Title: MOLDED COSMETIC APPLICATORS AND MOLD THEREOF

Abstract: A molded cosmetic applicator head having a core that supports an array of semi-conical bristles arranged in rows and columns, such that the surfaces of the bristles assume certain orientations, and wherein at least some of the bristles have at one or more prominent depressions and/or prominent protrusions located on a curved surface. A mold for an injection molded applicator head is also described.
MOLDED COSMETIC APPLICATORS AND MOLD THEREFOR

FIELD OF THE INVENTION

The invention is in the field of molded cosmetic applicators, especially for delivering a high volume of product to the eyelashes, and for grooming the eyelashes and eyebrows.

BACKGROUND

Mascara brushes having a molded rod (core) and/or bristles are known. The rod and bristles may be integrally molded simultaneously, in one molding cycle, or parts of the applicator may be formed in successive molding cycles. Being able to form a complete applicator in one molding cycle is a significant advantage in time and cost.

It is common for the molded bristles or tines to taper down toward the free end of the bristle. One example of this is a conical bristle, although other tapered shapes have been used (see for example US2006-0070635). Molded bristles in various other shapes are also known (i.e. US7,503,093; US7,992,577; US8,336,560; US2012-0170965; US2012-0192892). It is also known to form the bristles with one or more depressions, protrusions or other features that are, in some way, intended to affect the performance of the brush (i.e. US7,503,093 especially figures 30 and 52).

None of the foregoing discloses a molded cosmetic applicator having semi-conical bristles with at least two depressions and/or protrusions located only on the curved surface of the semi-cone, wherein the bristles and applicator core are integrally molded in one molding cycle.

Objects of the Invention

A main object of the invention is to provide a molded cosmetic applicator having semi-conical bristles with at least two depressions and/or protrusions located only on the curved surface of the semi-cone.

Another main object of the invention is to provide a method of making the foregoing applicator wherein the bristles and applicator core are integrally molded in one molding cycle.
Summary
We disclose a molded cosmetic applicator head having a core that supports an array of semi-conical bristles arranged in rows and columns, such that the surfaces of the bristles assume certain orientations, and wherein at least some of the bristles have at one or more depressions and/or protrusions located on a curved surface. The bristles and applicator core are integrally molded in one injection molding cycle. Protrusions along the height of the bristles provide improved separation of hairs and better definition. Depressions along the height of the bristles act as reservoirs of product, so that the present invention delivers more product than a conventional applicator head. This applicator head can be used for eyelash makeup and treatment products, as well as eyebrow makeup and treatment products.

Descriptions of the Figures
Figure 1 is a cross sectional view of an eight section mold ready to be filled with molten material.

Figure 2 shows the 8 section mold as it begins to separate to release a newly formed applicator head. Each mold section slides along a flat surface of a bristle.

Figure 3 is a cross sectional view of a newly molded rod with bristles free of the mold.

Figure 4 is a perspective view of an eight section mold and molded applicator head therein. One section of the eight section mold is not shown for clarity.

Figure 5 shows one section of the mold of figure 4.

Figure 6a is a perspective view of one embodiment of an applicator head having semi-conical bristles comprising multiple depressions on the rounded surface and no surface features on the flat surface. Figure 6b is a close up of a portion thereof, and figure 6c shows one of the bristles.

Figure 7a is a perspective view of one embodiment of an applicator head having semi-conical bristles comprising multiple depressions on the rounded surface and no surface features on the flat surface. Figure 7b is a close up of a portion thereof, and figure 7c shows one of the bristles.

Figure 8 shows an embodiment of the bristles with multiple flat walled depressions.

Figures 9 and 10 show two different embodiments of semi-conical bristles with multiple protrusions (P).
Figures 11a and 11b show one embodiment of the semi-conical bristles with multiple protrusions (P) and multiple depressions (D).

Figures 12a and 12b show another embodiment of the semi-conical bristles with multiple protrusions (P) and multiple depressions (D).

Figure 13a-d show several dimensions of some preferred embodiments of the bristles.

Figures 14a-b show an applicator head (10) with 5 columns of bristles symmetrically arranged, and its assembly to a handle.

Figure 15 shows an applicator head with 4 columns of bristles symmetrically arranged.

Figure 16 shows an applicator having two columns of bristles, non-symmetrically arranged.

Definitions

Throughout the specification, the word “comprise” (or its conjugates) means that a collection of objects is not necessarily limited to those objects explicitly recited.

By “cone” we mean a right circular cone.

Strictly speaking, the terms “semi-cone” and “semi-conical” include a cone whose base is a semi-circle (i.e. the arc of the base measures 180°). For convenience, however, “semi-cone” and “semi-conical” will also include a cone whose base is a circular segment having an arc of about 160° to no more than 180°.

Throughout the specification, the “proximal end” of the applicator head is the end nearer to a handle, as described below. The “distal end” of the applicator head is the end farther from the handle.

Detailed Description

Mascara applicators typically comprise a handle, a rod or core extending from the handle, and an array of bristles projecting from the core. The present invention contemplates specific bristle shapes integrally molded with the core, in one molding cycle. The molded core and bristles may be referred to as the applicator head. The handle may also be integrally molded with the applicator head, or the applicator head may be attached to a handle at a later time.
THE MOLD

Figures 1 – 4 depict molds according to the present invention that are suitable for forming bristles according to the present invention. Such a mold (2) comprises a number of separable mold sections (2a). When assembled, the mold sections define a mold cavity (1), into which plastic or elastomeric material will be injected. The mold cavity comprises a core space (1a) and a number of bristle spaces (1b). The core space has a longitudinal axis that extends along the length of the core space. The number of bristle spaces is equal to the number of bristles (10b) in a finished applicator head (10) that is formed from the mold.

10

Mold Sections

A mold (2) according to the present invention, comprises a number of mold sections (2a), that when assembled, form the mold cavity (1). Each mold section has a sculpted lateral face (2b) and a flat lateral face (2c). The sculpted lateral face is flat except for bristle spaces (1b) cut into it. Each bristle space opens up onto the sculpted lateral face. In contrast, the flat lateral face is continuously flat, and has no bristle spaces therein.

Generally, one or more sections (2a) of the mold (2) may differ from one or more other sections of the mold. However, in the more preferred embodiments of the invention, the multiple sections of the mold are substantially identical, so that a molded applicator head has cylindrical symmetry along its length. Preferably, each mold section (2a) is shaped as a truncated solid circular sector (as in figures 1-4), characterized by a sculpted lateral face (2b), a flat lateral face (2c), and an interior face (2d).

The sculpted lateral face (2b) and flat lateral face (2c) have a relative orientation defined by a central angle, γ. For example, in figures 1-4, we show eight identical sections in a mold, so each mold section fills an angle of $360^\circ / 8 = 45^\circ$. More generally, we define M as the number of mold sections. When each mold section is the same size, the central angle, γ, of each mold section is $360^\circ / M$. For example, when there are six sections in the mold, each mold section fills an angle of 60°. For a ten section mold, that would be 36°, for a twelve section mold, 30°, etc.

In an assembled mold, the interior faces (2d) define the core space (1a) and the shape of the core (10a) of the molded article. (Note: In figure 4, axis A represents
both the longitudinal axis of the core space and the longitudinal axis of a molded applicator head.) In some preferred embodiments, the interior faces are curved, such that the core of the molded article will have a circular cross section. Preferably, the interior faces define a core that is approximately cylindrical. Alternatively, if the interior faces are straight, then the core would have a polygonal cross section.

Optionally, the interior faces may define a core that has wider and narrower portions. In this case, the width (δ, see figure 1) of one or more mold sections varies along the length of the mold section. For example, in the figures, the core of the applicator head is wider in the middle (i.e. the mold sections are narrower in the middle, see figure 5, for example) and tapers toward either end (i.e. the mold sections are wider at the ends).

The more sections (2a) in a mold, the more flexibility there is in designing cosmetic applicators of the present invention. However, increasing the number of mold sections makes the mold more difficult to operate in a commercial manufacturing environment. Therefore, in preferred embodiments, M = 2 – 12. Molds with 5, 6, 10 or 11 sections (i.e. γ = 72°, 60°, 36° or 32.72°, respectively) are more preferred. Molds with 7 sections (γ = 51.43°) or 9 sections (γ = 40°) are still more preferred, and exactly 8 sections (γ = 45°) is most preferred. Of course, when there are relatively fewer columns of bristles (i.e. 4, 3 or 2; γ = 90°, 120°, 180°), then the applicator performs more like a comb and less like a brush, but this is still within the scope of the present invention.

Bristle Spaces

In preferred embodiments, bristle spaces (1b) are regularly arranged in columns that extend down the core space (1a), parallel to the longitudinal axis of the core space. In an assembled mold, a column of bristle spaces is defined by adjacent mold sections (2a) that contact each other. The number of columns in a mold equals the number of mold sections, M. This is because each mold section has one column of bristle spaces cut into its sculpted lateral face (2b, see figure 5). The number of bristle spaces in a column along the length of the core space will typically range from 5 to 50, preferably from 10 to 40, more preferably from 20 to 35 bristle spaces. For example, the mold (2) of figure 4 has eight columns with 35 bristle spaces in each
column, extending down the core space, parallel to the longitudinal axis of the core space.

In preferred embodiments, bristle spaces (1b) are regularly arranged in rows, each row lying on a circumference of the core space (1a), in a plane that is perpendicular to the longitudinal axis of the core space. It may be appreciated that the maximum number of bristle spaces in a row is equal the number of mold sections, M. This is because each mold section may contribute only one bristle space or no bristle spaces to each row. In some preferred embodiments, all rows have M bristle spaces that are evenly spaced around a circumference of the core space.

In the most preferred embodiments, bristle spaces are regularly arranged in columns and rows. The bristle spaces of the mold typically extend radially from the core space, so that in a molded applicator head, the bristles (10b) extend radially from the core (10a) of the applicator head. In terms of releasing the finished part from the mold without damaging the bristles, a row and column arrangement of radial bristle spaces is most preferred, but may not be absolutely necessary in every embodiment.

As noted above, each mold section has a sculpted lateral face (2b) and a flat lateral face (2c). In the assembled mold, a bristle space is defined by the sculpted lateral face of one mold section contacting the flat lateral face of an adjacent mold section. Thus, every bristle space in the mold has at least one flat face (1c) that extends the length of the bristle space. This flat face is free of features, such as prominent protrusions and prominent depressions, and is a characterizing feature of the bristle spaces of a mold according to the present invention.

The other sides of the bristle spaces (1b) may comprise flat and/or rounded portions, and the horizontal cross section of the bristle space could be any conceivable shape, only limited by the ability to machine the mold section. Preferred, however, is a bristle space having a horizontal cross section that is shaped as a circular segment that has an arc that ranges from about 160° to no more than 180°, and whose radius decreases as you move from base to tip. Such a bristle space would have a semi-conical profile comprised of a flat face (1c) and a curved face (1d).

Preferably, the bristle space would have a rounded tip (1e, see figure 5, for example). The remainder of each bristle space may be shaped to have one or more depressions, one or more protrusions, or both on the curved face of the semi-conical bristle space, while the flat face has no such features. Preferably, each semi-conical
bristle space has at least two depressions and/or protrusions located on its curved surface. These depressions and or protrusions are deliberately machined into the bristle space, and do not arise as a result of random, macroscopic or microscopic surface irregularities.

THE APPLICATOR HEAD

An applicator head (10) comprises core (10a) and an array of bristles (10b) projecting from the core. The present invention contemplates specific bristle shapes integrally molded with the core, in one molding cycle.

The Core

The core (10a) of the applicator head is integrally molded with the bristles (10b). The core may be of solid material or it may have a hollowed interior portion. A hollowed interior portion would require an additional die in the molding operation. Preferably, the core has a circular cross section. In some embodiments, the core is approximately cylindrical. Alternatively, the core may have wider and narrower portions. For example, in the figures, the core is wider in the middle and tapers toward either end.

In some embodiments (see figures 14a and 14b, for example), a stem portion (10f) which is free of any bristles (10b) may depend from the proximal end (10g) of the core (10a) of the applicator head (10). The stem portion may have a diameter that is reduced compared to the diameter of the core. The reduced diameter is designed to facilitate the attachment of a handle. For example, a typical handle (4) may comprise a closure (4a) that is able to attach to a reservoir of product. The handle may also comprises a rod (4b). The stem of the applicator head (10) may be retained in a hollow portion (4c) of the rod. Alternatively, the core (10a) of the applicator head (10) may have a hollowed portion that opens onto the proximal end (10g) of the core. This hollowed portion may be designed to receive and retain the rod (4b) of a handle (4). In general, the handle is of a type that is suitable for manipulating an eyelash or eyebrow cosmetic applicator, as known in the art. A typical handle may have a threaded engagement (4d) for attaching to a reservoir of product.
Bristles

Each bristle space (1b) in the mold (2) will give rise to one bristle (10b) in a molded applicator head (10). Thus, the number of bristles in a finished applicator head is equal to the number of bristles spaces in the mold. As noted above, every bristle space (1b) in the mold has a flat face (1c) that extends the length of the bristle space. Consequently, every bristle in a molded applicator head will have a flat surface (10c) that extends the full height, H, of the bristle, and that is free of surface features such as protrusions and depressions (see figure 3). This is a characterizing feature of the bristles of the present invention.

A bristle molded in a bristle space according to the preferred embodiment described above, is semi-conical, comprising a flat surface (10c), a curved surface (10d), and a rounded tip (10e). Each bristle would also have one or more prominent surface features on its curved surface. Prominent surface features may include depressions, protrusions, or any combination thereof. A prominent depression on the curved face (1d) of the bristle space (1b) gives rise to a prominent protrusion on the curved surface (10d) of the bristle. Likewise, a prominent protrusion on the curved face of the bristle space gives rise to a prominent depression on the curved surface of the bristle. Preferably, each semi-conical bristle has at least two prominent depressions and/or prominent protrusions located on its curved surface. More preferably, in an applicator head, at least some of the bristles have from 4 to 8 prominent depressions and/or prominent protrusions. Even more preferably, in an applicator head, at least some of the bristles have from 9 to 12 prominent depressions and/or prominent protrusions.

In contrast, the flat surface (10c) of the bristle (10b) has no prominent depressions or prominent protrusions. Referring to figures 6a and 6b, in a column, C, of bristles, all of the flat surfaces lie in the same plane and are parallel to the longitudinal axis, A, of the applicator head. In a row of bristles, the flat surfaces of adjacent bristles are oriented to each other at an angle, \(\gamma = 360^\circ / M \) (45° in figure 4, for example). These orientations are a characterizing feature of the invention, and are important. For example, in a cosmetic applicator according to the present invention, as the bristles are drawn through the hair, the hair has a lot of contact with the curved surfaces of the bristles, and with the depressions and/or protrusions, thereon. In contrast, the hair has relatively little contact with the flat surfaces of the
bristles. When the present invention is implemented as a mascara brush, the depressions in the bristles tend to be more useful for depositing a lot of product on the eyelashes, while the protrusions in the bristles tend to be more useful for separating and grooming the eyelashes. Furthermore, this orientation of the flat and curved surfaces allows the molded applicator head to be ejected from the mold easily, with no damage.

Within the limits herein described, the semi-conical bristles (10b) in an applicator head (10) may have any size and spacing suitable for its intended functions, e.g., application, arrangement, and/or separation of human hairs, such as eyelashes. Also, all the bristles in a single applicator head may be same or different. For example, all the bristles in a single applicator head may be same height, H, or not. Figure 4 shows an example where the height of the bristles varies along the length of the core (10a), being taller toward the middle of each column, and shorter toward the ends of each column. Or, for example, within each row, the bristles may be the same height or different.

The prominent protrusions and/or prominent depressions of the bristles may be any suitable size or shape. From one bristle to the next, the sizes and shapes of the protrusions and/or depressions may be the same or different, and they may be located at the same height along each bristle or not. On any given bristle, the protrusions and/or depressions may be symmetrically located or not. In some preferred embodiments, a prominent depression is concavity below the curved surface (10d) of a bristle that has a depth between 0.1mm and 1.2mm, more preferably from about 0.2mm to about 0.8mm, and most preferably from about 0.3mm to about 0.6mm; and a width (i.e. largest lateral dimension) of 0.01mm to 0.15mm, more preferably from about 0.05mm to about 0.12mm, and most preferably from about 0.08mm to about 0.10mm. In some preferred embodiments, a prominent protrusion is convexity above the curved surface of a bristle that has a height between 0.1mm and 1.2mm, more preferably from about 0.2mm to about 0.8mm, and most preferably from about 0.3mm to about 0.6mm; and a width (i.e. largest lateral dimension) of 0.01mm to 0.3mm, more preferably from about 0.05mm to about 0.15mm, and most preferably from about 0.08mm to about 0.7mm. Thus, a “prominent depression” or “prominent protrusion” includes intentional surface features
that result from machining the bristle space (1b), but does not include random, microscopic irregularities in the surface of the bristle material.

Several embodiments of bristle types according to the present invention are shown in the figures. These will be described in comparison to a semi-conical bristle that has no prominent surface features. Throughout the drawings, prominent depressions will be denoted by D, and prominent protrusions by P.

Bristles With Prominent Depressions

Figure 3: Each semi-conical bristle (10b) has two prominent depressions (D) in the rounded surface (10d).

Figures 6a-c: The bristles (10b) nearer the ends of the core (10a) have four completely formed prominent depressions (two on a first side of the bristle, and two on a second side of the bristle). Toward the middle of the core, the bristles have six completely formed prominent depressions, three on each side. In between, some bristles have four completely formed prominent depressions and two partially formed depressions, because the height of these bristles was able to accommodate such. A mold section (2a) that might be used to create the applicator head of figure 6 is shown in figure 5, where it is clear that the bristle spaces (1b) nearer to the middle of the mold section are longer than those nearer the ends.

Figures 7a-7c: The bristles (10b) nearer the ends of the core (10a) have six completely formed depressions (three on a first side of the bristle, and three on a second side of the bristle). Toward the middle of the core, the bristles have ten completely formed depressions, five on each side. In between, some bristles have a mix of completely formed depressions and partially formed depressions.

Figure 8: The depressions of the bristles in figures 6 and 7 are rounded. In contrast, a bristle having flat walled depressions (D) on the rounded surface (10d), is shown in figure 8. As usual, no surface features are present on the flat surface (10c), which is not visible in figure 8.

Bristles With Prominent Protrusions

Figure 9: Each semi-conical bristle (10b) has six protrusions (P), on the rounded surface (10d), and no surface features on flat surface (10c).
Figure 10: Each semi-conical bristle (10b) has ten protrusions (P), on the rounded surface (10d) and no surface features on flat surface (10c), which is not visible in figure 10.

5 Bristles With Prominent Protrusions and Prominent Depressions

Figures 11a and 11b: Each semi-conical bristle (10b) has three depressions (D), and six protrusions (P) on the rounded surface (10d).

Figures 12a and 12b: Each semi-conical bristle (10b) has four depressions (D), nine protrusions (P1) of one type, and three protrusions (P2) of a second type, all on the rounded surface (10d).

In all cases, the protrusions and/or depressions are located on the rounded surface (10d) of an otherwise semi-conical bristle. In every embodiment, the flat surface (10c) is free of any prominent surface features. This is characteristic of the present invention.

15 Other Embodiments

Figure 14b shows an applicator head (10) with 5 columns of bristles symmetrically arranged. Figure 15 shows an applicator head with 4 columns of bristles symmetrically arranged. In general, however, the columns of bristles do not have to be symmetrically arranged. For example, figure 16 shows an applicator having two non-symmetrically arranged columns of bristles.

Dimensions

Referring to figures 13a-d, several dimensions of some preferred embodiments of the bristles may be noted. Other dimensions are possible, but the following dimensions are preferred based on bristle performance, and molding and demolding considerations.

Angle W ranges from 0° to about 20°, preferably 5° to 15°, more preferably 5° to 10°. When W = 0°, the bristle has an exactly semi-circular cross section. A value of 0 < W ≤ 20° means that the cross section is a circular segment having an arc of about 160° to 180°, which may make release from the mold somewhat easier.

Angle X, the base angle of the semi-cone, is about 1° to about 15°, preferably, 2° to 10°, more preferably 3° to 5°.
Y, the width of the base of a bristle, measured across the flat surface (10c) of the bristle, is about 0.1 mm to about 2 mm, preferably 0.2 mm to 1.5 mm, more preferably 0.3 mm to 0.9 mm.

Angle Z is about 3° to about 12°, preferably 3° to 8°, more preferably 3° to 5°.

H, the height of the bristles will range from about 0.1 mm to about 10 mm, preferably from 0.5 mm to 7 mm, and more preferably from 0.8 mm to 5 mm.

Material

Exemplary materials that can be used in the present invention to mold cosmetic applicator heads include, but are not limited to: silicone elastomers, thermoplastic elastomers (such as, for example, styrene-ethylene-butylene-styrene block copolymer - SEBS), vinyl elastomers (EVA), thermoplastic polyester elastomers (Hytrel® from Dupont de Nemours), thermoplastic polyurethane elastomers (pellethane® from Dow Plastic), Nitrile, and EPDM. Hardness of the chosen material preferably ranges from about 35 MPa (35 shore D Hytrel® from Dupont de Nemours) to about 1180 MPa (82 shore D Hytrel®). More preferably the tensile modulus ranges from about 95 MPa (45 shore D Hytrel®) to about 570 MPa (72 shore D Hytrel®). Most preferably, tensile modulus ranges from about 200 MPa (55 shore D Hytrel®) to about 280 MPa (63 shore D Hytrel®).

Release From the Mold

Applicator heads as described herein, are preferably made by injection molding. When a set of mold sections (2a) are assembled, a mold cavity (1) is defined. Access into the mold cavity is through an opened end of the core space (1a). Molten material may be injected into the mold cavity through the opened end. When a molded applicator head is to be released from the assembled mold (2), the flat faces (2c) of the mold sections (2a) are made to move away from each other radially, and parallel to the flat faces (10c) of the bristles (10b). This is most easily seen in figures 2 and 3. One or more sections of the mold may move simultaneously to release the molded component. Preferably, all sections of the mold move simultaneously to release the molded component, as this would put the least amount of stress on the molded bristles. For example, in a mold with eight sections, the mold sections retreat from each other at 45° increments. For a mold with ten sections, the
mold sections retreat from each other at 36° increments, and for a mold with twelve sections, the mold sections retreat from each other at 30° increments, etc. Preferably, the prominent depressions and prominent protrusions have a draft angle that ranges from about 1° to about 25°. This, along with the orientation of the flat and curved surfaces described above, makes it more likely that the sculpted face (2b) of a mold section will pull away from the molded applicator head without subjecting the bristles to any appreciable stress, especially when both of the mold sections that define a bristle separate simultaneously.
What is Claimed is:

1. A molded cosmetic applicator head comprising:
 a core having a longitudinal axis, and
 an array of bristles projecting from the core, arranged in rows and columns,
 wherein:
 each bristle comprises a flat surface that extends the height of the bristle,
 and a rounded surface;
 within each column of bristles, all of the flat surfaces lie in the same plane
 and are parallel to the longitudinal axis of the core;
 within each row of bristles, the flat surfaces of adjacent bristles are oriented
 to each other at an angle $\gamma = 360^\circ / M$ degrees, where M is the number
 of columns; and
 one or more prominent depressions and/or prominent protrusions are
 located on the rounded surfaces of at least some of the bristles, but not
 on the flat surfaces of any of the bristles.

2. An applicator head according to claim 1 wherein each bristle has a horizontal cross
 section that is shaped as a circular segment having an arc of about 160° to no
 more than 180°.

3. An applicator head according to claim 2 comprising from 2 to 12 depressions
 and/or protrusions located on the rounded surface of at least some of the bristles.

4. The applicator head of claim 2 comprising from 5 to 50 rows bristles.

5. The applicator head of claim 2 comprising from 2 to 12 columns of bristles.

6. The applicator head of claim 2 wherein the core is approximately cylindrical.

7. The applicator head of claim 2 wherein the core is wider in the middle and tapers
 toward either end.
8. A cosmetic applicator comprising a molded applicator head according to claim 1 and a handle attached to the core of the applicator head, the handle having a threaded engagement.

9. A mold for an injection molded applicator head comprising a number, M, of separable mold sections that when assembled, define a mold cavity, wherein each mold section fills an angle of $360^\circ / M$; each mold section comprises an interior face, a flat lateral face, and a sculpted lateral face; the interior faces define a core space that has a longitudinal axis that extends along the length of the core space; the sculpted lateral faces are flat except for number of bristle spaces cut into them, such that the bristle spaces are regularly arranged in M columns that extends down the core space, parallel to the longitudinal axis.

10. The mold according to claim 9 wherein each bristle space comprises base and a tip, and wherein a horizontal cross section of the bristle space is shaped as a circular segment having an arc of about 160° to no more than 180°, and whose radius decreases as you move from base to tip.

11. The mold according to claim 10 comprising from 2 to 12 prominent depressions and/or prominent protrusions located on the rounded surface of at least some of the bristles spaces.

12. The mold of claim 10 wherein each sculpted lateral face has from 5 to 50 bristle spaces.

13. The mold of claim 10 wherein $M = 2 - 12$.

14. The mold of claim 10 wherein the core space is approximately cylindrical.

15. The mold of claim 10 wherein the core is narrower in the middle than at the ends.
16. The mold of claim 11 wherein the prominent depressions and prominent protrusions have a draft angle that ranges from about 1° to about 25°.
A. CLASSIFICATION OF SUBJECT MATTER

A45D 34/04(2006.01)i, B29C 45/26(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A45D 34/04; A45D 40/26; A46B 1/00; A46B 9/02; A46B 11/00; B29C 45/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: bristle, mascara, bumpy, shape, flat surface, rounded surface, angle, depression, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2012-085398 A2 (MONTAIGU DEVELOPPEMENT) 28 June 2012 See paragraphs [0031], [0032], and [0036]: and figures 1-10.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 2006-0070035 A1 (KORBERT KUNO DIONYS DUMLER et al.) 06 April 2006 See paragraphs [0028]-[0043] and figures 1-11.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0229246 A1 (DANIELA KULIK) 22 September 2011 See paragraphs [00381]-[0108] and figures 1a-11d.</td>
<td>1-16</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ❌ See patent family annex.

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

&* document member of the same patent family

Date of the actual completion of the international search 28 October 2014 (28.10.2014)

Date of mailing of the international search report 28 October 2014 (28.10.2014)

Name and mailing address of the ISA/KR

International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea

Authorized officer

NHO, Ji Myong

Facsimile No. +82-42-472-7140

Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1575386 A2</td>
<td>21/09/2005</td>
</tr>
<tr>
<td>WO 2012-085398 A2</td>
<td>28/06/2012</td>
<td>EP 2654490 A2</td>
<td>30/10/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2969470 A1</td>
<td>29/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-0319451 A1</td>
<td>05/12/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-085398 A3</td>
<td>26/10/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-085398 A4</td>
<td>20/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2582009 A1</td>
<td>13/04/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101031221 A</td>
<td>05/09/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101031221 B</td>
<td>01/09/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-514311 A</td>
<td>08/05/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4621741 B2</td>
<td>26/01/2011</td>
</tr>
<tr>
<td>US 2008-0011317 A1</td>
<td>17/01/2008</td>
<td>CN 101103859 A</td>
<td>16/01/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101103859 B</td>
<td>19/10/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2903385 A1</td>
<td>18/01/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2903385 B1</td>
<td>22/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-018245 A</td>
<td>31/01/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-212424 A</td>
<td>17/10/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-223800 A</td>
<td>31/10/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5393007 B2</td>
<td>22/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8096306 B2</td>
<td>17/01/2012</td>
</tr>
</tbody>
</table>