Office de la Propriete Canadian CA 2365427 A1 2003/06/19

Intellectuell Intellectual P
du Canada Office P oy 2 365 427
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2001/12/19 (51) Cl.Int.//Int.Cl.” GO6F 11/30, GO6F 11/07

(41) Mise a la disp. pub./Open to Public Insp.: 2003/06/19 (71) Demandeur/Applicant:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(72) Inventeur/Inventor:
WILDING, MARK F., CA

(74) Agent: ROSEN, ARNOLD

(54) Titre : APPAREIL ET METHODE DE CONTROLE DES DEFAUTS INTERNES DE PRODUITS
(54) Title: INTERNAL PRODUCT FAULT MONITORING APPARATUS AND METHOD

22 10

\glyice MONToR

2o 32% T~ | s44TEM

£\ M M LAlc Mon o4&
20

i \

L STANDALD W(ONTROLNINTERFALE
N e B

Al SR el - oy

— | sv9Tem lafotmatioad | 28
F AP

PR MMEY

seane | | 2ace || 3 l —
}{ OPERATING SYSTEM N

' il e —a - e m wm A P a g Ay b T gl e, A + gl e B, s . g - 1N el Pa wm e = R AT W o wle by P VR Rt v = Sy A PE v - W e am e~ . - ']

18

(57) Abrége/Abstract:
A method and system for monitoring and maintaining a primary service, its associated services and requisite system resources

on a computer system. The system Includes a fault monitor component and a system monitor component. The fault monitor
component monitors and maintains the availability of the primary service, its associated services and the system monitor
component. The system monitor component monitors and maintains the availability of the system resources. In the event of a
fault In the primary service, its associated service or the system monitor component, the fault monitor component may notify an
administrator, restart the service or take other corrective action. The operation of the fault monitor component is ensured through
the operating system which will restart the fault monitor component in the event of a failure.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

10

CA 02365427 2001-12-19

INTERNAL PRODUCT FAULT MONITORING APPARATUS AND METHOD
ABSTRACT

A method and system for monitoring and maintaining a primary service, its associated
services and requisite system resources on a computer system. The system includes a fault monitor
component and a system monitor component. The fault monitor component monitors and maintains
the availability of the primary service, its associated services and the system monitor component.
The system monitor component monitors and maintains the availability of the system resources. In
the event of a fault in the primary service, its associated service or the system monitor component,
the fault monitor component may notify an administrator, restart the service or take other corrective
action. The operation of the fault monitor component is ensured through the operating system which

will restart the fault monitor component in the event of a failure.

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

INTERNAL PRODUCT FAULT MONITORING APPARATUS AND METHOD

FIELD OF THE INVENTION

The present invention relates to computer systems and, in particular, to a system and method

for monitoring and maintaining a service, its associated services and system resources.

BACKGROUND OF THE INVENTION

Users of computer technology are increasingly concerned with maintaining high availability
of critical applications. This is especially true of enterprise users that provide a computer-
implemented service or interface to customers. Maintaining continuous operation of the computer
system is of growing importance for many businesses. Some estimates place the cost to United
States businesses of system downtime at $4.0 billion per year.

The reasons for software failure fall into at least two categories. First, the software product
may fail if the system resourcés become inadequate for the needs of the software product. This
problem may be characterized as an inadequate or unhealthy operating environment. Second, even
in a healthy operating environment, a software product may fail due to software defects, user error
or other causes unrelated to the operating environment resources.

There are existing stand-alone monitoring products which monitor the operating system to
gather data regarding system performance and resource usage. This information is typically
displayed to the user upon request, usually in a graphical format, so that the user can visually assess
the health of the operating environment during operation of one or more applications or services.

There are also existing fault monitors for use in a clustering environment that will identify
a failed system, application or service and will restart the application or service or will move the
application or service to another system in the cluster. Clustered environments are the most common
approach to providing greater availability for critical applications or services. However, clustering
technology tends to be compiex, difficult to configure, and uses expensive proprietary technology.
A clustered environment fails to provide adequate availability for various reasons, including the
increased amount of hardware which increases the potential for hardware failure, the unfamiliarity

of clustering to most system administrators, instability in the clustering software itself which will

CA9-2001-0047 1

10

15

20

25

CA 02365427 2001-12-19

cause failure of the entire cluster, and network or communication problems.

It would be advantageous to provide higher availability for software products through
limiting or correcting for software product failures whether caused by inadequate system resources

or by problems unrelated to the system resources.

BRIEF SUMMARY OF THE INVENTION

The present invention comprises a system for increasing availability of a primary service on
a computer, the system includes a system monitor component, wherein the system monitor
component determines the status of system resources and is responsive to the status of the system
resources, and a fault monitor component, wherein the fault monitor component determines the
status of services, including the primary service and the system monitor component, and is
responsive to the status of the services.

In another aspect, the present invention provides a method of increasing availability of a
primary service on a computer system, the method includes the steps of providing a system
monitoring component that determines the status of system resources; comparing the status of
system resources against predetermined parameters for system resources and taking action in
response to recognizing deficient system resources; providing a fault monitoring component that
determines the status of the primary service and the status of the system monitoring component;
taking action in response to recognizing an unhealthy status of the primary service; and taking action
in response to reco gnizinlg an unhealthy status of the system monitoring component.

In yet another aépect, the present invention provides a computer program product that
includes a computer readablé medium carrying program means for increasing availability of a
primary service on a computer system, the computer program product including code means for
implementing the above described method. In a further aspect, the computer program product
further includes code means for implementing the primary service.

Other aspects and features of the present invention will become apparent to those ordinarily
skilled in the art upon review of the following description of specific embodiments of the invention

in conjunction with the accompanying figures.

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made, by way of example, to the accompanying drawings which show
a preferred embodiment of the present invention, and in which:

Figure 1 shows a block diagram of a system according to the present invention;

Figure 2 shows a flowchart of a probe calling method for a fault monitor according to the
present invention; '

Figure 3 shows a flowchart for the operation a system monitor according to the pfesent
invention; '

Figure 4 shows a flowchart of a method of operation of a fault monitor according to the

present invention; and

Figure 5 shows a flowchart of a method of operation of a fault monitor coordinator according

to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference is first made to Figure 1 which shows a block diagram of a system 10 according
to the present invention. The system 10 is embodied within a general purpose computer or
computers, clustered or uﬁclustered. The computer(s) include hardware 28 and an operating system
12. Functioning or running upon the operating system 12 are one or more services. One of the
services is a primary service 14, which comprises the main application program or software product
that is required by a user, for example the DB2™ application program. The primary service 14 may
employ other services denoted by references 16 and 18 to assist in performing its functions. For
example, the primary service 14 such as the DB2™ application may employ an internet browser
service such as the Netscape Navigator™ product or the Microsoft Internet Explorer™ product as
a part of its functionality. In addition, there may be application programs or services (not shown)
operating upon the system 10 tl;at are ﬂdt used in conjunction with the primary service 14.

Also functioning upon the operating system 12 are a service monitor 22 and a system monitor
24. The service monitor 22 monitors the primary service 14 and any of the associated services 16
and 18, including the system monitor 24. The system monitor 24 monitors the operating

environment through system information application program interfaces, or APIs 26, which provide

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

status information rega;ding the operating system 12 and the system hardware 28. In one
embodiment, the system information APIs 26 are provided by a standard control interface 20.

The service monitor 22 ensures that the primary service 14 and its associated services 16 and
18 continue to function w1thm prescribed parameters. In the event that the service monitor 22
detects abnormalities in the operation of the primary servicel4 or its associated services 16 and 18,
such as a program crash, program freeze or other error, the service monitor 22 takes corrective
action. Such corrective action may include generating and sending an alert to a system
administrator, restarting the failed service, and other acts, as will be described in greater detail
below.

In addition to monitoring the primary service 14 and its associated services 16 and 18, the
service monitor 22 also monitors the system monitor 24 to ensure it continues to function within
prescribed parameters. The sérvice monitor 22 will take corrective action in the event that the
system monitor 24 malfunctiqns. -

The system monitor 24 assesses the availability of resources 1n the operating environment
that are required by the primary service 14. Examples of the resources that may be monitored are
processor load, hard disk space, virtual memory space, RAM and other resources. The system
monitor 24 monitors these resources and assesses their availability against prescribed parameters for
safe operation of the primary service 14 and its associated services 16 and 18. If the system monitor
24 determines that a resource’s availability has fallen below a prescribed parameter, then the system
monitor 24 may take corrective action. Such corrective action may include generating and sending
an alert to a system administrator, adjusting the operation of the primary servicel4 such that fewer
resources are required, adding additional resources, terminating the operation of one or more other
application programs or serviéeé, and other acts.

The service monitor 22 may include a fault monitor coordinator (FMC) 30 and various
dedicated fault monitors (FM) 32, indicated individually by references 32a, 32b, 32¢ and 32d in
Figure 1. An instance of a fault monitor 32 is created for each instance of a service 14, 16, 18 and
24 that the service monitor 22 oversees. Each individual fault monitor 32 has responsibility for
monitoring the instance of a single service. In the event that a fault monitor 32 detects an

abnormality in the service (i.e. 14, 16, 18 or 24) that it is monitoring, the fault monitor 32 takes

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

corrective action. The fault monitor coordinator 30 manages the creation and coordination of the
various fault monitors 32 and ensures that the fault monitors 32 continue to operate. Collectively,
the fault monitor coordinator 30 and the fault monitors 32 monitor the services on the system 10 to
ensure that they remain alive and avatilable.

According to this aspect, the service monitor 22 and the system monitor 24 ensure the high
availability of the primary service 14 and its associated services 16 and 18 through monitoring the
services themselves 14, 16 and 18 and the availability of operating environment resources. In order
to ensure the availability of the service monitor 22 to perform this function, the operating system 12
ensures that the fault monitor coordinator 30 is operational. Typically, the operating system 12
provides a facility that can be configured to restart a service in the event of an unexpected failure.
This facility can be employed to ensure that the fault monitor coordinator 30 is restarted in the event
of an unexpected failure. For example, the Microsoft Windows 2000'™ operating system permits
the creation of service applications and service control managers. The service control manager in
the Microsoft Windows 2000™ operating system is designed to monitor the service application for
failures and can perform specific behaviours in the event of a failure, including restarting the service
application. Accordingly, the fault monitor coordinator 30 may be created as a service application
and a corresponding service coﬁtrol manager may be created for restarting the service application
in the event of a failure. In this manner, the operating system 12 ensures the availability of the fault
monitor coordinator 30, which, in turn, ensures the availability of the fault monitors 32. The
individual fault monitors 32 ensure the availability of the system monitor 24 and the services. As
a further example, with the Unix™ operating system the init daemon feature can be used to start and
restart the fault monitor coordinator 30.

The system 10 also includes a service registry that is accessible to the service monitor 22.
The service registry contains information used by the service monitor 22, such as which services to
start-up and which services to monitor. In one embodiment, the service registry includes an entry
for each instance of a service that is to be made available. Each service registry entry includes the
name of the service, the path to its installation directory and an associated control module created
using the standard control interface 20. Each service registry entry also has a unique identifier, so

as to enable distinctions between separate instances of the same service. In one embodiment, the

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

unique identifier is the user name of the instance. A service registry entry may also include user
login information and instructions regarding whether the service should be started at boot time or
only maintained available once the user has initiated the service. The service registry may be stored
on disk, in memory or in any location accessible to the service monitor 22. When the fault monitor
coordinator 30 is started, it checks the service registry to identify the instances of services that should
be made available. For each such instance of a service, the fault monitor coordinator 30 then creates
a fault monitor 32 to start and monitor the instance of a service.

The fault monitor coordinator 30 and the fault monitors 32 employ the standard control
interface 20 for performing monitoring and corrective functions. In addition to providing monitoring
capabilities, the standard control interface 20 should be able to stop a service, start a service, kill an
unhealthy or unresponsive service and perform clean-up, such as flushing buffers and removing
leftover resources used by the service. The specific tasks preformed by the standard control interface
20, for example in a cleap-up éall, will be particular to a service and may be customized to each
service. The fault monit;jrs 32 are unaware of the operations involved in implementing the calls,
such as what tasks are perfofmed in a clean-up call for a specific service. Accordingly, the fault
monitors 32 are flexible and may be employed with any primary service 14 and associated services
16 and 18. For a specific implementation, only the details of the standard control interface 20 calls
as applied to each service need be customized. In one embodiment, the standard control interface
20 provides a customized associated control module for each particular service. The service registry
provides the fault monitor coordinator 30 with information regarding where to find the associated
control module for a particular service, and the fault monitor coordinator 30 passes this information
on to the individual fault monitbr 32. |

In one embodiment, the standard control interface 20 provides two methods of monitoring
a service and ensuring its heaith; The first method is to assess the status of the service. The second
method is to perform custom probes. These methods are described in further detail below.

To obtain the status of a monitored service, a fault monitor 32 calls a status checking function
defined by the standard control interface 20 with respect to the specific service being monitored.
The standard control interface 20 uses three indicators to determine the status of a service:

operability, aliveness and availability. Operability refers to the possibility that the service could be

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

started. Inalmost all cases, if a service is installed on the system 10, then it is operable. Conversely,
if it has not been installed, then it is not operable. In one embodiment, the operability of a service
is dependent upon the existence of the command for starting the service. For example, to determine
the operability of the Microsoft Internet Explorer™ application program, the standard control
interface 20 could determine whether the command Iexplore.exe exists on the system 10.

Aliveness refers to whether the service has been started and is present in memory. In one
embodiment, the standard control interface 20 determines if a service is alive by evaluating whether
processes associated with the service are resident in memory. This evaluation indicates whether the
service has been started and is present in memory on the system 10.

Availability refers to whether the service is in a *normal” mode in which it may take
requests. For example, a relaﬁonal database management engine may be in a maintenance mode or
performing crash recovery, which renders it unavailable. Other services may have other modes in
which they would be considered unavailable. The evaluation of availability by the standard control
interface 20 is customized to particular services based upon their modes of operation. Some services
may not have a mode other than available, in which case the standard control interface 20 may
indicate that the service is available any time that it is alive.

If a service is available, it is necessarily alive and operable. Similarly, if a service is alive,
it must be operable. Accordingly, there are five possible states that a service may be in, as shown

in the following table:

Operable Alive Available

Not operable

Operable, not alive yes
Operable, Alive, not available yes yes
Operable, Alive and available yes yes yes

In response to a call from a fault monitor 32 to get the status of a service, the standard control
interface 20 provides the fault monitor 32 with a response that indicates one of the five states. The

fault monitor 32 understands the significance of the results of a status check and may respond

CA9-2001-0047

10

15

20

235

CA 02365427 2001-12-19

accordingly. The actions of the fault monitor 32 will generally be directed to ensuring that the
service 1s available as soon as possible. For example, if a service is alive but unavailable, the fault
monitor 32 may wait a short period of time and then re-evaluate the service to determine if the
service has returned to an available status, failing which it may notify the system administrator.
Similarly, if a service is operable and not alive, the fault monitor 32 may start the service.
Alternatively, if a service is not operable, the fault monitor 32 may send a notification to the system
administrator to alert the administrator to the absence of the service. Other actions in response to
a particular status result may be custom designed for a particular service.

Reference is now made to Figure 4, which shows a flowchart illustrating a method of
operation of a fault monitor 32 (Fig. 1) for obtaining and responding to the status of a service. The
method begins, in step 150, when the fault monitor instructs the standard control interface 20 (Fig.
1) to determine the status of the service. As discussed above, the standard control interface 20 may
return one of five results: not operable 152, unknown 154, operable 160, alive 170 or available 174.

If the status of the service is not operable 154, then it is not possible to start the service.
Accordingly, the fault monitor 32 (Fig. 1) cannot take any action to make the service available, so
it notifies a system administratof in step 156. Similarly, if the status of the service is unknown 154,
then the fault monitor is unable to determine what action it could take to make the service available,
so it notifies the system administrator 156. In the case of both a non-operable 152 and an unknown
154 status, the fault monitor 32 exits 158 its status monitoring routine, following the notification of
an administrator.

If the status of the service is operable 160, then the fault monitor 32 (Fig. 1) will try to start
the service in step 168. \The fault monitor 32 maintains a count of how many times it has tried to
start an operable service and prior to step 168 it checks to see if the count exceeds a maximum
number of permitted retries in step 162. The maximum number may be set based upon the context
and the type of service. It may also include a time-based factor, such as a maximum number of
attempted starts within the past hour, or day or week. If the maximum has been reached, then the
fault monitor 32 notifies the administrator 164 that it has attempted to start the service a maximum
number of times and it exits 158 its status monitoring routine. If the maximum number has not been

reached, then the fault monitor 32 notifies the system administrator 166 that it is attempting to start

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

the service and then it attempts to start the service in step 168. The notification sent to the system
administrator in step 166 may be configured to be sent only upon the initial attempt to start the
service and not with each re-attempt should a preceding attempt fail to render the service alive 170
or available 174, After an attempt to start the service 168, the fault monitor 32 sleeps 180 or pauses
for a predetermined amount of time before returning to step 150 to check the status of the service
again.

In the event that the status of the service is determined to be alive 170, then, in step 172, the
fault monitor 32 (Fig. 1) may simply notify the administrator that the service is alive but unavailable.
A service may be alive but unavailable because it is temporarily in another mode of operation in
which it cannot respond to requests, such as a maintenance mode or a crash recovery mode.
Accordingly, the fault mcgnitor 32 sleeps 180 for a predetermined amount of time before returning
to step 150 to check the status of the service again.

If the status of the service is available 174, then the fault monitor 32 (Fig. 1) determines
whether its service is testable by custom probes 176. If not, then the fault monitor sleeps 180 for a
predetermined amount of time and returns to step 150 to re-check the status of the service to ensure
it remains available. If the service is testable by custom probes, then the fault monitor 32 initiates
the custom probes routine 178, as will be described below. Following the custom probes routine
178, the fault monitor 32 returns to step 150 to continue monitoring the status of the service.

An available service is considered able to take requests, however it is not guaranteed to take
requests. An available status does not completely ensure that the service is healthy. Accordingly,
once a service is determined to be available, further status information is required by the fault
monitor 32 (Fig. 1) to assess the health of the service. This further information can be obtained
through the use of custom probe functions. Custom probe functions tailored to a specific service
may be created using the standard control interface 20 (Fig. 1).

In the context of the invention, custom probes perform an operation to test the availability
of the specific service being monitored. The probes associated with a specific service are listed in
a rule set accessible to the fault monitor 32 (Fig. 1), although the fault monitor 32 need not
understand what each probe does. The rule set used by the fault monitor 32 tells 1t what probes to

call and what to do if a particular probe fails. Accordingly, each service being monitored has a

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

custom rule set governing which probes are run for that service and what to do in the event of failure
in each case.

Reference is now made to Figure 2 which shows in flowchart form a method for a calling
convention for custom probe functions in accordance with the present invention. The method is
initiated when the fault monitor 32 (Fig. 1) receives notification from the standard control interface
20 (Fig. 1) that the service is aikailable 174 (Fig. 4) and is testable by custom probes 176 (Fig. 4).
The fault i:nonitor 32 determines the first probe function to be called with respect to the service it is
monitoring by consulting the rule set associated with the service in step 102. Then in step 104, the
fault monitor 32 calls the probe function. The probe function performs its operation and returns a
result to the fault monitor 32 of either success 106 or failure 108. In the event ot success 106, the
fault monitor 32 returns to step 102 to consult the rule set to determine which probe function to call
next. If no further probe functions need be called, then the fault monitor 32 enters a rest state until
it is required to test the status of its service again. The fault monitor 32 may test the status of its
service in scheduled periodic intervals or based upon system events, such as the start of an additional
service on the system 10.

In the event that the prdbe function fails 108, the fault monitor 32 sends a notification 110
to the system administra?or to alert the administrator to the possible availability problem on the
system 10. The fault monitor 32 (Fig. 1) then re-evaluates whether the status of the service is
“gvailable” 112. If the service is still “available”, then the fault monitor 32 assesses whether it has
attempted to run this probe function too often 114. The fault monitor 32 maintains a count of the
number of times that it runs each probe function and assesses whether it has reached a predetermined
maximum number of attempts. If it has not reached the predetermined maximum number of
attempts, then the fault monitor 32 returns to step 104 and calls the probe function again. The fault
monitor 32 also keeps track of the fact it sent a notification 110 to the system administrator advising
that the probe failed, so that it sends this notice only initially and not each time the probe fails.

If it has reached a maximum number of attempts, then the fault monitor 32 (Fig. 1) will
proceed to take a corrective action. Before taking the corrective action, the fault monitor 32 will
evaluate whether it has attempted to take the corrective action too many times 116. The fault

monitor 32 maintains a count of the number of times it has attempted to take corrective action based

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

upon the failure of the probe function and assesses whether it has reached a predetermined maximum
number of attempts. Ifit has nof reached the predetermined maximum number of attempts, then the
fault monitor 32 takes the corrective action in step 118. The corrective action may, for example,
comprise restarting the service. Following the corrective action, the fault monitor 32 returns to step
104 to call the probe function again. The corrective action 118 may include sending a notification
to the system administrator that corrective action is being attempted. As with the failure of a probe,
this notice would preferably only be sent coincident with the initial attempt at corrective action, and
not with each re-attempt at corrective action so as to avoid an excessive number of notices. A
successful corrective action should be communicated to the system administrator in step 106 when
the subsequent call of the probe function succeeds.

If the fault monitor 32 (Fig. 1) tries to take the corrective action too many times and the
probe function continues to fail, then the fault monitor 32 sends a notification 120 to the system
administrator to alert the administrator to the failure of the corrective action. The fault monitor 32
then turns off the custom probe function 122 and enters a rest state to await the next status check.

If, in step 112, the fault monitor 32 (Fig. 1) finds that the service is no longer “available”,
then it sends a notice to the system administrator 124. The fault monitor 32 then turns off the use
of the custom probes in step 126 and sets a condition 128 that only the status method (Fig. 4) will
be used until the fault monitor 32 can cause the status to return to “available”. Having terminated
the probe calling routine, the fault monitor 32 enters a rest state until required to check the status ot
its service again.

An example of a probe function that may be utilized in connection with a service such as the
Microsoft Internet Explorer™ application program is one which downloads a test webpage. Such
a probe would instruct the Microsoft Internet Explorer™ browser program to open a predetermined
webpage that may be expected to be available, such as a corporate homepage. If the browser 1s
unable to load the webpage, a 404 error may be generated, which the probe function would interpret
as a failure 108. Probe functions may be designed to test any other operational aspects of specific
SErvices.

One of the first services that the fault monitor coordinator 30 (Fig. 1) will create a fault

monitor 32d (Fig. 1) for is the system monitor 24 (Fig. 1). The fault monitor 32d will then start the

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

system monitor 24. When the system monitor 24 is initially started, it will read a set of rules that
provide parameters within which the operating environment resources should be maintained in order
to ensure a healthy environment for the primary service 14 (Fig. 1) and its associated services 16
and 18 (Fig. 1). For example, a rule may specify that there must be 1 Megabyte of RAM available
to ensure successful operation of the primary service 14 and its associated services 16 and 18.

In one embodiment, the rule set comprises a system registry that includes a list of textual
rules for various operating environment resources. Each entry includes a unique identifier of a
resource, a parameter test and an action. For example, a system registry may contain the following
entries:

FREE DISK SPACE/file system “<10%” NOTIFY ADMINISTRATOR
FREE VIRTUAL MEMORY “<5%"” RUN /opt/IBM/DB2

Each operating environment resource may have a unique resource identifier associated with
it. The unique resource identifier may be implemented through a definition in a header file. For

example, the header file may read, in part:

#define 0SS ENV_FREE_VIRTUAL MEMORY |
#define OSS ENV FREE _FILE SYSTEM_SPACE 2

Some resources will require an additional identifier to ensure the resource is unique. For
example, the resource “free file system space” is not unique on its own since there may be many file
systems on a system. Accordingly, information may also be included about the specific file system
in order to ensure that the resource identifier is unique.

Reference is now made to Figure 3, which shows in flowchart form the operation of the
system monitor 24 (Fig. 1). The system monitor 24 begins, in step 50, by obtaining system
information regarding the operating system 12 and the hardware 28 (Fig. 1). As described above,
the system information is obtained through system information APIs 26 (Fig. 1), and includes
quantities such as processor load, available disk space, available RAM and other system parameters

that influence the availability of software products. For example, the function statvfs can be used

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

on the Solaris™ operating system to find the amount of free space for a specific file system. The
system information APIs 26 may be provided through the same standard control interface 20 used
by the fault monitors 32. Those skilled in the art will understand the methods and programming
techniques for obtaining system information regarding the operating system 12 and the hardware 28.

In one embodiment, each resource identiﬁer has an associated API function for obtaining
information about that resource, and the function is correlated to the resource identifier through an
array of function pointers. The system monitor 24, consults the system registry to determine the
functions to call in order to gather the necessary information regarding the operating environment.

In step 52, the system monitor 24 (Fig. 1) then compares the gathered information to the rule
set provided in the service registry. In one embodiment, the service monitor 24 gathers the
information for each resource and then consults the rule set, although it will be understood by those
skilled in the art that the service monitor 24 may obtain system information for one resource at a
time and check for compliance with the rule set prior to obtaining system information for the next
resource. \

Based upon these comparisons and rules, the system monitor 24 determines, in step 54,
whether a limit has been exceeded or a rule violated. If so, then the system monitor 24 proceeds to
step 56 and takes corrective action. The rule set provides the corrective action to be taken for
violation of each rule. For example, the rule set may provide that in the event that insufficient RAM
is available that a system administrator be notified. Alternatively, for services that support dynamic
re-configuration, the service could be instructed to use less RAM. As a further example, if the
system monitor 24 determines that insufficient swap space is available, then the rule set may provide
that system monitor 24 allocate additional swap space. The specific action is designed so as to
address the problem encountered as swiftly as possible in order to ensure the high availability ot the
service operating upon the system. The full range of varations and alternative rule sets will be
understood by those skilled in the art.

After checking each rule and taking corrective action, if necessary, the system monitor 24
enters a sleep 58 mode for a configurable amount of time to prevent the system monitor 24 from
consuming too many resources.

Reference is again made to Figure 1 in connection with the following description of the

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

operation of an embodiment of the system 10. When initially started, the operating system 12
performs its ordinary start-up processes or routines for configuring the hardware 28 and establishing
the operating environment for the system 10. In accordance with the present invention, the operating
system 12 also starts the fault monitor co-ordinator 30. Throughout the duration of the system’s 10
operation, the operating system 12 continues to ensure that the fault monitor co-ordinator 30 is
restarted in the event of an unexpected failure. This is accomplished by use of a facility provided
by the operating system 12 for restarting services that unexpectedly fail, as described above.
Reterence 1s now made to Figure 5 which shows the operation of the tfault monitor co-ordinator 30
(Fig. 1) in flowchart form. Once the fault monitor co-ordinator 30 is started 300, it consults the
service registry to determine which services to monitor and then, in step 302, it creates an instance
of a fault monitor 32 (Fig. 1) for each service. The instance of a fault monitor 32 may be created as
a thread or a separate process, although a separate process is preferable as a more secure
embodiment. Once each fault monitor 32 is created, the fault monitor co-ordinator 30 will enter a
sleep state 304 for a predetermined amount of time. After the predetermined amount of time elapses,
in step 306 the fault monitor co-ordinator 30 checks the status of each fault monitor 32 to ensure it
is alive. If any fault monitor 32 is not alive, then the fault monitor co-ordinator 30 restarts the failed
fault monitor 32 in step 308. Once the fault monitor co-ordinator 30 has checked the fault monitors
32 and restarted any failed fault monitors 32, then it returns to step 304 to wait the predetermined
amount of time before re-checking the status of the fault monitors 32.

Referring again to Figuré 1, the fault monitor 32d created with respect to the system monitor
24, begins by checking the status of the system monitor 24. Initially, unless started by the operating
system 12, the system monitor 24 will be operable, but not alive. Accordingly, the fault monitor 32d
will start the system monitor 24. The fault monitor 32d will thereafter continue to execute the
processes described above with respect to Figures 4 and 2 to monitor the status of the system
monitor 24 and ensure its availability.

Other fault monifors 32 will operate similarly. The specific actions of an individual fault
monitor 32 may be tailored to the particular service it is designed to monitor. In some instances, the
fault monitor 32 may not be required to start a service at boot time when the fault monitor 32 is

initially created. In those cases, the fault monitor 32 may simply wait for the service to be started

CA9-2001-0047

10

15

20

235

CA 02365427 2001-12-19

by a user or the primary service 14, or the fault monitor 32 for such a service may not be created
until the fault monitor co-ordinator 30 recognizes that the service has been started and should now
be monitored. Instructions for an individual fault monitor 32 regarding when to start or restart its
associated service may be provided by the fault monitor coordinator 30, which obtains its
information from the service registry entry for that particular service.

The system monitor 24 will monitor the operating environment and take corrective action,
as needed, to ensure the continued healthy operation and high availability of the primary service 14
and its associated services 16, 18, as described above.

Although the present invention has been described in terms of certain actions being taken by
the service monitor 22 (Fig. 1), the fault monitor 32 (Fig. 1) or the system monitor 24 (Fig. 1), such
as notifying a system administrator or restarting a service, it will be appreciated that other actions
may be taken and, in some circumstances, it may be prudent for no action to be taken. Likewise,
although notices are described as being provided to a system administrator, notification can bemade
to any individual or group of individuals and may include electronic mail, paging, messaging or any
other form of notification. .

Using the foregoing specification, the invention may be implemented as a machine, process
or article of manufacture by using standard programming and/or engineering techniques to produce
programming software, firmware, hardware or any combination thereof.

Any resulting program(s), having computer readable program code, may be embodied within
one or more computer usable media such as memory devices, transmitting devices or electrical or
optical signals, thereby making a computer program product or article of manufacture according to
the invention. The terms “article of manufacture” and “computer program product” as used herein
are intended to encompass a coihputer program existent (permanently, temporarily or transitorily)
on any computer usable medium.

A machine embodying the invention may involve one or more processing systems including,
but not limited to, central processing unit(s), memory/storage devices, communication links,
communication/transmitting devices, servers, I/O devices, or any subcomponents or individual parts
of one or more processing systems, including software, firmware, hardware or any combination or

sub-combination thereof, which embody the invention as set forth in the claims.

CA9-2001-0047

10

CA 02365427 2001-12-19

One skilled the art of computer science will be able to combine the software created as
described with appropriate general purpose or special purpose computer hardware to create a
computer system and/or coinputer sub-components embodying the invention and to create a
computer system and/or computer sub-components for carrying out the method of the invention.

The present invention may be embodied in other specific forms without departing from the
spirit or essential characteristics thereof. Certain adaptations and modifications of the invention will
be obvious to those skilled in the art. Therefore, the above discussed embodiments are considered
to be illustrative and not restrictive, the scope of the invention being indicated by the appended
claims rather than the foregoing description, and all changes which come within the meaning and

range of equivalency of the claims are therefore intended to be embraced therein.

CA9-2001-0047

10

15

20

25

CA 02365427 2001-12-19

The embodiments of the invention in which an exclusive property or privilege is claimed are defined

as follows:
1. A system for increasing availability of a primary service on a computer, said system
comprising:

(a) a system monitor component, wherein said system monitor component
determines the availability of one or more system resources for the computer
and is responsive to the availability of said system resources; and

(b) afault monitor component, wherein said fault monitor component determines
the status of services, including said primary service and said system monitor
component, and is responsive to the status of said services.

2. The system defined in claim 1, wherein the primary service uses one or more associated

services and wherein said fault monitor component further determines the status of said

associated services and is responsive to the status of said associated services.

3. The system defined in claim 1, further comprising a standard control interface, wherein said
standard control interface provides said fault monitor component with a status check

function.

4. The system defined in claim 3, wherein, in response to a call from said fault monitor
component, said status check function provides said fault monitor component with the status

of one or more of said services.

5. The system defined in claim 4, wherein said status is chosen from the group comprising non-

operable, operable, alive, available, and unknown.

6. The system defined in claim 4, wherein said standard control interface further provides

custom probe functions adapted to test the availability of said services.

CA9-2001-0047

10

15

20

25

10.

11.

12.

13.

14.

CA 02365427 2001-12-19

The system defined in claim 6, further comprising a rule set stored in memory on the system,
said rule set comprising a list of custom probe functions to be called by said fault monitor

component with respect to one or more of said services and an action corresponding to a

failure of each said custom probe function.

The system defined in claim 3, wherein said standard control interface further provides said
fault monitor component with a service start function, a service stop function, a service kill

function and a service clean-up function.

The system defined in claim 1, wherein said fault monitor component restarts said primary

service when it determines that said primary service has stopped functioning normally.

The system defined in claim 9, wherein said fault monitor component restarts said system
monitor component when it determines that said system monitor component has stopped

functioning normally.

The system defined in claim 10, further comprising an operating system, and wherein said
operating system restarts said fault monitor component when it determines that said fault

monitor component has stopped functioning normally.

The system defined in claim 11, wherein said fault monitor component sends a notification

to a system administrator in response to an undesirable status of said services.

The system defined in claim 1, further comprising a service registry accessible to said fault
monitor component and wherein said service registry comprises a list of services to be
monitored by said fault monitor component, including said primary service and said system

monitor component.

The system defined in claim 13, wherein the primary service uses one or more associated

CA9-2001-0047

10

15

20

235

13.

16.

17.

18.

19.

e WS e ek g = g vt
- . \;‘. - % 1
N e .-

i T o\' - - A 0 -
» L= .. CCRY .= N ‘\k'l,\‘\'- . . r
T IV et gy - :’:‘:* ls‘ik"e;‘-&’- i TRETY et
* - N -

CA 02365427 2001-12-19

services and wherein said service registry further includes said associated services.

The system defined in claim 13, wherein said service registry further includes an action to
be taken by said fault monitor component in response to a failure of each service to be

monitored.

The system defined in claim 15, wherein said action comprises restarting an unavailable

service.

The system defined in claim 1, further comprising a system registry accessible to said system
monitoring component, and wherein said system registry comprises a list of said one or more
system resources and corresponding parameters against which the availability of said one or

more system resources are evaluated by said system monitoring component.

A method of increasing availability of a primary service on a computer system, said method
comprising the steps of:

(a) providinga éystem monitoring component that determines the availability of
System resources;

(b) comparing said availability of system resources against predetermined
parameters for system resources and taking action in response to deficient
system resources,

(c) providing a fault monitoring component that determines the status of the
primary service and the status of said system monitoring component;

(d) taking action in response to an unhealthy status of the primary service; and

(e) tai(ing action in response to an unhealthy status of said system monitoring

component.

The method defined in claim 18, wherein the primary service uses one or more associated

services, and wherein said fault monitoring component further determines the status of said

CA9-2001-0047

10

15

20

25

20.

21.

22.

23.

24.

25.

26.

27.

CA 02365427 2001-12-19

associated services, and the method further comprising the step of taking action in response

to an unhealthy status of one or more said associated services.

The method defined in claim 18, wherein said determination of the status of the primary
service and said system monitoring component comprises calling a status check function,

said status check function being provided by a standard control interface.

The method defined in claim 20, wherein said status is chosen from the group comprising

non-operable, operable, alive, available, and unknown.

The method defined in claim 20, wherein said determination of the status of the primary
service and said system monitoring component further comprises calling a custom probe

function, said custom probe function being adapted to test the availability ot said services.

The method defined in claim 18, wherein said step (d) comprises restarting said primary

Service.

The method defined in claim 23, wherein said step (e) comprises restarting said system

monitoring component.

The method defined in claim 1 8, further including the step of restarting said fault monitoring

component in response to a failure of said tault monitoring component.
The method defined in claim 25, wherein said step (d) comprises notifying an administrator.
The method defined in claim 18, further including the step of accessing a service registry,

wherein said service registry comprises a list of services to be monitored by said fault

monitor component, including said primary service and said system monitor component.

CA9-2001-0047

10

15

20

25

28.

29.

30.

31.

32.

CA 02365427 2001-12-19

The method defined in claim 27, wherein the primary service uses one or more associated

services and wherein said service registry further includes said associated services.

The method defined in claim 28, wherein said service registry further includes an action to

be taken by said fault monitor component in response to a failure of each service to be

monitored.

The system defined in claim 29, wherein said action comprises restarting an unavailable

service.

A computer program product comprising a computer readable medium carrying program
means for increasing availability of a primary service on a computer system, the computer
program product comprising:

(a) code means for providing a system monitoring component that determines
the status of system resources;

(b) code means for comparing said status of system resources against
predetermined parameters for system resources and taking action in response
to deﬁciént system resources;

(¢) code means for providing a fault monitoring component that determines the
status of the primary service and the status of said system monitoring
component;

(d) code means for taking action in response to an unhealthy status of the
primary service; and

(e) code means for taking action in response to an unhealthy status of said

system monitoring component.

The computer program product defined in claim 31, further comprising code means for

implementing the primary service.

CA9-2001-0047

CA 02365427 2001-12-19

gRyice MoINATOR

FMC

2200 325 -

N CARENsE

L0

‘ nin . e g———- ——— s i — S,

i \

R N —
| ; STANDALD (ONTROLNINTELFACE

\

A IR f s45Tem lQFotMmationl | 26
APTs
PRAMMIY _) -
0y

SCANnLE MNEAC SeQviLe

;{ OPERATING 54STEM |
HARDWARE s]

I GET SMSTEM\ DIOIMATBA |
Sb:I“ o
58

L
COMPALL SLEET
LESULTS
W
YARAMETLS
4 .
@ g en 7 >
YES
56

PEATORM

LORLECAINE
ACTION

AsULE 3

CA 02365427 2001-12-19

Get Next Probe

| L |o'+
| Call Probe
Success | Failure l
14
) 2. Status is "Available"?
116 yes Wi
no
Turn off Probes Failed too many times
129 | yes
Only Use "Status” Conventions
Until Status is "Available”
20 b
, yes
@Ej—— Max Action Retries Hit?]

ILL
Turn off Probe

Flouder

CA 02365427 2001-12-19

150 Get Status
160
Operable

170

Available
YeS [Too Many
Retries?
164

Run Probes

Slee
158
-

152
Not
Operable

FIGCURE 4

CA 02365427 2001-12-19

300 {FMC

302
304-{Sleep

306 Check o Allve
Status

Not Alive

FICUARE S

|

\glyice MoNToOR

ML

120 2%

22

™ FM M RALe

] \
PRAMMY
o '

\

eyt - - A

1 STANDALD (ONWROLNMINTERF ALK

A SR sl PRy

LYSTEM |Foemartiond
APTs

20

26

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - abstract drawing

