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METHODS FOR FAST PROGRESSIVE EVALUATION OF POLYNOMIAL
RANGE-SUM QUERIES ON REAL-TIME DATACUBES
[0001] The U.S. Government has certain rights in this
invention pursuant to Grant Nos.EEC-9529152 (IMSC ERC) and
ITR-0082826 awarded by the National Science Foundation.

CROSS-REFERENCE TO RELATED APPLICATIONS

[0002] The present application claims the benefit of
priority under 35 U.S.C. §119 to provisional application
serial number 60/337,109, filed December 4, 2001, the

disclosure of which is incorporated herein by reference.

TECHNICAL FIELD

[0003] This invention relates to database systems, methods

for searching and computer implementations thereof.

BACKGROUND

[0004] Aggregate queries play a fundamental role in many
modern database and data mining applications. Range-sum
query evaluation is one of the most basic problems of On-
Line Analytical Processing (OLAP) Systems. Range aggregate
queries can be used to provide database users a high level
view of massive or complex datasets. These queries have
been widely studied, but much of the research has focused
on the evaluation of individual range queries. In many
applications, whether the users are humans or data mining
algorithms, range aggregate queries are issued in
structured batches. Many recently proposed techniques can
be used to evaluate a variety of aggregation operators from
simple COUNT and SUM queries to statistics such as VARIANCE
and COVARIANCE. Most of these methods attempt to provide
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efficient query answering at a reasonable update cost for a
single aggregation operation. An interesting exception is
that all second order statistical aggregation functions
(including hypothesis testing, principle component
analysis, and ANOVA) can be derived from SUM queries of
second order polynomials in the measure attributes. These
SUM queries can be supported using any proposed OLAP
method. Higher order statistics can similarly be reduced
to sums of higher order polynomials.

[0005] One way to support polynomial range-sums of any
degree using existing OLAP techniques is to treat each
independent monomial up to the required degree as a
separate measure and build a new data cube for each of
these. However, this requires the measure attributes to be
specified when the database is populated, which results in
unwieldy storage and maintenance cost for higher order
polynomials.

[0006] For example, data consumers often specify a coarse
partition of the domain of a data set, and request
aggregate query results from each cell of this partition.
This provides a data synopsis, which is used to identify
interesting regions of the data domain. Users then drill-
down into the interesting regions by partitioning them
further and requesting aggregate query results on the new
cells. The data consumer is interested in both the
individual cell values that are returned and the way the
query results change between neighboring cells.

[0007] Existing algorithms evaluate a batch of range
aggregate queries by repeatedly applying any exact,

approximate, or progressive technique designed to evaluate
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individual queries. While flexible, this approach has two
major drawbacks: 1) I/O and computational overhead are not
shared between queries; and 2) Approximate techniques
designed to minimize single query error cannot control
structural error in the result set. For example, it is
impossible to minimize the error of the difference between
neighboring cell values.

SUMMARY .
[0008] Existing methods for database queries, whether based
on sampling, R-trees, or multiresolution analysis, share a
common strategy: answer queries quickly using a low-
resolution view of the data, and progressively refine the
answer while building a sharper view. The methods,
systems, and computer programs provided herein are
fundamentally different. The invention provides a method
for optimal progressive estimates of the query, not the
data. Furthermore, the progressive evaluation comes for
free since the methods, systems, and computer programs are
exact algorithms.
[0009] Most of the wavelet query evaluation work has
focused on using wavelets to compress the underlying data,
reducing the size of the problem. ProPolyne (a method of
the invention) can use compressed data, but is designed to
work as an exact algorithm with uncompressed data.
ProPolyne produces approximate query results by compressing
gqueries, not data.
[0010] The invention provides a method comprising
processing at least one query using a wavelets algorithm to

obtain a transformed query; andeerforming a range-sum
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query on a database using the transformed query to produce
a proximate, progressive, and/or exact result.

[0011] The invention provides method coﬁprising receiving
at least one query comprising at least one requested
attribute; processing the at least one query to obtain a
summary comprising identifying a plurality of coefficients
fitting the at least one desired attribute by filtering the
query using one or more filters repeating the filtering
until a moment condition is obtained whereupon obtaining
the moment condition the query is a transformed query;
generating a transformed query table comprising a plurality
of wavelet coefficients (k) comprising values in descending
order; performing a range-sum query in a database using
wavelet coefficient (n) of the transformed query beginning
with the largest, wherein the data in the database includes
a plurality of attributes and are represented as a d-
dimensional data cube having a plurality of cells, the
dimensions of the data cube corresponding respectively to
the attributes, each cell having an aggregate value of the
corresponding data attribute vélues, the transformed query
defining a subset of the dimensions of the data cube;
computing a plurality of range-sums based on the values
corresponding to the data attributes in the subset; and
generating an exact range-sum result when n=k or an
approximate or progressive result when n<k.

[0012] The invention further provides an article of
manufacture, comprising a computer-readable medium; and
instructions on the computer readable medium for directing
a computer to: process at least one query using a wavelets

algorithm to obtain a transformed query; and perform a
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range-sum query on a database using the transformed query
to produce a proximate, progressive, and/or exact result.
[0013] The invention also provides a computer program on
computer readable medium for causing a computer to: receive
at least one query comprising at least one requested
attribute; process the at least one query to obtain a
summary comprising identifying a plurality of coefficients
fitting the at least one desired attribute by filtering the
query using one or more filters repeating the filtering
until a moment condition is obtained whereupon obtaining
the moment condition the query is a transformed query;
generate a transformed query table comprising a plurality
of wavelet coefficients (k) comprising values in descending
order; perform a range-sum query in a database using
wavelet coefficient (n) of the transformed query beginning
with the largest, wherein the data in the database includes
a plurality of attributes and are represented as a d-
dimensional data cube having a plurality of cells, the
dimensions of the data cube corresponding respectively to
the attributes, each cell having an aggregate value of the
corresponding data attribute values, the transformed query
defining a subset of the dimensions of the data cube;
compute a plurality of range-sums based on the values
corresponding to the data attributes in the subset; and
generate an exact range-sum result when n=k or an
approximate or progressive result when n<k.

[0014] The invention provides a database system for
performing a range-sum query in a database comprising: a
computer readable medium comprising instructions for

causing a computer to: process at least one query using a
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wavelets algorithm to obtain a transformed query; and
perform a range-sum query on a database using the
transformed query to produce a proximate, progressive,
and/or exact result.

[0015] The invention further provides a database system for
performing a range-sum query in a database comprising: a
computer readable medium comprising instructions for
causing a computer to: receive at least one query
comprising at least one requested attribute; process the at
least one query to obtain a summary comprising identifying
a plurality of coefficients fitting the at least one
desired attribute by filtering the query using one or more
filters repeating the filtering until a moment condition is
obtained whereupon obtaining the moment condition the query
is a transformed query; generate a transformed query table
comprising a plurality of wavelet coefficients (k)
compriéing values in descending order; perform a range-sum
query in a database using wavelet coefficient (n) of the
transformed query beginning with the largest, wherein the
data in the database includes a plurality of attributes and
are represented as a d-dimensional data cube having a
plurality of cells, the dimensions of the data cube
corresponding respectively to the attributes, each cell
having an aggregate value of the corresponding data
attribute values, the transformed query defining a subset
of the dimensions of the data cube; compute a plurality of
range-sums based on the values corresponding to the data
attributes in the subset; and generate an exact range-sum
result when n=k or an approximate or progressive result

when n<k.
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[0016] The details of one or more embodiments of the
invention are set forth in the accompanying drawings and
the description below. Other features, objects, and
advantages of the invention will be apparent from the

description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] Figure 1 shows a flow diagram depicting a method of
the invention.

[0018] Figure 2 is a flow chart showing a wavelet
transformation process of the invention.

[0019] Figure 3 is a flow chart of multiple query
processing.

[0020] Figure 4 shows a graph depicting the progressive
accuracy for Compact Data Cube (CDC) and ProPolyne-FM on
two databases (a) PETROL and (b) GPS.

[0021] Figure 5 shows a graph depicting the progressive
query accuracy for databest-B and query best-B ProPolyne
for two databases (a) PETROL and (b) GPS.

[0022] Figure 6 collectively shows a query Best-B ProPolyne
on a TEMPERATURE dataset. (A) shows the relative error vs.
range size after retrieving 500 values. (B) shows second
order statistics.

[0023] Figure 7 shows the Batch-Biggest-B algorithm for
progressive evaluation of batch vector queries.

[0024] Figure 8 shows an approximation of a typical Range-
Sum query function Qith 25 Db4 Wavelets.

[0025] Figure 9 shows an approximation of a typical Range-

Sum query function with 150 Db4 Wavelets.
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[0026] Figure 10 shows ‘a query function for typical Range-
Sum (computed Exactly using 837 Db4 Wavelets).

[0027] Figure 11 is a graph depicting a progressive mean
relative error for progression minimizing SSE.

[0028] Figure 12 is a graph depicting a progressive SSE
penalty for two progressive query strategies.

[0029] Figure 13 is a graph showing progressive cursored
SSE penalty for two progressive query strategies.

[0030] Figure 14 is a dependency graph for one-dimensional
Haar wavelets on a domain of size S.

[0031] Figure 15 shows an example of straight-line and
optimal tiles of size 3, along with usage rates.

[0032] Figure 16 shows an implementation of approximate and
progressive range-sum queries over temperature data stored
as wavelet disk blocks.

[0033] Figure 17 shows the mean number of blocks needed for
exact query answer for a variety of block sizes and
allocation techniques.

[0034] Figure 18 shows the effectiveness of different

allocation strategies for progressive and approximate query

answering.

DETAILED DESCRIPTION

[0035] Processing data stored in databases over the
Internet or on-line is a critical business application that
allows users to analyze data present in large databases
(e.g., data warehouses). The processed data can then be
used as new data such as that provided by data mining
applications. One type of data model for such applications

is the multi-dimensional database (MDDB) (e.g., a d-
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dimeﬁsional database, such as a “data cube”). A data cube
model is described, for example, by J. Gray et al. in "Data
Cube: A Relational Aggregate Operator Generalizing Group-
bys, Cross-tabs and Sub-totals," Proc. of the 12th Int'l
Conf. On Data Engineering, pp. 152-159, 1996.

[0036] A d-dimensional database comprises a plurality of
attributes. BEach data record of the d-dimensional database
contains a value for each of the data attributes. One of
these attributes is chosen as an attribute of interest.

The remaining attributes, d, are referred to as dimensions
or functional attributes. The measure attribute values of
all records with the same combination of functional
attributes are combined (e.g., summed up) into an aggregate
value. Thus, an MDDB can be viewed as a d-dimensional
array, indexed by the values of the d functional
attributes, whose cells contain the values of the measure
attribute for the corresponding combination of the
functional attribute values.

[0037] For example, a d-dimensional database representing
data for a company may have four dimensions corresponding
to the attributes of age, year, state, and employment
status, respectively. Assuming that the domain of age is
from 20 to 70, of year is from 1987 to 2002, of state is
the 50 states in U.S., and employment status represents
active, terminated, or leave, the data cube thus has
50x16x50%3 cells, with each cell containing the total
salary (the attribute of interest in this example) for the
corresponding combination of age, year, state, and

employment status.
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[0038] One typical query in d-dimensional databases
involves the aggregation of a group of the cells selected
from the data cube, where a value of interest for some
functional attribute is specified. These are referred to as
range-sum queries, and are frequently used for numeric
attributes capable of ordering, such as age, time, éalary,
and the like. The specified ranges of the attribute domains
are contiguous, and may or may not include the entire
domains. For example, consider the company database above,
a typical range-sum query on the database may be for
finding the total salary for employees between the age of
30 to 40, in years 1990 to 1998, in all states of the U.S.,
and which are active employees. To answer this query, a
typical algorithm sets values for "all" in the state
domain. However, since the query specifies 10 different
values in the age domain, and 9 different values in the
year domain, one needs to access 10x9 cells in the database
and sum them before returning the answer.

[0039] Attempts to optimize the speed of returning results
of range-sum query has focused on building hierarchical
tree structures and then storing in each internal node of
the tree the total sum of all respective leaf nodes. For
example, in addition to keeping the total sum over all ages
for each combination of (age, year, state, status) in a
record 10 separate range sums (e.g., ages 1 to 10, 11 to
20..) are kept. Thus, a range-sum query is performed by
traversing the tree and adding the values at the nodes that
fall within the query. As discussed above, such a method

is slow.

10



WO 03/048976 PCT/US02/38785

[0040] The present invention provides a novel technique
that can support any polynomial range-sum query (up to a
degree specified when the database is populated) using a
single set of precomputed aggregates.

[0041] This extra power comes with little extra cost: the
query, update, and storage costs are comparable to the
best-known MOLAP techniques (see Table 1). This technique
is achieved by observing that polynomial range-sums can be
translated and evaluated in the wavelet domain. When a
wavelet is chosen to satisfy an appropriate moment
condition, most of the query wavelet coefficients vanish
making the query easier to evaluate. This technique is
accomplished, in part, using a lazy wavelet transform, an
algorithm that translates polynomial range-sums to the
wavelet domain in poly-logarithmic time.

[0042] Transformation algorithms are used to transform the
query into a concise query eliminating unnecessary
coefficients to optimize the search and space required.
Commonly used transformation algorithms include the Fast
Fourier transform (FFT) and the discrete wavelet transform
(DWT). Both FFT and DWT are linear operations that
generate a data structure that contains segments of various
lengths, usually filling and transforming it into a
different data vector of length. The mathematical
properties of the matrices involved in the transforms are
similar as well. The inverse transform matrix for both the
FFT and the DWT is the transpose of the original. As a
result, both transforms can be viewed as a rotation in
function space to a different domain. For the FFT, this new

domain contains basis functions that are sines and cosines.
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For the wavelet transform, this new domain contains more
complicated basis functions called wavelets, mother
wavelets, or analyzing wavelets. Both transforms have
another similarity. The basis functions are localized in
frequenéy, making mathematical tools such as power spectra
and scale grams useful at picking out frequencies and
calculating power distributions.

[0043] A dissimilarity between these two kinds of
transforms is that individual wavelet functions are
localized in space. Fourier sine and cosine functions are
not. This localization feature, along with wavelets
localization of frequency, makes many functions and
operators using wavelets "sparse" when transformed into the
wavelet domain. This sparseness, in.turn, results in a
number of useful applications such as data compression.
[0044] Wavelets are often thought of as a data
approximation tool, and have been used this way for
approximate range gquery answering. The efficacy of this
approach is highly data dependent; it works when the data
have a concise wavelet approximation. Furthermore the
wavelet approximation is difficult to maintain. To avoid
these problems, the methods of the invention use wavelet
algorithms to approximate incoming queries rather than the
underlying data.

[0045] A discrete wavelet transform (DWT) may be
implemented by a series of filtering stages each having a
high-pass filter and a low-pass filter connected, for
example, in parallel. Hence, an input to a filtering stage
is filtered by the low-pass filter to produce one output

with the low frequency components of the input. At the
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same time, this input is also filtered by the high-pass
filter to produce another output with high frequency
components. This filtering operation repeats at each stage
to decompose the input.

[0046] FIG. 1 shows a flow diagram depicting a method and
process of the invention. Upon receipt of a database query
100, the query is transformed 200 using an algorithm that
smoothes and/or compresses the query (e.g., a lazy wavelet
transform). The transform provides a transformed query
comprising a list of pairs of all relevant wavelet
coefficients comprising k pairs 300. The wavelet pairs are
then ranked in decreasing order 400. A range-sum query is
then made to the database using a coefficient pair n 500.

A range-sum result is obtained for each coefficient pair
600. A progressive result and/or an exact result may be
provided. At 700 a determination of whether the coefficient
pair is the final pair (i.e., whether n=k). If n#k, then a
determination is made as to whether to provide a
progressive result 800. A progressive result may be output
at 900. Once the progressive output is made at 900, or
where a progressive output is not desired 800, the method
loops back to 500 to perform a range-sum query using the
next coefficient pair of the transformed query.

[0047] In one aspect of the invention the wavelet algorithm
is a generalization of the Haar transform that maintains
many of the essential properties of the transform while
providing more room for wavelet design. The invention can
use wavelets arising from pairs of orthogonal convolution-

decimation operators.
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[0048] For example, an operator, H, computes a local
average of an array at every other point to produce an
array of summary coefficients. Another operator, for
example, G, measures how values in the array vary inside
each of the summarized blocks to compute an array of detail
coefficients. For example, when filters h and g are used
for an array a of length 2g the equation below is

generated:

2g-1 2g-1

Ha[i]= Y h[(2i— j)mod2qla[;] and Gali]= Y g[(2i - jymod2q]al ]

j=0 Jj=0
[0049] In order to ensure that h and g act as “summary” and

“detail” filters, respectively, it is provided that

S HA=V2Y.g=0Y =Yg =1, and g[j] - (-1)7Al1-]].
These conditions imply that splitting an array into

summaries and details preserves scalar products:

S L] =§Ha[i]Hb[i]+§Ga[i]Gb[i] (3)

Jj=0

[0050] A Haar wavelet summary filter h is defined by

Mﬁ]zhﬂ]=l/J5, and h[i] = 0 otherwise. The Haar wavelet

detail filter g has g[0] = 1V§;gﬂ]=—4/¢§,and glil=0
otherwise. The convolution-decimination operators H and G
corresponding to these filters are orthogonal.

[0051] To obtain the discrete wavelet transform, this
process occurs recursively, at each step splitting the
summary array from the previous step into a summary of
summaries array and details of summaries array. In time

O (N) the discrete wavelet transform is computed.

14
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[0052] Given orthogonal convolution-decimation operators H
and G, and an array a of length 23j, the discrete wavelet
transform [DWT] of a is the array & where:

a[277" + k] = cr'"alk]
for 1<j#*<9 and 05<k<2777". Define &4[0]=Ha[0]. The element &
is the wavelet coefficients of a. The arrays H¥'a and GH™™
a, respectively are the summary coefficients and detail
coefficients at level j«.

[0053] Accordingly, if & is the DWT of a and €’ is the DWT
of e then Y a[gle[y]=) afilefi] . To define wavelet

transformations on multidimensional arrays the tensor
product construction is used. The construction is simple:
given a library of one dimensional transforms, a
multidimensional transforms ié built by applying one
dimensional transforms in each dimension separately.
[0054] A one dimensional DWT is linear and can be

represented by a matrix [W,,:] such that for any array a of
length N: n]—§:N1W’1ﬂz Given the multidimensional array
alig,...., 1g-1]1, performing this transformation in each
dimension yields the multivariate DWT of a

é[ﬂo:""ﬂd—l]‘z Z Tosio 7]1,1, . qd,;d, aliyseesiy]

wrg_y =0

Using the fast wavelet transform for each of these one
dimensional matrix multiplications computes the sum in
©(1N%) for d-dimensional data. Repeated applications of the
above yields: '

N=1
Zﬁ« [Mgses -1 181 Mo5e st ] = Za[ioa""id—l]g[iO”"’id—l] (4)

Mo rwenrllg-1=0 fgseensigoy

15
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[0055] Not only can a query be preprocessed, but data can
also be preprocessed using the wavelet transform, stored,
and accessed for query evaluation, as described above with
respect of FIG. 1. This method imposes no storage cost for
dense data, and increases the storage requirements by a
factor of O(long) in the worst case. Orthogonal wavelet
filters h and g of length 1 are fixed.

[0056] Combining Equations Q(R,f,A;)={fxz.4;> (2) and (4)

above, and interpreting functions on Dom(F) as a d-

dimensional array, a new formula for range-sums is

obtained:
v i I -~
OR.f:8) = frwh) = ;fﬂgk(no,---,nd-l)A(no,--.a77,,_1) (5)
oresTldm =

[0057] This provides a technique for evaluation of range-

sums with arbitrary measures entirely in the wavelet

domain. Thus, given a dataset with data frequency
distribution A the data set is processed as follows:

e Prepare a [sparse] array representation of A. This
requires time proportional to |Il, the size of the
dataset.

e Use the multidimensional fast wavelet transform to
compute the [sparse] array representation of A. If the
data are sparse, this requires time O(1Il1%0g ). If the

data are dense, this requires time N = 0O(]I]).

e Store the array representation of A .If the data are
sparse, use a hash-index. If the data are dense, use
array-based storage. In either a constant time access to

any particular transform value is obtained.

16
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[0058] For dense data, this preprocessing step introduces
no storage overhead. The worst possible storage overhead
arises when the dataset has only one record. O(ldlogﬁw
non-zero wavelet transform values need to be stored in this
case.

[0059] In order to use Equation 5 to evaluate a general
range-sum with query function fy, using the stored wavelet

transform data, a method comprises

. i,
e Compute the wavelet transformation fy, . Using the fast
wavelet transform requires time 0(1log®N). 1Initializing
sum « O.

e TFor each entry 5==Okruﬂk4) in the array representation of

i, -~

fxr» retrieve AGb from storage and set sum - sum +

7;:Gﬂﬁéb. For general query functions, there are O(N%)

items retrieved from storage. When complete, sum is the

query result.
[0060] This is a correct method for evaluating range-sum in
the wavelet domain, but it is not an efficient method.
Using the methods and systems described herein (see FIG. 1)
it is possible to improve polynomial range-sums with
respect to both the query transformation cost and the I/O
cost.
[0061] In one aspect of the invention there is provided a
method and algorithm for polynomial range-sums of degree
less than & in each attribute, the algorithm having a time
complexity 0((21logN)?) , where 1 - 256+1. The data structure
used for storage can be updated in time O0((llogN)?). The
algorithm can use preprocessed data as described herein. If
the storage cost is prohibitive, it is possible to store a

17
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wavelet synopsis of the data and usé this algorithm to
evaluate approximate query results or use this technique
for dense clusters.

[0062] As discussed, a fast algorithm for computing wavelet
transforms of query functions results in transforms that
are very sparse. This allows the evaluation of queries

using Equation 5 above. For example, consider the problem
of transforming the indicator function yx, of the interval R

= [5,12] on the domain of integers from 0 to 15 using a
Haar filter such as the ones described herein. Before
computing the first recursive step of the wavelet

transformation the following is known:

e The detail coefficients are all zero unless the detail
filter overlaps the boundary of R:Hy,(0)— xz(2i+1)— x(20)=0
if i ¢ {2,6}.

e The summary coefficients are all zero except when the
summary filter overlaps R:Hy,({)=0 when ig[2,6].

e The summary coefficients are constant when the summary
filter is contained in R:HZR(i)=\/§ when 2 < i < 6.

[0063] Without applyiné the operators H and G it is

determined that most of the values of Hy, and Gyx; in

‘ 5
constant time. The only interesting points, 2=[5}and

6=[lg], arise from the boundaries of R. These values can

be computed in constant time such that

Gra(2) =1/V2,Gy,(6) =—=1/2 and Hy,(2) = Hy,(6)=1/J/2. In constant

time, a data structure can be built containing all of the
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information needed to evaluate any summary or detail
coefficient. This is performed at any recursive step in
the Haar transform of a constant function the summary
coefficients are constant on an interval, zero outside, and
on two boundary points. Also, there are two non-zero
detail coefficients. Each of the logN = j steps can be
carried out in constant time, thereby performing the entire
transform in time and space 6(logN). Using the standard DWT
algorithm would require time and space 6(N). Because there
are two nonzero detail coefficients per step, the resulting
transform has less than 2logN nonzero terms. Carrying this
example through '

Ap = {00000, 1.1 1.1, & 1, 1. 1,0.0.0}

G =2y p gy 00D, 5

(6)

[0064] When the wavelet coefficients for a data density

function A on [0,15] are stored and Equation 5 is used to

evaluate Q(R,f,4) the values of A where ;: # 0 is
retrieved. Because there are at most 2logN of these
coefficients one can evaluate the query in time O(logN).
[0065] Recognizing that the recursive step of the DWT can
be made in constant time, the number of nonzero wavelet
coefficients of the query function is O(logNh), and with
appropriate filters a lazy wavelet transformation (LWT).
The LWT evaluates convolution results when they are needed
at the next recursive sfep. This is particularly relevént
when a wavelet satisfies a moment condition. A moment

condition occurs when G is said to satisfy condition M(0)

if-Gx¥ = 0 for 0 £ k £ & (i.e., }Egﬁﬁk=() where g is the
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filter corresponding to the detail operator G). For
example, the Db4 wavelet summary filter hs is defined by
hy(0)=

(14 VB D)1y (1) = B+ V3 (442), 1, (2) = B=3)(42), 1y (3) = (1= 3)I(442),
and hy(i)=0 otherwise. The Db4 wavelet detail filter has
gali) = (—lfh4(1—ﬂ. The convolution-decimation operators
corresponding to this pair of filters are orthogonal and
satisfy M(8). The Haar filters satisfy M(0). For higher
moment conditions, higher order Daubechies filters are
used.

[0066] The lazy wavelet transform can the be demonstrated
as follows: assuming that f, 1s a query function for a
polynomial range-sum with deg f=4J on’a domain of size N,
and that h and g are filters of length 1 generating
orthogonal convolution-decimation operators that satisfy
M(S). Then the sparse representation of the wavelet
transform of fy, with filters h and g can be computed in

time 6(llogN) and the resulting transform has at most 2(1-
2) logN nonzero values.

[0067] As stated herein, most of the wavelet coefficients
for a query function do not need to be computed. With
reference to FIG. 2 there is shown further detail of a
transform of a query. Upon receipt of a query 100, the
query is filtered using one or more filters 1000. The
filters can be orthogonal filters such as h and g (as
described herein). For each filter there is created a
summary or detail set of coefficients (e.g., “summary
query”). These summary queries are stored for later access

at 1100. The summary query coefficients are then used as a
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transform filter summary for further filtering until a
moment condition is satisfied 1300. Upon satisfying the
moment condition the filter summary coefficients become the
transformed query 1400. For example, where f is a
polynomial of degree less than or equal to &, and the

~ orthogonal wavelet filters h and g with filter length 1
satisfy M(0) and N = 27 then for the range function f,y[,,u] on

[0,27-1], the summary coefficients S(x,Jj«) at level j+ < 0
are zero outside an interval [/} -lLu; +/] and are equal to a

polynomial pj_(Z) of degree less than or equal to & in the

5

interval [I},u}]. The values [j,u; , and the coefficients of

jt

S
Jetl T

p, can be computed in time O(d1) from the values [ ,,u
and the coefficients of p; ..

[0068] This is trivial for j+« = 0, where the summary

coefficients are just the original range function, taking
=1 and u{=h. Inductively assume that the result holds for

F«+1<0. Thus, by definition,
-1
S(x, ) =Y hSQRx—k,j.+1)
k=0

If 2x<[;,, -1 or if 2x>uj, +2/-1 then the induction

hypothesis implies that S(x,j) is zero. Also, if

I

Jo¥l

-1
+1-1<2x<uj, then S8(x,j)= zhkpj.n(zx_k) =pj.a(¥).
k=0

15

[0069] The coefficients of pj.“(x)szkiohkpj.+l(2x—k) can be

5, +l-1
computed in time O(d1). Choosing 1;‘ =\71-+12 1 and
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u
u’ =t Z“J, this holds for level j+. Notice that it may be

the case that [} 2uj , giving effectively one short interval

of nonzero coefficients.

[0070] Given this simple structure of the summary
coefficients it is now very easy to say without computation
that most of the detail coefficients are zero, and that the
location of the few nonzero terms is easy to compute.
[0071] The detail coefficients of the range function above

at level j«<0 are supported in two (not necessarily

disjoint) intervals [1¢,1 +1] and [u?,u’ +1] where
Je?70s Je 2% s

Ea—20+2 U, g —I+2
d S| L+
I, =[;LL—E—__—} and uﬁ =[—L—L5————1.

[0072] This is very similar to the ?roof above, only the

moment condition for the filter G now makes the terms

between lf+l and u? vanish. The fact that G is chosen to be

supported on the interval [2 - I, 1] also affects the
bookkeeping that leads to the final form of the results.
[0073] Accordingly, each of the logN recursive steps of the
wavelet transform can be carried out in time O(l) because
there are only O(l) ‘‘interesting'' coefficients to compute.
This gives a total time complexity of O(/logN). In addition,
this provides that at each of the logN resolution levels at
most 2I-2 nonzero detail coefficients are added.

[0074] Daubechies’ construction of compactly supported
orthogonal wavelets can be used to produce wavelets
satisfying M(5) that have filter length 1=25+2. Using these

filters it is possible to transform polynomial query
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functions of degree less than & in time 6 (8logN) and the
result has less than (46+2)logN nonzero coefficients.

[0075] Using the lazy wavelet transform can dramatically
speed up query evaluation in the wavelet domain. As an
example a special type of polynomial range query is defined
that is particularly easy to work with. A polynomial range-
sum with measure function f : Dom(F)-R is said to satisfy
condition S(&) if f(anmn4)=IIigpxe and each p; has degree
less than or equal to &, and R is a hyper~rectangle.

[0076] Consider a table of employee ages and salaries, with
entries [age, salary]: {[25, 50K], [28, 55K], [30, 58K],
[50, 100K], [55, 130K], [57, 120K]}. Choose a range R to be
the set of all points where 25%5age<40 and
$55000<salary<150000.

[0077] By choosing jK})EH;)=l the range-sum query returns
the COUNT of the tuples that lie in R:
OR,LI) = Zl(;) =1(28,55K) +1(30,58K) =2

xeRN/
[0078] Choosing jK;)EsamU&;) the range-sum guery computes

the SUM of salary for tuples in the set R:
O(R,salary,I) = z.valary(;) = (28,55K) + £(30,58K) =113K

xeRNI
[0079] An AVERAGE query for a measure function given a
range is the ratio of the SUM query with the COUNT query
for that range. Taking f(;c)ssalaiy(y_c)xage(;c) the range-sum
query computes the total product of salary and age for

tuples in the set R:
O(R,salaryxage,I) = Y salary(x)xage(x) = f(28,55K) + f30,58K) = 3280M

xeRNI
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[0080] This is a component for the computation of

covariance in the range R. In particular:

Q(R, salaryxage,I) ~ Q(R,age,I)O(R, salary,])
Q(R,1,1) (QRL D))

The variance, kurtosis, or any other statistics in a range

Cov (age, salary)=

can be computed similarly.

[0081] All of the above examples satisfy the polynomial

range-sum above wherein the measure function f : Dom(F)-R is
said to satisfy condition S(8) if f(xy,¥,) =11ty pi(x;) and

each p; has degree less than or equal to §, and R is a
hyper-rectangle: COUNT satisfies S(0), SUM, AVERAGE, and
COVARIANCE are computed with range-sums satisfying S(2),
and VARIANCE is computed with range-sums satisfying S(2).
As the example above makes clear, the class of polynomial
range-sums is rich, even restricted to satisfy condition
S(9d).

[0082] Consider a polynomial range-sum with query function

d- R . . et i,
Sr =Hj=;pj(lj)ZRj(lj) . By Equation 4fy, =HijRj =HijRj . If

fyp.satisfies S(&), then using Daubechies' filters of length

et
25 + 2, a data structure representing fy, can be computed

in time 6(ddloglN), and 7;: has O((46+2)dlong) nonzero
coefficients. Thus the following query evaluation technique
is provided for queries satisfying S(J). General
multivariate polynomials of degree & can always be split
into a sum of polynomials satisfying S(&), each of which is
transformed separately.

[0083] Thus a Fast Wavelet Query Evaluation includes

using the lazy wavelet transform to compute the d one-
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ot
dimensional wavelet transforms p;x, - Initialize sum«OQ.
J
Iterate over the Cartesian product of the nonzero

, . vt —
coefficients of the p;¥; - For each n=(n,,..7;4) in this set,

retrieve 365 from storage and set sumesum + ZOﬂII;%z&(nﬁ.

When complete, sum is the query result.

[0084] This algorithm is dominated by the I/O phase of the
iteration over the Cartesian product above d>1. The online
preprocessing phase takes time and space 6 (délogN) .

[0085] The lazy wavelet transform also provides for fast
updates of the database. To insert a record ;=(%,"Jw4) let
X; denote the function equal to 1 at i and zero elsewhere.

Then the updated data frequency distribution is A, =A+7x;.
[0086] The linearity of the wavelet transform provides
o .

AMW=:£412;. Thus to perform an update, %; is computed and

the result added to storage. Furthermore, %; can be thought

of as a query function satisfying S(0) such that it is
transformed just as the other query functions were

transformed. A careful look reveals that in this case the

“interesting intervals” overlap completely, and j} can be
computed in time 6((25+1)%logN).

[0087] To insert ;=(Q,"J¢4) use the lazy wavelet transform
to compute ZU for 0£j<d. For each 5=(ﬂm"qan in the
Cartesian product of the nonzero entries of 29, set
ZHE)e—BGbIIfGQh). For hash table access, this may require

an insertion.
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[0088] Using Daubechies' wavelets with filter length 24 +
2, the Wavelet Preprocessing strategy to store data,
Wavelet Update to insert new records, and Fast Wavelet
Query Evaluation to evaluate queries it is possible to
evaluate any polynomial range-sum satisfying S(6) in time
O((46+2)dlong). It is possible to insert one record in time
O((25+1)%Log?N) .

[0089] In Equation 6, above, some of the coefficients are
larger than others. For larger ranges and higher dimensions
most of the information is contained in a handful of
coefficients. Thus, using the largest coefficients first an
accurate estimate of the query result, before the
computation, is complete.

[0090] A progressive evaluation plan for a sum S =

z:kkNaﬁ]is a permutation o of the integers 0 to N-1. The
estimate of S at the j* progressive step of this plan is

Zosis Jj a[O'(i)] -

[0091] When evaluating range aggregate gueries using

Equation 5, a data independent progressive evaluation plan
for a sum of the form Z-f;;(i)&(i) is chosen. Let Q7;(A) and
0’,(A) be approximations of the query OR,f,A). 0"
dominates 07, if E,[(Q)(8)-0R,f,A)1 E,[(Q,(A)-O(R, f,4))]
where A is randomly selected from the set {A}EA?U)=4}. A

progressive query plan dominates another if the estimate of
the first plan dominates the estimate of the second at
every progressive step. ‘

[0092] The invention provides a progressive evaluation

plan that dominates all others. It is not obvious that this
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is possible, but the following result shows that the
'biggest coefficient' plan suggested herein does in fact
provide a useful progressive evaluation plan.

[0093] For example, when y is a vector randomly selected
from the set {yD:::yf=1} with uniform distribution, and

Ic[0,N-1] is a set of size B, and for a vector x, X, denotes

x with all coordinates except those in I set to zero; and
wherein the set of the B biggest (largest magnitude)

coordinates of x by I'. Then for any choice of I:
Eyliz = e ] < Eyflir = 2. 9]

[0094] In other words, approximating x with its biggest B
terms gives the best B term approximation of <xJO - an
approximation that dominates all others.

[0095] Thus, for any I, y - <x—$,,y>=Zi,jelyi(xixj)yj=yTRy
where R=X%[%, is a symmetric matrix. The average error can

be obtained by integrating over the sphere of all y’s
e E * 1
Eulle = E1.007 ==f y R =f P Dy = A-f y* = =tracel?)
e —eaFl= | VRy= [ Dy 2N [, W= el

where D is the diagonalization of R and A; are the eigen
values. This chain of equalities is possible because R is
symmetric, hence is diagonalized by a unitary
transformation that preserves the uniform distribution. But

the trace of R is just the sum of squares of the
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. ~ ~ 1 . .
coordinates of X,, so Eny—x“yY]=-—§:ﬂxf, which is clearly
n I

minimized by taking I = I*.

[0096] The progressive query plan obtained by using the
largest query coefficients first dominates all other plans.
This evaluation plan is a foundation for the progressive
algorithm provided herein (sometimes referred to as
ProPolyne. For example, after B progressive steps the
algorithm of the invention provides the best-B wavelet
approximation of a query (“query Best B ProPolyne”). This
progressive query plan is implemented by first evaluating
the query function transformation using the lazy wavelet
transform, above, then building a heap from the resulting
set of nonzero wavelet coefficients. Compute the sum
repeatedly extracting the top element from this heap- the
partial sums provide accurate progressive query estimates.
As described further herein, this analytical framework also
provides efficiently computable guaranteed error bounds at
each progressive step.

[0097] Previous uses of wavelets for approximate query
evaluation have focused on approximation, using wavelets to
produce a precomputed synopsis data structure. One of skill
in the art will note that the role of the data and the
query in the results above were entirely symmetric. When
“the biggest-B approximation of a query is the best-B
approximation for random data”, it can also be stated “the
biggest-B approximation of the data is the best-B
approximation for random queries”. Hence a different sort
of progressive query evaluation is obtained by sorting the

data wavelet coefficients offline, then retrieving them in
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decreasing order of magnitude. This is the spirit of the
approximate query evaluation algorithms, where it is shown
that this gives reasonable estimates quickly. The technique
presented here has the extra benefit of treating measure
dimensions symmetrically, supporting general polynomial
range-sums. This is sometimes referred to herein as “data
best-B ProPolyne”.

[0098] Query workloads, however, are far from being
randomly distributed on the unit sphere. In practice, the
best ordering would be weighted by the expected query
workload. In any case, this technique works well if the
data are well approximated by the chosen wavelets. This
stands in contrast to query best-B ProPolyne, where the
query functions are always well approximated by wavelets.
[0099] In practice, there are situations where the measures
and aggregate functions are known at the time the database
is built. When this is the case, ProPolyne can be
optimized. In particular, it can be adapted to operate on
the wavelet transform of the measure function rather than
the frequency distribution. This adaptation is referred to
herein as a fixed measure ProPolyne, or ProPolyne-FM. One
notable optimization that ProPolyne-FM allows is the use of
Haar wavelets in all dimensions. The fact that one-
dimensional Haar wavelets do not overlap brings query
evaluation cost down to (2/)% and update cost to j%* for a
table with d-I j-bit attribute and one measure attribute. The
cost is identical to that of the Space-efficient Dynamic
Data Cube (Reiedewald et al.,DaWakK, pp. 24-33, 2000).

ProPolyne-FM serves another useful role: it solves the same
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problem as other pre-aggregation methods, so it is directly
comparable.

[00100] The process of turning ProPolyne-FM into a data
or query best-B progressive algorithm is identical to the
process for unrestricted ProPolyne. It happens that when
using Haar wavelets, the data best-B version of ProPolyne-
FM is simply a progressive implementation of a compact data
cube. The query best-B version of ProPolyne-FM is novel,
and that approximate results it produces are significantly
more accurate than those produced by the compact data cube.
[00101] An important component of any approximation
technique is its ability to provide meaningful information
about the distribution of errors. A family of analytic
absolute bounds for the error of estimates can be made
using the algorithms as set forth herein. These bounds can
be maintained efficiently and made available throughout
progressive query evaluation.

[00102] Propolyne evaluates queries by selecting the most
important wavelets for the query and evaluating Equation 5
using these terms first. The error resulting from using
only the best B coefficient is straightforward, if not
efficient, to compute: simply compute the scalar product
using the least important 2/ - B coefficients. A tractable
pound on this value is produced by using Holder's
inequality in each resolution level. Specifically, if g

denotes the set of indices of the most important B
wavelets, QBULj}A) is the approximate range sum obtained

using only wavelets in Zg and A denotes the set f wavelet

resolution levels, then the following error bound:
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qu-ﬁz f! J} - (}N(R: f'e J)'
e~ Lip, P TS £F 2 S Vs
< Tt [Trenzs @] [Spenz, 1Awmidin-] ()

where 1<p,S=, It is possible to achieve most of the benefit

of the bound in Equation 7 more cheaply by identifying a

small set of resolution levels that contain most of the

energy for the data density distribution or for an expected
query workload. All other resolution levels are grouped
into one large level and estimate (7) is maintained for the
reduced set.

[00103] Based in part on the foregoing another aspect of

the invention includes methods and systems for processing

multiple range-sum queries. Decision support system users
typically submit batches of range-sum queries
simultaneously rather than issuing individual, unrelated
queries. The invention provides a wavelet based technique
that exploits I/O sharing across a query batch to evaluate
the set of queries progressively and efficiently. The
invention provides:

e Batch-Biggest-B, an exact wavelet-based query evaluation
strategy that exploits I/0 sharing to provide fast exact
query results using a data structure that can be updated
efficiently;

e The introduction of structural error for batch queries,
and the definition of structural error penalty functions.
This generalizes common €rror measures such as sum of

square errors (SSE) and I norms; and
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e A progressive version of Batch-Biggest-B that can accept
any penalty function specified at query time, and will
minimize the worst case and average penalty at ach step
of the computation.

[00104] To illustrate the applicability of the methods

and systems of the invention a database of instance D of a

schema F with d numeric attributes ranging from zero to N-I

is used. For example, using a multi-dimensional array of

real numbers, or functions, indexed by the domain of F,

Dom(F), the set of such functions is a vector space with a

natural inner product, (a,b)=2xeDm(F)a[x]b[x] for any two arrays

a and b. For any set Rc Dom(f),x, denotes the
characteristic function of R:xg[x]=1 if xeR and is zero
otherwise.

[00105] ' Using a data frequency distribution to represent
a database as a vector. This is a vector A indexed by
Dom(F); for any tuple x = (xg,...,X¢.7) € Dom(F), thus A(x) is
the number of times x occurs in D. The wavelet transform of
a multidimensional array is denoted as a[x] by alél.
Because the wavelet transform is invertible, the wavelet
transform of the data frequency distribution, 5[5] can be
used to evaluate any query on the database D.

[00106] One can think of A as a materialized view of D.
For simplicity, a simple I/O cost model is adopted, even
though there are many ways to store and access this view.
Assuming that A are held in either array-based or hash-
pased storage that allows constant-time access to any

single value. The possibility that several useful values
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may be allocated on the same disk block is ignored, and
hence retrieved for free. Similarly, the potential savings
arising from intelligent buffer management is also ignored.
[00107] The technique provided herein for sharing of
wavelet information on batch queries is based on the
ProPolyne technique for the progressive evaluation of
single polynomial range-sum queries, and reuses much of its
machinery.

[00108] Given a rectangular range Rc Dom(F), the range
COUNT gquery COUNT(R,D) =|oklﬂ simply counts the number of

tuples in D that fall in R. Recalling that A denotes the

data frequency distribution of D, provides

COUNT(R.D) = 3~ Alx]= > xuylxAl]
xER 28 Do 'Y

In other words, the COUNT query is just the inner product
of a (simple) query vector with an (arbitrarily complex)
data vector. The Haar wavelets are orthogonal, so the Haar

transform preserves inner products. Thus,

Count(R.D)= $ el (1)
g€ DomiF)

giving a formula for query evaluation in the wavelet
domain. The functions }; are very simple, and it has been
shown that #, has at most O(2dlog¢N) nonzero coefficients,

and they can be computed quickly. Thus Equation (1)

(immediately above) can be used to evaluate COUNT queries
in time O(2dlog¢N). When storing an entire relation in the

wavelet basis, a new tuple can be inserted in time O(logﬁw,
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making this method competitive with the best known pre-
aggregation techniques.

[00109] Wavelets have been used successfully for data
approximation, and are often thought of as a lossy
compression tool. While this approach works to provide an
approximate query answering scheme on some datasets, there
is no reason to expect a general relation to have a good
wavelet approximation. Instead this embodiment suggests
using wavelets for query approximation. In particular, when
evaluating the sum in Equation (1) (above) the terms where

Zr 1s largest is added first, expecting the smaller terms

to contribute less to the final outcome. At each step, the
partial sum that was computed is just the inner product of
the data vector with an approximate query vector.
Experimental results have shown that this particular
evaluation order provides accurate, data-independent
progressive estimates in practice. As a consequence of this
evaluation order stands on firm theoretical ground: at each
step it minimizes the average error over random data
vectors, and it minimizes the maximum possible error.
[00110] Now consider the problem of simultaneously
evaluating a batch of COUNT queries for ranges Ro..R 5.4

progressively, minimizing SSE at each step. Assuming that

the transformed data vector A in a data structure is
computed and stored such that it allows constant time
access to any value. One simple solution is to use s
instances of the single query evaluation technique, and
advance them in a round-robin fashion. This turns out to

waste a tremendous amount of I/0, since many data wavelet
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coefficients will be needed for more than one query. This
also ignores the fact that some wavelet coefficients may
not be tremendously important for any particular query, but
are important for the batch as a whole.

[00111] Both of these problems are addressed by
introducing a simple I/O sharing technique and showing how
it can be adapted to evaluate queries progressively. For
each range R;, compute the list of nonzero wavelet

coefficients of yx,, merge these lists into a master list,

then iterate over this master list, retrieving each needed
data coefficient from storage, and using it to advance the
computation of each query that needs it. The I/0 savings
from this technique can be considerable in practice. For
example, a batch of 512 range queries covering 15.7 million
records in a database of temperature observations can be
performed efficiently. Using multiple instances of the
single query evaluation technique required 923,076
retrievals. Using this I/O sharing technique, all 512
queries were evaluated exactly after 57,456 retrievals.
Note that this requires all of the nonzero wavelet
coefficients of the query function to be in main memory,
but there are relatively few of these when compared to the
number of nonzero wavelet coefficients of the data vector.
Range-sum queries have very sparse wavelet representations,
and this is independent of the underlying database.
Nevertheless, it is of practical interest to avoid
simultaneous materialization of all of the query
coefficients and reduce workspace requirements.

[00112] To evaluate queries progressively, a heap from
the master list is built that orders wavelets by their
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“importance” for the query. Instead of iterating over the
master list, the most important element from this heap are
repeatedly extracted to retrieve the corresponding data
wavelet coefficient from storage, and use it to advance
each of the individual queries in the batch.

[00113] FIG. 3 is a flow diagram depicting a high-level
process of the invention involving multiple (here two)
range-sum queries. Upon receipt of a database query 3010
and 3020, each query is transformed 3050 and 3060 using an
algorithm that smoothes and/or compresses the query (e.g.,
a lazy wavelet transform). The transform provides a
transformed query comprising a list of pairs of all
relevant wavelet coefficients comprising k pairs 3100 and
3110. A master heap list is then generated ranking the
coefficients by value and/or importance based upon their
presence in both of the queries 3200. A range-sum query is
then made to the database using a coefficient pair n 3300.
A range-sum result is obtained for each coefficient pair
3400. A progressive result and/or an exact resul£ may be
provided. At 3500 a determination of whether the
coefficient pair is the final pair (i.e., whether n=k) is
made. If n#k, then a determination is made as to whether
to provide an approximate or progressive result 3600. A
progressive or approximate result may be output at 3700.
Once an approximate or progressive output is made at 3700,
or where an approximate or progressive output is not
desired 3600, the method loops back to 3300 to perform a
range-sum query using the next coefficient pair of the

transformed query.
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[00114] Because the goal is to control SSE, the

importance of a wavelet ¢{’/ is the worst case error that
arises from not retrieving A[£’] on a database Zt&[{]\=1.
This worst case will occur when the entire data vector is

concentrated at §’, and}&ﬁfﬂ=1. In this situation,

o §

SSE =S 1 €07 ¥ ue)
#aal}

ignoring &’ leads to an SSE of

which is the definition of the importance function of ¢'.

This definition is intuitive- wavelets that are irrelevant

for the batch of queries have zero importance, wavelets

that have significant coefficients for many queries will
have high importance.

[00115] This importance function is used to define Batch-

Biggest-B, a progressive query evaluation strategy

comprising:

e Preprocessing: compute the wavelet transform of the data
density function and store with reasonable random-access
cost.

e Impute: a batch of rang-sum queries and an importance
function.

e For each query in the batch, initialize its progressive
estimate to be zero.

e Compute the wavelet transform of each gquery in the batch,

and construct a list of its nonzero wavelet coefficients

e Merge these list into a master list.
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e Compute the importance of each wavelet in the master
list, and build a max-heap from the set.

e Extract the maximum element from the heap, retrieve the
corresponding data wavelet coefficients, and use it to
increment the progressive estimate of each query in the
batch according to Equation (2) above. Repeat until heap
is empty.

[00116] Because it evaluates queries by retrieving the B

coefficients with highest importance before retrieving the

(B+1) ™ coefficient, this is referred to as biggest;B

strategy. Once size 1s defined correctly, biggest is in

fact best.

[00117] The strategy outlined above works for much more

general queries. The critical feature COUNT queries is

that they are vector queries: the result is the scalar
product of a query vector with a data vector. Consider
the following range aggregate queries for a fixed range

R c Dom(F) and how they can be recast as vector queries:
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1. COUNT queries

CouNT(R, D) = Y Alx]
XER
- T wldal
Desmnel #7)
= ixp 1A
2. BUM queries
SUM(R, Attribute;, D) = Y x;AlX]
x&R
= Z xixp x| AX]
Pom( '}

3. Sums of products
SUMPRODUCT{ R, A teribute;, Attribute;, D)

= T melIAR
Dol )

= (g, A

[00118] Many other aggregate query results can be derived
from vector queries. The three vector queries above can be
used to compute AVERAGE and VARIANCE of any attribute, as
well as the COVARIANCE between any two attributes. For
example, it is possible to perform principal component
analysis, ANOVA, hypothesis testing, linear regression, and
much more.

[00119] Using the following definitions and equation, the
invention demonstrates that‘polynomial range-sums can be
evaluated progressively and quickly. A polynomial range-
sum of degree 6 is a vector query of the form

qlx]=p(x) \xr(x) where p is a polynomial in the attributes of
F, and R is a hyper-rectangle in Dom(F), and p has degree

at most & in any variable.
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[00120] All vector queries can be evaluated in the
wavelet domain just as COUNT queries are evaluated. In
particular, for any vector query q and basis of orthogonal

wavelets can be written

.8 =" qlgAle] = @ A @)
This equation can be used to evaluate polynomial range-sums
progressively and quickly.
[00121] Polynomial range-sum queries can be evaluated
progressively almost exactly as above, the key difference
being that one no longer uses Haar wavelets and achieve
results efficiently. However, Equation 2 (immediately
above) holds for any orthogonal wavelets. It has been
shown that using Daubechies wavelets with filter length 26
+ 2, any polynomial range-sum of degree less than or equal
to 6 will have less than ((45+2)dlog@V) nonzero wavelet
coefficients. These coefficients can be computed in time
O((45+2)dlogﬁV). Once the data vector has been transformed
and stored, new tuples can be inserted in time O((26 +
1)dlogﬂV). Thus Equation (2) (immediately above)can be used
as the basis for an exact polynomial range-sum evaluation
strategy that has poly-logarithmic query and update cost.
Compare these costs with those for COUNT queries where 3=0.
[00122] As with COUNT queries, polynomial range-sums are
approximated very well by a small number of wavelets. To
illustrate this, Figures 7-9 displ;y the progressive
approximation of a typical degree one polynomial range-sum
query vector, glxi,x2] = x1xgr[x1,x;] where R =
{ (25%x,<40) A (555x;<128) }. This query function could arise

when requesting the total salary paid to employees between
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age 25 and 40, who make at least 55K per year. Figure 7
displays an approximation using 25 Db4 wavelets. Note that
it captures the basic size and shape of the function, but
the range boundaries are inexact, and there is some
spillover due to the fact that periodic wavelets were used.
Figure 8 displays an approximation using 150 wavelets. Here
the range boundaries are much sharper, and the periodic
spillover smaller. The most striking feature is a Gibbs
phenomenon near the range boundaries. Finally, Figure 9
displays the query function reconstructed exactly using 837
wavelets.

[00123] Now considering the problem of simultaneously

evaluating a batch of polynomial range-sums

pixlz&[xLieULs—J]. Notice that the definition of the

importance function 1 did not depend on the fact that Haar
wavelets were used. It only depends on the penalty

function, SSE. By the same arguments, the importance of a

wavelet ¢ can be defined by

se1

W8 =Y By (©)F

} -0

and use the algorithm Batch-Biggest-B to evaluate the
gqueries progressively.

[00124] This gives the best progressive evaluation
strategy for controlling SSE. The experimental results
below show that this technique produces very accurate
answers after retrieving a small number of wavelet

coefficients from the database.
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[00125] Users submit a batch of queries because they are
looking for interesting relationships between different
query results. Some users may be looking for temporal
trends or dramatic jumps. Others may be looking for local
maxima. It is often the case that not all of the query
results are used at once (e.g., they do not all fit on the
screen), and the user is only interested in results that
are “near the cursor”. In all of these cases, the user is
interested in the structure of the query results. If the
query results are approximate, the user is concerned with
the structure of the error. Errors that impede the task at
hand should be penalized, those that are irrelevant should
be tolerated if this improves efficiency. Thus, the
invention further provides several specific examples of
structural error penalty functions, along with formal
definitions.

[00126] Consider the following scenario. Working with a
database of global temperature observations, wherein the
user has partitioned the latitude, longitude and time

dimensions into ranges to submit a query in order to find:
e Ql: Ranges with the highest average temperatures, or

e 0Q2: An accurate view of a set of high-priority items
currently in use, and a reasonable sketch of the other
results, or 4

e Q3: Any ranges that are local minima, with average
temperature below' that of any neighboring range.

[00127] An exact result set can be used to provide any of

this information, but an approximate result set that works

well for one problem may work poorly for another. For
example, if each query cell is approximated with no more
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than 20% relative error, it is possible to do a reasonable
job answering Q1l, but cannot be trusted to provide
meaningful answers for Q3. This intuition is captured by
introducing structural error penalty functions.

[00128] A structural error penalty function is a non-
negative homogeneous convex function p on error vectors
with the property that p(0) = 0 and p(-x) = p(x)$. As a
special case, a quadratic structural error penalty function

is a positive semi-definite Hermitian quadratic form on
error vectors, p(eg) = EEPEW'

[00129] This definition includes many well known metrics,
including IP norms and Sobolev norms. It is important to
allow the quadratic form to be semi-definite, as it
provides the flexibility to say that some errors are
irrelevant. Now revisit queries (Q1-Q3) above to see how
each one implies a different quadratic penalty function. To
simplify the discussion, assume that the data are dense, so

AVERAGE queries reduce to weighted SUM queries.

e Pl: Minimize the sum of square errors, p(g) = Sle[i]|?,

to allow the user to accurately identify any ranges with
a high average temperature.

e P2: Minimize a cursored sum of square errors that makes
the high-priority cells (say) 10 times more important
than the other cells to produce very accurate answers for
the high-priority cells, while still substantially

penalizing large errors for the remaining cells. p(g) =
IOEZEHFUHZ+}EwHkUHZ where H is the set of high-priority

ranges.
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e P3: Minimize the sum of square errors in the discrete
Laplacian to penalize any false local extrema.
[00130] Linear combinations of quadratic penalty
functions are still quadratic penalty functions, allowing
them to be mixed arbitrarily to suit the needs of a
particular problem.
[00131] An approximate batch query answering technique
should aim to minimize an appropriate structural error
penalty function. It is impossible to do this on a query-
by query basis with a pre-computed synopsis of the data. A
precomputed synopsis must be “tuned” to a particular
penalty function and a particular query workload. As
demonstrated, below, using an online approximation of the
query batch leads to a much more flexible scheme. The
invention provides a query approximation strategy which
finds the “best” query approximation for any penalty
function and restriction on the number of records to be
retrieved from secondary storage.
[00132] One crucial point about the biggest-B progressive
query evaluation strategies is that the importance function

only depends on the penalty function. In fact, SSE is a
quadratic penalty function, pg,s~,g(s)=z(5‘i2 . Using this
notation, the importance function used to control SSE was
just (&) = peg(Golel..d,,[€]) where g; are the query vectors
for a batch of s queries. In other words, L(§) is the
penalty of the vector ((éiaL"qéPJSD. This definition can be

used for any penalty function:
[00133] For a penalty function p the p-weighted biggest-B

approximation of a batch of queries q0,.-.9s-1 1s the
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progressive estimate given by Batch-Biggest-B after B steps

, , def n "
using the importance function %(8¥=1KqJ8L"quJ8D.

[00134] For example, Figure 9 shows the query vector for
the SSE-weighted biggest-150 approximation of the query
vector depicted in Figure 10. Having defined the strategy
used, the definition of the competition is provided:

[00135] A B-term approximation of a batch of vector
queries g¢g..,¢s; is an approximation of the batch of queries

using only B data wavelet coefficients. That is, given

some set E of wavelets with]E‘==B, the B-term

approximation is given by <q,.,A>z éi[g]ZX[g] for 0<i<s.

seE
[00136] B-term approximations arise from choosing an
arbitrary progression order to evaluate a vector query.
The theorems that follow state that, in a certain sense,
the biggest-B approximations give the best B-term
approximations.

[00137] When choosing a progression order to evaluate a
batch of queries, it is important to understand how large
the structural error penalty can be at each step. The next
result shows that biggest-B approximations provide the
smallest possible worst-case error, making the progression
order used by Batch-Biggest-B optimal. The proof of this
result also provides a sharp, easily computed bound on the

structural error penalty of any B-term approximation.

[00138] Assume that }:%Dﬂ is known. Given a batch of

vector queries g¢g,....qs1 and a quadratic penalty function p,

the worst case penalty for the p-weighted biggest-B
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approximation is less than or equal to the worst case
penalty for any other B-term approximation.
[00139] For any B-term approximation that uses wavelets

in the set =, let &’ be the most important unused wavelet:

g'e¢E and ¢,(6)>1,(¢") implies ge®. Now the error vector € is
given by € = QEA where the matrix Q= has Q:[i,¢]=¢,[£] if
£¢E and is zero otherwise. Denoting K=Z‘A[§]’ Jensen's

inequality allows us to write:

ple) = p(Qzd)

= K'Y Algip(Qzl )

CEE

= K'Y 1Al ()

e

5 K(E)
Where a is the degree of homogeneity of the penalty

function. In fact, equality is obtained when A is entirely
concentrated on ¢§’.
[00140] Thus the worst case error for any B-term

approximation is given

Eorstocanc(Z) = max 1l€) = K°u(¢')
[00141] So if E is not a biggest-B strategy, there is an
neE with 1,(n)<¢,(§") . Substituting §' for n in E a
strategy that is at least as good as E is obtained. A

finite number of these substitutions produces a biggest-B

strategy which is at least as good as =,
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[00142] Because norms are examples of structural error
penalty functions, the theorem above immediately implies
the following:

The p-weighted biggest-B approximation minimizes the

worst case IP error for 1p<e,
[00143] In other words, many of the standard penalty
functions used to measure the magnitude of vectors can be
used with Batch-biggest-B to minimize the worst case error.
[00144] Now we turn the attention to analysis of average
penalty. When discussing the average penalty of a B-term
approximation, we mean the expected penalty of the
approximation on a randomly selected database.
Surprisingly, it turns out that the best strategy for
controlling worst case error is also the best strategy for
controlling the average error.

[00145] IL,et data vectors be randomly selected from the
set SV = {AEETADJZ=1} with uniform distribution and let

pﬁ9=éﬁe be a quadratic penalty function. The expected
penalty incurred by using the p-weighted biggest-B
approximation of a query batch is less than or equal to the

expected penalty incurred using any other B-term

approximation.

[00146] Take any B-term approximation that uses wavelets
d

in the set E. For any data vector pneSY ™ the error vector

is written as €=Qgﬁ. The penalty of this error is given by

A

a quadratic form in A

& oy “~

pleo,.--eam1) =ATQLAQzA E ATRA
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and the expected penalty can be computed by integrating

over the unit sphere S equipped with the rotation-

invariant Lebesgue measure, dP, normalized to make it a
probability space. The argument that follows relies on the
fact, stated formally in Equation (below), that rotations
do not change this measure.

Ealp) = / . ATRAIP(A)

Gyt

-

[00147] Using the fact that for any unitary matrix U and

any function f on the sphere
[ronyape) - [ sere) @

[00148] This is just a formal statement of the fact that
rotations do not change the measure- the probability is
uniformly distributed on the sphere. Noticing the A =WA
where W is the unitary matrix for the wavelet transform,

Equation 3 can be written

Because R is symmetric, it can be diagonalized. There is a

diagonal matrix D and a unitary matrix U such that R =

U'DU. Using Equation rotation-invariance once more,
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Ealp] = ﬁ o ATDAdPA)

ii
-
<
[
p
)
g
&
—
5

where the last equality follows from the fact that on any

n-sphere

2, _ Ll 2ap 1
/f;u‘”’dp”ng[%”“dp“ -

[00149] Now D and R are similar matrices,

trace (D)=trace(R), so

Ealp] = (N* 1) trace(R)

By the definition of R,
m‘i‘%ﬂ? (R)- g Z s Ei,j fi{{&]“i 1j E{J [5}!

Which is clearly minimized by placing those § where

is largest in E. The p-weighted biggest-B strategy does
this.

[00150] The two theorems above are used to justify the
statement that the biggest-B approximation is also the
best-B approximation. Notice also that the proof of the

first theorem provides a guaranteed upper bound for
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observed error penalty. The proof of the second theorem
provides an estimate of the average penalty.

[00151] In addition the invention further a novel data
access pattern. Because wavelets are now being considered
as a tool for general purpose data storage, queries on
wavelet data require a distinct access pattern to exploit a
best-possible I/0 complexity for point and range query
evaluation. In particular the invention provides an
allocation to blocks of size B that guarantee that at least

UgBU values will be used on every disk block retrieved.

This is proved by the fact that all non-redundant block
allocations, the average number of useful values per disk
block is less than 1+lg B. Furthermore, for any query or
batch of queries, it is possible to assign an importance to
each disk block so that by retrieving disk blocks in
decreasing order of importance, one can obtain excellent
progressive query approximations that converge quickly to
the correct answer.

[00152] The invention provides access patterns required
for processing pint and range queries on wavelet data. The
process includes: Allocation of wavelet coefficients to
disk blocks of size B so that if at least one item on the

block is needed to answer a point query, then at total of

ligB] items on the lock will be needed. The invention

further provides a proof that the allocation of is
essentially optimal: for all disk block of size B, if the
block must be retrieved to answer a query, the expected
number of needed items on the block is less than 1 + lg B.

The invention also provides an extension of these results
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to multi-dimensional data and range queries. The invention
further provides a definition of a query dependent
importance function on disk blocks which allows performance
of the most valuable I/O's first and deliver excellent
approximate results progressively during query evaluation
[00153] The invention solves a very practical problem
that of a wavelet-based query answering system. The
experimental results demonstrate quantitatively how
important block allocation is for efficient query
answering, and that some apparently natural strategies
perform three to four times worse.

[00154] Haar wavelets provide an orthonormal basis for
the vector space of all functions on a data domain. We
denote the data domain by D, and assume that it is a d-
dimensional lattice. When wavelet coefficients are stored,
they are stored as a representation of a function. This
makes a‘particular type of query %ery natural:

A point query on a dataset containing a representation of a
function f: D - R specifies a point xeD, and receives f(x)
as an answer.

[00155] A relation can be represented by its data density
or measure density function. When this is done, a large
class of range aggregate queries are seen to be inner
products of query functions with data functions in the
function space. Specifically, it is possible to support
traditional aggregate functions such as COUNT, SUM and
AVERAGE, as well as less traditional aggregates including
COVARIANCE, REGRESSION-SLOPE, and KURTOSIS so long as the

following basic range query is supported:
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A polynomial range-sum on a dataset containing a
representation of a function f: D-R specifies a range RcD

and a polynomial p on the coordinates of points in D, and

receives <j}pZR>=§:me00j(x) as an answer.

[00156] For a point query the only wavelet coefficients
needed to reconstruct the value of a function at a point x
are those corresponding to wavelets that are not zero at x.
In other words, only wavelets whose support overlaps x are
of interest.

[00157] One of the fundamental observations is that (when
certain technical conditions are satisfied) the only
wavelets that are relevant for answering a polynomial
range-sum query are those whose support overlaps a corner
of the range R. Thus in a d-dimensional domain, a
polynomial range-sum query requires the same disk access as
24 point queries.

[00158] The wavelet overlap query on a dataset of wavelet
coefficients specifies a point xeD and returns the set of
all wavelet coefficients for wavelets whose support

overlaps x. Denoting this query by WQ (x) we write
WO (x) ={ajdyx (x)#0}, where aj,k=<f,wj,k)> denotes the wavelet

coefficient of the stored function f at resolution level j
and offset k.

[00159] This is the fundamental query of interest when
storing data in any wavelet basis, but for the particular
case of one-dimensional Haar wavelets, an explicit

definition of the set: WQ(x)={aj,1<|2’k§x<2j(k+1)}.
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[00160] Before we can find the best possible disk
allocation, we need a precise notion of what a disk
allocation is and how access patterns for wavelet overlap
queries determine which blocks will be retrieved.

[00161] In particular, our access patterns can be
captured by the wavelet dependency graph, a directed
acyclic graph whose leaf nodes correspond to points in the
data domain, and whose internal nodes correspond to
wavelets. The key observation is that to answer WQ(x) the
exact wavelet coefficients corresponding to nodes on the
graph reachable from the leaf x needs to be retrieved. With
this framework, an allocation of wavelet data to disk
blocks corresponds to a tiling of the (internal nodes of
the) dependency graph, and the I/0 cost of a wavelet
overlap query is just the number of tiles reachable from a
leaf node in the graph.

[00162] If it is assumed that a disk block holds B
wavelet coefficients, and has a unique identifier (e.g.,
its physical address) the following definition is obtained:
A block allocation for a collection of wavelet coefficients
is a B to one function from wavelets to disk block
identifiers. In other words, it is an assignment of
wavelets to disk blocks.

[00163] Tt should be noted that it may be necessary to
store additional layout information on each disk block in
order to specify which wavélet coefficients are store,
reducing the number of wavelet coefficients present on each
plock. This will give block allocations where a wavelet’s

identifier can uniquely determine its block address a
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distinct advantage. Fortunately the optimal allocation
presented herein has this advantage.

[00164] The essence of the access patterns is the
following:

The dependency graph for Haar wavelets on a domain D is the

directed acyclic graph G = (V,E) defined as follows. Let D

denote the set of all Haar wavelets on D, and let the V =

DuD. In other words the vertices of the graph are either
points in the domain or wavelets on the domain. The edges

are defined by the following rules

e For two wavelets £,n the pair (§,n) € E if and only if
n(x) = 0 implies that &{(x) = 0 (the interval where ¢
“lives” is contained in the interval where n “lives”).

e For xeD,cfeﬁ, the pair (x,&) € E if and only if &(x)#0
and there is no wavelet n such that (7,$)e€E.

e For two points x,yeD,(x,y)e k.

[00165] For a one-dimensional domain, this graph is a
tree.
[00166] This definition is cumbersome but explicit. To

make this more concrete, an example dependency graph is
depicted in Figure 14 fbr Haar wavelets on a domain of size
eight. At each node in the figure we depict the graph of
the corresponding wavelet. The topmost node corresponds to
_the constant function, and wavelet coefficients for this
node are just averages over the entire domain. At the next
level a low frequency wavelet whose support covers the
entire domain is obtained. As higher resolution levels are

obtained, the size of the support is halved, and the
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“frequency” is doubled. In one dimension, the dependency
graph is isomorphic. _
[00167] There is another characterization of this graph

of interest. The dependency graph for Haar wavelets is the

minimal graph G with vertices V=DuUD such that if & is
needed to answer WQ(x) and €, is reachable from §;, then ¢
is also needed to answer the query. In particular WO (x)={a¢l
there exists a path from x ¢}. In other words, using this
graph turns the wavelet overlap query into a reachability
query on a dag. Block allocations can also be replaced
with vertex tilings.

[00168] A tiling for a graph G = (V,E) with tiles of size
B is a partition of the vertices into disjoint tiles T; with
|T;| <B.

[00169] There is clearly a one to one correspondence
between tilings of (the internal nodes of) the dependency
graph and block allocations. Moreover, this gives us a
simple definition of the I/O cost of a wavelet overlap
query.

[00170] For a given block allocation, the number of disk
blocks that must be retrieved to answer a wavelet overlap
query WQ(x) is equal to the number of tiles reachable from
x in the tiling corresponding to the block allocation.
[00171] So to reduce the I/0 cost of answering wavelet
overlap queries, we should find tilings that are “minimally
reachable”. Intuitively, it seems that by ensuring that
whenever a tile is reachable from a point, it has many
vertices that are reachable from that point it would do

well. The number of vertices reachable from a point is
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independent of the tiling. If each reachable tile covers a
large number of the reachable vertices, then all reachable
vertices will be covered with a small number of tiles. So
it seems that a particular tile is good if it has a high
usage rate.

[00172] For a dagG=(V,E), a tile T < V, and a source

seV, the usage rate of T at s is uCRs)=kve1$/ is reachable

from s}|. Denote the number of sources that can reach T by

S(T). The average usage of T is LKT)=—J¥— }:uaﬂs) (la). So
S(T) sesources(G)

if wavelet overlap queries are generated randomly with the
uniform distribution over the data domain, the average
usage of a tile cdrresponds to the expected number of items
to be used on a disk block, given the fact that the block
had to be retrieved. Example tiles with usage rates can be
seen in Figure 15. There is a closely related function that
indicates whether a tile is reachable from a particular
source.

[00173] For a dag G=(V,E), tile TcV, and a source seV
the requirement function r(T,s) is 1 if some element of T

is reachable from s (u(T,s)>0), and is zero otherwise.

[00174] Notice that S(T)= zaralﬂ (2a). While designing

sesources(G)

tiles with maximal usage seems like a good intermediate
goal, eventually minimizing average I/0 cost for query
answering is the goal. This corresponds to minimizing the

average number of tiles reachable from a randomly selected
source. Thus the cost of a source s for a tiling T as the

number of tiles reachable from s is defined as c(s)=Zr(T,s)
Terl
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(3a) . As discussed more fully below maximizing usage is the
same as minimizing cost, a result that relies on the

following equation, which is valid for any source s in the

one dimensional Haar wavelet dependency graph lguﬂ==§:uCRs)
TeT

(4a) . This holds because both sides represent the total
number of non-source vertices reachable form s.

[00175] In view of the foregoing the usage rates of two
tile types can be computed.

[00176] When answering a wavelet overlap query for a
point xeD, it would be ideal if every tile reached were
used entirely. Recalling that for the one-dimensional case,
the dependency graph is a binary tree, this can be achieved
by choosing “straight-line” tiles of the form T = {v,parent
(v), parent (parent(v)),..,parent BJ(v)} so that if there is a
path from s to v, then s reaches every element in the tile
and u(T,s) = B. An example of a straight-line tile of size
three in a domain of size eight can be seen in Figure 16.
Note that by including &; in this tile, the point query at
points. 0 or 1 is answered quite well, but is answered quite
poorly when answering a point query at 4, 5, 6, or 7. This
is formalize as follows.

[00177] Notice that the number of sources that can reach
v is exactly one half of the number of sources that can
reach parent (v) because parent (v) is a wavelet that lives
on an interval double the size of v. Thus for every source
that gets the optimal usage out of T, there is another one
that obtains one less than the optimal usage.

[00178] So far this may not seem discouraging, but the

same argument says that exactly one half of all sources
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that reach T reach it only at the highest node, parentBJ(v),
and obtain the worst possible usage rate of one. Thus a
recursion for the usage rate of straight-line tiles of (now

variable) length B can be written

B-1
( )<2. Thus no matter what the tile

u, ...
U ( B) =1+ straight-line

straight—line 2

siée, if T is a straight line tile, u(T) < 2. Unless
something better is found it will be very difficult to
provide scalable access to wavelet data.

[00179] Because the straight-line tiles worked so poorly,
look at connected tiles that are as short as possible at
the other extreme. For convenience, assume that B = okl for
some natural number k. Then for any vertex v that is at

least 1lg B steps away from any source in the dependency
graph, consider the tile T={'e V}v= parent’ (v"),j <1gB} , which is

a dense binary tree. An example tile of size three can be
seen in Figure 15.
[00180] It is particularly easy to compute the average

usage of this tile. In fact the usage rate of this tile is

the same from any vertex, and is equal to ﬂgB}. Thus u(T) =

ﬁgBT. If B is not of the special form assumed above, it may

not be able possible to complete the bottom level of the
dense binary tree, but it is assured that the usage rate
will always be at least UgBJ.

[o0181] It is easy to cover any given dependency graph
with these dense connected subtiles (perhaps running out of
room at the bottom and settling for “connected-as-possible”
tiles). An alternative approach is to map this problem to

the problem of finding an optimal B-partitioning of a
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weighted graph/tree where B is the size of a disk block.

In this case, weight of 1 should be assigned to ‘each node
of the dependency graph and the weights on its edges should
capture u(T). One way to achieve this is by assigning
each edge the weight of the number of leaves reachable down
of that edge. Regardless of how the covering is generated,
it leads directly to a proof of the following theorem which
is now restate in new terminology:

A binary tree with N leaf nodes has a tiling such that for
every source seV and every tile T which does not contain a

source node has u(T,s)ZUgBJ. Furthermore, among the set of

all tiles reachable from s, the fraction of these tiles is
g, N

1+|.1g3 N.‘ .

[00182] A useful corollary is using the block allocation

at least

of the theorem, above, on a domain of size N, one must
retrieve no more than 1 + 1lggN disk blocks to answer a
wavelet overlap or point query. Range aggregate queries
require no more than twice this amount.

[00183] For any tile T with B vertices on the dependency
graph for one dimensional Haar wavelets, we must have
u(T)<1l+1lgB.

[00184] We proceed by induction on the tile size, B. The
base case of B = 1 is trivial- since u(T) =1 =1 + lgB.
[00185] Now the inductive step is made, and assume that
the result is true for all tiles T  with |T'| < B. Consider
any tile TcV with |T| = B. Let reV be the root of the
subtree generated by T, and denote the part of T that lies
in the left and right subtrees of r by T and Tk

59



WO 03/048976 PCT/US02/38785

respectively. Notice that |Tzl, |Til < B, therefore the
inductive hypothesis applies.

[00186] First we will assume that both |Tz| and |T;| are
nonzero, the exceptional case will be handled below.

Denote o= |Tzl/|T| < 1 and let B be the probability that a
randomly selected source that lies below T is on the right
side of r. Then

w(T) < fu(Ty) +1( - ST, ) +1

< AL +1g(@|Th]+ (1 - A1 +1g( - )T

=1+1g|T|+ Blge+(1- p)lg(l-)

<1+1gT|

[00187] Now the exception. If one of $|Tzl and [Tyl is
empty then reT since r is the root of the smallest subtree
containing T. In this situation B= 1/2 and the size of the

non-empty subtile (say it is |Tgl) is | TrI=|T| - 1. Thus
u(T)=1+,Hu(TR)S1+—;—(lg(|T|—1)+1)<1+lg|T| when |T| 2 2. So the

exception has been handled, and the theorem proved.
[00188] It seems that this limit on average utility of a
tile must also place limits on the cost of a wavelet
overlap query. This is the content of the next result.
[00189] For all tilings with tiles of size B on a domain
of size N, sampling sources uniformly, the average cost of
a wavelet overlap query is at least 1gsN.

E, o)) = 1 20(6) = —1];2 S(T)

seD TeT

1 u(T,s)
V22 g8

NTeT:eD g
B IgN

seD ngB
=lg, N
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[00190] The optimal disk block allocation for one
dimensional wavelets can be used to construct optimal
allocations for (tensor product) multivariate wavelets.
Simply decompose each dimension into optimal virtual
blocks, and take the Cartesian products of these virtual
blocks to be the actual blocks. This arrangement allows the
following result.

[00191] In a d-dimensional domain of size N% when wavelet
coefficients are stored using the Cartesian product optimal
block allocation, the I/O cost of the multi-dimensional
wavelet overlap query in a domain of size N is O(l@%N).
Furthermore, if the dimensions all have the same size then
for any Cartesian product block strategy, the average I/0
cost will be Q(gi N).

[00192] This lower bound holds for all block allocations,
not just Cartesian product allocations. In any case, this
allows én answer to polynomial range-sum queries quickly:
When wavelet coefficients are stored using the Cartesian
product optimal block allocation, the I/0 cost of
polynomial range-sum query evaluation is 0(29g%N). If the
dimensions all have size N, then the I/O cost will also
have the lower bound Q(2°(lg, N-1)°).

[00193] The progressive query answering strategies
presented herein are based on the observation that some
wavelet coefficients are much more important for a query
answer than others. This allows us to compute the
importance of each record to be retrieved and fetch the

most important items first. The approximate answers
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returned progressively minimize both average and worst case
error.

[00194] The results above show that considerable savings
can be achieved by placing wavelet data on disk blocks in
an appropriate way and retrieving coefficients at block
level granularityf In order to obtain progressive query
results in this setting, the importance of disk blocks need
to be computed rather than individual wavelets.

[00195] When evaluating a single range-sum query, the
importance of a data wavelet coefficient can be defined as
the (square of the) magnitude of the corresponding query
wavelet coefficient. In other words, denoting the
importance of a wavelet § by ( () and denoting the wavelet

coefficients of a query vector g by §(£),we can take

(&= -

[00196] An inspection of the proofs of the theorems above
in shows that there are two natural ways to extend this
definition to disk blocks: by either choosing the
importance function to minimize worst-case error, or by
choosiﬁg it to minimize average error. In particular, one
can define two block-importance functions

L(B)= Y |a©f 1. (B) =55

£eB

and adapt the arguments to prove the following result:
By fetching disk blocks in decreasing order of (.-
importance, the worst case error of our query is a
progressively minimized approximation. By fetching disk
blocks in decreasing order of (,-importance, the average
square error of our query is a progressive minimization of

approximation.
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[00197] These results extend in a natural way to provide
control of structural error in batch query answers.

[00198] Various implementations of the systems and
techniques described here can be realized in digital
electronic circuitry, integrated circuitry, specially
designed ASICs (application specific integrated circuits),
computer hardware, firmware, software, and/or combinations
thereof. These various implementations can include
implementation in one or more computer programs that are
executable and/or interpretable on a programmable system
including at least one programmable processor, which may be
special or general purpose, coupled to receive data and
instructions from, and to transmit data and instructions
to, a storage system, at least one input device, and at
least one output device.

[00199] These computer programs (also known as programs,
software, software applications or code) include machine
instructions for a programmable processor, and can be
implemented in a high-level procedural and/or object-
oriented programming language, and/or in assembly/machine
language. As used herein, the term “machine-readable
medium” refers to any computer program product, apparatus
and/or device (e.g., magnetic discs, optical disks, memory,
Programmable Logic Devices (PLDs)) used to provide machine
instructions and/or data to a programmable processor,
including a machine-readable medium that receives machine
instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to
provide machine instructions and/or data to a programmable

processor.
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[00200] The systems and techniques described here can be
implemented in a computing system that includes a back-end
component (e.g., as a data server), or that includes a
middleware component (e.g., an application server), or that
includes a front-end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here), or any combination
of such back-end, middleware, or front-end components. The
components of the system can be interconnected by any form
or medium of digital data communication (e.g., a
communication network). Examples of communication networks
include a local area network (“LAN”), a wide area network
(“WAN”), and the Internet.
[00201] The computing system can include clients and
servers. A client and server are generally remote from
each other and typically interact through a communication
network. The relationship of client and server arises by
virtue of computer programs running on the respective
computers and having a client-server relationship to each
other.

EXAMPLES
[00202] Results with ProPolyne and related algorithms are
presented here in order to demonstrate an overview of how
these techniques perform on real-world data. ProPolyne-FM's
worst-case performance as an exact algorithm (which is very
similar to the performance of ProPolyne) is compared with

related exact pre-aggregation methods in Table 1.
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TABLE 1
Algorithm Query cost Update cost Storage cost
ProPolyne~FM (2logN)? log“N min{ 171 log’N, N}
SDDC (ZlogN)d long N
Prefix-Sum 24 N N
Relative Prefix- 2% N7 N
Sum

The experiments show that wavelet-based query approximation
delivers consistently accurate results, even on datasets
that are poorly approximated by wavelets. Not only is the
performance consistent, it is consistently better than data
approximation. By directly comparing the methods with the
wavelet-based data compression method proposed by Vitter
and Wang (In Proc. EDBT, pp. 120-134, 1999) the invention
demonstrates that query approximation based ProPolyne
delivers significantly more accurate results after
retrieving the same number of values from persistent
storage.

[00203] The results presented herein are based upon
experiments on three datasets. PETROL is a set of petroleum
sales volume data with 56504 tuples, sparseness of 0.16%,
and five dimensions: location, product, year, month, and
volume (thousands of gallons). PETROL is an example of a
dataset for which traditional data approximation works
well.

[00204] GPS is a set of sensor readings from a group of
GPS ground stations located throughout California. A
projection of the available data is used to produce a
dataset with 3358 tuples, sparseness of 0.01%, and four
dimensions: latitude, longitude, time, and height velocity.
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The presence of a tuple (lat., long., t, v) means that a
sensor observed that the ground at coordinates (lat.,
long.) was moving upward with a velocity of v at time t.
GPS is an example of a dataset for which traditional data
approximation works poorly.

[00205] TEMPERATURE is a dataset holding the temperatures
at points all over the globe and at 20 different altitudes
on March 1, 2001. It has 207360 tuples, sparseness of
1.24%, and four dimensions: latitude, longitude, altitude,
and temperature. The TEMPERATURE dataset is considerably
larger than the GPS and PETROL datasets, and is used to
emphasize the fact that as datasets get larger, the benefit
of using ProPolyne increases.

[00206] For all tests, 250 range queries were generated
randomly from the set of all possible ranges with the
uniform distribution. If a generated range selects fewer
than 100 tuples from the dataset, it is discarded and a new
range is generated.

[00207] All graphs presented in the figures display the
progressive accuracy improvement of various approximation
techniques for queries on a single dataset. The horizontal
axis displays the number of values retrieved by an
algorithm on a logarithmic scale. The vertical axis of each
graph displays the median relative error for a set of
generated queries. Relative error is used so that queries
returning large results do not dominate the statistics.
Median error is used rather than mean error in order to
avoid the noise caused by the one-sided fat tail of
observed relative error. The results using mean error are

qualitatively similar, but are not as smooth.
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[00208] Figure 4 compares the performance of ProPolyne-FM
with a progressive version of the compact data cube (CDC)
on the PETROL and GPS datasets. Other techniques have been
compared favorably to the CDC. The CDC worké well on the
PETROL dataset, producing a median relative error under 10%
after using less than 100 wavelet coefficients. Still,
ProPolyne-FM works better than CDC from the beginning, and
this difference only grows as evaluation progresses. The
difference between the performance of the two techniques on
the GPS dataset is striking: CDC must use more than five
times as many wavelet coefficients as there were tuples in
the original table before providing a median relative error
of 10%. ProPolyne-FM reaches this level of accuracy after
retrieving less than 300 wavelet coefficients.

[00209] Figure 5 compares the performance of data best-B
ProPolyne and query best-B ProPolyne on the PETROL and GPS
datasets. Unlike the prior experiment (presented in FIG.
4), the queries for these tests slice in all dimensions,
including the measure dimension. Data best-B ProPolyne can
be thought of as an extension of CDC that supports this
richer query set. As in the prior analysis, the method
based on query approximation consistently and significantly
outperforms the analogous data compression method. By the
time query best-B ProPolyne has achieved a median error of
10%, data best-B ProPolyne still has a median error of near
100% for the PETROL dataset. The data best-B ProPolyne
error for the GPS dataset at this point is enormous. Notice
also that the data best-B results exhibit accuracy “cliffs”
where the progression reaches a set of coefficients that

are particularly important for the given query workload.
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This hints that query workload information is critical to
improving the ordering of data best-B coefficients.

[00210] Finally, Figure 6 illustrates the progressive
accuracy of query best-B ProPolyne On the TEMPERATURE
dataset. Figure 6(a) displays relative error for AVERAGE
queries on randomly generated ranges of different sizes.
The size of a range is defined to be the product of the
lengths of its sides. Larger ranges have better approximate
results, suggesting that a basis other than wavelets may
provide better approximation of query workloads with small
ranges.

[00211] Figure 6(b) displays progressive relative error for
COUNT, SUM, AVERAGE, and COVARIANCE queries on the
TEMPERATURE dataset. It should be noted that COUNT, SUM,
and AVERAGE all obtain excellent accuracy after retrieving
a very small number of wavelet coefficients. AVERAGE is
significantly more accurate early in the computation,
obtaining a median relative error below 10% using just 16
data wavelet coefficients. COUNT and SUM both achieve this
level of accuracy using close to 100 data wavelet
coefficients. COVARIANCE stands out by not having
significantly improving accuracy until near the end of the
computation. The methods of the invention provide exact
results for COVARIANCE just as quickly as for other query
types. The slow convergence is largely due to the fact that
the covariance is computed by subtracting two large
approximate numbers to obtain a relatively small number.
[00212] The invention provides ProPolyne, a novel MOLAP pre-
aggregation strategy, which can be used to support

conventional queries such as COUNT and SUM alongside more
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complicated polynomial range-sums. ProPolyne is the first
pre-aggregation strategy that does not require measures to
be specified at the time of database population. Instead,
measures are treated as functions of the attributes, which
can be specified at query time. This approach leads to a
new data independent progressive and approximate query-
answering technique, which delivers excellent results when
compared to other proposed data compression methods.
ProPolyne delivers all of these features with provably
poly-logarithmic worst-case query and update cost, and with
storage cost comparable to or better than other pre-
aggregation methods. This work can be extended in several
ways. Preliminary experiments indicate that using synopsis
information about query workloads or data distributions can
dramatically improve sort orders for both query best-B and
data best-B techniques. Dimensionality reduction techniques
can improve I/0 complexity at the expense of some accuracy
in the final results. As presented herein, ProPolyne
requires random access to stored data; it is possible to
use clustering strategies, which take advantage of
ProPolyne's unique access patterns. The limits of linear
algebraic query approximation can be explored for
approximate query answering. This includes finding
compleiity lower bounds, investigating more complex queries
(e.g., OLAP drill-down, relational algebra), and making an
efficient adaptive choice of the best basis for evaluating
incoming queries.

[00213] By using an exact polynomial range-sum method
provided herein, but using the largest query wavelet

coefficients first an accurate, data-independent query
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approximations after a small number of I/Os can be
accomplished.

[00214] To test the Batch-Biggest-B for polynomial range-
sums empirical datasets were used. The following is a
sample of results from trials on a dataset of temperature
observations around the globe at various altitudes during
March and April 2001. The dataset has 15.7 million records
and 5 dimensions: latitude, longitude, altitude, time, and
temperature. The queries executed partitioned entire data
domain into 512 randomly sized ranges, and sum the
temperature in each range. The key observations follow.
[00215] Observation 1: I/0 sharing is considerable. The
query batch partitioned the entire data domain. In order
to answer the queries directly from a table, all 15.7
million records would need to be scanned. The Db4 wavelet
representation of this dataset has over 13 million nonzero
coefficients. Repeatedly using the single-query version of
ProPolyne requires the retrieval of 923076 wavelet
coefficienés, approximately 1800 wavelets per range. Using
Batch-Biggest-B to compute these queries simultaneously
requires the retrieval of 57456 wavelets, approximately 112
wavelets per range. Thus Batch-Biggest-B provides an
efficient exact algorithm by exploiting I/O sharing across
queries.

[00216] In each of these cases notice that only a small
fraction of the data wavelet coefficients need to be
retrieved. This has nothing to do with the underlying
dataset. It is simply a quantification of the fact that
ProPolyne is and efficient exact algorithm- most of the

data wavelet coefficients are irrelevant for the query.
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Another way to say this is that most of the query wavelet
coefficients are zero.

[00217] As mentioned in above Batch-Biggest-B can be used
with other transformation based techniques. Using prefix-
sums to compute each of these queries requires the
retrieval of 8192 precomputed values. When using Batch-
Biggest-B to share this retrieval cost between ranges, only
512 prefix-sums are retrieved.

[00218] Observation 2: Progressive estimates become accurate
guickly. FIG. 11 shows the mean relative error of
progressive estimates versus the number of coefficients
retrieved. After retrieving only 128 wavelets the mean
relative error is below 1%. Note the log scale on both
axes. Thus an accurate result is achieved after retrieving
less than one wavelet for each query answered.

[00219] Observation 3: Choosing the right penalty function
makes a difference. The implementation accepts arbitrary
quadratic penalty functions. FIGs. 12 and 13 display
progressive results of query evaluation when minimizing SSE
and when minimizing a cursored SSE that prioritizes errors
in a set of 20 neighboring ranges 10 times more than it
penalizes errors in the other ranges. The horizontal axis
of each chart displays the number of wavelets retrieved.
Figure 12 displays the normalized SSE for each of these
runs. Normalized SSE is the SSE divided by the sum of
square query results. The trial shows that minimizing SSE
has substantially and consistently lower SSE than fhe trial
minimizing the cursored SSE. Figure 13 displays the

normalized cursored SSE for the same two trials. The trial
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shows that minimizing the cursored SSE leads to
substantially lower penalty.

[00220] Thus, the invention also provides a framework for
progressive answering of multiple range-sum queries. Two
problems arise in this setting that are not present when
evaluating single range-sums: I/0 should be shared as much
as possible, and the progressive approximation should
control the structure of the error according to a penalty
function specified by the user. These are addressed with
the introduction of Batch-Biggest-B and the proof in
theorems herein that using the penalty function to weigh
the importance of retrieving a particular record from
storage leads to optimal estimates.

[00221] These results immediately raise several questions.
Foremost among these is the need to generalize importance
functions to disk blocks rather than individual tuples.
Such a generalization is a step in the development of
optimal disk layout strategies for wavelet data (which is
further provided by the invention). Combining this
analysis with workload information will lead to techniques
for smart buffer management. It i1s possible that these
techniques can be used to deliver progressive
implementations of relational algebra as well as commercial
OLAP query languages.

[00222] A progressive range-query answering system was
implemented based on the invention. The system is
implemented in C# using an ODBC connection to a SQL server
to store and access wavelet data (see Figure 16). This
provides an overview of how block allocation choices affect

the performance of this system. All experiments were
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performed on a sample dataset with 15.7 million records and
four dimensions: altitude, latitude, longitude, and time.
There are 16 altitudes, 128 latitudes, 64 longitudes, and
122 time points, recording temperature every 12 hours
during March and April 2001. Temperatures are measured in
degrees Kelvin. The system is designed to efficiently
answer batches of aggregate queries over ranges that
partition the data domain, providing users with a summary
view of the entire data set.

[00223] The results reported here are based on a randomly
generated workload of 100 batch queries, where each batch
query partitions the latitude dimension into 8 ranges, and
partitions the altitude, longitude, and time dimensions
into 4 ranges. The range-sum queries request the average
temperature per each range. Dimensions were partitioned
into ranges uniformly, so that all possible partitions are
equally likely. Experiments were performed with different
batch sizes and similar results were found, with the
following exceptions. For smaller batches all methods
produced very accurate progressive results quickly, even
though the I/0 cost varied dramatically. This happens
because the ranges in a small batch are large, and queries
are well approximated by a small number of low resolution
wavelets. For large batches, the optimal placement
technique still provides much better progressive estimates,
but there is very little difference in I/0 performance- for
a large batch you are essentially scanning the entire
dataset, disk placement cannot be of great benefit.

[00224] There are two “common sense” block allocations

which provide enlightening benchmarks for the invention.
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One of these allocations is obtained by essentially storing
the data in row-major order on disk. The other captures
the locality effects of a space-filling curve. The first
technique is the most naive: the multi-dimensional wavelet
coefficients can be laid out naturally in a one dimensional
array. The array is simply cut into contiguous subarrays
of equal size to obtain the disk blocks. Specifically, if
we denote the value of the i*f item in the b™ block by
v(b,i) and denote the array of wavelet coefficients by w
then v(b,1i) = w[B*b + i] for blocks of size B. This is
(approximately) the allocation that would be obtained by
default when the wavelet data is stored as a one
dimensional array on disk and let the file system determine
the block allocation (i.e., the naive allocation).
.[00225] The next technique has more respect for the
multi-dimensional structure. The wavelet coefficients is
now lying in a multi-dimensional array, the data domain is
sliced into cubes by slicing each dimension into virtual
blocks. FEach cell in this slicing will correspond to a
disk block and every wavelet coefficient in the cell will
be stored in the block. This gives a natural multi-index
for the disk blocks and a natural multi-index for wavelet
coefficients in each block. Again, denoting the value at
location i = (is, ii,. . -,ig-1) in Dblock b = (bo, bi,.
., ba-1) by v(b,i), we have v(b,1i) = w[(Bobo + ig, Bib: + 11,.
; Bg-1bg-1 + 1g-1)] where the slices are of size B; in
dimension i (i.e., a slice and dice allocation).
[00226] When answering these batch queries, the number of
disk blocks fetched to answer a query using the wavelet-

optimal allocation is substantially less than the number
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retrieved using alternate methods. In Figure 17 the
average number of blocks needed to evaluate the batch
queries in the generated workload is shown. Results are
shown for the optimal, slice, and naive methods for a
variety of block sizes. The block sizes were chosen so
that optimal blocks consisting of complete subtree tiles
were produced.

[00227] An important observation is that the optimal
strategy outperforms the other two strategies, often by a
factor of three or four. The theory suggests that the
optimal strategy should always give the best results, but
this evidence demonstrates that the difference is
substantial. Another interesting and unexpected
observation is that the naive block allocation consistently
outperforms the slicing strategy. For all strategies, the
number of blocks retrieved is only a small fraction of the
total number of blocks in the database. This is because
wavelets provide very efficient exact answers to ad hoc
range-sum queries.

[00228] Another interesting and unexpected observation is
that the naive block allocation strategy outperforms the
slicing strategy. This could be due to the fact that the
naive blocks typically contain both high and low resolution
data, while many of the domain slicing blocks contain only
spatially localized high resolution data. When these high
resolution blocks are retrieved, there are typically only a
small number of useful items. Low resolution data are more
likely to be useful.

[00229] As demonstrated herein wavelets provide excellent

approximations of the matrices that arise in evaluation of
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batch range-sum queries. For any allocation to disk
blocks, the importance of a block can be computed so that
by performing the most important I/O first one minimizes
either worst case or average error.

[00230] Although the invention shows that the dependency
graph based allocation is the best possible for exact query
answering, other strategies may provide better approximate
answers early in the computation. The results in this
section suggest that this is not the case, and that the
optimal placement gives the superior approximate results
from the first block onward.

[00231] The approximation quality is measured in two ways.
The first approach is data independent. 1 is used as the
importance function to minimize mean square error, and
normalize so that the total importance of all columns in
each query is one. The cumulative importance of all
retrieved disk blocks is measured as the query progresses,
aggregate the results over the randomly generated query
workload, and report the results in Figure 18.

[00232] The second measure of the approximation quality
measures the accuracy of query answers on a real data set.
Queries were progressively evaluated on the temperature
dataset, described above, to report the mean relative error
as a function of the number of disk blocks retrieved in
Figure 18(b). The results are not surprising in light of
Figure 18(a). The optimal placement performs extremely
well, providing a mean relative error under 0.1% after
retrieving only 10 disk blocks. The slice blocks also
perform gquite well, with mean relative error under 0.1%

after retrieving 125 disk blocks. The naive approach
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performs terribly- mean relative error does not fall below
100% until the query evaluation is almost complete! Still
after retrieving about 500 disk blocks the error for the
naive approach falls of rapidly. This is because the naive
approach only requires an average of 387 blocks to answer
the query exactly. The reduction comes almost entirely
from the fact that as queries results become exact, the
relative error becomes zero.

[00233] A number of embodiments of the invention have been
described. Nevertheless, it will be understood that
various modifications may be made without departing from

the spirit and scope of the invention.
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What is claimed is

1. A method, comprising:

processing at least one query using a wavelet
transformation to produce a transformed query; and

performing a range-sum query on a database using the

transformed query to produce a result.

2. The method of claim 1, wherein the processing of
the query using a wavelets algorithm comprises filtering
the query using a plurality of filters to produce a summary

query.

3. The method of claim 2, wherein the summary query
is processed using a wavelets algorithm and utilizing a
plurality of filters to further refine the summary query to

obtain a moment condition.

4. The method of claim 1, wherein the transformed
query comprises a hierarchical list in decreasing order of

wavelet coefficients.

5. The method of claim 1, wherein the database is a

d-dimensional database.
6. The method of claim 5, wherein the d-dimensional

database is a data cube.

7. The method of claim 1, wherein the wavelets
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algorithm is a modified Haar wavelet algorithm.

3. The method of claim 1, wherein the transformed

query comprises k wavelet coefficients.

9. The method of claim 8, wherein n wavelet
coefficients from the transformed query are used in the

range-sum query of the database.

10. The method of claim 9, wherein n<k and the range-

sum query is a progressive result.

11. The method of claim 9, Wherein n=k and the range-

sum query is an exact result.

12. The method of claim 1, wherein the at least one

query comprises a plurality of queries.

13. The method of claim 12, wherein each of the
plurality of queries is processed to produce a plurality of

transformed queries each comprising k wavelet coefficients.

14. The method of claim 13, wherein the wavelet
coefficients of each transformed query are compared to
identify wavelet coefficients between the transformed
queries that overlap and identifying the queries that

overlap as important coefficients.

15. The method of claim 14, wherein the wavelet

coefficients of the plurality of transformed queries are
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ranked in a table from most important to least important

based upon their values and upon their importance.

16. The method of claim 15, wherein the range-sum
query is performed by obtain a result for each wavelet

coefficient in the table in descending order.

17. The method of claim 1, implemented in a computer

program on computer readable medium.

18. A method, comprising:

receiving at least one query comprising at least one
requested attribute;

processing the at least one query to obtain a summary
comprising identifying a plurality of coefficients fitting
the at least one desired attribute by filtering the query
using one or more filters repeating the filtering until a
moment condition is obtained whereupon obtaining the moment
condition the query is a transformed query;

generating a transformed query table comprising a
plurality of wavelet coefficients (k) comprising values in
descending order;

performing a range-sum query in a database using
wavelet coefficient (n) of the transformed query beginning
with the largest, wherein the data in the database includes
a plurality of attributes and are represented as a d-
dimensional data cube having a plurality of cells, the
dimensions of the data cube corresponding respectively to
the attributes, each cell having an aggregate value of the

corresponding data attribute values, the transformed query
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defining a subset of the dimensions of the data cube;
computing a plurality of range-sums based on the
values corresponding to the data attributes in the subset;
and
generating an exact range-sum result when n=k or an

approximate or progressive result when n<k.

19. The method as recited in claim 18, wherein the
range-sum query corresponds to a d-dimensional region of

the data cube.

20. An article of manufacture, comprisingf

a computer-readable medium; and

instructions on the computer readable medium for
directing a computer to:

process at least one query using a wavelets algorithm
to obtain a transformed query; and

perform a range-sum query on a database using the
transformed query to produce a proximate, progressive,

and/or exact result.

21. The article of manufacture of claim 20, wherein
the processing of the query using a wavelets algorithm
comprises filtering the query using a plurality of filters

to produce a summary Juery.

22. The article of manufacture of claim 21, wherein
the summary query is processed using a wavelets algorithm
and utilizing a plurality of filters to further refine the

summary gquery to obtain a moment condition.

81



WO 03/048976 PCT/US02/38785

23. The article of manufacture of claim 20, wherein
the transformed query comprises a hierarchical list in

decreasing order of wavelet coefficients.

24. The article of manufacture of claim 20, wherein

the database is a d-dimensional database.

25. The article of manufacture of claim 24, wherein

the d-dimensional database is a data cube.

26. The article of manufacture of claim 20, wherein
the wavelets algorithm is a modified Haar wavelet

algorithm.

27. The article of manufacture of claim 20, wherein

the transformed query comprises k wavelet coefficients.

28. The article of manufacture of claim 27, wherein n
wavelet coefficients from the transformed query are used in

the range-sum query of the database.

29. The article of manufacture of claim 28, wherein

n<k and the range-sum gquery is a progressive result.

30. The article of manufacture of claim 28, wherein

n=k and the range-sum query is an exact result.

31. The article of manufacture of claim 20, wherein

the at least one query comprises a plurality of queries.
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32. The article of manufacture of claim 31, wherein
each of the plurality of queries is processed to produce a
plurality of transformed queries each comprising k wavelet

coefficients.

33. The article of manufacture of claim 32, wherein
the wavelet coefficients of each transformed query are
compared to identify wavelet coefficients between the
transformed queries that overlap and identifying the

queries that overlap as important coefficients.

34. The article of manufacture of claim 33, wherein
the wavelet coefficients of the plurality of transformed
queries are ranked in a table from most important to least
important based upon their values and upon their

importance.

35. The article of manufacture of claim 34, wherein
the range-sum query is performed by obtaining a result for

cach wavelet coefficient in the table in descending order.

36. A computer program on computer readable medium for
causing a computer to:

receive at least one query comprising at least one
requested attribute;

process the at least one query to obtain a summary
comprising identifying a plurality of coefficients fitting
the at least one desired attribute by filtering the query

using one or more filiters repeating the filtering until a
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moment condition is obtained whereupon obtaining the moment
condition the guery is a transformed query;

generate a transformed query table comprising a
plurality of wavelet coefficients (k) comprising values in
descending order;

perform a range-sum query in a database using wavelet
coefficient (n) of the transformed query beginning with the
largest, wherein the data in the database includes a
plurality of attributes and are represented as a d-
dimensional data cube having a plurality of cells, the
dimensions of the data cube corresponding respectively to
the attributes, each cell having an aggregate value of the
corresponding data attribute values, the transformed query
defining a subset of the dimensions of the data cube;

compute a plurality of range-sums based on the values
corresponding to the data attributes in the subset; and

generate an exact range-sum result when n=k or an

approximate or progressive result when n<k.

37. A database system for performing a range-sum query
in a database comprising:

a computer readable medium comprising instructions for
causing a computer to:

process at least one query using a wavelets algorithm
to obtain a transformed query; and

perform a range-sum query on a database using the
transformed query to produce a proximate, progressive,

and/or exact result.

38. A database system for performing a range-sum query
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in a database comprising:

a computer readable medium comprising instructions for
causing a computer to:

receive at least one query comprising at least one
requested attribute;

process the at least one query to obtain a summary
comprising identifying a plurality of coefficients fitting
the at least one desired attribute by filtering the query
using one or more filters repeating the filtering until a
moment condition is obtained whereupon obtaining the moment
condition the query is a transformed query;

generate a transformed query table comprising a
plurality of wavelet coefficients (k) comprising values in
descending order;

perform a range-sum query in a database using wavelet
coefficient (n) of the transformed query beginning with the
largest, wherein the data in the database includes a
plurality of attributes and are represented as a d-
dimensional data cube having a plurality of cells, the
dimensions of the data cube corresponding respectively to
the attributes, each cell having an aggregate value of the
corresponding data attribute values, the transformed query
defining a subset of the dimensions of the data cube;

compute a plurality of range-sums based on the values
corresponding to the data attributes in the subset; and

generate an exact range-sum result when n=k or an

approximate or progressive result when n<k.

&5



WO 03/048976

Receive
Query

'

Transform Query using
a lazy wavelet
transform

SN T

comprising a list of pairs of
all relevant wavelet
coefficients comprising &

60

nairs
X

PCT/US02/38785

- 200

L—3c0

Extract wavelet coefficent
with largest value and
assemble in decreasing order
(llheap")

- Yoo

'

> n=n+1 >

Perform a range-sum query
using a coefficent pair n of
transformed query

Output
result?

Output
progressive
result.

l

obtain range-sum
result

Output exact
result.

- 500

- (200

a50

FIG. 1



WO 03/048976

2/18

Receive
query

!

-

Filter (e.g.,
Filter H(x);

edge
boundaries

!

Store "filter
summary"

Y

Transform
"filter
summary";
muitiply and
sum

-

Yes

Is further filtering
available? Is Moment
condition satisfied?

PCT/US02/38785

e

Filter G(x)) at}” (000

oo

1500

b

"Filter

Summary" =
"Transformed
query"

FIG. 2



WO 03/048976

Receive
Query

Y

PCT/US02/38785
3/18
2010 Receive
P
Query 3020
v !

Transform Query using
a lazy wavelet
transform

Transform Query using 206
a lazy wavelet
transform

DICO

L

A
Obtain transtormed query
comprising a list of pairs of
all relevant wavelet
coefficients comprising &
pairs

Obtain transtormed query
comprising a list of pairs of
all relevant wavelet
coefficients comprising &

L 31O

pairs

\\/

Generate master table/list of
coefficients from each
transformed query and "heap"
the table/list

| 320D

'

n=nt+l1 >l

Perform a range-sum query
using a coefficent pair n of

transformed query

3300

Output
approximate
or
progressive
result.

l

obtain range-sum
result

Output exact
result.

| 340

FIG. 3



TAugean Bokaras Bs {8 G ieasae]
E = -4 3 = .

e
=

k4

WO 03/048976

o
" 1
. 1 v
.‘o
=52 ot
‘Qm % "
1 . - 3 &
'\,.‘ “"‘"ﬁ‘ l s
Yy 1 i
[ 2y
\ . i
FrarcreFR D e g !- ‘\- + ‘; 55
| g
H | é ¥
§ » 2
- \ * %
3
u’
% 0 1;‘ 5 ¥ uf %
Heattier & Voluas RSN (he] souder

(a) PETROL (mean selectivity:

22.3%)

FIG. 4

PCT/US02/38785
4/18

] ! |
\ e 1
{ ‘w.x..““‘ N)ml ;
5.4, 2
Y *'Q i
{ [} e 3
Hnicans+H i E
1 1 !
] 1
[

=

1 '
Hurnter of Vs St (g 2raed

3

() GPS (mean selectivity: 204%)



B OE 3 %

Eandan R B 0% 00 Sy s088)

b3

K

8»

=4

WO 03/048976

PCT/US02/38785

5/18

i
v i o
. , Pey
E b et 1 v Yo Duafast-R 1
4 Hestoigna o i P ’
[ 1 7 i
does P Sl ow § 9
1 p-o-nm&::: 4 1 2 \u‘ "\‘
."“::':"bo‘“‘ gsu" 1 ."w‘ ha ) PO 1
'] $ihy 1 ol . * A
J “’ag‘ Ew 1 "l«‘. .“‘v.’ 5
r k4
) | Fo 1 ."D 1
Quargiiistg L 2 LY
] Wedrdin = § 1 5w LS 1
o & [ Loy Sent-g T
1 1 “w 1 PRt ‘rb
. ¥
[ 1 1 }‘
ol o i 'x A % . e 4 4 ot ‘0. 3
"' 16 ¥ W w g ¥ »

(a) PETROL (mean selectivigys

182%)

e 1@ 1
FRspar < WAk HRTkAN oG S}

I 1w 1
Hhitete 61 g0as Hapond g 4aak)

(b} GPS (mean selectivity: 17.5%)

FIG. 5



WO 03/048976 PCT/US02/38785
6/18

n
L mcwvwn&“.ﬂww&m"

wl e i
1 ‘”":::':M Ty, 1

W‘N’."M

Y]
e St 3
st x’g::fmﬁ . 3 r
k.

ARMAML

e
=

o
<

Mo Rebive Bt
z
sl

e
<«
bk

Hedsa Rabing £ {h.on by sads]
8

¥

RS = ¥ &
g 3 3 y Rt Ty 53 & W o
Wit Shos Catigeey Nuaher oF ¥ akioe Batraved Pog seash
(21 Relative soror vs. vange sioe af- (b Second onder statisties (mean
ver retrieving 300 values seloctivity 16.5%)

FIG. 6



WO 03/048976

7/18° .°

1.

(94

Barcu-Biocrst-B

Preprocessing:  Compute the wavelet transform of the
data density function and store with reasonable random-
access cost.

fnput: o batch of range-sum queries and an importance
function.

For each query in the batch, initialize its progressive

estimate to be zevo.

Compute the wavelet transform of each query in the
batch, and construct a list of its nonzero wavelet co-
efficients.

Mervge these lists into a master list.

Compute the importance of each wavelet in the mas-
ter list, and build a max-heap from the set.

. Extract the maximum element from the heap, re-

trieve the comesponding data wavelet coefficients,
and use it to increment the progressive estimate of
each query in the batch according to Equation 2. Re-

peat until heap is empty.

FIG. 7

PCT/US02/38785



WO 03/048976 PCT/US02/38785
8/18

™
e}

50wgae”

b4
r

1000 uw" :

egnesnumemmed

i

Ko unmusomiunn sheen

FIG. 8



WO 03/048976 PCT/US02/38785
9/18




WO 03/048976 PCT/US02/38785
10/18

FIG. 10



WO 03/048976 PCT/US02/38785

11/18
1" Y T T T
L]
L]
w0k L 4
Pl
Oy
g 10 -‘ﬁ. -
g ",
# 2
XE ".
g
PR “-..% i
g,
G,
- 3 “10_ i
L)
16‘ V1 A R V3
1w 10! g TS 1g* 10"

Nty ol Wanaist Cosilidants Fetiovad

FIG. 11



WO 03/048976

Homuswsd 558

12/18
15— - -
‘$0-90-4
w©'p "‘ ‘~. Cpteniced fa 4
‘-.‘. "‘M Cirsnme S5
1wk L N “’q 1
.. 3
B - ’.
hecd [ ”‘ y 1
Y q
B . Y
1w -\. % 1
w0 - Qg e e %, e _a
’“.'b kS
i | Y ]
, %
hixd r ‘_" "; ]
LAY
1 L%
©y o 4
9 2 % 2 X
° w? 1! 10° 1at 15

ki
TS PG Costtiaenis Retnayad

FIG. 12

PCT/US02/38785



WO 03/048976

HNatmatand Cotsoted 58K
&

13/18
3 L]
] LY ‘
4 X, Cipimized S 56 ]
L ‘-M:a--uc--ug‘
] L e, ]
4 ‘to." 'k,’
E L , ]
'E e e 1

w, x,
i “ " !
3 / Oy i,'
] Sptrmeettor ™ , 1
i Cliweeed 558 . 5
] % » ]
; by
[ E ]
W ' ra 1 * 3 1w

1
Mg o8 Wkt Cstriiints Betrasd

FIG. 13

PCT/US02/38785



WO 03/048976 PCT/US02/38785
14/18

oL

&4 qf__— &s

FIG. 14



WO 03/048976
15/18

Eo

. 12 3
u(x,T): 3 3 2 2

FIG. 15A

FIG. 15B

PCT/US02/38785



WO 03/048976

e

RADBWRY UMty u.‘M ;
S aetoo R 1 ok szapis oo W ot &

16/18

"PM‘QM WONK gl

9 mopecn ikt <E K i id
VA Sl SUE S LW E S DY

WL

Sl & S WRAS

FIG. 16A

g r— h-amn‘suﬂ S
W RN dardt e Jorc e xu;,\u
A Wikdan P s & WU W 4 -
B L S R
S s Konmets TR 2 e A i
DO, St KA W O proweun
G Boars Koo TR IN P WA
SO, S WS VD 085 W1 I
B s ’wﬂl}"ﬂ"d‘ R

it 4o o et o oS s

3

FIG. 16B

PCT/US02/38785



WO 03/048976

PCT/US02/38785

17/18
) 3000
2500
2
9 2000
@
S & Optimal
2 1500 - W Slice
5 DONaive
Z
c
3 1000 -
=
500 -
oL
Block Slze Block Size BlockSize BlockSize BlockSize
189 441 1029 2025 4725

FIG.

17



WO 03/048976

PCT/US02/38785

18/18
1
09 ,_’o-—o-—::‘:_—' §omibsss
Optimal Biocka /-z"_'::::---"*“""‘
08 < Y Lt
- 8lics Rlocks
Bor -
$ ol 27
8 i
0 //
08 IL, _',r/‘—d- ‘.‘.—"—‘
b J e
§ 04 o
st
Eo3 — E
/‘,4- Nulve Blocks
0.2 /,‘
Vs
0.1 4o
[0 I oo S e S s e e S S e o e e e e e g e )
1 23485 67 8 910111213141516817 18192021 222324252627
Number of Blocks Retrieved
FIG. 18A
100
10 1
1 -
Natve Blecks v
0.1 9 .
' 0.01 —
0.001 - e Blocies
%o.oom \
1E-08 +—
] \ L
i 1E08 \ ‘K
1E07
\ Optimal Blocks
1E-08 \
1E-09 ‘
1E=10 + 1t Tyt T T T T T TP T T
1 101 201 304 401 501 801 701 801 901
Humborof!lock!mod
FIG. 18B



INTERNATIONAL SEARCH REPORT

[nternational application No.
PCT/US02/38785

A.
IPC(7)

According to

CLASSIFICATION OF SUBJECT MATTER
:GO6F 17/30, 13/18; GO6K 9/62, 9/16; AGIB /11
US CL  :706/145 707/6, 8, 2; 382/225; 382/ 198; 351/206

International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Us. :

Minimum documentation searched (classification system followed by classification symbols)

706/ 14 707/6, 3, 2; 382/2v5; 382/ 128; 851/206

sepiees:

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
. WEST, ACM, NPL, IEEE

C.  DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WU et al. Using Wavelet Decomposition to Support Progressive and | 1-39
Approximate Range-Sum Querie over Data Cubes. ACM Press.
November 2000, pages 414-421.

Y Loh et al. Index Interpolation: An Approach to Subsequence| 1, 18, 20, 36-39
Matching Supporting Normalization Transform in Time-Seris
Databases. ACM Press. November 2000. pages 480-487.

Y Keogh et al. Ensemble-Index: A New Approach to Indexing Large| 1, 18, 20, 36-39
Databases. ACM Press. August 2001, pages 117-125.

Y WU et al. A Comparison of DFT and DWT Based Similarity Search| 1, 18, 20, 36-39
in Time-Series Databases. ACM Press. November 2000. pages 488-
495. .

Further documents are listed in the continuation of Box C. D See patent family annex.

»* Special categories of cited documents:

"A" document defining the general state of the art which is not

considered to be of particular relevance

“E" earlier document published on or after the international filing date

"Lt document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"o document referring to an oral disclosure, use, exhibition or other
means

"p* document published prior to the international filing date but later

than the priority date claimed

e later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

"y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

g document member of the same patent family

Date of the actual completion of the international search

18 FEBRUARY 2003

Date of mailing of the international search report

06 MAR 2003

address of the ISA/US

atents and Trademarks

Name and mailin
Commissioner of
Box PCT
Washington, D.C. 20231

Facsimile No.  (703) 305-3230

Form PCT/ISA/210 (second sheet) (July 1998)%




INTERNATIONAL SEARCH REPORT International application No.

PCT/US02/35785

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

Y,P

Y,P

US 6,173,275 B1 (CAID ET AL) 09 January 2001, col. 2, lines
29-34. ‘

US5,940,825 A (CASTELLI et al) 17 August 1999, col. 5, line
11-col. 6, line 28.

US 6,397,211 B1 (COOPER) 28 May 2002, col. 3, lines 14-30.

US 6,438,538 B1 (GOLDRING) 20 August 2002, col. 4, lines 17-
29.

US 6,006,214 A (CAREY et al) 21 December 1999, col. 3, line
65-col. 4, line 51.

US 6,389,169 B1 (STARK et al) 14 May 2002, Abstract

US 5,819,255 A (CELIS et al) 06 October 1998, col. 4, line 34-col.

6, line 61.

US 6,292,577 B1 (TAKAHASHI) 18 September 2001, col. 4, line
37-col. 5, line 57.

1, 18, 20, 36-39

1, 18, 20, 36-39

12

1, 18, 20, 36-39

2-17, 19, 21-35

2-17, 19, 21-35

1

1, 18, 20, 36-39

Form PCT/ISA/210 (continuation of second sheet) (July 1998)x




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

