发明名称
一种合成黄体酮中间体孕烯醇酮酸酯的方法

摘要
本发明涉及一种合成黄体酮中间体孕烯醇酮酸酯酸的方法。该方法是将起始物双烯醇酮酸酯、反应溶剂和 RaneyNi 催化剂放入高压反应釜内，密封后以≤0.05MPa 的氢气充分置换反应釜内的空气，然后关闭阀门，加热至所需要的反应温度后，再通入氢气至所需压力，于搅拌状态下进行加氢反应，所述的反应温度为 20~50℃，所述的 RaneyNi 催化剂是具有海绵孔状结构的含有金属助剂M的镍铝合金催化剂，所述的M为Ca、Mn、Fe、Co、Sn 中的一种或几种。其可在温和的条件下实现双烯醇酮酸酯的高活性选择性氢化，其最高可达到 98.5% 的转化率和 97.0% 的选择性。
1. 一种合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：步骤如下：

将起始物双烯醇酮酸酯、反应溶剂和 Raney Ni 催化剂放入高压反应釜内，密封后以 ≤0.09MPa 的氢气充分置换反应釜内的空气，然后关闭阀门，加热至所需要的反应温度后，再通入氢气至所需压力，于搅拌状态下进行加氢反应，所述的反应温度为 20 ～ 50℃，所述的 Raney Ni 催化剂是具有海绵孔状结构的含有金属助剂 M 的镍铝合金催化剂，所述的 M 为 Ca、Mn、Fe、Co、Sn 中的一种或几种。

2. 根据权利要求 1 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述 Raney Ni 催化剂是采用合成合金法制备得到的：

1) 按比例称取金属镍、金属铝和金属助剂 M，其中金属镍、金属铝和金属助剂 M 的混合体系中各物质的含量按质量百分比计为铝 50 ～ 54wt%、镍 41 ～ 49wt%；金属助剂 M 1 ～ 5wt%，在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；

2) 催化剂的活化：用浓碱溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。

3. 根据权利要求 2 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述金属助剂 M 为 Sn。

4. 根据权利要求 2 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述浓碱溶液是指物质的量浓度为 0.1 ～ 0.5M 的氢氧化钾、氢氧化钠、碳酸钾或碳酸钠的溶液。

5. 根据权利要求 1 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述催化剂的用量为 0.5 ～ 1.5g/g 起始物双烯醇酮酸酯。

6. 根据权利要求 1 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述的溶剂为体积百分数为 95%的乙醇。

7. 根据权利要求 1 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述用氢气置换反应釜内空气时，反复进行 4 ～ 5 次。

8. 根据权利要求 1 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述的反应温度为 30 ～ 40℃，所述的反应时间为 1 ～ 3h，所述通入氢气后的体系压力为 0.05 ～ 0.15MPa。

9. 根据权利要求 1 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述通入氢气后的体系压力为 0.08 ～ 0.12MPa。

10. 根据权利要求 1 所述的合成黄体酮中间体孕烯醇酮酸酯的方法，其特征在于：所述的方法包括在将反应后的产物经碱水解制备孕烯醇酮。
一种合成黄体酮中间体孕烯醇酮酸酯的方法

技术领域

[0001] 本发明涉及合成黄体酮中间体的反应，具体地说是一种合成黄体酮中间体孕烯醇酮钥酸酯的方法。

背景技术

[0002] 黄体酮也叫孕酮、激孕酮，黄体素、助孕素，为孕激素，化学名为孕 -4- 孕甾烯 -3, 20- 二酮，英文名：Progesterone，其结构式如下：

[0003]

![黄体酮结构式](image)

[0004] 黄体酮是孕激素药物的重要的中间体。黄体酮中间体 3β - 羟基 -5 - 孕甾烯 -20- 酮（孕烯醇酮钥酸酯）传统的合成工艺是以双烯醇酮酮酸酯为原料，在乙醇中与氢气和活性镍存在下反应，经碱水解得到中间体 3β - 羟基 -5 - 孕甾烯 -20- 酮（孕烯醇酮酮酸酯）的粗品。其中约含有 5% 左右的杂质，大部分杂质是由于催化氢化工序生产过程中不易控制，催化剂活性镍的用量过大，出现吸氢过量致使 20 位酮基被转化成不必要的 C_{20} (R)、C_{20} (S) - 羟基的混合物。

[0005]

![反应流程图](image)

[0006] 下一步沃氏氧化反应需要中间体 3β - 羟基 -5 - 孕甾烯 -20- 酮（孕烯醇酮酮酸酯）含量为 98.5% 以上才能进行，所以需要对氢化反应过头的杂质进行琼斯氧化、水解两步反应才能用于制备目标产物黄体酮。

发明内容

[0007] 本发明的目的在于提供一种合成黄体酮中间体孕烯醇酮酸酯的方法。其采用原料易得、价格低廉、活性高、工艺可控的非贵金属催化剂，可在温和的反应条件下，高转化率、高选择性得到黄体酮中间体孕烯醇酮酸酯。

[0008] 为实现上述目的，本发明采用的技术方案为：

[0009] 一种合成黄体酮中间体孕烯醇酮酸酯的方法，步骤如下：
将起始物双烯醇酯酸酯、反应溶剂和 Raney Ni 催化剂放入高压反应釜内，密封后以≤0.09MPa 的氢气充分置换反应釜内的空气，然后关闭阀门，加热至所要的反应温度后，再通入氢气至所需压力，于搅拌状态下进行加氢反应，所述的反应温度为 20 ～ 50℃，所述的 Raney Ni 催化剂是具有海绵孔状结构的含有金属助剂 M 的镍铝合金催化剂，所述的 M 为 Ca、Mn、Fe、Co、Sn 中的一种或几种。

按上述方案，所述 Raney Ni 催化剂是采用合金液法制备得到的：

1) 按比例称取金属镍、金属铝和金属助剂 M，其中金属镍、金属铝和金属助剂 M 的混合体系中各物质的含量按质量百分比计为铝 50 ～ 54wt%；镍 41 ～ 49wt%；金属助剂 M1 ～ 5wt%，在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；

2) 催化剂的活化：用浓碱溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。

按上述方案，所述金属助剂 M 优选为 Sn。

按上述方案，所述浓碱溶液是指物质的量浓度为 0.1 ～ 0.5M 的氢氧化钾、氢氧化钠、碳酸钾或碳酸钠的溶液。

按上述方案，所述催化剂的用量为 0.5 ～ 1.5g/g 起始物双烯醇酯酸酯。

按上述方案，所述的溶剂优选为体积百分数为 95%的乙醇。

按上述方案，所述用氢气置换反应釜内空气时，反复进行 4 ～ 5 次。

按上述方案，所述的反应温度优选为 30 ～ 40℃，所述的反应时间为 1 ～ 3h，所述通入氢气后的体系压力为 0.05 ～ 0.15MPa，优选 0.08 ～ 0.12MPa。

按上述方案，所述的方法包括在将反应后的产物经碱水解制备孕烯醇酯。

本发明具有如下优点：

本发明提供的合成黄体酮中间体孕烯醇酯酸酯的方法通过选择具有海绵孔状结构的含有金属助剂 M 的镍铝合金催化剂，并结合催化剂用量、反应温度、反应时间及体系压力等参数的设置，可在温和的条件下实现双烯醇酯酸酯的高活性高选择性氢化。其最高可达到 98.5%的转化率和 97.0%的选择性。

具体实施方式

以下通过实例来对本发明予以进一步的说明，需要注意的是下面的实施例仅用作举例说明，本发明内容并不局限于此。

在下列实施例中，所用试剂为分析纯，双烯醇酯酸酯 (a) 转化率及产物选择性由下式所定义。
转化率（%）= \frac{\text{a转化的摩尔数}}{\text{反应前a的摩尔数}} \times 100

选择性（%）= \frac{\text{产物的摩尔数}}{\text{反应前a的摩尔数}} \times 100

分析产物组成所用的分析仪为液相色谱仪。

该方法工艺路线为：

实施例 1
Raney Ni 催化剂的制备：
1) 按比例称取金属铼、金属铝和金属助剂 Ca，其中金属铼、金属铝和金属助剂 Ca 的混合体系中各物质的含量按质量百分比计为铝 50wt%；铼 48wt%；金属助剂 Ca2wt%，在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；
2) 催化剂的活化：用 0.5M 的氢氧化钾溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。

将起始物双烯醇酮酸酯酸酯 5g，反应溶剂体积百分数为 95% 的乙醇 100mL 和上述加助剂 Ca 的 Raney Ni 催化剂 2.5 g 放入高压反应釜内，密封后以 ≤ 0.09MPa 的氢气充分置换釜内的空气，反复进行 4 次，然后关闭阀门，加热使物料溶解待体系温度 40℃后，再通入氢气，使体系压力达到 0.09MPa，然后于搅拌状态（转速 500rpm）下进行加氢反应 1h。

反应结束后，取出反应样品，经液相色谱仪分析产物并计算转化率和选择性，结果列于表 1。

实施例 2
Raney Ni 催化剂的制备：
1) 按比例称取金属铼、金属铝和金属助剂 Sn，其中金属铼、金属铝和金属助剂的混合体系中各物质的含量按质量百分比计为铝 52wt%；铼 46wt%；金属助剂 Sn2wt%，在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；
2) 催化剂的活化：用 0.2M 的氢氧化钠溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。

将起始物双烯醇酮酸酯酸酯 50g，反应溶剂体积百分数为 95% 的乙醇 1L 和上述加助剂 Sn 的 Raney Ni 催化剂 70g 放入高压反应釜内，密封后以 ≤ 0.09MPa 的氢气充分置换釜内的空气，反复进行 5 次，然后关闭阀门，加热使物料溶解待体系温度 35℃后，再通入氢气，使体系压力达到 0.1MPa，然后于搅拌状态（转速 500rpm）下进行加氢反应 3h。

反应结束后，取出反应样品，经液相色谱仪分析产物并计算转化率和选择性，结果
列于表 1

[0043] 实施例 3
[0044] Raney Ni 催化剂的制备：
[0045] 1) 按比例称取金属镍，金属铝和金属助剂 Fe，其中金属镍，金属铝和金属助剂的混合体系中各物质的含量按质量百分比计为铝 54wt%、镍 41wt%、金属助剂 Fe5wt%，在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；
[0046] 2) 催化剂的活化：用 0.5M 的硫酸钠溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。
[0047] 将起始物双烯醇酯酰酸酯 100g，反应溶剂体积百分数为 95%的乙醇 2L 和上述加助剂 Fe 的 Raney Ni 催化剂 100g 放入高压反应釜内，密封后以 ≤ 0.09MPa 的氢气充分置换釜内的空气，反复进行 4 次，然后关闭阀门，加热使物料溶解待体系温度 30℃后，再通入氢气，使体系压力达到 0.08MPa，然后于搅拌状态下（转速 500rpm）下进行加氢反应 2h。
[0048] 反应结束后，取出反应样品，经液相色谱仪分析产物并计算转化率和选择性，结果列于表 1
[0049] 实施例 4
[0050] Raney Ni 催化剂的制备：
[0051] 1) 按比例称取金属镍，金属铝和金属助剂 Co，其中金属镍，金属铝和金属助剂的混合体系中各物质的含量按质量百分比计为铝 50wt%、镍 49wt%、金属助剂 Co1wt%。在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；
[0052] 2) 催化剂的活化：用 0.5M 的硫酸钾溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。
[0053] 将起始物双烯醇酯酰酸酯 150g，反应溶剂体积百分数为 95%的乙醇 3L 和上述制备的加助剂 Co 的 Raney Ni 催化剂 250g 放入高压反应釜内，密封后以 ≤ 0.09MPa 的氢气充分置换釜内的空气，反复进行 5 次，然后关闭阀门，加热使物料溶解待体系温度 40℃后，再通入氢气，使体系压力达到 0.09MPa，然后于搅拌状态下进行加氢反应 3h。
[0054] 反应结束后，取出反应样品，经液相色谱仪分析产物并计算转化率和选择性，结果列于表 1
[0055] 实施例 5
[0056] Raney Ni 催化剂的制备：
[0057] 1) 按比例称取金属镍，金属铝和金属助剂，其中金属镍，金属铝和金属助剂的混合体系中各物质的含量按质量百分比计为铝 53wt%、镍 43wt%、金属助剂 Mn4wt%。在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；
[0058] 2) 催化剂的活化：用 0.5M 的硫酸钾溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。
[0059] 将起始物双烯醇酯酰酸酯 200g，反应溶剂体积百分数为 95%的乙醇 4L 和上述制备的加助剂 Mn 的催化剂 150g 放入高压反应釜内，密封后以 ≤ 0.09MPa 的氢气充分置换釜内的空气，反复进行 4 次，然后关闭阀门，加热使物料溶解待体系温度 35℃后，再通入氢气，使体系压力达到 0.11MPa，然后于搅拌状态下进行加氢反应 1h。
[0060] 反应结束后，取出反应样品，经液相色谱仪分析产物并计算转化率和选择性，结果
列于表 1。

[0061] 实施例 6

[0062] Raney Ni 催化剂的制备：

[0063] 1) 按比例称取金属镍、金属铝和金属助剂 Sn，其中金属镍，金属铝和金属助剂的混合体系中各物质的含量按质量百分比计为铝 51wt%；镍 44wt%；金属助剂 Sn5wt%；在熔炉中熔合，得到的熔体进行淬火冷却，然后粉碎成为均匀的颗粒；

[0064] 2) 催化剂的活化：用 0.5M 的氢氧化钠溶液洗涤，以洗去合金中的大部分铝，从而得到具有海绵孔状结构的 Raney Ni 催化剂。

[0065] 将起始物双烯醇酮酮酸酯 50g，反应溶剂体积百分数为 95% 的乙醇 1L 和上述加助剂 Sn 的 Raney Ni 催化剂 40g 放入高压反应釜内，密封后以 ≤ 0.09MPa 的氢气充分置换釜内的空气，反复进行 5 次，然后关闭阀门，加热使物料溶解待体系温度 35℃后，再通入氢气，使体系压力达到 0.1MPa，然后于搅拌状态下进行加氢反应 3h。

[0066] 反应结束后，取出反应样品，经液相色谱仪分析产物并计算转化率和选择性，结果列于表 1。

[0067] 表 1 实施例 1～6 的催化剂的性能

<table>
<thead>
<tr>
<th>实例编号</th>
<th>催化剂</th>
<th>转化率%</th>
<th>主要产物的总选择性%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raney Ni/Ca</td>
<td>96.6</td>
<td>95.5</td>
</tr>
<tr>
<td>2</td>
<td>Raney Ni/ Sn</td>
<td>98.5</td>
<td>97.0</td>
</tr>
<tr>
<td>3</td>
<td>Raney Ni/ Fe</td>
<td>95.7</td>
<td>94.6</td>
</tr>
<tr>
<td>4</td>
<td>Raney Ni/ Co</td>
<td>97.1</td>
<td>96.0</td>
</tr>
<tr>
<td>5</td>
<td>Raney Ni/ Mn</td>
<td>94.2</td>
<td>95.7</td>
</tr>
<tr>
<td>6</td>
<td>Raney Ni/ Sn</td>
<td>98.2</td>
<td>96.8</td>
</tr>
</tbody>
</table>