(51) International Patent Classification
C12N 15/86, 5/10, A61K 48/00

(21) International Application Number: PCT/US99/20718

(22) International Filing Date: 10 September 1999 (10.09.99)

(30) Priority Data:
60/099,791 10 September 1998 (10.09.98) US
Not furnished 9 September 1999 (09.09.99) US

(71) Applicant (for all designated States except US): CALYDON INC, [US/US]; 1324 Chesapeake Terrace, Sunnyvale, CA 94089 (US).

(54) Title: ADENOVIRUS VECTORS CONTAINING CELL STATUS–SPECIFIC RESPONSE ELEMENTS AND METHODS OF USE THEREOF

Published
With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(57) Abstract

The present invention provides adenoviral vectors comprising cell status-specific transcriptional regulatory elements which confer cell status-specific transcriptional regulation on an adenoviral gene. A "cell status" is generally a reversible physiological and/or environmental state. The invention further provides compositions and host cells comprising the vectors, as well as methods of using the vectors.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
<td>Ug</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADENOVIRUS VECTORS CONTAINING CELL STATUS-SPECIFIC RESPONSE ELEMENTS AND METHODS OF USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. Provisional Patent Application No.60/099,791, filed September 10, 1998. The priority application is hereby incorporated herein by reference in its entirety.

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH
(Not Applicable)

TECHNICAL FIELD

This invention relates to cell transfection using adenoviral vectors. More specifically, it relates to cell status-specific replication of adenovirus vectors in cells, regardless of tissue or cell type.

BACKGROUND ART

In spite of numerous advances in medical research, cancer remains the second leading cause of death in the United States. In the industrialized nations, roughly one in five persons will die of cancer. Traditional modes of clinical care, such as surgical resection, radiotherapy and chemotherapy, have a significant failure rate, especially for solid tumors. Neoplasia resulting in benign tumors can usually be completely cured by removing the mass surgically. If a tumor becomes malignant, as manifested by invasion of surrounding tissue, it becomes much more difficult to eradicate. Once a malignant tumor metastasizes, it is much less likely to be eradicated.

Excluding basal cell carcinoma, there are over one million new cases of cancer per year in the United States alone, and cancer accounts for over one half million deaths per year in this
country. In the world as a whole, the five most common cancers are those of lung, stomach, breast, colon/rectum, and uterine cervix, and the total number of new cases per year is over 6 million.

Lung cancer is one of the most refractory of solid tumors because inoperable cases are up to 60% and the 5-year survival is only 13%. In particular, adenocarcinomas, which comprise about one-half of the total lung cancer cases, are mostly chemo-radioreistant. Colorectal cancer is the third most common cancer and the second leading cause of cancer deaths. Pancreatic cancer is virtually always fatal. Thus, current treatment prospects for many patients with these carcinomas are unsatisfactory, and the prognosis is poor.

Hepatocellular carcinoma (HCC or malignant hepatoma) is one of the most common cancers in the world, and is especially problematic in Asia. Treatment prospects for patients with hepatocellular carcinoma are dim. Even with improvements in therapy and availability of liver transplant, only a minority of patients are cured by removal of the tumor either by resection or transplantation. For the majority of patients, the current treatments remain unsatisfactory, and the prognosis is poor.

Breast cancer is one of the most common cancers in the United States, with an annual incidence of about 182,000 new cases and nearly 50,000 deaths. In the industrial nations, approximately one in eight women can expect to develop breast cancer. The mortality rate for breast cancer has remained unchanged since 1930. It has increased an average of 0.2% per year, but decreased in women under 65 years of age by an average of 0.3% per year. See e.g., Marchant (1994) Contemporary Management of Breast Disease II: Breast Cancer, in: Obstetrics and Gynecology Clinics of North America 21:555–560; and Colditz (1993) Cancer Suppl. 71:1480–1489.

Despite ongoing improvement in the understanding of the disease, breast cancer has remained resistant to medical intervention. Most clinical initiatives are focused on early diagnosis, followed by conventional forms of intervention, particularly surgery and chemotherapy. Such interventions are of limited success, particularly in patients where the tumor has undergone metastasis. There is a pressing need to improve the arsenal of therapies available to provide more precise and more effective treatment in a less invasive way.
Prostate cancer is the fastest growing neoplasm in men with an estimated 244,000 new cases in the United States being diagnosed in 1995, of which approximately 44,000 deaths will result. Prostate cancer is now the most frequently diagnosed cancer in men. Prostate cancer is latent; many men carry prostate cancer cells without overt signs of disease. It is associated with a high morbidity. Cancer metastasis to bone (late stage) is common and is almost always fatal.

Current treatments include radical prostatectomy, radiation therapy, hormonal ablation and chemotherapy. Unfortunately, in approximately 80% of cases, diagnosis of prostate cancer is established when the disease has already metastasized to the bones, thus limiting the effectiveness of surgical treatments. Hormonal therapy frequently fails with time with the development of hormone-resistant tumor cells. Although chemotherapeutic agents have been used in the treatment of prostate cancer, no single agent has demonstrated superiority over its counterparts, and no drug combination seems particularly effective. The generally drug-resistant, slow-growing nature of most prostate cancers makes them particularly unresponsive to standard chemotherapy.

A major, indeed the overwhelming, obstacle to cancer therapy is the problem of selectivity; that is, the ability to inhibit the multiplication of tumor cells, while leaving unaffected the function of normal cells. For example, in prostate cancer therapy, the therapeutic ratio, or ratio of tumor cell killing to normal cell killing of traditional tumor chemotherapy, is only 1.5:1. Thus, more effective treatment methods and pharmaceutical compositions for therapy and prophylaxis of neoplasia are needed.

Solid tumors frequently contain regions that are poorly vascularized, partly because the tumor cells grow faster than the endothelial cells that make up the blood vessels. Tumor cells can remain viable in such hypoxic conditions and are often refractory to chemotherapy and radiation therapy. In a recent study of cervical cancer, the oxygen status of a tumor was shown to be the single most important prognostic factor, ahead of age of patient, menopausal status, clinical stage, size and histology. Hoeckel et al. (1996) Semin. Radiat. Oncol. 6:1-8.

Of particular interest is development of more specific, targeted forms of cancer therapy, especially for cancers that are difficult to treat successfully. In contrast to conventional cancer therapies, which result in relatively non-specific and often serious toxicity, more specific
treatment modalities attempt to inhibit or kill malignant cells selectively while leaving healthy cells intact. Radioresistant and chemoresistant tumors present particular challenges, and there is a need for methods of treating these types of tumors.

One possible treatment approach for many of these cancers is gene therapy, whereby a gene of interest is introduced into the malignant cell. Various viral vectors, including adenoviral vectors, have been developed as vehicles for gene therapy. The virtually exclusive focus in development of adenoviral vectors for gene therapy is use of adenovirus merely as a vehicle for introducing the gene of interest, not as an effector in itself. Replication of adenovirus has been viewed as an undesirable result, largely due to the host immune response.

In the treatment of cancer by replication-defective adenoviruses, the host immune response limits the duration of repeat doses at two levels. First, the capsid proteins of the adenovirus delivery vehicle itself are immunogenic. Second, viral late genes are frequently expressed in transduced cells, eliciting cellular immunity. Thus, the ability to repeatedly administer cytokines, tumor suppressor genes, ribozymes, suicide genes, or genes which convert prodrug to an active drug has been limited by the immunogenicity of both the gene transfer vehicle and the viral gene products of the transfer vehicle as well as the transient nature of gene expression.

Use of adenoviral vectors as therapeutic vehicles for cancer has been reported. Some of these approaches utilize tissue (i.e., cell type) specific transcriptional regulatory elements to selectively drive adenoviral replication (and thus cytotoxicity). U.S. Pat. No. 5,698,443; see also WO 95/11984; WO 96/17053; WO 96/34969; WO 98/35028. While useful and promising, there remain other treatment contexts for which tissue specific replication may be insufficient.

Besides cancerous cells, it is often desirable to selectively destroy certain unwanted cells or tissues. Besides surgery, however, which is invasive, there is a dearth of methods available, particularly non-invasive methods, which would allow such selective cytotoxicity and/or suppression.

There is a need for vector constructs that are capable of eliminating essentially all cancerous cells in a minimum number of administrations before specific immunological response against the vector prevents further treatment and which are suitable for use in
specific, focused cancer ablation treatments. There is also a need for an ability to selectively
destroy, or impair, unwanted cells, regardless of cell type and/or regardless of anatomical
location.

5

SUMMARY OF THE INVENTION

Replication-competent adenoviral vectors specific for cells in a given, or particular,
physiological state that permits or induces expression of polynucleotides under transcriptional
control of a cell status-specific TRE, and methods for their use are provided. In these
replication-competent adenovirus vectors, one or more adenoviral genes is under
transcriptional control of an cell status-specific transcriptional regulatory element (TRE).
Preferably, the adenoviral gene under transcriptional control of a cell status-specific TRE is
one that is essential for adenoviral propagation. A transgene under control of the cell status-
specific TRE may also be present. For the adenoviral vectors of the present invention, a cell
status-specific TRE is active in a cell existing in a particular, reversible, physiological state,
which may be an aberrant physiological state, i.e., a physiological state that deviates from the
typical, or normal, physiological state of that same cell when in a non-dividing or regulated
dividing state under normal, physiological conditions.

Accordingly, in one aspect, the invention provides an adenovirus vector comprising an
adenovirus gene, wherein said adenovirus gene is under transcriptional control of a cell status-
specific TRE. In another embodiment, a cell status-specific TRE is human. In another
embodiment, a cell status-specific TRE comprises a cell status-specific promoter and enhancer.
In yet another embodiment, a cell status-specific TRE is juxtaposed with a cell type-specific
TRE, and together the two elements control expression of an adenovirus gene. Thus, the
invention provides adenovirus vectors comprising a TRE comprising a cell status-specific TRE
and a cell type-specific TRE.

In some embodiments, the adenovirus gene under transcriptional control of a cell
status-specific TRE is an adenovirus gene essential for replication. In some embodiments, the
adenoviral gene essential for replication is an early gene. In another embodiment, the early gene is E1A. In another embodiment, the early gene is E1B. In yet another embodiment, both E1A and E1B are under transcriptional control of a cell status-specific TRE. In other embodiments, the adenovirus gene essential for replication is a late gene.

In another embodiment, the cell status-specific TRE comprises a hypoxia responsive element. In another embodiment, the cell status-specific TRE comprises the nucleotide sequence of SEQ ID NO:1.

In another embodiment, the cell status-specific TRE comprises a cell cycle-specific TRE. The cell cycle-specific TRE can be derived from the E2F1 5’ flanking region. In one embodiment, the cell cycle-specific TRE comprises the nucleotide sequence depicted in SEQ ID NO:2.

In other embodiments, the adenovirus vector can further comprise a transgene, wherein said transgene is under transcriptional control of an cell status-specific TRE. In some embodiments, the transgene is a cytotoxic gene.

In other embodiments, the adenoviral vector comprises an adenoviral gene essential for adenoviral replication under control of a first cell status-specific TRE, and a second adenoviral gene essential for adenoviral replication under control of a second cell status-specific TRE. The first and the second cell status-specific TREs can be identical, substantially identical, or different from, one another.

In other embodiments, the adenoviral vector comprises an adenoviral gene essential for adenoviral replication under control of a first cell status-specific TRE, and a transgene under control of a second cell status-specific TRE. The first and the second cell status-specific TREs can be substantially identical to, or different from, one another.

In other embodiments, the adenovirus vector comprises an adenovirus gene under transcriptional control of a cell status-specific TRE, and a second adenovirus gene under transcriptional control of a cell type-specific TRE. In other embodiments, the adenovirus vector comprises an adenovirus gene under transcriptional control of a cell status-specific TRE, and a transgene under transcriptional control of a cell type-specific TRE.

In another aspect, the invention provides a host cell comprising the adenovirus vector(s) described herein.
In another aspect, the invention provides pharmaceutical compositions comprising an adenovirus vector(s) described herein.

In another aspect, the invention provides kits which contain an adenoviral vector(s) described herein.

In another aspect, methods are provided for conferring selective cytotoxicity in target cells (i.e., cells which permit or induce a cell status-specific TRE to function), comprising contacting the cells with an adenovirus vector(s) described herein, whereby the vector enters the cell.

Another embodiment of the invention is an adenovirus which replicates preferentially in mammalian cells whose cell status permits or induces the function of a cell status-specific TRE.

In another aspect, methods are provided for propagating an adenovirus specific for mammalian cells whose cell status permits the function of a cell status-specific TRE, said method comprising combining an adenovirus vector(s) described herein with mammalian cells whose cell status permits the function of a cell status-specific TRE, whereby said adenovirus is propagated.

The invention further provides methods of suppressing tumor cell growth, more particularly a target tumor cell (i.e., a tumor cell that permits or induces a cell status-specific TRE to function), comprising contacting a tumor cell with an adenoviral vector of the invention such that the adenoviral vector enters the tumor cell and exhibits selective cytotoxicity for the tumor cell.

In another aspect, methods are provided for detecting cells whose cell status permits the function of a cell status-specific TRE in a biological sample, comprising contacting cells of a biological sample with an adenovirus vector(s) described herein, and detecting replication of the adenovirus vector, if any.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of adenovirus vector CN796, in which the E1A gene is under transcriptional control of an HRE and a PSA-TRE, as described in Example 1.
Figure 2 shows the nucleotide sequence of an HRE from the 5’ flanking region of a rat enolase-1 gene (SEQ ID NO:1).

Figure 3 shows the nucleotide sequence of the 5’ flanking region of a human E2F1 gene (SEQ ID NO:2). The asterisk indicates the transcription start site.

Figure 4 depicts a nucleotide sequence of a prostate-specific antigen TRE.
Figure 5 depicts a nucleotide sequence of a carcinoembryonic antigen TRE.
Figure 6 depicts a nucleotide sequence of a human glandular kallikrein TRE.
Figure 7 depicts a nucleotide sequence of a mucin TRE.
Figure 8 depicts a nucleotide sequence of a rat probasin TRE.

Figure 9 depicts a nucleotide sequence and translated amino acid sequence of an adenovirus death protein.

MODES FOR CARRYING OUT THE INVENTION

We have discovered and constructed replication-competent adenovirus vectors which contain an adenoviral gene under transcriptional control of a cell status-specific transcriptional response element (TRE) such that the adenovirus gene is transcribed preferentially in cells whose cell status permit the function of the cell status-specific TRE, and have developed methods using these adenovirus vectors. In some preferred embodiments, the adenovirus vectors of this invention comprise at least one adenovirus gene necessary for adenoviral replication, preferably at least one early gene, under the transcriptional control of a TRE specifically regulated by binding of transcriptional factor(s) and/or co-factor(s) necessary for transcription regulated by the cell status-specific TRE. By providing for cell status-specific transcription of at least one adenovirus gene required for replication, the invention provides adenovirus vectors that can be used for specific cytotoxic effects due to selective replication and/or selective transcription. This is especially useful in the cancer context, in which targeted cell killing is desirable. This is also useful for targeted cytotoxic effects in other, non-tumor cells, when selective destruction and/or suppression of these cells is desirable. The vectors can also be useful for detecting the presence of cells whose cell status permits function of a cell status-specific TRE in, for example, an appropriate biological (such as clinical) sample.
Further, the adenovirus vector(s) can optionally selectively produce one or more proteins of interest in a target cell by using a cell status-specific TRE.

We have found that adenovirus vectors of the invention replicate and/or express an adenoviral gene operably linked to a cell status-specific TRE preferentially in cells whose status permits the function of a cell status-specific TRE. In contrast to previously-described adenoviral vectors designed to replicate preferentially in specific, differentiated cell types, the adenovirus vectors of the present invention comprise regulatory elements that are not cell type-specific. Rather, they confer cell status-specific adenoviral replication and/or cell status-specific expression of an operably linked adenoviral gene and/or transgene.

The adenovirus vectors of the present invention comprise a cell status-specific TRE which is functional in a cell which exhibits a particular physiological (i.e., environmental or metabolic) characteristic which is reversible and/or progressive. The target cell may exhibit an aberrant physiological state, such as low oxygen tension, or may be subjected to an aberrant environmental condition, such as heat or ionizing radiation, in order for the cell-status TRE to function. The replication preference of these vectors is indicated by comparing the level of replication (i.e., titer) in cells in a requisite physiological state or condition (for example, an aberrant physiological state) to the level of replication in cells not exhibiting the requisite physiological state (for example, under normal physiological conditions). Thus, the invention also uses and takes advantage of what has been considered an undesirable aspect of adenoviral vectors, namely, their replication and possibly concomitant immunogenicity. The probability of runaway infection is significantly reduced due to the cell status-specific requirements for viral replication. Without wishing to be bound by any particular theory, the inventors note that production of adenovirus proteins can serve to activate and/or stimulate the immune system, generally and/or specifically toward target cells producing adenoviral proteins, which can be an important consideration in the cancer context, where patients are often moderately to severely immunocompromised.

The adenovirus vectors of the present invention find particular utility in specific treatment regimens, in which the treatment is highly focused toward, for example, a particular cancer which might otherwise be inoperable or untreatable. An important feature of the
invention is that the vectors are useful in these treatments regardless of the tissue or cell type of the cancer, and yet their cytotoxicity can be targeted to certain locations.

General Techniques

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, second edition (Sanbrook et al., 1989); “Oligonucleotide Synthesis” (M.J. Gait, ed., 1984); “Animal Cell Culture” (R.I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology” (D.M. Wei & C.C. Blackwell, eds.); “Gene Transfer Vectors for Mammalian Cells” (J.M. Miller & M.P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F.M. Ausubel et al., eds., 1987); “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994); “Current Protocols in Immunology” (J.E. Coligan et al., eds., 1991).

Definitions

As used herein, a “transcription response element” or “transcriptional regulatory element”, or “TRE” is a polynucleotide sequence, preferably a DNA sequence, which increases transcription of an operably linked polynucleotide sequence in a host cell that allows that TRE to function. A TRE can comprise an enhancer and/or a promoter.

As used herein, the term “cell status-specific TRE” is one that confers transcriptional activation on an operably linked polynucleotide in a cell which allows a cell status-specific TRE to function, i.e., a cell which exhibits a particular physiological condition, including, but not limited to, an aberrant physiological state. “Cell status” thus refers to a given, or particular, physiological state (or condition) of a cell, which is reversible and/or progressive. The physiological state may be generated internally or externally; for example, it may be a
metabolic state (such as low oxygen), or it may be generated due to heat or ionizing radiation. “Cell status” is distinct from a “cell type”, which relates to a differentiation state of a cell, which under normal conditions is irreversible. Generally (but not necessarily), as discussed herein, a cell status is embodied in an aberrant physiological state, examples of which are given below.

A “normal cell status” or “normal physiological state” is the status of a cell which exists in normal physiological conditions and which is non-dividing or divides in a regulated manner, i.e., a cell in a normal physiological state.

The terms “aberrant cell status” and “aberrant physiological state”, used interchangeably herein, intend a condition of a cell which is a response to, a result of, or is influenced by, an aberrant physiological condition. An aberrant cell status is neither cell type-specific nor tissue type-specific. An aberrant cell status is defined in relation to a cell of the same type which is in a non-dividing/regulated dividing state and under normal physiological conditions.

“Normal physiological conditions” are known to those skilled in the art. These conditions may vary, depending on a cell’s location in the body. For example, oxygen tension can vary from tissue to tissue. For in vitro analyses for the purposes of determining whether a TRE is responsive to deviations from normal physiological conditions, these conditions generally include an oxygen concentration of about 20% O₂, and a temperature of about 37°C.

“Regulated cell division” is a term well understood in the art and refers to the normal mitotic activity of a cell. Those skilled in the art understand that normal mitotic activity varies from cell type to cell type. For example, many terminally differentiated cells in tissues exhibit little or no mitotic activity, while hematopoietic cells are generally mitotically active.

An “aberrant physiological condition” or “aberrant physiological state”, as used herein, intends a condition which deviates from normal physiological conditions, and includes, but is not limited to, a physiological condition that is characterized by alterations in oxygen concentration, such as hypoxic conditions; temperatures which deviate from physiological temperatures; a condition that triggers apoptosis; radiation, including ionizing radiation and UV irradiation; de-regulated cell division, resulting for example, from a lack of, or insufficient amounts of, or inactivity of, a factor which controls cell division, such as, for example,
retinoblastoma protein (Rb); variations in timing of cell cycle; infection with a pathogen; exposure to a chemical substance; or a combination of the above-listed conditions. Another example is a mutation that could, or does, exist in any cell type, i.e., its existence does not depend on, or is not related to, the differentiation state of the cell.

A “target cell”, as used herein, is one that permits or induces the function of a cell status-specific TRE such that it effects transcriptional activation of an operably linked polynucleotide. A target cell is one which exhibits a requisite physiological (or environmental) state, which may be an aberrant physiological state. Preferably, a target cell is a mammalian cell, preferably a human cell. A target cell may or may not be neoplastic. By transcriptional activation, it is intended that transcription is increased in the target cell above the levels in a control cell (e.g., a that cell when not exhibiting a requisite physiological state (generally a normal physiological state) by at least about 2 fold, preferably at least about 5 fold, preferably at least about 10 fold, more preferably at least about 20 fold, more preferably at least about 50 fold, more preferably at least about 100 fold, more preferably at least about 200 fold, even more preferably at least about 400 fold to about 500 fold, even more preferably at least about 1000 fold. The normal levels are generally the level of activity (if any) in a cell as tested under conditions that activate the cell status-specific TRE, or the level of activity (if any) of a reporter construct lacking a cell status-specific TRE as measured in a cell exhibiting the requisite physiological condition.

A “functionally-preserved” variant of a cell status-specific TRE is a cell status-specific TRE which differs from another cell status-specific TRE, but still retains cell status-specific transcription activity. The difference in an cell status-specific TRE can be due to differences in linear sequence, arising from, for example, single base mutation(s), addition(s), deletion(s), and/or modification(s) of the bases. The difference can also arise from changes in the sugar(s), and/or linkage(s) between the bases of a cell status-specific TRE.

An “adenovirus vector” or “adenoviral vector” (used interchangeably) comprises a polynucleotide construct of the invention. A polynucleotide construct of this invention may be in any of several forms, including, but not limited to, DNA, DNA encapsulated in an adenovirus coat, DNA packaged in another viral or viral-like form (such as herpes simplex, and AAV), DNA encapsulated in liposomes, DNA complexed with polylysine, complexed
with synthetic polycationic molecules, conjugated with transferrin, and complexed with compounds such as PEG to immunologically "mask" the molecule and/or increase half-life, and conjugated to a nonviral protein. Preferably, the polynucleotide is DNA. As used herein, "DNA" includes not only bases A, T, C, and G, but also includes any of their analogs or modified forms of these bases, such as methylated nucleotides, internucleotide modifications such as uncharged linkages and thioates, use of sugar analogs, and modified and/or alternative backbone structures, such as polyamides. For purposes of this invention, adenovirus vectors are replication-competent in a target cell.

The terms "polynucleotide" and "nucleic acid", used interchangeably herein, refer to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. These terms include a single-, double- or triple-stranded DNA, genomic DNA, cDNA, RNA, DNA-RNA hybrid, or a polymer comprising purine and pyrimidine bases, or other natural, chemically, biochemically modified, non-natural or derivatized nucleotide bases. The backbone of the polynucleotide can comprise sugars and phosphate groups (as may typically be found in RNA or DNA), or modified or substituted sugar or phosphate groups.

Alternatively, the backbone of the polynucleotide can comprise a polymer of synthetic subunits such as phosphoramidates and thus can be a oligodeoxynucleoside phosphoramidate (P-NH2) or a mixed phosphoramidate-phosphodiester oligomer. Peyrottes et al. (1996) Nucleic Acids Res. 24: 1841-8; Chaturvedi et al. (1996) Nucleic Acids Res. 24: 2318-23; Schultz et al. (1996) Nucleic Acids Res. 24: 2966-73. A phosphorothiate linkage can be used in place of a phosphodiester linkage. Braun et al. (1988) J. Immunol. 141: 2084-9; Latimer et al. (1995) Mol. Immunol. 32: 1057-1064. In addition, a double-stranded polynucleotide can be obtained from the single stranded polynucleotide product of chemical synthesis either by synthesizing the complementary strand and annealing the strands under appropriate conditions, or by synthesizing the complementary strand de novo using a DNA polymerase with an appropriate primer.

The following are non-limiting examples of polynucleotides: a gene or gene fragment, exons, introns, mRNA, tRNA, rRNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise modified
nucleotides, such as methylated nucleotides and nucleotide analogs, uracil, other sugars and linking groups such as fluororibose and thioate, and nucleotide branches. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.

Other types of modifications included in this definition are caps, substitution of one or more of the naturally occurring nucleotides with an analog, and introduction of means for attaching the polynucleotide to proteins, metal ions, labeling components, other polynucleotides, or a solid support. Preferably, the polynucleotide is DNA. As used herein, “DNA” includes not only bases A, T, C, and G, but also includes any of their analogs or modified forms of these bases, such as methylated nucleotides, internucleotide modifications such as uncharged linkages and thioates, use of sugar analogs, and modified and/or alternative backbone structures, such as polyamides.

A polynucleotide or polynucleotide region has a certain percentage (for example, 80%, 85%, 90%, or 95%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in *Current Protocols in Molecular Biology* (F.M. Ausubel et al., eds., 1987) Supplement 30, section 7.7.18, Table 7.7.1. A preferred alignment program is ALIGN Plus (Scientific and Educational Software, Pennsylvania), preferably using default parameters.

“Under transcriptional control” is a term well-understood in the art and indicates that transcription of a polynucleotide sequence, usually a DNA sequence, depends on its being operably (operatively) linked to an element which contributes to the initiation of, or promotes, transcription. “Operably linked” refers to a juxtaposition wherein the elements are in an arrangement allowing them to function.

“Replication” and “propagation” are used interchangeably and refer to the ability of a polynucleotide construct of the invention to reproduce, or proliferate. This term is well understood in the art. For purposes of this invention, replication involves production of adenovirus proteins and is generally directed to reproduction of adenovirus. Replication can
be measured using assays standard in the art and described herein, such as a burst assay, plaque assay, or a one-step growth curve assay.

As used herein, "cytotoxicity" is a term well understood in the art and refers to a state in which a cell's usual biochemical or biological activities are compromised (i.e., inhibited). These activities include, but are not limited to, metabolism; cellular replication; DNA replication; transcription; translation; uptake of molecules. "Cytotoxicity" includes cell death and/or cytolysis. Assays are known in the art which indicate cytotoxicity, such as dye exclusion, \(^{3}\text{H}\)-thymidine uptake, and plaque assays.

The term "selective cytotoxicity", as used herein, refers to the cytotoxicity conferred by an adenovirus vector of the present invention on a cell which allows or induces a cell status-specific TRE to function (a target cell) when compared to the cytotoxicity conferred by an adenoviral vector of the present invention on a cell which does not allow a cell status-specific TRE to function (a non-target cell). Such cytotoxicity may be measured, for example, by plaque assays, by reduction or stablization in size of a tumor comprising target cells, or the reduction or stabilization of serum levels of a marker characteristic of the tumor cells, or a tissue-specific marker, e.g., a cancer marker, such as prostate specific antigen.

In the context of adenovirus, a "heterologous polynucleotide" or "heterologous gene" or "transgene" is any polynucleotide or gene that is not present in wild-type adenovirus. Preferably, the transgene will also not be expressed or present in the target cell prior to introduction by the adenovirus vector. Examples of preferred transgenes are provided below.

In the context of adenovirus, a "heterologous" promoter or enhancer is one which is not associated with or derived from an adenovirus gene.

In the context of adenovirus, an "endogenous" promoter, enhancer, or TRE is native to or derived from adenovirus.

In the context of a cell status-specific TRE, a "heterologous" promoter or enhancer is one which is not normally associated in a cell with or derived from a cell status-specific TRE. Examples of a heterologous promoter or enhancer are the albumin promoter or enhancer and other viral promoters and enhancers, such as SV40, or cell type-specific TREs such as a prostate-specific TRE.
A "cell type-specific TRE" is preferentially functional in a specific type of cell relative to other types of cells. In contrast to cell status, "cell type" is a reflection of a differentiation state of a cell which is irreversible. For example, a prostate-specific antigen is expressed in prostate cells, but is not substantially expressed in other cell types such as hepatocytes, astrocytes, cardiocytes, lymphocytes, etc. Generally, a cell type-specific TRE is active in only one cell type. When a cell type-specific TRE is active in more than one cell type, its activity is restricted to a limited number of cell types, i.e., it is not active in all cell types. A cell type-specific TRE may or may not be tumor cell specific.

"Suppressing" tumor growth indicates a growth state that is curtailed when compared to growth without contact with, i.e., transfection by, an adenoviral vector described herein. Tumor cell growth can be assessed by any means known in the art, including, but not limited to, measuring tumor size, determining whether tumor cells are proliferating using a ^{3}H-thymidine incorporation assay, or counting tumor cells. "Suppressing" tumor cell growth means any or all of the following states: slowing, delaying, and stopping tumor growth, as well as tumor shrinkage.

As used herein, the terms "neoplastic cells", "neoplasia", "tumor", "tumor cells", "cancer" and "cancer cells", (used interchangeably) refer to cells which exhibit relatively autonomous growth, so that they exhibit an aberrant growth phenotype characterized by a significant loss of control of cell proliferation (i.e., de-regulated cell division). Neoplastic cells can be malignant or benign.

A "host cell" includes an individual cell or cell culture which can be or has been a recipient of an adenoviral vector(s) of this invention. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. A host cell includes cells transfected or infected in vivo or in vitro with an adenoviral vector of this invention.

"Replication" and "propagation" are used interchangeably and refer to the ability of an adenovirus vector of the invention to reproduce or proliferate. These terms are well understood in the art. For purposes of this invention, replication involves production of adenovirus proteins and is generally directed to reproduction of adenovirus. Replication can
be measured using assays standard in the art and described herein, such as a burst assay or plaque assay. “Replication” and “propagation” include any activity directly or indirectly involved in the process of virus manufacture, including, but not limited to, viral gene expression; production of viral proteins, nucleic acids or other components; packaging of viral components into complete viruses; and cell lysis.

An “ADP coding sequence” is a polynucleotide that encodes ADP or a functional fragment thereof. In the context of ADP, a “functional fragment” of ADP is one that exhibits cytotoxic activity, especially cell lysis, with respect to adenoviral replication. Ways to measure cytotoxic activity are known in the art and are described herein.

A polynucleotide that “encodes” an ADP polypeptide is one that can be transcribed and/or translated to produce an ADP polypeptide or a fragment thereof. The anti-sense strand of such a polynucleotide is also said to encode the sequence.

An “ADP polypeptide” is a polypeptide containing at least a portion, or region, of the amino acid sequence of an ADP (see, for example, SEQ ID NO:5), and which displays a function associated with ADP, particularly cytotoxicity, more particularly, cell lysis. As discussed herein, these functions can be measured using techniques known in the art. It is understood that certain sequence variations may be used, due to, for example, conservative amino acid substitutions, which may provide ADP polypeptides.

A polynucleotide sequence that is “depicted in” a SEQ ID NO means that the sequence is present as an identical contiguous sequence in the SEQ ID NO. The term encompasses portions, or regions of the SEQ ID NO as well as the entire sequence contained within the SEQ ID NO.

A “biological sample” encompasses a variety of sample types obtained from an individual and can be used in a diagnostic or monitoring assay. The definition encompasses blood and other liquid samples of biological origin, solid tissue samples such as a biopsy specimen or tissue cultures or cells derived therefrom, and the progeny thereof. The definition also includes samples that have been manipulated in any way after their procurement, such as by treatment with reagents, solubilization, or enrichment for certain components, such as proteins or polynucleotides. The term “biological sample” encompasses a clinical sample, and
also includes cells in culture, cell supernatants, cell lysates, serum, plasma, biological fluid, and tissue samples.

An "individual" is a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, farm animals, sport animals, rodents, primates, and pets.

An "effective amount" is an amount sufficient to effect beneficial or desired results, which may include clinical results. An effective amount can be administered in one or more administrations. For purposes of this invention, an effective amount of an adenoviral vector is an amount that is sufficient to palliate, ameliorate, stabilize, reverse, slow or delay the progression of the disease state.

Adenoviral vectors comprising a cell status-specific TRE

The present invention provides adenoviral vector constructs which comprise an adenovirus gene under transcriptional control of a cell status-specific TRE. Preferably, the adenovirus gene contributes to cytotoxicity (whether direct and/or indirect), more preferably one that contributes to or causes cell death, even more preferably is essential for adenoviral replication. Examples of a gene that contributes to cytotoxicity include, but are not limited to, adenovirus death protein (ADP; discussed below). When the adenovirus vector(s) is selectively (i.e., preferentially) replication competent for propagation in target cells, i.e., cells which permit or induce a cell-status TRE to function, these cells will be preferentially killed upon adenoviral proliferation. Once the target cells are destroyed due to selective cytotoxic and/or cytolysis replication, the adenovirus vector replication is significantly reduced, thus lessening the probability of runaway infection and undesirable bystander effects. In vitro cultures may be retained to monitor the mixture (such as, for example, a biopsy or other appropriate biological sample) for occurrence (i.e., presence) and/or recurrence of the target cell, e.g., a neoplastic cell or other undesired cell. To further ensure cytotoxicity, one or more transgenes having a cytotoxic effect may also be present and under selective transcriptional control. In this embodiment, one may provide higher confidence that the target cells will be destroyed. Additionally, or alternatively, an adenovirus gene that contributes to cytotoxicity
and/or cell death (such as ADP) may be included in the adenoviral vector, either free of, or under, selective transcriptional control.

Cell status-specific TREs for use in the adenoviral vectors of the present invention can be derived from any species, preferably a mammal. A number of genes have been described which are expressed in response to, or in association with, a cell status. Any of these cell status-associated genes may be used to generate a cell status-specific TRE.

An example of a cell status is cell cycle. An exemplary gene whose expression is associated with cell cycle is E2F-1, a ubiquitously expressed, growth-regulated gene, which exhibits peak transcriptional activity in S phase. Johnson et al. (1994) Genes Dev. 8:1514-1525. The RB protein, as well as other members of the RB family, form specific complexes with E2F-1, thereby inhibiting its ability to activate transcription. Thus, E2F-1-responsive promoters are down-regulated by RB. Many tumor cells have disrupted RB function, which can lead to de-repression of E2F-1-responsive promoters, and, in turn, de-regulated cell division.

Accordingly, in one embodiment, the invention provides an adenoviral vector in which an adenoviral gene (preferably a gene necessary for replication) is under transcriptional control of a cell status-specific TRE, wherein the cell status-specific TRE comprises a cell cycle-activated, or cell-cycle specific, TRE. In one embodiment, the cell cycle-activated TRE is an E2F1 TRE. In one embodiment, this TRE comprises the sequence depicted in Figure 3 and SEQ ID NO:2.

Another group of genes which are regulated by cell status are those whose expression is increased in response to hypoxic conditions. Bunn and Poyton (1996) Physiol. Rev. 76:839-885; Dachs and Stratford (1996) Br. J. Cancer 74:5126-5132; Guillemin and Krasnow (1997) Cell 89:9-12. Many tumors have insufficient blood supply, due in part to the fact that tumor cells typically grow faster than the endothelial cells that make up the blood vessels, resulting in areas of hypoxia in the tumor. Folkman (1989) J. Natl. Cancer Inst. 82:4-6; and Kallinowski (1996) The Cancer J. 9:37-40. An important mediator of hypoxic responses is the transcriptional complex HIF-1, or hypoxia inducible factor-1, which interacts with a hypoxia-responsive element (HRE) in the regulatory regions of several genes, including vascular endothelial growth factor, and several genes encoding glycolytic enzymes, including enolase-
1. Murine HRE sequences have been identified and characterized. Firth et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:6496-6500. An HRE from a rat enolase-1 promoter is described in Jiang et al. (1997) *Cancer Res.* 57:5328-5335. An HRE from a rat enolase-1 promoter is depicted in Figure 2 and given as SEQ ID NO:1.

Accordingly, in one embodiment, an adenovirus vector comprises an adenovirus gene, preferably an adenoviral gene essential for replication, under transcriptional control of a cell status-specific TRE comprising an HRE. In one embodiment, the cell status-specific TRE comprises the HRE depicted in Figure 2 and SEQ ID NO:1.

Other cell status-specific TREs include heat-inducible (i.e., heat shock) promoters, and promoters responsive to radiation exposure, including ionizing radiation and UV radiation. For example, the promoter region of the early growth response-1 (Egr-1) gene contains an element(s) inducible by ionizing radiation. Hallahan et al. (1995) *Nat. Med.* 1:786-791; and Tsai-Morris et al. (1988) *Nucl. Acids. Res.* 16:8835-8846. Heat-inducible promoters, including heat-inducible elements, have been described. See, for example Welsh (1990) in “Stress Proteins in Biology and Medicine”, Morimoto, Tisseres, and Georgopoulos, eds. Cold Spring Harbor Laboratory Press; and Perisic et al. (1989) *Cell* 59:797-806. Accordingly, in some embodiments, the cell status-specific TRE comprises an element(s) responsive to ionizing radiation. In one embodiment, this TRE comprises a 5’ flanking sequence of an Egr-1 gene. In other embodiments, the cell status-specific TRE comprises a heat shock responsive, or heat-inducible, element.

A cell status-specific TRE can also comprise multimers. For example, an HRE can comprise a tandem series of at least two, at least three, at least four, or at least five hypoxia-responsive elements. These multimers may also contain heterologous promoter and/or enhancer sequences.

A cell status-specific TRE may or may not lack a silencer. The presence of a silencer (i.e., a negative regulatory element) may assist in shutting off transcription (and thus replication) in non-permissive cells (i.e., cell in a normal cell state). Thus, presence of a silencer may confer enhanced cell status-specific replication by more effectively preventing adenoviral vector replication in non-target cells. Alternatively, lack of a silencer may assist in
effecting replication in target cells, thus conferring enhanced cell status-specific replication due to more effective replication in target cells.

In other embodiments, the adenoviral vector comprises an adenoviral gene essential for adenoviral replication under control of a first cell status-specific TRE, and a second adenoviral gene essential for adenoviral replication under control of a second cell status-specific TRE. The first and the second cell status-specific TREs may or may not be identical, and may or may not be substantially identical to one another. By “substantially identical” is meant a requisite degree of sequence identity between the two TREs. The degree of sequence identity between these TREs is at least about 80%, preferably at least about 85%, more preferably at least about 90%, even more preferably at least about 95%, even more preferably at least about 98%, and most preferably 100%. Sequence identity can be determined by a sequence comparison using, i.e., sequence alignment programs that are known in the art, such as those described in Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987) Supplement 30, section 7.7.18, Table 7.7.1. A preferred alignment program is ALIGN Plus (Scientific and Educational Software, Pennsylvania), preferably using default parameters. Alternatively, hybridization under stringent conditions can also indicate degree of sequence identity. Stringent conditions are known in the art; an example of a stringent condition is 80°C (or higher temperature) and 6 X SSC (or less concentrated SSC). Other hybridization conditions and parameters (in order of increasing stringency) are: incubation temperatures of 25°C, 37°C, 50°C, and 68°C; buffer concentrations of 10 X SSC, 6 X SSC, 1 X SSC, 0.1 X SSC (where 1 X SSC is 0.15 M NaCl and 15 mM citrate buffer) and their equivalents using other buffer systems; formamide concentrations of 0%, 25%, 50%, and 75%; incubation times from about 24 hours about 5 minutes; 1, 2, or more washing steps; wash incubation times of 1, 2, or 15 minutes; and wash solutions of 6 X SSC, 1 X SSC, 0.1 X SSC, or deionized water.

Adenoviral constructs in which the first and second cell status-specific TREs are identical or substantially identical, particularly if these TREs control transcription of early genes (such as E1A and E1B), may display an instability which may be desirable in certain contexts, such as when an automatic “self-destruction” property can shut down the virus, thereby controlling the degree of propagation. Accordingly, in some embodiments, the first and second cell status-specific TRE, or the first and second TRE (one of which is a cell-status-
specific TRE) are sufficiently identical to confer instability when compared to two TREs which are less identical with respect to each other (i.e., have more sequence divergence or dissimilarity). Preferred embodiments are those in which the two TREs control E1A and E1B respectively. "Instability" means that the structural integrity of the adenoviral vectors is not preserved as the virus replicates in cells, and can be measured using standard methods in the art, such as Southern analysis. In other embodiments, the first and second TREs are sufficiently divergent and/or placed in the vector such that the vector is stable (i.e., the structural integrity of the adenoviral vector is preserved).

In other embodiments, the adenoviral vector comprises an adenoviral gene essential for adenoviral replication under control of a first cell status-specific TRE, and a transgene under control of a second cell status-specific TRE. The first and the second cell status-specific TREs may or may not be substantially identical to one another.

In some embodiments, a cell status-specific TRE can be juxtaposed with another TRE, such as a different cell status-specific TRE, or, alternatively, a cell type-specific TRE. "Juxtaposed" means a cell status-specific TRE and the second TRE transcriptionally control the same gene, or at least are proximate with respect to the same gene. For these embodiments, the cell status-specific TRE and the second TRE may be in any of a number of configurations, including, but not limited to, (a) next to each other (i.e., abutting); (b) both 5’ to the gene that is transcriptionally controlled (i.e., may have intervening sequences between them); (c) one TRE 5’ and the other TRE 3’ to the gene. For example, as described in Example 1 and shown in Figure 1, a cell type-specific TRE can be juxtaposed with a cell status-specific TRE to control transcription of an operably linked adenoviral gene. Such "composite" TREs can be used to confer both cell status- and cell type-specific expression of an operably linked polynucleotide, and thus may confer significantly greater specificity and/or efficacy. Examples of cell type-specific TREs are provided below. Alternatively, "composite" TREs can be used to confer different, and possibly synergistic, cell status specificity. For example, a composite TRE could confer specificity to hypoxia and heat shock.

Example 1 provides a description of an adenovirus construct in which a composite TRE upstream of E1A consisting of an HRE and a prostate-specific TRE, PSA-TRE (which consists of enhancer sequences -5322 to -3738 fused to PSA promoter sequence -541 to +12; see U.S.
Pat. Nos. 5,871,726; 5,648,478). Accordingly, in some embodiments, the invention provides an adenovirus vector comprising an adenovirus gene essential for replication, preferably an early gene, preferably E1A or E1B, under transcriptional control of a TRE comprising an HRE (preferably comprising or consisting of the 67-base fragment depicted in SEQ ID NO:1) and a prostate cell specific TRE, preferably comprising a PSA enhancer (preferably -5322 to -3738; or about 503 to about 2086 of SEQ ID NO:3 (bases about 503 to about 2086 of Figure 4), and a promoter, preferably comprising a PSA enhancer and a PSA promoter (about 5285 to about 5836 of SEQ ID NO:3).

As is readily appreciated by one skilled in the art, a cell status-specific TRE is a polynucleotide sequence, and, as such, can exhibit function over a variety of sequence permutations. Methods of nucleotide substitution, addition, and deletion are known in the art, and readily available functional assays (such as the CAT or luciferase reporter gene assay) allow one of ordinary skill to determine whether a sequence variant exhibits requisite cell status-specific transcription function. Hence, the invention also includes functionally-preserved variants of the nucleic acid sequences disclosed herein, which include nucleic acid substitutions, additions, and/or deletions. While not wishing to be bound by a single theory, the inventors note that it is possible that certain modifications will result in modulated resultant expression levels, including enhanced expression levels. Achievement of modulated resultant expression levels, preferably enhanced expression levels, may be especially desirable in the case of certain, more aggressive forms of cancer, or when a more rapid and/or aggressive pattern of cell killing is warranted (due to an immunocompromised condition of the individual, for example).

As an example of how cell status-specific TRE activity can be determined, a polynucleotide sequence or set of such sequences can be generated using methods known in the art, such as chemical synthesis, site-directed mutagenesis, PCR, and/or recombinant methods. The sequence(s) to be tested is inserted into a vector containing an appropriate reporter gene, including, but not limited to, chloramphenicol acetyl transferase (CAT), β-galactosidase (encoded by the lacZ gene), luciferase (encoded by the luc gene), green fluorescent protein, alkaline phosphatase, and horse radish peroxidase. Such vectors and assays are readily available, from, inter alia, commercial sources. Plasmids thus constructed
are transfected into a suitable host cell to test for expression of the reporter gene as controlled by the putative cell status-specific TRE using transfection methods known in the art, such as calcium phosphate precipitation, electroporation, liposomes (lipofection), and DEAE-dextran. Suitable host cells include any cell type, including but not limited to, Hep3B, Hep G2, HuH7, HuH1/Cl2, LNCaP, HBL-100, Chang liver cells, MCF-7, HLF, HLE, 3T3, HUVEC, and HeLa. Host cells transfected with the TRE-reporter gene construct to be tested are subjected to conditions which result in a change in cell status (for example, one which result in an aberrant physiological state). The same cells not subjected to these conditions, i.e., which are under normal physiological conditions and therefore in a normal physiological state, serve as controls. Results are obtained by measuring the level of expression of the reporter gene using standard assays. Comparison of expression between cells in a particular state and control indicates presence or absence of transcriptional activation. “Transcriptional activation” has been defined above.

Comparisons between or among various cell status-specific TRES can be assessed, for example, by measuring and comparing levels of expression within a single cell line under normal and aberrant physiological conditions. These comparisons may also be made by measuring and comparing levels of expression within a single cell line subjected to reversible environmental conditions (such as heat) and cells not subjected to such conditions. It is understood that absolute transcriptional activity of an cell status-specific TRE will depend on several factors, such as the nature of the target cell, delivery mode and form of the cell status-specific TRE, and the coding sequence that is to be selectively transcriptionally activated. To compensate for various plasmid sizes used, activities can be expressed as relative activity per mole of transfected plasmid. Alternatively, the level of transcription (i.e., mRNA) can be measured using standard Northern analysis and hybridization techniques. Levels of transfection (i.e., transfection efficiencies) are measured by co-transfecting a plasmid encoding a different reporter gene under control of a different TRE, such as the cytomegalovirus (CMV) immediate early promoter. This analysis can also indicate negative regulatory regions, i.e., silencers.

As an example of how hypoxia induction can be measured, one can use an assay such as that described in Jiang et al. (1997) Cancer Research 57:5328-5335 or Dachs et al. (1997)
Nature Med. 3:515-520. For example, a construct comprising a putative HRE, or multiple tandem copies thereof, together with a minimal promoter element, operably linked and controlling transcription of a polynucleotide which encodes a protein which is detectable or can be used to give a detectable signal, is introduced into host cells. The host cells are then subjected to conditions of normoxia (e.g., 20% \(\text{O}_2 \)), and varying degrees of hypoxia, such as 5%, 2%, 1%, 0.1%, or less, \(\text{O}_2 \). The expression product of the operably linked polynucleotide (reporter gene) is then measured.

Alternatively a putative cell status-specific TRE can be assessed for its ability to confer adenoviral replication preference for cells exhibiting the requisite physiological state, such as heat or ionizing radiation. For this assay, constructs containing an adenovirus gene essential to replication operably linked to a putative cell status-specific TRE are transfected into cells which exhibit the requisite physiological state. Viral replication in those cells is compared, for example, to viral replication by the construct in cells under normal physiological conditions (i.e., not exhibiting the requisite physiological state).

Any of the various serotypes of adenovirus can be used, such as Ad2, Ad5, Ad12 and Ad40. For purposes of illustration, serotype Ad5 will be exemplified herein.

When a cell status-specific TRE is used with an adenovirus gene that is essential for propagation replication competence is preferentially achievable in the target cell expressing cell status. Preferably, the gene is an early gene, such as E1A, E1B, E2, or E4. (E3 is not essential for viral replication.) More preferably, the early gene under cell status-TRE control is E1A and/or E1B. More than one early gene can be placed under control of an cell status-specific TRE. Example 1 provides a more detailed description of such constructs.

The E1A gene is expressed immediately after viral infection (0-2 hours) and before any other viral genes. E1A protein acts as a \textit{trans}-acting positive-acting transcriptional regulatory factor, and is required for the expression of the other early viral genes E1B, E2, E3, E4, and the promoter-proximal major late genes. Despite the nomenclature, the promoter proximal genes driven by the major late promoter are expressed during early times after Ad5 infection. Flint (1982) \textit{Biochem. Biophys. Acta} 651:175–208; Flint (1986) \textit{Advances Virus Research} 31:169–228; Grand (1987) \textit{Biochem. J.} 241:25–38. In the absence of a functional E1A gene, viral infection does not proceed, because the gene products necessary for viral DNA
replication are not produced. Nevins (1989) *Adv. Virus Res.* 31:35–81. The transcription start site of Ad5 E1A is at 498 and the ATG start site of the E1A protein is at 560 in the virus genome.

The E1B protein functions *in trans* and is necessary for transport of late mRNA from the nucleus to the cytoplasm. Defects in E1B expression result in poor expression of late viral proteins and an inability to shut off host cell protein synthesis. The promoter of E1B has been implicated as the defining element of difference in the host range of Ad40 and Ad5: clinically Ad40 is an enterovirus, whereas Ad5 causes acute conjunctivitis. Bailey, Mackay et al. (1993) *Virology* 193:631; Bailey et al. (1994) *Virology* 202:695-706. The E1B promoter of Ad5 consists of a single high-affinity recognition site for Spl and a TATA box.

The E2 region of adenovirus codes for proteins related to replication of the adenoviral genome, including the 72 kDa DNA-binding protein, the 80 kD precursor terminal protein and the viral DNA polymerase. The E2 region of Ad5 is transcribed in a rightward orientation from two promoters, termed E2 early and E2 late, mapping at 76.0 and 72.0 map units, respectively. While the E2 late promoter is transiently active during late stages of infection and is independent of the E1A transactivator protein, the E2 early promoter is crucial during the early phases of viral replication.

The E2 late promoter overlaps with the coding sequences of a gene encoded by the counterstrand and is therefore not amenable to genetic manipulation. However, the E2 early promoter overlaps only for a few base pairs with sequences coding for a 33 kD protein on the counterstrand. Notably, the SpeI restriction site (Ad5 position 27082) is part of the stop codon for the above mentioned 33 kD protein and conveniently separates the major E2 early transcription initiation site and TATA-binding protein site from the upstream transcription factor biding sites E2F and ATF. Therefore, insertion of a cell status-TRE having SpeI ends into the SpeI site in the + strand would disrupt the endogenous E2 early promoter of Ad5 and should allow cell status-restricted expression of E2 transcripts.

The E4 gene has a number of transcription products. The E4 region codes for two polypeptides which are responsible for stimulating the replication of viral genomic DNA and for stimulating late gene expression. The protein products of open reading frames (ORFS) 3 and 6 can both perform these functions by binding the 55kD protein from E1B and
heterodimers of E2F-1 and DP-1. The ORF 6 protein requires interaction with the EIB 55kD protein for activity while the ORF 3 protein does not. In the absence of functional protein from ORF 3 and ORF 6, plaques are produced with an efficiency less than 10^{-6} that of wild type virus. To further restrict viral replication to cells exhibiting a requisite physiological condition or state, E4 ORFs 1-3 can be deleted, making viral DNA replication and late gene synthesis dependent on E4 ORF 6 protein. By combining such a mutant with sequences in which the E1B region is regulated by a cell status-specific TRE, a virus can be obtained in which both the E1B function and E4 function are dependent on a cell status-specific TRE driving E1B.

The major late genes relevant to the subject invention are genes L1, L2, L3, L4, and L5 which encode proteins of the adenovirus virion. All of these genes (typically coding for structural proteins) are probably required for adenoviral replication. The late genes are all under the control of the major late promoter (MLP), which is located in Ad5 at +5986 to +6048.

In addition to conferring selective cytotoxic and/or cytolytic activity by virtue of preferential replication competence in cells exhibiting a requisite physiological state (for example, an aberrant physiological state such as low oxygen conditions), the adenovirus vectors of this invention can further include a heterologous gene (transgene) under the control of a cell status-specific TRE. In this way, various genetic capabilities may be introduced into target cells, particularly cancer cells. For example, in certain instances, it may be desirable to enhance the degree and/or rate of cytotoxic activity, due to, for example, the relatively refractory nature or particular aggressiveness of the cancerous target cell. This could be accomplished by coupling the cell status-specific replicative cytotoxic activity with cell-specific expression of, for example, HSV-tk and/or cytosine deaminase (cd), which renders cells capable of metabolizing 5-fluorocytosine (5-FC) to the chemotherapeutic agent 5-fluorouracil (5-FU). Using these types of transgenes may also confer a bystander effect.

Other desirable transgenes that may be introduced via an adenovirus vector(s) include genes encoding cytotoxic proteins, such as the A chains of diphtheria toxin, ricin or abrin (Palmiter et al. (1987) Cell 50: 435; Maxwell et al. (1987) Mol. Cell. Biol. 7: 1576; Behringer et al. (1988) Genes Dev. 2: 453; Messing et al. (1992) Neuron 8: 507; Piatak et al. (1988) J.
Biol. Chem. 263: 4937; Lamb et al. (1985) Eur. J. Biochem. 148: 265; Frankel et al. (1989) Mol. Cell. Biol. 9: 415), genes encoding a factor capable of initiating apoptosis, sequences encoding antisense transcripts or ribozymes, which among other capabilities may be directed to mRNAs encoding proteins essential for proliferation, such as structural proteins, or transcription factors; viral or other pathogenic proteins, where the pathogen proliferates intracellularly; genes that encode an engineered cytoplasmic variant of a nuclease (e.g. RNase A) or protease (e.g. awsin, papain, proteinase K, carboxypeptidase, etc.), or encode the Fas gene, and the like. Other genes of interest include cytokines, antigens, transmembrane proteins, and the like, such as IL-1, -2, -6, -12, GM-CSF, G-CSF, M-CSF, IFN-α, -β, -γ, TNF-α, -β, TGF-α, -β, NGF, and the like. The positive effector genes could be used in an earlier phase, followed by cytotoxic activity due to replication.

In one embodiment, the adenovirus death protein (ADP), encoded within the E3 region, is maintained in the adenovirus vector. The ADP gene, under control of the major late promoter (MLP), appears to code for a protein (ADP) that is important in expediting host cell lysis. Tollefson et al. (1996) J. Virol. 70(4):2296; Tollefson et al. (1992) J. Virol. 66(6):3633. Thus, adenoviral vectors containing the ADP gene may render the adenoviral vector more potent, making possible more effective treatment and/or a lower dosage requirement.

Accordingly, the invention provides an adenoviral vector as described herein that further includes a polynucleotide sequence encoding an ADP. A DNA sequence encoding an ADP and the amino acid sequence of an ADP are depicted Figure 9. Briefly, an ADP coding sequence is obtained preferably from Ad2 (since this is the strain in which ADP has been more fully characterized) using techniques known in the art, such as PCR. Preferably, the Y leader (which is an important sequence for correct expression of late genes) is also obtained and ligated to the ADP coding sequence. The ADP coding sequence (with or without the Y leader) can then be introduced into the adenoviral genome, for example, in the E3 region (where the ADP coding sequence will be driven by the MLP). The ADP coding sequence could also be inserted in other locations of the adenovirus genome, such as the E4 region. Alternatively, the ADP coding sequence could be operably linked to a heterologous promoter (with or without enhancer(s)), including, but not limited to, another viral promoter, a cell status-specific TRE
such as a hypoxia responsive element, or a cell type-specific TRE such as those derived from carcinoembryonic antigen (CEA), mucin, and rat probasin genes.

Adenoviral vectors of the invention further comprising a cell type specific element

In addition to conferring selective cytotoxic and/or cytolytic activity by virtue of preferential replication competence and/or by preferential transcription of a gene encoding a cytotoxic factor in cells exhibiting a requisite physiological state, the adenovirus vectors of this invention can further include an adenovirus gene and/or a heterologous gene (transgene) under the control of a cell type-specific TRE. In this way, cytotoxicity is further limited to a particular cell type.

For example, TREs that function preferentially in prostate cells include, but are not limited to, TREs derived from the prostate-specific antigen gene (PSA-TRE) (U.S. Patent No. 5,648,478), the glandular kallikrein-1 gene (from the human gene, hKLK2-TRE), and the probasin gene (PB-TRE) (International Patent Application No. PCT/US98/04132). All three of these genes are preferentially expressed in prostate cells and the expression is androgen-inducible. Generally, expression of genes responsive to androgen induction requires the presence of an androgen receptor (AR).

PSA is synthesized exclusively by normal, hyperplastic, and malignant prostatic epithelia; hence, its tissue-specific expression has made it an excellent biomarker for benign prostatic hyperplasia (BPH) and prostatic carcinoma (CaP). Normal serum levels of PSA are typically below 5 ng/ml, with elevated levels indicative of BPH or CaP. Lundwall et al. (1987) FEBS Lett. 214: 317; Lundwall (1989) Biochem. Biophys. Res. Comm. 161: 1151; and Rieglmann et al. (1991) Molec. Endocrin. 5: 1921.

The region of the PSA gene that is used to provide cell specificity dependent upon androgens, particular in prostate cells, involves approximately 6.0 kilobases. Schuur et al. (1996) J. Biol. Chem. 271:7043-7051. An enhancer region of approximately 1.5 kb in humans is located between nt -5322 and nt -3738, relative to the transcription start site of the PSA gene. The PSA promoter consists of the sequence from about nt -540 to nt +12 relative to the transcription start site. Juxtapositioning of these two genetic elements yield a fully functional, minimal prostate-specific enhancer/promoter (PSE) TRE. Other portions of the approximately
6.0 kb region of the *PSA* gene can be used in the present invention, as long as requisite functionality is maintained. In Example 1, adenoviral vector CN796 is described which comprises a composite TRE comprising an HRE and a PSA-TRE, the PSA-TRE comprising a PSA enhancer from -5322 to -3738 fused to a PSA promoter from -541 to +12. This PSA-TRE is derived from adenoviral vector CN706. Rodriguez et al. (1997) *Cancer Research* 57:2559-2563. Accordingly, in one embodiment an adenoviral vector comprises and adenovirus E1A gene under transcriptional control of a composite TRE comprising the cell status-specific TRE, HRE, and a cell type-specific TRE, a PSA-TRE.

The *PSE* and *PSA* TRE used in the present invention are derived from sequences depicted in Figure 4 (SEQ ID NO:3). The enhancer element is nucleotides about 503 to about 2086 of Figure 4 (SEQ ID NO:3). The promoter is nucleotides about 5285 to about 5836 of Figure 4 (SEQ ID NO:3). Accordingly, in some embodiments, the composite TRE comprises an HRE comprising SEQ ID NO:1 and a PSA-TRE comprises nucleotides about 503 to about 2086 of SEQ ID NO:3. In other embodiments, the composite TRE comprises an HRE comprising SEQ ID NO:1 and a PSA-TRE comprises nucleotides about 503 to about 2086 of SEQ ID NO:3 and nucleotides about 5285 to about 5836 of SEQ ID NO:3. As described above, these composite (HRE/PSA) TREs may be operably linked to an adenovirus gene essential for replication, especially an early gene such as E1A or E1B. Example 1 describes such a construct.

In the present invention, replication-competent adenovirus vectors comprising a cell status-specific TRE and a cell type-specific TRE may employ cell type-specific TREs that are preferentially functional in particular tumor cells. Non-limiting examples of tumor cell-specific TREs, and non-limiting examples of respective potential target cells, include TREs from the following genes: α-fetoprotein (*AFP*) (liver cancer), mucin-like glycoprotein DF3 (*MUC1*) (breast carcinoma), carcinoembryonic antigen (*CEA*) (colorectal, gastric, pancreatic, breast, and lung cancers), plasminogen activator urokinase (*uPA*) and its receptor gene (breast, colon, and liver cancers), *HER-2/neu* (*c-erbB2/neu*) (breast, ovarian, stomach, and lung cancers).
Other cell type-specific TREs may be derived from the following exemplary genes (cell type in which the TREs are specifically functional are in parentheses): vascular endothelial growth factor receptor (endothelium), albumin (liver), factor VII (liver), fatty acid synthase (liver), von Willebrand factor (brain endothelium), alpha-actin and myosin heavy chain (both in smooth muscle), synthetase I (small intestine), Na-K-Cl transporter (kidney). Additional cell type-specific TREs are known in the art.

AFP is an oncofetal protein, the expression of which is primarily restricted to developing tissues of endodermal origin (yolk sac, fetal liver, and gut), although the level of its expression varies greatly depending on the tissue and the developmental stage. AFP is of clinical interest because the serum concentration of AFP is elevated in a majority of hepatoma patients, with high levels of AFP found in patients with advanced disease. The serum AFP levels in patients appear to be regulated by AFP expression in hepatocellular carcinoma but not in surrounding normal liver. Thus, the AFP gene appears to be regulated to hepatoma cell-specific expression.

Cell type-specific TREs from the AFP gene have been identified. For example, the cloning and characterization of human AFP-specific enhancer activity is described in Watanabe et al. (1987) J. Biol. Chem. 262:4812-4818. The entire 5’ AFP flanking region (containing the promoter, putative silencer, and enhancer elements) is contained within approximately 5 kb upstream from the transcription start site.

The AFP enhancer region in human is located between about nt -3954 and about nt -3335, relative to the transcription start site of the AFP gene. The human AFP promoter encompasses a region from about nt -174 to about nt +29. Juxtapositioning of these two genetic elements yields a fully functional AFP-TRE. Ido et al. (1995) describe a 259 bp promoter fragment (nt -230 to nt +29) that is specific for HCC. Cancer Res. 55:3105-3109. The AFP enhancer contains two regions, denoted A and B, located between nt -3954 and nt -3335 relative to the transcription start site. The promoter region contains typical TATA and CAAT boxes. Preferably, the AFP-TRE contains at least one enhancer region. More preferably, the AFP-TRE contains both enhancer regions.

Suitable target cells for adenoviral vectors containing AFP-TREs are any cell type that allow an AFP-TRE to function. Preferred are cells that express, or produce, AFP, including,
but not limited to, tumor cells expressing AFP. Examples of such cells are hepatocellular carcinoma cells, gonadal and other germ cell tumors (especially endodermal sinus tumors), brain tumor cells, ovarian tumor cells, acinar cell carcinoma of the pancreas (Kawamoto et al. (1992) Hepatogastroenterology 39:282–286), primary gall bladder tumor (Katsuragi et al. (1989) Rinsko Hoshasen 34:371–374), uterine endometrial adenocarcinoma cells (Koyama et al. (1996). Jpn. J. Cancer Res. 87:612-617), and any metastases of the foregoing (which can occur in lung, adrenal gland, bone marrow, and/or spleen). In some cases, metastatic disease to the liver from certain pancreatic and stomach cancers produce AFP. Especially preferred are hepatocellular carcinoma cells and any of their metastases. AFP production can be measured using assays standard in the art, such as RIA, ELISA or Western blots (immunoassays) to determine levels of AFP protein production or Northern blots to determine levels of AFP mRNA production. Alternatively, such cells can be identified and/or characterized by their ability to activate transcriptionally an AFP-TRE (i.e., allow an AFP-TRE to function).

The protein urokinase plasminogen activator (uPA) and its cell surface receptor, urokinase plasminogen activator receptor (uPAR), are expressed in many of the most frequently occurring neoplasia and appear to represent important proteins in cancer metastasis. Both proteins are implicated in breast, colon, prostate, liver, renal, lung and ovarian cancer. Transcriptional regulatory elements that regulate uPA and uPAR transcription have been extensively studied. Riccio et al. (1985) Nucleic Acids Res. 13:2759-2771; Cannio et al. (1991) Nucleic Acids Res. 19:2303–2308.

CEA is a 180,000-Dalton glycoprotein tumor-associated antigen present on endodermally-derived neoplasia of the gastrointestinal tract, such as colorectal, gastric (stomach) and pancreatic cancer, as well as other adenocarcinomas such as breast and lung cancers. CEA is of clinical interest because circulating CEA can be detected in the great majority of patients with CEA-positive tumors. In lung cancer, about 50% of total cases have circulating CEA, with high concentrations of CEA (greater than 20 ng/ml) often detected in adenocarcinomas. Approximately 50% of patients with gastric carcinoma are serologically positive for CEA.
The 5' upstream flanking sequence of the CEA gene has been shown to confer cell-specific activity. The CEA promoter region, approximately the first 424 nucleotides upstream of the translational start site in the 5' flanking region of the gene, was shown to confer cell-specific activity when the region provided higher promoter activity in CEA-producing cells than in non-producing HeLa cells. Schrewe et al. (1990) Mol. Cell. Biol. 10:2738-2748. In addition, cell-specific enhancer regions have been found. WO/95/14100. The entire 5' CEA flanking region (containing the promoter, putative silencer, and enhancer elements) appears to be contained within approximately 14.5 kb upstream from the transcription start site. Richards et al. (1995); WO 95/14100. Further characterization of the 5' flanking region of the CEA gene by Richards et al. (1995) indicated two upstream regions, -13.6 to -10.7 kb or -6.1 to -4.0 kb, when linked to the multimerized promoter resulted in high-level and selective expression of a reporter construct in CEA-producing LoVo and SW1463 cells. Richards et al. (1995) also localized the promoter region to nt -90 and nt +69 relative to the transcriptional start site, with region nt -41 to nt -18 as essential for expression. WO95/14100 describes a series of 5' flanking CEA fragments which confer cell-specific activity, such as about nt -299 to about nt +69; about nt -90 to about nt +69; nt -14,500 to nt -10,600; nt -13,600 to nt -10,600, nt -6100 to nt -3800. In addition, cell specific transcription activity is conferred on an operably linked gene by the CEA fragment from nt -402 to nt +69, depicted in (SEQ ID NO:6). Any CEA-TREs used in the present invention are derived from mammalian cells, including but not limited to, human cells. Thus, any of the CEA-TREs may be used in the invention as long as requisite desired functionality is displayed in the adenovirus vector. The cloning and characterization of CEA sequences have been described in the literature and are thus made available for practice of this invention and need not be described in detail herein.

The protein product of the MUC1 gene (known as mucin or MUC1 protein; episialin; polymorphic epithelial mucin or PEM; EMA; DF3 antigen; NPGP; PAS-O; or CA15.3 antigen) is normally expressed mainly at the apical surface of epithelial cells lining the glands or ducts of the stomach, pancreas, lungs, trachea, kidney, uterus, salivary glands, and mammary glands. Zotter et al. (1988) Cancer Rev. 11–12: 55–101; and Girling et al. (1989) Int. J. Cancer 43: 1072–1076. However, mucin is overexpressed in 75–90% of human breast carcinomas. Kufe et al. (1984) Hybridoma 3: 223–232. For reviews, see Hilkens (1988)

Any MUC1-TREs used in the present invention are derived from mammalian cells, including but not limited to, human cells. Preferably, the MUC1-TRE is human. In one embodiment, the MUC1-TRE may contain the entire 0.9 kb 5′ flanking sequence of the MUC1 gene. In other embodiments, the MUC1-TREs comprise the following sequences (relative to the transcription start site of the MUC1 gene): about nt -725 to about nt +31, nt -743 to about nt +33, nt -750 to about nt +33, and nt -598 to about nt +485 (operably-linked to a promoter).

The c-erbB2/neu gene (HER-2/neu or HER) is a transforming gene that encodes a 185 kD epidermal growth factor receptor-related transmembrane glycoprotein. In humans, the c-erbB2/neu protein is expressed during fetal development, however, in adults, the protein is weakly detectable (by immunohistochemistry) in the epithelium of many normal tissues. Amplification and/or over-expression of the c-erbB2/neu gene has been associated with many human cancers, including breast, ovarian, uterine, prostate, stomach and lung cancers. The clinical consequences of the c-erbB2/neu protein over-expression have been best studied in breast and ovarian cancer. c-erbB2/neu protein over-expression occurs in 20 to 40% of intraductal carcinomas of the breast and 30% of ovarian cancers, and is associated with a poor prognosis in subcategories of both diseases. Human, rat and mouse c-erbB2/neu TREs have been identified and shown to confer c-erbB2/neu expressing cell specific activity. Tal et al. (1987) Mol. Cell. Biol. 7:2597–2601; Hudson et al. (1990) J. Biol. Chem. 265:4389–4393;

The cell type-specific TREs listed above are provided as non-limiting examples of TREs that would function in the instant invention. Additional cell-specific TREs are known in the art, as are methods to identify and test cell specificity of suspected TREs.

Using the adenoviral vectors of the invention

The adenoviral vectors can be used in a variety of forms, including, but not limited to, naked polynucleotide (usually DNA) constructs; polynucleotide constructs complexed with agents to facilitate entry into cells, such as cationic liposomes or other cationic compounds such as polylysine; packaged into infectious adenovirus particles (which may render the adenoviral vector(s) more immunogenic); packaged into other particulate viral forms such as HSV or AAV; complexed with agents (such as PEG) to enhance or dampen an immune response; complexed with agents that facilitate *in vivo* transfection, such as DOTMA™, DOTAP™, and polyamines. Thus, the invention also provides an adenovirus capable of replicating preferentially in cell status-producing cells. "Replicating preferentially" means that the adenovirus replicates more in cell exhibiting a requisite physiological state than a cell not exhibiting that state. Preferably, the adenovirus replicates at least about 2-fold higher, preferably at least about 5-fold higher, more preferably at least about 10-fold higher, still more preferably at least about 50-fold higher, even more preferably at least about 100-fold higher, still more preferably at least about 400-fold to about 500-fold higher, still more preferably at least about 1000-fold higher, most preferably at least about 1×10^6 higher. Most preferably, the adenovirus replicates solely in cells exhibiting a requisite physiological state (that is, does not replicate or replicates at very low levels in cells not exhibiting the requisite physiological state).

If an adenoviral vector is packaged into an adenovirus, the adenovirus itself may also be selected to further enhance targeting. For example, adenovirus fibers mediate primary contact with cellular receptor(s) aiding in tropism. See, e.g., Amberg et al. (1997) *Virol.* 227:239-244. If a particular subgenus of an adenovirus serotype displayed tropism for a target
cell type and/or reduced affinity for non-target cell types, such subgenus (or subgenera) could be used to further increase cell-specificity of cytotoxicity and/or cytolysis.

The adenoviral vectors may be delivered to the target cell in a variety of ways, including, but not limited to, liposomes, general transfection methods that are well known in the art (such as calcium phosphate precipitation or electroporation), direct injection, and intravenous infusion. The means of delivery will depend in large part on the particular adenoviral vector (including its form) as well as the type and location of the target cells (i.e., whether the cells are in vitro or in vivo).

If used as a packaged adenovirus, adenovirus vectors may be administered in an appropriate physiologically acceptable carrier at a dose of about 10^9 to about 10^{14}. The multiplicity of infection will generally be in the range of about 0.001 to 100. If administered as a polynucleotide construct (i.e., not packaged as a virus) about 0.01 µg to about 1000 µg of an adenoviral vector can be administered. The adenoviral vector(s) may be administered one or more times, depending upon the intended use and the immune response potential of the host, and may also be administered as multiple, simultaneous injections. If an immune response is undesirable, the immune response may be diminished by employing a variety of immunosuppressants, so as to permit repetitive administration, without a strong immune response. If packaged as another viral form, such as HSV, an amount to be administered is based on standard knowledge about that particular virus (which is readily obtainable from, for example, published literature) and can be determined empirically.

Host cells comprising the adenoviral vectors of the invention

The present invention also provides host cells comprising (i.e., transformed with) the adenoviral vectors described herein. Both prokaryotic and eukaryotic host cells can be used as long as sequences requisite for maintenance in that host, such as appropriate replication origin(s), are present. For convenience, selectable markers are also provided. Prokaryotic host cells include bacterial cells, for example, *E. coli* and mycobacteria. Among eukaryotic host cells are yeast, insect, avian, plant and mammalian. Host systems are known in the art and need not be described in detail herein.
Compositions of the invention

The present invention also provides compositions, including pharmaceutical compositions, containing the adenoviral vectors described herein. Such compositions (especially pharmaceutical compositions) are useful for administration in vivo, for example, when measuring the degree of transduction and/or effectiveness of cell killing in an individual. Pharmaceutical compositions, comprised an adenoviral vector of this invention in a pharmaceutically acceptable excipient (generally an effective amount of the adenoviral vector), are suitable for systemic administration to individuals in unit dosage forms, sterile parenteral solutions or suspensions, sterile non-parenteral solutions or oral solutions or suspensions, oil in water or water in oil emulsions and the like. Formulations for parenteral and nonparenteral drug delivery are known in the art and are set forth in Remington's Pharmaceutical Sciences, 19th Edition, Mack Publishing (1995). Pharmaceutical compositions also include lyophilized and/or reconstituted forms of the adenoviral vectors (including those packaged as a virus, such as adenovirus) of the invention.

Other compositions are used, and are useful for, detection methods described herein. For these compositions, the adenoviral vector usually is suspended in an appropriate solvent or solution, such as a buffer system. Such solvent systems are well known in the art.

Kits of the invention

The present invention also encompasses kits containing an adenoviral vector(s) of this invention. These kits can be used for diagnostic and/or monitoring purposes, preferably monitoring. Procedures using these kits can be performed by clinical laboratories, experimental laboratories, medical practitioners, or private individuals. Kits embodied by this invention allow someone to detect the presence of cell status-producing cells in a suitable biological sample, such as biopsy specimens.

The kits of the invention comprise an adenoviral vector described herein in suitable packaging. The kit may optionally provide additional components that are useful in the procedure, including, but not limited to, buffers, developing reagents, labels, reacting surfaces, means for detection, control samples, instructions, and interpretive information.
Preparation of the adenovirus vectors of the invention

The adenovirus vectors of this invention can be prepared using recombinant techniques that are standard in the art. Generally, a cell status-specific TRE is inserted 5' to the adenoviral gene of interest, preferably one or more early genes (although late gene(s) may be used). A cell status-specific TRE can be prepared using oligonucleotide synthesis (if the sequence is known) or recombinant methods (such as PCR and/or restriction enzymes). Convenient restriction sites, either in the natural adeno-DNA sequence or introduced by methods such as oligonucleotide directed mutagenesis and PCR, provide an insertion site for a cell status-specific TRE. Accordingly, convenient restriction sites for annealing (i.e., inserting) a cell status-specific TRE can be engineered onto the 5' and 3' ends of a cell status-specific TRE using standard recombinant methods, such as PCR.

Polynucleotides used for making adenoviral vectors of this invention may be obtained using standard methods in the art, such as chemical synthesis, by recombinant methods, and/or by obtaining the desired sequence(s) from biological sources.

Adenoviral vectors are conveniently prepared by employing two plasmids, one plasmid providing for the left hand region of adenovirus and the other plasmid providing for the right hand region, where the two plasmids share at least about 500 nt of middle region for homologous recombination. In this way, each plasmid, as desired, may be independently manipulated, followed by cotransfection in a competent host, providing complementing genes as appropriate, or the appropriate transcription factors for initiation of transcription from a cell status-specific TRE for propagation of the adenovirus. Plasmids are generally introduced into a suitable host cell such as 293 cells using appropriate means of transduction, such as cationic liposomes. Alternatively, in vitro ligation of the right and left-hand portions of the adenovirus genome can also be used to construct recombinant adenovirus derivative containing all the replication-essential portions of adenovirus genome. Berkner et al. (1983) Nucleic Acid Research 11: 6003-6020; Bridge et al. (1989) J. Virol. 63: 631-638.

The deletion in E3 provides room in the virus to insert a 3 kb cell status-TRE without deleting the endogenous enhancer/promoter. Bett et al. (1994). The gene for E3 is located on the opposite strand from E4 (r-strand). pBHGI11 provides an even larger E3 deletion (an additional 0.3 kb is deleted). Bett et al. (1994).

For manipulation of the early genes, the transcription start site of Ad5 E1A is at 498 and the ATG start site of the E1A protein is at 560 in the virus genome. This region can be used for insertion of an cell status-specific TRE. A restriction site may be introduced by employing polymerase chain reaction (PCR), where the primer that is employed may be limited to the Ad5 genome, or may involve a portion of the plasmid carrying the Ad5 genomic DNA. For example, where pBR322 is used, the primers may use the EcoRI site in the pBR322 backbone and the XbaI site at 1339 of Ad5. By carrying out the PCR in two steps, where overlapping primers at the center of the region introduce a 30 sequence change resulting in a unique restriction site, one can provide for insertion of a heterologous TRE at that site.

A similar strategy may also be used for insertion of a heterologous TRE to regulate E1B. The E1B promoter of Ad5 consists of a single high-affinity recognition site for Spl and a TATA box. This region extends from 1636 to 1701. By insertion of a heterologous TRE in this region, one can provide for target cell-specific transcription of the E1B gene. By employing the left-hand region modified with a heterologous TRE regulating E1A as the template for introducing a heterologous TRE to regulate E1B, the resulting adenovirus vector will be dependent upon the cell status-specific transcription factors for expression of both E1A and E1B.

Similarly, a cell status-specific TRE can be inserted upstream of the E2 gene to make its expression cell status specific. The E2 early promoter, mapping in Ad5 from 27050-27150, consists of a major and a minor transcription initiation site, the latter accounting for about 5% of the E2 transcripts, two non-canonical TATA boxes, two E2F transcription factor binding sites and an ATF transcription factor binding site. For a detailed review of the E2 promoter architecture see Swaminathan et al., *Curr. Topics in Micro. and Imm.* (1995) 199 (part 3):177-194.

For E4, one must use the right hand portion of the adenovirus genome. The E4 transcription start site is predominantly at 35609, the TATA box at 35638 and the first
ATG/CTG of ORF 1 is at 35532. Virtanen et al. (1984) *J. Virol.* 51: 822-831. Using any of the above strategies for the other genes, a cell status-specific TRE may be introduced upstream from the transcription start site. For the construction of mutants in the E4 region, the co-transfection and homologous recombination are performed in W162 cells (Weinberg et al. (1983) *Proc. Natl. Acad. Sci.* 80:5383–5386) which provide E4 proteins *in trans* to complement defects in synthesis of these proteins. Alternatively, these constructs can be produced by *in vitro* ligation.

Methods using the adenovirus vectors of the invention

The adenoviral vectors of the invention can be used for a wide variety of purposes, which will vary with the desired or intended result. Accordingly, the present invention includes methods using the adenoviral vectors described above.

In one embodiment, methods are provided for conferring selective cytotoxicity in target cells (i.e., cells exhibiting a requisite physiological state which allows a cell status-specific TRE to function), generally but not necessarily in an individual (preferably human), comprising contacting the cells with an adenovirus vector described herein, such that the adenovirus vector enters the cell. Cytotoxicity can be measured using standard assays in the art, such as dye exclusion, 3H-thymidine incorporation, and/or lysis.

In another embodiment, methods are provided for propagating an adenovirus specific for mammalian cells which allow a cell status-specific TRE to function. These methods entail combining an adenovirus vector with mammalian cells, whereby said adenovirus is propagated.

The invention further provides methods of suppressing tumor cell growth, generally but not necessarily in an individual (preferably human), comprising contacting a tumor cell with an adenoviral vector of the invention such that the adenovirus vector enters the tumor cell and exhibits selective cytotoxicity for the tumor cell. Tumor cell growth can be assessed by any means known in the art, including, but not limited to, measuring tumor size, determining whether tumor cells are proliferating using a 3H-thymidine incorporation assay, or counting tumor cells.
The invention also includes methods for detecting target cells (i.e., cells which permit or induce a cell status-specific TRE to function) in a biological sample. These methods are particularly useful for monitoring the clinical and/or physiological condition of an individual (i.e., mammal), whether in an experimental or clinical setting. For these methods, cells of a biological sample are contacted with an adenovirus vector, and replication of the adenoviral vector is detected. A suitable biological sample is one in which cells exhibiting a requisite physiological (and/or environmental) state, for example, an aberrant physiological state (such as cells in hypoxic conditions and exhibiting a phenotype characteristic of cells in hypoxic conditions, such as expression of HIF-1) may be or are suspected to be present. Generally, in mammals, a suitable clinical sample is one in which cancerous cells exhibiting a requisite physiological state, such as cells within a solid tumor which are under hypoxic conditions, are suspected to be present. Such cells can be obtained, for example, by needle biopsy or other surgical procedure. Cells to be contacted may be treated to promote assay conditions, such as selective enrichment, and/or solubilization. In these methods, target cells can be detected using *in vitro* assays that detect adenoviral proliferation, which are standard in the art. Examples of such standard assays include, but are not limited to, burst assays (which measure virus yield) and plaque assays (which measure infectious particles per cell). Propagation can also be detected by measuring specific adenoviral DNA replication, which are also standard assays.

The following examples are provided to illustrate but not limit the invention.

EXAMPLES

EXAMPLE 1

Adenovirus vector comprising E1A under transcriptional control of a hypoxia responsive element and a PSA-TRE

General techniques

A human embryonic kidney cell line, 293, efficiently expresses E1A and E1B genes of Ad5 and exhibits a high transfection efficiency with adenovirus DNA. To generate
recombinant adenovirus, 293 cells were co-transfected with one left end Ad5 plasmid and one right end Ad5 plasmid. Homologous recombination generates adenoviruses with the required genetic elements for replication in 293 cells which provide E1A and E1B proteins \textit{in trans} to complement defects in synthesis of these proteins.

The plasmids to be combined were co-transfected into 293 cells using cationic liposomes such as Lipofectin (DOTMA:DOPETM, Life Technologies) by combining the two plasmids, then mixing the plasmid DNA solution (10 µg of each plasmid in 500 µl of minimum essential medium (MEM) without serum or other additives) with a four-fold molar excess of liposomes in 200 µl of the same buffer. The DNA-lipid complexes were then placed on the cells and incubated at 37°C, 5% CO2 for 16 hours. After incubation the medium was changed to MEM with 10% fetal bovine serum and the cells are further incubated at 37°C, 5% CO2, for 10 days with two changes of medium. At the end of this time the cells and medium were transferred to tubes, freeze-thawed three times, and the lysate was used to infect 293 cells at the proper dilution to detect individual viruses as plaques.

Plaques obtained were plaque purified twice, and viruses were characterized for presence of desired sequences by PCR and occasionally by DNA sequencing. For further experimentation, the viruses were purified on a large scale by cesium chloride gradient centrifugation.

\textit{Adenovirus vectors in which E1A is under transcriptional control of a cell status-specific TRE}

An adenovirus vector containing a hypoxia response element (HRE) was generated. CN796, an adenovirus vector in which E1A is under the control of a composite TRE consisting of an HRE and a PSA-TRE, was made by co-transfecting CN515 with pBHGI0. CN515 was constructed by inserting a 67 base pair fragment from HRE enol (Jiang et al. (1997) \textit{Cancer Research 57:5328-5335}) (SEQ ID NO:1; Figure 2) into CN65 at the BglII site. CN65 is a plasmid containing an enhancer and promoter from the human PSA gene, consisting of an enhancer from -5322 to -3738 fused to a PSA promoter from -541 to +12. This is the PSA-TRE contained within plasmid CN706. Rodriguez et al. (1997) \textit{Cancer Res. 57:2559-2563}.
Virus growth in vitro

Growth selectivity of recombinant adenovirus is analyzed in plaque assays in which a single infectious particle produces a visible plaque by multiple rounds of infection and replication. Virus stocks are diluted to equal pfu/ml, then used to infect monolayers of cells for 1 hour. The inoculum is then removed and the cells are overlayed with semisolid agar containing medium and incubated at 37°C for 10 days. Plaques in the monolayer are then counted and titers of infectious virus on the various cells are calculated. The data are normalized to the titer of CN702 (wild type) on 293 cells.
Claims

What is claimed is:

1. An adenovirus vector comprising an adenovirus gene under transcriptional control of a transcriptional regulatory element (TRE) comprising a cell status-specific TRE.

2. The adenovirus vector of claim 1, wherein the adenovirus gene is essential for viral replication.

3. The adenovirus vector of claim 2, wherein the adenovirus gene is an early gene.

4. The adenovirus vector of claim 2, wherein the adenovirus gene is a late gene.

5. The adenovirus vector of claim 3, wherein the adenovirus early gene is E1A.

6. The adenovirus vector of claim 3, wherein the adenovirus early gene is E1B.

7. The adenovirus vector of claim 3, wherein the adenovirus early gene is E4.

8. The adenovirus vector of claim 1, wherein the cell status-specific TRE is human.

9. The adenovirus vector of claim 1, wherein the cell status-specific TRE comprises a hypoxia responsive element (HRE).

10. The adenovirus vector of claim 9, wherein the HRE comprises SEQ ID NO:1.

11. The adenovirus vector of claim 1, wherein the cell status-specific TRE comprises a cell cycle specific element.

12. The adenovirus vector of claim 11, wherein the cell cycle-specific element is from the E2F-1 gene.

13. The adenovirus vector of claim 1, wherein the cell status-specific TRE comprises a heat-inducible element.
14. The adenovirus vector of claim 1, further comprising a cell type-specific TRE.

15. The adenovirus vector of claim 14, wherein the cell type-specific TRE is prostate cell specific.

16. The adenovirus vector of claim 15, wherein the prostate cell-specific TRE is a PSA-TRE.

17. The adenovirus vector of claim 1, further comprising a transgene under transcriptional control of a second cell status-specific TRE.

18. An adenovirus vector comprising an adenovirus gene under transcriptional control of a TRE comprising a cell status-specific TRE and a cell-type specific TRE.

19. The adenovirus vector of claim 18, wherein the adenovirus gene is an early gene.

20. The adenovirus vector of claim 19, wherein the adenovirus early gene is E1A.

21. The adenovirus vector of claim 20, wherein the cell status-specific TRE comprises an HRE and the cell-type specific TRE is a PSA-TRE.

22. The adenovirus vector of claim 21, wherein the HRE comprises SEQ ID NO:1 and the PSA-TRE comprises nucleotides about 503 to about 2086 of SEQ ID NO:3 and nucleotides about 5285 to about 5836 of SEQ ID NO:3.

23. A composition comprising an adenovirus vector of claim 1.

24. The composition of claim 23, further comprising a pharmaceutically acceptable excipient.

25. A host cell comprising the adenovirus vector of claim 1.

26. A method of propagating adenovirus specific for cells which allow a cell status-specific TRE to function, said method comprising combining an adenovirus according to claim 1 with the cells, whereby said adenovirus is propagated.
27. A method for conferring selective cytotoxicity on a target cell, said method comprising contacting a cell which allows a cell status-specific TRE to function with an adenovirus vector of claim 1, whereby the vector enters the cell.

28. A method for suppressing tumor growth comprising introducing the adenovirus vector of claim 1 into a tumor cell which allows a cell status-specific TRE to function, wherein introduction of the adenovirus vector results in suppression of tumor growth.
FIGURE 4A

aagctttctag ttttctttttt ccggtgacat cggtgaaaga gactagctct ctaagcaatg 60
atcgtgaca atattcagcag tgtaatgcca tccagggac tcacaatgacg cttgatgtcc 120
agagattttt gtgtttttttt ctgaactgta gtctctgtct gtgcaggtct ggaagcaggat 180
ggtgcaacct tgtgccctcg caagctccgc ctctctgggt tcagcctctg tcctgcctca 240
gctctctgag tagctggggac tacagcaccg cgccacccac gcggctgtaat tttttgtat 300
ttttagtga gatggcggttt cactgtgtaa gcccaggtgg ttcagctcttc tctgacctgt 360
gatgctgcca ccctgtgtctc cccaaatgtct ggagatgacag gcggagacca ccgctgccgg 420
cgatatacca gagatatcctt gggtgtcccc acacacacag atacgactgc gcgctccatg 480
ttgactttta gtatcaggcc ctcttttaca tctagctgtat ataggtgtgc tctcaaccttc 540
cagcacaatt cacacccgta cactatctgg pggtggccccaa accttcaggt gaaacaaaaggg 600
accttaaatc ggagacatt tccaaagcat tagagatgac cttctgctcga gaaacaaaaaga 660
tgaaagaagaa aaagaaagaag aaagaaaaaa aaaaaaaagagatgaccc cctcgagtct 720
gaggggaaac gcctggaggt tgtgctgagtt ctgcagctc ttcgctggatc tcacccctac 780
agggctcttg tgtgctgctac atctgtgctac gctgtatgagg caccacccca tggctggcttc 840
tggggagtgac cggtgtactg tgtgctgctg cttgcaagtg cttgtgagtt gcagggatt 900
atcttcagca ctatcacagtc ctatctcctc ccacacagca tcaactatggg atgggtatca 960
cctgcttcct tttgtggagaa aatgtgctgt gggtccagaa gggtggaccc ctagacccag 1020
gacaactctg gatctggggg ccctgagacac catgaczctc ccaacacgta acagaaatata 1080
atcgtgctct tgtgtgctcttg cccttgagag ggtggaggtg gaccttcacct acaccccttc 1140
ccttgccctc ctttttaagg cttctttctcg ccctctccac ggtacttagga cccacattgta 1200	tttgctacc cttgtactct atgcacccca ccgccacactc ctcacagcgc gttcccccttc 1260
tatatcatt cccagctggc cagtcgctgc tcattgctcca cctgttgggtc atgacttctg 1320
aaggggctga cattttctac ctgctggcaaa aaataagcta atcttcctaga gtttttgtca 1380
tgctggccga gtctcagcag cttctgagct gcagggaaag gtttttactg ctctacagtt 1440
agcagacagc atgaggcttc ctgtccacat gtagacaccc ccccccccac atctctgtag 1500
ggtgacacac gcagctctag tggtactgtg gcaagaaggg tttgtgcccc tcgtgagaaa 1560
cctgagatta ggatactcctc atctttactc gggaacacct gcacacacctgc tcaccccttg 1620
tttctgtact atctatcttt cgcagctgaa acacccctac ctggagggaa 1680
FIGURE 4C

atagattttg tttgatgttg gtctcagcat ccttggtggat tgaacttgacg atgaagctgg 3420
gttgatcttt gagggtagaa gcagtggagag tagctgtcag attgacactct ggcctagatgt 3480
tttgatttgc ggagaaaata caacttggtgg aagacataag ggtggtgccttg ttaggtaaag 3540
ttcgctgtgg ttgtatgggt cggggtcttg tataatcagc ttcgatttggt ttgattaaaa 3600
ttgggggttc tcagtttttg gtggagggtat agccgaggat atgtggtggg cccacggatc 3660
catgaggttc tcactttgag gtggactacaac ttctcttttca ggtgtaattc aggggaagcc 3720
taatctcaact gatgggtgag tcaggccact ggtctaagat atctctctcact tccagctota 3780
agatgtcttt taatgttgat tattcatata cacctctgtct tcctctactcg tcgcttgagaat 3840
.ttacccgtatt aatactgtcttt taatccatag taacacagggta aagttttatc aatattt
FIGURE 5A

aagctttttta gtagcttttga cagtgagctg gtctgctctaa cccaaagtgc acctgggctc
60
taacagcgc cagcaagtgaac ggtggaaggt ggtggagcct aaaccaggca agcagacctct
120
cagggcaggtc aagctggcctg caacccatgg acccagagc catttcctct agggtaagga
180
aggtacaaac ccagcagatc cgcaatggctct tgggggacag ctgctcaatg cctaaaaata
240
tacctgggag agggcagccc aatactaccac tggcctcaaggt ttcctgcaaca gaacacaggg
300
ggcaaccaaca agtcctaaatc caggggagca ggtgcaacca aatgctctcaag atatgagcag
360
gcaagaagtt acggagccac ccctgcctaca aatgcttttcg atggggaaga gaaggggttt
420
gcctcatttgc ccaatcgccgg accgatcagtt tgggatcctgc ttccttcctca ttcctttgtt
480
agcagacactg agcaggcagct actctggtatt tggggaagag tgtttatatctg tggaggcagg
540
tgatgcaatt cccagcaggg ccactggtgaa gaggccagga aggtctcaga cactggggac
600
tgaagttgaaa cccacaccat gatcctgacc aacctatcgtt gctcctctac ttgctacattt
660
tcctgttgatata tcagatgagcc ccactctttgct tacactcacta caaagcagc gagctgagggtc
720
tgtgacatgccc ctccatcccc gggccagtgt gagcagacgg ggtggaagag atctaggggtc
780
tcctctgggtc ctggcgagccc aagacattca tcacccatcgt cgcctcttttg gatgggaatg
840
gctcccttgg ggtcgggcca acggggccttg ggcaggggaag aaggaagcggc aaggggacagg
900
gaggaaggtt catcagagace cagcttggaa gtctttgttc ttcggttcattgcc aggattttac
960

ttcctccgcat ctacctttgg tcattttttcc tcagcatgtga ccaagctgcc ttcctgtactc
1020
cacgcctccca cccctggagac agcaccineag cccctgggccc ggcgcctgac ccaccataacc
1080
cattaaacctg aggaccattc actctctagg taaaggaggtt ccagagacca aagaatcaggg
1140
aaaggtctga agaagtcaca ttgtctctgt cgaggagggga aaacatcacta gatgcgtcaac
1200
caggagaatgg aaagggcaagc aagcccaagg aaggggacag aaggggtctg gaccaccagg
1260
gttgctgtaa gaggaagaggta caaggggccc aggagagac caagggctctg catgtgcagg
1320
acactggggtt ggctatgtgg tgttagatgtc tcgccctgatt cagttctgctt gcctatggtta
1380

gacttcttac tcagctggcctg acatgctgaa aatagcaagt gcctttgctct ttccttccca
1440
ccattggcca agagacataaa agagacatccttcc ttcctggaggt tctcaggtctc
ttcgcttac ccacccagga cttgtcagtattgc tgcatacagct atgtgaggtg ttgtatctaac
1500
cagccctgctt cagcccttcc ctctccctac tttgtgcacca tgcgcctggcc caacccctcag
1620
atcctgagcc tgcataaca cccttctggctt gtgggttggat tcagtaaca tgcagctctc
ttcctcttcc
FIGURE 5B

atccagcccc cagagcaccct ttctgtcactt tcctgtctgggg ccctcaatcaca cctctctaacc 1740
cactaaagag catguggaga cctggttaacg tgggtttctgt cttcacaag aaatactcc 1800
ccaggggtcc gattccactgg gctcctgattg tggagctgac acacgctgag ccaggagata 1860
goagaggtccc ggcctgagga gggtgggcgtt ccaccacagg ggacagcgggt gcacacaagcct 1920
tgcagctgaa agggccctcc caggacacgc ccatcagccc tggctgagag cttgctcctaacc 1980
cagcgagtcatg aggagcccatg ggcattggctg agctcctgcat tcaggcccccc aacagacccag 2040
accacagcct caatgcaactgt ttcctccacc tcctacaggtc accaaagggg aactgaggtgt 2100
cacacaaccct tcagagcattg aacagccca aacagcccc aacacactaacc 2160
taatgagacc tca cattggttcc attccttcacc ttttctacaacc gccagctatgg 2220
caccaccccag atctgtggttc tcaggttcgcc acagggccaagcctctcttc accagggtaa 2280
ctcaccacac acetctcttc tgggtaccata tcagggctccc ccactgtcagata 2340
aaggagcagaa ccttggacag cgccacattc acggtctcacc ttcctctctc accctgcttaa 2400
gggccaaagaa ttaatggcagc aggccagtagt gcctgagagag cttgacagcag 2460
gggcagatgc tctgagcagg aagctgagggg ccacacaggga gaaggtgatg caggaagggga 2520
aaccagaa aaccggggtgca aggacagcac agggctctgttg gggctgagcg ccaggggttgg 2580
actatgagtct tgaagccatcc tcctgcaagtta agggccagtcc ccacagaaa aagggtggagc 2640
acgtggtccttc ctttctggtata tgaaggggggt cggattccat gccctcataga accagatggcc 2700
cgggggtcag atggagagagg aggacagccag ggataacccca gatagggagg acccccaggt 2760
ccccacccac cggaggtctc gatgaatgggg catcgaggggt cctctgttgg gttgtctcctcc 2820
tttggtcctat caggattctggt taaggaacagct cggatctctc acttgggtg 2880
tccagtaaaa ggcctggactc ttggtgtcatt ggagggcctgctatg cggcattgc 2940
tggggcacc aacagagaga acctggaggg cggagcctgag cttgcttgagg aggcatggga 3000
gcccagatgg ggagatggact cggaggaacag gctgcccctct caggagggt ggtagcaatgt 3060
gggggctgtcgt gggagtcggcc acgtggagatt cccctgggtctt ccacacagtc cctccccatag 3120
tccacacccgg cggcagacttc gcaaaatggc ggctgtttgtgc cagctgaggac gctgctggttt 3180
tgcgccatcc actactcccttc ccctccgctgc aactgcctgggt ctttctcagctgctcctgag 3240
cagcctggtcc tcggagctgtc cccctgagacag gctgctggaga aaggtgagtct tcgctgccac 3300
tctctcctag agctcagtaa gcaactcaggg aacatactccc gcgtctcaggg actaggcaact 3360
FIGURE 5C

gagaaaggg cccagctec tccttttgcc actgacctgg gccgtccacag tcgaccccttg gccgtccacag 3420
tgccttcctgc gtcggctecca gtcacccctga aaccaaaaca aaaccacacgc cccagacccct 3480
gcaggtcaca cacatgggtg gagcagtctgt acccagggga accgagtcttct ctcttcctcag 3540
gacccgggcc ctccaggtctg tgcgcggggc accgaggggc agccaagctgc gcgctcttgag 3600
aactcgccac cttaaggttc tctgctctgt aggcacacgc aagcactctt ctcggctagag 3660
ataaagcag ctcctgcccc tcctttgtcc tctctctct acaaccaaaact caacaccaaaa 3720
ataaggtttt caaatctcact cacatgaatct tcatccatcc atacgagaaa gcctaaaaacc 3780
caatgattgg acaacatcaac gaagtgggaac aagtggacag ggcagatgtta cttgttggaac 3840
attagatttg ttcagctatgc ggccagaga acctgtgctca aatcagcaacgc cggtgtcagaa 3900
gaatcaaaaa ggtgctcagct ccgaaatgtgc aacagcgagag gcgtagaacccat tgggtgctat 3960
tcaaatctgag ggatatttgg gaacatgcaac aagagagggg ttggctgctgc acagaaactg 4020
aggtatctca cccatagagct ggaagaaag aaggtcatacg aatgactgaa taatagct 4080
atatccactc ctataaagtt tccaaagagca aaaccacaaat ctctgtcagct agatcagaaat 4140
ggaggtgacc tggcctgttc agtggcgttg agggtccaggg gaggtgctcat tgggtcagcc 4200
aattgtgcccc atctaaaact cccaggggct ttcatgagcag cataggaatgc gacacattac 4260
tgggctgttc attttaacttc accgggaaag aagataaaaa tcaagccgggc gcgggtgcctc 4320
aagccctgtaa tccagactct ttaagaggtc gaggtgggca gattactgga ggctcagagtt 4380
ccaagccacc cctggccccat atgtgtgaac cccggctctca cccttaaatatt aaaaattgc 4440
tgggcatggg ggtgcgcggcc tgaatccca gttactctggg aggctggaggc tggcaaatg 4500
cttgagcacc ggaagcagag gggtgcagtg gccaagattg tgccactgca ctcaggtctg 4560
agccacacag ccagactctgg taaaadad adaaaaaa adaaaaaag aaaaaaagaa adaaaaaa 4620
agaaaaataa agatatgcaactct gttttgggtt aacaaaaaaa gaccaaaaaa aacacacaca 4680
gettttatca aacacactaca acctctgccagc agaaagagaa tacacaatct taataaactc 4740
acctttttgg catataaaaacc tcatatgcaagcagagagcc gacacaatag aggaagtataa 4800
actgcaagcg ctactttggt gccagggagg aacattccca aaatatacact taccagaggg 4860
agctaagatt tactgcattg atgtcattcc caggtgatgc aaggtgattt taacacactga 4920
aaatctactca ttgcttttac tcatagacag aatagctag aaaaaatatta caactcaagcag 4980
aacacagcga atttggccct cctaaatatt cactcatact catctatagc gacagatggc 5040
agacgccctag gacaataaaag aagagagacct ccgccctccgc gtaaacatgt gcacacagct 5100
FIGURE 5D

ccagcaagca ccgctttccc cagtgacatca ctgtaacctc ccttttaacc agccceaggg
5160
aaggtgctcc ggaatggcga cacaggttccc aacccgtggg cctcagcttc ccgcaaggg
5220
tctcttttg ccaccctgag gggagacatg gaggacagg gcagccttgc tgaagcccccag
5280
acatgcaagg agcgcaagcc gggctgagag gcaggctgaa ggcgtgaggt gcagacgcta
5340
gcttccttag gacaccagg ccttaagggaa gcagcttccc tggatgggg gaacccccag
5400
cggcttccac acctcagagc ccgcatggga ggaacccagcc ctctaggctt ttctcaggt
5460
gacctgagc ggacccctag acgcagaggt gcctgaagtc accegcagatg aagggccac
5520
cagggacccc ttgctctcgg gacgcctgag agagaggtgg acacccatgc aggcggccct
5580
ggcagagctg caagctacc ccagcacttc ccagctcagtc tcagctctgg taaggtcact
5640
gacacgccg cagacccagtg tggagaggg gaaagcgcat cccccctagg gatggaactc
5700
aaggtcagtg ccaagagagc ccaagccgag ttcaggaagc tgtcaccacc taccgcacac
5760
accatcacct atcataaaga gaagccctgc cccatgacct tgtcattgta ataatggggtt
5820
gttaaatagc tcaatattcc tcacatatgc agctctcctg tgtgtagggc cacacacac
5880
acacacaccc acacacacac acacacacac acacacacac acaagaggaa tcgagacac
5940
tggccagagc cagccaggtc ttcagacgag acacacagac gtaatgaccag catgcaggtc
6000
cctggggccc atcagccctag gaggctcttg agggctgaga tgggctcagg caggggagag
6060
acctagagag ggttggggcc ccaagggagg ggtgtcaggag agctgggtac tgcctcctcg
6120
gagggggct gcaaggagct gggtactgcc tccaggaggg ggggtctcag ggaagctggt
6180
actgccctcc agggaggggg ctcacagggag ctgggtactg cccactcagg aggggtgtgc
6240
agggagttgg gtactgcctc ccaagggggc agggactctg ttcaccaacg agacacactc
6300	tcctgacag acgctgccag ccacaagagc ccctactgact gcccctgaggg agggtgttga
6360
ttcacaaaat ctgcccccat gggttgggac ggagttcgac cgtgcacatcc aaggccgact
6420
tgtgtattcc aacttaacct actggtccta ccaataaggga aataacccca ctttttctac
6480	tatcatcata cttccatagca caagctagca cccctttaat caggaagttc agctcactct
6540
gggctcctcc catgcctccca gttcgctctag caggtgcaca ggggtgcctg cattctgtctc
6600
tgctctctct ctggtgctca gcctgccccc tccctggggt gactcgatgg caggacagg
6660
gatcctagag ctggcccctg gatggacagg aaggcagagc tggcctctca ttcctagagc
6720
taggggtgtcc aagagagctg gcacccccac agagctgcac aagatgcagc gcagacaggg
6780
FIGURE 5F

gaaaacagt tttattaaga ggaaaaatct aggttagaag tgcttttatgc cttttttttct 8580
cctttacttt aaatctatcat actcattagat catctcttaaa agaaagatct aatccacctaa 8640
gtaatgtta ccagctgact gatacggttg tgtcttcact ecceaccctt gcgtggtcgc 8700
agtgcctgcc ttccccagcct ctgggccctc cccttttact cggactgttg ggtgcctctt 8760
cattggagg aagagagaga gggttgatt aatatctcct ccatctgacc atccacctct 8820
tagacaatg gaagaactcag tggcaccctc tttgatttga tctccgaatt aatgacccctt 8880
atctctgccc ctggtccatt tcaacaactgt gcagggcctc agagggcctc tttccatgtg 8940
atattggagg agaaggtctc caagataagtt tttctcaccac cttttgtgaat taacctccacc 9000
tgtgctccca tcaccctacg cagcagcatt ttgacccttt tttctgttagt cagatgcttt 9060
ccacctcttg aggggtctag cgtagctgct ttctacacagg aatagcaga ggaatatgaa 9120
aaaggggaaat cgcattacta tccagagagaga aagagccctt tagtgatag aatgagagtc 9180
taaatctcta agagagccca tataataatc ttccagctgc taaaaactaca aaatggctacc 9240
taacagtaaa ctgaataaat aaaccatgca taacagttgc tggttaagctaatcagata 9300
tttttttcctt aaaaaagcct tttccatgtg gttcagctga gcagagactgc tccctcaagt 9360
caatatgtct cctgtaaatt ttgtctcccc gcagaagttta ttctcttttc tcccttttaaa 9420
tcttaaatgc aaacttaaag gcagctcttg ggcctccctc ccacagctcg aatggtgcaa 9480
ccagcccccac gagaagcaag gcctcagctt ccctcttcga aaataagggg ctagggagct 9540
taaaccttgc gcggataagct ttgttcccag aatgctcgcac ctgtttccagc ggccccaccg 9600
tcggaggggt gcgagcctca cttggttccct gatgttacc cttgtgccttc acaccaagtgg 9660
tcactggaac cttgaacact tgggtgtgcgc ccggatctgct aagatgctcag aaccttcctga 9720
agtcaatta ctgcccacatt ctcagggcga gatactcttg aatccacaaaa accatccaca 9780
agacccctgc cttgggctca caacacaatt gacctgtgag ccaaagcctg acgcccctagat 9840
cctgcaccac ctgccaagat gcctcttaact gggatcaccct aatcactgca catggccagc 9900
agcgagggct cggagtctct gcgcccaagct cggcctccct ttgctggagatt tctcttggca 9960
cccgagtttg gtagctgtgc cttgagccct cggactactc ccccttaagc atagttggga 10020
ccctctgca tccccagcgt gcctccgcctt ctctagatgc cttctctctc aggttttacc 10080
agacccctgc accaatgaga ccagctgtcaaa gcctcagaga gagagatgga gtttggaca 10140
ggagccgctc tttcttgagg gcagggccag gcagaagcagg aggagccacc agaggtggsa 10200
caacagacc ttcgtgatctc tccccacatac ctgctctgtg tctttctggg tcctatgagg
accccttgct gcacaggggtc cctgtgcaac ttcgagactcc ctctcctgtaa cacacattgg
aaggtggggt gatacagaga cagctcagctt cgcagagaca gagarcaaccc aagacgtaa
gggacagcat gagacaggccc tgaagcggct aecdggcaac aagacagggag aagagctgct
cccccgagcc cttcccccag gacagcagag cccagagctc cccacctccc tccacacacag
tctctctctt cccagacaca caaagacaat cccctcctcc cttgaagactc tggagactcc
tgacacctctt gggcctgtggt ctcacacccct cggctcagtgg cggctggttg tggagtggag
acaggagcct gttccctccc cagccacaccc cagctgagcc tttttttaag cccagacacc
accccttgca cttctctgtt gggcactatc cccactttccc agaccccctgg agagcatgg
agacccgagg acaccttgcttg tttttcctgt cacaagggaa aaataccccc cttgggtgac
agaccaacag acagacagtc acacactggga agacaggttg tctccctagg
ggatggggct ccctccaccct tcgccgaaaaa atttgctgtga ggaactgaaa atagaagga
aaaaagagga ggacacaaag aggacagaaat gagaggggag gggacagagg acaacctgaaat
aaaaaggcaca cccatgaccc acctgatgct ggaagatcct cctgcctcag gaagacacct
agggccagag gaggaagggac acagacacca cagctcagag cagtctgagc aaaaagctccc
tgacacacca gctctttccc acagaggagg acagagcaag cagacagacg cactgggtct
cccctgcccc cttcccccacag atgtgtgcatc cccctgcaaga ggtctctgtgct cacaggtct
agggacacag cctggggagc cttggagagg ggggiactggg gttctctggg tagggacagg
tgtgtgagac gacagagggcc tctgtgtggc gctctgaataag ggaagagac atcagagagg
agacaggacg acaccgaaad aacaatttq aactggtaat ggaagggggc agggaacactt
ccaagtttc attttttctag ttaatgtctca cttgcccacta cgttttttaa aacataaat
atcgcatcaag atgacactttt aataaaac aataacaggg catgaaacac ggtctctcatc
cggctcaccag gcacatttgg aataaagccc caggtctgtgg agggcgcttgg ggaacctctct
caacactacac acaggaattg cagccgttgtgc cagcagcagt ggtgtgaacc aagagtcc

16/27
FIGURE 6A

gaattcagaa ataggggaaq gtggaggaag gcacagtaac tcaaaaagggc tacaagttgat 60
gtttatttgc tettetcttc acaacatgag ggctgaggag atececaaaa cgaggttattg 120
aagatgtctcg aacacccaaac acatatggct ggaagatatg aacctgacacag aagtcttcag 180
ccacagagat tcacacgctca ggccagggag acaactgtag ccaagcgaag gcaagtgagga 240
attgcgttca cagagttcgtt gaagagcaaa ggaacctgag ggctgagggg tggagttcagg 300
agagggccag gtgaactcttg aacccctagc gggaagtcttc ggtagcctggt ataataaaaat 360
caagctggca ggaattaaaa cccataacgg ttagggacag tagggcggcg cttgcccccaac 420
tgataaagga aatagccagg tgggctggtc ctccatagta ggggagcat atcggccaat 480
agaagccctt gagaaccctt aggtcagca actgtgagca gcaaatatatata tgaatcttaa 540
atatcactctt ttatacctcag tgggtgtgaa gctatattttt tttctgtaca ggggggtcgg 600
gaaaggggg gcaggagacaag gctctctcag gctctggttg gttctttgtag ccaaggggtcc 660
tggaacttat ttaataatata aacagcgaatt ctctctctaa atttatatat 720
aaattaatt ttaaccttatt taatcttaag tttctgggtcta catgtggcaggt agtgcagct 780
ttgtaacaata ggaagagctg tgcactggag gttgctgtca ccttcataac acatcactcag 840
gttataagcc cagcagctgt cagctggttt tttgcgacgc ctcctcctcct ctaactcaca 900
cacagggccc c gaatgtgtgtg tgtcctccctc ctcctgctca tgtcctccctc tttgctgagct 960
cccaattata cgtagaagaa ctagctttgtt gttttttctgt tttctgtgta gttgctgtgag 1020
gataatgggt tcaaacccctc ctgctgtttc ttgcaagggc gtttgaccttt tttttttatt 1080
ggtgtgccagta aatattttt tccaatata cattatatg attttatatc acaattttata 1140
taattacat actagagaag attcaggata tattaggtat cgtgatggag gggatattat 1200
aaaaattggc gaaagtgaaa tattaggtat cattatatata atagggctaa gaaaaattaaa 1260
aaaaatagc tgaagtcagc aatgtaaaag aggtgaaag ctagtattgt acttttattga 1320
ccagatggaa gacagagag aagaaatttt taaggaattt ctataccattg taggtgttag 1380
aagtacagct aataacattta aagctccagg agggaaattt aataggaagag gagaatatat 1440
gtt gaatatatg aattttctcttg gctgttattat atttggataa ccttcacactca 1500
aaggtcctgac ccagcccgat gtggagggag gatggaaaag ccagagaccc agatgaaaatt 1560
tgaatatcatt ttgggcaag cttaattgtt aaaaattcagta gagaagaaag ctggcgagaa 1620
tatgtgcccag aagaagctat gcaactctагаa taaaattтctca tccacacagtt ttggtagtgt 1680
FIGURE 6D

agaaggttaa gcacacactc ctgaagacct aacctgcctgt ggtgctttctg attaacctct 5160
gttctagga gatgacagtg tggggtctgt gttcattgccc aaatctcata ttaaatgatg 5220
attcccaagtg ttcggaggttg gactgggtgtg ttagggtatg cggctatggg aagtagattt 5280
ctcccttggc ctggttaactg gatagctgagt gactcctctg gagatctctgt cattaaaga 5340
tggctgccc ctccttctcc ctcctggtgc ctctctactgc catgtaagat acctgctcct 5400
gcctgtgctt ctacatcaag taaagccccc ctgagccccc cccagaagca gatgcccca 5460
tgcctctgtg acagcctgca gaaaccatacg ccaatcacac ctcttccttg tataaatata 5520
cagctctttg acagcctcag gcagacttgcg agaagcgact aataacaagg tctccaaat 5580
tccaagttta tggtattcttt ctcgcaaat agcaggtatt taccataaat ctctgcttta 5640
gttcaacaca cctctgtgac atctgacttt ctaattctta cctactttctt ctgatgact 5700
cctcccatat gcctataata ccctggtttc tggggggataa ggcgtcctgag ctgccccacte 5760
cttgcctctg gcgcctctgt gacagcagcat ggcctcctgt ggtaaatcct cttccactat 5820
tcctccctct cagctaatgg tcguccaggt cctcctccctg tctctgctac ctctcagact 5880
tgagggattc ttcgcaacacc ctcgccacca ccgaacacca gtttaaatag ataataaattg 5940
atagataata ccacatcaaa taaagcctct ttgagggccc tcaataattt ttaagagttg 6000
atagtgtcc aaagatggaa aatgatttag aactctggtc cccagagttt tctggagttt 6060
tagagtgtgg gaaatagataa ctcggagcct gcctcttcca gcctacaact aggagttagt 6120
ggcgtaagtc tgaagctgctgc ctcggagcct tgtgggttgg ctcggcggac acatatttga 6180
catggttgca ctggatattg gggcttgggttt tgtcctttga atctcaattt cttgcttctg 6240
ggcctctgag atctggaaatc tgtgtgcatac atctctgttt cgcctcgtg aagatctccag 6300
tcctgctttg gcctcttggt ggctagcttcg ccagctcttg gcctccacaact 6360
ttcatataca gcgggtctac cttgccttcca tgtttccaaac aaacaacgga ataaaccatt 6420
agaacctccc ccacactccc tagcagcaat gtaaagctta ggatgttctt gtaataagtt 6480
catatgata atctcagcct gatccacact tatctctctt ctaccggttat ttcacaaca 6540
ccttataaat gcattccccc tatataccct ggattcctcc tatatatgtt aatctcttgct 6600
ctgcagtttt ctgagctttt acacattcctg attaatccttt tttacttta aagtggaaat 6660
aagcgtcct ctcgagagtt cagagttcct caagatggcc cttactctgt agatcaatttg 6720
agagttcagag ggatgcctga agatcctcct cagttctgtt gattgcttgtt aagccctcata 6780
FIGURE 6E

```
taactcaatg aaagctgatta tgctctagggc tatggttatg tacagaaaaa gaaatagagat 6840
gaaaaatcag caagggaga gttgcattgg gcacaagacaa gggagagctcc aagtgcagag 6900
atctcctgtt ttctctcca gttgttctat ggaagccagtt atctcttctca tacaaatgatg 6960
tgtgataata ttgatggtat tgccaatcaag gaaactcaac tcagctctgga ttatatggga 7020
gctttgtgac acagacatgt cgaccacccct cattgctgaa cttaagatctt tagccctccc 7080
agacgtctac agctgataagg ctgtaaccacg caataactac acataaatcag tattgttagac 7140
taccttattg ggcgttaaagcc cctgttataa cacaagcacc ctaaacagtc aggataatttc 7200
aaagacattt acgcacactc cctctccaca gggctatttt caggtactaa gttggctatg 7260
agaaatcctttt acgcacactc cctctccaca gggctatttt caggtactaa gttggctatg 7320
tgtgtgagac accagcagacat ggtgtgcttt gggagatgtc ttatatgattc gctaaacatttg 7380
tcgatgctctg agaattttctt aggcatgctgc ttcagactct acatagctgct 7440
cacaacatttg ctacaggtgtg gcacactacta gctctcatttg cacagagaaa ggactgctgga 7500
taagaaggg gtcgcaattg gatgactcgtc atgttggagc caaggggttag cagaggaaca 7560
tgattagaca tttgctgcag aagaaatagat gctggtatgct cttgccccgg aaaggggcat 7620
gaatccccctt gatcgccttct tctcagatct gttatcttcc gttatcttcc 7680
tgataccagg agccctacat ccttacttcgg tgtctctctcc cctctccacc tcttactgccc 7740
cactctctccc agctctcactc ccagctggcgc aggtgtagccc acagttacacta actctttgca 7800
gagaactata aattgtgtatg ctacaggggga gaaaaaaaag aagaactctg aagagctgtaa 7860
cattttaccg acctggcaccac atacaacgctt ctgtttccgtg ttagaaactcata 7920
gagactctctg ggtcagagggg aaagaaatttt attaccacaag ctaaggagggc cagcatgaaac 7980
ttgtgttcta ctttgccttca ctttgccttca catttcatac gggagatctat gagaggttaca 8040
gtgagatgga ccagaggggt tgtggaacag ggtgagcaacc tagcttaaga aactctcttatt 8100
catt.taagaa ggtactagca aaccttctgt cttgttcttatct gtcagacatca tattatcattt 8160
ataatttggt tgaattcaga ccactctctgg aagaatcatat tatttttttttttcttctaga 8220
taaaccaaat cttgctctaa atagacgtta aactttattat ctaagggcagtt aacgaaacctt 8280
agatctgaag ggtgatccat ctgtgcaaggc tatctctgttt acataatgtc ctttgaagat 8340
gtccagaaaa aagaaacgttt attattgctt tgtgctcagaa gacacacaga aacataagag 8400
aadcatggga aattgtctcc caaacagttt caccagacagctttctctc cttgctgcaag 8460
acagtttaaa cttccataca ttaagtctgct tacacactct ggtctccacag tgccctaaccac 8520
```
FIGURE 6F

agatttctag gtccagtctc ccaccatgtt tgtgaatgtec ccaacctgceaa ccccagaaata 8580
agggagttct cagaaatccgg aggggaaagc ggtgattcgc aagaactctctg gggctgagag 8640
cagaggggge ccataactcct tgttctccgaa gggagagag gcttgagttg cattaccttg 8700
gagggagggc atgggggtcct tagaaactcta aataccccaaag ggggagacct gtaaggttcc 8760
cagcttccgta gttactgagc tgggaattggc ctgagagctc taagaatccga atttacctgc 8820
gagggagggc tgggaattttg gttcaggtgg tttgtttact gtagaactct 8880
tcctgggttgtc ctgggaagagc agggagctgc aggctggtcct cagggtttgg gttgtgggtga 8940
atgggtattct cctgattccaa aagggtccagc gagaactgagc tggcccatgct ttttagcttct 9000
cctctactc cttacatcca ttgaggtgtaa tcaacattact tctctttctc acaagagtgc 9060
gcttgccgca gtataactct cacatgtgctc atgtttccgcac gctgctggggca cttaccactc 9120
atctctctcct atgggtgcctt cggggtcgccag ggccggcgcct ctgaagctcag taggcgcgaca 9180
tacccctata gggccgcttac cccctgcactc ctgaccatcg cccaccatcg gctgctggttga ctgccgctc 9240
cctgggtggcct tgtggtgctgct cgggagtggc ctggtgctggg tggcaggtgaa agatactcctg 9300
accacagggaa accaggactcg aaagggtcata gagaatttgcct cttccctctct cttgctgtaaa 9360
tctcaaggac ttccgtgtgctt aggccacagtt acgcctgactcct tacgggtttag cccaccatcctc 9420
ctggctctccc aattgtactt cccagataacg aggcatgtgctt cccagacatgtt cttcatctgt 9480
accagagttt gtaacaggggac ttaaccagga cccctgtgagaa cccatatgttg tgtgcagga 9540
gagggattgcg agggatgccc tctgtgttggt tccagggccaa ggggagggct ctcagaggcttg 9600
gagggagctt tgtgagactggt tcctgagattgc gatttgcggtt tgtgatgtgttt gccttggggc 9660
agataaagctg cgctgatata cttggaaacagt cgggtatgga gaccaagttagg aatggaggtct 9720
cgtggtgggct tggagttcata gatgggttaa aatctctgctt ccgatgagtt tgggaggagtc 9780
cattaacagtt gtgggtttgct tggccactgtgc tttggtttact gatttatttt attggtggttt 9840
tggcgcggtgaa gggagtgggct atgggtgtgg cctgtctgtgt tgtgaggttct tgttgggtggc 9900
atataagtctg cttgcttggag tggacatgct cttggtgctgct ctggtggctgtc actataaaagctt 9960
aaggagctaa ttaggggggct tgtggacattc ctggtggctggc tgtgggcttgtcct 10020
cttggtgggct tgtggtgtgct tgggctgctgct ttaattttgt tgggctgggtc tttgggtttc 10080
gttctactg gggagagagc caggtggagatc agtggtgctgct cattctaatc 10140
gagggaaattc tccctctctcagc cggctcactc agggaaccagag tgggtggtggtt ggagaaactca 10200

22/27
FIGURE 6G

ggccactggc tgtgaatata cctctatcct ggtcttgaaat tgtgttattttc tattgcccatt 10260
ctgtctctct caactgtactt ggaatgtgac tgtgcttttaa gctggaaatg ggggaagatt 10320
ttgtaaactt ctgtagacac acgtgggtct gatcagcgct aaggcttttct tctggtttaa 10380
ttgacataat gaaatccacat tttttttttt aaaaatcagct aactttttat gataaacgct 10440
ttgacttta taataagatt taacaccagc attcttttct ttgattttttt ttttttgagac 10500
caaaatgaga ttttctcaatgc cacccctaaat tttttttttttttttttttttttttt 10560
acagtctggg ttctttgtctc tgtcactcag gctgagagct aagttgttga tccaatcctca 10620
tgaacccctt gaccttcgttg acttaagggc tctctctgct tcgctctcct gattgagattg 10680
bgctacagtt gctgggcacc acacccctgt aatattatat tttttttttttttttttttt 10740
aaggcttcga cttgtttgcc tccgtgctac tgtgactttct taactcagtt gattaattttc 10800
ccctggacct ccaagacca gggattgctg gcagtgaccc ctacccctgc cttgcttggca 10860
gcatttaaat ggaagttgtata aacccctctct tcaaatctcag gtagctcgg ccctttgag 10920
gctttttcag tgtgacgagac acaatcttgat cctaggagcc cagtgcaaca gaaatccecgg 10980
ctgtctagtgt acgtttcacta ggcatggagga ataggaggtt aggggcctttt accgagaccc 11040
cataatggta aagttgcaatc gattaattgg acatttctctg ggagagacctt 11100
atttttggta gggacatata tgttttttcc aaggggtttt ttagagggag caaatattgt 11160
ggggaacactt tttctgtgatg ggagatgtcga agaatccagac agtagctggcc tggccaaacgct 11220
tcttttttga gcaatctgcc aacctggagtcc gcgcttcgag ggttagttgagc 11280
ccaggaagtc tccaatctcc ctacatttctt cattctttct cattttctgagg ggtgggtgca 11340
aaggaagtaac ttgggagcctc agcaatcagag accctttttt taaaattatat gaaatcsectt 11400
ggccttttcgt ctaccccttc tatacttactc accctttttt accgagacctt gggagagctgt 11460
tgatctcaag agttggcagcc aagcctgttgc caccgacattc ctacaaatcc 11520
attaaaaagtttctggttgaatg tgtgtgcttc gtcagctatacct tggaggtgtga 11580
gacaggagaa tcggtgtgagt tcgctggagct aagctcagtg cagacctgct gcagccgcct 11640
gcactccagc tggagaaaaa gatgtgaact gcgctgttatt ttggatggataa aagatccagt 11700
gctcatacag acacccctgt cgtcccctccgc cttgctggct tttggactcttcctgta 11760
gctgacactg cgtgcttgtcag ctacccctcc gcctgtggtt ggaagtgcct 11820
cagacagtttg cctagttctag ggaaacagcct aagtgctgtgcct cctccctcccc cttccagct 11880
tttggttgg gaggatgtgg ctcagctcct cagcagcatgg gggaggttcg ggtcagctatc 11940
FIGURE 6H

taggtgccaa cagggcaagg gcgggctct gggaatgaa ggttttag ggctcctcag 12000

ggagggcccc cagcccccaaa ctgcaccacc tggccgtgga caccggt 12047
FIGURE 7

cgagcgcccc tctagttcct ggcacccagcc cccgaaggct cccgtgaccactagagggc 60
gggaggagct cctggccagt ggtggagagt ggcagaggaag cacccctagggttcctcggag 120
cccaagttta ccctcttaag tggaaattt ccccccccact ccctcttgcc ttttctccag 180
gaggggaccc agggctgttga aagttcaggg tggggcgggg acttggtgttt caggggagaa 240
cggggtgtgg aacgggacag ggacggttta gaagctgtgg qctatctcgg gaagtgggtg 300
ggggaggag cccaaacact gcacctagtc caacctattt ccacccctct tattttctgg 360
cgcctctgttc tcaagtgaccc cgggagggc ggggaagtgg agtgggagag ctaggggtgg 420
gctcctcag cttgtcgtac aggacctcga cctagctggc tttgtcccc atccccacgt 480
tagttgttgcc cttggagcata aaactagagc cccggggccc caagttccag actgcaccctc 540
ccccctcccc cggagccagg ggttggttggt tgaagggggg agggccagctg gagaacaaac 600
gggagtctag ggggtggtgc gattagagcc cttgtacccct acccaggagt gttggggagg 660
gagggagagaag aggtaggaggg taggggaggg ggcggggttt tgtcactgtc cacctgctcg 720
cgggtcctag gcggggcggg cggggagtgg ggggacccgtg ataaagccgt agggcctttggt 780
gccgctcaca cctctcaagc agccacgcgcc tgtctgatac tgttctgcc ccccccacc 840
catttaccc gacccatg 858
FIGURE 8

aagctttcacc aagtgcattt agcctctcca gtatgtgctga tgaatccca a gttcaggttc 60
aattggcgttt aaaaacttgat caaaaaagc cagacctttat atttttttac caacatctat 120
tggatttgag gaatggataa tagtcatcat gttsaaacat ctaccattcc agttaagaaa 180
atatgatagc atctttttct tagtttttct ttaataagg gcataaagcc cacaataaaa 240
aatatgcctg aagaatggga caggttgcttg gcattgtcga tgccctagtaa agtactccaa 300
gaacctatctt gatatactga tgacacaaatg tcaatgtctgt tgtacaactg ccaactggga 360
tgcaagacac tgcccatggc aatcatctcg aaaaaagagc ataataagca ggaagctact 420
tgcacacctgg tcagtgaggt ccaagatacct acag 454
FIGURE 9

g atg acc ggc tca acc atc gcg ccc aca acg gac tat gcg aac acc act 49
Met Thr Gly Ser Thr Ile Ala Pro Thr Thr Asp Tyr Arg Asn Thr Thr
 1 5 10 15

gct acc gga cta aca tct gcg cta aat tta ccc caa gtt cat gcc ttt 97
Ala Thr Gly Leu Thr Ser Ala Leu Asn Leu Pro Gln Val His Ala Phe
 20 25 30

gtc aat gac tgg gcg agc ttg gac atg tgg tgg ttt tcc ata gcg ctt 145
Val Asn Asp Trp Ala Ser Leu Asp Met Trp Trp Phe Ser Ile Ala Leu
 35 40 45

atg ttt gtt tgc ctt att att atg tgg ctt att tgt tgc cta aag cgc 193
Met Phe Val Cys Leu Ile Ile Met Trp Leu Ile Cys Cys Leu Lys Arg
 50 55 60

aga cgc gcc aga ccc ccc atc tat agg cct atc att gtt ctc aac cca 241
Arg Arg Ala Arg Pro Pro Ile Tyr Arg Pro Ile Ile Val Leu Asn Pro
 65 70 75 80

cac aat gaa aaa att cat aga ttg gac ggt ctt aca tgc tgt tct ctt 289
His Asn Glu Lys Ile His Arg Leu Asp Gly Leu Lys Pro Cys Ser Leu
 85 90 95

ctt tta cag tat gat taa
Leu Leu Gln Tyr Asp 307

100
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7: C12N15/86 C12N5/10 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEACHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7: C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5 698 443 A (HENDERSON DANIEL ROBERT ET AL) 16 December 1997 (1997-12-16) cited in the application the whole document</td>
<td>1-17, 23-28</td>
</tr>
<tr>
<td>Y</td>
<td>SEMENZA G. L. ET AL.: "Hypoxia response elements in the aldolase A, enolase l, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor I." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 51, 1996, pages 32529-32537, XP002129236 the whole document, especially Fig. 10</td>
<td>1-10, 14-17, 23-28</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Date of the actual completion of the international search: 31 January 2000

Date of mailing of the international search report: 11/02/2000

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eipo nl,
Fax: (+31-70) 340-3016

Authorized officer: Mandl, B
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 98 13508 A (DANA FARBER CANCER INST INC; KAELIN WILLIAM JR (US); FINE HOWARD A)</td>
<td>1-8, 11, 12, 14-17, 23-28</td>
</tr>
<tr>
<td></td>
<td>2 April 1998 (1998-04-02) page 3, last paragraph - paragraph 2 page 9, line 1 - line 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 10, line 36 - page 12, line 8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 96 17053 A (GENETIC THERAPY INC : HALLENBECK PAUL L (US); CHANG YUNG NIEN (US):) 6 June 1996 (1996-06-06) cited in the application the whole document</td>
<td>1-28</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

 Remark: Although claims 27 and 28, as far as in vivo application is concerned, are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. [] Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest.

[] No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5698443 A</td>
<td>16-12-1997</td>
<td>AU 6393296 A</td>
<td>30-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2222457 A</td>
<td>16-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0844888 A</td>
<td>03-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11508770 T</td>
<td>03-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9701358 A</td>
<td>16-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5871726 A</td>
<td>16-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0922110 A</td>
<td>16-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 648261 B</td>
<td>21-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6185390 A</td>
<td>03-04-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 694685 B</td>
<td>23-07-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7058496 A</td>
<td>16-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2066053 A</td>
<td>19-02-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0487587 A</td>
<td>03-06-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4507196 T</td>
<td>17-12-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5662896 A</td>
<td>02-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 910280 A</td>
<td>07-03-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5716826 A</td>
<td>10-02-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5591624 A</td>
<td>07-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5691177 A</td>
<td>25-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5716832 A</td>
<td>10-02-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5888502 A</td>
<td>30-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5997859 A</td>
<td>07-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5856185 A</td>
<td>05-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5716613 A</td>
<td>10-02-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5851529 A</td>
<td>22-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5830458 A</td>
<td>03-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2206179 A</td>
<td>06-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0791050 A</td>
<td>27-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 972225 A</td>
<td>16-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10509880 T</td>
<td>29-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 972373 A</td>
<td>25-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5998205 A</td>
<td>07-12-1999</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 1992)