wo 200971204277 A1 |00 0K O 0O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 NI00W0 1.0 01000 0 0 00 0
ernational Bureau S,/ ‘) |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
1 October 2009 (01.10.2009) WO 2009/120427 A1

(51) International Patent Classification: 98052-6399 (US). KISHAN, Arun U.; c¢/o Microsoft

GO6F 1/26 (2006.01) GO6F 1/32 (2006.01) Corporation, One Microsoft Way, Redmond, Washington

GO6F 9/46 (2006.01) GO6F 12/00 (2006.01) 98052-6399 (US). RITZ, Andrew J.; c/o Microsoft Cor-

. c tion, One Mi ft Way, Redmond, Washingt

(21) International Application Number:pCT/Usz()()9/()342()9 825815120_239912%8).1“050 ay, Redmon ashington

(74) Agent: ALLEN,Michael B; Microsott Corporation, One

(22) International Filing Date: > i
16 February 2009 (16.02.2009) Microsoft Way, Redmond, WA 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
o CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
(30) Priority Data: EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
12/057,716 28 March 2008 (28.03.2008) UsS HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(71) Applicant (for all designated States except US): MI- KZ, LA, LG, LK, LR, LS, LT, LU, LY, MA, MD, ME,
CROSOFT CORPORATION [US/US]; One Microsoft MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL NO,
Way, Redmond, Washington 98052-6399 (US). NZ, OM, PG, P11, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,

(72) Inventors: MARSHALL, Allen; ¢/o Microsoft Corpora- UG, US, UZ, VC, VN, ZA, ZM, ZW.

tion, One Microsoft Way, Redmond, Washington

98052-6399 (US). DENG, Yimin; c/o Microsoft Corpo- (84) Designated States (unless otherwise indicated, for every

ration, One Microsoft Way, Redmond, Washington kind of regional protection available): ARIPO (BW, GH,

98052-6399 (US). JUDGE, Nicholas S.; c/o Microsoft GM, KE, LS, MW, MZ, NA, SD, SL, 8Z, TZ, UG, ZM,

Corporation, One Microsoft Way, Redmond, Washington ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

(54) Title: POWER-AWARE THREAD SCHEDULING AND DYNAMIC USE OF PROCESSORS

(57) Abstract: Techniques and apparatuses for providing power-aware
thread scheduling and dynamic use of processors are disclosed. In some

. A\ aspects, a multi-core system is monitored to determine core activity. The
202 N 70083 21 9 Coek core activity may be compared to a power policy that balances a power
e S P savmgs.plan with a performance. plan. One or more of the cores may be
MASK . CTTTo[ofo[o] parked in response to the comparison to reduce power consumption by the

7 multi-core system. In additional aspects, the power-aware scheduling may

be performed during a predetermined interval to dynamically park or un-
bttt park cores. Further aspects include adjusting the power state of unparked
MVERTBITHASE SRUOUETIK I cores in response to the comparison of the core activity and power policy.

201

21

"

DETERMINE PROGRAM |~
MODULE AFFINITY MASKS
b
h

/ \.ZIIZZZIZZZZ-oooooooil

/
/
!

¢ 214

! 216
! COMBINE AFFINITY o ¥y

\‘ MASKS AND INVERTED BIT| { AND
\ .
\

b

MASK -
\ J_ 218

\ / 218(1)

\ ‘ [ofofofoJoTo " 1} 78)
SCHEDULE WoRkTo | ./ [0[0[o]e[][0 o}
AVAILABLE CORE(S) “ oo o [[o [m[selie — 218(P)

221
0 T

222

CORE USAGE FOR O
TIME SLICE ",

N. 76543210 Core#

Fig. 2

WO 2009/120427 A1 00000V 00O A0

ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Published:
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL, SK, TR),

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ. GW, ML, — with international search report (Art. 21(3))
MR, NE, SN, TD, TG). — before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
Declarations under Rule 4.17:

amendments (Rule 48.2(h))

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

10

15

20

25

WO 2009/120427 PCT/US2009/034209

POWER-AWARE THREAD SCHEDULING AND
DYNAMIC USE OF PROCESSORS

BACKGROUND

[0001] Computer system management of power consumption is important to
extend the operational ability of a battery and to reduce overall power consumption,
which can be both fiscally and environmentally beneficial. Even for non-mobile
computers, reducing power requirements is beneficial to save important global
resources and prolong operation when relying on a battery backup system, such as

during a utility power interruption.

[0002] Although most components of a computing system use power during
system operation, the processor uses a disproportionate share of the system power.
Many computer systems, including consumer based systems, include multiple
processors and/or processors with multiple cores. Multiple processor enable the
computers to execute increasing levels of work in parallel however additional
processors may also increase power consumption. Most modern processors feature
very low power idle power states, which may be applied per-core on a multi-core
system, and which may be controlled by an operating system. In addition,
processor frequency may be scaled on a per-core or per core group basis to reduce

power usage by the system.

SUMMARY

[0003] This summary is provided to introduce simplified concepts of providing
power-aware thread scheduling and dynamic use of processors, which is further
described below in the Detailed Description. This summary is not intended to
identify essential features of the claimed subject matter, nor is it intended for use in

determining the scope of the claimed subject matter.

10

15

20

WO 2009/120427 PCT/US2009/034209

[0004] Exemplary techniques and apparatuses for providing power-aware thread
scheduling and dynamic use of processors are disclosed. According to one or more
embodiments, a multi-core system is monitored to determine core activity. A power
policy is retrieved to initiate a performance and power savings plan for the cores.
One or more of the cores of the multi-core system are parked (placed into a system-
specified low power state) based on the power policy and core activity. When one
or more cores are parked, the unparked cores are left to handle all of the remaining
system activity. In some embodiments, the power policy may be modified to
include additional factors influencing power savings or system performance. In at
least one other embodiment, the multi-core system may dynamically adjust a power

state of one or more unparked cores in addition to parking the one or more cores.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The detailed description is described with reference to the accompanying
figures. In the figures, the left-most digit(s) of a reference number identifies the
figure in which the reference number first appears. The same reference number in

different figures refers to similar or identical items.

[0006] Fig. 1 is an illustrative system that may be used to implement at least one

embodiment of power-aware thread scheduling and dynamic use of processors.

[0007] Fig. 2 shows a flow diagram of at least one embodiment of a process of
creating a core parking mask and implementing the mask with a thread scheduler to

enable allocation of work to processors.

[0008] Figs. 3A and 3B show illustrative core utilizations in accordance with at

least one embodiment of the disclosure. More specifically, Fig. 3B shows an

10

15

20

WO 2009/120427 PCT/US2009/034209

illustrative revision of the core utilizations in response to an illustrative system core

utilization as shown in Fig. 3A.

[0009] Fig. 4 shows a flow diagram of at least one embodiment of an illustrative
process of evaluating thread scheduling and dynamic use of processors and

determining a revised configuration for the processors.

[0010] Fig. 5 shows a flow diagram of at least one embodiment of an illustrative
process of providing power-aware thread scheduling and dynamic use of

PYOCESSOTS.

[0011] Fig. 6 shows another flow diagram of at least one embodiment of an
illustrative process of providing power-aware thread scheduling and dynamic use

of processors, further including domain idle accounting.

[0012] Fig. 7 shows an illustrative flow diagram of at least one embodiment of
providing additional settings for power-aware thread scheduling and dynamic use

of processors.

DETAILED DESCRIPTION

[0013] Processors may enable low power idle power states, including an idle
state that consumes no power (zero watts). An operating system may direct one or
more processors (or simply “cores”) to an idle power state (i.e., processor sleep
state) when there is no useful work to perform. Maximizing time spent in these low
power states may increase system energy efficiency and/or extend battery
performance. In addition to these processor idle power states, processors may also
provide controls for scaling the processor’s frequency, either alone or in

conjunction with a simultaneous reduction in processor core voltage. These

10

15

20

25

WO 2009/120427 PCT/US2009/034209

controls can be collectively referred to as processor power management (PPM)

features.

[0014] Processors may facilitate the execution of billions of executions per
second. While having such a high capacity for executing computer instructions,
processors may have considerable variance in workload over short periods of time.
For example, periods as short as a delay between a typist’s keystrokes may enable
the PPM to reduce processor power momentarily or even enter a brief sleep state.
Although a fraction of a second of power may seem negotiable, over longer periods

of time the cumulative power savings may be significant.

[0015] Therefore, the PPM may reduce power demands by directing unused
processors to a low power state or a sleep state (“parked” state) when the
processors do not have adequate workload to justify higher power states. Parked
cores may be placed in a processor idle power state (ACPI C-state) using a minimal
amount of power or no power at all. The active work to be done on the system

will be time multi-plexed on the unparked processors.

[0016] Accordingly, techniques and apparatuses to facilitate providing power-
aware thread scheduling and dynamic use of processors are disclosed herein in the

various sections that follow.

Hlustrative Environment

[0017] Fig. 1 is an illustrative system 100 that may be used to implement at least
one embodiment of power-aware thread scheduling and dynamic use of processors.
The system 100 includes a computing device 102. For example, the computing
device may be a mobile computer 102(1), a desktop computer 102(2), and/or a
server 102(N), among other possible computing devices. In a very basic

configuration, computing device 102 typically includes one or more processors

10

15

20

25

WO 2009/120427 PCT/US2009/034209

(“processors”) 104. For example, the processors 104 may be at least one of
multiple independent processors configured in parallel or in series and a multi-core
processing unit, either singly or in various combinations. A multi-core processor
may have two or more processors (“cores”) included on the same chip or integrated

2% 66

circuit. The terms “processor,” “core,” and “logical processor” may be used
interchangeable throughout this disclosure unless specifically stated otherwise with

reference to a particular element.

[0018] In addition, the computing device 102 includes system memory 106.
Depending on the exact configuration and type of computing device, system
memory 106 may be volatile (such as RAM), non-volatile (such as ROM, flash
memory, etc.) or some combination of the two. System memory 106 typically
includes an operating system 108, one or more program modules 110, and may

include program data 112.

[0019] The operating system 108 may include a kernel power manager 114 that
1s responsible for directing the use of processor power management (PPM) features.
The kernel power manager 114 may adjust the performance (e.g., speed) of the
processors 104 using a performance state (p-state) or linear throttle state (t-state).
For example, the kernel power manager 114 may balance a power consumption of
the processors 104 with a current workload to conserve energy when possible.
Additionally or alternatively, the kernel power manager 114 may enable the
processors 104 to provide a maximum processing capacity in response to a
workload demand. Further, the kernel power manager 114 may direct one or more
of the processors 104 into a low power sleep state when no active threads are ready

to run, such as threads of the program module 110.

[0020] The operating system 108 may provide modules for queuing, scheduling,

prioritizing, and dispatching units of work (threads) across all available processors

10

15

20

25

WO 2009/120427 PCT/US2009/034209

104 in the system 100, which may be represented as a collection of modules
collectively referred to as a kernel thread scheduler 116. When an active thread is
ready to be run, the kernel scheduler 116, via one or more modules, dispatches the

thread to any available core for processing.

[0021] Generally speaking, the kernel power manager 114 and kernel scheduler
116 have competing interests in control and operation of the processors 104. The
kernel power manager is configured to minimize the power consumption of the
processors 104, and therefore tries to reduce the frequency and/or power state of
one or more of the processors 104. Conversely, the kernel scheduler 116 is
configured to maximize processing throughput, and thus favors distributing work to

all processors 104.

[0022] The computing device 102 may have additional features or functionality.
For example, the computing device 102 may also include additional data storage
devices (removable and/or non-removable) such as, for example, magnetic disks,
optical disks, or tape. Such additional storage is illustrated in Fig. 1 by a
removable storage 118 and a non-removable storage 120. The computer storage
media may include volatile and nonvolatile, removable and non-removable media
implemented in any method or technology for storage of information, such as
computer readable instructions, data structures, program modules, or other data.
The system memory 106, the removable storage 118 and the non-removable storage
120 are all examples of the computer storage media. Thus, the computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic

storage devices, or any other medium which can be used to store the desired

10

15

20

25

WO 2009/120427 PCT/US2009/034209

information and which can be accessed by the computing device 102. Any such

computer storage media may be part of the computer device 102.

[0023] The computing device 102 may also have one or more input device 122
such as keyboard, mouse, pen, voice input device, touch input device, etc. One or
more output device 124 such as a display, speakers, printer, etc. may also be

included either directly or via a connection to the computing device 102.

[0024] The computing device 100 may also include a communication connection
126 that allows the device to communicate with other computing devices, such as
over a network. The communication connection 126 is one example of
communication media. The communication media may typically be embodied by
computer readable instructions, data structures, or program modules. The term
“modulated data signal” means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in the signal. By way of
example, and not limitation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. The computer readable media can be any
available media that can be accessed by the computing device 102. By way of
example, and not limitation, the computer readable media may comprise the

“computer storage media” and the “communications media.”

[0025] Various modules and techniques may be described herein in the general
context of computer-executable instructions, such as program modules, executed by
one or more computers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc. for performing
particular tasks or implement particular abstract data types. These program
modules and the like may be executed as native code or may be downloaded and

executed, such as in a virtual machine or other just-in-time compilation execution

10

15

20

25

WO 2009/120427 PCT/US2009/034209

environment. Typically, the functionality of the program modules may be
combined or distributed as desired in various embodiments. An implementation of
these modules and techniques may be stored on or transmitted across some form of

the computer readable media.

Illustrative Processor Configuration

[0026] Fig. 2 shows a flow diagram of at least one embodiment of a process 200
of creating a core parking mask and implementing the mask with the thread
scheduler to enable allocation of work to processors. The process 200 is illustrated
as a collection of blocks in a logical flow graph, which represent a sequence of
operations that can be implemented in hardware, software, or a combination
thereof. In the context of software, the blocks represent computer-executable
instructions that, when executed by one or more processors, perform the recited
operations. Generally, computer-executable instructions include routines,
programs, objects, components, data structures, and the like that perform particular
functions or implement particular abstract data types. The order in which the
operations are described is not intended to be construed as a limitation, and any
number of the described blocks can be combined in any order and/or in parallel to
implement the process. Other processes described through this disclosure, in
addition to process 200, shall be interpreted accordingly. For discussion purposes,
the process 200 is described with reference to the system 100 of Fig. 1.

[0027] As shown in Fig. 2, a core parking mask is created in the system memory
at 202. For example, the kernel power manager 114 may create the core parking
mask at 202, which resides in the operating system 108. An illustrative core

parking mask (“bit mask” or simply “mask’) 204 may provide a cell representing a

corresponding core. As shown in Fig. 2, the illustrative system includes eight

10

15

20

25

WO 2009/120427 PCT/US2009/034209

cores, however more or fewer cores may be used. The bit mask 204 includes a bit
value in each cell, where “1” represents a parked core and “0” represents an
unparked core. A parked core is a core that is placed into a low power sleep state. In
some embodiments, a parked core has no power consumption, thus uses zero watts.
In some embodiments, cores have dependencies such as shared hardware circuitry.
If both cores can be put into a low power state, dependencies can also be implicitly
placed into a low power state. Thus a core parking mask can be selected which will
maximize power savings compared to another mask. For example, turning off all
cores in a single processor socket might save more power than turning off half the
cores in two processor sockets. The bit mask 204 includes four parked cores,
numbered (right to left, zero to seven): 3, 5, 6, and 7. It follows that cores 0, 1, 2,
and 4 are unparked cores.

[0028] In accordance with one or more embodiments, the bit mask 204 may be
inverted at 206 to create the inverted bit mask 208. For example, the kernel power
manager 114 may create the inverted bit mask 208. The inverted bit mask includes
an inverted bit value for each cell (i.e., core). Accordingly, cores designated with a
“1” may be preferred to process data while cores designated with a “0” may not be
preferred to process application threads.

[0029] At 210, an application schedule is determined, such as by the kernel
scheduler 116. For example, the computing device 102 may be running one or
more of the program modules 110. Some of the program modules 110 may include
single threaded programs while other program modules may include multi-threaded
modules. Typically, the kernel scheduler 116 schedules each thread to an available
core, based on a number of factors such as priority, core availability, affinity
(scheduling restrictions), and other factors. When the threads outnumber the
available cores, then the kernel scheduler 116 alternates threads or otherwise
schedules threads to ensure that the threads eventually make progress (i.e., are

executed by the processor). The processors 104 may alternate threads on a single

10

15

20

25

WO 2009/120427 PCT/US2009/034209

core many times per second, thus providing opportunities for the kernel scheduler
116 to effectively schedule threads to available cores.

[0030] While many program modules do not assign threads to specific
processors, some complex program modules may require a thread to be executed by
a specific processor, referred to as setting the thread’s processor affinity. Program
module thread affinity masks 212 represent the cores requested for processing the
threads, as determined by the program modules 110. For example, a first program
module may have a first affinity mask 212(1) which indicates that threads must be
scheduled by the kernel scheduler 116 on cores 0 and 1. A second affinity mask
212(2) associated with a second program module may indicate that threads may be
scheduled on cores 2 and 3 while another program module may include an affinity
mask 212(P) indicating that threads can be scheduled on any of the available cores
(all cores are shown as selected). It should be noted that the affinity mask 212(P) is
a special case in that it effectively includes no constraints for allocation of threads
on the cores.

[0031] In some embodiments, at 214 the program module affinity masks 212 are
combined, one at a time, with the inverted bit mask 208 using an “AND” operator
216 to determine the set of eligible processors on for an available processor set 218.
At 220, the first affinity mask 212(1) is used to create a first available processor set
218(1). The process 200 may include an iterative process of operations 210, 214,
and 220 for each program module (i.e., for each combination of the inverted bit
mask 208 and the affinity mask 212). Thus, the second affinity mask 212(2) is used
to create a second available processor set 218(2) during a second iteration of the
operations 210, 214, and 220, and so forth.

[0032] As discussed above, the bit values for each core (e.g., core O, ..., core 7)
are used to determine the available processor set 218 for scheduling threads. The
“AND” operator 216 returns a core bit value of “1” where both of the operands
(i.e., combined bit values for a core) include a “1” representing a thread affinitized

to a specific core. For example, when the first aftinity mask 212(1) is combined

10

10

15

20

25

WO 2009/120427 PCT/US2009/034209

with the inverted bit mask 208, cores 0 and 1 both are active cores and will return a
core bit value of “1” while the remaining cores 2-7 include a core bit value of “0,”
as illustratively shown in the first available processor set 218(1).

[0033] The second affinity mask 212(2) includes a core value of “1” at core 3,
while the inverted bit mask 208 indicates core 3 is parked. The kernel scheduler
116 may choose to override the inverted bit mask to accommodate the second
affinity mask 212(2), which is represented in the second available processor set
218(2) where core 3 includes a core value of “1,” therefore shifting work to a core
designated as parked in the inverted bit mask 208 (which may be subsequently
unparked). In some embodiments, the thread may be scheduled using any number
of heuristics. An optimal core in the thread’s affinity may be used while ignoring
the inverted bit mask 208. If the optimal core is parked, a fallback may include
selecting a processor in the same NUMA (non-uniform memory access) node as the
preferred core. The scheduler treats the core parking inverted mask as a hint of preferred
locations to run the thread, but it will choose amongst the hard limitation (the hard
affinity) of what it believes to be the most performant option.

[0034] Where all cores are designated as available, such as in the affinity mask
212(P), the bit value may be ignored because the program module is indicated that
it allows the threads to be executed by any core. The affinity mask 212(P) may
include scheduled cores at any of the cores indicated by the inverted bit mask 208,
such as cores 0, 1, 2, and 4, as represented by the available processor set 218(P) by
core values showing “1/0” (either “1” or “0”, while at least one core must have a
core value of “1” to enable scheduling the work of the affinity mask 212(P)). In
some embodiments, the available processor set 218(P) may select cores that are
unparked and idle when determining an allocation of work to available cores.
Ideally, work shifting may allocate work to cores 0, 1, 2, and 3, thus leaving core 4
unused and possibly parked in a subsequent action. Other considerations, as

discussed below, may determine which cores are allocated work in response to the

11

10

15

20

25

WO 2009/120427 PCT/US2009/034209

affinity mask 212(P) to create a preferred location. For example, a preferred
location may be based on factors such as optional memory access performance.
[0035] The operations 210, 214, and 220 may be used to schedule threads, as
described above with reference to Fig. 2. In addition, other work may be
performed in the process 200 by the operations 210, 214, and 220 such as a deferred
procedure call (DPC), timers, processing interrupts, or other processor work.

[0036] In accordance with one or more embodiments, Fig. 2 illustrates an
example core usage 222 for a time slice. For example, a combination of the cores
that are active from the available processor set 218 may result in the core usage 222
during a given time check interval, such as without limitations 100 milliseconds.
The core 4 in the core usage 222 may or may not indicated as used depending on
whether work is scheduled to core 4 in the available processor set 218(P), as
discussed above. From the perspective of the kernel power manager 114, the core
usage 222 will ideally include a core value of “0” for core 4, thus minimizing the
number of unparked cores and resulting in a reduction of power consumption.
Regardless of the core usage 222, a new core parking mask may be created for the
next time slice, which may use information from the core usage 222 to determine
the new core parking mask. In some instances, core 3 may not be required because
core 2 may have enough processing utilization to satisty the second affinity mask
212(2) and is still an unparked core.

[0037] Figs. 3A and 3B show illustrative core utilizations in accordance with at
least one embodiment of the disclosure. More specifically, Fig. 3B shows an
illustrative revision of the core utilizations in response to an illustrative system core
utilization as shown in Fig. 3A.

[0038] In accordance with one or more embodiments, Fig. 3A shows a system
300 including a number of cores 302, 304, 306, and 308, although more or fewer
cores may be included in alternative embodiments of the system 300. The kernel
power manager 114 may control the cores using a power policy. The power policy

may determine the number of active cores, and influence how the kernel power

12

10

15

20

25

WO 2009/120427 PCT/US2009/034209

manager 114 may calculate the set of available cores. The power policy may be
used to restrict the number of available cores, or to allow the kernel power manager
114 to scale the number of available cores. The number of cores supported by a
platform may vary across different systems, thus a flexible scheme is necessary to
allow the number of cores to be specified by the kernel power manager without
knowing in advance how many cores are available. Therefore, in some
embodiments, the number of cores to be used may be expressed as a percentage of
maximum core utilization. Accordingly, an implementation of the cores may
require rounding up the percentage to the next available number that represents the
number of cores. For example, the core usage percent may be calculated as 60
percent. If the system includes four cores, the percent may be rounded up to 75%
and three cores will be unparked while one core is parked.

[0039] Each core includes a core utilization (“core utility””) 310 that represents
the workload of that core, expressed as the percentage of a core’s run time out of
the total time, independent of the core’s performance state. For example, the core 0
302 may have a core utility of 80% indicating that the core is doing 20% less work
than the workload maximum capacity of core “0.” Accordingly, a core utility of
100% represents a core working a maximum capacity while a core having a 0%
core utility represents an unused core. In some embodiments, the kernel power
manager 114 may monitor the core utility 310.

[0040] In addition, each core may include a performance state (advanced
configuration and power interface (ACPI) p-state) 312. The p-state 312 is a core
frequency and voltage setting and is controlled by the kernel power manager 114.
The p-state 312 is analogous to a throttle control of a motor. A p-state 312 of 100%
represents a maximum performance state of a core while a p-state of 50%
represents a core at half of the maximum frequency with a corresponding reduced
core voltage level. It should be noted that the actual power consumption of a core
may not coincide or be proportional with the p-state 312. For example, doubling

the p-state 312 of a core may not double the power consumption of the core

13

10

15

20

25

WO 2009/120427 PCT/US2009/034209

because of other factors, such as core power leakage, core base power
consumption, and/or other factors. In some embodiments, the kernel power
manager 114 may determine and/or control the p-state 312, such as by referencing
the power policy.

[0041] Each core includes an output utilization value (“output utility’’) 314 that
represents the workload of the core in relation to the total workload capacity. For
example, the output utility 314 may have a scale of 0-10,000 where 0 represents no
utilization and 10,000 represents maximum utilization. The output utility 314 may
be calculated by multiplying the core utility 310 and the p-state 312. For example,
the core 0 302 includes a core utility of 80% and a p-state of 80%, therefore the
output utility is 6,400. In some embodiments, the output utility 314 is used by the
kernel power manager 114 to determine core parking decisions and/or determine p-
state 312 settings, such as with reference to the power policy.

[0042] In some embodiments, the system 300 may include a core block 316, such
as a first core block 316(1) and a second core block 316(2), however more or fewer
core blocks may be implemented in the system 300. The core block 316 may
represent a platform having multiple cores with a single circuit, such as a dual-core
or multi-core processor. Each core block 316 may include unique power
consumption characteristics. For example, a core may include active level power
consumption, core leakage, or other power dissipations which occur when either of
the cores in the block is unparked. For example, if both cores in the first core block
316(1) are unparked and have the output utility of 10,000, the combined power
consumption may be 2x watts. If the core 0 302 in the first core block 316(1) is
subsequently parked (e.g., output utilization is 0) and the core 1 304 remains
unchanged, the combined power consumption may be greater than x watts because
of factors associated with the core block 316 such as power leakage, active power
consumption, and/or other factors. When the core 1 is subsequently parked, the

resultant power consumption may be 0 watts. Therefore, it may be advantageous to

14

10

15

20

25

WO 2009/120427 PCT/US2009/034209

park cores such that entire core blocks become parked before other cores are
subsequently parked, thus maximizing power savings.

[0043] As shown in Fig. 3A, an illustrative implementation of the system 300
includes the core 3 308 being parked while the other cores are unparked (i.e.,
active). Although core 3 includes a p-state of 100%, this may not indicate that
power is supplied to the core 3. Stated another way, the kernel power manager 114
may park a core while leaving a p-state at a level greater than 0%.

[0044] In an example utilization scenario, the kernel power manager 114 may
calculate the output of system 300 to determine a total system utility of 12,600 (i.e.,
6,400 + 3,200 + 3,000 = 12,600) of a maximum total system utility of 30,000 (i.e.,
3 unparked cores x 10,000 = 30,000). The utilization numbers referenced above
are intended to be explanatory in nature of calculations that may be performed
using the total system utility, and thus are not limiting to the disclosure.

[0045] Fig. 3B shows an illustrative revision of the core utilizations in a revised
system 318 in response to the total system utilization as shown in Fig. 3A. The
revise system 318 includes a revision in the parked/unparked status of the cores
302, 304, 306, and 308. As noted above, with reference to the system 300, the total
system utility was calculated to be 12,600 in an example. Therefore, the kernel
power manager 114 may park an additional core without reducing the ability of the
system to meet the current workload demands because the total system utility is
less than the maximum utilization capacity of two cores (i.e., 12,600 < 20,000). In
accordance with some embodiments, the kernel power manager 114 may select a
core to park, perhaps based on the power policy or other factors, which may be
completely transparent to a user of the system. The user transparency includes no
user perceivable system or application performance impact except for its principle
goal of better power efficiency. Any changes required to implement core parking
may be constrained to very low level operation system internal components, and
accordingly there may be no behavioral or experiential change for end users

associated with core parking.

15

10

15

20

25

WO 2009/120427 PCT/US2009/034209

[0046] When a second core is parked, the maximum total system utility of the
revised system will drop to 20,000 (2 cores x 10,000). The kernel power manager
114 may park any of the cores which were active in the previous state (as shown in
Fig. 3A). As discussed above, it may be advantageous to park core 2 306 to
completely park the second core block 316(2), resulting in a parked core block 320.
Accordingly, the parked core block 320 may increase power saving as compared to
parking the core 0 302 or the core 1 304 instead of the core 2 306.

[0047] In order to accommodate a transparent change to any users of the system
318, the output utility of the parked core (core 2) must be absorbed or reallocated to
the remaining unparked cores (i.e., core 0 and core 1). From Fig. 3A, the output
utility of core 2 was 3,000. Therefore, in one instance, the unparked cores may
equally share the burden by having each core have a modified output utility 322
that assumes an additional output utility of 1,500 for each core. In some instances,
other divisions of a parked core’s total utility may be used when allocating the
utility to unparked cores. For example, an unparked core may be running near
capacity (total utility near 10,000, which is the maximum utility). In such an
instance, cores with greater bandwidth may absorb more of the parked core’s total
utility.

[0048] In one or more embodiments, the kernel power manager 114 may adjust
the core utility 310 of the core 0 302 and the core 1 304 to 79% and 47%,
respectively. In addition, the kernel power manager 114 may increase the p-state
312 to 100% for both of the unparked cores. Therefore, the total system utility of
the revised system 318 remains equal to the total system utility of the system 300 at
12,600.

[0049] The revised system 318 illustrates one possible revision of the
parked/unparked status, the core utility 310, and/or the p-state 312 to accommodate
a core revision that is transparent to users while resulting in reduced power
consumption for the revised system 318. However, many other revisions may be

made in system 318 which result in reduced power consumption and that are

16

10

15

20

25

WO 2009/120427 PCT/US2009/034209

transparent to users. For example, the core utility 310 of core 1 304 may be
increase to 94% while the p-state is reduced to 50%, resulting in a total utility of
4700. The revision strategy may be determined by the power policy which may
take into account the competing interests of the kernel power manager 114 and the
kernel scheduler 116.

[0050] Other considerations may be implemented in the power policy that may
affect the revised system 318. For example, threads that are not time sensitive (e.g.,
background threads) may have less impact on the core parking decision while
keeping changes transparent to the users. More specifically, by including the
distribution of average runtimes across thread priorities executed on a given core,
the kernel power manager 114 may scale a core’s calculated utilization such that
low priority threads and workloads do not count as much as high priority threads
and workloads.

[0051] Fig. 4 shows a flow diagram of at least one embodiment of an illustrative
process 400 of evaluating thread scheduling and dynamic use of processors and
determining a revised configuration for the processors. The process 400 may be

implemented by the kernel power manager 114 in addition to other modules in the

operating system 108 and/or residing on the system memory 106.

[0052] In accordance with one or more embodiments, the kernel power manager
114 evaluates a time period for monitoring the output utility 314 (among other
factors including the core utility 310, the p-state 312, etc.). The time period may be
selected that 1s equal to, or longer than, a time slice available for processing each
thread. At a given frequency, the kernel power manager 114 may initiate the

monitoring of the cores.

[0053] At 404, the kernel power manager 114 may calculate the total system
utilization and the maximum total system utilization. The kernel power manager

114 may review the power policy at 406 to determine how to adjust the core usage

17

10

15

20

WO 2009/120427 PCT/US2009/034209

to balance the power savings needs of the kernel power manager 114 and the core
availability (processing performance) needs of the kernel scheduler 116. At 408,
other factors may be used to determine whether to adjust the core usage, and if so,
how to adjust the usage to achieve system goals such as a transparent change for
the wusers, accommodate thermo requirements, and/or accommodate other

constraints.

[0054] At 410, the kernel power manager 114 may calculate new configurations
for the cores. For example, the kernel power manager may calculate a new bit
mask 202 as shown in Fig. 2. In one or more embodiments, the bit mask may be
adjusted to create the available processor set 218 at 410. At 412, the kernel power
manager 114 may implement the configurations from 410. In some embodiments,
the process 400 may repeat to create a dynamic core allocation, such as by
repeating at a predetermined frequency. Alternatively, the process 400 may create a

static core allocation over a given period of time.

TNlustrative Operation

[0055] Fig. S shows a flow diagram of at least one embodiment of an illustrative
process 500 of providing power-aware thread scheduling and dynamic use of
processors. The process 500 shall be construed similarly as the process 200 of Fig.
2 regarding ordering and implementation of the process. For example, the order in
which the operations in the process 500 are described is not intended to be
construed as a limitation, and any number of the described blocks can be combined
in any order and/or in parallel to implement the process. For discussion purposes,

the process 500 is described with reference to the system 100 of Fig. 1.

18

10

15

20

25

WO 2009/120427 PCT/US2009/034209

[0056] In accordance with one or more embodiments, a “TimeCheck™ periodic
evaluation routine may begin at 502. For example, a deferred procedure call (DPC)
may begin at 502. In some embodiments, a state machine is entered on each core
via the DPC running at a fixed periodic rate configured by a power policy
parameter “TimeCheck” for a time value, such as 100 ms, 50 ms, or another time
value. At 504, the kernel power manager 114 may gather metrics for the cores. For
example, the DPC is queued to each currently active core to snap metrics for the
active cores. The metrics may include core utilization, thread priority distribution,
an average wait time for ready threads for each core, and/or success and failure

metrics for idle state residency, among other possible metrics.

[0057] At 506, the kernel power manager 114 may calculate a bit mask, such as
the core parking mask 204. For example, a new value may be calculated for the
target number of active cores based on utilization thresholds, the power policy,
and/or any dependency relationships. At 508, an active set may be updated, such as
by implementing portions of the process 200 governed by the kernel power

manager 114 to create the available processor set 218.

[0058] At 510, the active set may be implemented by the operating system 108.
The kernel power manager 114 may determine if cores have been added (unparked)
at 512. If cores are unparked, the kernel scheduler 116 may be notified at 514 and
may begin using the unparked cores to schedule threads. These unparked cores can
either be the target of remote thread scheduling (i.e., from a different processor), or
can proactively choose to select threads from other processors. In some
embodiments, threads may be reassigned to run on the unparked cores, thereby

reducing workload from other unparked cores.

[0059] At 516, the expected core output utilization may be calculated by the

kernel power manager 114 and may include unparked cores from 506. Thus, a new

19

10

15

20

25

WO 2009/120427 PCT/US2009/034209

value for the number of active cores determined at 506 is used to calculate expected
processor utilization. At 518, the kernel power manager 114 may calculate a new
value for the p-state. In some embodiments, a DPC is scheduled on each core to
update its target p-state. In an example, if the expected utilization increases, the p-
state value may also increase if no cores are unparked at S12. However, if cores are
unparked at 512, the p-state may increase or decrease to balance power savings
needs of the kernel power manager 114 with processing needs of the kernel

scheduler 116.

[0060] At 520, the kernel power manager 114 determines if the p-state and/or
t-state (linear throttle state) current values should be revised based on the results
from the calculation at 518. If the p-state and/or t-state are modified at 520, the
kernel power manager 114 may queue transition DPC’s to the affected cores at 522.
Thus, the threads scheduled by the kernel scheduler 116 may be scheduled to cores

running at the new p-state and/or t-state as implemented at 520.

[0061] At 524, the kernel power manager 114 determines if cores have been
parked in 506. For example, the expected core output utilization from 516 may be
less than the current utilization. If cores have been parked at 524, the kernel power
manager 114 may notify the kernel scheduler 116 at 526 to terminate scheduling of
threads to the newly parked cores. For any cores added or removed to the active
core mask, a DPC is scheduled for that core. As described with reference to Figs.
3A and 3B, the work from a parked core may be reallocated to one or more
unparked cores. In some embodiments, newly parked cores may be placed into the

deepest c-state that is available. Finally, at 528 the process 500 may be repeated.

[0062] Fig. 6 shows another flow diagram of at least one embodiment of an
illustrative process 600 of providing power-aware thread scheduling and dynamic

use of processors, further including domain idle accounting. The process 600

20

10

15

20

WO 2009/120427 PCT/US2009/034209

includes many of the sub-processes as described in Fig. 5, and therefore those sub-

processes from Fig. 5 will not be described again.

[0063] At 602, the kernel power manager 114 may determine whether domain
idle accounting is enabled. If domain idle accounting is enabled, a domain master

snaps metrics for the domain (e.g., the core block 316 or all cores) at 604.

[0064] In some embodiments, the domain idle accounting may initiate another
decision at 606. If domain idle accounting is enabled, the kernel power manager
114 may calculate the domain target p-state at 608. Finally, at 610 the process 600

may be repeated.

[0065] Fig. 7 shows a flow diagram of at least one embodiment of a process 700
of providing additional power policy settings and other inputs for power-aware
thread scheduling and dynamic use of processors. In some embodiments, core
parking may be implemented as an enhancement to the existing state machine that
calculates the target state to be used for processor performance states. The correct
number of cores to be used at any given time will be determined based a number of

factors as described below with reference to the process 700.

[0066] In accordance with one or more embodiments, the current power policy
may be used to set the number of cores to be utilized at 702. At 704, the minimum
or maximum number of cores may be set. The kernel power manager 114 may
calculate the number of active cores required to complete a given workload in an
energy efficient manner. In some instances, running the minimum number of cores
may be beneficial to the power savings and benefit the kernel power manager 114.
Conversely, running the maximum number of cores may provide the highest level

of performance, thus benefiting the kernel scheduler 116.

21

10

15

20

25

WO 2009/120427 PCT/US2009/034209

[0067] At 706, additional power policy parameters for core parking may be
implemented by the kernel power manager 114, using one or more of sub-processes
706(1), ..., 706(4). At 706(1), the required time interval for parking and/or
unparking cores may be adjusted. For example, the frequency of parking and/or
unparking cores may be manipulated by changing an interval. In some
embodiments, cores may be parked at a first interval and unparked at a second
interval. For example, a policy favoring power savings may park cores as

frequently as every 100 ms, but may only unpark cores every 500 ms.

[0068] At 706(2), the kernel power manager 114 may implement an increase
and/or decrease policy. For example, a first policy option may only park a set
number of cores at a time, such as one core at a time. A second policy option may
park or unpark cores to achieve an ideal core utilization, thus parking and/or
unparking multiple cores at a time. A third policy may go to one extreme or the

other (either park as many as possible or unpark as many as possible).

[0069] At 706(3), the required utilization threshold may be increased or
decreased based on the busyness of the processors. For example, a processor may
not undergo a change in a status of parked or unparked until the processor (or other
processors) include a state of busyness for a given period of time. This may reduce
a processor from flipping between a parked and unparked state in a rapid

succession.

[0070] Finally, at 706(4), the policy for scaling unparked cores may be
implemented. For example, the kernel power manager 114 may calculate the ideal
target processor performance state based on the number of processor cores in the
currently active set. To provide the best tradeoffs between power savings,
performance, and responsiveness to specific workloads, the kernel power manager

114 may advantageously run a smaller number of processors in a higher

22

10

15

20

25

WO 2009/120427 PCT/US2009/034209

performance state, or conversely, run a larger number of cores in a lower

performance state.

[0071] At 708, core and or system heuristics may be implemented by the kernel
power manager 114, using one or more of sub-processes 708(1) and 708(2). At
708(1), the kernel power manager 114 may calculate the number of active cores
required and the optimal performance state of the cores in active use based on the
successtul use of deep processor idle power states (sleep states). This may allow
the kernel power manager to detect when the deeper idle states are not being
efficiently used across the set of active (unparked) cores. To conserve power and
still provide performance, it may be beneficial to place more cores into the parked
state, and increase the performance state of the remaining active cores to ensure

work gets executed efficiently.

[0072] At 708(2), an average wait time may be used for threads ready to be
allocated (assigned) to a core. For example, the kernel power manager 114 may
calculate the number of processor cores required by using the distribution of
average wait times for threads in the ready state, which allows the kernel power
manager to scale the number of cores in use to reduce the latency before threads in
the ready state are able to run, thus increasing performance and responsiveness. In
an example, when a large number of threads need to be run, it may be advantageous
to unpark cores while reducing the p-state of cores because each core can only
process one thread at a time. Thus, more core availability will enable processing

the large number of threads in some instances.

[0073] At 710, idle state dependencies may be used by the kernel power manager
114 to adjust a core parking implementation. When the kernel power manager 114
selects which specific cores should be parked or unparked, it will first examine the

idle state dependency relationships of cores to determine which cores might share

23

10

15

20

25

WO 2009/120427 PCT/US2009/034209

power or clock resources, and choose to park or unpark cores in the most power

efficient manner based on shared controls.

[0074] At 712, performance and throttle state relationships may be considered
when determining whether to park or unpark one or more cores. Cores that share
performance state or throttling controls may be parked or unparked together to

realize greater power efficiencies.

[0075] At 714, the core package (block) relationships may be considered, such as
dependencies described in Figs. 3A and 3B regarding the efficiencies of a core
block, and more specifically parking a core block before parking another core in a
new core block. Finally, at 716, memory locality may be used by the kernel power
manager 114 when implementing core parking considerations. For example, two or
more cores may have package relationships such as the cores sharing a physical
processor package having a shared memory bank (e.g., NUMA (non-uniform
memory access) node). The shared memory bank may enable the cores to have
reduced memory access time as compared to cores that do not share the shared

memory bank.

Conclusion

[0076] The above-described techniques, systems and apparatuses pertain to
providing power-aware thread scheduling and dynamic use of processors.
Although the techniques, systems and apparatuses have been described in language
specific to structural features and/or methodological acts, it is to be understood that
the appended claims are not necessarily limited to the specific features or acts
described. Rather, the specific features and acts are disclosed as exemplary forms

of implementing such techniques and apparatuses.

24

WO 2009/120427 PCT/US2009/034209

CLAIMS

What is claimed is:

L. A method for balancing performance and power savings of a
computing device having multiple cores, comprising:
5 defining which cores (202, 204) are used to process work;
determining a power policy (210, 214, 406) to initiate a performance and
power savings plan for both the defined and undefined cores; and

parking at least one of the undefined cores (222) based on the power policy.

2. The method of claim 1, wherein the determining a power policy
10 further includes:

creating a core parking mask (202);

determining thread processor affinities (210);

providing at least a portion of the performance and power savings plan for

the cores by combining the core parking mask and the thread processor affinity

15 masks (214) to create an available processor set (220); and

calculating which cores are parked or unparked based on the available

processer set and the cores that are actively processing work (222).

3. The method of claim 2, wherein the determining a power policy

occurs dynamically as an iterative process (210, 214, 220).

20 4. The method of claim 1, further comprising scaling at least one of the

defined cores based on the power policy (512).

5. The method of claim 4, wherein the scaling at least one of the defined
cores includes adjusting at least one of the core utility or the power state (p-state) of

a core to increase power savings (512).

25

WO 2009/120427 PCT/US2009/034209

6. The method of claim 1, wherein the parking at least one of the
undefined cores includes:

determining if an unparked core block includes a parked core (316(2)); and

if the unparked core block having the parked core is determined, parking at

5 least one unparked core in the unparked core block (320).

7. The method of claim 1, further comprising modifying the power
policy using at least one of:

core and system heuristics (708);

processor dependency relationship (710, 714, 718); and

10 core policy parameters for core parking (706).

8. A method, comprising:
monitoring core activity in a multi-core system (402);
retrieving a power policy for the multi-core system (406), the power policy
balancing power savings and processing performance of each core in the multi-core
15 system; and
parking at least one core in response to the core activity based on the power

policy (412).

9. The method of claim 8, wherein the parking a core includes reducing

the core power state to minimal power processor idle power state (C-state) (524).

20 10. The method of claim 8, further comprising adjusting the power state

of at least one unparked core in the multi-core system (520).

11. The method of claim 8, wherein the parking at least one core in
response to the core activity is dynamically initiated at a predetermined frequency

(502, 524).

26

WO 2009/120427 PCT/US2009/034209

12. The method of claim §, wherein the monitoring core activity in a
multi-core system occurs for a predetermined time period (402), and wherein the
parking at least one core in response to the core activity occurs dynamically in

response a power savings opportunity detected by the monitored core activity (210,

s 214, 220).

13. The method of claim 8, wherein the parking at least one core in
response to the core activity includes work shifting to an unparked core, as allowed

by an affinity mask associated with a program schedule (712, 714).

14. The method of claim &, further comprising
10 revising the monitored core activity to create a revised core activity (508);
unparking at least one core in response to the revised core activity based on
the power policy (512); and

reassigning at least one thread to the at least one unparked core (514).

15. A multiple logical processor system, comprising:
15 a plurality of processors (104); and
a controller (106) coupled to the plurality of processors, the controller to:
implement a performance schedule;
implement a power savings policy; and
balance the performance schedule and power savings policy by

20 parking one or more of the plurality of processors.

16. The system of claim 15, wherein the controller receives instructions
from a kernel power manager (114) residing in system memory to implement the

power savings policy.

17. The system of claim 15, wherein the power savings policy (702)

25 includes a core parking mask (202), the core parking mask combined with program

27

WO 2009/120427 PCT/US2009/034209

module schedules to determine a resulting set of processors on which to schedule

work (116, 220).

18. The system of claim 15, wherein the plurality of processors include at

least one core block having multiple cores (300).

19. The system of claim 18, wherein balancing the performance schedule
and power savings policy includes creating a core parking prioritization for an

unparked core in the core block having at least one parked core (318, 714).

20. The system of claim 15, further comprising adjusting the power state

of at least one unparked core (520).

28

WO 2009/120427 PCT/US2009/034209

1/7

100
W oo 1 o
(_ 02(1) [_ 02(2) 02(N) j

SYSTEM MEMORY 106

OPERATING SYSTEM 108 PROGRAM
CERNEL MODULES
KERNEL 110
POWER
MANAGER | | SCHEDULER
116 PROGRAM
114 DATA 112
N
PROCESSING UNITS
104
y,
REMOVABLE NON-REMOVABLE
STORAGE 118 STORAGE 120
INPUT DEVICE(S) OUTPUT DEVICE(S)
122 124

COMMUNICATION
CONNECTION(S) 126

Fig. 1

WO 2009/120427 PCT/US2009/034209
2/7
200 W
N.. 7 6 5 4 3 2 1 0 Core#
202
A\ L a0
CREATE CORE PARKING /i i i B By ey momas ey
[VIASK } { 1T171]Jo1]oJo]o
[INVERT BIT MASK } {I ofoJoJ1Jo1[1]1]
|
| 212
) :
N 212(1)
N\ & 212(2)
< ti|ofojojojt1]1]ojoyy]
DETERMINE PROGRAM N 212(P)
MODULE AFFINITY MASKS SEEREEEEERERERERE |
|
A | S
// et e e
//
i 214N b 216
! COMBINE AFFINITY f
. MASKS AND INVERTED BIT {
\ MASK
\
\\ @ {_218
\ 218(1)
\ olololololol 1V
\ 218(2)
SCHEDULE WORK TO 0]0(0f0|1]1|0f0
AVAILABLE CORE(S) - 218(P)
OO/ O/[1/0] O [1/0[1/0]1/0
220—/ @
'/—222
CORE USAGE FOR
TIME SLICE { N o) I R R
N.. 7 6 54 3 2 1 0 Core#

WO 2009/120427

37

6400+1500
=7900
C-UTIL.
79%
P-STATE
100%

3200+1500
=4700
C-UTIL.
47%
P-STATE
100%

PCT/US2009/034209

320

WO 2009/120427 PCT/US2009/034209

417
400 W
402
{ EVALUATE TIME PERIOD]
404 l
{ CALCULATE UTILIZATION]
406 l
‘{ REVIEW POLICY J
408 l
{ OTHER FACTORS?]
410 l
{ CALCULATE NEW CONFIGURATIONS]
412 l
{ IMPLEMENT CONFIGURATIONS]

Fig. 4

WO 2009/120427

500
W

57

[— 502

[— 504

PCT/US2009/034209

[— 506

A —

START
TIMECHECK
DPC

B

GATHER
METRICS
GLOBAL

CALCULATE
ACTIVE BIT
MASK

——

508

ACTIVE SE
UPDATED?

516 —

YES

UPDATE
EXPECTED CORE
UTILIZATION

510
1

UPDATE ACTIVE
SET MASK

512

[—514

-

518j l

CALCULATE
TARGET P-STATE

520

NOTIFY KERNEL

SCHEDULER

522
[_

QUEUE TRANSITION
DPC TO AFFECTED
CORES

524

CORES
PARKED?

r 526

NOTIFY SCHEDULER

528

Fig. 5

WO 2009/120427 PCT/US2009/034209

o/7
— 502 — 504 'f_ 600

START GATHER

@_> TIMECHECK |—| METRICS
DPC GLOBAL

604 — 602
YES
NO
CALCULATE
el ACTIVEBIT ﬁﬁﬂ%ﬁ;&: UPEQ¥§Q§EVE
MASK '
506 YES
CORES ADDED?
516 UPDATE
\ EXPECTED CORE 512
UTILIZATION T
NOTIFY
518 Y SCHEDULER |
—\| CALCULATE
TARGET P-STATE)
514 608

/,_.522

QUEUE TRANSITION
DPC TO AFFECTED

CORES
/f—-526

NOTIFY SCHEDULER

520

524

CORES PARKED?

Fig. 6

WO 2009/120427 PCT/US2009/034209

717

{— 700

702 B\ 1
CURRENT POWER POLICY

704 N Y .
MIN/MAX NUMBER OF CORES TO RUN

706 —~ 7
[POLICY PARAMETERS FOR CORE PARKING

706(1) -
\{ INCREASE/DECREASE TIME
706(2) - v
\[INCREASE/DECREASE POLICY
706(3) - Y
\{ INCREASE/DECREASE THRESHOLD
706(4) POLICY FOR SCALING UNPARKED
CORES
708) Y .
CORE AND/OR SYSTEM HEURISTICS
708(1) - .
\{ CORE UTILIZATION
Y

FOR READY THREADS FOR A CORE

] 3\
708(2) \[DISTRIBUTION OF AVERAGE WAIT TIME

\ J

710 v
IDLE STATE DEPENDENCIES

Y

PERFORMANCE AND THROTTLE STATE
DEPENDENCIES

L]

CORE PACKAGE RELATIONSHIPS

L]

MEMORY LOCALITY

Fig. 7

712

N
N
o)}

JJJ)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2009/034209

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 1/26(2006.01)i, GO6F 9/46(2006.01)i, GO6F 1/32(2006.01)i, GO6F 12/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 8 : GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and application for Utility models since 1975

eKOMPASS(KIPO internal) "multi-core processor” "scheduling”

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See [0021] - [0072].

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2006/0090161 A1 (DEVADATTA V. BODAS, JUN NAKAJIMA) 27 April 2006 1-20
See [0015] - [0030].
A US 2006/0123251 A1 (JUN NAKAJIMA, DEVADATTA V. BODAS) 9 June 2006 1-20
See [0011] - [0027].
A US 2007/0204268 A1 (ULRICH DREPPER) 30 August 2007 1-20
See [0024] - [0061].
A US 2006/0004988 A1 (PAUL J. JORDAN) 5 January 2006 1-20

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

wn

e

yn

ng"

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

31 AUGUST 2009 (31.08.2009)

Date of mailing of the international search report

01 SEPTEMBER 2009 (01.09.2009)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo-
gu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.

KWON, Oh Seong

82-42-481-8526

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2009/034209
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2006-0080161 A1l 27.04.2006 None
US 2006-0123251 A1 08.06.2006 None
US 2007-0204268 A1 30.08.2007 None
US 2006-0004988 A1 05.01.2006 EP 1766511 Al 28.03.2007

WO 2006-004827 A1 12.01.2006

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report

