser Tyr Phe Asp Tyr Trp Gly
 100 105 110

35

Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120

<210> 143

<211> 124

40

<212> PRT
 <213> Artificial

45

<220>
 <223> Consensus Sequence

50

<220>
 <221> MISC_FEATURE
 <222> (58)..(58)
 <223> Xaa can be Glu or Lys

55

<220>
 <221> MISC_FEATURE
 <222> (103)..(103)
 <223> Xaa can be Thr or Ser

<400> 143

1 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
 5 10 15

5 20 25 30
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

10 35 40 45
 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

15 50 55 60
 Ala Val Ile Trp Tyr Asp Gly Ser Asn Xaa Tyr Tyr Ala Asp Ser Val

65 70 75 80
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr

20 85 90 95
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys

25 100 105 110
 Ala Arg Asp Arg Gly Tyr Xaa Ser Ser Trp Tyr Pro Asp Ala Phe Asp

30 115 120
 Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser

<210> 144

<211> 1026

<212> DNA

<213> Homo sapiens

35 <400> 144

aactcggtga	acaactgagg	gaaccaaacc	agagacgcgc	tgaacagaga	gaatcaggct	60
40 caaagcaagt	ggaagtgggc	agagattcca	ccaggactgg	tgcaaggcgc	agagccagcc	120
agatttgaga	agaaggcaaa	aagatgctgg	ggagcagagc	tgtaatgctg	ctgttgctgc	180
45 tgccctggac	agctcagggc	agagctgtgc	ctgggggcag	cagccctgcc	tggactcagt	240
gccagcagct	ttcacagaag	ctctgcacac	tggcctggag	tgcacatcca	ctagtggac	300
acatggatct	aagagaagag	ggagatgaag	agactacaaa	tgatgttccc	cataatccagt	360
50 gtggagatgg	ctgtgacccc	caaggactca	gggacaacag	tcaagttctgc	ttgcaaagga	420
tccaccaggg	tctgattttt	tatgagaagc	tgctaggatc	ggatattttc	acaggggagc	480
cttctctgct	ccctgatagc	cctgtgggcc	agcttcatgc	ctccctactg	ggcctcagcc	540
55 aactcctgca	gcctgagggt	caccactggg	agactcagca	gattccaagc	ctcagttcca	600
gccagccatg	gcagcgtctc	cttctccgct	tcaaaatcct	tcgcagcctc	caggccttg	660

5	tggctgttagc cgccccgggtc tttgcccatg gagcagcaac cctgagtccc taaaggcagc	720
	agctcaagga tggcactcag atctccatgg cccagcaagg ccaagataaa tctaccaccc	780
	caggcacctg tgagccaaca ggttaattag tccattaatt ttagtggac ctgcataatgt	840
10	tgaaaattac caatactgac tgacatgtga tgctgaccta tgataaggtt gagtattttat	900
	tagatggaa gggaaatttg gggatttattt atcctcctgg ggacagtttggggaggatta	960
	tttattgtat ttatattgaa ttatgtactt tttcaataa agtcttattt ttgtggctaa	1020
	aaaaaaa	1026

15	<210> 145
	<211> 189
	<212> PRT
	<213> Homo sapiens
20	<400> 145

25

30

35

40

45

50

55

	Met	Leu	Gly	Ser	Arg	Ala	Val	Met	Leu	Leu	Leu	Leu	Pro	Trp	Thr	
1								5							15	
	Ala	Gln	Gly	Arg	Ala	Val	Pro	Gly	Gly	Ser	Ser	Pro	Ala	Trp	Thr	Gln
5								20							30	
	Cys	Gln	Gln	Leu	Ser	Gln	Lys	Leu	Cys	Thr	Leu	Ala	Trp	Ser	Ala	His
10								35			40				45	
	Pro	Leu	Val	Gly	His	Met	Asp	Leu	Arg	Glu	Glu	Gly	Asp	Glu	Glu	Thr
15						50			55					60		
	Thr	Asn	Asp	Val	Pro	His	Ile	Gln	Cys	Gly	Asp	Gly	Cys	Asp	Pro	Gln
	65						70			75					80	
20	Gly	Leu	Arg	Asp	Asn	Ser	Gln	Phe	Cys	Leu	Gln	Arg	Ile	His	Gln	Gly
							85			90					95	
25	Leu	Ile	Phe	Tyr	Glu	Lys	Leu	Leu	Gly	Ser	Asp	Ile	Phe	Thr	Gly	Glu
						100			105					110		
	Pro	Ser	Leu	Leu	Pro	Asp	Ser	Pro	Val	Gly	Gln	Leu	His	Ala	Ser	Leu
30						115			120					125		
	Leu	Gly	Leu	Ser	Gln	Leu	Leu	Gln	Pro	Glu	Gly	His	His	Trp	Glu	Thr
		130					135						140			
35	Gln	Gln	Ile	Pro	Ser	Leu	Ser	Pro	Ser	Gln	Pro	Trp	Gln	Arg	Leu	Leu
			145				150				155				160	
40	Leu	Arg	Phe	Lys	Ile	Leu	Arg	Ser	Leu	Gln	Ala	Phe	Val	Ala	Val	Ala
						165			170					175		
	Ala	Arg	Val	Phe	Ala	His	Gly	Ala	Ala	Thr	Leu	Ser	Pro			
						180			185							
45	<210>	146	<211>	1399	<212>	DNA	<213>	Homo sapiens								
50	<400>	146														

	ctgtttcagg gccattggac tctccgtcct gcccagagca agatgtgtca ccagcagttg	60
5	gtcatctctt ggaaaaaaccct ggaaaaaactg gcatctcccc tcgtggccat atgggaactg	120
	aagaaaagatg tttatgtcgt agaattggat tggtatccgg atggccctgg agaaaatggtg	180
10	gtcctcacct gtgacacccc tgaagaagat ggtatcacct ggaccttggga ccagagcagt	240
	gaggtcttag gctctggcaa aaccctgacc atccaagtca aagagtttg agatgctggc	300
15	cagtacacct gtcacaaagg aggcgagggtt ctaagccatt cgctcctgct gcttcacaaa	360
	aaggaagatg gaatttggtc cactgatatt ttaaaggacc agaaagaacc caaaaataag	420
20	acctttctaa gatgcgaggc caagaattat tctggacgtt tcacctgctg gtggctgacg	480
	acaatcagta ctgatttgac attcagtgtc aaaagcagca gaggctcttc tgaccccaa	540
25	gggggtgacgt gcggagctgc tacactctct gcagagagag tcagagggga caacaaggag	600
	tatgagtaact cagtggagtg ccaggaggac agtgcctgcc cagctgctga ggagagtctg	660
30	cccattgagg tcatggtgga tgccgttcac aagctcaagt atgaaaacta caccagcagc	720
	ttcttcatca gggacatcat caaacctgac ccacccaaga acttgcagct gaagccatta	780
35	aagaattctc ggcaggtgga ggtcagctgg gagtaccctg acacctggag tactccacat	840
	tcctacttct ccctgacatt ctgcgttcag gtccaggca agagcaagag agaaaagaaa	900
40	gatagagtct tcacggacaa gacctcagcc acggtcatct gccgcaaaaa tgccagcatt	960
	agcgtgcggg cccaggaccg ctactatacg tcatcttgga gcgaatggc atctgtgcc	1020
45	tgcagttagg ttctgatcca ggtgaaaat ttggagggaaa agtggaaagat attaagcaaa	1080
	atgtttaaag acacaacgga atagacccaa aaagataatt tctatctgat ttgctttaaa	1140
50	acgtttttttt aggatcacaa tgatatctt gctgtatttg tatagttaga tgctaaatgc	1200
	tcattgaaac aatcagctaa tttatgtata gatttccag ctctcaagtt gccatggcc	1260
	ttcatgctat ttaaatattt aagtaattt tttatattt agtatttttac ttgttattttaa	1320
	cgtttgcgtccaggatgta tggaaatgttt catactctt tgacctgatc catcaggatc	1380
	agtccctatt atgcaaaat	1399
	<210> 147	
	<211> 328	
	<212> PRT	
	<213> Homo sapiens	
	<400> 147	

Met Cys His Gln Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe Leu
 1 5 10 15

5 Ala Ser Pro Leu Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr Val
 20 25 30

10 Val Glu Leu Asp Trp Tyr Pro Asp Ala Pro Gly Glu Met Val Val Leu
 35 40 45

15 Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr Trp Thr Leu Asp Gln
 50 55 60

20 Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu Thr Ile Gln Val Lys
 65 70 75 80

25 Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His Lys Gly Gly Glu Val
 85 90 95

30 Leu Ser His Ser Leu Leu Leu His Lys Lys Glu Asp Gly Ile Trp
 100 105 110

35 Ser Thr Asp Ile Leu Lys Asp Gln Lys Glu Pro Lys Asn Lys Thr Phe
 115 120 125

40 Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly Arg Phe Thr Cys Trp Trp
 130 135 140

45 Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser Arg
 145 150 155 160

50 Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu Ser
 165 170 175

Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val Glu
 180 185 190

Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala Glu Glu Ser Leu Pro Ile
 195 200 205

Glu Val Met Val Asp Ala Val His Lys Leu Lys Tyr Glu Asn Tyr Thr
 210 215 220

Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys Asn
 225 230 235 240

55 Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp
 245 250 255

EP 2 493 925 B1

Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu Thr
260 265 270

5 Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp Arg
275 280 285

10 Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys Arg Lys Asn Ala
290 295 300

Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Ser Trp Ser
305 310 315 320

15 Glu Trp Ala Ser Val Pro Cys Ser
325

20 <210> 148
<211> 2826
<212> DNA
<213> Homo sapiens

25 <400> 148

30

35

40

45

50

55

EP 2 493 925 B1

5	acaagggtgg cagcctggct ctgaagtgg aattatgtgct tcaaacaggt tgaaagaggg	60
	aaacagtctt ttcctgcttc cagacatgaa tcaggtcact attcaatggg atgcagtaat	120
	agccctttac atactcttca gctgggtgtca tggaggaatt acaaataaa actgctctgg	180
	ccacatctgg gtagaaccag ccacaatttt taagatgggt atgaatatct ctatataattg	240
10	ccaaggcagca attaagaact gccaaccaag gaaacttcat tttataaaa atggcatcaa	300
	agaaagattt caaatcacaa ggattaataa aacaacagct cggctttgggt ataaaaactt	360
	tctggAACCA catgcttcta tgtactgcac tgctgaatgt cccaaacatt ttcaagagac	420
15	actgatatgt ggaaaagaca tttcttctgg atatccgcca gatattcctg atgaagtaac	480
	ctgtgtcatt tatgaatatt caggcaacat gacttgcacc tggaaatgctg ggaagctcac	540
	ctacatagac acaaaatacg tggtacatgt gaagagttt aagacagaag aagagcaaca	600
20	gtatctcacc tcaagctata ttaacatctc cactgattca ttacaaggtg gcaagaagta	660
	cttgggttgg gtccaaagcag caaacgcact aggcatggaa gagtc当地 aactgcaaat	720
	tcacctggat gatatagtga taccttctgc agccgtcatt tccaggcgtg agactataaa	780
25	tgctacagtg cccaaagacca taatttattt ggatagtcaa acaacaattt aaaaagggttcc	840
	ctgtgaaatg agatacaagg ctacaacaaa ccaaacttgg aatgttaaag aatttgacac	900
	caattttaca tatgtcaac agtcagaatt ctacttggag ccaaacatta agtacgtatt	960
30	tcaagtgaga tgtcaagaaa caggcaaaag gtactggcag ccttggagtt cactgtttt	1020
	tcataaaaaca cctgaaacag ttccccaggt cacatcaaaa gcattccaac atgacacatg	1080
35	gaattctggg ctaacagttt cttccatctc tacagggcac cttacttctg acaacagagg	1140

40

45

50

55

	agacattgga	cttttattgg	aatgatcgt	cttgctgtt	atgttgtcaa	ttctttcttt	1200
5	gattggata	tttaacagat	cattccgaac	tgggattaaa	agaaggatct	tattgttaat	1260
	accaaagtgg	ctttatgaag	atattcctaa	tatgaaaaac	agcaatgtg	tgaaaatgct	1320
10	acagggaaaat	agtgaactta	tgaataataa	ttccagttag	caggtcctat	atgttgatcc	1380
	catgattaca	gagataaaaag	aaatcttcat	cccagaacac	aagcctacag	actacaagaa	1440
15	ggagaataca	ggaccctgg	agacaagaga	ctacccgcaa	aactcgctat	tcgacaatac	1500
	tacagttgt	tatattcctg	atctcaacac	tggatataaa	ccccaaattt	caaattttct	1560
20	gcctgaggga	agccatctca	gcaataataa	tgaattact	tccttaacac	ttaaaccacc	1620
	agttgattcc	ttagactcag	gaaataatcc	caggttacaa	aagcatccta	attttgctt	1680
25	ttctgtttca	agtgtgaatt	cactaagcaa	cacaatattt	cttggagaat	taagcctcat	1740
	attaaatcaa	ggagaatgca	gttctcctga	cataaaaaac	tcagtagagg	aggaaaccac	1800
30	catgcttttg	gaaaatgatt	cacccagtga	aactattcca	gaacagaccc	tgcttcctga	1860
	tgaatttgc	tcctgtttgg	ggatcgtgaa	tgaggagttg	ccatcttatta	atacttattt	1920
35	tccacaaaaat	attttgaaaa	gccacttcaa	taggatttca	ctttggaaa	agtagagctg	1980
	tgtggtcaaa	atcaatatga	gaaagctgcc	ttgcaatctg	aacttgggtt	ttccctgcaa	2040
40	tagaaattga	attctgcctc	ttttgaaaaa	aatgtattc	acatacaaat	cttcacatgg	2100
	acacatgttt	tcatttcct	tggataaata	cctaggtagg	ggattgctgg	gccatcatgt	2160
45	aagcatatgt	ttcagttcta	ccaatcttgt	ttccagagta	gtgacattc	tgtgctccta	2220
	ccatcaccat	gtaagaattc	ccgggagctc	catgccttt	taattttagc	cattcttctg	2280
50	cctcatttct	taaaattaga	gaattaaggt	cccgaagggt	gaacatgctt	catggtcaca	2340
	catacaggca	caaaaacagc	attatgtgga	cgcctcatgt	atttttata	gagtcaacta	2400
55	tttcctcttt	atttccctc	attgaaagat	gcaaaacagc	tctctattgt	gtacagaaaag	2460
	ggtaaataat	gcaaaataacc	tggtagtaaa	ataaatgctg	aaaattttcc	tttaaaatag	2520
	aatcattagg	ccagggcgtgg	tggctcatgc	ttgtaatccc	agcactttgg	taggctgagg	2580
	taggtggatc	acctgagggtc	aggagttcga	gtccagcctg	gccaatatgc	tgaaaccctg	2640
	tctctactaa	aattacaaaaa	attagccggc	catggtggca	ggtgcttgc	atcccagcta	2700
	cttgggaggc	tgaggcagga	aatcacttg	aaccaggaag	gcagagggtg	cactgagctg	2760
	agattgtgcc	actgcactcc	agcctggca	acaagagcaa	aactctgtct	ggaaaaaaaaa	2820
	aaaaaaa						2826
	<210> 149						
	<211> 629						
	<212> PRT						

EP 2 493 925 B1

<213> Homo sapiens

<400> 149

5

10

15

20

25

30

35

40

45

50

55

EP 2 493 925 B1

Met Asn Gln Val Thr Ile Gln Trp Asp Ala Val Ile Ala Leu Tyr Ile
 1 5 10 15

5 Leu Phe Ser Trp Cys His Gly Gly Ile Thr Asn Ile Asn Cys Ser Gly
 20 25 30

10 His Ile Trp Val Glu Pro Ala Thr Ile Phe Lys Met Gly Met Asn Ile
 35 40 45

Ser Ile Tyr Cys Gln Ala Ala Ile Lys Asn Cys Gln Pro Arg Lys Leu
 50 55 60

15 His Phe Tyr Lys Asn Gly Ile Lys Glu Arg Phe Gln Ile Thr Arg Ile
 65 70 75 80

20 Asn Lys Thr Thr Ala Arg Leu Trp Tyr Lys Asn Phe Leu Glu Pro His
 85 90 95

25 Ala Ser Met Tyr Cys Thr Ala Glu Cys Pro Lys His Phe Gln Glu Thr
 100 105 110

Leu Ile Cys Gly Lys Asp Ile Ser Ser Gly Tyr Pro Pro Asp Ile Pro
 115 120 125

30 Asp Glu Val Thr Cys Val Ile Tyr Glu Tyr Ser Gly Asn Met Thr Cys
 130 135 140

35 Thr Trp Asn Ala Gly Lys Leu Thr Tyr Ile Asp Thr Lys Tyr Val Val
 145 150 155 160

His Val Lys Ser Leu Glu Thr Glu Glu Gln Gln Tyr Leu Thr Ser
 165 170 175

40 Ser Tyr Ile Asn Ile Ser Thr Asp Ser Leu Gln Gly Lys Lys Tyr
 180 185 190

45 Leu Val Trp Val Gln Ala Ala Asn Ala Leu Gly Met Glu Glu Ser Lys
 195 200 205

50 Gln Leu Gln Ile His Leu Asp Asp Ile Val Ile Pro Ser Ala Ala Val
 210 215 220

Ile Ser Arg Ala Glu Thr Ile Asn Ala Thr Val Pro Lys Thr Ile Ile
 225 230 235 240

55 Tyr Trp Asp Ser Gln Thr Thr Ile Glu Lys Val Ser Cys Glu Met Arg
 245 250 255

EP 2 493 925 B1

Tyr Lys Ala Thr Thr Asn Gln Thr Trp Asn Val Lys Glu Phe Asp Thr
 260 265 270

5 Asn Phe Thr Tyr Val Gln Gln Ser Glu Phe Tyr Leu Glu Pro Asn Ile
 275 280 285

Lys Tyr Val Phe Gln Val Arg Cys Gln Glu Thr Gly Lys Arg Tyr Trp
 290 295 300

10 Gln Pro Trp Ser Ser Leu Phe Phe His Lys Thr Pro Glu Thr Val Pro
 305 310 315 320

15 Gln Val Thr Ser Lys Ala Phe Gln His Asp Thr Trp Asn Ser Gly Leu
 325 330 335

20 Thr Val Ala Ser Ile Ser Thr Gly His Leu Thr Ser Asp Asn Arg Gly
 340 345 350

Asp Ile Gly Leu Leu Gly Met Ile Val Phe Ala Val Met Leu Ser
 355 360 365

25 Ile Leu Ser Leu Ile Gly Ile Phe Asn Arg Ser Phe Arg Thr Gly Ile
 370 375 380

30 Lys Arg Arg Ile Leu Leu Ile Pro Lys Trp Leu Tyr Glu Asp Ile
 385 390 395 400

Pro Asn Met Lys Asn Ser Asn Val Val Lys Met Leu Gln Glu Asn Ser
 405 410 415

35 Glu Leu Met Asn Asn Asn Ser Ser Glu Gln Val Leu Tyr Val Asp Pro
 420 425 430

40 Met Ile Thr Glu Ile Lys Glu Ile Phe Ile Pro Glu His Lys Pro Thr
 435 440 445

Asp Tyr Lys Lys Glu Asn Thr Gly Pro Leu Glu Thr Arg Asp Tyr Pro
 450 455 460

45 Gln Asn Ser Leu Phe Asp Asn Thr Thr Val Val Tyr Ile Pro Asp Leu
 465 470 475 480

50 Asn Thr Gly Tyr Lys Pro Gln Ile Ser Asn Phe Leu Pro Glu Gly Ser
 485 490 495

His Leu Ser Asn Asn Glu Ile Thr Ser Leu Thr Leu Lys Pro Pro
 500 505 510

55 Val Asp Ser Leu Asp Ser Gly Asn Asn Pro Arg Leu Gln Lys His Pro

515

520

525

5 Asn Phe Ala Phe Ser Val Ser Ser Val Asn Ser Leu Ser Asn Thr Ile
 530 535 540

10 Phe Leu Gly Glu Leu Ser Leu Ile Leu Asn Gln Gly Glu Cys Ser Ser
 545 550 555 560

Pro Asp Ile Gln Asn Ser Val Glu Glu Glu Thr Thr Met Leu Leu Glu
 565 570 575

15 Asn Asp Ser Pro Ser Glu Thr Ile Pro Glu Gln Thr Leu Leu Pro Asp
 580 585 590

20 Glu Phe Val Ser Cys Leu Gly Ile Val Asn Glu Glu Leu Pro Ser Ile
 595 600 605

25 Asn Thr Tyr Phe Pro Gln Asn Ile Leu Glu Ser His Phe Asn Arg Ile
 610 615 620

Ser Leu Leu Glu Lys
 625

30 <210> 150
 <211> 2100
 <212> DNA
 <213> Homo sapiens

35 <400> 150

40

45

50

55

ggtggctgaa	cctcgcgagg	ggcagagagg	ctccctggg	gctgtggggc	tctacgtgga	60	
tccgatggag	ccgctggtga	cctgggtggt	ccccctcctc	ttccttttcc	tgctgtccag	120	
5	gcaggcgct	gcctgcagaa	ccagttagtgc	ctgtttcag	gaccggccat	atccggatgc	180
agactcaggc	tcggcctcgg	gccctaggga	cctgagatgc	tatcgatata	ccagtgtatcg	240	
10	ttacgagtgc	tcctggcagt	atgagggtcc	cacagctggg	gtcagccact	tcctgggtg	300
ttgccttagc	tccgggcgct	gctgctactt	cgccgcggc	tcagccacca	ggctgcagtt	360	
15	ctccgaccag	gctgggtgt	ctgtgctgta	cactgtcaca	ctctgggtgg	aatcctgggc	420
caggaaccag	acagagaagt	ctcctgaggt	gaccctgcag	ctctacaact	cagttaaata	480	
20	tgagcctcct	ctgggagaca	tcaaggtgtc	caagttggcc	ggcagctgc	gtatggagtg	540
ggagaccccg	gataaccagg	ttggtgctga	ggtgcagttc	cggcaccgga	cacccagcag	600	
25	cccatggaag	ttgggcgact	gcggaccta	ggatgatgat	actgagtcct	gcctctgccc	660
cctggagatg	aatgtggccc	aggaattcca	gctccgacga	cggcagctgg	ggagccaaagg	720	
aagttcctgg	agcaagtgg	gcagcccggt	gtgcgttccc	cctgaaaacc	ccccacagcc	780	
tcaggtgaga	ttctcggtgg	agcagctggg	ccaggatggg	aggaggcggc	tgaccctgaa	840	

30

35

40

45

50

55

agagcagcca	acccagctgg	agcttccaga	aggctgtcaa	gggctggcgc	ctggcacgga	900	
5	ggtaacttac	cgactacagc	tccacatgct	gtcctgcccc	tgtaaggcca	aggccaccag	960
gaccctgcac	ctggggaaaga	tgccctatct	ctcgggtgct	gcctacaacg	tggctgtcat	1020	
10	ctcctcgaac	caatttggtc	ctggcctgaa	ccagacgtgg	cacattcctg	ccgacaccca	1080
cacagaacca	gtggctctga	atatcagcgt	cggaaccaac	gggaccacca	tgtattggcc	1140	
15	agcccccggct	cagagcatga	cgtattgcat	tgaatggcag	cctgtggcc	aggacggggg	1200
ccttgcacc	tgcagcctga	ctgcggcgca	agaccggat	ccggctggaa	tggcaaccta	1260	
20	cagctggagt	cgagagtctg	gggcaatggg	gcaggaaaaag	tgttactaca	ttaccatctt	1320
tgcctctgcg	caccccgaga	agctcacctt	gtggtctacg	gtcctgtcca	cctaccactt	1380	
25	tgggggcaat	gcctcagcag	ctgggacacc	gcaccacgtc	tcggtaaga	atcatagctt	1440
ggactctgtg	tctgtggact	gggcaccatc	cctgctgagc	acctgtcccg	gcgtcctaaa	1500	
30	ggagtatgtt	gtccgctgcc	gagatgaaga	cagcaaacag	gtgtcagagc	atcccggtca	1560
gcccacagag	acccaagtta	ccctcagtgg	cctgcgggct	ggtgtagcct	acacggtgca	1620	
35	ggtgcgagca	gacacagcgt	ggctgagggg	tgtctggagc	cagccccagc	gcttcagcat	1680
cgaagtgcag	gtttctgatt	ggctcatctt	cttcgcctcc	ctggggagct	tcctgagcat	1740	
40	ccttctcgtg	ggcgtccttg	gctaccttg	cctgaacagg	gccgcacggc	acctgtgccc	1800
gccgctgccc	acaccctgtg	ccagctccgc	cattgagttc	cctggaggga	aggagacttg	1860	
gcagtggatc	aacccagtgg	acttccagga	agaggcatcc	ctgcaggagg	ccctggtggt	1920	
45	agagatgtcc	tgggacaaag	gcgagaggac	tgagcctctc	gagaagacag	agctacctga	1980
gggtgcccct	gagctggccc	tggatacaga	gttgtccttg	gaggatggag	acaggtgcaa	2040	
ggccaagatg	tgatcgttga	ggctcagaga	gggtgagtga	ctcgcccgag	gctacgtac	2100	
<210> 151							
<211> 662							
<212> PRT							
<213> Homo sapiens							
<400> 151							

EP 2 493 925 B1

Met Glu Pro Leu Val Thr Trp Val Val Pro Leu Leu Phe Leu Phe Leu
1 5 10 15

5 Leu Ser Arg Gln Gly Ala Ala Cys Arg Thr Ser Glu Cys Cys Phe Gln
20 25 30

10 Asp Pro Pro Tyr Pro Asp Ala Asp Ser Gly Ser Ala Ser Gly Pro Arg
35 40 45

Asp Leu Arg Cys Tyr Arg Ile Ser Ser Asp Arg Tyr Glu Cys Ser Trp
50 55 60

15

20

25

30

35

40

45

50

55

EP 2 493 925 B1

65	Gln Tyr Glu Gly Pro Thr Ala Gly Val Ser His Phe Leu Arg Cys Cys	70	75	80	
5	Leu Ser Ser Gly Arg Cys Cys Tyr Phe Ala Ala Gly Ser Ala Thr Arg	85	90	95	
10	Leu Gln Phe Ser Asp Gln Ala Gly Val Ser Val Leu Tyr Thr Val Thr	100	105	110	
15	Leu Trp Val Glu Ser Trp Ala Arg Asn Gln Thr Glu Lys Ser Pro Glu	115	120	125	
20	Val Thr Leu Gln Leu Tyr Asn Ser Val Lys Tyr Glu Pro Pro Leu Gly	130	135	140	
25	Asp Ile Lys Val Ser Lys Leu Ala Gly Gln Leu Arg Met Glu Trp Glu	145	150	155	160
30	Thr Pro Asp Asn Gln Val Gly Ala Glu Val Gln Phe Arg His Arg Thr	165	170	175	
35	Pro Ser Ser Pro Trp Lys Leu Gly Asp Cys Gly Pro Gln Asp Asp Asp	180	185	190	
40	Thr Glu Ser Cys Leu Cys Pro Leu Glu Met Asn Val Ala Gln Glu Phe	195	200	205	
45	Gln Leu Arg Arg Arg Gln Leu Gly Ser Gln Gly Ser Ser Trp Ser Lys	210	215	220	
50	Trp Ser Ser Pro Val Cys Val Pro Pro Glu Asn Pro Pro Gln Pro Gln	225	230	235	240
55	Val Arg Phe Ser Val Glu Gln Leu Gly Gln Asp Gly Arg Arg Arg Leu	245	250	255	
60	Thr Leu Lys Glu Gln Pro Thr Gln Leu Glu Leu Pro Glu Gly Cys Gln	260	265	270	
65	Gly Leu Ala Pro Gly Thr Glu Val Thr Tyr Arg Leu Gln Leu His Met	275	280	285	
70	Leu Ser Cys Pro Cys Lys Ala Lys Ala Thr Arg Thr Leu His Leu Gly	290	295	300	
75	Lys Met Pro Tyr Leu Ser Gly Ala Ala Tyr Asn Val Ala Val Ile Ser	305	310	315	320

EP 2 493 925 B1

Ser Asn Gln Phe Gly Pro Gly Leu Asn Gln Thr Trp His Ile Pro Ala
 325 330 335

5 Asp Thr His Thr Glu Pro Val Ala Leu Asn Ile Ser Val Gly Thr Asn
 340 345 350

Gly Thr Thr Met Tyr Trp Pro Ala Arg Ala Gln Ser Met Thr Tyr Cys
 355 360 365

10 Ile Glu Trp Gln Pro Val Gly Gln Asp Gly Gly Leu Ala Thr Cys Ser
 370 375 380

Leu Thr Ala Pro Gln Asp Pro Asp Pro Ala Gly Met Ala Thr Tyr Ser
 385 390 395 400

15 Trp Ser Arg Glu Ser Gly Ala Met Gly Gln Glu Lys Cys Tyr Tyr Ile
 405 410 415

20 Thr Ile Phe Ala Ser Ala His Pro Glu Lys Leu Thr Leu Trp Ser Thr
 420 425 430

Val Leu Ser Thr Tyr His Phe Gly Gly Asn Ala Ser Ala Ala Gly Thr
 25 435 440 445

30 Pro His His Val Ser Val Lys Asn His Ser Leu Asp Ser Val Ser Val
 450 455 460

Asp Trp Ala Pro Ser Leu Leu Ser Thr Cys Pro Gly Val Leu Lys Glu
 465 470 475 480

35 Tyr Val Val Arg Cys Arg Asp Glu Asp Ser Lys Gln Val Ser Glu His
 485 490 495

40 Pro Val Gln Pro Thr Glu Thr Gln Val Thr Leu Ser Gly Leu Arg Ala
 500 505 510

Gly Val Ala Tyr Thr Val Gln Val Arg Ala Asp Thr Ala Trp Leu Arg
 515 520 525

45 Gly Val Trp Ser Gln Pro Gln Arg Phe Ser Ile Glu Val Gln Val Ser
 530 535 540

50 Asp Trp Leu Ile Phe Phe Ala Ser Leu Gly Ser Phe Leu Ser Ile Leu
 545 550 555 560

Leu Val Gly Val Leu Gly Tyr Leu Gly Leu Asn Arg Ala Ala Arg His
 565 570 575

55 Leu Cys Pro Pro Leu Pro Thr Pro Cys Ala Ser Ser Ala Ile Glu Phe

580

585

590

5 Pro Gly Gly Lys Glu Thr Trp Gln Trp Ile Asn Pro Val Asp Phe Gln
 595 600 605

10 Glu Glu Ala Ser Leu Gln Glu Ala Leu Val Val Glu Met Ser Trp Asp
 610 615 620

15 Lys Gly Glu Arg Thr Glu Pro Leu Glu Lys Thr Glu Leu Pro Glu Gly
 625 630 635 640

20 Ala Pro Glu Leu Ala Leu Asp Thr Glu Leu Ser Leu Glu Asp Gly Asp
 645 650 655

25 Arg Cys Lys Ala Lys Met
 660

<210> 152

<211> 360

<212> DNA

25 <213> Homo sapiens

<400> 152

30 caggtgcagc tgcaggagtc gggcccgagga ctggtaagc cttcacagac cctgtccctc 60

acctgcactg tctctgggtgg ctccatcagc agtgggtggtt actactggag ctggatccgc 120

cagcacccag ggaagggcct ggagtggatt gggcacatcc attacagtgg gaacacctac 180

35 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaatcagttc 240

tccctgaaac tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgcgaaat 300

cgcgggttct actacggtat ggacgtctgg ggccaaggga ccacggtcac cgtctcctca 360

40

<210> 153

<211> 120

<212> PRT

45 <213> Homo sapiens

<400> 153

50

55

1 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 5 10 15

5 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly
 10 20 25 30

10 Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 15 35 40 45

20 Trp Ile Gly His Ile His Tyr Ser Gly Asn Thr Tyr Tyr Asn Pro Ser
 25 50 55 60

15 Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
 20 65 70 75 80

25 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 30 85 90 95

25 Cys Ala Arg Asn Arg Gly Phe Tyr Tyr Gly Met Asp Val Trp Gly Gln
 30 100 105 110

35 Gly Thr Thr Val Thr Val Ser Ser
 40 115 120

30 <210> 154

<211> 23

<212> PRT

<213> Artificial Sequence

35 <220>

<223> Honeybee melittin signal

40 <400> 154

45 Met Lys Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile
 50 1 5 10 15

45 Ser Tyr Ile Tyr Ala Ala Ala
 50 20

45 <210> 155

<211> 6

<212> PRT

<213> Artificial Sequence

50 <220>

<223> His Tag

55 <400> 155

His His His His His His
1 5

5

10 **Claims**

1. An antigen binding protein that binds to human IL-23, wherein said antigen binding protein comprises:

15 (i)

15 (a) a heavy chain variable region comprising
a CDRH1 having SEQ ID NO:91,
a CDRH2 having SEQ ID NO: 92 and
a CDRH3 having SEQ ID NO:93,

20 and a light chain variable region comprising

25 a CDRL1 having SEQ ID NO:62,
a CDRL2 having SEQ ID NO:63 and
a CDRL3 having SEQ ID NO:64;

30 or

30 (b) a heavy chain variable region comprising
a CDRH1 having SEQ ID NO:109,
a CDRH2 having SEQ ID NO: 116 and
a CDRH3 having SEQ ID NO:111,

35 and a light chain variable region comprising

40 a CDRL1 having SEQ ID NO:80,
a CDRL2 having SEQ ID NO:81 and
a CDRL3 having SEQ ID NO:76;

45 and wherein said antigen binding protein according to (a) or (b) binds to human IL-23 with a K_D of $\leq 5 \times 10^{-12}$ M,
or

45 (ii) a heavy chain variable region of SEQ ID NO:31 and a light chain variable region of SEQ ID NO:1; or a heavy
chain variable region of SEQ ID NO:46 or 153 and a light chain variable region of SEQ ID NO:15;
wherein said antigen binding protein is a monoclonal antibody, a recombinant antibody, a human antibody, a
chimeric antibody, a multispecific antibody, or an antibody fragment thereof.

50 2. An antigen binding protein according to claim 1 part (i)(a), wherein said antigen binding protein binds to human IL-
23 with a K_D of $\leq 5 \times 10^{-13}$ M.

55 3. An antigen binding protein according to claim 1 part (i)(b), wherein said antigen binding protein has a K_{off} rate of \leq
 5×10^{-6} 1/s.

4. An antigen binding protein of any of the preceding claims, wherein said antigen binding protein is an antibody,
optionally an antibody of the IgG1-, IgG2- IgG3- or IgG4-type.

5. An antigen binding protein of any one of claims 1-3, wherein

(i) said antibody fragment is a Fab fragment, a Fab' fragment, a F(ab')₂ fragment, a Fv fragment, a diabody, or a single chain antibody molecule;

(ii) said antigen binding protein is a human antibody; or

(iii) said antigen binding protein is a monoclonal antibody.

5 6. A nucleic acid molecule, wherein said nucleic acid molecule encodes an antigen binding protein of any one of the preceding claims, said nucleic acid molecule optionally being operably linked to a control sequence.

10 7. A nucleic acid molecule according to claim 6, wherein the nucleic acid molecule comprises the heavy chain variable region nucleic acid SEQ ID NO: 32 and the light chain variable region nucleic acid SEQ ID NO: 2.

15 8. A nucleic acid molecule according to claim 6, wherein the nucleic acid molecule comprises the heavy chain variable region nucleic acid SEQ ID NO: 47 and the light chain variable region nucleic acid SEQ ID NO: 16.

19 9. A vector comprising a nucleic acid molecule according to any one of claims 6-8.

20 10. A host cell comprising the nucleic acid molecule according to any one of claims 6-8 or the vector of claim 9.

25 11. A method of making the antigen binding protein of any one of claims 1-5 comprising the step of preparing said antigen binding protein from a host cell that secretes said antigen binding protein.

30 12. An antigen binding protein of any one of claims 1-5, wherein said antigen binding protein has at least one property selected from the group consisting of:

35 a) reducing human IL-23 activity in a STAT-luciferase assay;

36 b) reducing production of a proinflammatory cytokine;

37 c) having a K_{off} rate of $\leq 5 \times 10^{-6}$ 1/s; and

38 d) having an IC_{50} of ≤ 400 pM.

40 13. A pharmaceutical composition comprising at least one antigen binding protein of any one of claims 1-5 and pharmaceutically acceptable excipient.

45 14. A pharmaceutical composition of claim 13, wherein said pharmaceutical composition

50 (i) further comprises a labeling group or an effector group;

51 (ii) further comprises a labeling group, wherein said labeling group is selected from the group consisting of isotopic labels, magnetic labels, redox active moieties, optical dyes, biotinylated groups and predetermined polypeptide epitopes recognized by a secondary reporter;

52 (iii) further comprises an effector group, wherein said effector group is selected from the group consisting of a radioisotope, radionuclide, a toxin, a therapeutic group and a chemotherapeutic group; or

53 (iv) further comprises a labeling group, wherein said antigen binding protein is coupled to a labeling group.

55 15. At least one antigen binding protein of any one of claims 1-5 for use for treating or preventing a condition associated with IL-23 in a patient; wherein the condition is selected from the group consisting of

56 (i) an inflammatory disorder, a rheumatic disorder, an autoimmune disorder, an oncological disorder and a gastrointestinal disorder; or

57 (ii) multiple sclerosis, rheumatoid arthritis, cancer, psoriasis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, systemic lupus erythematosus, psoriatic arthritis, autoimmune myocarditis; type 1 diabetes and ankylosing spondylitis.

58 16. An antigen binding protein for use according to claim 15, wherein the antigen-binding protein is administered alone or as a combination therapy.

59 17. At least one antigen binding protein of any one of claims 1-5 for use in therapy, wherein said antigen binding protein reduces IL-23 activity in a patient and wherein said IL-23 activity is inducing production of a proinflammatory cytokine.

Patentansprüche

1. Antigenbindungsprotein, das an humanes IL-23 bindet, wobei das Antigenbindungsprotein Folgendes umfasst:

5 (i)

(a) eine variable Region einer schweren Kette, umfassend

eine CDRH1 mit SEQ ID NR. 91

10 eine CDRH2 mit SEQ ID NR. 92 und
eine CDRH3 mit SEQ ID NR. 93

und eine variable Region einer leichten Kette, umfassend

15 eine CDRL1 mit SEQ ID NR. 62

eine CDRL2 mit SEQ ID NR. 63 und
eine CDRL3 mit SEQ ID NR. 64;

20 oder

(b) eine variable Region einer schweren Kette, umfassend

eine CDRH1 mit SEQ ID NR. 109

eine CDRH2 mit SEQ ID NR. 116 und
eine CDRH3 mit SEQ ID NR. 111

25 und eine variable Region einer leichten Kette, umfassend

eine CDRL1 mit SEQ ID NR. 80

30 eine CDRL2 mit SEQ ID NR. 81 und
eine CDRL3 mit SEQ ID NR. 76;

35 und wobei das Antigenbindungsprotein nach (a) oder (b) an humanes IL-23 mit einer K_D von $\leq 5 \times 10^{-12}$ M bindet;
oder

(ii) eine variable Region einer schweren Kette mit SEQ ID NR. 31 und eine variable Region einer leichten Kette
35 mit SEQ ID NR. 1; oder eine variable Region einer schweren Kette mit SEQ ID NR. 46 oder 153 und eine
variable Region einer leichten Kette mit SEQ ID NR. 15;

40 wobei es sich bei dem Antigenbindungsprotein um einen monoklonalen Antikörper, einen rekombinanten Antikörper,
einen Humanantikörper, einen chimären Antikörper, einen multispezifischen Antikörper oder um ein Antikörperfrag-
ment davon handelt.

2. Antigenbindungsprotein nach Anspruch 1 Teil (i)(a), wobei das Antigenbindungsprotein an humanes IL-23 mit einer
 K_D von $\leq 5 \times 10^{-13}$ M bindet.

45 3. Antigenbindungsprotein nach Anspruch 1 Teil (i)(b), wobei das Antigenbindungsprotein eine K_{off} -Rate von $\leq 5 \times$
 10^{-6} 1/s aufweist.

4. Antigenbindungsprotein nach einem der vorhergehenden Ansprüche, wobei es sich bei dem Antigenbindungsprotein
50 um einen Antikörper, wahlweise um einen Antikörper des Typs IgG1, IgG2, IgG3 oder IgG4 handelt.

5. Antigenbindungsprotein nach einem der Ansprüche 1 bis 3, wobei

55 (i) es sich bei dem Antikörperfragment um ein Fab-Fragment, ein Fab'-Fragment, ein $F(ab')_2$ -Fragment, ein Fv-
Fragment, einen Diabody oder ein einkettiges Antikörpermolekül handelt;

(ii) es sich bei dem Antigenbindungsprotein um einen Humanantikörper handelt; oder

(iii) es sich bei dem Antigenbindungsprotein um einen monoklonalen Antikörper handelt.

6. Nukleinsäuremolekül, wobei das Nukleinsäuremolekül ein Antigenbindungsprotein nach einem der vorhergehenden

Ansprüche kodiert, wobei das Nukleinsäuremolekül wahlweise funktionell mit einer Kontrollsequenz verknüpft ist.

7. Nukleinsäuremolekül nach Anspruch 6, wobei das Nukleinsäuremolekül die Nukleinsäure SEQ ID Nr. 32 der variablen Region einer schweren Kette und die Nukleinsäure SEQ ID Nr. 2 der variablen Region einer leichten Kette umfasst.
8. Nukleinsäuremolekül nach Anspruch 6, wobei das Nukleinsäuremolekül die Nukleinsäure SEQ ID Nr. 47 der variablen Region einer schweren Kette und die Nukleinsäure SEQ ID Nr. 16 der variablen Region einer leichten Kette umfasst.
9. Vektor, umfassend ein Nukleinsäuremolekül nach einem der Ansprüche 6 bis 8.
10. Wirtszelle, umfassend das Nukleinsäuremolekül nach einem der Ansprüche 6 bis 8 oder den Vektor nach Anspruch 9.
11. Verfahren der Herstellung des Antigenbindungsproteins nach einem der Ansprüche 1 bis 5, umfassend den Schritt der Gewinnung des Antigenbindungsproteins aus einer Wirtszelle, welche das Antigenbindungsprotein sezerniert.
12. Antigenbindungsprotein nach einem der Ansprüche 1 bis 5, wobei das Antigenbindungsprotein mindestens eine Eigenschaft aufweist, die aus der Gruppe ausgewählt ist, welche aus den Folgenden besteht:
 - a) Reduzierung der Aktivität von humanem IL-23 in einem STAT-Luciferase-Assay;
 - b) Reduzierung der Herstellung eines entzündungsfördernden Zytokins;
 - c) eine K_{off} -Rate von $\leq 5 \times 10^{-6}$ 1/s aufweisend; und
 - d) einen IC50-Wert von ≤ 400 pM aufweisend.
13. Pharmazeutische Zusammensetzung, umfassend mindestens ein Antigenbindungsprotein nach einem der Ansprüche 1 bis 5 und einen pharmazeutisch akzeptablen sonstigen Bestandteil.
14. Pharmazeutische Zusammensetzung nach Anspruch 13, wobei die pharmazeutische Zusammensetzung
 - (i) ferner einer Markierungsgruppe oder eine Effektorgruppe umfasst;
 - (ii) ferner eine Markierungsgruppe umfasst, wobei die Markierungsgruppe aus der Gruppe ausgewählt ist, die aus isotopischen Markern, magnetischen Markern, redoxaktiven Einheiten, optischen Farbstoffen, biotinylierten Gruppen und im Voraus festgelegten Polypeptidepitopen, die von einem sekundären Reporter erkannt werden, besteht;
 - (iii) ferner eine Effektorgruppe umfasst, wobei die Effektorgruppe aus der Gruppe ausgewählt ist, die aus einem Radioisotop, einem Radionuklid, einem Toxin, einer therapeutischen Gruppe und einer chemotherapeutischen Gruppe besteht; oder
 - (iv) ferner eine Markierungsgruppe umfasst, wobei das Antigenbindungsprotein mit einer Markierungsgruppe verbunden ist.
15. Mindestens ein Antigenbindungsprotein nach einem der Ansprüche 1 bis 5 zur Verwendung zum Behandeln oder Verhindern eines Zustands im Zusammenhang mit IL-23 in einem Patienten; wobei der Zustand aus der Gruppe ausgewählt ist, die aus den Folgenden besteht:
 - (i) einer entzündlichen Erkrankung, einer rheumatischen Erkrankung, einer Autoimmunerkrankung, einer onkologischen Erkrankung und einer gastrointestinale Erkrankung; oder
 - (ii) multipler Sklerose, rheumatoide Arthritis, Krebs, Psoriasis, entzündlicher Darmkrankheit, Morbus Crohn, Colitis ulcerosa, systemischem Lupus erythematoses, psoriatischer Arthritis, autoimmuner Myokarditis, Typ-1-Diabetes und Spondylitis ankylosans.
16. Antigenbindungsprotein zur Verwendung nach Anspruch 15, wobei das Antigenbindungsprotein allein oder als Kombinationstherapie verabreicht wird.
17. Mindestens ein Antigenbindungsprotein nach einem der Ansprüche 1 bis 5 zur therapeutischen Verwendung, wobei das Antigenbindungsprotein die Aktivität von IL-23 in einem Patienten reduziert und wobei die Aktivität von IL-23 die Bildung eines entzündungsfördernden Zytokins induziert.

Revendications

1. Protéine de liaison à un antigène qui se lie à l'IL-23 humaine, dans laquelle ladite protéine de liaison à un antigène comprend :

5

(i)

(a) une région variable de chaîne lourde comprenant

10

une CDRH1 ayant SEQ ID NO : 91,
une CDRH2 ayant SEQ ID NO : 92 et
une CDRH3 ayant SEQ ID NO : 93,

15

et une région variable de chaîne légère comprenant

15

une CDRL1 ayant SEQ ID NO : 62,
une CDRL2 ayant SEQ ID NO : 63 et
une CDRL3 ayant SEQ ID NO : 64 ;

20

ou

(b) une région variable de chaîne lourde comprenant

25

une CDRH1 ayant SEQ ID NO : 109,
une CDRH2 ayant SEQ ID NO : 116 et
une CDRH3 ayant SEQ ID NO : 111,

et une région variable de chaîne légère comprenant

30

une CDRL1 ayant SEQ ID NO : 80,
une CDRL2 ayant SEQ ID NO : 81 et
une CDRL3 ayant SEQ ID NO : 76 ;

35

et dans laquelle ladite protéine de liaison à un antigène selon (a) ou (b) se lie à l'IL-23 humaine avec une K_D de $\leq 5 \times 10^{-12}$ M ;

ou

(ii) une région variable de chaîne lourde de SEQ ID NO : 31 et une région variable de chaîne légère de SEQ ID NO : 1 ; ou une région variable de chaîne lourde de SEQ ID NO : 46 ou 153 et une région variable de chaîne légère de SEQ ID NO : 15;

40

dans laquelle ladite protéine de liaison à un antigène est un anticorps monoclonal, un anticorps recombinant, un anticorps humain, un anticorps chimérique, un anticorps multispécifique, ou un fragment d'anticorps de ceux-ci.

45

2. Protéine de liaison à un antigène selon la revendication 1 partie (i)(a), dans laquelle ladite protéine de liaison à un antigène se lie à l'IL-23 humaine avec une K_D de $\leq 5 \times 10^{-13}$ M.

50

3. Protéine de liaison à un antigène selon la revendication 1 partie (i)(b), dans laquelle ladite protéine de liaison à un antigène a une vitesse de dissociation (K_{off}) de $\leq 5 \times 10^{-6}$ 1/s.

55

4. Protéine de liaison à un antigène selon l'une quelconque des revendications précédentes, dans laquelle ladite protéine de liaison à un antigène est un anticorps, facultativement un anticorps du type IgG1, IgG2, IgG3 ou IgG4.

5. Protéine de liaison à un antigène selon l'une quelconque des revendications 1 à 3, dans laquelle

(i) ledit fragment d'anticorps est un fragment Fab, un fragment Fab', un fragment F(ab')₂, un fragment Fv, un diacorps, ou une molécule d'anticorps monocaténaire ;

(ii) ladite protéine de liaison à un antigène est un anticorps humain ; ou

(iii) ladite protéine de liaison à un antigène est un anticorps monoclonal.

6. Molécule d'acide nucléique, dans laquelle ladite molécule d'acide nucléique code pour une protéine de liaison à un antigène selon l'une quelconque des revendications précédentes, ladite molécule d'acide nucléique étant facultativement fonctionnellement liée à une séquence de contrôle.

5 7. Molécule d'acide nucléique selon la revendication 6, dans laquelle la molécule d'acide nucléique comprend l'acide nucléique de région variable de chaîne lourde SEQ ID NO : 32 et l'acide nucléique de région variable de chaîne légère SEQ ID NO : 2.

10 8. Molécule d'acide nucléique selon la revendication 6, dans laquelle la molécule d'acide nucléique comprend l'acide nucléique de région variable de chaîne lourde SEQ ID NO : 47 et l'acide nucléique de région variable de chaîne légère SEQ ID NO : 16.

9. Vecteur comprenant une molécule d'acide nucléique selon l'une quelconque des revendications 6 à 8.

15 10. Cellule hôte comprenant la molécule d'acide nucléique selon l'une quelconque des revendications 6 à 8 ou le vecteur selon la revendication 9.

11. Procédé de production de la protéine de liaison à un antigène selon l'une quelconque des revendications 1 à 5, comprenant l'étape de préparation de ladite protéine de liaison à un antigène à partir d'une cellule hôte qui sécrète 20 ladite protéine de liaison à un antigène.

12. Protéine de liaison à un antigène selon l'une quelconque des revendications 1 à 5, dans laquelle ladite protéine de liaison à un antigène a au moins une propriété sélectionnée dans le groupe constitué de :

25 a) réduire l'activité de l'IL-23 humaine dans un essai STAT-luciférase ;
 b) réduire la production d'une cytokine pro-inflammatoire ;
 c) avoir une vitesse de dissociation (K_{off}) de $\leq 5 \times 10^{-6}$ 1/s ; et
 d) avoir une IC_{50} de ≤ 400 pM.

30 13. Composition pharmaceutique comprenant au moins une protéine de liaison à un antigène selon l'une quelconque des revendications 1 à 5, et un excipient pharmaceutiquement acceptable.

14. Composition pharmaceutique selon la revendication 13, dans laquelle ladite composition pharmaceutique

35 (i) comprend en outre un groupe de marquage ou un groupe effecteur ;
 (ii) comprend en outre un groupe de marquage, dans laquelle ledit groupe de marquage est sélectionné dans le groupe constitué de marqueurs isotopiques, de marqueurs magnétiques, de fractions actives de redox, de colorants optiques, de groupes biotinylés et d'épitopes polypeptidiques prédéterminés reconnus par un rapporteur secondaire ;

40 (iii) comprend en outre un groupe effecteur, dans laquelle ledit groupe effecteur est sélectionné dans le groupe constitué d'un radioisotope, d'un radionucléide, d'une toxine, d'un groupe thérapeutique et d'un groupe chimiothérapeutique ; ou
 (iv) comprend en outre un groupe de marquage, dans laquelle ladite protéine de liaison à un antigène est couplée à un groupe de marquage.

45 15. Au moins une protéine de liaison à un antigène selon l'une quelconque des revendications 1 à 5, pour son utilisation dans le traitement ou la prévention d'une affection associée à l'IL-23 chez un patient ; dans laquelle l'affection est sélectionnée dans le groupe constitué de :

50 (i) un trouble inflammatoire, un trouble rhumatismaux, un trouble auto-immun, un trouble oncologique et un trouble gastro-intestinal ; ou
 (ii) la sclérose en plaques, la polyarthrite rhumatoïde, le cancer, le psoriasis, une affection abdominale inflammatoire, la maladie de Crohn, la recto-colite hémorragique, le lupus érythémateux systémique, l'arthrite psoriasique, la myocardite auto-immune ; le diabète de type 1 et la spondylarthrite ankylosante.

55 16. Protéine de liaison à un antigène pour son utilisation selon la revendication 15, dans laquelle la protéine de liaison à un antigène est administrée seule ou sous la forme d'une thérapie combinée.

17. Au moins une protéine de liaison à un antigène selon l'une quelconque des revendications 1 à 5, pour son utilisation en thérapie, dans laquelle ladite protéine de liaison à un antigène réduit l'activité de l'IL-23 chez un patient et dans laquelle ladite activité de l'IL-23 est l'induction de la production d'une cytokine pro-inflammatoire.

5

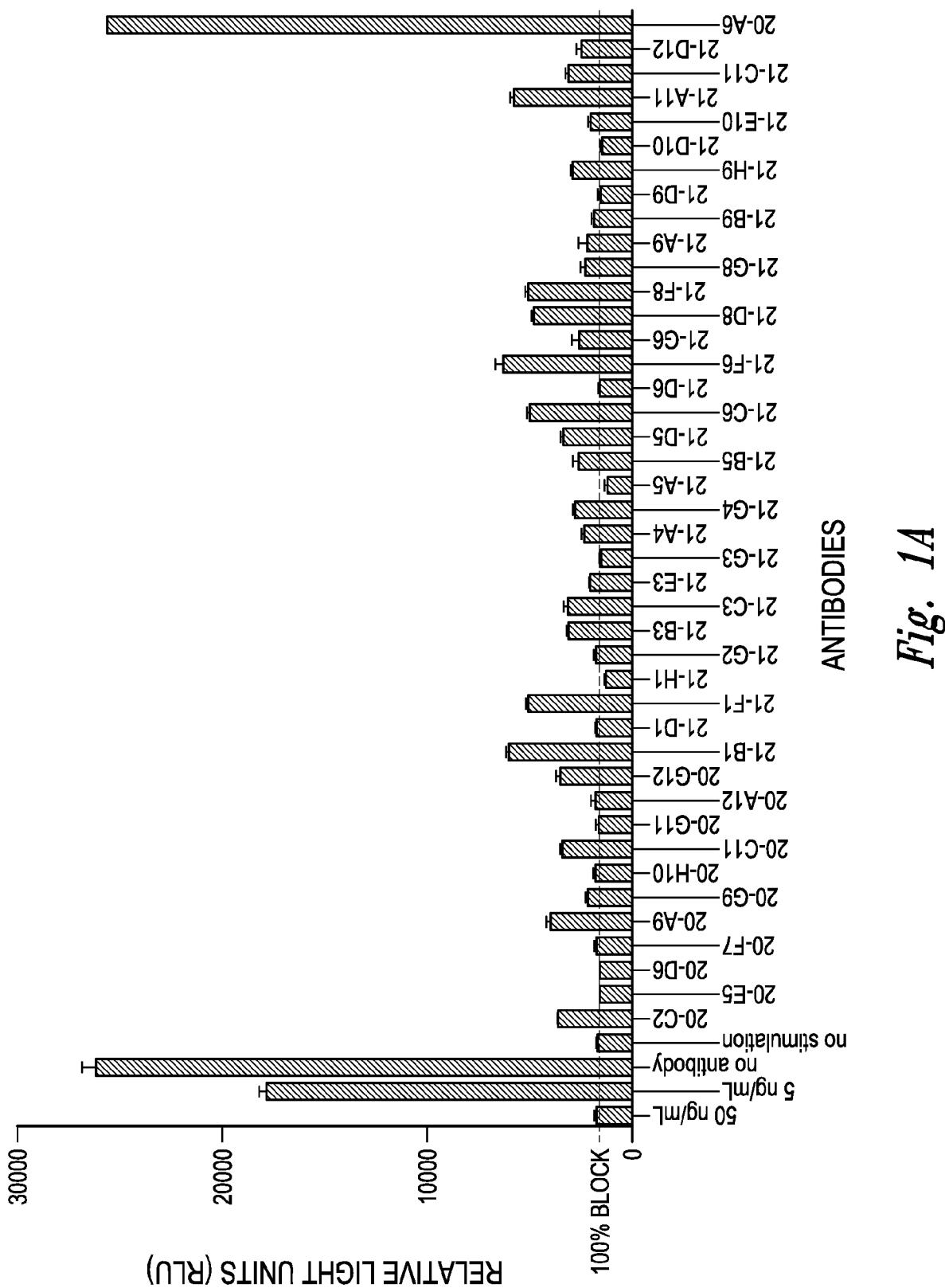
10

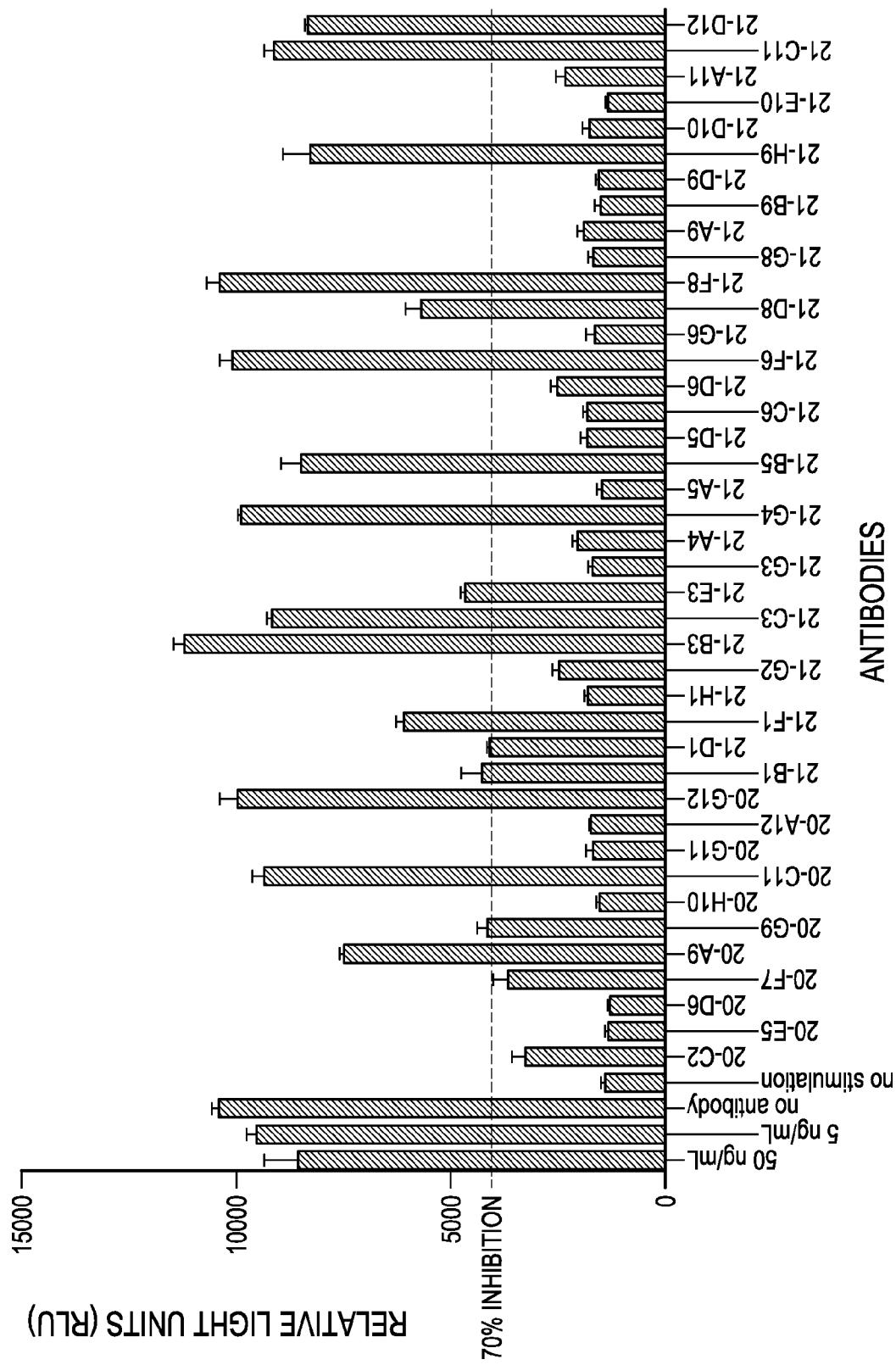
15

20

25

30


35


40

45

50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 7491391 B [0003]
- WO 199905280 A [0003]
- WO 20070244846 A [0003]
- WO 2007027714 A [0003]
- WO 2007076524 A [0003] [0033]
- WO 2007147019 A [0003]
- WO 2008103473 A [0003]
- WO 2008103432 A [0003]
- WO 2009043933 A [0003]
- WO 2009082624 A [0003]
- WO 0009560 A [0052]
- US 4816567 A [0087]
- US 6180370 B [0087]
- US 5693762 A [0087] [0088]
- US 5693761 A [0087]
- US 5585089 A [0087] [0088]
- US 5530101 A [0087]
- WO 9633735 A [0091]
- WO 9402602 A [0091]
- US 5545807 A [0091] [0092]
- US 6713610 B [0091]
- US 6673986 B [0091]
- US 6162963 A [0091]
- US 6300129 B [0091]
- US 6255458 B [0091]
- US 5877397 A [0091] [0092]
- US 5874299 A [0091] [0092]
- US 5545806 A [0091] [0092]
- WO 9110741 A [0091]
- WO 9004036 A [0091]
- EP 546073 B1 [0091]
- EP 546073 A1 [0091]
- US 5569825 A [0092]
- US 5625126 A [0092]
- US 5633425 A [0092]
- US 5789650 A [0092]
- US 5661016 A [0092]
- US 5814318 A [0092]
- US 5770429 A [0092]
- WO 931227 A [0092]
- WO 9222646 A [0092]
- WO 9203918 A [0092]
- WO 9824893 A [0092]
- WO 9910494 A [0094]
- WO 8801649 A [0096]
- US 4946778 A [0096]
- US 5260203 A [0096]
- US 5011912 A [0118]
- US 4751180 A [0119]
- US 4935233 A [0119]
- WO 9410308 A [0119]
- WO 9310151 A [0121]
- US 5426048 A [0121]
- US 5262522 A [0121]
- US 5457035 A [0121]
- WO 8705330 A [0125]
- US 4399216 A [0139]
- US 4912040 A [0139]
- US 4740461 A [0139]
- US 4959455 A [0139]
- US 6270964 B [0140]
- US 4965195 A [0155]
- EP 0367566 A [0155]
- US 4968607 A [0155]
- EP 0460846 A [0155]
- WO 61381287 A [0230]
- WO 61254982 A [0230]

Non-patent literature cited in the description


- OPPMANN et al. *Immunity*, 2000, vol. 13, 713-715 [0001] [0033] [0034]
- PARHAM et al. *J. Immunol.*, 2002, vol. 168, 5699-708 [0001]
- AHERN et al. *Immun. Rev*, 2008, vol. 226, 147-159 [0002]
- CUA et al. *Nature*, 2003, vol. 421, 744-748 [0002]
- YAGO et al. *Arthritis Res and Ther.*, 2007, vol. 9 (5), R96 [0002]
- KASTELEIN et al. *Annual Review of Immunology*, 2007, vol. 25, 221-42 [0002]
- LIU et al. *Rheumatology*, 2007, vol. 46 (8), 1266-73 [0002]
- BOWMAN et al. *Current Opinion in Infectious Diseases*, 2006, vol. 19, 245-52 [0002]
- FIESCHI ; CASANOVA. *Eur. J. Immunol.*, 2003, vol. 33, 1461-4 [0002]
- MEERAN et al. *Mol. Cancer Ther.*, 2006, vol. 5, 825-32 [0002]
- LANGOWSKI et al. *Nature*, 2006, vol. 442, 461-5 [0002]

- **SAMBROOK et al.** Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2001 [0032]
- **AUSUBEL et al.** Current Protocols in Molecular Biology. Greene Publishing Associates, 1992 [0032]
- **HARLOW ; LANE.** Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1990 [0032]
- **BEYER et al.** *J Mol Biol*, 2008, vol. 382 (4), 942-55 [0034] [0203]
- **LUPARDUS ; GARCIA.** *J. Mol. Biol.*, 2008, vol. 382, 931-941 [0034]
- Immunology-A Synthesis. Sinauer Associates, 1991 [0038]
- **STAHLI et al.** *Methods in Enzymology*, 1983, vol. 92, 242-253 [0044]
- **KIRKLAND E.** *J. Immunol.*, 1986, vol. 137, 3614-3619 [0044]
- **HARLOW ; LANE.** Antibodies, A Laboratory Manual. Cold Spring Harbor Press, 1988 [0044]
- **MOREL et al.** *Molec. Immunol*, 1988, vol. 25, 7-15 [0044]
- **CHEUNG et al.** *Virology*, 1990, vol. 176, 546-552 [0044]
- **MOLDENHAUER et al.** *Scand. J. Immunol.*, 1990, vol. 32, 77-82 [0044]
- **KORNDORFER et al.** *Proteins: Structure, Function, and Bioinformatics*, 2003, vol. 53 (1), 121-129 [0048]
- **ROQUE et al.** *Biotechnol. Prog.*, 2004, vol. 20, 639-654 [0048]
- **BLOOM et al.** *Protein Science*, 1997, vol. 6, 407 [0054]
- **LANTTO et al.** *Methods Mol. Biol.*, 2002, vol. 178, 303-316 [0054]
- Fundamental Immunology. Raven Press, 1989 [0055]
- Computational Molecular Biology. Oxford University Press, 1988 [0062]
- Biocomputing Informatics and Genome Projects. Academic Press, 1993 [0062]
- Computer Analysis of Sequence Data, Part I. Humana Press, 1994 [0062]
- **VON HEINJE, G.** Sequence Analysis in Molecular Biology. Academic Press, 1987 [0062]
- Sequence Analysis Primer. M. Stockton Press, 1991 [0062]
- **CARILLO et al.** *SIAM J. Applied Math.*, 1988, vol. 48, 1073 [0062]
- **DEVEREUX et al.** *Nucl. Acid Res.*, 1984, vol. 12, 387 [0063]
- **DAYHOFF et al.** *Atlas of Protein Sequence and Structure*, 1978, vol. 5, 345-352 [0063]
- **HENIKOFF et al.** *Proc. Natl. Acad. Sci. U.S.A.*, 1992, vol. 89, 10915-10919 [0063]
- **NEEDLEMAN et al.** *J. Mol. Biol.*, 1970, vol. 48, 443-453 [0064]
- **KABAT et al.** Sequences of Proteins of Immunological Interest. NIH Publication No. 91-3242, 1991 [0073]
- **CHOTHIA ; LESK.** *J. Mol. Biol.*, 1987, vol. 196, 901-917 [0073]
- ; **CHOTHIA et al.** *Nature*, 1989, vol. 342, 878-883 [0073]
- **LEFRANC et al.** *Dev. Comp. Immunol.*, 2005, vol. 29, 185-203 [0073]
- **PLUCKTHUN.** *J. Mol. Biol.*, 2001, vol. 309 (3), 657-670 [0073]
- **MORRISON et al.** *Proc. Natl. Acad. Sci. USA*, 1985, vol. 81, 6851-6855 [0087]
- **JONES et al.** *Nature*, 1986, vol. 321, 522-525 [0088]
- **RIECHMANN et al.** *Nature*, 1988, vol. 332, 323-27 [0088]
- **VERHOEYEN et al.** *Science*, 1988, vol. 239, 1534-1536 [0088]
- **JAKOBOWITS et al.** *Proc. Natl. Acad. Sci. USA*, 1993, vol. 90, 2551-2555 [0091]
- **JAKOBOWITS et al.** *Nature*, 1993, vol. 362, 255-258 [0091]
- **BRUGGERMANN et al.** *Year in Immunol.*, 1993, vol. 7, 33 [0091]
- **LONBERG et al.** *Nature*, 1994, vol. 368, 856-859 [0092]
- **LONBERG ; HUSZAR.** *Intern. Rev. Immunol.*, 1995, vol. 13, 65-93 [0092]
- **HARDING ; LONBERG.** *Ann. N.Y Acad. Sci.*, 1995, vol. 764, 536-546 [0092]
- **TAYLOR et al.** *Nucleic Acids Research*, 1992, vol. 20, 6287-6295 [0092]
- **CHEN et al.** *International Immunology*, 1993, vol. 5, 647-656 [0092]
- **TUAILLON et al.** *J. Immunol.*, 1994, vol. 152, 2912-2920 [0092]
- **LONBERG.** *Handbook of Exp. Pharmacology*. 1994, vol. 113, 49-101 [0092]
- **TAYLOR et al.** *International Immunology*, 1994, vol. 6, 579-591 [0092]
- **LONBERG ; HUSZAR.** *Intern. Rev. Immunol.*, 1995, vol. 13, 65-93 [0092]
- **HARDING ; LONBERG.** *Ann. N.Y Acad. Sci.*, 1995, vol. 764, 536-546 [0092]
- **FISHWILD et al.** *Nature Biotechnology*, 1996, vol. 14, 845-85 [0092]
- **MENDEZ et al.** *Nature Genetics*, 1997, vol. 15, 146-156 [0092]
- **HOOGENBOOM et al.** *J. Mol. Biol.*, 1991, vol. 227, 381 [0094]
- **MARKS et al.** *J. Mol. Biol.*, 1991, vol. 222, 581 [0094]
- **SONGSIVILAI ; LACHMANN.** *Clin. Exp. Immunol.*, 1990, vol. 79, 315-321 [0095]
- **KOSTELNY et al.** *J. Immunol.*, 1992, vol. 148, 1547-1553 [0095]
- **BIRD.** *Science*, 1988, vol. 242, 423 [0096]
- **HUSTON et al.** *Proc. Natl. Acad. Sci. U.S.A.*, 1988, vol. 85, 5879 [0096]
- **WARD et al.** *Nature*, 1989, vol. 334, 544 [0096]
- **DE GRAAF et al.** *Methods Mol Biol.*, 2002, vol. 178, 379-387 [0096]

- KORTT et al. *Prot. Eng.*, 1997, vol. 10, 423 [0096]
- KORTT et al. *Biomol. Eng.*, 2001, vol. 18, 95-108 [0096]
- KRIANGKUM et al. *Biomol. Eng.*, 2001, vol. 18, 31-40 [0096]
- HOLLIGER et al. *Proc. Natl. Acad. Sci. USA*, 1993, vol. 90, 6444-48 [0097]
- POLJAK et al. *Structure*, 1994, vol. 2, 1121-23 [0097]
- FREDERICKS et al. *Protein Engineering, Design & Selection*, 2004, vol. 17, 95-106 [0097]
- POWERS et al. *Journal of Immunological Methods*, 2001, vol. 251, 123-135 [0097]
- SHU et al. *Proc. Natl. Acad. Sci. USA*, 1993, vol. 90, 7995-7999 [0097]
- HAYDEN et al. *Therapeutic Immunology*, 1994, vol. 1, 3-15 [0097]
- KYTE et al. *J. Mol. Biol.*, 1982, vol. 157, 105-131 [0103]
- MOULT. *Curr. Op. in Biotech*, 1996, vol. 7, 422-427 [0110]
- CHOU et al. *Biochem.*, 1974, vol. 13, 222-245 [0110]
- CHOU et al. *Biochemistry*, 1974, vol. 113, 211-222 [0110]
- CHOU et al. *Adv. Enzymol. Relat. Areas Mol. Biol.*, 1978, vol. 47, 45-148 [0110]
- CHOU et al. *Ann. Rev. Biochem.*, 1979, vol. 47, 251-276 [0110]
- CHOU et al. *Biophys. J.*, 1979, vol. 26, 367-384 [0110]
- HOLM et al. *Nucl. Acid. Res.*, 1999, vol. 27, 244-247 [0110]
- BRENNER et al. *Curr. Op. Struct. Biol.*, 1997, vol. 7, 369-376 [0110]
- JONES. *Curr. Opin. Struct. Biol.*, 1997, vol. 7, 377-387 [0111]
- SIPPL et al. *Structure*, 1996, vol. 4, 15-19 [0111]
- BOWIE et al. *Science*, 1991, vol. 253, 164-170 [0111]
- GRIBSKOV et al. *Meth. Enzym.*, 1990, vol. 183, 146-159 [0111]
- GRIBSKOV et al. *Proc. Natl. Acad. Sci.*, 1987, vol. 84, 4355-4358 [0111]
- Proteins, Structures and Molecular Principles. Free-man and Company, 1984 [0113]
- Introduction to Protein Structure. Garland Publishing, 1991 [0113]
- THORNTON et al. *Nature*, 1991, vol. 354, 105 [0113]
- FAUCHERE. *Adv. Drug Res.*, 1986, vol. 15, 29 [0116]
- VEBER ; FREIDINGER. *TINS*, 1985, 392 [0116]
- EVANS et al. *J. Med. Chem.*, 1987, vol. 30, 1229 [0116]
- RIZO ; GIERASCH. *Ann. Rev. Biochem.*, 1992, vol. 61, 387 [0116]
- HOPP et al. *Bio/Technology*, 1988, vol. 6, 1204 [0118]
- HOPPE et al. *FEBS Letters*, 1994, vol. 344, 191 [0119]
- FANSLOW et al. *Semin. Immunol.*, 1994, vol. 6, 267-278 [0119]
- ASHKENAZI et al. *Proc. Natl. Acad. Sci. USA*, 1991, vol. 88, 10535 [0120]
- BYRN et al. *Nature*, 1990, vol. 344, 677 [0120]
- HOLLENBAUGH et al. Construction of Immunoglobulin Fusion Proteins. *Current Protocols in Immunology*, 1992, vol. 4, 10.19.1-10.19.11 [0120]
- BAUM et al. *EMBO J.*, 1994, vol. 13, 3992-4001 [0121]
- APLIN ; WRISTON. *CRC Crit. Rev. Biochem.*, 1981, 259-306 [0125]
- HAKIMUDDIN et al. *Arch. Biochem. Biophys.*, 1987, vol. 259, 52 [0126]
- EDGE et al. *Anal. Biochem.*, 1981, vol. 118, 131 [0126]
- THOTAKURA et al. *Meth. Enzymol.*, 1987, vol. 138, 350 [0126]
- DUSKIN et al. *J. Biol. Chem.*, 1982, vol. 257, 3105 [0126]
- MARKS et al. *BioTechnology*, 1992, vol. 10, 779 [0131]
- SAMBROOK ; FRITSCH ; MANIATIS. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2001 [0133]
- Current Protocols in Molecular Biology. John Wiley & Sons, Inc, 1995 [0133]
- Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses. Plenum Press, 1980 [0136]
- Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1988 [0136]
- BIANCHI ; MCGREW. *Biotech. Biotechnol. Bioeng.*, 2003, vol. 84, 439-44 [0140]
- Methods Enzymol. Academic Press, 1990, vol. 185 [0140]
- BENOIST ; CHAMBON. *Nature*, 1981, vol. 290, 304-310 [0154]
- THORNSSEN et al. *Proc. Natl. Acad. U.S.A.*, 1984, vol. 81, 659-663 [0154]
- YAMAMOTO et al. *Cell*, 1980, vol. 22, 787-797 [0154]
- WAGNER et al. *Proc. Natl. Acad. Sci. U.S.A.*, 1981, vol. 78, 1444-1445 [0154]
- PRINSTER et al. *Nature*, 1982, vol. 296, 39-42 [0154]
- VILLA-KAMAROFF et al. *Proc. Natl. Acad. Sci. U.S.A.*, 1978, vol. 75, 3727-3731 [0154]
- DEBOER et al. *Proc. Natl. Acad. Sci. U.S.A.*, 1983, vol. 80, 21-25 [0154]
- SWIFT et al. *Cell*, 1984, vol. 38, 639-646 [0154]
- ORNITZ et al. *Cold Spring Harbor Symp. Quant. Biol.*, 1986, vol. 50, 399-409 [0154]
- MACDONALD. *Hepatology*, 1987, vol. 7, 425-515 [0154]
- HANAHAN. *Nature*, 1985, vol. 315, 115-122 [0154]
- GROSSCHEDL et al. *Cell*, 1984, vol. 38, 647-658 [0154]

- **ADAMES et al.** *Nature*, 1985, vol. 318, 533-538 [0154]
- **ALEXANDER et al.** *Mol. Cell. Biol*, 1987, vol. 7, 1436-1444 [0154]
- **LEDER et al.** *Cell*, 1986, vol. 45, 485-495 [0154]
- **PINKERT et al.** *Genes and Devel*, 1987, vol. 1, 268-276 [0154]
- **KRUMLAUF et al.** *Mol. Cell. Biol.*, 1985, vol. 5, 1639-1648 [0154]
- **HAMMER et al.** *Science*, 1987, vol. 253, 53-58 [0154]
- **KELSEY et al.** *Genes and Devel*, 1987, vol. 1, 161-171 [0154]
- **MOGRAM et al.** *Nature*, 1985, vol. 315, 338-340 [0154]
- **KOLLIAS et al.** *Cell*, 1986, vol. 46, 89-94 [0154]
- **READHEAD et al.** *Cell*, 1987, vol. 48, 703-712 [0154]
- **SANI**. *Nature*, 1985, vol. 314, 283-286 [0154]
- **MASON et al.** *Science*, 1986, vol. 234, 1372-1378 [0154]
- **COSMAN et al.** *Nature*, 1984, vol. 312, 768 [0155]
- **SAMBROOK et al.** *Molecular Cloning: A Laboratory*. Cold Spring Harbor Laboratory Press, 2001 [0156]
- **HARLOW ; LANE**. *Antibodies: A Laboratory Manual*. Cold Spring Harbor, 1988 [0167]
- *Current Protocols In Immunology*. John Wiley & Sons, 1993 [0167]
- *Remington's Pharmaceutical Sciences including*. Mack Publishing Company, 2005 [0174]
- **HARLOW ; LANE**. *Antibodies: A Laboratory Manual*. Cold Spring Harbor Laboratory Press, 1990, 23 [0203]
- **LUPARDUS ; GARCIA**. *J Mol Biol*, 2008, vol. 382, 931-941 [0203]
- CCP4, The CCP4 suite: programs for protein crystallography. *Acta Crystallogr D Biol Crystallogr*, 1994, vol. 50, 760-3 [0208]
- **BRUNGER et al.** *Acta Crystallogr D Biol Crystallogr*, 1998, vol. 54, 905-21 [0208]
- **DELANO, W.L.** *The PyMOL Graphics System*, 2002 [0209]

Humán IL-23 antigén kötő proteinek

SZTNH-100002000

Szabadalmi igénypontok

I. Antigén kötő protein, mely egy humán IL-23-hoz kötődik, ahol az antigén kötő protein az alábbiakat tartalmazza:

(i)

(a)

egy 91. számú szekvenciával rendelkező CDRH1-t,
egy 92. számú szekvenciával rendelkező CDRH2-t és
egy 93. számú szekvenciával rendelkező CDRH3-t
tartalmazó nehéz lánc variabilis régiót; és
egy 62. számú szekvenciával rendelkező CDRL1-t,
egy 63. számú szekvenciával rendelkező CDRL2-t és
egy 64. számú szekvenciával rendelkező CDRL3-t
tartalmazó könnyű lánc variabilis régiót; vagy

(b)

egy 109. számú szekvenciával rendelkező CDRH1-t,
egy 116. számú szekvenciával rendelkező CDRH2-t és
egy 111. számú szekvenciával rendelkező CDRH3-t
tartalmazó nehéz lánc variabilis régiót; és
egy 80. számú szekvenciával rendelkező CDRL1-t,
egy 81. számú szekvenciával rendelkező CDRL2-t és
egy 76. számú szekvenciával rendelkező CDRL3-t
tartalmazó könnyű lánc variabilis régiót;

és ahol az (a) vagy (b) szerinti antigén kötő protein a humán IL-23-hoz $K_D \leq 5 \times 10^{-12}$ M értékkel kötődik; vagy

(ii) egy 31. számú szekvenciával rendelkező nehéz lánc variabilis régiót és egy 1. számú szekvenciával rendelkező könnyű lánc variabilis régiót; vagy egy 46. vagy 153. számú szekvenciával rendelkező könnyű lánc variabilis régiót; ahol az antigén kötő protein egy monoklonális antitest, egy

rekombináns antitest, egy humán antitest, egy kímer antitest, egy multispecifikus antitest, vagy azok antitest fragmense.

2. Az 1. igénypont (i)(a) része szerinti antigén kötő protein, ahol az antigén kötő protein a humán IL-23-hoz $K_D \leq 5 \times 10^{-11}$ M értékkel kötődik.

3. Az 1. igénypont (i)(b) része szerinti antigén kötő protein, ahol az antigén kötő protein K_{eff} értéke $\leq 5 \times 10^{-6}$ 1/s.

4. Az előző igénypontok bármelyike szerinti antigén kötő protein, ahol az antigén kötő protein egy antitest, adott esetben egy IgG1-, IgG2- IgG3- vagy IgG4-típusú antitest.

5. Az 1-3. igénypontok bármelyike szerinti antigén kötő protein, ahol

(i) az antitest fragmens egy Fab fragmens, egy Fab' fragmens, egy F(ab')₂ fragmens, egy Fv fragmens, egy diatest, vagy egy egyláncú antitest molekula;

(ii) az antigén kötő protein egy humán antitest; vagy

(iii) az antigén kötő protein egy monoklonális antitest.

6. Egy nukleinsav molekula, ahol a nukleinsav molekula az előző igénypontok bármelyike szerinti antigén kötő proteinet kódolja, ahol a nukleinsav molekula adott esetben működőképpen kapcsolódik egy kontroll szekvenciához.

7. Egy 6. igénypont szerinti nukleinsav molekula, ahol a nukleinsav molekula a 32. számú szekvenciával rendelkező nehéz lánc variabilis régió nukleinsavát és a 2. számú szekvenciával rendelkező könnyű lánc variabilis régió nukleinsavat tartalmazza.

8. Egy 6. igénypont szerinti nukleinsav molekula, ahol a nukleinsav molekula a 47. számú szekvenciával rendelkező nehéz lánc variabilis régió nukleinsavát és a 16. számú szekvenciával rendelkező könnyű lánc variabilis régió nukleinsavat tartalmazza.

9. Vektor, mely egy 6-8. igénypontok bármelyike szerinti nukleinsav molekulát tartalmaz.

10. Gazzdasejt, mely a 6-8. igénypontok bármelyike szerinti nukleinsav molekulát vagy a 9. igénypont szerinti vektort tartalmazza.

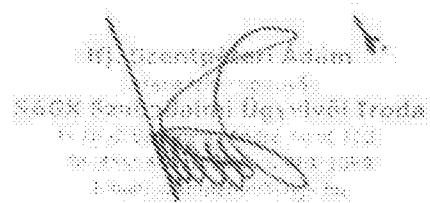
11. Eljárás az 1-5. igénypontok bármelyike szerinti antigén kötő protein előállítására, melynek során az antigén kötő proteinet egy, az antigén kötő proteinet kiválasztó gázdasejtből állítjuk elő.

12. Az 1-5. igénypontok bármelyike szerinti antigén kötő protein, ahol az antigén kötő protein legalább egy, az alábbiakban felsorolt tulajdonsággal rendelkezik:

- a) egy STAT-luciferáz eszzében a humán IL-23 aktivitást csökkenti;
- b) egy proinflammatorikus citokin termelését csökkenti;
- c) K_{off} értéke $\leq 5 \times 10^{-6}$ 1/s; és
- d) IC_{50} értéke ≤ 400 pM.

13. Gyógyászati készítmény, mely legalább egy, 1-5. igénypontok bármelyike szerinti antigén kötő proteinet és gyógyászatilag elfogadható segédanyagot tartalmaz.

14. Egy 13. igénypont szerinti gyógyászati készítmény, ahol a gyógyászati készítmény


- (i) tartalmaz továbbá egy jelzőcsoportot vagy egy effektor csoportot;
- (ii) tartalmaz továbbá egy jelzőcsoportot, ahol a jelzőcsoport izotópos jelző, mágneses jelző, redox-aktív gyök, optikai színezék, biotinilezett csoportok és egy egy szekunder reporter által felismert, előre meghatározott polipeptid építőp közül választott;
- (iii) tartalmaz továbbá egy effektor csoportot, ahol az effektor csoport egy radioizotóp, radionuklid, egy toxin, egy terápiás csoport és egy kemoterápiás csoport közül választott; vagy
- (iv) tartalmaz továbbá egy jelzőcsoportot, ahol az antigén kötő protein egy jelzőcsoporthoz van kapcsolva.

15. Az 1-5. igénypontok bármelyike szerinti antigén kötő protein egy páciensben IL-23-al összefüggő állapot kezelésére vagy megelőzésére; ahol az állapot

- (i) gyulladásos rendellenesség, reumatikus rendellenesség, autoimmun rendellenesség és gyomor-bélrendszeri rendellenesség; vagy
- (ii) sclerosis multiplex, rheumatoid artritis, rák, psoriasis, gyulladásos bélbetegség, Crohn-betegség, sekélyes colitis, systemás lupus erythematosus, psoriátiás arthritis, autoimmun myocarditis; I-típusú diabetes és ankyloskókus spondylitis közül kerül ki.

16. Egy antigén-kötő protein a 15. igénypont szerinti alkalmazásra, ahol az antigén-kötő proteinet egymagában, vagy kombinációs terápia részeként adagojuk.

17. Legalább egy 1-5. igénypontok bármelyike szerinti antigén-kötő protein terápiában történő alkalmazásra, ahol az antigén-kötő protein egy páciensben csökkentő az IL-23 aktivitást, és ahol az IL-23 aktivitás egy proinflammatorikus citokin termelését indukálja.

