

US 20150071987A1

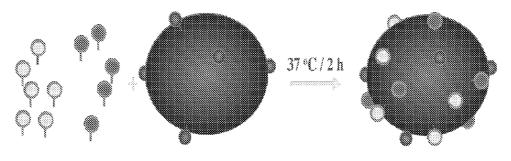
(19) United States (12) Patent Application Publication

Selvaraj

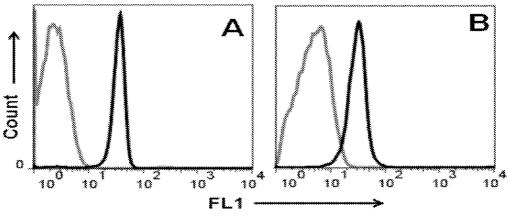
(10) Pub. No.: US 2015/0071987 A1 (43) Pub. Date: Mar. 12, 2015

- (54) IMMUNOSTIMULATORY COMPOSITIONS, PARTICLES, AND USES RELATED THERETO
- (71) Applicant: **EMORY UNIVERSITY**, Atlanta, GA (US)
- (72) Inventor: Periasamy Selvaraj, Atlanta, GA (US)
- (73) Assignee: **EMORY UNIVERSITY**, Atlanta, GA (US)
- (21) Appl. No.: 14/374,729
- (22) PCT Filed: Feb. 1, 2013
- (86) PCT No.: PCT/US2013/024355
 § 371 (c)(1),
 (2) Date: Jul. 25, 2014

Related U.S. Application Data


(60) Provisional application No. 61/594,754, filed on Feb. 3, 2012.

Publication Classification


(51) Int. Cl. *A61K 39/385* (2006.01) *A61K 39/39* (2006.01) *A61K 39/00* (2006.01) USPC **424/450**; 424/85.1; 424/85.2; 424/185.1; 424/193.1; 424/194.1

(57) **ABSTRACT**

In some embodiments, described herein is a method of tumor treatment or tumor vaccination. The method generally comprises applying to a human being in need thereof a tumor therapeutic composition or tumor vaccine defined herein. The tumor therapeutic composition or tumor vaccine can be produced by protein transfer of glycosyl-phosphatidylinositol (GPI)-anchored immunostimulatory or costimulatory molecules.

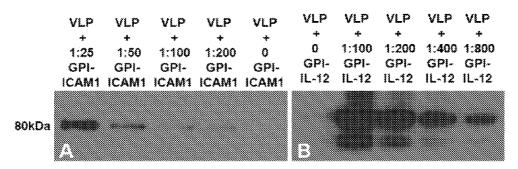
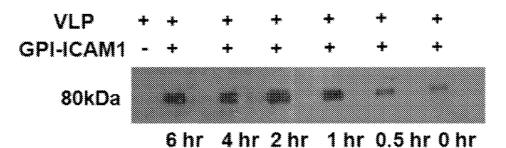
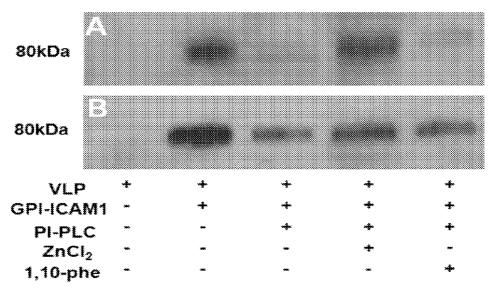
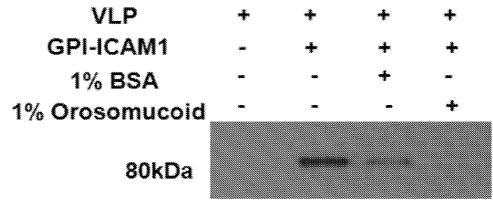
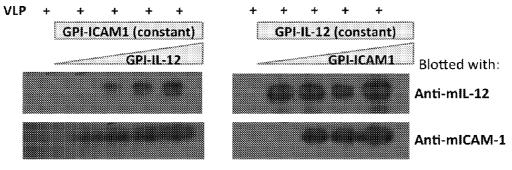



FIG. 3

F1G. 4

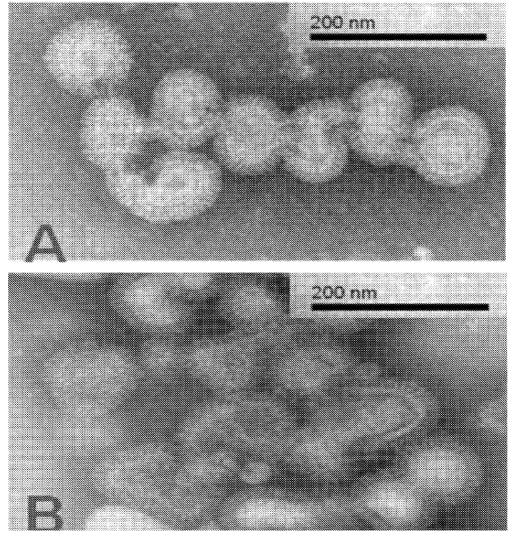

FIG. 5

FIG. 7

F1G. 8

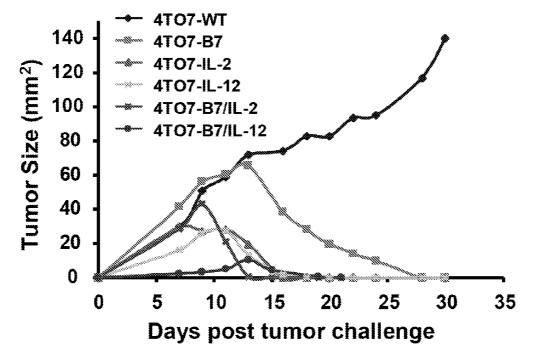


FIG. 9

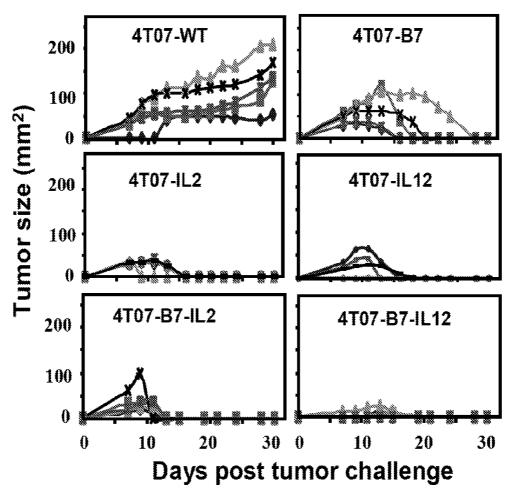


FIG. 10

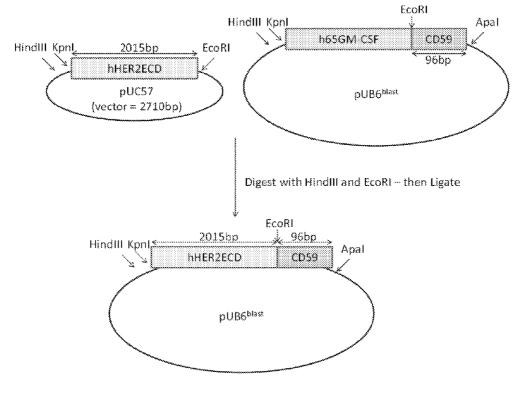
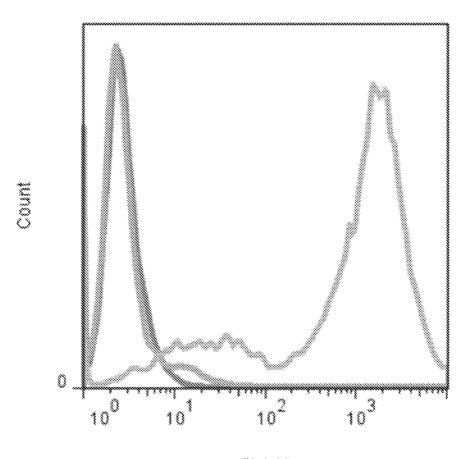



FIG. 11

FL1-H

FIG. 12

IMMUNOSTIMULATORY COMPOSITIONS, PARTICLES, AND USES RELATED THERETO

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 61/594,754 filed Feb. 3, 2012 hereby incorporated by reference in its entirety.

ACKNOWLEDGEMENTS

[0002] This invention was made with government support under Grant RO1CA138993 awarded by the National Institutes of Health. The government has certain rights in the invention.

BACKGROUND

[0003] ProvengeTM is a recently FDA-approved autologous cellular immunotherapy treatment. Peripheral blood leukocytes of a subject are harvested via leukapheresis. These enriched monocytes are incubated with prostatic acid phosphatase (PAP) conjugated to cytokine granulocyte macrophage colony stimulating factor (GM-CSF). GM-CSF is thought to direct the target antigen to receptors on DC precursors, which then present PAP on their cell surface in a context sufficient to activate T cells for the cells that express PAP. Activated, PAP presenting DCs are administered to the subject to elicit an immune response retarding cancer growth. This strategy requires isolation and expansion of cells of the subject, and typically treatment does not entirely clear the subject of cancer or tumors. Thus, there is a need to identify improved methods.

[0004] B7-1 (also known as CD80) is a T cell costimulatory molecule that can be anchored in to autologous cancer cells to stimulate immune responses. McHugh et al., report the construction, purification and functional reconstitution of a glycolipid anchored form of B7-1 (CD80) on tumor cell membranes. Proc. Natl. Acad. Sci. USA 1995; 92:8059-8063. See also U.S. Pat. No. 6,491,925. Glycosyl phosphatidylinositol anchored B7-1 (GPI-B7-1) molecules have been incorporated onto tumor cells and isolated tumor cell membranes to provide costimulation for allogenic T cell proliferation. See Nagarajan & Selvaraj, Vaccine, 2006, 24(13):2264-74, U.S. Published Patent Application No. US 2007/0243159, Bozeman et al., Front Biosci. 2010; 15:309-320. Bumgarner et al., report surface engineering of microparticles by novel protein transfer for targeted antigen/drug delivery. J Control Release. 2009; 137:90-97.

[0005] Cubas et al., report virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunotherapy, 2009, 32(2):118-128. Kueng et al., report a general strategy for decoration of envelope viruses with functionally active lipid-modified cytokines, J Virology, 2007, 81, 8666-8676.

SUMMARY

[0006] In some embodiments, described herein is a method of tumor treatment or tumor vaccination. The method generally comprises applying to a human being in need thereof a tumor therapeutic composition or tumor vaccine defined herein. The tumor therapeutic composition or tumor vaccine can be produced by protein transfer of glycosyl-phosphatidylinositol (GPI)-anchored immunostimulatory or costimulatory molecules.

[0007] In one embodiment, the tumor therapeutic composition or tumor vaccine comprises a live tumor cell or tumor cell membranes that is or are modified by protein transfer to express one or more GPI-anchored immunostimulatory or costimulatory molecules. The tumor therapeutic composition or tumor vaccine can be prepared by a method that comprises obtaining one or more GPI-anchored immunostimulatory or costimulatory molecules, and transferring the GPI-anchored immunostimulatory or costimulatory molecules onto a tumor cell or isolated tumor cell membranes by protein transfer.

[0008] In certain embodiments, the disclosure relates to non-naturally occurring particle comprising, a lipid membrane; a B7-1 and/or B7-2 molecule anchored to the lipid membrane on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle. Typically, the particle further comprises an adjuvant molecule anchored to the lipid membrane on the exterior of the particle wherein the adjuvant molecule and antigen molecule are not the same molecule. In certain embodiments, the adjuvant molecule is selected from IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA). The lipid membrane may be a phospholipid monolayer or phospholipid bilayer. Typically, the particle is selected from a cell, allogeneic or autologous cancer cell or its membrane fragments or vesicles, liposome, virosome, micelle, polymer, and virus like particle.

[0009] In certain embodiments, the B7-1 molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.

[0010] In certain embodiments, the antigen molecule such as a tumor associated antigen or cancer marker is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.

[0011] In certain embodiments, the adjuvant molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.

[0012] Particles comprising membranes such as tumor membranes carrying tumor antigens and immunostimulatory stimulatory molecules can be modified by incubating with lipophilic adjuvants such as lipopolysaccharides or an immunostimulatory unmethylated CpG oligonucleotides lipid conjugate.

[0013] In certain embodiments, antigen is a cancer marker molecule selected from HER-2, MUC-1, mucin antigens TF, Tn, STn, glycolipid globo H antigen, prostate-specific antigen, prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens such as CT7, MAGE-A3 and MAGE-A4, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M).

[0014] In certain embodiments, the disclosure relates to virus like particles comprising B7-1 and/or B7-2 molecule

anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle. Typically, the antigen molecule is a cancer marker or tumor associated antigen or tumor-specific antigen selected from HER-2, MKI67, prostatic acid phosphatase (PAP), prostate-specific antigen (PSA), prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens, antigens comprising a Mage Homology Domain (MHD), MAGE-1, CT7, MAGE-A3 and MAGE-A4, ERK5, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M). Typically, the virus like particle further comprising an adjuvant molecule anchored to a lipid membrane on the exterior of the particle wherein the adjuvant molecule and the antigen molecule are not the same molecule. In certain embodiments, the adjuvant molecule is selected from is IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA). [0015] In certain embodiments, the disclosure relates to methods of treating cancer comprising administering an effective amount of a particle or a virus like particle as disclosed herein to a subject at risk of or diagnosed with cancer or a tumor optionally in combination with anti-CTLA-4 antibodies such as abatacept, belatacept, ipilimumab, tremelimumab, anti-PD-1 and PDL1 antibodies such as nivolumab, unmethylated CpG oligonucleotide, methyl jasmonate, cyclophosphamide, gemcitabine or other immunosuppression blocker or other anticancer agent. Typically, the subject is a human subject and the virus like particle comprises a B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule wherein the antigen molecule is a viral protein.

[0016] Other anticancer agents contemplated include gefitinib, erlotinib, docetaxel, cis-platin, 5-fluorouracil, gemcitabine, tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea, adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin, vincristine, vinblastine, vindesine, vinorelbine taxol, taxotere, etoposide, teniposide, amsacrine, topotecan, camptothecin bortezomib anegrilide, tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene fulvestrant, bicalutamide, flutamide, nilutamide, cyproterone, goserelin, leuprorelin, buserelin, megestrol anastrozole, letrozole, vorazole, exemestane, finasteride, marimastat, trastuzumab, cetuximab, dasatinib, imatinib, bevacizumab, combretastatin, thalidomide, and/or lenalidomide or combinations thereof.

[0017] In certain embodiments, the viral like particle has an hemagglutinin selected from influenza H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, and H16 optionally in combination with or individually influenza N1, N2, N3, N4, N5, N6, N7, and N8.

[0018] In certain embodiments, the virus protein is an HIV envelope protein selected from gp 41, gp 120, and gp 160.

[0019] In certain embodiments, the disclosure relates to methods of treating or preventing a viral infection comprising administering an effective amount of a virus like particle disclosed herein to a subject at risk of, exhibiting symptoms of, or diagnosed with a viral infection.

[0020] In certain embodiments, the disclosure relates to particles comprising a cancer marker made by the process of mixing a cancer marker conjugated to a lipophilic moiety and a particle comprising a lipid membrane. Typically, the cancer marker is HER-2 or PSA or PAP.

[0021] In certain embodiments, the disclosure relates to particles comprising a cancer marker and B7-1 and/or B7-2 made by the process of mixing a B7-1 and/or B7-2 conjugated to a lipophilic moiety and a particle comprising a lipid membrane and a cancer marker.

[0022] In certain embodiments, the disclosure relates to methods of treating or preventing breast cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, and HER-2 to a subject in need thereof.

[0023] In certain embodiments, the method further comprises analyzing the subject for overexpression of HER-2, by measuring, detecting, sequencing, hybridizing with a probe, HER-2 polypeptide or a nucleic acid indicative of HER-2 expression, or sequencing a nucleic acid associated with HER-2, on a cancer cell or tumor cell isolated from the subject.

[0024] In certain embodiments, the disclosure relates to methods of treating or preventing prostate cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, and PSA or PAP to a subject in need thereof.

[0025] In certain embodiments, the disclosure relates to methods of treating or preventing prostate cancer comprising administering an effective amount of a particle comprising B7-1 and/or B7-2, GM-CSF, IL-12, and PSA or PAP to a subject in need thereof.

[0026] In certain embodiments, the compositions and method further comprises administering an immunostimulatory amount of particles disclosed herein in combination with an anticancer agent, individually as single agents and/or in a single pharmaceutical composition.

[0027] In the case of breast cancer the anticancer agent may be estradiol, tamoxifen, cetuximab and a HER-2 antibody, humanized antibody, or human chimera such as trastuzumab, pertuzumab. The HER-2 antibodies may be administered before or after immune stimulation with particle.

[0028] In the case of prostate cancer, the anticancer agent may be docetaxel, cabazitaxel, bevacizumab, alpharadin thalidomide, prednisone, abiraterone, finasteride and dutasteride, MDV3100, orteronel (TAK-700), omega-3 fatty acids such as ethyl esters of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) or combinations thereof such as bevacizumab, docetaxel, thalidomide, and prednisone or abiraterone acetate in combination with prednisone.

[0029] In another embodiment, the tumor therapeutic composition or tumor vaccine comprises a microparticle with a lipid membrane encapsulating tumor antigens or peptides and one or more anchored immunostimulatory or costimulatory molecules expressed on the surface of the particle. The tumor therapeutic composition or tumor vaccine can be prepared by a method that comprises obtaining one or more anchored immunostimulatory or costimulatory molecules, and transferring the anchored immunostimulatory or costimulatory molecules onto a particle encapsulating at least one tumor antigen or peptide, tumor lysate, tumor membranes, or combinations thereof by protein transfer.

[0030] The microparticles can be formed of any biocompatible polymer capable of incorporating GPI-anchored immunostimulatory or costimulatory molecules. For example, representative useful biocompatible polymers include, but are not limited to, polyvinyl alcohols, polyvinyl ethers, polyamides, polyvinyl esters, polyvinylpyrrolidone, polyglycolides, polyurethanes, allyl celluloses, cellulose esters, hydroxypropyl derivatives of celluloses and cellulose esters, preformed polymers of poly alkyl acrylates, polyethylene, polystyrene, polyactic acid, polyglycolic acid, poly (lactide-co-glycolide), polycaprolactones, polybutyric acids, polyvaleric acid and copolymers thereof, alginates, chitosans, gelatin, albumin, zein and combinations thereof.

[0031] Anchored immunostimulatory or costimulatory molecules can be obtained by expressing the GPI-anchored immunostimulatory or costimulatory molecules in a cell, and isolating the GPI-anchored immunostimulatory or costimulatory molecules. The anchored immunostimulatory or costimulatory molecules can be any substance that stimulates or costimulates immune reaction against a tumor cell that is capable of being expressed in a cell. For example, the immunostimulatory or costimulatory molecules useful here can be a cytokine molecule. In one embodiment, a useful cytokine can be, for example, one or more of cytokines IL-2, IL-4, IL-6, IL-12, IL-15, IL-18, IL-19, granulocyte-macrophage colony stimulating factor (GM-CSF), and combinations thereof. In another embodiment, the immunostimulatory or costimulatory molecules can be, for example, the immunostimulatory or costimulatory molecules useful here can be a cytokine molecule. In another embodiment, the immunostimulatory or costimulatory molecules useful here can be, for example, B7-1, B7-2 and an intercellular adhesion molecule such as CD40L, ICAM-1, ICAM-2, and ICAM-3.

[0032] In any of the embodiments, particle may be a wild type cell, cancer cell or immortalized cell.

[0033] The immunostimulatory or costimulatory molecules can be used alone or together and can be used in conjunction with antibody fusion proteins.

[0034] The tumor therapeutic composition or tumor vaccine described herein can be used therapeutically or prophylactically for the treatment or prevention of a tumor. Representative tumors can be treated or prevented include, but are not limited to, breast cancer, prostate cancer, lung cancer, melanoma, liver cancer, leukemia, lymphoma, myeloma, colorectal cancer, gastric cancer, bladder carcinoma, esophageal carcinoma, head & neck squamous-cell carcinoma, sarcomas, kidney cancers, ovarian and uterus cancers, adenocarcinoma, glioma, and plasmacytoma, and combinations thereof. [0035] In one embodiment, the vaccine or therapeutic composition described herein can be GPI-anchored cytokine such as GPI-IL-2 and GPI-IL-12 alone or in combination with GPI-anchored costimulatory molecules such as GPI-B7-1, GPI-B7-2, GPI-ICAM-1, GPI-ICAM-2 and GPI-ICAM-3. Such a vaccine or therapeutic composition can be used for the treatment of tumor and other diseases such as viral, bacterial and parasitic diseases.

[0036] In another embodiment, the vaccine and therapeutic composition can be biocompatible microparticles such as biodegradable microparticles modified with GPI-anchored immunostimulatory molecules such as IL-2, IL-4, IL-6, IL-12, ICAM-1, ICAM-2, ICAM-3, B7-1, B7-2, CD40L, IL-15, IL-18, IL-19, granulocyte-macrophage colony stimulating factor (GM-CSF), and combinations thereof.

[0037] In yet another embodiment, the vaccine or therapeutic compositions described herein can be tumor cells or membranes modified by protein transfer with GPI-anchored cytokines alone or/and in combination with other cytokines or/and other costimulatory molecules. One such embodiment can be, for example, tumor membranes modified with purified GPI-IL-12.

[0038] In a further embodiment, particles like inactivated or partially attenuated virus, bacteria and virus-like particles can be modified to express immunostimulatory molecules by protein transfer with GPI-anchored cytokines and immunostimulatory molecules. Vaccines and therapeutic compositions prepared in this manner can be used for preventing or treating viral, bacterial, or parasitic diseases or disorders.

[0039] In some other embodiments, the vaccine and therapeutic compositions described herein can be used for treating autoimmune disorders. For example, membrane anchored cytokines such as IL-10 and TGF-beta can also be used to induce tolerance or to suppress immunity which can be used in treating autoimmune diseases and transplant rejection.

BRIEF DESCRIPTION OF THE FIGURES

[0040] FIG. 1 illustrates the expression tumor associated antigens and immunostimulatory molecules onto particles containing a lipid membrane, e.g., CHO cells and envelope VLPs, using GPI anchoring for protein transfer.

[0041] FIG. **2** shows data on protein transfer of (A) GPI-ICAM1 or (B) GPI-IL-12 onto sheep RBCs. Red: Back-ground control; Black: Protein transfer of GPI-ISMs.

[0042] FIG. **3** shows data on Concentration dependent protein transfer of (A) GPI-ICAM-1 or (B) GPI-IL-12 onto H5-VLPs.

[0043] FIG. **4** shows data on the kinetics of protein transfer of GPI-ICAM-1 onto H5 influenza VLPs.

[0044] FIG. **5** shows data on the specificity of protein transfer of GPI-ICAM1 onto VLPs.

[0045] FIG. **6** shows data on the inhibition of protein transfer of GPI-ICAM 1 via fatty acid binding proteins.

[0046] FIG. **7** shows data on the incorporation of two GPI-ISMs onto VLPs simultaneously.

[0047] FIG. 8 shows a EM of VLPs (A) before and (B) after protein transfer with GPI-ICAM1.

[0048] FIG. **9** shows data on the direct challenge with wildtype or GPI cytokine transfected 4T07 cells. BALB/C mice (n=5/group) were challenged s.c. in the hind flank with 2×10^5 cells in 100 µl PBS and were monitored every 2-3 days for tumor growth. Mean was calculated as the average of the tumor measurements from five mice per group. For the purpose of clarity, standard deviation was not included in the graph instead the values from individual mice in each group is given in FIG. **10**.

[0049] FIG. **10** shows tumor size in individual mice post direct challenge with wild-type or

transfected 4T07 murine mammary tumor cells. BALB/C mice (n=5/group) were challenged s.c. in the hind flank with 2×10^5 cells in 100 µl PBS and were monitored every 2-3 days for tumor growth. Each data line represents an individual mouse per group.

[0050] FIG. **11** illustrates the production of extracellular portion of hHER-2 (hHER-2ECD).

Before the sequence, an optimized IL-2 Kozak sequence along with the restriction enzyme sites HindIII and KpnI have been added. Following the hHER2ECD sequence an EcoRI site is added. At base pair position 1365 of hHER2, a change in base pair from T was made to C in order to remove an EcoRI restriction enzyme site at this position, however, the final amino acid still remains as an isoleucine. **[0051]** FIG. **12** shows flow cytometry analysis of CHO cells expressing GPI-human HER-2 (hHER-2-CD59) using TA1 mAb.

DETAILED DESCRIPTION

[0052] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.

[0053] All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed.

[0054] As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order that is logically possible.

[0055] Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.

[0056] It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a support" includes a plurality of supports. In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings unless a contrary intention is apparent.

[0057] Prior to describing the various embodiments, the following definitions are provided and should be used unless otherwise indicated.

[0058] As used herein, the term "combination with" when used to describe administration with an additional treatment means that the agent may be administered prior to, together with, or after the additional treatment, or a combination thereof.

[0059] As used herein, the terms "prevent" and "preventing" include the prevention of the recurrence, spread or onset. It is not intended that the present disclosure be limited to complete prevention. In some embodiments, the onset is delayed, or the severity is reduced.

[0060] As used herein, the terms "treat" and "treating" are not limited to the case where the subject (e.g. patient) is cured and the disease is eradicated. Rather, embodiments of the

present disclosure also contemplate treatment that merely reduces symptoms, and/or delays disease progression.

[0061] "Subject" refers any animal, preferably a human patient, livestock, rodent, monkey or domestic pet.

[0062] The terms "protein" and "polypeptide" refer to compounds comprising amino acids joined via peptide bonds and are used interchangeably.

[0063] As used herein, an "amino acid sequence" refers to an amino acid sequence of a protein molecule. The terms such as "polypeptide" or "protein" are not meant to limit the amino acid sequence to the deduced amino acid sequence, but such as amino acid deletions, additions, and modifications such as glycolsylations and addition of lipid moieties or other posttranslational modifications.

[0064] With regard to any of the antigens or adjuvants disclosed herein, the protein generally refers to the most frequent human isoform, variant, mutated form, or protein with substantially identity to the full-length or portion thereof. Typically, an appropriate fragment is of the extracellular domain. [0065] The term "portion" when used in reference to a protein (as in "a portion of a given protein") refers to fragments of that protein. The fragments may range in size from four amino acid residues or more than twenty or thirty or the entire amino sequence minus one amino acid.

[0066] The following terms are used to describe the sequence relationships between two or more proteins: "reference sequence", "sequence identity", "percentage of sequence identity", and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length amino acid sequence of a protein. Generally, a reference sequence is at least 20 amino acids in length, frequently at least 25 amino acids in length, and often at least 50 amino acids in length. Since two proteins may each (1) comprise a sequence (i.e., a portion of the complete amino acid sequence) that is similar between the two protein, and (2) may further comprise a sequence that is divergent between the two proteins, sequence comparisons between two (or more) proteins are typically performed by comparing sequences of the two proteins over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window", as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a sequence may be compared to a reference sequence of at least 20 contiguous amino acids and wherein the portion of the sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison window may be conducted by the local homology algorithm of Smith and Waterman (Smith and Waterman, Adv. Appl. Math. 2: 482 (1981)) by the homology alignment algorithm of Needleman and Wunsch (Needleman and Wunsch, J. Mol. Biol. 48:443 (1970)), by the search for similarity method of Pearson and Lipman (Pearson and Lipman, Proc. Natl. Acad. Sci. (U.S.) 85:2444 (1988)), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by inspection, and the best alignment (i.e., resulting in the highest percentage of homology over the comparison window) generated by the various methods is selected.

[0067] The term "sequence identity" means that two sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical amino acids occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms "substantial identity" as used herein denotes a characteristic of a sequence, wherein the protein comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison window of at least 20 amino acid positions, frequently over a window of at least 25-50 nucleotides, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the window of comparison.

Particle Anchored Immunostimulatory or Costimulatory Molecules

[0068] In certain embodiments, the disclosure relates to non-naturally occurring particle comprising, a B7-1 and/or B7-2 molecule anchored on the exterior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle. In certain embodiments, the B7-1 and or B7-2 or antigen, or protein may be anchored onto the membrane of the particle through a variety of linkages, such as lipid palmatic acid, biotin-avidin interaction, or a GPI-anchor.

[0069] In one example, a contemplated sequence of B7-1 is MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVI-HVTK EVKEVATLSC GHNVSVEELAQTRIYWQKEK KMVLTMMSGD MNIWPEYKNR TIFDITNNLS IVILA-LRPSD EGTYECVVLK YEKDAFKREH LAEVTLSVKA DFPTPSISDF EIPTSNIRRI ICSTSGGFPE PHLSWLENGE ELNAINTTVS QDPETELYAV SSKLD-FNMTT NHSFMCLIKY GHLRVNQTFN WNTTKQEHFP DNLLPSWAIT LISVNGIFVI CCLTYCFAPR CRERRRN-ERL RRESVRPV (SEQ ID NO: 1) or fragment thereof.

[0070] In another example, a contemplated sequence is VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMSGDMNIW PEYKNRTIFD ITNNLSIVIL ALRPSDEGTY ECVVLKYEKD AFKRE-HLAEV TLSVKADFPT PSISDFEIPT SNIRRIICST SGG-FPEPHLS WLENGEELNA INTTVSQDPE TELYAVSSKL DFNMTTNHSF MCLIKYGHLR VNQTFNWNTT KQEH-FPDN (SEQ ID NO:2) or fragment thereof. See Stamper et al., Crystal structure of the b7-1/ctla-4 complex that inhibits human immune responses. Nature (2001) 410:608.

[0071] In another example, a contemplated fragment is KAMHVAQPAV VLASSRGIAS FVCEYASPGK ATEVRVTVLR QADSQVTEVC AATYMMGNELT-FLDDSICTG TSSGNQVNLT IQGLRAMDTG LYICK-VELMY PPPYYLGIGN GAQIYVIDPE PCPDSD (SEQ ID NO: 3) or fragment thereof.

[0072] In certain embodiments, the disclosure relates to non-naturally occurring particle comprising, a B7-1 and/or B7-2 molecule anchored on a lipid membrane; a B7-1 and/or B7-2 molecule anchored to the lipid membrane on the exte-

rior of the particle; and an antigen molecule such as a tumor specific antigen or cancer marker anchored to the lipid membrane on the exterior of the particle.

[0073] A number of proteins commonly expressed by cells are attached to the cell membrane via a GPI-anchor. These proteins are post-translationally modified at their carboxy terminus to express this glycosylated moiety which is synthesized in the endoplasmic reticulum. These naturally expressing GPI-anchored molecules are widely distributed in mammalian cells and serve a host of different cellular functions, such as cell adhesion, enzymatic activity, and complement cascade regulation. Naturally occurring GPI-anchored proteins lack a transmembrane and cytoplasmic domain that otherwise anchor membrane proteins. The GPI-anchor consists of a glycosylated moiety attached to phosphatidylinositol containing two fatty acids. The phosphatidylinositol portion, as well as an ethanolamine which is attached to the C-terminal of the extracellular domain of the membrane proteins, anchor the molecule to the cell membrane lipid bilayer.

[0074] In order to exploit this natural linkage using recombinant DNA techniques, the transmembrane and cytoplasmic domains of a transmembrane surface protein need only be replaced by the signal sequence for GPI-anchor attachment that is found at the hydrophobic C-terminus of GPI-anchored protein precursors. This method may be used to generate GPI-anchored proteins is not limited to membrane proteins; attaching a GPI-anchor signal sequence to secretory proteins would also convert them to a GPI-anchored form. The method of incorporating the GPI-anchored proteins onto isolated cell surfaces or lipid particles is referred to here as protein transfer.

[0075] GPI-anchored molecules can be incorporated onto lipid membranes spontaneously. These GPI-anchored proteins can be purified from one cell type and incorporated onto different cell membranes. GPI-anchored proteins are used to customize of the lipid membranes disclosed herein for uses as a cancer vaccine. One may incorporate multiple molecules simultaneously onto the same cell membrane. One can control the level of protein expression by simply varying the concentration of the GPI-anchored molecules to be incorporated. The most significant outcome of this technology will be the reduction of time in preparing cancer vaccines from months to hours. These features make the protein transfer approach a more viable choice for the development of cancer vaccines for clinical settings. The molecules incorporated by means of protein transfer retain their functions associated with the extracellular domain. Cells and isolated membranes can be modified to express immunostimulatory molecules. In certain embodiments, the disclosure contemplates that the GPI-anchored molecules are incorporated onto the surface of albumin microparticles by this protein transfer method. GPIanchored proteins attached to the surface of microparticles are used to target and/or enhance the adjuvant activity of microparticles, thereby enhancing the capacity to function as a targeted antigen or drug delivery device for cancer treatment.

[0076] The GPI-B7-1 expression (by protein transfer) was stable up to 7 days on isolated membranes at 37° C. and frozen membranes can be used up to 3 years of storage at -80° C. which makes the stability and storage a nonissue. These studies suggest that the membrane vaccines are more suitable to stably express the GPI-anchored molecules than on intact cells, which lose the expression within 24 hr.

[0077] This approach for introducing proteins onto membranes provides advantages over other immunotherapies for cancer vaccine development. This approach allows a protein to be added either singularly or in a combinatory manner to the tumor membrane surface. This approach navigates around the necessity to establish tumor cells as is the case for gene transfer. This GPI-mediated approach by protein transfer may be used for the co-stimulatory molecules, B7-1 and B7-2, GM-CSF, IL-2, and IL-12. With these cytokines being attached to the tumor membrane via a GPI-anchor, it enables them to exert their effector functions locally at the vaccination site without the risk of systemic toxicity.

Virus Like Particles

[0078] In certain embodiments, the disclosure relates to virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle for uses disclosed herein.

[0079] Influenza virus-like particles (VLPs) are particulate in nature and have shown to elicit robust immunity against antigens. Influenza VLPs have an outer lipid bilayer with properties similar to the cell membranes. Modification of influenza VLPs with a protein transfer method to incorporates tumor-associated antigens (TAAs) on the surface along with immunostimulatory molecules (ISMs) elicits enhanced immune responses directed against the TAAs. One contemplated protein transfer approach utilizes glycosyl phosphatidylinositol (GPI)- to anchor the TAA, which can spontaneously incorporate onto the surface of the VLPs that contain a lipid bilayer upon incubation at 37° C. (See FIG. 1).

[0080] Incorporation of GPI-anchored forms of TAAs onto the surface of VLPs is used to direct the immune response against cancerous cells whereas the incorporation of immunostimulatory molecules (ISMs), such as GPI-anchored cytokines, costimulatory molecules, and adhesion molecules, onto the surface of VLPs is used to enhance the interaction between VLPs and antigen presenting cells (APCs) as well as lead to activation of these APCs and other immune effector cells. The incorporation of GPI-TAAs and GPI-ISMs onto VLPs by protein transfer leads to an antitumor immune response and tumor regression.

[0081] VLPs consist of a virus' capsid protein shell that presents viral antigens in an authentic conformation without the viral genome that is required for replication. Thus, they provide a safe approach for human use. VLPs contain a multivalent repetitive structure that is particulate in nature, allowing for recognition by many pattern recognition receptors and the induction of an enhanced innate and adaptive immune response. The particulate nature of VLPs allows for them to be readily taken up and presented by APCs, and thus could provide a means for breaking the immunosuppressive barrier initiated by the tumor microenvironment.

[0082] In certain embodiments, influenza virus-like particles (VLPs) may be produced using a variety of platform systems, including recombinant baculovirus vectors, transient plasmid expression systems, stable cell-line transformants, and plant expression systems. Typically VLPs are non-replicating particles that spontaneously self-assemble from expressed influenza virus proteins. In some expression systems, the viral hemagglutinin (HA) protein is sufficient for particle assembly and release from the cell. Typically the VLP comprises neuraminidase (NA). HA may present with a different type of glycosylation depending on whether they are obtained from. For the production of VLPs containing HA in mammalian cells, co-expression of NA or exogenously added NA was required for the effective release of influenza VLPs into culture media, implying an important role of the NA activity in cleaving sialic acids bound to HA of budding particles. In contrast, VLPs containing HA can be produced in insect cells in the absence of NA expression. Insect cells do not add sialic acids to the N-glycans during the posttranslational modification, which explains how VLPs containing HA but not NA are effectively released from insect cell surfaces. See Kang et al., Virus Res. 2009c, 143 (2), 140-6.

[0083] In certain embodiments, VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes HA, NA, M1, and M2.

[0084] In certain embodiments, VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes HA, NA, and M1.

[0085] In certain embodiments, VLPs used herein are recombinant influenza VLPs that have been generated in insect cells infected with rBVs expressing influenza genes of HA and M1.

[0086] In some instances, the VLP is obtained from influenza VLPs expressed from recombinant baculovirus (rBV) produced by replication in an insect cell system, e.g., *Spodoptera frugiperda* SF9 cells.

[0087] In some instances, the VLP is obtained from a modified vaccinia virus Ankara (MVA) system expressing expressing influenza H5N1 HA, NA, and M proteins to generate influenza VLPs produced by replication in mammalian cells. See Schmeisser et al., Vaccine, 2012, 30(23):3413-3422.

Tumor Associate Antigens and Cancer Markers

[0088] In certain embodiments, the disclosure relates to particles such as cells or virus like particles comprising B7-1 and/or B7-2 molecule anchored to a lipid membrane on the exterior of the particle and an antigen molecule anchored to the lipid membrane on the exterior of the particle. Typically, the antigen molecule is a cancer marker selected from HER-2, MKI67, prostatic acid phosphatase (PAP), prostate-specific antigen (PSA), prostate-specific membrane antigen, early prostate cancer antigen, early prostate cancer antigen-2 (EPCA-2), BCL-2, MAGE antigens such as CT7, MAGE-A3 and MAGE-A4, ERK5, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, S100B and gp100:209-217(210M), MUC-1, mucin antigens TF, Tn, STn, glycolipid globo H antigen. Typically, the antigen is the human form.

[0089] HER-2, or Human Epidermal Growth Factor Receptor 2, refers to the human protein encoded by the ERBB2 gene that has been referred to as Neu, ErbB-2, CD340 (cluster of differentiation 340) or p185. See Coussens et al., 1985, Science 230 (4730): 1132-9.

[0090] In certain embodiments, HER-2 is the extracellular domain or fragment thereof. In one contemplated example the protein comprises or consists essentially of the following sequence: TQVCTGTDMK LRLPASPETH LDML-RHLYQG CQVVQGNLEL TYLPTNASLS FLQDIQEVQG YVLIAHNQVR QVPLQRLRIV RGTQLFEDNY ALAVLDNGDP LNNTTPVTGA SPGGL-RELQL RSLTEILKGG VLIQRNPQLC YQDTILWKDI FHKNNQLALT LIDTNRSRAC HPCSPMCKGS RCW-GESSEDC QSLTRTVCAG GCARCKGPLP TDCCHEQ-CAA GCTGPKHSDC LACLHFNHSG ICELHCPALV TYNTDTFESM PNPEGRYTFG ASCVTACPYN YLSTD-VGSCT LVCPLHN QEVTAEDGTQRCE KCSKPCARVC YGLGMEHLRE VRAVTSANIQ EFAGCKKIFG SLAFLPESFD GDPASNTAPL QPEQLQVFET LEEITGY-LYI SAWPDSLPDL SVFQNLQVIR GRILHNGAYS LTLOGLGISW LGLRSLRELG **SGLALIHHNT** HLCFVHTVPW DQLFRNPHQA LLHTANRPED ECVGEGLACH QLCARGHCWG PGPTQCVNCS QFL-RGQECVE ECRVLQGLPR EYVNARHCLP CHPEC-**QPONG SVTCFGPEAD QCVACAHYKD PPFCVARCPS** GVKPDLSYMP IWKFPDEEGA CQPCPIN (SEQ ID NO: 4) or fragment thereof.

[0091] In one contemplated example, the protein comprises or consists essentially of the following sequence: DIQMTQSPSS LSASVGDRVT ITCRASQDVN TAVAW-YQQKP GKAPKLLIYS ASFLYSGVPS RFSGSRSGTD FTLTISSLQP EDFATYYCQQ HYTTPPTFGQ GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ STYSLSSTLT **ESVTEODSKD** LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC (SEQ ID NO: 5) or fragment thereof.

[0092] In one contemplated example, the protein comprises or consists essentially of the following sequence: GTSHLVKCAE KEKTFCVNGG ECFMVKDLSN PSRYL-CKCPN EFTGDRCQNY VMASF (SEQ ID NO: 6) or fragment thereof.

[0093] MK167, or antigen identified by monoclonal antibody Ki-67, refers to the human protein that is encoded by the MK167 gene. See Bullwinkel et al., 2006, J. Cell. Physiol. 206 (3): 624-35.

[0094] PAP, or Prostatic acid phosphatase or prostatic specific acid phosphatase (PSAP), refers to the human enzyme produced by the prostate in males. See Ostrowski & Kuciel, 1994, Clin. Chim. Acta 226 (2): 121-9.

[0095] PSA, or Prostate-specific antigen or gamma-seminoprotein or kallikrein-3 (KLK3), refers to the human protein encoded by the KLK3 gene. See Menez et al., J Mol Biol. 2008, 376(4):1021-33.

[0096] PSMA, or Prostate-specific membrane antigen or Glutamate carboxypeptidase II, refers to a human type 2 integral membrane glycoprotein found in prostate tissues. See William et al., Reviews on Recent Clinical Trials, 2007, 2, 182-190.

[0097] Bcl-2, or B-cell lymphoma 2 refers to an protein encoded by the BCL2 gene. Bcl-2 has two isoforms that differ by two amino acids. Isoform 1 is known as 1G5M, and Isoform 2 is known as 1G50/1GJH. See Petros et al., 2001, PNAS, 98: 3012-3017. Both isoforms are contemplated antigens.

[0098] In certain embodiments, the antigen is the entire protein, polypeptide, or a substantial fragment, or a fragment with conserved substitutions. The fragment may contain 5, 10, 20, 50, 100, or halve of the amino acids in the full length antigen. The fragment may be sufficient to mimic or replicate the folding of the full length antigen. The conserved substitutions may be amino acids that are in the interior of the folded polypeptide. A fragment is sufficient produce antibody production to the polypeptide. The antigen may be a chimera

containing the fragment. The antigen may contain 1, 2, or 3, or 5 to 10, or 10 to 20 or more conserved substitutions within the full length or polypeptide fragment which are typically outside of functional domains. In certain embodiments, the antigen may have 80%, 90%, 95% or greater sequence identity to the full length or polypeptide fragment. An antigen protein may or may not be glycosylated.

Adjuvant Molecules

[0099] In certain embodiments, the virus like particles disclosed herein comprise an adjuvant molecule anchored to a lipid membrane on the exterior of the particle wherein the adjuvant molecule and the antigen molecule are not the same molecule. In certain embodiments, the adjuvant molecule is selected from is IL-2, IL-12, ICAM1, GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA).

[0100] It is contemplated that the co-stimulatory molecules, antigens, and adjuvant molecules may the individually conjugated to the lipophilic molecules or two or more or all of them may be conjugated together in a chimera and conjugated to a lipophilic molecule. For example, B7-1 may be conjugated to the adjuvant, HSA, in a chimera and the chimera is conjugated to a GPI.

[0101] One contemplated antigen is heat stable antigen (HSA). A hybrid B7-1-HSA molecule on the cell surface membrane can function as a co-stimulatory molecule to induce T cell proliferation. CHO cells and CHO transfectants expressing HSA, B7-1, and B7-1-HSA were used as stimulator cells in a T cell proliferation assay. See Wang et al., Immunology Letters, 2006, 105(2):185-192.

[0102] Contemplated TLR 9 ligands as adjuvants are contemplated such as immunostimmulatory unmethylated CpG oligonucleotides, the cytosine of the oligonucleotide sequence 5'-CG-3' is unmethylated and the oligonucleotide is greater than about 6 base pairs in length and is less than about 100 base pairs in length such as 5'-TGACTGTGAACGTTC GAGATGA-3' (SEQ ID NO:8). It is contemplated that lipophilic molecules may be conjugated to the oligonucleotide for incorporation to the exterior of particles disclosed herein.

[0103] In certain embodiments, the antigen is also contained in the interior of the particle.

[0104] In certain embodiments, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0105] In certain embodiments, the antigen is HER-2 and the adjuvant is flagellin and/or GM-CSF.

[0106] In certain embodiments, the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0107] In certain embodiments, the antigen is HER-2, the adjuvant is flagellin and/or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0108] In certain embodiments, the antigen is HER-2 and the adjuvant is IL-12.

[0109] In certain embodiments, the antigen is HER-2, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0110] In certain embodiments, the antigen is PSA or PAP and the adjuvant is flagellin and/or or GM-CSF.

[0111] In certain embodiments, the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0112] In certain embodiments, the antigen is PSA or PAP, the adjuvant is flagellin, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0113] In certain embodiments, the antigen is PSA or PAP and the adjuvant is IL-12.

[0114] In certain embodiments, the antigen is PSA or PAP, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0115] In certain embodiments, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0116] In certain embodiments, the antigen is HER-2 and the adjuvant is flagellin and/or GM-CSF.

[0117] In certain embodiments, the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0118] In certain embodiments, the antigen is HER-2, the adjuvant is flagellin and/or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0119] In certain embodiments, the antigen is HER-2 and the adjuvant is IL-12.

[0120] In certain embodiments, the antigen is HER-2, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0121] In certain embodiments, the antigen is PSA or PAP and the adjuvant is flagellin and/or GM-CSF.

[0122] In certain embodiments, the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

[0123] In certain embodiments, the antigen is PSA or PAP, the adjuvant is flagellin or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

Cellular Particles

[0124] In any of the embodiments, particle may be a wild type cell, cancer cell or immortalized cell.

[0125] In certain embodiments, the particle is a cell such as ZR-75-1, ZR-75-30, 184A1, UACC-812, UACC-893, HCC38, HCC70, HCC202, HCC1187, HCC1395, HCC 1428, HCC1500, HCC1569, HCC1599, HCC1806, HCC1937, HCC1954, HCC2157, HCC1419, HCC2218, AU-565, 184B5, MCF 10A, MCF 10F, MCF-12A, BT-20, MDA-kb2, BT-474, CAMA-1, MCF7, MDA-MB-134-VI, MDA-MB-157, MDA-MB-175-VII, MDA-MB-231, MDA-MB-361, SK-BR-3, BT-483, BT-549, DU4475, Hs 578T, MDA-MB-415, MDA-MB-436, MDA-MB-453, MDA-MB-468, T-47D, EFM19, EFM192A, Hs 578Bst, SUM44PE, SUM52PE, SUM102PT, SUM149PT, SUM190PT, 4T1 (CRL-2539), or CAL51 for use in the treatment of cancer, breast cancer, breast cancer.

[0126] In certain embodiments, the particle is a cell such as Jurkat, Clone E6-1 (ATCC Number: TIB-152), RBL-2H3 (CRL-2256), MOLT-4 (CRL-1582), K-562 (CCL-243), CCRF-CEM (CCL-119), HL-60 (CCL-240), or KG-1 (CCL-246) for use in the treatment of cancer, leukemia, leukemia (AML), leukemia (CML), promyelocytic leukemia, basophilic leukemia, or acute T cell leukemia.

[0127] In certain embodiments, the particle is a cell such as NCI-H358 (CRL-5807), LL/2 (CRL-1642), Calu-3 (HTB-55), NCI-H441 (HTB-174), NCI-H1975 (CRL-5908), NCI-H23 (CRL-5800), NCI-H1299 (CRL-5803), NCI-H460 (HTB-177), NCI-H292 (CRL-1848), A-549 (CCL-185), A-549 (CCL-185), IMR-90 (CCL-186), MRC-5 (CCL-171), or WI-38 (CCL-75) for use in the treat-

ment of cancer, lung cancer, lung adenocarcinoma, lung carcinoma, lewis lung carcinoma, or bronchioalveolar lung cancer.

[0128] In certain embodiments, the particle is a cell such as Ramos (CRL-1596), Daudi (CCL-213), Raji (CCL-86), EL4 (TIB-39), or U-937 (CRL-1593.2) for use in the treatment of cancer, lymphoma, B-cell lymphomas, histiocytic lymphoma, or Burkitt's lymphoma.

[0129] In certain embodiments, the particle is a cell such as HeLa (CCL-2) or HeLa S3 (CCL-2.2) for use in the treatment of cancer, cervical cancer or cervical adenocarcinoma.

[0130] In certain embodiments, the particle is a cell such as COLO 205 (CCL-222), SW620 (CCL-227), SW480 (CCL-228), LoVo (CCL-229), LS 174T (CL-188), Caco-2 (HTB-37), HT-29 (HTB-38), DLD-1 (CCL-221), HCT 116 (CCL-247), T84 (CCL-248), CT26.WT (CRL-2638) for use in the treatment of cancer, colon cancer, colon carcinoma, or a colon adenocarcinoma.

[0131] In certain embodiments, the particle is a cell such as HCN-1A (CRL-10442), U-87 MG (HTB-14), C6 (CCL-107), bEnd.3 (CRL-2299), or T98G (CRL-1690) for use in the treatment of cancer, brain cancer, glioma, glioblastoma multiforme, glioblastoma-astrocytoma, or brain endothelioma cancer.

[0132] In certain embodiments, the particle is a cell such as 3197-3 (CRL-1568), 3T3-Swiss albino (CCL-92), BALB/3T3 clone A31 (CCL-163), NTERA-2 cl.D1 (CRL-1973), 3T3-L1 (CL-173), NIH/3T3 (CRL-1658), SK-OV-3 (HTB-77), CHO-K1 (CCL-61), or F-12K (30-2004) for use in the treatment of cancer, ovarian cancer, ovarian adenocarcinoma, or testicular cancer.

[0133] In certain embodiments, the particle is a cell such as 293T/17 (CRL-11268), 293 (CRL-1573), VERO C1008 (CRL-1568), Vero (CCL-81), MDCK (CCL-34), BHK-21 (CCL-10), Caki-1 (HTB-46), 786-0 (CRL-1932), or COS-7 (CRL-1651) for use in the treatment of cancer, renal cancer, or renal carcinoma.

[0134] In certain embodiments, the particle is a cell such as H9c2 (CRL-1446) for use in the treatment of cancer or cardiac tumors.

[0135] In certain embodiments, the particle is a cell such as A-431 (CRL-1555), Detroit 551 (CCL-110), BJ (CRL-2522), B16-F10 (CRL-6475), SK-MEL-28 (HTB-72), A375 (CRL-1619), NCTC clone 929 (CCL-1), IRR-MRC-5 (55-X), or IRR-STO (56-X) for use in the treatment of cancer, skin cancer, squamous-cell carcinoma, melanoma, areolar lesions, or epidermoid carcinoma.

[0136] In certain embodiments, the particle is a cell such as HT-1080 (CCL-121) for use in the treatment of cancer or fibrosarcoma.

[0137] In certain embodiments, the particle is a cell such as AGS (CRL-1739) or NCI-N87 (CRL-5822) for use in the treatment of cancer, stomach cancer, gastric carcinoma or gastric adenocarcinoma.

[0138] In certain embodiments, the particle is a cell such as HepG2/C3A (CRL-10741), Hep 3B2.1-7 (HB-8064), Hep G2 (HB-8065), or Hepa 1-6 (CRL-1830) for use in the treatment of cancer, liver cancer, heptoma, or hepatocellular carcinoma.

[0139] In certain embodiments, the particle is a cell such as U266B1 (TIB-196) for use in the treatment of cancer or multiple myeloma.

[0140] In certain embodiments, the particle is a cell such as IMR-32 (CCL-127), Neuro-2a (CCL-131), or SK-N-SH (HTB-11) for use in the treatment of cancer or neuroblastoma.

[0141] In certain embodiments, the particle is a cell such as Saos-2 (HTB-85), U-2 OS (HTB-96), or MG-63 (CRL-1427) for use in the treatment of cancer, bone cancer, or osteosarcoma.

[0142] In certain embodiments, the particle is a cell such as Beta-TC-6 (CRL-11506), AsPC-1 (CRL-1682), BxPC-3 (CRL-1687), MIA PaCa-2 (CRL-1420), PANC-1 (CRL-1469), Capan-1 (HTB-79), or AR42J (CRL-1492) for use in the treatment of cancer, pancreatic cancer, or pancreatic carcinoma.

[0143] In certain embodiments, the particle is a cell such as PC-12 (CRL-1721) for use in the treatment of cancer or pheochromocytoma.

[0144] In certain embodiments, the particle is a cell such as RPMI 8226 (CCL-155) for use in the treatment of cancer or plasmacytoma.

[0145] In certain embodiments, the particle is a cell such as PC-3 (CRL-1435), VCaP (CRL-2876), DU 145 (HTB-81), LNCaP clone FGC (CRL-1740), or 22Rv1 (CRL-2505) for use in the treatment of cancer, prostate cancer, prostate adenocarcinoma.

[0146] In certain embodiments, the particle is a cell such as ARPE-19 (CRL-2302) for use in the treatment of cancer, eye cancer, or retinal cancer.

[0147] In certain embodiments, the particle is a cell such as RD (CCL-136) for use in the treatment of cancer, sarcoma, or rhabdomyosarcoma.

[0148] In certain embodiments, the particle is a cell such as a stem cells, mesenchymal stromal/stem, pluripotent stem cell, embryo, myoblast, hybridoma or macrophage, examples include RAW 264.7 (TIB-71), J774A.1 (TIB-67), C2C12 (CRL-1772), L6 (CRL-1458), Sp2/0-Ag14 (CRL-1581) for use in the treatment of cancer.

Combination Strategies for Cancer Treatment:

[0149] In some embodiments, In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with the administration of dendritic cell (DC)-based cancer vaccines, systemic administration of cytokines, targeted therapy using Abs or other anti-cancer agents.

[0150] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with the administration of dendritic cell (DC)-based cancer vaccines. DCs have the unique ability to take up and process antigens, move into secondary lymphoid tissues, and activate both helper and cytotoxic T cells. Preparation of DC-based cancer vaccines involves loading DCs with known tumor-specific antigens, antigenic peptides, cDNA, or RNA isolated from tumor cells. In certain embodiments, an object of this disclosure is to develop more effective methods to deliver tumor antigens to DCs. One strategy is making hybrid cells by fusing tumor cells, tumor antigens, or conjugates with DCs and using the hybrid cells as vaccines. Combination therapies with DC-based cancer vaccines may be used to treat melanoma, breast cancer, multiple myeloma, NHL, lymphatic leukemia, prostatic adenocarcinoma, lung cancer, and hepatocarcinoma

[0151] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the

compositions in combination with antigen activated DCs for cancer treatments. In one example, the compositions are used in combination with DCs fused with granulocyte macrophage colony-stimulating factor (GM-CSF) and prostatic acid phosphatase (PAP) conjugate for cancer treatments.

[0152] Provenge, an autologous DC-based vaccine, was approved by the FDA for the treatment of men with advanced prostate cancer. Provenge consists of patient-derived DCs pulsed ex vivo with a recombinant fusion protein (PA 2024) containing granulocyte macrophage colony-stimulating factor (GM-CSF) and prostatic acid phosphatase (PAP), an antigen found in 90-95% of prostate cancers.

[0153] Another cell-based approach involves using irradiated whole tumor cells as potential cancer vaccines. This strategy allows the induction of a more polyclonal immune response through the presentation of a wide array of tumor antigens. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with irradiated tumor cells for cancer treatments.

[0154] The presence of immunosuppressive cytokines in the tumor microenvironment is an important factor in the establishment of tumors. Through the secretion of immunosuppressive cytokines, such as TGF- β and IL-10, the innate and adaptive immune responses are inhibited during tumor development. In order to overcome this immunosuppression, the systemic administration of certain immunostimulatory cytokines, such as IL-2, IL-12, and IFN- α , has been used to alter the tumor microenvironment to mediate tumor recognition by immune cells. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with cytokines such as IL-2, IL-12, and INF- α for cancer treatments.

[0155] Cytokines activate immune cells, such as NK and CD8+ T cells, and can also inhibit tumor angiogenesis. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with IL-2, IL-12, and INF- α for the treatment of metastatic melanoma and renal cell carcinoma (RCC).

[0156] T-cell growth cytokine, IL-15, promotes the activation of a variety of immune cells, namely NK, NKT, and memory CD8+T cells, and can overcome activation-induced cell death (AICD) caused by IL-2. In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with IL-15 as a potential cancer immunotherapeutic agent.

[0157] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination intra-tumoral administration of cytokines, modification of tumor cells to secrete cytokines, and fusion of cytokines with antibodies for cancer treatments. In one embodiment, the cytokine is TNF- α . In one embodiment the cancer is melanoma.

[0158] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with administration of soluble GM-CSF and optionally a cytokine for cancer treatments.

[0159] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with an antibody therapy for cancer treatment. In certain embodiments, the contemplated anti-bodies are directed to epidermal growth factor receptor (EGFR), human EGFR-2 (HER-2), CD20 (an unglycosylated transmembrane phosphoprotein expressed on B and T cells),

CD33 (a transmembrane protein expressed on cells of myeloid lineage and also on some lymphoid cells), CD52 (a highly glycosylated 12 amino acid membrane-anchored gly-cosylphosphatidylinositol (GPI) protein which is expressed on all circulating lymphocytes), and VEGF. In certain embodiments the antibody may be humanized, chimeric, a radiolabeled mouse antibody for targeted radiation.

[0160] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with rituximab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.

[0161] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with of atumumab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.

[0162] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with ibritumomab (tiuxetan) for the treatment of B-cell non-Hodgkin's lymphoma.

[0163] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with tositumomab for the treatment of B-cell non-Hodgkin's lymphoma.

[0164] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with gemtuzumab ozogamicin for the treatment of acute myeloid leukemia.

[0165] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with alemtuzumab for the treatment of B-cell non-Hodgkin's lymphoma or chronic lymphocytic leukemia.

[0166] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with trastuzumab for the treatment of breast cancer.

[0167] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with bevacizumab for the treatment of breast, lung, or colon cancer.

[0168] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with cetuximab for the treatment of brain and neck, or colon cancer.

[0169] In certain embodiments, the disclosure contemplates compositions disclosed herein and using any of the compositions in combination with panitumomab for the treatment of colon cancer.

[0170] In certain embodiments, the disclosure relates to methods of treating cancer comprising administering an effective amount of a particle as disclosed herein to a subject at risk of or diagnosed with cancer or a tumor optionally in combination with another anticancer agent. Other anticancer agents contemplated include gefitinib, erlotinib, docetaxel, cis-platin, 5-fluorouracil, gemcitabine, tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea, adriamy-cin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin, vincristine, vinblastine, vindesine, topotecan, camptothecin bortezomib anegrilide, tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene fulvestrant, bicalutamide, flutamide,

nilutamide, cyproterone, goserelin, leuprorelin, buserelin, megestrol, anastrozole, letrozole, vorazole, exemestane, finasteride, marimastat, trastuzumab, cetuximab, dasatinib, imatinib, bevacizumab, combretastatin, thalidomide, and/or lenalidomide or combinations thereof

Examples

Construct, Express and Purify GPI-TAAs

[0171] HER-2/neu, a surface glycoprotein, is overexpressed on many aggressive forms of breast cancer. One constructs a GPI-HER-2 by attaching extracellular domain of human HER-2 with a GPI-signal sequence and expresses it on CHOK1 cells by gene transfection. One grows CHO cells, lyses, and purifies GPI-HER-2 by affinity chromatography. [0172] One constructs a pCDNA3.1 plasmid expression

vector containing the DNA encoding the GPI-anchored form of human HER-2 attached with the GPI-anchor signal sequence from CD59 to the extracellular domain of HER-2 using PCR and ligation into the vector as described for making GPI-GM-CSF. See Poloso et al., Mol Immunol 38:803-816. One transfects CHOK1 cells with the plasmids encoding GPI-HER-2 and confirms the GPI-anchoring by PI-PLC treatment. One grows cells using roller bottles and lyses the collected cell pellets using the detergent octyl glucoside.

Purification and Incorporation of GPI-ICAM1, -IL-12, and -GM-CSF from CHOKI Transfectants

[0173] CHOK1 cells were transfected to express GPI-ICAM1 or GPI-IL-12. Expression of the GPI-ISMs was assessed by flow cytometry and verification of the GPI-anchor was confirmed by a phospholipase (PIPLC) treatment. The transfectants were grown in large quantities, lysed, and the GPI-ISMs were purified by affinity chromatography. To determine if the purified GPI-ISMs still retained the GPI-anchor and could incorporate onto lipid bilayers by protein transfer, sheep red blood cells (RBCs) were used. The GPI-ISMs were individually incubated with the RBCs at 37° C. for 2 hours, washed and then analyzed by flow cytometry. FIG. **2** demonstrates that the purified GPI-ISMs were able to incorporate onto sheep RBCs.

Optimization of Incorporation of GPI-ISMs onto Influenza H5 VLPs Using Protein Transfer

[0174] These VLPs are constructed by the rBV system through the expression of the hemagluttinin and matrix 1 protein in Sf9 insect cells. See Song et al., J Proteome Res. 2011, 10(8):3450-9.

[0175] To determine the optimal conditions for incorporation of GPI-ISMs onto influenza H5 VLPs, protein transfer was conducted at different concentrations of GPI-ISMs and at different temperatures. As the concentration of GPI-ISMs was increased, the amount of incorporation, as detected by western blot, also increased (FIG. **3**). Optimal incorporation occurred at 37° C. Blotting against the H5 VLPs by using serum from mice injected with H5 VLPs showed that the VLP protein expression was not altered by incorporation of the ISMs. The kinetics of GPI ICAM1 incorporation was also determined to show that maximum incorporation occurs after only 2 hrs of incubation (FIG. **4**).

Incorporation of GPI-ISMs onto H5 VLPs by Protein Transfer is GPI-Anchor Dependent.

[0176] To determine if incorporation of GPI-ISMs onto VLPs occurred via the GPI-anchor or via non-specific binding, PI-PLC treatment to cleave the GPI-anchor of GPI-ICAM1 either before incorporation (FIG. 5A) or after (FIG.

5B) incorporation was carried out. PI-PLC treatment of GPI-ICAM1 before incorporation and PI-PLC treatment of VLPs that have been

incorporated with GPI-ICAM1 both led to decreased expression of ICAM1 on VLPs as detected by Western blotting to ICAM1, whereas when the PI-PLC inhibitors, ZnCl₂, or 1,10phenanthroline, were included, expression was retained. To further confirm that incorporation occurs via the GPI-anchor, GPI-ICAM1 was incubated with 1% fatty-acid-free bovine serum albumin (BSA) or 1% orosomucoid that bind to the GPI-anchor before protein transfer in order to competitively inhibit incorporation of GPI-ICAM1 onto VLP membranes. FIG. **6** shows that GPI-ICAM1 incubated first with 1% BSA or 1% orosomucoid showed decreased incorporation onto VLPs compared to those incorporated without prior incubation with BSA or orosomucoid.

Incorporation of More than One GPI-Protein Simultaneously on the Same VLPs by Protein Transfer

[0177] To determine if more than one GPI-protein could incorporate simultaneously onto the surface of VLPs by protein transfer, VLPs were incubated with GPI-ICAM1 and GPI-IL-12 simultaneously at 37° C. for 2 h. FIG. 7 shows that influenza VLPs can incorporate both GPI-ISMs on their surface and the expression of the first GPI-protein is not affected by the expression of the second GPI-protein.

Structural Integrity of VLPs Remains Intact after Protein Transfer.

[0178] To determine if the structural integrity of the VLPs remains intact after incorporation, electron microscopy of VLPs before and after incorporation was conducted. FIG. **8** shows that even after incorporation, the VLP membranes remain intact suggesting that the protein transfer method is not detrimental to the VLP structural integrity. This data show that purified GPI-proteins are able to incorporate onto influenza VLPs within 2 h at 37° C. via the GPI-anchor without disturbing the structural integrity of the VLPs.

Study Tumor Regression and Immune Responses Induced by Vaccination with VLPs Modified with GPI-HER-2 and GPI-ISMs by Protein Transfer in Mice with Established Tumors

[0179] Protein transferred-VLPs that express the GPI-HER-2 in combination with GPIISMs, such as GPI-IL-2, GPI-IL-12, GPI-B7-1, and GPI-ICAM-1, leads to tumor regression in mice with established tumors that express HER-2. Although it is not intended that the disclosure be limited by any particular mechanism, the incorporation of cytokines onto the surface of VLPs allows for a slow release depot of the cytokines into the administered microenvironment, leading to increased activation of immune effector cells at the vaccination site while decreasing chances of systemic toxicity. Furthermore, the receptors of the ISMs, IL-2, IL-12, and ICAM-1 are found on APCs allowing for enhanced adhesion and activation of the APCs by the VLPs, thus leading to enhanced uptake and presentation. The receptors for IL-12 and B7-1 are also found on other immune cells such as NK cells and mast cells, allowing for the activation of a wide variety of immune effector cells to be elicited by the association of these ISMs onto the surface of VLPs. Since the immune response is directed against the antigens found on the VLPs, incorporating TAAs along with ISMs onto the surface of VLPs will direct the immune response towards the TAAs that are overexpressed on tumor cells as well.

[0180] To determine the efficacy of VLPs incorporated with GPI-TAAs and GPI-ISMs in regressing established tumors in

vivo, one inoculates BALB/c mice with 4T07 tumor cells that expressing HER-2 and then start treatment a few days later (Table 1).

TABLE 1

	Vaccination groups (n = 9)													
Group	Vaccination groups													
1	PBS													
2	VLP													
3	VLP-GPI-HER-2													
4	VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2													
5	VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 + GPI-B7-1													
6	VLP-GPI-HER-2 + GPI-IL-12 + GPI-IL-2 + GPI-B7-1 +													
	GPI-ICAM-1													
7	VLP-GPI-IL-12 + GPI-IL-2 + GPI-B7-1 + GPI-ICAM-1													

[0181] One injects live 4T07 tumor cells s.c. into the left flank of the mice and injects VLP in the right flank starting on days 4, 8, and 12 after tumor inoculation. If tumors do not regress, one uses a more vigorous 2-day interval immunization schedule. One monitors the mice daily and measures the size of the tumor. One screens for the production of antibodies to HER2/neu using flow cytometry or cell ELISA.

Expression of Human Breast Cancer Antigens in 4T07-WT Cells

[0182] Using the 4T07 murine breast cancer model the effects of expressing GPI-anchored immune stimulatory molecules (GPI-ISMs), namely cytokines (IL-2, IL-12) and the costimulatory protein B7-1, were investigated on the surface of the tumor cells. BALB/c mice were challenged subcutaneously (s.c.) with either wild-type 4T07 cells (4T07-WT) or 4T07 cells expressing GPI-ISMs. Significant splenomegaly was observed in the mice challenged with 4T07-WT cells relative to the mice challenged with 4T07 cells expressing GPI-ISMs. This observed splenomegaly correlated with tumor size and a 4-5 fold increase in the percentage of splenic CD11b+Gr1+MDSCs indicating the role of active immune suppression in the tumorigenicity of 4T07 breast cancer cells. Studies were conducted to analyze the effect of GPI-ISMs on infiltrating cells into the tumor microenvironment as well as in the spleen and draining lymph nodes (dLNs). Three groups of mice were challenged (s.c.) with the following cells mixed in a 1:1 ratio with BD MatrigelTM (a solubilized basement membrane preparation derived from a mouse sarcoma): 4T07-WT, 4T07-B7/IL-12 or PBS (control). Seven days post challenge, the Matrigel/tumor, spleen and dLNs were harvested from the mice, digested and analyzed for cellular infiltrates by flow cytometry. The expression of GPI-ISMs on the surface of tumor cells led to reduced angiogenesis as evidenced by a reduced level of blood vessels and decreased presence of CD4+CD25+FOXP3+ regulatory T cells and CD11b+Gr1+MDSCs locally at the tumor site and dLNs as well as systemically in the spleen. Additionally, there was a decrease in CD8+PD1+ exhausted T cells at the tumor site. Along with the inhibition of immune suppressive cell populations, the GPI-ISMs increased the presence of CD4+ and CD8+ T cells as well as dendritic cells and B cells. These observations suggest that components of the active immune suppression evident in this model can be inhibited by expressing GPI-ISMs on the surface of the 4T07 tumor cells and could be effective in a therapeutic setting.

[0183] BALB/C female mice (five per group) were challenged subcutaneously (s.c.) with wild-type 4T07 or transfected 4T07-B7, GPI-IL-2, GPI-IL-12, B7/GPI-IL-2 or B7/GPI-IL-12 cells (all 2×10^5 cells in 100 µl PBS). Mice were injected s.c. in the rear flank and were monitored daily. Tumor size was measured using Vernier calipers every 2nd-3rd day by taking 2×2 perpendicular measurements, and tumor size (mm²) was calculated by multiplying the two diameters. Mice were euthanized when the tumor size reached close to 2 cm^2 . After 33 days of the initial challenge, tumor-free mice in the experimental groups were rechallenged on the opposite hind flank with wild-type 4T07 cells (2×105 in 100 µl PBS). Mice in each group were marked individually by ear punch and tumor growth was measured and recorded for each mouse separately. The wild-type and transfected tumor cell lines all began to grow tumors in vivo, but while the wild-type tumors continued to increase in size, the tumors from the modified cell lines all regressed (See FIGS. 9 and 10).

Preparation and Evaluation of hHER-2(ECD)-CD59 GPI [0184] HER-2ECD is the extracellular portion of hHER-2. The hHER-2 extracellular domain with CD59 GPI signal sequence were join and introduced by a EcoRI site, i.e., joining region: g/aattc introduced EcoRV site (gat/atc) before sequence and Apal (gggcc/c) site after sequence at the joining region as illustrated in FIG. 11. Before the sequence, an optimized IL-2 Kozak sequence along with the restriction enzyme sites HindIII and KpnI were added. Following the hHER2ECD sequence an EcoRI site is added. At base pair position 1365 of hHER2, a change in base pair from T was made to C in order to remove an EcoRI restriction enzyme site at this position, however, the final amino acid still remains as an isoleucine. (2015 bp). FIG. 12 shows flow cytometry analysis of CHO cells expressing GPI-human HER-2 (hHER-2-CD59) using TA1 mAb. Testing shows that HER-2 expressed in CHO cells is GPI-anchored. PIPLC is an enzyme which cleaves GPI anchor, reduces the level of expression. PI-PLC treated CHOK1-hHER-2ECD-CD59 cells reduced hHER-2 cell surface expression by 98.4%. PIPLC will not have any effect on normal HER-2.

[0185] Nucleic acid encoding the hHER-2 extracellular domain E (Amino Acids 22-652) and GPI-anchor signal sequence (SEQ ID NO: 7) AAGGGGAGGT AACCCTG-GCC CCTTTGGTCG GGGCCCCGGG CAGCCGCGCG CCCCTTCCCA CGGGGCCCTT TACTGCGCCG CGCGCCCGGC CCCCACCCCT CGCAGCACCC CGCGCCCCGC GCCCTCCCAG CCGGGTCCAG CCG-GAGCCAT GGGGCCGGAGGATATC CCGCAGTGAG CACCATGGAG CTGGCGGCCT TGTGCCGCTG GGGGCTCCTC CTCGCCCTCT TGCCCCCCGG AGC-CGCGAGC ACCCAAGTGT GCACCGGCAC AGACAT-GAAG CTGCGGCTCC CTGCCAGTCC CGAGACCCAC-CTGGACATGC TCCGCCACCT CTACCAGGGC TGCAGGGAAA CCTGGAACTC TGCCAGGTGG ACCTACCTGC CCACCAATGC CAGCCTGTCC TTCCT-GCAGG ATATCCAGGA GGTGCAGGGC TACGTGCTCA TCGCTCACAA CCAAGTGAGG CAGGTCCCAC TGCA-GAGGCT GCGGATTGTG CGAGGCACCC

AGCTCTTTGA GGACAACTAT GCCCTGGCCG TGCTAGACAA TGGAGACCCG CTGAACAATA CCAC-CCCTGT CACAGGGGGCC TCCCCAGGAG GCCT-GCGGGA GCTGCAGCTT CGAAGCCTCA CAGAGATCTT GAAAGGAGGG GTCTTGATCC AGCG-GAACCC CCAGCTCTGC TACCAGGACA CGATTTTGTG GAAGGACATC TTCCACAAGA GGCTCTCACACTGATAGACA ACAACCAGCT CCAACCGCTC TCGGGCCTGC CACCCCTGTT CTC-TAAGGGCTCC CGATGTG CGCTGCTGGG GAGAGAGTTC TGAGGATTGT CAGAGCCTGA CGCG-CACTGT CTGTGCCGGT GGCTGTGCCC GCTG-CAAGGG GCCACTGCCC ACTGACTGCT GCCAT-GTGTGCTGCC GGCTGCACGG GAGCA CTGGCCTGCC GCCCCAAGCA CTCTGACTGC TCCACTTCAA CCACAGTGGC ATCTGTGAGC TGCACTGCCC AGCCCTGGTC ACCTACAACA CAGA-CACGTT TGAGTCCATG CCCAATCCCG AGGGCCG-GTA TACATTCGGC GCCAGCTGTG TGACTGCCTG TCCCTACAAC TACCTTTCTA CGGACGTGGG ATCCT-GCACC CTCGTCTGCC CCCTGCACAA CCAAGAG-GTG ACAGCAGAGG ATGGAACACA GCGGTGTGAG AAGTGCAGCA AGCCCTGTGC CCGAGTGTGC TATG-GTCTGG GCATGGAGCA CTTGCGAGAG GTGAGGGCAG TTACCAGTGC CAATATCCAG GAGTTTGCTG GCTGCAAGAA GATCTTTGGG AGC-CTGGCAT TTCTGCCGGA GAGCTTTGAT GGGGAC-CCAG CCTCCAACAC TGCCCCGCTC CAGCCAGAGC AGCTCCAAGT GTTTGAGACT CTGGAAGAGA TCA-CAGGTTA CCTATACATC TCAGCATGGC CGGA-CAGCCT GCCTGACCTC AGCGTCTTCC AGAACCT-GCA AGTAATCCGG GGACGAATTC TGCACAATGG CGCCTACTCG CTGACCCTGC AAGGGCTGGG CAT-CTGGGGGCTGC GCTCACTGAG CAGCTGG GGAACTGGGC AGTGGACTGG CCCTCATCCA CCAT-AACACC CACCTCTGCT TCGTGCACAC GGTGC-GACCAGCTCT TTCGGAACCC CCTGG GCAC-CAAGCT CTGCTCCACA CTGCCAACCG GCCAGAGGAC GAGTGTGTGG GCGAGGGCCT GGC-CTGCCAC CAGCTGTGCG CCCGAGGGCA CTGCTGGGGT CCAGGGCCCA CCCAGTGTGT CAACTGCAGC CAGTTCCTTC GGGGCCAGGA GTGCGTGGAGGAATGCCGAG TACTGCAGGG GCTC-CCCAGG GAGTATGTGA ATGCCAGGCA CTGTTTGC-CGTGCCACCCTG AGTGTCAGCC CCAGAATGGC TCAGTGACCT GTTTTGGACC GGAGGCTGACCAGT-GTGTGG CCTGTGCCCA CTATAAGGAC CCTCCCT-TCT GCGTGGCCCG CTGCCCCAGC GGTGTGAAAC CTGACCTCTC CTACATGCCC ATCTGGAAGT TTCCA-GATGA GGAGGGCGCA TGCCAGCCTT GCCCCAT-CAA CTGCACCCAC TCCTGTGTGG ACCTGGATGA CCCGCCGAGC CAAGGGCTGC AGAGAGCCAG CCCTCTGACGGAATTC CTTGAAAATGGTGGGA-CATCCTTATCAGAGAAAACAGTTCTTCTGCTGGT GACTCCATTTCTGGCAGCAGCCTGGAGC-CTTCATCCCTAACAGAAG GCCAAGGGGCCCTCCG

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 8

<210> SEQ ID NO 1 <211> LENGTH: 288

		ZPE : RGANI		Home	o sai	pien	8								
		EQUEI				-									
Met 1	Gly	His	Thr	Arg 5	Arg	Gln	Gly	Thr	Ser 10	Pro	Ser	Lys	Сүз	Pro 15	Tyr
Leu	Asn	Phe	Phe 20	Gln	Leu	Leu	Val	Leu 25	Ala	Gly	Leu	Ser	His 30	Phe	Сув
Ser	Gly	Val 35	Ile	His	Val	Thr	Lys 40	Glu	Val	ГÀа	Glu	Val 45	Ala	Thr	Leu
Ser	Cys 50	Gly	His	Asn	Val	Ser 55	Val	Glu	Glu	Leu	Ala 60	Gln	Thr	Arg	Ile
Tyr 65	Trp	Gln	Lys	Glu	Lys 70	ГЛа	Met	Val	Leu	Thr 75	Met	Met	Ser	Gly	Asp 80
Met	Asn	Ile	Trp	Pro 85	Glu	Tyr	ГЛа	Asn	Arg 90	Thr	Ile	Phe	Asp	Ile 95	Thr
Asn	Asn	Leu	Ser 100	Ile	Val	Ile	Leu	Ala 105	Leu	Arg	Pro	Ser	Asp 110	Glu	Gly
Thr	Tyr	Glu 115	Сүв	Val	Val	Leu	Lys 120	Tyr	Glu	ГÀа	Asp	Ala 125	Phe	ГЛа	Arg
Glu	His 130	Leu	Ala	Glu	Val	Thr 135	Leu	Ser	Val	ГÀа	Ala 140	Asp	Phe	Pro	Thr
Pro 145	Ser	Ile	Ser	Aap	Phe 150	Glu	Ile	Pro	Thr	Ser 155	Asn	Ile	Arg	Arg	Ile 160
Ile	Сув	Ser	Thr	Ser 165	Gly	Gly	Phe	Pro	Glu 170	Pro	His	Leu	Ser	Trp 175	Leu
Glu	Asn	Gly	Glu 180	Glu	Leu	Asn	Ala	Ile 185	Asn	Thr	Thr	Val	Ser 190	Gln	Asp
Pro	Glu	Thr 195	Glu	Leu	Tyr	Ala	Val 200	Ser	Ser	Lys	Leu	Asp 205	Phe	Asn	Met
Thr	Thr 210	Asn	His	Ser	Phe	Met 215	Суз	Leu	Ile	Lys	Tyr 220	Gly	His	Leu	Arg
Val 225	Asn	Gln	Thr	Phe	Asn 230	Trp	Asn	Thr	Thr	Lys 235	Gln	Glu	His	Phe	Pro 240
Asp	Asn	Leu	Leu	Pro 245	Ser	Trp	Ala	Ile	Thr 250	Leu	Ile	Ser	Val	Asn 255	Gly
Ile	Phe	Val	Ile 260	Суа	Суз	Leu	Thr	Tyr 265	Суз	Phe	Ala	Pro	Arg 270	Суз	Arg
Glu	Arg	Arg 275	Arg	Asn	Glu	Arg	Leu 280	Arg	Arg	Glu	Ser	Val 285	Arg	Pro	Val
<211 <212	L> LH 2> T?	EQ II ENGTH (PE : RGAN]	I: 20 PRT	08	o saj	pien	8								
<400)> SI	EQUEI	ICE :	2											
Val 1	Ile	His	Val	Thr 5	ГЛа	Glu	Val	Гла	Glu 10	Val	Ala	Thr	Leu	Ser 15	Сув
Gly	His	Asn	Val 20	Ser	Val	Glu	Glu	Leu 25	Ala	Gln	Thr	Arg	Ile 30	Tyr	Trp
Gln	Lys	Glu 35	Lys	Lys	Met	Val	Leu 40	Thr	Met	Met	Ser	Gly 45	Asp	Met	Asn

_	cont	-in	ned
	COIL	- 11	ucu

11e Trp Pro Glu Tyr Lys Asn Arg Thr 11e Phe Asp 11e Thr Asn Asn Asn 55 12eu Ser Ile Val Ile Leu Lys Tyr Glu Lys Asp Ala Phe Lys Arg Glu Gly Thr Tyr 500 Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe Lys Arg Glu His 55 12eu Ala Glu Val Thr Leu Ser Val Lys Asp Ala Asp Phe Pro Thr Pro Ser 100 Ile Ser Asp Phe Glu Ile Pro Thr Ser Asn Ile Arg Arg Ile Ile Cys 125 12er Thr Ser Gly Gly Phe Pro Glu Pro His Leu Ser Trp Leu Glu Asn 135 140 Gly Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp Pro Glu 160 160 145 110 150 140 145 120 110 160 Gly Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp Pro Glu 160 160 145 160 115 160 146 116 116 116 147 160 116 116 145 120 112 116 145 120 120 120 145 120 120 120 146 120 120 120 147 140 140 140 145 140 140 140 146 120 120 120													con		uea	
65 70 75 80 Glu Cyø Val Val Leu Lyø Tyr Glu Lyø Amp Ala Phe Lyø Arg Glu His go Nala Glu Val Thr Leu Ser Val Lyø Ala Amp Phe Pro Thr Pro Ser 100 110 110 Leu Ala Glu Val Thr Leu Ser Val Lyø Amp Ala Amp Phe Pro Thr Pro Ser 110 110 Ser Thr Ser Gly Gly Phe Pro Glu Pro His Leu Ser Trp Leu Glu Am 130 Gly Glu Glu Leu Am Ala ILe Am Thr Thr Val Ser Gln Amp Pro Glu 145 110 150 140 Gly Glu Glu Leu Am Ala ILe Am Thr Thr Val Ser Gln Amp Pro Glu 160 155 Gln Amp Pro Glu 70 115 Am His Ser Phe Met Cyø Leu Ile Lyø Tyr Gly His Leu Arg Val Am 180 185 190 Am 115 Gln Thr Phe Am Trp Am Thr Thr Lyø Gln Glu His Phe Pro Amp Am 200 205 2210 SEQ ID NO 3 <2110 > SEQ ID NO 3 2213 > TKPI FPT 2213 > ORGANISM: Homo sapiens 25 25 <400 > SEQUENCE: 3 25 25 Glu Am 45 15 10 Glu Val Arg Val Thr Val Leu Arg Gln Ala Amp Ser Gln Val Thr Glu 40 26 26 27 Glu Val Arg Val Thr Val Leu Arg Gln Ala Amp Ser Gln Val Thr Glu 40 10 15 15 Glu Val Arg Val Thr Val Leu Arg Gln Ala Amp Ser Gln Val Am 10 26 26 26 Glu Val Arg Val Thr Val Leu Arg Gln Ala Amp Ser Gln Val Am 10 20 <td>Ile</td> <td>-</td> <td>Pro</td> <td>Glu</td> <td>Tyr</td> <td>ГЛа</td> <td></td> <td>Arg</td> <td>Thr</td> <td>Ile</td> <td>Phe</td> <td>_</td> <td>Ile</td> <td>Thr</td> <td>Asn</td> <td>Asn</td>	Ile	-	Pro	Glu	Tyr	ГЛа		Arg	Thr	Ile	Phe	_	Ile	Thr	Asn	Asn
asbitbitbitbit110111<		Ser	Ile	Val	Ile		Ala	Leu	Arg	Pro		Asp	Glu	Gly	Thr	-
100 105 105 110 Ile Ser Asp Phe Glu Ile Pro Thr Ser Asn Ile Arg Arg Ile Ile Cys 125 115 115 116 Cys 125 115 116 Cys 125 117 Clu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp Pro Glu 145 116 116 116 116 117 117 117 116 116 146 117 Clu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met Thr Thr 165 117 Clu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met Thr Thr 165 119 118 119 119 119 119 119 119 119 119	Glu	Cys	Val	Val		Lys	Tyr	Glu	Lys	-	Ala	Phe	Lys	Arg		His
115120125Ser Thr Ser Gly Gly Phe Pro Glu Pro His Leu Ser Trp Leu Glu Asn 130135140Gly Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp Pro Glu 150150Thr Glu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met Thr Thr 165157Asn His Ser Phe Met Cys Leu Ile Lys Tyr Gly His Leu Arg Val Asn 180185Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro Asp Asn 200201<210> SEQ ID NO 3 <211> LENGTH: 126 <212> TYPE: PRT <213> ORGANISM: Homo sapiens<400> SEQUENCE: 3Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg 1Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 40Yal Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50Glu Can Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile Cys Lys Val 85Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100Glu Leu Met Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115Seq ID NO 4 <2123 SQUENCE: 4	Leu	Ala	Glu		Thr	Leu	Ser	Val	_	Ala	Asp	Phe	Pro		Pro	Ser
130135140Gly Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp Pro Glu 150150150Thr Glu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met Thr Thr 165160Thr Glu Leu Tyr Ala Val Ser Ser Lys Cau Asp Phe Asn Met Thr Thr 165180Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro Asp Asn 200205c210> SEQ ID NO 3 c211> LENGTH: 126 c212> TYPE: PRT c213> ORGANISM: Homo sapiensc400> SEQUENCE: 3Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg 1Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr 20Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr 50Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Glu Val Asn Leu Thr 80Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115c210> SEQ ID NO 4 c211> LENGTH: 607 c212> TYPE: PRT c213> ORGANISM: Homo sapiensc400> SEQUENCE: 4Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 10Fir Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	Ile	Ser	_	Phe	Glu	Ile	Pro		Ser	Asn	Ile	Arg	-	Ile	Ile	Cys
145150155160Thr Glu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met Thr Thr 165157160Asn His Ser Phe Met Cys Leu Ile Lys Tyr Gly His Leu Arg Val Asn 180185190Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro Asp Asn 20020520<210> SEQ ID NO 3 <211> LENGTH: 12620520<212> TYPE: PRT <213> ORGANISM: Homo sapiens2020<400> SEQUENCE: 3101515Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg 11015Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 3521575Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Asn Leu Thr 502020Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 858010Ile Gln Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile Cys Lys Val 9595212Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100110Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 11522<210> SEQUENCE: 4120125Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 10110Sequence: 411115Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	Ser		Ser	Gly	Gly	Phe		Glu	Pro	His	Leu		Trp	Leu	Glu	Asn
165170175Asn His Ser Phe Met Cys Leu IIe Lys Tyr Gly His Leu Arg Val Asn 180185190Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro Asp Asn 205200205<210> SEQ ID NO 3 <211> LENGTH: 126 <212> TYPE: PRT <213> ORGANISM: Homo sapiens201<400> SEQUENCE: 310115Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg 115Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 35201Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 5040Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50205Asp Ser IIe Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 8585Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly IIe Gly Asn Gly Ala 100110Gln IIe Tyr Val IIe Asp Pro Glu Pro Cys Pro Asp Ser Asp 115120<210> SEQ ID NO 4 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Homo sapiens<400> SEQUENCE: 4Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 10For Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln		Glu	Glu	Leu	Asn		Ile	Asn	Thr	Thr		Ser	Gln	Asp	Pro	
180 185 190 Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro Asp Asn 205 $(210> SEQ ID NO 3)$ $(211> LENGTH: 126)$ $(212> TYPE: PRT)$ $(213> ORGANISM: Homo sapiens)$ $(400> SEQUENCE: 3)$ Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg 10 Gly Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly Lys Ala Thr 20 Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 45 Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50 Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 65 Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 110 Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115 $(<10> SEQ UENCE: 4$ Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 1 $(<10> SEQ UENCE: 4$ Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 1 $(<10> SEQ UENCE: 4$	Thr	Glu	Leu	Tyr		Val	Ser	Ser	Lys		Asp	Phe	Asn	Met		Thr
195200205<210> SEQ ID NO 3 <211> LENGTH: 126 <212> TYPE: PRT <213> ORGANISM: Homo sapiens<400> SEQUENCE: 3Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg 1Gly Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly Lys Ala Thr 25Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 35Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 85Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115<210> SEQUENCE: 4Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 10For Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	Asn	His	Ser		Met	Суа	Leu	Ile		Tyr	Gly	His	Leu		Val	Asn
<pre><211> LENGTH: 126 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg 1 5 Gly Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly Lys Ala Thr 20 25 Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 35 Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50 Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 65 Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100 Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115 100 Cln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 120 125 </pre>	Gln	Thr		Asn	Trp	Asn	Thr		ГЛа	Gln	Glu	His		Pro	Asp	Asn
151015Gly Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly Lys Ala Thr 20201111Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 35111111Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50111111Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 601111111161111111111111Glu Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50111111121111111111111211111111111111111111111111121111111111111311111111111114151111111111151111111111111511111111111115111111111111151111111111111611111111111117111111111111181911111111111911111111111110111111111111	<211 <212 <213	L> LH 2> TY 3> OF	ENGTH (PE : RGAN]	H: 12 PRT [SM:	26 Homo	o saj	pien:	3								
202530Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu 35And And And Asp Ser Gln Val Thr Glu 40Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp 50Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 80Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 85Asn Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile Cys Lys Val 90Ile Gln Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile Cys Lys Val 9095Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115<210> SEQ ID NO 4 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Homo sapiens<400> SEQUENCE: 4Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 10Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	-	Ala	Met	His		Ala	Gln	Pro	Ala		Val	Leu	Ala	Ser		Arg
35 40 45 Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp Asp Ser Ile Cys Thr Gly Thr Ser Gly Asn Gly Asn Mu Asn Val Asn Leu Asn Leu Thr Ser Gly Asn Gly Leu Arg Ala Met Asp Thr Gly Leu Thr Ser Gly Leu Thr Ser Gly Leu Thr Ser Ser Thr Gly Leu Asn Leu Asn Ser Ser Ser Ser Ser Ser Ser </td <td>Gly</td> <td>Ile</td> <td>Ala</td> <td></td> <td>Phe</td> <td>Val</td> <td>Суз</td> <td>Glu</td> <td>_</td> <td>Ala</td> <td>Ser</td> <td>Pro</td> <td>Gly</td> <td>-</td> <td>Ala</td> <td>Thr</td>	Gly	Ile	Ala		Phe	Val	Суз	Glu	_	Ala	Ser	Pro	Gly	-	Ala	Thr
505560Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr 70Gly Leu Asn Gly Leu Asn Ala Met Asp Thr Gly Leu Tyr Ile Cys Lys Val 90Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 110Glu Leu Met Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115Glu Pro Ser Asp Ser Asp 125<210> SEQ ID NO 4 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Homo sapiens<400> SEQUENCE: 4Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 10Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	Glu	Val		Val	Thr	Val	Leu		Gln	Ala	Asp	Ser		Val	Thr	Glu
65 70 75 80 Ile Gln Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile Cys Lys Val 85 90 91 95 Glu Leu Met Tyr Pro Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100 90 95 91 Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115 100 125 125 <210> SEQ ID NO 4 <211> LENGTH: 607 125 125 125 <210> SEQUENCE: 4 Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 1 15 10 Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln 15 15	Val		Ala	Ala	Thr	Tyr		Met	Gly	Asn	Glu		Thr	Phe	Leu	Asp
85 90 95 Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly Asn Gly Ala 100 105 110 Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115 120 125 <210> SEQ ID NO 4 120 125 <211> LENGTH: 607 123 00 125 <400> SEQUENCE: 4 10 15 10 Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 1 10 15 Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln 10 15	-	Ser	Ile	Суз	Thr	-	Thr	Ser	Ser	Gly		Gln	Val	Asn	Leu	
100105110Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp 115120125<210> SEQ ID NO 4 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Homo sapiens<400> SEQUENCE: 41015Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 1015Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	Ile	Gln	Gly	Leu	0.5	Ala	Met	Asp	Thr	Gly 90	Leu	Tyr	Ile	Суз	~ -	Val
115120125<210> SEQ ID NO 4<211> LENGTH: 607<212> TYPE: PRT<213> ORGANISM: Homo sapiens<400> SEQUENCE: 4Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser151015Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	Glu	Leu	Met		Pro	Pro	Pro	Tyr	-	Leu	Gly	Ile	Gly		Gly	Ala
<211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 4 Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 1 5 10 15 Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	Gln	Ile	-	Val	Ile	Asp	Pro		Pro	Суз	Pro	Asp		Asp		
Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala Ser 1 5 10 15 Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	<211 <212	L> LH 2> TY	ENGTH 7PE :	H: 60 PRT	07	o saj	piens	3								
1 5 10 15 Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln	<400)> SI	EQUEI	ICE :	4											
		Gln	Val	Сүз		Gly	Thr	Asp	Met		Leu	Arg	Leu	Pro		Ser
	Pro	Glu	Thr		Leu	Asp	Met	Leu		His	Leu	Tyr	Gln		Cys	Gln

												con	tın	ued	
Val	Val	Gln 35	Gly	Asn	Leu	Glu	Leu 40	Thr	Tyr	Leu	Pro	Thr 45	Asn	Ala	Ser
Leu	Ser 50	Phe	Leu	Gln	Asp	Ile 55	Gln	Glu	Val	Gln	Gly 60	Tyr	Val	Leu	Ile
Ala 65	His	Asn	Gln	Val	Arg 70	Gln	Val	Pro	Leu	Gln 75	Arg	Leu	Arg	Ile	Val 80
Arg	Gly	Thr	Gln	Leu 85	Phe	Glu	Asp	Asn	Tyr 90	Ala	Leu	Ala	Val	Leu 95	Asp
Asn	Gly	Asp	Pro 100	Leu	Asn	Asn	Thr	Thr 105	Pro	Val	Thr	Gly	Ala 110	Ser	Pro
Gly	Gly	Leu 115	Arg	Glu	Leu	Gln	Leu 120	Arg	Ser	Leu	Thr	Glu 125	Ile	Leu	Lys
Gly	Gly 130	Val	Leu	Ile	Gln	Arg 135	Asn	Pro	Gln	Leu	Cys 140	Tyr	Gln	Asp	Thr
Ile 145	Leu	Trp	Lys	Asp	Ile 150	Phe	His	Lys	Asn	Asn 155	Gln	Leu	Ala	Leu	Thr 160
Leu	Ile	Asp	Thr	Asn 165	Arg	Ser	Arg	Ala	Cys 170	His	Pro	Суз	Ser	Pro 175	Met
Сүз	Lys	Gly	Ser 180	Arg	Суа	Trp	Gly	Glu 185	Ser	Ser	Glu	Asp	Cys 190	Gln	Ser
Leu	Thr	Arg 195	Thr	Val	Сув	Ala	Gly 200	Gly	Сув	Ala	Arg	Cys 205	Гла	Gly	Pro
Leu	Pro 210	Thr	Asp	Сүз	Сүз	His 215	Glu	Gln	Cya	Ala	Ala 220	Gly	Сүз	Thr	Gly
Pro 225	Lys	His	Ser	Asp	Сув 230	Leu	Ala	Сув	Leu	His 235	Phe	Asn	His	Ser	Gly 240
Ile	Cys	Glu	Leu	His 245	Сүз	Pro	Ala	Leu	Val 250	Thr	Tyr	Asn	Thr	Asp 255	Thr
Phe	Glu	Ser	Met 260	Pro	Asn	Pro	Glu	Gly 265	Arg	Tyr	Thr	Phe	Gly 270	Ala	Ser
Сүз	Val	Thr 275	Ala	Суз	Pro	Tyr	Asn 280	Tyr	Leu	Ser	Thr	Asp 285	Val	Gly	Ser
СЛа	Thr 290	Leu	Val	Суз	Pro	Leu 295	His	Asn	Gln	Glu	Val 300	Thr	Ala	Glu	Asp
Gly 305	Thr	Gln	Arg	Суз	Glu 310	Lys	Cya	Ser	Lys	Pro 315	Cys	Ala	Arg	Val	Суз 320
	Gly	Leu	Gly	Met 325		His	Leu	Arg	Glu 330	Val	Arg	Ala	Val	Thr 335	Ser
Ala	Asn	Ile	Gln 340		Phe	Ala	Gly	Cys 345		ГÀа	Ile	Phe	Gly 350		Leu
Ala	Phe	Leu 355		Glu	Ser	Phe	Asp 360		Asp	Pro	Ala	Ser 365		Thr	Ala
Pro			Pro	Glu	Gln		Gln	Val	Phe	Glu			Glu	Glu	Ile
	370 Gly	Tyr	Leu	Tyr		375 Ser	Ala	Trp	Pro		380 Ser	Leu	Pro	Asp	
385 Ser	Val	Phe	Gln	Asn	390 Leu	Gln	Val	Ile	Arg	395 Gly	Arg	Ile	Leu	His	400 Asn
Glv	Ala	Tyr	Ser	405 Leu	Thr	Leu	Gln	Glv	410 Leu	Glv	Ile	Ser	Trp	415 Leu	Glv
			420					425					430		
Leu	Arg	Ser	Leu	Arg	GIU	Leu	Gly	Ser	сту	Leu	Ala	Leu	тте	ніз	Hls

		435					440					445			
Asn	Thr 450	His	Leu	Суз	Phe	Val 455	His	Thr	Val	Pro	Trp 460	Asp	Gln	Leu	Phe
Arg 465	Asn	Pro	His	Gln	Ala 470	Leu	Leu	His	Thr	Ala 475	Asn	Arg	Pro	Glu	Asp 480
Glu	Сув	Val	Gly	Glu 485	Gly	Leu	Ala	Суз	His 490	Gln	Leu	Сүз	Ala	Arg 495	Gly
His	Суз	Trp	Gly 500	Pro	Gly	Pro	Thr	Gln 505	Суз	Val	Asn	Суз	Ser 510	Gln	Phe
Leu	. Arg	Gly 515	Gln	Glu	Суз	Val	Glu 520	Glu	Суз	Arg	Val	Leu 525	Gln	Gly	Leu
Pro	Arg 530	Glu	Tyr	Val	Asn	Ala 535	Arg	His	Суз	Leu	Pro 540	Суз	His	Pro	Glu
Cys 545	Gln	Pro	Gln	Asn	Gly 550	Ser	Val	Thr	Суз	Phe 555	Gly	Pro	Glu	Ala	Asp 560
Gln	Сув	Val	Ala	Сув 565	Ala	His	Tyr	Lys	Asp 570	Pro	Pro	Phe	Сув	Val 575	Ala
Arg	Сув	Pro	Ser 580	Gly	Val	Гла	Pro	Asp 585	Leu	Ser	Tyr	Met	Pro 590	Ile	Trp
Lys	Phe	Pro 595	Asp	Glu	Glu	Gly	Ala 600	Сув	Gln	Pro	Сүз	Pro 605	Ile	Asn	
<21 <21 <21	<210> SEQ ID NO 5 <211> LENGTH: 214 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5														
<40	0> SI	EQUEI	ICE :	5											
Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
Asp	Arg	Val	Thr 20	Ile	Thr	Сүз	Arg	Ala 25	Ser	Gln	Asp	Val	Asn 30	Thr	Ala
Val	Ala	Trp 35	Tyr	Gln	Gln	ГЛа	Pro 40	Gly	ГЛа	Ala	Pro	Lys 45	Leu	Leu	Ile
Tyr	Ser 50	Ala	Ser	Phe	Leu	Tyr 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
Ser 65	Arg	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
Glu	. Asp	Phe	Ala	Thr 85	Tyr	Tyr	Суз	Gln	Gln 90	His	Tyr	Thr	Thr	Pro 95	Pro
Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Гла	Ser	Gly
Thr	Ala 130	Ser	Val	Val	Суз	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
Glu	. Ser	Val	Thr	Glu 165	Gln	Asp	Ser	ГЛа	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185		Glu	Lys	His	Lys 190		Tyr

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> SEQ ID NO 6 <211> LENGTH: 55 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 6 Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys 1 5 10 15 Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser 20 25 30 Arg Tyr Leu Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys Gln 40 35 45 Asn Tyr Val Met Ala Ser Phe 50 55 <210> SEQ ID NO 7 <211> LENGTH: 2254 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 7 Ala Ala Gly Gly Gly Gly Ala Gly Gly Thr Ala Ala Cys Cys Cys Thr 1 5 10 15 1 5 10 Gly Gly Cys Cys Cys Cys Thr Thr Thr Gly Gly Thr Cys Gly Gly Gly 20 20 25 30 Gly Cys Cys Cys Cys Gly Gly Gly Cys Ala Gly Cys Cys Gly Cys Gly 35 40 45 Cys Gly Cys Cys Cys Cys Thr Thr Cys Cys Cys Ala Cys Gly Gly Gly 50 55 60 Gly Cys Cys Cys Thr Thr Thr Ala Cys Thr Gly Cys Gly Cys Cys Gly 70 75 65 80 Cys Gly Cys Gly Cys Cys Cys Cys Gly Gly Cys Cys Cys Cys Ala Cys 85 90 95 Cys Cys Cys Thr Cys Gly Cys Ala Gly Cys Ala Cys Cys Cys Cys Gly 100 105 110 Cys Gly Cys Cys Cys Cys Gly Cys Gly Cys Cys Cys Thr Cys Cys Cys 115 120 125 Ala Gly Cys Cys Gly Gly Gly Thr Cys Cys Ala Gly Cys Cys Gly Gly 135 130 140 Ala Gly Cys Cys Ala Thr Gly Gly Gly Gly Cys Cys Gly Gly Ala Gly 145 150 155 160 Gly Ala Thr Ala Thr Cys Cys Cys Gly Cys Ala Gly Thr Gly Ala Gly 165 170 175 Cys Ala Cys Cys Ala Thr Gly Gly Ala Gly Cys Thr Gly Gly Cys Gly 180 185 190 Gly Cys Cys Thr Thr Gly Thr Gly Cys Cys Gly Cys Thr Gly Gly Gly 200 205 195 Gly Gly Cys Thr Cys Cys Thr Cys Cys Thr Cys Gly Cys Cys Thr 215 220 210

													ιm	ueu	
Сув 225	Thr	Thr	Gly	Сув	Сув 230	Сув	Сув	Сув	Сүз	Gly 235	Gly	Ala	Gly	Сүз	Cys 240
Gly	Cys	Gly	Ala	Gly 245	Суз	Ala	Суз	Cys	Cys 250	Ala	Ala	Gly	Thr	Gly 255	Thr
Gly	Cys	Ala	Cys 260	Суз	Gly	Gly	Cys	Ala 265	Cys	Ala	Gly	Ala	Cys 270	Ala	Thr
Gly	Ala	Ala 275	Gly	Cys	Thr	Gly	Cys 280	Gly	Gly	Cys	Thr	Cys 285	Суз	Сүз	Thr
Gly	Cys 290	Суз	Ala	Gly	Thr	Cys 295	Суз	Суз	Gly	Ala	Gly 300	Ala	Сүз	Суз	Суз
Ala 305	Cys	Cys	Thr	Gly	Gly 310	Ala	Cya	Ala	Thr	Gly 315	CAa	Thr	Сув	Суз	Gly 320
Суз	Cys	Ala	Суз	Cys 325	Thr	Суз	Thr	Ala	Суя 330	Суз	Ala	Gly	Gly	Gly 335	Cys
Thr	Gly	Cys	Cys 340		Gly	Gly	Thr	Gly 345	Gly	Thr	Gly	Cya	Ala 350		Gly
Gly	Ala	Ala 355		Суз	Сув	Thr	Gly 360		Ala	Ala	Cya	Thr 365		Ala	Cys
СЛа			Cys	Сүз	Thr			Суз	Суа	Ala			Ala	Ala	Thr
-	370 Cys	Cys	Ala	Gly		375 Cys	Thr	Gly	Thr	-	380 Cys	Thr	Thr	Cys	-
385 Thr	Gly	Cys	Ala		390 Gly	Ala	Thr	Ala	Thr	395 Суз	Суз	Ala	Gly	-	400 Ala
Gly	Gly	Thr	Gly	405 Суз	Ala	Gly	Gly	Gly	410 Cys	Thr	Ala	Суз	Gly	415 Thr	Gly
Cys	Thr	Cys	420 Ala	Thr	Сув	Gly	Cys	425 Thr	Cys	Ala	Cys	Ala	430 Ala	Cys	Cys
Ala	Ala	435 Glv	Thr	Glv	Ala	Glv	440 Glv	Cvs	Ala	Glv	Glv	445 Thr	Cvs	Cvs	Cvs
	450	-		-		455	-	-	Gly	-	460		-	-	-
465	-		-	-	470	-		-	-	475		-	-	-	480
				485					Gly 490					495	
Ala	Gly	Сүз	Thr 500	Суз	Thr	Thr	Thr	Gly 505	Ala	Gly	Gly	Ala	Суз 510	Ala	Ala
Сүз	Thr	Ala 515	Thr	Gly	Суз	Суз	Суз 520	Thr	Gly	Gly	Сүз	Суз 525	Gly	Thr	Gly
СЛа	Thr 530	Ala	Gly	Ala	Сүз	Ala 535	Ala	Thr	Gly	Gly	Ala 540	Gly	Ala	Суз	Cys
Cys 545	Gly	Cys	Thr	Gly	Ala 550	Ala	Сүз	Ala	Ala	Thr 555	Ala	Сүа	Сүз	Ala	Сув 560
Cys	Cys	Cys	Thr	Gly 565	Thr	Суз	Ala	Cys	Ala 570	Gly	Gly	Gly	Gly	Cys 575	Cys
Thr	Cys	Суз	Суз 580	Сүз	Ala	Gly	Gly	Ala 585	Gly	Gly	Cys	Сүз	Thr 590	Gly	Сув
Gly	Gly	Gly 595	Ala	Gly	Сув	Thr	Gly 600	-	Ala	Gly	Суз	Thr 605	Thr	Сув	Gly
Ala			Сүз	CAa	Thr	-			Ala	Gly			Ala	Thr	Сув
Thr	610 Thr	Gly	Ala	Ala	Ala	615 Gly	Gly	Ala	Gly	Gly	620 Gly	Gly	Thr	Суз	Thr

19

-continued															
625	525 630 635 6·														640
Thr	Gly	Ala	Thr	Cys 645	Суз	Ala	Gly	Суз	Gly 650	Gly	Ala	Ala	Суз	Cys 655	Суз
Суз	Суз	Ala	Gly 660		Thr	Суз	Thr	Gly 665	-	Thr	Ala	Суз	Cys 670	Ala	Gly
Gly	Ala	Cys 675	Ala	Суз	Gly	Ala	Thr 680	Thr	Thr	Thr	Gly	Thr 685	Gly	Gly	Ala
Ala	Gly 690	Gly	Ala	Суз	Ala	Thr 695	Сүз	Thr	Thr	Cys	Cys 700	Ala	Сүз	Ala	Ala
Gly 705	Ala	Ala	Суз	Ala	Ala 710	Сув	Суз	Ala	Gly	Cys 715	Thr	Gly	Gly	Cya	Thr 720
Суз	Thr	Суз	Ala	Cys 725	Ala	Суз	Thr	Gly	Ala 730	Thr	Ala	Gly	Ala	Cys 735	Ala
Суз	Суз	Ala	Ala 740	Cya	Суз	Gly	Сүз	Thr 745	Cys	Thr	Cys	Gly	Gly 750	Gly	Cys
Суз	Thr	Gly 755	Суз	Суз	Ala	Суз	Cys 760	Суз	Суз	Thr	Gly	Thr 765	Thr	Суз	Thr
Суз	Cys 770	Gly	Ala	Thr	Gly	Thr 775	Gly	Thr	Ala	Ala	Gly 780	Gly	Gly	Сув	Thr
Сув 785	Сув	Сүз	Gly	Сүз	Thr 790	Gly	Сүз	Thr	Gly	Gly 795	Gly	Gly	Ala	Gly	Ala 800
Gly	Ala	Gly	Thr	Thr 805	Сув	Thr	Gly	Ala	Gly 810	Gly	Ala	Thr	Thr	Gly 815	Thr
Сув	Ala	Gly	Ala 820	Gly	Сув	Сүз	Thr	Gly 825	Ala	Сув	Gly	СЛа	Gly 830	Cys	Ala
Суз	Thr	Gly 835	Thr	Cys	Thr	Gly	Thr 840	Gly	Cys	Суз	Gly	Gly 845	Thr	Gly	Gly
Суз	Thr 850	Gly	Thr	Gly	Суз	Cys 855	Cys	Gly	Суз	Thr	Gly 860	Суз	Ala	Ala	Gly
Gly 865	Gly	Gly	Суз	Суз	Ala 870	Суз	Thr	Gly	Суз	Cys 875	Суз	Ala	Суз	Thr	Gly 880
Ala	Суз	Thr	Gly	Cys 885	Thr	Gly	Суз	Суз	Ala 890	Thr	Gly	Ala	Gly	Cys 895	Ala
Gly	Thr	Gly	Thr 900	Gly	Суз	Thr	Gly	Cys 905		Gly	Gly	Суз	Thr 910	Gly	Cys
Ala	Суз	Gly 915		Gly	Суа	Суз	Cys 920		Ala	Ala	Gly	Cys 925		Суз	Thr
Cya	Thr 930		Ala	Сүз	Thr	Gly 935		Cya	Thr	Gly	Gly 940		Сүз	Thr	Gly
Cys 945		Thr	Cya	Суз	Ala 950		Thr	Thr	Суа	Ala 955		CÀa	Сүз	Ala	Cys 960
	Gly	Thr	Gly	Gly 965	Сув	Ala	Thr	Cya	Thr 970		Thr	Gly	Ala	Gly 975	
Thr	Gly	Сүз			Thr	Gly	Сүз	-		Ala	Gly	Сүз	-		Thr
Gly	Gly		980 Cys	Ala	Суз	Cys			a Cy:	s Ala	a Ala	-		la C	ys Al
Gly	Ala	995 Cyr	s Ala	a Cy	s Gl	y Th:	100) r Tl		hr Gi	ly Ai	la Gi	10 ly		Cys	Суз
	1010	C				10	15				1	020			
AIA	1029		y cy	s cy	s Cy:	s Al. 10:		la Ti	nr c <u>j</u>	ys Cj		ys (035	зту т	Ala (ыу

Gly	Gly 1040	Сүз	Cys	Gly	Gly	Thr 1045	Ala	Thr	Ala	Cys	Ala 1050	Thr	Thr	Сүз
Gly	Gly 1055	Суз	Gly	Суз	Суз	Ala 1060	Gly	Суз	Thr	Gly	Thr 1065	Gly	Thr	Gly
Ala	Cys 1070	Thr	Gly	Суз	Суз	Thr 1075	Gly	Thr	Суз	Суз	Cys 1080	Thr	Ala	СЛа
Ala	Ala 1085	Суз	Thr	Ala	Суз	Cys 1090	Thr	Thr	Thr	Суз	Thr 1095	Ala	Сүз	Gly
Gly	Ala 1100	Суз	Gly	Thr	Gly	Gly 1105	Gly	Ala	Thr	Суз	Cys 1110	Thr	Gly	Сүз
Ala	Cys 1115	Суз	Суз	Thr	Суз	Gly 1120	Thr	Суз	Thr	Gly	Cys 1125	Суз	Сүз	Сүз
Суа	Thr 1130	Gly	Суз	Ala	Суз	Ala 1135	Ala	Суз	Суз	Ala	Ala 1140	Gly	Ala	Gly
Gly	Thr 1145	Gly	Ala	Суз	Ala	Gly 1150	Cys	Ala	Gly	Ala	Gly 1155	Gly	Ala	Thr
Gly	Gly 1160	Ala	Ala	Суз	Ala	Cys 1165	Ala	Gly	Суз	Gly	Gly 1170	Thr	Gly	Thr
Gly	Ala 1175	Gly	Ala	Ala	Gly	Thr 1180	Gly	Cys	Ala	Gly	Cys 1185	Ala	Ala	Gly
Суз	Cys 1190	Сүз	Thr	Gly	Thr	Gly 1195	Cys	Cys	Cys	Gly	Ala 1200	Gly	Thr	Gly
Thr	Gly 1205	Сув	Thr	Ala	Thr	Gly 1210	Gly	Thr	Сув	Thr	Gly 1215	Gly	Gly	Сүз
Ala	Thr 1220	Gly	Gly	Ala	Gly	Cys 1225	Ala	Сув	Thr	Thr	Gly 1230	Сув	Gly	Ala
Gly	Ala 1235	Gly	Gly	Thr	Gly	Ala 1240	Gly	Gly	Gly	Сув	Ala 1245	Gly	Thr	Thr
Ala	Cys 1250	Сув	Ala	Gly	Thr	Gly 1255	Сув	Сув	Ala	Ala	Thr 1260	Ala	Thr	Сүз
Суа	Ala 1265	Gly	Gly	Ala	Gly	Thr 1270	Thr	Thr	Gly	Суз	Thr 1275	Gly	Gly	Сүз
Thr	Gly 1280	Суз	Ala	Ala	Gly	Ala 1285	Ala	Gly	Ala	Thr	Cys 1290	Thr	Thr	Thr
Gly	Gly 1295	Gly	Ala	Gly	Суз	Суя 1300	Thr	Gly	Gly	Суз	Ala 1305	Thr	Thr	Thr
Суа	Thr 1310	Gly	Суз	Суз	Gly	Gly 1315	Ala	Gly	Ala	Gly	Cys 1320	Thr	Thr	Thr
Gly	Ala 1325	Thr	Gly	Gly	Gly	Gly 1330	Ala	Суз	Суз	Суз	Ala 1335	Gly	Суз	Сүз
Thr	Cys 1340	Сув	Ala	Ala	Сув	Ala 1345	Cys	Thr	Gly	Сув	Cys 1350	Сүз	Сүз	Gly
Суз	Thr 1355	Сүз	Сүз	Ala	Gly	Cys 1360	-	Ala	Gly	Ala	Gly 1365	Cys	Ala	Gly
Суз	Thr 1370	Суз	Суз	Ala	Ala	Gly 1375		Gly	Thr	Thr	Thr 1380	Gly	Ala	Gly
Ala	Cys 1385	Thr	Суз	Thr	Gly	Gly 1390	Ala	Ala	Gly	Ala	Gly 1395	Ala	Thr	Суз
Ala	Cys 1400	Ala	Gly	Gly	Thr	Thr 1405	Ala	Сув	Суз	Thr	Ala 1410	Thr	Ala	Сүз

-continued

													iuct	
Ala	Thr 1415	Суз	Thr	Сув	Ala	Gly 1420		Ala	Thr	Gly	Gly 1425	-	Сүз	Gly
Gly	Ala 1430		Ala	Gly	Суз	Cys 1435		Gly	Суз	Суз	Thr 1440	Gly	Ala	Сүз
Cys	Thr 1445	-	Ala	Gly	Суз	Gly 1450		Суз	Thr	Thr	Cys 1455	Суз	Ala	Gly
Ala	Ala 1460	-	Суз	Thr	Gly	Cys 1465		Ala	Gly	Thr	Ala 1470	Ala	Thr	Суз
Cya	Gly 1475	-	Gly	Gly	Ala	Cys 1480	-	Ala	Ala	Thr	Thr 1485	Суз	Thr	Gly
Cya	Ala 1490		Ala	Ala	Thr	Gly 1495		Cys	Gly	Cya	Суз 1500	Thr	Ala	Сүз
Thr	Cys 1505	Gly	Суа	Thr	Gly	Ala 1510		Сув	Сув	Thr	Gly 1515	Суа	Ala	Ala
Gly	Gly 1520		Суз	Thr	Gly	Gly 1525	Gly	Суз	Ala	Thr	Cys 1530	Ala	Gly	Суз
Thr			Суа	Thr	Gly	Gly 1540	Gly	Gly	Суз	Thr		Суа	Gly	Суа
Thr		Ala	Суз	Thr	Gly	Ala 1555	Gly	Gly	Gly	Ala		Суз	Thr	Gly
Gly			Ala	Gly	Thr	Gly 1570	Gly	Ala	Суз	Thr	Gly	Gly	Сүз	Сув
Суз	Thr	Суз	Ala	Thr	Суз	Сув		Сув	Суз	Ala		Ala	Ala	Суз
Ala	-	Суз	Сүз	Ala	Cys	1585 Cys		Сув	Thr	Gly	-	Thr	Thr	Сүз
Gly		Gly	Суз	Ala	Сув	1600 Ala		Gly	Gly	Thr	-	Сув	Суз	Сув
Thr	1610 Gly		Gly	Ala	Суз	1615 Суз	Ala	Gly	Суз	Thr	1620 Суз	Thr	Thr	Thr
	1625	-	-		-	1630 Cys		-	-		1635			
	1640					1645 Суз					1650			
	1655					1660 Cys					1665			
-	1670	-			-	1675	-	-	-	-	1680	-		-
	1685					Thr 1690					1695			
Gly	Ala 1700	-	Gly	Gly	Сув	Cys 1705		Gly	Gly	Сүз	Cys 1710		Gly	Сув
Сүз	Ala 1715		СЛа	Ala	Gly	Cys 1720		Gly	Thr	Gly	Cys 1725	Gly	САа	Суз
Суз	Gly 1730	Ala	Gly	Gly	Gly	Cys 1735		Суз	Thr	Gly	Cys 1740		Gly	Gly
Gly	Gly 1745	Thr	Суз	Суз	Ala	Gly 1750		Gly	Суз	Суз	Cys 1755	Ala	Суз	Сүз
Cys	Ala 1760	Gly	Thr	Gly	Thr	Gly 1765		Сув	Ala	Ala	Cys 1770		Gly	Сув
Ala	Gly 1775	Суз	Суз	Ala	Gly	Thr 1780	Thr	Суз	Суз	Thr	Thr 1785	Сув	Gly	Gly
Gly		Суз	Суз	Ala	Gly	Gly	Ala	Gly	Thr	Gly		Gly	Thr	Gly

-continued

	1790					1795					1800			
Gly	Ala 1805	Gly	Gly	Ala	Ala	Thr 1810	Gly	Суз	Суз	Gly	Ala 1815	Gly	Thr	Ala
Сүв	Thr 1820	Gly	Суз	Ala	Gly	Gly 1825	Gly	Gly	Суз	Thr	Сув 1830	Суз	Суз	Суз
Ala	Gly 1835	Gly	Gly	Ala	Gly	Thr 1840	Ala	Thr	Gly	Thr	Gly 1845	Ala	Ala	Thr
Gly	Cys 1850	Суз	Ala	Gly	Gly	Cys 1855	Ala	Суз	Thr	Gly	Thr 1860	Thr	Thr	Gly
СЛа	Сув 1865	Gly	Thr	Gly	Суз	Cys 1870	Ala	Суз	Суз	Суз	Thr 1875	Gly	Ala	Gly
Thr	Gly 1880	Thr	Сүз	Ala	Gly	Cys 1885		Суз	Суз	Ala	Gly 1890	Ala	Ala	Thr
Gly	Gly 1895	Суз	Thr	Cys	Ala	Gly 1900	Thr	Gly	Ala	Суз	Суз 1905	Thr	Gly	Thr
Thr	Thr 1910	Thr	Gly	Gly	Ala	Cys 1915	Сүз	Gly	Gly	Ala	Gly 1920	Gly	Cys	Thr
Gly	Ala 1925	Сүз	Сүз	Ala	Gly	Thr 1930		Thr	Gly	Thr	Gly 1935	Gly	СЛа	Сүз
Thr	Gly 1940	Thr	Gly	Сув	Сув	Сув 1945	Ala	Сув	Thr	Ala	Thr 1950	Ala	Ala	Gly
Gly	Ala 1955	Сув	Сув	Сув	Thr	Сув 1960	Суз	Сув	Thr	Thr	Сув 1965	Thr	Gly	Сүз
Gly	Thr 1970	Gly	Gly	Сув	Сув	Сув 1975	Gly	Сув	Thr	Gly	Сув 1980	Сув	Сув	Сүз
Ala	Gly 1985	Суз	Gly	Gly	Thr	Gly 1990	Thr	Gly	Ala	Ala	Ala 1995	Суз	Суз	Thr
Gly	Ala 2000	Суз	Cys	Thr	Суз	Thr 2005		Суз	Thr	Ala	Суз 2010	Ala	Thr	Gly
СЛа	Сув 2015	Суз	Ala	Thr	Суз	Thr 2020	Gly	Gly	Ala	Ala	Gly 2025	Thr	Thr	Thr
Сүз	Сув 2030	Ala	Gly	Ala	Thr	Gly 2035	Ala	Gly	Gly	Ala	Gly 2040	Gly	Gly	Суз
Gly	Cys 2045	Ala	Thr	Gly	Суз	Сув 2050	Ala	Gly	Суз	Суз	Thr 2055	Thr	Gly	Суз
СЛа	Сув 2060	Сүз	Ala	Thr	Суз	Ala 2065		Сүз	Thr	Gly	Cys 2070	Ala	Сүз	Сүз
СЛа	Ala 2075	Сүз	Thr	Суз	Сув	Thr 2080	Gly	Thr	Gly	Thr	Gly 2085	Gly	Ala	Сүз
СЛа	Thr 2090	Gly	Gly	Ala	Thr	Gly 2095	Ala	Суз	Ala	Ala	Gly 2100	Gly	Gly	Сүз
Thr	Gly 2105	Суз	Суз	Суз	Суз	Gly 2110	Суз	Сув	Gly	Ala	Gly 2115	Сүз	Ala	Gly
Ala	Gly 2120	Ala	Gly	Суз	Суз	Ala 2125	Gly	Суз	Сув	Суз	Thr 2130	Сув	Thr	Gly
Ala	Сув 2135	Gly	Gly	Ala	Ala	Thr 2140	Thr	Суз	Суз	Thr	Thr 2145	Gly	Ala	Ala
Ala	Ala 2150	Thr	Gly	Gly	Thr	Gly 2155		Gly	Ala	Сүз	Ala 2160	Thr	Сүз	Сүз
Thr	Thr 2165	Ala	Thr	Суз	Ala	Gly 2170	Ala	Gly	Ala	Ala	Ala 2175	Ala	Суз	Ala

```
-continued
```

Gly Thr Thr Cys Thr Thr Cys Thr Gly Cys Thr Gly Gly Thr Gly 2185 2190 2180 Ala Cys Thr Cys Cys Ala Thr Thr Thr Cys Thr Gly Gly Cys Ala 2195 2200 2205 Gly Cys Ala Gly Cys Cys Thr Gly Gly Ala Gly Cys Cys Thr Thr 2210 2215 2220 Cys Ala Thr Cys Cys Cys Thr Ala Ala Cys Ala Gly Ala Ala Gly 2225 2230 Gly Cys Cys Ala Ala Gly Gly Gly Gly Cys Cys Thr Cys Cys 2240 2245 2250 Gly <210> SEQ ID NO 8 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 8 Thr Gly Ala Cys Thr Gly Thr Gly Ala Ala Cys Gly Thr Thr Cys Gly 1 5 10 15 Ala Gly Ala Thr Gly Ala 20

1. A non-naturally occurring particle comprising,

a lipid membrane;

a B7-1 or B7-2 molecule anchored to the lipid membrane on the exterior of the particle;

and

an antigen molecule anchored to the lipid membrane on the exterior of the particle.

2. The particle of claim 1 further comprising an adjuvant molecule anchored to the lipid membrane on the exterior of the particle wherein the adjuvant molecule and antigen molecule are not the same molecule.

3. The particle of claim **2**, wherein the adjuvant molecule is selected from molecules comprising IL-2, IL-12, ICAM1 GM-CSF, flagellin, unmethylated, CpG oligonucleotide, lipopolysaccharides, lipid A, and heat stable antigen (HSA).

4. The particle of claim **1**, wherein the lipid membrane is a phospholipid monolayer or phospholipid bilayer.

5. The particle of claim 1, wherein the particle is a cell, allogeneic or autologous cancer cell or its membrane fragments or vesicles, liposome, virosome, micelle, polymer, or virus like particle.

6. The particle of claim **1**, wherein the B7-1 molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.

7. The particle of claim 1, wherein the antigen molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phospholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.

8. The particle of claim **1**, wherein the adjuvant molecule is anchored to the lipid membrane on the exterior of the particle through a conjugated glycosyl-phosphatidylinositol, phos-

pholipid, glycolipid, triglyceride, saturated or unsaturated fatty acid, or other lipophilic molecule.

9. The particle of claim **1**, wherein antigen is a cancer marker molecule selected from HER-2, MUC-1, mucin antigens TF, Tn, STn, glycolipid globo H antigen, prostatic acid phosphatase (PAP), prostate-specific antigen, prostate-specific membrane antigen, early prostate cancer antigen-2 (EPCA-2), bcl-2, G-protein coupled estrogen receptor 1, CA15-3, CA19-9, CA 72-4, CA-125, carcinoembryonic antigen, CD20, CD31, CD34, PTPRC (CD45), CD99, CD117, melanoma-associated antigen (TA-90), peripheral myelin protein 22 (PMP22), epithelial membrane proteins (EMP-1, -2, and -3), HMB-45 antigen, MART-1 (Melan-A), S100A1, and S100B.

10. The particle of claim **1**, wherein the antigen is contained in the interior of the particle.

11. The particle of claim **1**, wherein the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

12. The particle of claim 1, wherein the antigen is HER-2 and the adjuvant is flagellin or GM-CSF.

13. The particle of claim **1**, wherein the antigen is HER-2 and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

14. The particle of claim 1, wherein the antigen is HER-2, the adjuvant is flagellin or GM-CSF, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

15. The particle of claim 1, wherein the antigen is HER-2 and the adjuvant is IL-12.

16. The particle of claim **1**, wherein the antigen is HER-2, the adjuvant is IL-12, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

17. The particle of claim **1**, wherein the antigen is PSA or PAP and the adjuvant is flagellin or GM-CSF.

18. The particle of claim **1**, wherein the antigen is PSA or PAP and the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

19. The particle of claim **1**, wherein the antigen is PSA or PAP, the adjuvant is flagellin, the B7-1 molecule is a B7-1 and heat stable antigen (HSA) hybrid chimera.

20. The particle of claim **1**, wherein the antigen is PSA or PAP and the adjuvant is IL-12.

21-50. (canceled)

* * * * *