

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 December 2009 (03.12.2009)

(10) International Publication Number
WO 2009/145525 A2

(51) International Patent Classification:
H04B 7/005 (2006.01) **H04L 29/02** (2006.01)

[KR/KR]; LG Institute, Hogye 1(il)-dong, Dongan-gu, Anyang-si, Gyeonggi-do 431-080 (KR).

(21) International Application Number:
PCT/KR2009/002709

(74) Agents: **KIM, Yong In** et al.; KBK & Associates, 7th Floor, Hyundae Building, 175-9, Jamsil-dong, Songpa-ku, Seoul 138-861 (KR).

(22) International Filing Date:
22 May 2009 (22.05.2009)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

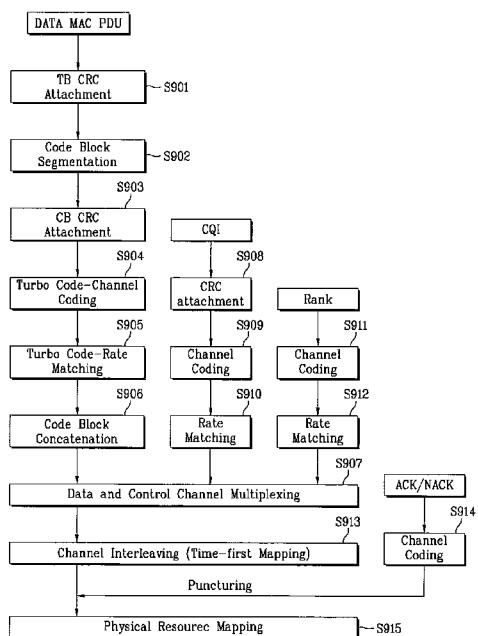
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/056,068 27 May 2008 (27.05.2008) US
61/074,679 23 June 2008 (23.06.2008) US
10-2009-0033078 16 April 2009 (16.04.2009) KR

(71) Applicant (for all designated States except US): **LG ELECTRONICS INC.** [KR/KR]; 20, Yeouido-dong, Yeongdeungpo-gu, Seoul 150-721 (KR).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),


(72) Inventors; and

(75) Inventors/Applicants (for US only): **CHEON, Byeong Geol** [KR/KR]; LG Institute, Hogye 1(il)-dong, Dongan-gu, Anyang-si, Gyeonggi-do 431-080 (KR). **LEE, Dae Won** [KR/KR]; LG Institute, Hogye 1(il)-dong, Dongan-gu, Anyang-si, Gyeonggi-do 431-080 (KR). **KIM, Ki Jun**

[Continued on next page]

(54) Title: METHOD AND DEVICE FOR TRANSMITTING UPLINK SIGNAL INCLUDING DATA AND CONTROL INFORMATION VIA UPLINK CHANNEL

Figure 9

(57) Abstract: A method and device for transmitting a first and second uplink signal, each having data and control information is provided. The method includes channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce. The channel encoding includes determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, **Published:**
MR, NE, SN, TD, TG).

— *without international search report and to be republished
upon receipt of that report (Rule 48.2(g))*

【DESCRIPTION】

【Invention Title】

**METHOD AND DEVICE FOR TRANSMITTING UPLINK SIGNAL
INCLUDING DATA AND CONTROL INFORMATION VIA UPLINK CHANNEL**

【Technical Field】

The present invention relates to a method for transmitting an uplink signal including control information and data through an uplink channel.

【Background Art】

Channel structure and mapping of LTE

The link channel structure and mapping of the 3rd generation partnership project (3GPP) long term evolution (LTE) will now be described. A downlink physical channel includes a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH). An uplink physical channel includes a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH).

A downlink transport channel includes a broadcast channel (BCH), a downlink shared channel (DL-SCH), a paging channel (PCH), and a multicast channel (MCH). An uplink transport channel includes an uplink shared channel (UL-SCH) and a random access channel (RACH).

FIG. 1 illustrates a mapping relationship between a downlink physical channel and a downlink transport channel.

FIG. 2 illustrates a mapping relationship between an uplink physical channel and an uplink transport channel. The above-described physical channels and transport channels are mapped to each other as illustrated in FIGs. 1 and 2.

Meanwhile, a logical channel classified as a control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH). A logical channel classified as a traffic channel includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).

FIG. 3 illustrates a mapping relationship between a downlink transport channel and a downlink logical channel.

FIG. 4 illustrates a mapping relationship between an uplink transport channel and an uplink logical channel.

Slot structure of LTE

In a cellular orthogonal frequency division multiplexing (OFDM) radio packet communication system, an uplink/downlink data packet is transmitted in units of subframes. One subframe is defined as a prescribed time 5 duration including a plurality of OFDM symbols.

The 3GPP supports radio frame structure type 1 applicable to frequency division duplex (FDD) and radio frame structure type 2 applicable to time division duplex (TDD).

10 FIG. 5 illustrates the radio frame structure type 1. The radio frame type 1 consists of 10 subframes. One subframe consists of 2 slots.

FIG. 6 illustrates the radio frame structure type 2. The radio frame type 2 is comprised of two half-frames. 15 Each half-frame consists of 5 subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). One subframe consists of two slots. The DwPTS is used for an initial cell search, for synchronization or for channel estimation. The UpPTS is 20 used for channel estimation in an evolved Node B (eNB), uplink transmission synchronization of a User Equipment (UE). The GP is an interval for eliminating interference caused by multi-path delay of downlink signal between

uplink and downlink. Namely, irrespective of a radio frame type, one subframe consists of two slots.

FIG. 7 illustrates a downlink slot structure of LTE. As illustrated in FIG. 7, a signal transmitted in each slot 5 may be represented by a resource grid comprised of subcarriers and OFDM symbols. At this time, N_{RB} denotes the number of resource blocks (RBs) in a downlink, N_{SC} denotes the number of subcarriers constituting one RB, and N_{OFDM} denotes the number of OFDM symbols in one downlink slot.

FIG. 8 illustrates an uplink slot structure of LTE. As illustrated in FIG. 8, a signal transmitted in each slot 10 may be represented by a resource grid comprised of subcarriers and OFDM symbols. At this time, N_{RB} denotes the number of resource blocks (RBs) in an uplink, N_{SC} denotes the 15 number of subcarriers constituting one RB, and N_{OFDM} denotes the number of OFDM symbols in one uplink slot. A resource element refers to one subcarrier and one OFDM symbol as a resource unit defined by indexes (a, b) (where a is an index on a frequency domain and b is an index on a time 20 domain) within the uplink slot and the downlink slot.

Meanwhile, the eNB transmits control information to a downlink to control a UL-SCH which is an uplink transport channel. The control information transmitted to the downlink informs the UE of the number of RBs transmitted

through the UL-SCH and a modulation order. In addition, when data is transmitted to an uplink, the control information informs the UE of a payload size of the data.

5 The payload size may be defined as the sum of the size of information (e.g., the size of data, or the size of control information) transmitted from a medium access control (MAC) layer and the size of cyclic redundancy check (CRC) attached arbitrarily to the information in a physical layer.

The payload of the control information may not include the

10 size of the CRC because the CRC cannot be attached to the control information according to the size of the control information before the CRC is attached to the control information. Specifically, if the size of the control information to which the CRC is not attached is smaller
15 than or equal to 11 bits, the CRC is not attached to the control information. In addition, if the size of the control information to which the CRC is not attached is greater than or equal to 12 bits, the CRC is attached to the control information.

20 Data and control information (e.g., Channel Quality Information (CQI) /Precoding Matrix Indicator (PMI) or Rank Indication (RI)) may be multiplexed together and transmitted through the UL-SCH. In the conventional system, a scheme for encoding the data differs from a scheme for

encoding the control information. Furthermore, in the conventional system, a block error rate (BLER) of the data and a BLER of the control information, demanded by the eNB, may differ from each other.

5 Furthermore, in the conventional system, even though a code rate of data is known using the modulation order, the number of RBs, and the payload size of data, a code rate of control information cannot be known. Moreover, since the data and the control information are multiplexed
10 together and then transmitted through the UL-SCH, the number of transmitted symbols of the data cannot be known.

To solve such problems, the conventional system was upgraded such that the code rate of the control information is compensated for by an offset that can be changed by the
15 eNB as compared with the code rate of the data.

Even if the system is managed as described above, the code rate of the data may be varied by information multiplexed with the data. Moreover, if the data is not transmitted, the UE cannot estimate a code rate of CQI/PMI
20 or rank indication for example. Accordingly, a method for calculating a code rate of transmitted information (e.g., CQI/PMI or rank indication) according to a combination of information transmitted through the UL-SCH is demanded.

Also, in the conventional communication system, if an error occurs in a data packet due to failure of receipt after the data packet is transmitted, the corresponding data packet is re-transmitted.

5 Also, in the case where re-transmission occurs, if decoding is performed using an initially received data packet and a data packet received by re-transmission, a success probability of receiving the data packet is increased even though not all resources employed when the
10 data packet is initially transmitted are used.

For example, when the communication system operates such that the initial data packet is transmitted without errors with a probability of 90%, the system does not encounter any problem even when the data packet is re-
15 transmitted at a code rate higher than a code rate of the initial data packet. Transmitting a data packet at a high code rate means that less physical transmission resources are used than during the initial transmission of the data packet.

20 If a code rate of CQI/PMI or rank indication is calculated using the total number of symbols of the data when re-transmitting the data packet, a code rate for stably transmitting the CQI/PMI or rank indication may not be set. Therefore, when data is re-transmitted, a code

rate setting method for stably transmitting the CQI/PMI or rank indication is demanded.

In summary, in an attempt to save bandwidth while retransmitting, a conventional mobile is commanded by a 5 base station to reduce the amount of total information bits (i.e., data and control bits) that are retransmitted. This does not result in an increased error rate for the data bits because the retransmitted payload data is soft combined with the original payload data. However, 10 corresponding control data of the two signals are not combined for decoding/demodulation. That is, in the conventional system, the truncated control bits of the retransmitted signal are used for code rate setting, resulting in degraded performance. Thus, the present 15 invention compensates for this degradation in performance by reusing the original control data in a novel fashion.

【Disclosure】

【Technical Problem】

If a code rate of CQI/PMI or rank indication is 20 calculated using the total number of symbols of the data when re-transmitting the data packet, a code rate for stably transmitting the CQI/PMI or rank indication may not be set. Therefore, when data is re-transmitted, a code

rate setting method for stably transmitting the CQI/PMI or rank indication is demanded.

In summary, in an attempt to save bandwidth while retransmitting, a conventional mobile is commanded by a base station to reduce the amount of total information bits (i.e., data and control bits) that are retransmitted. This does not result in an increased error rate for the data bits because the retransmitted payload data is soft combined with the original payload data. However, corresponding control data of the two signals are not combined for decoding/demodulation. That is, in the conventional system, the truncated control bits of the retransmitted signal are used for code rate setting, resulting in degraded performance. Thus, the present invention compensates for this degradation in performance by reusing the original control data in a novel fashion.

【Technical Solution】

Accordingly, the present invention is directed to a
5 method and device for transmitting a first and second uplink signal, each having data and control information. The method includes channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce. The channel

encoding includes determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.

Preferably, the step of determining may include determining the number of symbols in accordance with a payload size of the control information of the second uplink signal and an offset value applied to the control information of the second uplink signal.

Preferably, the method may further include channel encoding the data of the second uplink signal to produce second channel encoded data; channel interleaving the first and second channel encoded data to generate the second uplink signal; and transmitting the second uplink signal.

Preferably, the number of symbols of control information may satisfy the expression:

$$M_x = \left\lceil N_x \cdot \beta_x \cdot \frac{M_{RE}^{PUSCH}}{N_{data}} \right\rceil$$

where M_x is the number of the symbols of the control information,

20 N_x is the payload size of the control information,

β_x is the offset value,

N_{data} is the size of the data of the first uplink signal,

M_{RE}^{PUSCH} is the total number of transmissible symbols of Physical Uplink Shared Channel (PUSCH) of the first uplink signal, and " $\lceil \rceil$ " denotes a ceiling function.

Preferably, the control information may be one of channel quality control information and a rank indication, and the channel quality control information may include at least one of Channel Quality Information (CQI) and a Precoding Matrix Indicator (PMI).

Preferably, the control information may be one of channel quality control information and a rank indication, and a payload size of the channel quality control information includes a size of Cyclic Redundancy Check (CRC) attached to the channel quality control information.

Preferably, the method may further include retrieving the payload size of the data of the first uplink signal and the total number of transmissible symbols of the Physical Uplink Shared Channel (PUSCH) of the first uplink signal from a memory or a cache.

Preferably, the number of symbols of control information may satisfy the expression:

$$Q' = \left\lceil \frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r} \right\rceil \text{ where}$$

Q' is the number of the symbols of the control information of the second uplink signal,

5 O is the payload size of the control information of the second uplink signal,

$N_{symb}^{PUSCH-initial}$ is a number of SC-FDMA symbols per subframe for Physical Uplink Shared Channel (PUSCH) transmission of

the first uplink signal, $M_{sc}^{PUSCH-initial}$ is a scheduled bandwidth PUSCH transmission for Physical Uplink Shared Channel 10 (PUSCH) transmission of the first uplink signal,

β_{offset}^{PUSCH} is the offset value,

$\sum_{r=0}^{C-1} K_r$ is the payload size of the data of the first uplink signal, r is code block number of the data of the first uplink signal before channel coding of the data of 15 the first uplink signal, K_r is a number of bits in code block number r , and C is a total number of code blocks.

Also, there is a method and device for processing a received first and second uplink signal, each having data and control information. The method includes channel

decoding channel encoded data with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a PUSCH of the first uplink signal to produce the control information of the second uplink 5 signal.

Preferably, the step of channel decoding may include channel decoding the channel encoded data with a payload size of the control information of the second uplink signal and an offset value applied to the control information of 10 the second uplink signal.

Preferably, a number of symbols of control information decoded in the step of decoding satisfy the expression:

$$Q' = \left\lceil \frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r} \right\rceil \text{ where}$$

15 Q' is the number of the symbols of the control information of the second uplink signal,

O is the payload size of the control information of the second uplink signal,

$N_{symb}^{PUSCH-initial}$ is a number of SC-FDMA symbols per subframe 20 for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal, $M_{sc}^{PUSCH-initial}$ is a scheduled bandwidth

PUSCH transmission for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal,

β_{offset}^{PUSCH} is the offset value,

$\sum_{r=0}^{C-1} K_r$ is the payload size of the data of the first

5 uplink signal, r is code block number of the data of the first uplink signal before channel coding of the data of the first uplink signal, K_r is a number of bits in code block number r , and C is a total number of code blocks.

【Advantageous Effects】

10 when data and control information are transmitted via an uplink channel, an uplink signal including the data and control information can be transmitted by accurately calculating code rates of the data and control information.

【Description of Drawings】

15 The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the
20 invention.

In the drawings:

FIG. 1 illustrates a mapping relationship between a downlink physical channel and a downlink transport channel.

FIG. 2 illustrates a mapping relationship between an uplink physical channel and an uplink transport channel.

FIG. 3 illustrates a mapping relationship between a downlink transport channel and a downlink logical channel.

FIG. 4 illustrates a mapping relationship between an uplink transport channel and an uplink logical channel.

10 FIG. 5 is the radio frame structure type 1.

FIG. 6 is the radio frame structure type 2.

FIG. 7 is a downlink slot structure of LTE.

FIG. 8 is an uplink slot structure of LTE.

15 FIG. 9 illustrates a processing of data and control information transmitted through a UL-SCH which is an uplink transport channel.

FIG. 10 illustrates an alternative processing of data and control information transmitted through a UL-SCH which is an uplink transport channel.

20 FIG. 11 is a subframe structure after data and control information are multiplexed.

FIG. 12 illustrates an example of modulation constellation coordinates.

FIG. 13 illustrates an example of modulation

constellation coordinates.

FIG. 14 describes HARQ (Hybrid Automatic Repeat request) process for explaining data retransmission.

FIG. 15 is a diagram explaining a use relationship of 5 a reference MCS during re-transmission of data.

FIG. 16 is a block diagram of a UE according to an exemplary embodiment of the present invention.

FIG. 17 is a block diagram showing constitutional elements of a device 50 that can be either a UE or an eNB.

10

【Best Mode】

Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The detailed 15 description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention, rather than to show the only embodiments that can be implemented according to the invention. The following detailed description includes 20 specific details in order to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without such specific details. For example, the following description will be given

centering on specific terms, but the present invention is not limited thereto and any other terms may be used to represent the same meanings.

FIG. 9 illustrates processing of data and control information transmitted through a UL-SCH which is an uplink transport channel.

A transport block (TB) CRC is attached to the TB of data transmitted to an uplink in step S901. The data is to be multiplexed with control information (CQI/PMI or rank indication). The CRC attached data is segmented into multiple code blocks (CBs) according to the size of the TB in step S902 and a CB CRC is attached to the CBs in step S903. Channel coding is performed upon the CRC-attached CBs in step S904. The channel coded data is rate-matched in step S905 and CBs are concatenated in step S906. The concatenated CBs are multiplexed with control information in step S907.

Meanwhile, a CRC is attached to CQI/PMI in step S908 and channel coding is performed upon the CRC-attached CQI/PMI in step S909. The channel-coded CQI/PMI is rate-matched in step S910 and multiplexed with the data in step S907. Although the channel coding process and the rate matching process are described as separate processes, the

channel coding process may include the rate matching process in some cases.

Rank indication is channel-coded in step S911 separately from the data. The channel-coded rank indication is rate-matched in step S912. Although the channel coding process and the rate matching process are described as separate processes, the channel coding process may include the rate matching process in some cases.

A channel interleaving process is performed upon the multiplexed data, CQI/PMI, and rank indication in step S913.

Channel coding is performed upon acknowledgement (ACK)/negative acknowledgement (NACK) information in step S914 separately from the data, CQI/PMI, and rank indication.

The ACK/NACK information is inserted through puncturing a part of the channel-interleaved signal. The interleaved signal into which the ACK/NACK information is inserted is transmitted to the uplink after physical resource mapping in step S915.

The channel coded data, CQI/PMI, and rank indication of specific sizes are converted into data, CQI/PMI, and rank indication having prescribed numbers of symbols or bits transmitted in a physical layer through rate matching. In this case, the number of symbols or bits transmitted in

the physical layer should be present with respect to each of the data, CQI/PMI, and rank indication.

FIG. 10 illustrates an alternative processing of data and control information transmitted through a UL-SCH which
5 is an uplink transport channel.

Error detection is provided on UL-SCH transport blocks through a Cyclic Redundancy Check (CRC) in step S100.

The entire transport block is used to calculate the CRC parity bits. The bits in a transport block delivered
10 to layer 1 are denoted by $a_0, a_1, a_2, a_3, \dots, a_{A-1}$. The parity bits are denoted by $p_0, p_1, p_2, p_3, \dots, p_{L-1}$. A is the size of the transport block and L is the number of parity bits.

Code block segmentation and code block CRC attachment are performed after transport block CRC attachment in step
15 110. The bits input to the code block segmentation are denoted by $b_0, b_1, b_2, b_3, \dots, b_{B-1}$ where B is the number of bits in the transport block (including CRC). The bits after code block segmentation are denoted by $c_{r0}, c_{r1}, c_{r2}, c_{r3}, \dots, c_{r(K_r-1)}$, where r is the code block number and K_r is the number of bits for
20 code block number r .

Channel coding is performed after code block segmentation and code block CRC in step 120. After encoding the bits are denoted by $d_{r0}^{(i)}, d_{r1}^{(i)}, d_{r2}^{(i)}, d_{r3}^{(i)}, \dots, d_{r(D_r-1)}^{(i)}$,

with $i=0,1,\text{and }2$ and where D_r is the number of bits on the i -th coded stream for code block number r , i.e. $D_r = K_r + 4$.

Rate matching is performed on Turbo coded blocks after channel coding in step 130. After rate matching, the

5 bits are denoted by $e_{r0}, e_{r1}, e_{r2}, e_{r3}, \dots, e_{r(E_r-1)}$, where r is the coded block number, and where E_r is the number of rate matched bits for code block number r .

Code block concatenation is performed after rate matching in step 140. The bits after code block

10 concatenation are denoted by $f_0, f_1, f_2, f_3, \dots, f_{G-1}$, where G is the total number of coded bits for transmission excluding the bits used for control transmission, when control information is multiplexed with the UL-SCH transmission.

The channel coding of the channel quality information 15 is performed with input sequence $o_0, o_1, o_2, \dots, o_{O-1}$ in step 150.

The output sequence for the channel coding of channel quality information is denoted by $q_0, q_1, q_2, q_3, \dots, q_{Q_{CQI}-1}$.

The channel coding of the RI is preformed with input sequence $[o_0^{RI}]$ or $[o_0^{RI} \ o_1^{RI}]$ in step 160. $[o_0^{RI}]$ and $[o_0^{RI} \ o_1^{RI}]$ denotes 20 1-bit RI and denotes 2-bits RI, respectively.

The channel coding of the HARQ-ACK is performed with input sequence $[o_0^{ACK}]$, $[o_0^{ACK} \ o_1^{ACK}]$ or $[o_0^{ACK} \ o_1^{ACK} \dots o_{O^{ACK}-1}^{ACK}]$ in step

170. Each positive acknowledgement (ACK) is encoded as a binary '1' and each negative acknowledgement (NAK) is encoded as a binary '0'. HARQ-ACK can consist of 1-bit of

information, i.e., $[o_0^{ACK}]$ or 2-bits of information, i.e.,

5 $[o_0^{ACK} o_1^{ACK}]$ with o_0^{ACK} corresponding to ACK/NACK bit for codeword 0 and o_1^{ACK} corresponding to that for codeword 1.

In addition, HARQ-ACK can consist of more than two bits

information, i.e. $[o_0^{ACK} o_1^{ACK} \dots o_{O^{ACK}-1}^{ACK}]$ with $O^{ACK} > 2$. The bit

sequence $q_0^{ACK}, q_1^{ACK}, q_2^{ACK}, \dots, q_{Q^{ACK}-1}^{ACK}$ is obtained by concatenation of

10 multiple encoded HARQ-ACK blocks where Q^{ACK} is the total number of coded bits for all the encoded HARQ-ACK blocks.

The inputs to the data and control multiplexing are the coded bits of the control information denoted by

$q_0, q_1, q_2, q_3, \dots, q_{Q_{CQI}-1}$ and the coded bits of the UL-SCH denoted by

15 $f_0, f_1, f_2, f_3, \dots, f_{G-1}$ in step 180. The output of the data and

control multiplexing operation is denoted by $\underline{g}_0, \underline{g}_1, \underline{g}_2, \underline{g}_3, \dots, \underline{g}_{H'-1}$,

where $H = (G + Q_{CQI})$ and $H' = H / Q_m$, and where \underline{g}_i with $i = 0, \dots, H'-1$ are

column vectors of length Q_m . H is the total number of coded bits allocated for UL-SCH data and CQI/PMI

20 information.

The channel interleaving is performed with the output of the data and control multiplexing operation denoted by $\underline{g}_0, \underline{g}_1, \underline{g}_2, \underline{g}_3, \dots, \underline{g}_{H'-1}$, the encoded rank indication denoted by the $q_0, q_1, q_2, q_3, \dots, q_{Q_{CQI}-1}$ and the encoded HARQ-ACK denoted by $q_0^{ACK}, q_1^{ACK}, q_2^{ACK}, \dots, q_{Q_{ACK}-1}^{ACK}$.

The bits after channel interleaving are denoted by $h_0, h_1, h_2, \dots, h_{H+Q_{RI}-1}$. The number of modulation symbols in the subframe is given by $H'' = H' + Q_{RI}$.

FIG. 11 illustrates a subframe structure after data and control information are multiplexed. The subframe after data, CQI/PMI, rank indication, and ACK/NACK information are appropriately multiplexed in a physical layer is as shown in FIG. 11.

Hereinafter, a method will be described for calculating code rates of data and control information when data is transmitted through an UL-SCH.

When data is simultaneously transmitted together with other information (e.g., at least one of CQI/PMI information and rank indication), since such control information transmitted together with the data is multiplexed together with the data after rate matching, the number of transmitted symbols of the data and the number of

transmitted symbols of the control information transmitted together with the data are needed upon transmission of the data. Herein, "the number of transmitted symbols" means the number of symbols output through rate matching.

5 Therefore, in the present invention, "the number of transmitted symbols" is referred to as the number of symbols output through rate matching.

In addition, in the present invention, a payload size may be defined as the sum of the size of information (e.g., 10 the size of data, or the size of control information) transmitted from a medium access control (MAC) layer and the size of cyclic redundancy check (CRC) attached arbitrarily to the information in a physical layer. The payload of the control information may not include the size 15 of the CRC because the CRC may not be attached to the control information according to the size of the control information before the CRC is attached to the control information. Specifically, if the size of the control information to which the CRC is not attached is smaller 20 than or equal to 11 bits, the CRC is not attached to the control information. In addition, if the size of the control information to which the CRC is not attached is greater than or equal to 12 bits, the CRC is attached to the control information.

If a code rate and a modulation order of the transmitted data are accurately known, a reference modulation and coding scheme (MCS) may be defined using the code rate and modulation order of the data. An MCS of the 5 control information transmitted together with the data may be estimated using the reference MCS and using offset information of the control information.

Assuming that the inverse of spectral efficiency obtained by a code rate and a modulation order of data is 10 MCS_{data} , MCS_{data} may be calculated using the following Equation 1.

[Equation 1]

$$MCS_{data} = \frac{1}{CodeRate \cdot Modulation\ Order}$$

If a reference MCS is MCS_{ref} , a payload size of 15 CQI/PMI is N_{CQI} , and a parameter expressing, in dB, an offset value for compensating for a difference between a block error rate of data and a block error rate of CQI/PMI and a difference between a data encoding scheme and a CQI/PMI encoding scheme is Δ_{CQI} , the number M_{CQI} of 20 transmitted symbols of CQI/PMI may be calculated using the following Equation 2.

[Equation 2]

$$M_{CQI} = \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot MCS_{ref} \right\rceil$$

In Equation 2, " $\lceil \rceil$ " denotes a ceiling function. The ceiling function represents a function whose value is the smallest integer not less than a value within the symbol.

5 For example, $\lceil 2.3 \rceil$ indicates 3 because the smallest integer not less than 2.3 is 3.

In addition, if reference MCS is MCS_{ref} , a payload size of rank indication is N_RI , and a parameter expressing, in dB, an offset value for compensating for a difference 10 between a block error rate of data and a block error rate of rank indication and a difference between a data encoding scheme and a rank indication encoding scheme is Δ_{RI} , the number M_RI of transmitted symbols of rank indication may be expressed by the following Equation 3.

15 [Equation 3]

$$M_{RI} = \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot MCS_{ref} \right\rceil$$

If a code rate and modulation order of data used when calculating a reference MCS are known, the number of transmitted symbols of CQI/PMI and the number of 20 transmitted symbols of rank indication may be calculated.

However, if an eNB commands transmission of data on an UL-SCH, the eNB informs a UE of only the total number of symbols which can be transmitted when the data and other information are multiplexed, a payload size of the data, 5 and the modulation order of the data. Therefore, agreement between the eNB and the UE is required to calculate the reference MCS.

Embodiment 1-A

As illustrated in FIG. 9, when the data, CQI/PMI, and 10 rank indication are transmitted together, the data, CQI/PMI, and rank indication are rate-matched and then multiplexed. To calculate the number of transmitted symbols of each of the data, CQI/PMI, and rank indication, equations of a complicated closed form or iterative equations should be 15 used.

Accordingly, a method for briefly calculating the reference MCS is proposed. However, if the method for calculating the reference MCS is simplified, an accurate code rate of the information may not be applied.

20 The method for calculating the reference MCS uses the code rate and modulation order of data under the assumption that only the data is transmitted on the UL-SCH without transmitting the CQI/PMI or rank indication.

Specifically, a reference code rate may be calculated using the following Equation 4.

[Equation 4]

$$CR_{data} = \frac{N_{data}}{Q_{data} \cdot M_{RE}^{PUSCH}}$$

5 where CR_{data} denotes a reference code rate, N_{data} denotes a payload size of data, Q_{data} denotes a modulation order of data which is a reference modulation order, and M_{RE}^{PUSCH} is the total number of symbols which can be transmitted through a physical channel when transmitting 10 data through the UL-SCH. In the present invention, the M_{RE}^{PUSCH} is correspond to $M_{sc}^{PUSCH} \cdot N_{symb}^{PUSCH\text{-initial}}$ where the M_{sc}^{PUSCH} is the scheduled bandwidth for PUSCH transmission in a current 15 sub-frame for the transport block, and N_{symb}^{PUSCH} is the number of SC-FDMA symbols in the current PUSCH transmission sub-frame.

Therefore, the reference MCS MCS_{ref} may be calculated using the following Equation 5.

[Equation 5]

$$MCS_{ref} = \frac{1}{CR_{data} \cdot Q_{data}} = \frac{M_{RE}^{PUSCH}}{N_{data}}$$

where CR_{data} denotes a reference code rate, N_{data} denotes a payload size of data, Q_{data} denotes a modulation order of data which is a reference modulation order, and M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel when transmitting data through the UL-SCH.

Generally, a CRC is attached to data to check for errors. In Equation 4 and Equation 5, the payload size N_{data} of data is defined as a value including the CRC but may not include the CRC for simple approximation.

Application of Embodiment 1-A: in the case where data and CQI/PMI are transmitted together

When data and CQI/PMI are transmitted on the UL-SCH, the reference MCS is calculated using the payload size N_{data} of data. The number of finally transmitted symbols of the CQI/PMI may be calculated using the following Equation 6.

[Equation 6]

$$M_{CQI} = \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot MCS_{ref} \right\rceil$$

where N_{CQI} denotes a payload size of CQI/PMI, and Δ_{CQI} denotes a parameter expressing, in dB, an offset value for compensating for a difference between the block error rate

of data and the block error rate of CQI/PMI and a difference between a data encoding scheme and a CQI/PMI

encoding scheme, and M_{CQI} denotes the number of transmitted symbols of CQI/PMI after rate matching.

5 If the number M_{CQI} of transmitted symbols of the CQI/PMI is obtained using Equation 6, the number M_{data} of transmitted symbols of data may be calculated using the following Equation 7.

[Equation 7]

$$10 M_{data} = M_{RE}^{PUSCH} - M_{CQI}$$

where M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel when transmitting data on a UL-SCH. Since the data and CQI/PMI are multiplexed after they are rate-matched, the number of 15 symbols obtained by subtracting M_{CQI} from M_{RE}^{PUSCH} is the number M_{data} of symbols of data.

Application of Embodiment 1-A: in the case where data and rank indication are transmitted together

When data and rank indication are transmitted on the 20 UL-SCH, the number M_{RI} of transmitted symbols of the rank indication may be calculated using the following Equation 8, similarly to when the data and CQI/PMI are transmitted.

[Equation 8]

$$M_{RI} = \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot MCS_{ref} \right\rceil$$

where N_{RI} denotes a payload size of rank indication, and Δ_{RI} denotes a parameter expressing, in dB, an offset value for compensating for a difference between the block error rate of data and the block error rate of rank indication and a difference between a data encoding scheme and a rank indication encoding scheme, and M_{RI} denotes the number of transmitted symbols of rank indication.

Once M_{RI} is obtained using Equation 8, the number M_{data} of transmitted symbols of data may be calculated using the following Equation 9.

[Equation 9]

$$M_{data} = M_{RE}^{PUSCH} - M_{RI}$$

where M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel when transmitting data on a UL-SCH. Since the data and rank indication are multiplexed after they are rate-matched, the number of symbols obtained by subtracting M_{RI} from M_{RE}^{PUSCH} 20 is the number M_{data} of symbols of the data.

Application of Embodiment 1-A: in the case where data, CQI/PMI, and rank indication are transmitted together

When the data, CQI/PMI, and rank indication are transmitted together, the number M_{CQI} of transmitted symbols of CQI/PMI and the number M_{RI} of transmitted symbols of rank indication are calculated using the reference MCS as follows.

[Equation 10]

$$M_{CQI} = \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot MCS_{ref} \right\rceil$$

[Equation 11]

$$M_{RI} = \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot MCS_{ref} \right\rceil$$

If M_{CQI} and M_{RI} are obtained, M_{data} is calculated using M_{RE}^{PUSCH} as follows.

[Equation 12]

$$M_{data} = M_{RE}^{PUSCH} - M_{CQI} - M_{RI}$$

For accurate decoding of data, CQI/PMI, and rank indication between a UE and an eNB, the above-mentioned calculations should be accurately carried out. However,

since the above equations include $10^{\frac{\Delta_{CQI}}{10}}$, $10^{\frac{\Delta_{RI}}{10}}$, etc., irrational number values may be calculated. Therefore, a

calculation result in the UE and the eNB may vary according to calculation methods of multiplication, division, and

$10^{\frac{\Delta_{CQI}}{10}}$ and $10^{\frac{\Delta_{RI}}{10}}$ in the UE and eNB.

A method is proposed for calculating the numbers of
5 transmitted symbols of CQI/PMI and rank indication such that a calculation result of division does not generate a remainder.

The numbers of transmitted symbols of the CQI/PMI and rank indication are calculated using the following Equation

10 13.

[Equation 13]

$$M_x = \left\lceil N_x \cdot 10^{\frac{\Delta_x}{10}} \cdot MCS_{ref} \right\rceil$$

where N_x denotes a payload size of information X, Δ_x denotes a parameter expressing, in dB, an offset value for
15 compensating for a difference between the block error rate of data and the block error rate of the information X and a difference between a data decoding scheme and an information X decoding scheme, and M_x denotes the number of transmitted symbols of information X.

20 In Equation 13, $10^{\frac{\Delta_x}{10}}$, and MCS_{ref} defined in Equation 5 may be differently calculated in the UE and the eNB. The

UE and eNB may promise to previously define $10^{\frac{\Delta_x}{10}}$ as a quantized value.

Table 1 listed below shows a result of quantizing $10^{\frac{\Delta_x}{10}}$. For example, the UE and the eNB may define $10^{\frac{\Delta_x}{10}}$ as a quantized value as shown in Table 1. In Table 1, β_x ($= \text{quan}\left(10^{\frac{\Delta_x}{10}}\right)$) indicates a value of quantizing $10^{\frac{\Delta_x}{10}}$. A fractional part of $\beta_x = \text{quan}\left(10^{\frac{\Delta_x}{10}}\right)$ may be expressed by N bits. In Table 1, a quantized result of β_x is shown such that a fractional part thereof can be expressed by 6 bits.

[Table 1]

Index	Δ_x	$\beta_x = \text{quan}\left(10^{\frac{\Delta_x}{10}}\right)$
0 (000)	0 dB	1.0000000000
1 (001)	1 dB	1.2500000000
2 (010)	2 dB	1.5781250000
3 (011)	3 dB	1.9843750000

...	...	2.5000000000
7 (111)	7 dB	3.1562500000

Table 2 and 3 listed below show a result of calculating β_x when the information X is CQI/PMI or rank indication.

5 [Table 2]

Index	β_{RI}
0	1.250
1	1.625
2	2.000
3	2.500
4	3.125
5	4.000
6	5.000
7	6.250
8	8.000
9	10.000

10	12.625
11	15.875
12	20.000
13	reserv ed
14	reserv ed
15	reserv ed

[Table 3]

Index	β_{CQI}
0	0.750
1	1.000
2	1.125
3	1.250
4	1.375
5	1.625
6	1.750
7	2.000

8	2.250
9	2.500
10	2.875
11	3.125
12	3.500
13	4.000
14	5.000
15	6.250

Since MCS_{ref} may have various values, the UE and eNB should store large quantities of values in order to define MCS_{ref} as a quantized value between the UE and the eNB. However, in order not to store the quantized value, 5 division which may generate a non-integer calculation result should be eliminated.

Using Equation 13 and Equation 5, the number M_x of transmitted symbols of information X can be as follows.

[Equation 14]

$$M_x = \left\lceil N_x \cdot 10^{\frac{\Delta_x}{10}} \cdot MCS_{ref} \right\rceil = \left\lceil N_x \cdot 10^{\frac{\Delta_x}{10}} \cdot \frac{M_{RE}^{PUSCH}}{N_{data}} \right\rceil$$

In Equation 14, a denominator of MCS_{ref} may be transposed towards M_x . When transposing values within a ceiling function, equality ("=") may be converted to inequality (" \geq "). Namely, in the ceiling function,

5 $Z = \left\lceil \frac{Y}{X} \right\rceil$ can be expressed as $Z \cdot X \geq Y$ on condition that Z is the smallest integer satisfying $Z \cdot X \geq Y$.

Thus, an equation for calculating the number of transmitted symbols of information X transmitted through a physical channel to solve a quantization problem may be 10 defined as follows.

[Equation 15]

$$M_x \cdot N_{data} \geq N_x \cdot \beta_x \cdot M_{RE}^{PUSCH}$$

where M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel when 15 transmitting data through a UL-SCH, N_{data} denotes a payload size of data, N_x denotes the payload size of the information X , M_x denotes the number of transmitted symbols of the information X and β_x denotes a value of quantizing $10^{\frac{\Delta_x}{10}}$. When N_{data} , N_x , β_x , and M_{RE}^{PUSCH} are given, 20 M_x becomes the smallest integer satisfying Equation 15.

In addition, since β_x is greater than 1, the inverse of β_x , that is, $\beta'_x = 1/\beta_x$ may be used in Equation 15. The reason why β'_x is used is that when storing β_x , an integer part and a fractional part should be stored but when memorizing β'_x , only the fractional part can be stored. Accordingly, Equation 15 for calculating the number of transmitted symbols of the information X through a physical channel to solve the quantization problem may be defined as follows.

10 [Equation 16]

$$M_x \cdot \beta'_x \cdot N_{data} \geq N_x \cdot M_{RE}^{PUSCH}$$

When N_{data} , N_x , β'_x , and M_{RE}^{PUSCH} are given, M_x is the smallest integer satisfying Equation 16.

In Embodiment 1-A, the reference MCS is calculated 15 using a code rate and a modulation order of data under the assumption that only the data is transmitted on a UL-SCH without transmitting CQI/PMI or rank indication. Therefore, the reference MCS may not be an accurate value.

Namely, in Embodiment 1-A, an accurate code rate may 20 not be applied to information (i.e., data, CQI/PMI and rank indication). Assuming that the reference code rate is a code rate of data, the code rate of data can be determined

only when an occupied ratio of CQI/PMI and rank indication among the entire amount of information should be determined. The occupied ratio of CQI/PMI and rank indication among the entire amount can be known only when the code rate of data 5 should be determined.

Embodiment 1-B

In Embodiment 1-B of the present invention, a method is proposed for simultaneously calculating reference code rates of data, CQI/PMI and rank indication in a closed form 10 using the fact that the total number of transmitted symbols is the sum of the numbers of transmitted symbols of the data, CQI/PMI and rank indication on a UL-SCH. Specifically, assuming that a reference MCS is an unknown parameter and the numbers of transmitted symbols of CQI/PMI 15 and rank indication are expressed as a function of the reference MCS, since the total number of transmitted symbols of the data, CQI/PMI and rank indication is known, an accurate reference MCS can be obtained.

Application of Embodiment 1-B: in the case where data 20 and CQI/PMI are transmitted together

When only data and CQI/PMI are transmitted, the total number of transmitted symbols may be indicated by the sum of the number of transmitted symbols of the CQI/PMI and the number of transmitted symbols of the data. Accordingly, a

reference MCS is calculated using the equation for calculating the number of transmitted symbols of the CQI/PMI and the equation for calculating the number of transmitted symbols of the data. Next, the number of transmitted symbols of the data is calculated using the calculated reference MCS and the number of transmitted symbols of the CQI/PMI are calculated.

More specifically, the number of transmitted symbols of the data is calculated using the following Equation 17.

In this case, the number of transmitted symbols of the CQI/PMI is expressed by a function of the number of transmitted symbols of the data and a closed-form equation is obtained as shown in the following Equation 18.

[Equation 17]

$$M_{RE}^{PUSCH} = M_{CQI} + M_{data} = \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot MCS_{ref} \right\rceil + \left\lceil N_{data} \cdot MCS_{ref} \right\rceil$$

$$= \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + \left\lceil N_{data} \cdot \frac{M_{data}}{N_{data}} \right\rceil$$

15

[Equation 18]

$$M_{RE}^{PUSCH} = \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + M_{data}$$

In Equation 17 and Equation 18, N_{data} denotes a payload size of data, M_{data} denotes the number of

transmitted symbols of the date, M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel, MCS_{ref} denotes a reference MCS, N_{CQI} denotes a payload size of CQI/PMI, Δ_{CQI} denotes a parameter expressing, in dB, an offset value for compensating for a difference between a block error rate of data and a block error rate of CQI/PMI and a difference between a data encoding scheme and a CQI/PMI encoding scheme, and M_{CQI} denotes the number of transmitted symbols of CQI/PMI.

Meanwhile, to solve a quantization problem, Equation 18 may be replaced with the following Equation 19.

[Equation 19]

$$(M_{RE}^{PUSCH} - M_{data}) \cdot N_{data} \geq N_{CQI} \cdot \beta_{CQI} \cdot M_{data}$$

where β_{CQI} denotes a value obtained by quantizing $10^{\frac{\Delta_{CQI}}{10}}$.

When N_{data} , N_{CQI} , β_{CQI} , and M_{RE}^{PUSCH} are given, M_{data} is the smallest integer satisfying Equation 19.

If M_{data} is obtained using Equation 19, M_{CQI} may be calculated using the following Equation 20.

[Equation 20]

$$M_{CQI} = M_{RE}^{PUSCH} - M_{data}$$

Application of Embodiment 1-B: in the case where data and rank indication are transmitted together

When only data and rank indication are transmitted a UL-SCH, the number of transmitted symbols of the rank indication is calculated similarly to the case where only the data and CQI/PMI are transmitted. A reference MCS is calculated using the equation for calculating the number of transmitted symbols of the rank indication and the equation for calculating the number of transmitted symbols of the data. The number of transmitted symbols of the data is calculated using the calculated reference MCS and the number of transmitted symbols of the rank indication is calculated.

More specifically, the number of transmitted symbols of the data is calculated using the following Equation 21. In this case, the number of transmitted symbols of the rank indication is expressed by a function of the number of transmitted symbols of the data and a closed-form equation is obtained as shown in the following Equation 22.

20 [Equation 21]

$$\begin{aligned}
 M_{RE}^{PUSCH} &= M_{RI} + M_{data} = \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot MCS_{ref} \right\rceil + \left\lceil N_{data} \cdot MCS_{ref} \right\rceil \\
 &= \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + \left\lceil N_{data} \cdot \frac{M_{data}}{N_{data}} \right\rceil
 \end{aligned}$$

[Equation 22]

$$M_{RE}^{PUSCH} = \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + M_{data}$$

In Equation 21 and Equation 22, N_{data} denotes a payload size of data, M_{data} denotes the number of transmitted symbols of the date, M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel, MCS_{ref} denotes a reference MCS, N_{RI} denotes a payload size of rank indication, Δ_{RI} denotes a parameter expressing, in dB, an offset value for compensating for a difference between a block error rate of data and a block error rate of rank indication and a difference between a data encoding scheme and a rank indication encoding scheme, and M_{RI} denotes the number of transmitted symbols of rank indication.

Meanwhile, to solve a quantization problem, Equation 22 may be replaced with the following Equation 23.

[Equation 23]

$$(M_{RE}^{PUSCH} - M_{data}) \cdot N_{data} \geq N_{RI} \cdot \beta_{RI} \cdot M_{data}$$

where β_{RI} denotes a value obtained by quantizing $10^{\frac{\Delta_{RI}}{10}}$.

When N_{data} , N_{RI} , β_{RI} , and M_{RE}^{PUSCH} are given, M_{data} is the smallest integer satisfying Equation 23.

If M_{data} is obtained using Equation 23, M_{RI} may be 5 calculated using the following Equation 24.

[Equation 24]

$$M_{RI} = M_{RE}^{PUSCH} - M_{data}$$

Application of Embodiment 1-B: in the case where data, CQI/PMI, and rank indication are transmitted together

10 When data, CQI/PMI, and rank indication are transmitted, the total number of transmitted symbols on a UL-SCH may be indicated by the sum of the number of transmitted symbols of the CQI/PMI, the number of transmitted symbols of the rank indication, and the number 15 of transmitted symbols of the data. Therefore, a reference MCS may be calculated using the equation for calculating the number of transmitted symbols of the CQI/PMI, the equation for calculating the number of transmitted symbols of the rank indication, and the equation for calculating 20 the number of transmitted symbols of the data. The number of transmitted symbols of the data may be calculated using the calculated reference MCS and the numbers of transmitted

symbols of the CQI/PMI and the rank indication may be calculated.

More specifically, the number of transmitted symbols of the data is calculated using the following Equation 25.

5 In this case, the numbers of transmitted symbols of the CQI/PMI and the rank indication are expressed by a function of the number of transmitted symbols of the data and a closed-form equation is obtained as shown in the following Equation 26.

10 [Equation 25]

$$\begin{aligned}
 M_{RE}^{PUSCH} &= M_{CQI} + M_{RI} + M_{data} \\
 &= \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot MCS_{ref} \right\rceil + \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot MCS_{ref} \right\rceil + \left\lceil N_{data} \cdot MCS_{ref} \right\rceil \\
 &= \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + \left\lceil N_{data} \cdot \frac{M_{data}}{N_{data}} \right\rceil
 \end{aligned}$$

[Equation 26]

$$M_{RE}^{PUSCH} = \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil + M_{data}$$

In Equation 25 and Equation 26, N_{data} denotes a payload size of data, M_{data} denotes the number of transmitted symbols of the date, M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel, MCS_{ref} denotes a reference MCS, N_{CQI} denotes a payload size

of CQI/PMI, Δ_{CQI} denotes a parameter expressing, in dB, an offset value for compensating for a difference between a block error rate of data and a block error rate of CQI/PMI and a difference between a data encoding scheme and a

5 CQI/PMI encoding scheme, M_{CQI} denotes the number of transmitted symbols of CQI/PMI, N_{RI} denotes a payload size of rank indication, Δ_{RI} denotes a parameter expressing, in dB, an offset value for compensating for a difference between a block error rate of data and a block error rate 10 of rank indication and a difference between a data encoding scheme and a rank indication encoding scheme, and M_{RI} denotes the number of transmitted symbols of rank indication.

Meanwhile, to solve a quantization problem, Equation 15 26 may be replaced with the following Equation 27.

[Equation 27]

$$(M_{RE}^{PUSCH} - M_{data}) \cdot N_{data} \geq N_{RI} \cdot \beta_{RI} \cdot M_{data} + N_{CQI} \cdot \beta_{CQI} \cdot M_{data}$$

where β_{CQI} denotes a value obtained by quantizing $10^{\frac{\Delta_{CQI}}{10}}$,

β_{RI} denotes a value obtained by quantizing $10^{\frac{\Delta_{RI}}{10}}$. When N_{data} , 20 N_{RI} , β_{RI} , N_{CQI} , β_{CQI} , and M_{RE}^{PUSCH} are given, M_{data} is the smallest integer satisfying Equation 27.

If M_{data} is obtained, M_{RI} or M_{CQI} is calculated. At this time, a method for calculating M_{CQI} using the following Equation 28 is proposed after calculating M_{data} so that a code rate of rank indication by a ceiling function 5 may be lower than a reference code rate. This is because the rank indication may be more important than CQI/PMI.

[Equation 28]

$$M_{RE}^{PUSCH} - M_{data} = M_{CQI} + \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot \frac{M_{CQI}}{N_{CQI}} \right\rceil$$

Meanwhile, to solve a quantization problem, Equation 10 28 may be replaced with Equation 29.

[Equation 29]

$$(M_{RE}^{PUSCH} - M_{data} - M_{CQI}) \cdot N_{CQI} \geq N_{RI} \cdot \beta_{RI} \cdot M_{CQI}$$

When M_{data} , N_{RI} , β_{RI} , N_{CQI} , and M_{RE}^{PUSCH} are given, M_{CQI} is the smallest integer satisfying Equation 29.

15 If M_{data} and M_{CQI} are obtained, M_{RI} may be calculated as follows.

[Equation 30]

$$M_{RI} = M_{RE}^{PUSCH} - M_{data} - M_{CQI}$$

Meanwhile, if M_{RI} is calculated before calculating M_{CQI} , the following Equation 31 may be used.

[Equation 31]

$$M_{RE}^{PUSCH} - M_{data} = M_{RI} + \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot \frac{M_{RI}}{N_{RI}} \right\rceil$$

To solve a quantization problem, Equation 31 may be replaced with Equation 32.

5 [Equation 32]

$$(M_{RE}^{PUSCH} - M_{data} - M_{RI}) \cdot N_{RI} \geq N_{CQI} \cdot \beta_{RI} \cdot M_{RI}$$

When M_{data} , N_{RI} , β_{RI} , N_{CQI} , and M_{RE}^{PUSCH} are given, M_{RI} is the smallest integer satisfying Equation 32.

If M_{data} and M_{RI} are obtained, M_{CQI} may be calculated
10 as follows.

[Equation 33]

$$M_{CQI} = M_{RE}^{PUSCH} - M_{data} - M_{RI}$$

The reason why M_{CQI} or M_{RI} is calculated after calculating M_{data} by the above methods is that values of
15 $\frac{M_{data}}{N_{data}}$, $\frac{M_{CQI}}{N_{CQI}}$, and $\frac{M_{RI}}{N_{RI}}$ used as a reference MCS are determined to be almost equal.

In the case where a CRC having a different length is attached to each of data and CQI/PMI or a plurality of CRCs is attached to each of the data and CQI/PMI, the values of

$\frac{M_{data}}{N_{data}}$, $\frac{M_{CQI}}{N_{CQI}}$, and $\frac{M_{RI}}{N_{RI}}$ may not indicate the substantially same reference MCS. Accordingly, to calculate all the values from one equal reference MCS, Equation 28 may be expressed by the following Equation 34.

5 [Equation 34]

$$M_{RE}^{PUSCH} - M_{data} = M_{CQI} + \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil$$

To solve a quantization problem, Equation 34 may be replaced with Equation 35.

[Equation 35]

$$(M_{RE}^{PUSCH} - M_{data} - M_{CQI}) \cdot N_{data} \geq N_{RI} \cdot \beta_{RI} \cdot M_{data}$$

10 When M_{data} , N_{data} , N_{RI} , β_{RI} , and M_{RE}^{PUSCH} are given, M_{CQI}

is the smallest integer satisfying Equation 35.

If M_{data} and M_{CQI} are obtained, M_{RI} may be calculated as follows.

15 [Equation 36]

$$M_{RI} = M_{RE}^{PUSCH} - M_{data} - M_{CQI}$$

Similarly, Equation 31 may be expressed by the following Equation 37. M_{data} , M_{CQI} , and M_{RI} are calculated using Equation 37.

20 [Equation 37]

$$M_{RE}^{PUSCH} - M_{data} = M_{RI} + \left\lceil N_{CQI} \cdot 10^{\frac{\Delta_{CQI}}{10}} \cdot \frac{M_{data}}{N_{data}} \right\rceil$$

To solve a quantization problem, Equation 37 may be replaced with the following Equation 38.

[Equation 38]

$$(M_{RE}^{PUSCH} - M_{data} - M_{RI}) \cdot N_{data} \geq N_{CQI} \cdot \beta_{RI} \cdot M_{data}$$

When M_{data} , N_{data} , β_{RI} , N_{CQI} , and M_{RE}^{PUSCH} are given, M_{RI} is the smallest integer satisfying Equation 38.

If M_{data} and M_{RI} are obtained, M_{CQI} may be calculated as follows.

[Equation 39]

$$M_{CQI} = M_{RE}^{PUSCH} - M_{data} - M_{RI}$$

In Embodiment 1-B, an order for calculating M_{data} , M_{RI} , and M_{CQI} are as follows.

(1) Step 1 (step for obtaining M_{data}):

M_{data} satisfying

$$(M_{RE}^{PUSCH} - M_{data}) \cdot N_{data} \geq N_{RI} \cdot \beta_{RI} \cdot M_{data} + N_{CQI} \cdot \beta_{CQI} \cdot M_{data} \quad \text{is calculated.}$$

In this case, when N_{data} , N_{RI} , β_{RI} , N_{CQI} , β_{CQI} , and M_{RE}^{PUSCH} are given, M_{data} is the smallest integer satisfying the above equation.

(2) Step 2 (step for obtaining M_{CQI}) :

M_{CQI} satisfying $(M_{RE}^{PUSCH} - M_{data} - M_{CQI}) \cdot N_{data} \geq N_{RI} \cdot \beta_{RI} \cdot M_{data}$ is calculated. In this case, when M_{data} , N_{data} , N_{RI} , β_{RI} , and N_{RE}^{PUSCH} are given, M_{CQI} is the smallest integer satisfying 5 the above equation.

(3) Step 3 (step for obtaining M_{RI}) :

M_{RI} is calculated using $M_{RI} = M_{RE}^{PUSCH} - M_{data} - M_{CQI}$.

Embodiment 1-C

In Embodiment 1-A, the reference MCS does not 10 actually consider an accurate code rate and modulation order of information when data, CQI/PMI, and rank indication are transmitted. In Embodiment 1-B, the method for calculating each information field is complicated. In Embodiment 1-C, a method for expressing the reference MCS 15 as a function of a variety of information is proposed using the fact that an MCS of information most approximates to the reference MCS when utilizing Embodiment 1-B. That is, an approximated equation is used as follows.

[Equation 40]

$$MCS_{ref} \approx \frac{M_{data}}{N_{data}} \approx \frac{M_{CQI}}{N_{CQI}} \approx \frac{M_{RI}}{N_{RI}}$$

where reference symbol “ \approx ” indicates that a left value and a right vale are approximately equal.

When defining the reference MCS as the ratio of the number of transmitted symbols of information to a payload size of information, a problem of not being aware of the number of transmitted symbols of information arises. However, since the total number of transmitted symbols is known, the reference MCS may be obtained using the following Equation 41 without calculating the number of transmitted symbols of information.

[Equation 41]

$$\frac{B_1}{A_1} = \frac{B_2}{A_2} = \frac{B_3}{A_3} = \frac{B_1 + B_2 + B_3}{A_1 + A_2 + A_3}$$

Using Equation 41, the following Equation 41 may be induced.

15 [Equation 41]

$$MCS_{ref} \approx \frac{M_{data}}{N_{data}} \approx \frac{M_{CQI}}{\beta_{CQI} \cdot N_{CQI}} \approx \frac{M_{RI}}{\beta_{RI} \cdot N_{RI}} \approx \frac{(M_{data} + M_{CQI} + M_{RI})}{N_{data} + \beta_{CQI} \cdot N_{CQI} + \beta_{RI} \cdot N_{RI}} = M_{RE}^{PUSCH}$$

Even though a variety of information is multiplexed and then transmitted, a UE recognizes the total number of transmitted symbols and a payload size of corresponding information. In addition, even when the number of transmitted symbols of corresponding information is unknown, an approximate reference MCS may be calculated using the

fact that the sum of the numbers of transmitted symbols of corresponding information is equal to the total number of symbols transmitted on an UL-SCH.

In this case, since the number of transmitted symbols of corresponding information is determined by an offset value for compensating for a difference in a coding gain or an operation block error rate with respect to data, the reference MCS may be defined as follows.

(1) When data and CQI/PMI are transmitted on a UL-SCH, the reference MCS may be defined by the following Equation 43.

[Equation 43]

$$MCS_{ref} = \frac{M_{data} + M_{CQI}}{N_{data} + \beta_{CQI} \cdot N_{CQI}} = \frac{M_{RE}^{PUSCH}}{N_{data} + \beta_{CQI} \cdot N_{CQI}}$$

(2) When data and rank indication are transmitted on a UL-SCH, the reference MCS may be defined as follows.

[Equation 44]

$$MCS_{ref} = \frac{M_{data} + M_{RI}}{N_{data} + \beta_{RI} \cdot N_{RI}} = \frac{M_{RE}^{PUSCH}}{N_{data} + \beta_{RI} \cdot N_{RI}}$$

(3) When data, CQI/PMI, and rank indication are transmitted on a UL-SCH, the reference MCS may be defined as follows.

[Equation 45]

$$MCS_{ref} = \frac{M_{data} + M_{CQI} + M_{RI}}{N_{data} + \beta_{CQI} \cdot N_{CQI} + \beta_{RI} \cdot N_{RI}} = \frac{M_{RE}^{PUSCH}}{N_{data} + \beta_{CQI} \cdot N_{CQI} + \beta_{RI} \cdot N_{RI}}$$

Namely, the reference MCS is defined as a value obtained by dividing the total number of symbols transmitted on a UL-SCH by the sum of payload sizes of transmitted information. At this time, offset values for compensating for a difference with the reference MCS of data such as a difference in an encoding scheme, in an operation block error rate, etc. are multiplied to the payload size of corresponding information.

Therefore, the numbers of actually transmitted symbols of CQI/PMI and rank indication may be calculated using the following Equation 46.

[Equation 46]

$$M_x = \left\lceil N_x \cdot 10^{\frac{\Delta_x}{10}} \cdot MCS_{ref} \right\rceil = \left\lceil N_x \cdot \beta_x \cdot MCS_{ref} \right\rceil$$

where N_x denotes a payload size of information X, Δ_x denotes a parameter expressing, in dB, an offset value for compensating for a difference between a data decoding scheme and an information (X) decoding scheme, and M_x denotes the number of transmitted symbols of information X. In this case, the information X may be CQI/PMI or rank indication.

The number of transmitted symbols of data is a value obtained by subtracting the numbers of transmitted symbols of CQI/PMI and rank indication from the total number of symbols which can be transmitted.

5 The following examples indicate methods for calculating the number of transmitted symbols of data.

(1) When data and CQI/PMI are transmitted on a UL-SCH, the number of transmitted symbols of data is calculated as follows.

10 [Equation 47]

$$M_{data} = M_{RE}^{PUSCH} - M_{CQI}$$

(2) When data and rank indication are transmitted on a UL-SCH, the number of transmitted symbols of data is calculated as follows.

15 [Equation 48]

$$M_{data} = M_{RE}^{PUSCH} - M_{RI}$$

(1) When data, CQI/PMI, and rank indication are transmitted on a UL-SCH, the number of transmitted symbols of data is calculated as follows.

20 [Equation 49]

$$M_{data} = M_{RE}^{PUSCH} - M_{CQI} - M_{RI}$$

While the case where data is transmitted on a UL-SCH has been described, CQI/PMI and rank indication may be transmitted on the UL-SCH without transmitting the data.

Hereinafter, a method will be described for 5 calculating a code rate of control information when data is not transmitted on a UL-SCH.

In such a case, an eNB informs a UE of only the total number of symbols transmitted on the UL-SCH. Therefore, a reference MCS is not present. A method is proposed for 10 calculating the reference MCS when CQI/PMI and rank indication are transmitted on the UL-SCH.

Embodiment 2-A

In Embodiment 2-A, a method is proposed for calculating a reference MCS using the code rate and 15 modulation order of CQI/PMI under the assumption that only the CQI/PMI is transmitted on a UL-SCH when the CQI/PMI and rank indication are transmitted.

The code rate of the CQI/PMI may be defined as follows.

20 [Equation 50]

$$CR_{CQI} = \frac{N_{CQI}}{Q_{CQI} \cdot M_{RE}^{PUSCH}}$$

where CR_{CQI} denotes a reference code rate, N_{CQI} denotes a payload size of CQI/PMI, Q_{CQI} denotes a modulation order of CQI/PMI which is a reference modulation order, and M_{RE}^{PUSCH} denotes the number of symbols which can be transmitted through a physical channel when transmitting CQI/PMI on a UL-SCH.

Accordingly, the reference MCS may be calculated as follows.

[Equation 51]

$$10 \quad MCS_{ref} = \frac{1}{CR_{CQI} \cdot Q_{CQI}} = \frac{M_{RE}^{PUSCH}}{N_{CQI}}$$

Application of Embodiment 2-A: in the case where CQI/PMI and rank indication are transmitted together

When CQI/PMI and rank indication are transmitted together, the number of transmitted symbols of the rank indication is calculated first using a reference MCS as shown in the following Equation 52. Next, the number of transmitted symbols of the CQI/PMI is calculated by subtracting the number of transmitted symbols of the rank indication from the total number of symbols which can be transmitted through a physical channel.

[Equation 52]

$$M_{RI} = \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot MCS_{ref} \right\rceil$$

[Equation 53]

$$M_{CQI} = M_{RE}^{PUSCH} - M_{RI}$$

In Equation 52 and Equation 53, N_{RI} denotes a payload

5 size of rank indication, Δ_{RI} denotes a parameter expressing, in dB, an offset value for compensating for a difference between a block error rate of data and a block error rate of rank indication and a difference between a data encoding scheme and a rank indication encoding scheme, M_{RI} denotes 10 the number of transmitted symbols of rank indication, M_{RE}^{PUSCH} denotes the total number of symbols which can be transmitted through a physical channel, and M_{CQI} denotes the number of transmitted symbols of CQI/PMI.

However, the method described in Embodiment 2-A may 15 be differently implemented in a UE and an eNB as described in Embodiments 1-A and 1-B.

Therefore, to solve such a problem, Equation 52 may be replaced with the following Equation 54.

[Equation 54]

$$M_{RI} \cdot N_{CQI} \geq N_{RI} \cdot \beta_{RI} \cdot M_{RE}^{PUSCH}$$

When N_{CQI} , N_{RI} , β_{RI} , and M_{RE}^{PUSCH} are given, M_{RI} is the smallest integer satisfying Equation 54.

If M_{RI} is obtained, M_{CQI} is calculated using Equation 53.

5 When calculating a code rate of the CQI/PMI using the method described in Embodiment 2-A, an accurate code rate is not applied to information (i.e., CQI/PMI and rank indication). Assuming that a reference code rate is a code rate of the CQI/PMI, the code rate of the CQI/PMI can be 10 determined only when an occupied ratio of rank indication among the entire amount of information should be determined. Namely, the method described in Embodiment 2-A assumes the code rate of the CQI/PMI in an ideal state as the reference code rate under the assumption that only the CQI/PMI is 15 transmitted.

Embodiment 2-B

In Embodiment 2-B, a method is proposed for simultaneously calculating reference code rates of CQI/PMI and rank indication in a closed form using the fact that 20 the total number of transmitted symbols is the sum of the numbers of transmitted symbols of the CQI/PMI and rank indication on a UL-SCH.

Specifically, assuming that a reference MCS is an unknown parameter and the numbers of transmitted symbols of CQI/PMI and rank indication are expressed as a function of the reference MCS, since the total number of transmitted 5 symbols of the CQI/PMI and rank indication is known, an accurate reference MCS can be obtained.

When the CQI/PMI and rank indication are transmitted on the UL-SCH, the total number of symbols transmitted on the UL-SCH may be indicated by the sum of the number of 10 transmitted symbols of the CQI/PMI and the number of transmitted symbols of the rank indication. Accordingly, a reference MCS is calculated using the equation for calculating the number of transmitted symbols of the rank indication and the equation for calculating the number of 15 finally transmitted symbols of the CQI/PMI. The number of transmitted symbols of the rank indication is calculated using the calculated reference MCS and then the number of transmitted symbols of the CQI/PMI is calculated.

Namely, the number of transmitted symbols of the rank 20 indication is calculated using the following Equation 55. In this case, the number of transmitted symbols of the CQI/PMI is expressed as a function of the number of transmitted symbols of the rank indication and a closed-

form equation is obtained as shown in the following Equation 56.

[Equation 55]

$$M_{RE}^{PUSCH} = M_{CQI} + M_{RI}$$

5 [Equation 56]

$$M_{RE}^{PUSCH} = M_{CQI} + \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot MCS_{ref} \right\rceil = M_{CQI} + \left\lceil N_{RI} \cdot 10^{\frac{\Delta_{RI}}{10}} \cdot \frac{M_{CQI}}{N_{CQI}} \right\rceil$$

In Equation 54 and Equation 55, N_{RI} denotes a payload size of rank indication, Δ_{RI} denotes a parameter expressing, in dB, an offset value for compensating for a difference 10 between a block error rate of data and a block error rate of rank indication and a difference between a data encoding scheme and a rank indication encoding scheme, M_{RI} denotes the number of transmitted symbols of rank indication, M_{RE}^{PUSCH} denotes the total number of symbols which can be 15 transmitted through a physical channel, and M_{CQI} denotes the number of transmitted symbols of CQI/PMI.

To solve a quantization problem, Equation 56 may be replaced with the following Equation 57.

[Equation 57]

$$20 (M_{RE}^{PUSCH} - M_{CQI}) \cdot N_{CQI} \geq N_{RI} \cdot \beta_{RI} \cdot M_{CQI}$$

where β_{RI} denotes a value obtained by quantizing $10^{\frac{\Delta_{RI}}{10}}$.

When N_{RI} , N_{CQI} , β_{RI} , and M_{RE}^{PUSCH} are given, M_{CQI} is the smallest integer satisfying Equation 57.

Embodiment 2-C

5 Embodiment 2-C uses the same principle as Embodiment 1-C. Since there is no transmitted data, rank indication is calculated first when calculating CQI/PMI. Accordingly, when the rank indication and CQI/PMI are transmitted on a UL-SCH, a reference MCS is defined as follows.

10 [Equation 58]

$$MCS_{ref} = \frac{M_{CQI} + M_{RI}}{\beta_{CQI} \cdot N_{CQI} + \beta_{RI} \cdot N_{RI}} = \frac{M_{RE}^{PUSCH}}{\beta_{CQI} \cdot N_{CQI} + \beta_{RI} \cdot N_{RI}}$$

The number of transmitted symbols of the rank indication is calculated using the following Equation 59. The number of transmitted symbols of the CQI/PMI is a 15 calculated by subtracting the number of transmitted symbols of the rank indication from the total number of symbols transmitted on the UL-SCH.

[Equation 59]

$$M_X = \left\lceil N_X \cdot 10^{\frac{\Delta_X}{10}} \cdot MCS_{ref} \right\rceil = \left\lceil N_X \cdot \beta_X \cdot MCS_{ref} \right\rceil$$

20 where N_X denotes a payload size of information X, Δ_X denotes a parameter expressing, in dB, an offset value for

compensating for a difference between a data decoding scheme and an information (X) decoding scheme, and M_x denotes the number of transmitted symbols of information X. In Equation 59, the information X may correspond to the 5 rank indication.

Embodiment 3

ACK/NACK information is inserted through puncturing multiplexed data, CQI/PMI, and rank indication and thus a code rate of the information can be changed. However, 10 since an eNB does not always know whether or not a UE transmits ACK/NACK information, the number of transmitted symbols of ACK/NACK information is independently calculated using a reference MCS after the number of occupied symbols on a UL-SCH.

$$MCS_{ref} = \frac{M_{RE}^{PUSCH}}{N_{data}} \quad \text{or} \quad MCS_{ref} = \frac{M_{data}}{N_{data}}$$

15 When data is present, is used as a reference MCS. When data is not present and only CQI/PMI and rank indication are transmitted on a UL-SCH,

$$MCS_{ref} = \frac{M_{RE}^{PUSCH}}{N_{CQI}} \quad \text{or} \quad MCS_{ref} = \frac{M_{CQI}}{N_{CQI}} \quad \text{is used as the reference MCS.}$$

That is, a reference MCS used by ACK/NACK information may

$$20 \quad MCS_{ref} = \frac{M_x}{N_x} \quad \text{and the number of transmitted}$$

symbols of the ACK/NACK information may be represented as follows.

[Equation 60]

$$M_{A/N} = \left\lceil N_{A/N} \cdot 10^{\frac{\Delta_{A/N}}{10}} \cdot MCS_{ref} \right\rceil = \left\lceil N_{A/N} \cdot 10^{\frac{\Delta_{A/N}}{10}} \cdot \frac{M_X}{N_X} \right\rceil$$

5 where $N_{A/N}$ denotes a payload size of ACK/NACK information, and $\Delta_{A/N}$ denotes a parameter expressing, in dB, an offset value for compensating for a difference between a block error rate of data and a block error rate of ACK/NACK information and a difference between a data encoding scheme 10 and a ACK/NACK information encoding scheme, and $M_{A/N}$ denotes the number of finally transmitted symbols of ACK/NACK information.

To solve a quantization problem, a method for calculating the number of transmitted symbols of ACK/NACK 15 information through a physical channel is as follows.

[Equation 61]

$$M_{A/N} \cdot N_X \geq N_{A/N} \cdot \beta_{A/N} \cdot M_X$$

where $\beta_{A/N}$ denotes a value obtained by quantizing $10^{\frac{\Delta_{A/N}}{10}}$. When M_X , N_X , $\beta_{A/N}$, and $N_{A/N}$ are given, $M_{A/N}$ is the 20 smallest integer satisfying Equation 61.

Embodiment 4

Differently from data or CQI/PMI, ACK/NACK information and rank indication transmitted on a UL-SCH always use quadrature phase shift keying (QPSK) or binary phase shift keying (BPSK) modulation. To implement such a 5 specific modulation scheme, the ACK/NACK and rank indication may use only 4 outermost coordinates (2 outermost coordinates when BPSK is used) of a modulation constellation of the data or CQI/PMI.

FIG. 12 illustrates an example of modulation 10 constellation coordinates used by ACK/NACK information and rank indication when data and CQI/PMI use a 16 quadrature amplitude modulation (QAM) scheme. FIG. 13 illustrates an example of modulation constellation coordinates used by ACK/NACK information and rank indication when data and 15 CQI/PMI use a 64 QAM scheme.

As illustrated in FIGs. 12 and 13, if ACK/NACK information and rank indication use the 4 outermost coordinates, since the locations of symbols of the ACK/NACK information and rank indication may be farthest away from 20 each other in terms of Euclidean distance, performance may be improved.

However, if only the outermost coordinates are used on modulation constellation coordinates, an average power of transmission of ACK/NACK information and rank indication

is greater than 1 under the assumption that an average power of transmission of data and CQI/PMI is 1. Accordingly, when calculating the number of transmitted symbols of the ACK/NACK information and rank indication on a UL-SCH, if a modulation order of the data or CQI/PMI is 16 QAM or 64 QAM, a method is proposed for calculating the number of transmitted symbols of the ACK/NACK information and rank indication on the UL-SCH using an additional

compensation offset parameter $\beta_{QAM} = 10^{\frac{\Delta_{QAM}}{10}}$ in addition to a compensation offset parameter $\beta_{A/N} = 10^{\frac{\Delta_{A/N}}{10}}$ or $\beta_{RI} = 10^{\frac{\Delta_{RI}}{10}}$.

When the modulation order of the data or CQI/PMI is QPSK, $M_{A/N}$ and M_{RI} are calculated using the above-described Embodiments 1-A, 1-B, 2-A, and 2-B. When the modulation order of the data or CQI/PMI is 16 QAM, the number of symbols of corresponding information is calculated using

$$\hat{\beta}_{RI} = \beta_{RI} \cdot \beta_{16QAM} = 10^{\frac{\Delta_{RI} + \Delta_{16QAM}}{10}} \quad \text{or} \quad \hat{\beta}_{A/N} = \beta_{A/N} \cdot \beta_{16QAM} = 10^{\frac{\Delta_{A/N} + \Delta_{16QAM}}{10}} \quad \text{instead}$$

of $\beta_{RI} = 10^{\frac{\Delta_{RI}}{10}}$ or $\beta_{A/N} = 10^{\frac{\Delta_{A/N}}{10}}$ in Embodiments 1-A, 1-B, 2-A, and 2-B.

When the modulation order of the data or CQI/PMI is 64 QAM, the number of symbols of information is calculated

using $\hat{\beta}_{RI} = \beta_{RI} \cdot \beta_{16QAM} = 10^{\frac{\Delta_{RI} + \Delta_{64QAM}}{10}}$ or $\hat{\beta}_{AIN} = \beta_{AIN} \cdot \beta_{64QAM} = 10^{\frac{\Delta_{AIN} + \Delta_{64QAM}}{10}}$

instead of $\beta_{RI} = 10^{\frac{\Delta_{RI}}{10}}$ or $\beta_{AIN} = 10^{\frac{\Delta_{AIN}}{10}}$ in Embodiments 1-A, 1-B, 2-A, and 2-B.

To compensate for a difference in power of the

5 ACK/NACK information and the rank indication when using 16 QAM or 64 QAM as the modulation order of the data or

CQI/PMI, offset values $\beta_{AIN} = 10^{\frac{\Delta_{AIN}}{10}}$ and $\beta_{RI} = 10^{\frac{\Delta_{RI}}{10}}$ of the ACK/NACK information and the rank indication may be set differently according to the modulation order. Therefore, 10 a corresponding offset value is used according to the modulation order of the data or the CQI/PMI.

Embodiment 5

The maximum numbers of transmissible symbols of rank indication and ACK/NACK information may be limited. As a 15 method proposed in the present invention, when calculating

M_{AIN} which is the numbers of transmitted symbols of the ACK/NACK information, if M_{AIN} is greater than the maximum number of transmissible symbols of ACK/NACK information, 20 M_{AIN} is set to the maximum numbers of transmissible symbols of the ACK/NACK information. In addition, when calculating M_{RI} which is the numbers of transmitted symbols of the

ACK/NACK information, if M_{RI} is greater than the maximum number of transmissible symbols of rank indication, M_{RI} is set to the maximum numbers of transmissible symbols of the rank indication. The maximum numbers or values of M_{AIN} and M_{RI} may be $12 \times N_{RB} \times 4$. Herein, N_{RB} denotes the number of resource blocks (RBs) transmitted through a physical uplink shared channel (PUSCH). If one RB is transmitted through the PUSCH, the maximum values of M_{AIN} and M_{RI} are 48.

As in Embodiment 1-B, if the data, CQI/PMI, and rank indication are multiplexed, the number of transmitted symbols of the rank indication may be calculated last according to circumstances. Then it is confirmed whether the number M_{RI} of transmitted symbols of the rank indication exceeds a maximum transmissible value. If M_{RI} exceeds the maximum value, M_{RI} is limited to the maximum value and symbols of the data or CQI/PMI corresponding to a difference between the calculated M_{RI} and the maximum transmissible value are further transmitted.

Embodiment 6

In some cases, a reference code rate greater than 1 may be set or calculated. If the reference code rate is greater than 1, CQI/PMI, rank indication, and ACK/NACK

information are not decoded in an eNB and a UE may transmit unnecessary information. In this case, the number of transmitted symbols of the CQI/PMI, rank indication, and ACK/NACK information may be set to 0 and only data may be 5 transmitted.

To efficiently use one uplink, an eNB may not generate a circumstance having a code rate greater than 1. If a UE senses such a circumstance, it is determined that the eNB has made a mistake or the UE has read different 10 control information so that no information may be transmitted to the uplink.

Embodiment 7

In a communication system, if an error occurs in a data packet due to failure of receipt after the data packet 15 is transmitted, the corresponding data packet is retransmitted. Retransmission may be commanded by eNB or may be performed via a predetermined schedule.

FIG. 14 shows a HARQ process for explaining data retransmission. As shown in FIG. 14, it is configured that 20 maximum process is set to be 8 processes and maximum retransmission time is set to be 4. In each process, when the UE receives UL_Grant from the eNB at n^{th} subframe timing, the UE start to transmit data in $n+4^{\text{th}}$ subframe.

For example, in process 1, if the UE does not receive ACK from the eNB during 3 times retransmission of data (e.g., denoted by '1' in FIG. 14) stored in a buffer after starting to transmit data in a $n+4^{\text{th}}$ subframe, the UE 5 performs buffer flush, reconstructs the data and transmits the reconstructed data (e.g., denoted by 1_{re} in FIG. 14). Process 2 is an identical case to the process 1. In Process 3, if the UE receives ACK from the eNB after retransmitting data (e.g., denoted by 3 in FIG. 14) 2 times, 10 the UE transmits new data (e.g., denoted by 3' in FIG. 14) at 4th transmission timing. In addition, in process 3, if the UE does not receive ACK from the eNB after transmitting the new data, the UE retransmits the new data at 5th transmission timing. Processes 4 to 6 can be explained as 15 described above. In addition, each of processes 1 to 8 is operated independently.

In the case where re-transmission occurs, if decoding is performed using an initially received data packet and a data packet received by re-transmission, a success 20 probability of receiving the data packet is increased even though not all resources employed when the data packet is initially transmitted are used.

For example, when the communication system operates such that the initial data packet is transmitted without

errors with a probability of 90%, the system does not encounter any problem even when the data packet is re-transmitted at a code rate higher than a code rate of the initial data packet. Transmitting a data packet at a high 5 code rate means that less physical transmission resources are used than during the initial transmission of the data packet.

In the present invention, a method for calculating a reference MCS using a packet size of data and the total 10 number of symbols which can be transmitted through a PUSCH and a method for calculating the number of transmitted symbols of CQI/PMI and rank indication using the reference MCS have been proposed.

However, even though a lower number of symbols of 15 data is transmitted than during initial transmission, no problem occurs in system operation and efficiency may be improved. Accordingly, a lower number of total symbols on a PUSCH may be allocated during re-transmission of data. At this time, CQI/PMI and/or rank indication may be 20 multiplexed with re-transmitted data and then may be transmitted.

If the reference MCS is calculated using the total number of symbols which can be transmitted at a corresponding PUSCH transmission time, a code rate which

can stably transmit the CQI/PMI and/or the rank indication may not be set. FIG. 15 is a diagram explaining a use relationship of a reference MCS during re-transmission of data. As illustrated in FIG. 15, while data is re-transmitted through a PUSCH, a method for calculating the numbers of transmitted symbols of CQI/PMI, rank indication, and ACK/NACK information is proposed using a code rate used during the initial transmission of data.

More specifically, a reference MCS in the following Equation 62 to calculate the number of transmitted symbols of information X employs a reference MCS used when data is initially transmitted.

[Equation 62]

$$M_x = \left\lceil N_x \cdot 10^{\frac{\Delta_x}{10}} \cdot MCS_{ref} \right\rceil$$

where MCS_{ref} denotes a reference MCS when the data is initially transmitted, N_x denotes a payload size of information X, Δ_x denotes a parameter expressing, in dB, an offset value for compensating for a difference between the decoding scheme of data and the decoding scheme of the information X, and M_x denotes the number of transmitted symbols of information X. The information X can be CQI/PMI, rank indication or ACK/NACK information.

The equation 62 can be expressed by the following equation 63.

[Equation 63]

$$Q' = \left\lceil \frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r} \right\rceil$$

5 In the Equation 63, Q' is the number of transmitted symbols of the control information (e.g., CQI/PMI, rank indication or ACK/NACK information) when the data is retransmitted, O is the payload size of the control information when the data is retransmitted. $N_{symb}^{PUSCH-initial}$ is a 10 number of SC-FDMA symbols per subframe for Physical Uplink Shared Channel (PUSCH) transmission when the data is initially transmitted and $M_{sc}^{PUSCH-initial}$ is a scheduled bandwidth PUSCH transmission when the data is initially transmitted. Thus, $M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial}$ is the total number 15 of transmissible symbols of Physical Uplink Shared Channel (PUSCH) when the data is initially transmitted.

β_{offset}^{PUSCH} is the offset value. $\sum_{r=0}^{C-1} K_r$ is the payload size of the data when the data is initially transmitted, r is code block number of the data before channel coding, K_r is

a number of bits in code block number r , and C is a total number of code blocks.

In an LTE system, when a data packet is retransmitted, redundancy version (RV) numbers are assigned according to a re-transmission form. However, in transmission through a PUSCH, RV numbers 1, 2, and 3 among RV numbers 0, 1, 2, and 3 are used only for re-transmission. Therefore, if data is transmitted during PUSCH transmission with the RV number 1, 2, or 3, the numbers of transmitted symbols of CQI/PMI, rank indication, and ACK/NACK information are calculated using a reference MCS when data is transmitted with the RV number 0. Namely, if data is retransmitted, the numbers of transmitted symbols of CQI/PMI, rank indication, and ACK/NACK information are calculated by using the equation 63.

In embodiment 7, a function of each module of a UE during re-transmission of the data is as follows.

FIG. 16 is a block diagram of a UE according to an exemplary embodiment of the present invention. A UE 130 includes a first channel coding module 131, a second channel coding module 132, and a transport module 133. The UE 130 may further include modules such as a multiplexing module, a transport module, and an interleaving module but these are omitted for convenience of description.

The first channel coding module 131 performs channel coding upon data to be re-transmitted. The second channel coding module 132 performs channel coding upon control information.

5 The second channel coding module 132 calculates the number of transmitted symbols of the control channel by using the Equation 63.

The transport module 133 performs channel interleaving upon the first channel-coded data and the 10 second channel-coded control information and transmits the interleaved uplink signal to an uplink.

According to the above-described configuration, a code rate for stably transmitting the CQI/PMI and/or rank indication during re-transmission of data can be set.

15 As is apparent from the above description, when data and control information are transmitted via an uplink channel, an uplink signal including the data and control information can be transmitted by accurately calculating code rates of the data and control information.

20 The present invention may be applied to a UE, an eNB or other equipment of a radio mobile communication system. If applied to an eNB, the eNB performs a deinterleaving and decoding operation to derive the signal from the encoded/interleaved signal sent by the UE.

FIG. 17 is a block diagram showing constitutional elements of a device 50, that can be either a UE or an eNB, and that can perform the methods described above. Device 50 includes a processor 51, a memory 52, a radio frequency (RF) unit 53, a display unit 54, and a user interface unit 55. Layers of the radio interface protocol are implemented in the processor 51. The processor 51 provides the control plane and the user plane. The function of each layer can be implemented in the processor 51. The processor 51 may also include a contention resolution timer. The memory 52 is coupled to the processor 51 and stores an operating system, applications, and general files. If device 50 is a UE, the display unit 54 displays a variety of information and may use a well-known element such as a liquid crystal display (LCD), an organic light emitting diode (OLED), etc. The user interface unit 55 can be configured with a combination of well-known user interfaces such as a keypad, a touch screen, etc. The RF unit 53 is coupled to the processor 51 and transmits and/or receives radio signals.

The embodiments described above are provided by combining constituent elements and features of the present invention in specific forms. The constituent elements or features of the present invention may be considered optional if not explicitly stated otherwise. The

constituent elements or features may be implemented without being combined with other constituent elements or features. The embodiments of the present invention may also be provided by combining some of the constituent elements 5 and/or features. The order of operations in the embodiments of the present invention may be changed. Some constituent elements or features of one embodiment may be included in another embodiment or may be replaced with corresponding constituent elements or features of another 10 embodiment. It is apparent that the present invention may be embodied by a combination of claims which do not have an explicit cited relation in the appended claims or may include new claims by amendment after application.

The embodiments of the present invention have been 15 described focusing on the data communication relationship between an eNB and a UE. Here, the eNB refers to a terminal node of a network communicating directly with the UE. In some cases, a specific operation described as being performed by the eNB may be performed by an upper node of 20 the eNB.

Namely, it is apparent that the eNB or any other network nodes may perform various operations for communication with the UE in a network comprised of a plurality of network nodes including the eNB. The term

'eNB' may be replaced with the term 'fixed station', 'Node B', 'access point', etc. The term 'UE' corresponds to a mobile station (MS) and the MS may be replaced with the term 'subscriber station' (SS), 'mobile subscriber station' 5 (MSS), 'mobile terminal', etc.

The UE employed in the present invention may be a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a global system for mobile (GSM) phone, a wideband code division multiple 10 access (wide CDMA) phone, a mobile broadband system (MBS) phone, etc.

The embodiments of the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.

15 In a hardware configuration, methods according to the embodiments of the present invention may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices 20 (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, etc.

In a firmware or software configuration, methods according to the embodiments of the present invention may be implemented in the form of modules, procedures,

functions, etc. which perform the above-described functions or operations. Software code may be stored in a memory unit so as to be driven by a processor. The memory unit is located at the interior or exterior of the processor and 5 may transmit data to and receive data from the processor via various known means.

The present invention may be embodied in other specific forms than those set forth herein without departing from the spirit and essential characteristics of 10 the present invention. The above description is therefore to be construed in all aspects as illustrative and not restrictive. The scope of the invention should be determined by reasonable interpretation of the appended claims and all changes coming within the equivalency range 15 of the invention are intended to be embraced in the scope of the invention.

【CLAIMS】

【Claim 1】 A method of transmitting a first and a second uplink signal, the first and second uplink signal each having data and control information, comprising:

channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce first channel encoded data, the step of channel encoding including

determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.

【Claim 2】 The method of claim 1, wherein the step of determining comprises:

determining the number of symbols in accordance with a payload size of the control information of the second uplink signal and an offset value applied to the control information of the second uplink signal.

【Claim 3】 The method of claim 1, further comprising:

channel encoding the data of the second uplink signal to

produce second channel encoded data;
 channel interleaving the first and second channel
 encoded data to generate the second uplink signal; and
 transmitting the second uplink signal.

【Claim 4】 The method of claim 2, wherein the number of symbols of control information satisfies the expression:

$$M_x = \left\lceil N_x \cdot \beta_x \cdot \frac{M_{RE}^{PUSCH}}{N_{data}} \right\rceil \text{ where}$$

M_x is the number of the symbols of the control information,

N_x is the payload size of the control information,

β_x is the offset value,

N_{data} is the size of the data of the first uplink signal,

M_{RE}^{PUSCH} is the total number of transmissible symbols of Physical Uplink Shared Channel (PUSCH) of the first uplink signal, and

“ $\lceil \rceil$ ” denotes a ceiling function.

【Claim 5】 The method of claim 1, wherein the control information is one of channel quality control information

and a rank indication, and

wherein the channel quality control information includes at least one of Channel Quality Information (CQI) and a Precoding Matrix Indicator (PMI).

【Claim 6】 The method of claim 1, wherein the control information is one of channel quality control information and a rank indication, and

wherein a payload size of the channel quality control information includes a size of Cyclic Redundancy Check (CRC) attached to the channel quality control information.

【Claim 7】 The method of claim 1, further comprising:

retrieving the payload size of the data of the first uplink signal and the total number of transmissible symbols of the Physical Uplink Shared Channel (PUSCH) of the first uplink signal from a memory or a cache.

【Claim 8】 The method of claim 2, wherein the number of symbols of control information satisfies the expression:

$$Q' = \left\lceil \frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r} \right\rceil \text{ where}$$

Q' is the number of the symbols of the control information of the second uplink signal,

O is the payload size of the control information of the second uplink signal,

$N_{\text{symb}}^{\text{PUSCH-initial}}$ is a number of SC-FDMA symbols per subframe for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal, $M_{\text{sc}}^{\text{PUSCH-initial}}$ is a scheduled bandwidth PUSCH transmission for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal,

$\beta_{\text{offset}}^{\text{PUSCH}}$ is the offset value,

$\sum_{r=0}^{C-1} K_r$ is the payload size of the data of the first uplink signal, r is code block number of the data of the first uplink signal before channel coding of the data of the first uplink signal, K_r is a number of bits in code block number r , and C is a total number of code blocks.

【Claim 9】 A method of processing a received first and a second uplink signal, the first and second uplink signal each having data and control information, comprising:

channel decoding channel encoded data with a payload size of the data of the first uplink signal and a total

number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal to produce the control information of the second uplink signal.

【Claim 10】 The method of claim 9, wherein the step of channel decoding comprises:

channel decoding the channel encoded data with a payload size of the control information of the second uplink signal and an offset value applied to the control information of the second uplink signal.

【Claim 11】 The method of claim 10, wherein a number of symbols of control information decoded in the step of decoding satisfies the expression:

$$Q' = \left\lceil \frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r} \right\rceil \text{ where}$$

Q' is the number of the symbols of the control information of the second uplink signal,

O is the payload size of the control information of the second uplink signal,

$N_{symb}^{PUSCH-initial}$ is a number of SC-FDMA symbols per subframe for Physical Uplink Shared Channel (PUSCH) transmission of

the first uplink signal, $M_{sc}^{PUSCH-initial}$ is a scheduled bandwidth PUSCH transmission for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal,

β_{offset}^{PUSCH} is the offset value,

$\sum_{r=0}^{C-1} K_r$ is the payload size of the data of the first uplink signal, r is code block number of the data of the first uplink signal before channel coding of the data of the first uplink signal, K_r is a number of bits in code block number r , and C is a total number of code blocks.

【Claim 12】 An apparatus configured to transmit a first and a second uplink signal, the first and second uplink signal each having data and control information, comprising:

- a RF unit;
- a memory; and
- a processor operatively connected to the RF unit and the memory, the processor configured to channel encode the control information of the second uplink signal based on a number of symbols of control information to produce first channel encoded data by determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols

of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.

【 Claim 13 】 The apparatus of claim 12, wherein the processor is configured to determine the number of symbols in accordance with a payload size of the control information of the second uplink signal and an offset value applied to the control information of the second uplink signal.

【 Claim 14 】 The apparatus of claim 12, wherein the processor is configured to

channel encode the data of the second uplink signal to produce second channel encoded data;

channel interleave the first and second channel encoded data to generate the second uplink signal; and transmit the second uplink signal.

【Claim 15】 The apparatus of claim 13, wherein the number of symbols of control information satisfies the expression:

$$M_x = \left\lceil N_x \cdot \beta_x \cdot \frac{M_{RE}^{PUSCH}}{N_{data}} \right\rceil \text{ where}$$

M_x is the number of the symbols of the control

information,

N_x is the payload size of the control information,

β_x is the offset value,

N_{data} is the size of the data of the first uplink signal,

M_{RE}^{PUSCH} is the total number of transmissible symbols of Physical Uplink Shared Channel (PUSCH) of the first uplink signal, and

“ $\lceil \rceil$ ” denotes a ceiling function.

【Claim 16】 The apparatus of claim 12, wherein the control information is one of channel quality control information and a rank indication, and

wherein the channel quality control information includes at least one of Channel Quality Information (CQI) and a Precoding Matrix Indicator (PMI).

【Claim 17】 The apparatus of claim 12, wherein the control information is one of channel quality control information and a rank indication, and

wherein a payload size of the channel quality control information includes a size of Cyclic Redundancy Check

(CRC) attached to the channel quality control information.

【 Claim 18 】 The apparatus of claim 12, wherein the processor is configured to retrieve the payload size of the data of the first uplink signal and the total number of transmissible symbols of the Physical Uplink Shared Channel (PUSCH) of the first uplink signal from a memory or a cache.

【Claim 19】 The apparatus of claim 13, wherein the number of symbols of control information satisfies the expression:

$$Q' = \left\lceil \frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r} \right\rceil \text{ where}$$

Q' is the number of the symbols of the control information of the second uplink signal,

O is the payload size of the control information of the second uplink signal,

$N_{symb}^{PUSCH-initial}$ is a number of SC-FDMA symbols per subframe for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal, $M_{sc}^{PUSCH-initial}$ is a scheduled bandwidth PUSCH transmission for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal,

$\beta_{\text{offset}}^{\text{PUSCH}}$ is the offset value,

$\sum_{r=0}^{C-1} K_r$ is the payload size of the data of the first uplink signal, r is code block number of the data of the first uplink signal before channel coding of the data of the first uplink signal, K_r is a number of bits in code block number r , and C is a total number of code blocks.

【Claim 20】 An apparatus configured to a received first and a second uplink signal, the first and second uplink signal each having data and control information, comprising:

 a RF unit;
 a memory; and
 a processor operatively connected to the RF unit and the memory, the processor configured to channel decode channel encoded data with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.

【Claim 21】 The apparatus of claim 20, wherein the processor is configured to channel decode the channel encoded data with a payload size of the control information

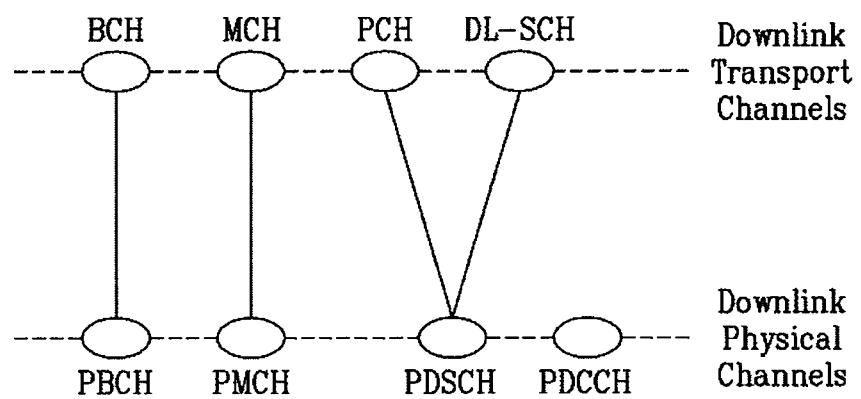
of the second uplink signal and an offset value applied to the control information of the second uplink signal.

【Claim 22】 The apparatus of claim 21, wherein a number of symbols of control information decoded by the decoder satisfies the expression:

$$Q' = \left\lceil \frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r} \right\rceil \text{ where}$$

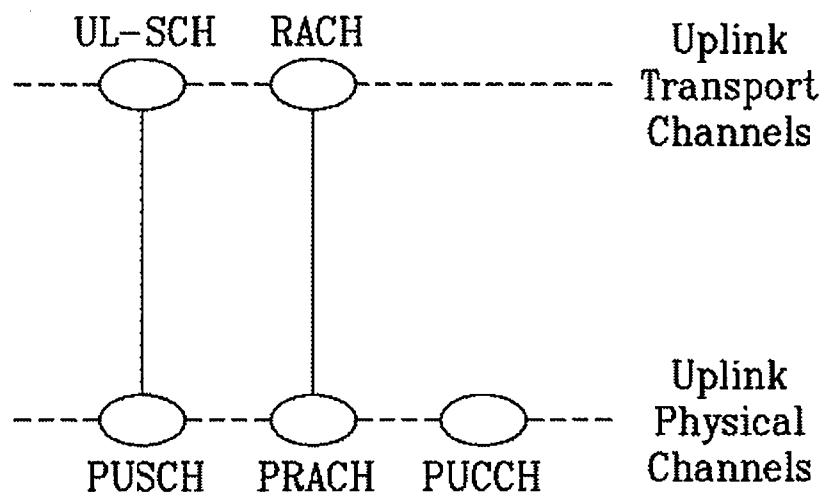
Q' is the number of the symbols of the control information of the second uplink signal,

O is the payload size of the control information of the second uplink signal,


$N_{symb}^{PUSCH-initial}$ is a number of SC-FDMA symbols per subframe for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal, $M_{sc}^{PUSCH-initial}$ is a scheduled bandwidth PUSCH transmission for Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal,

β_{offset}^{PUSCH} is the offset value,

$\sum_{r=0}^{C-1} K_r$ is the payload size of the data of the first uplink signal, r is code block number of the data of the


first uplink signal before channel coding of the data of the first uplink signal, K_r is a number of bits in code block number r , and C is a total number of code blocks. A

1/17

Figure 1

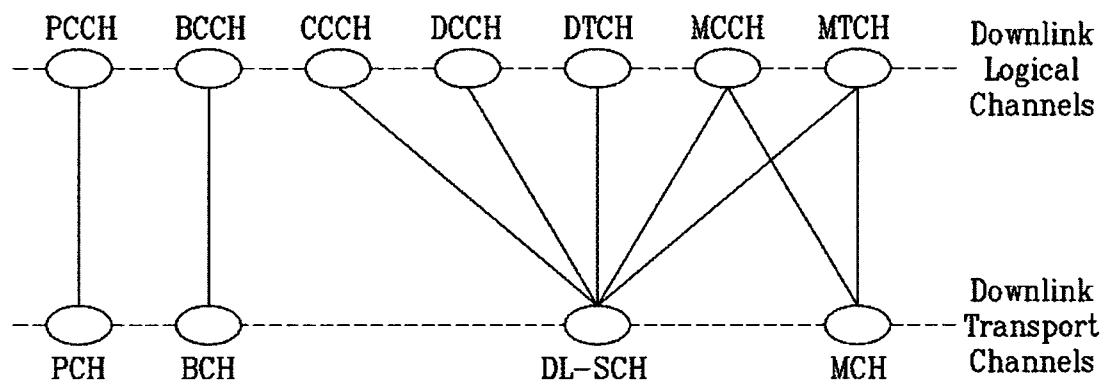
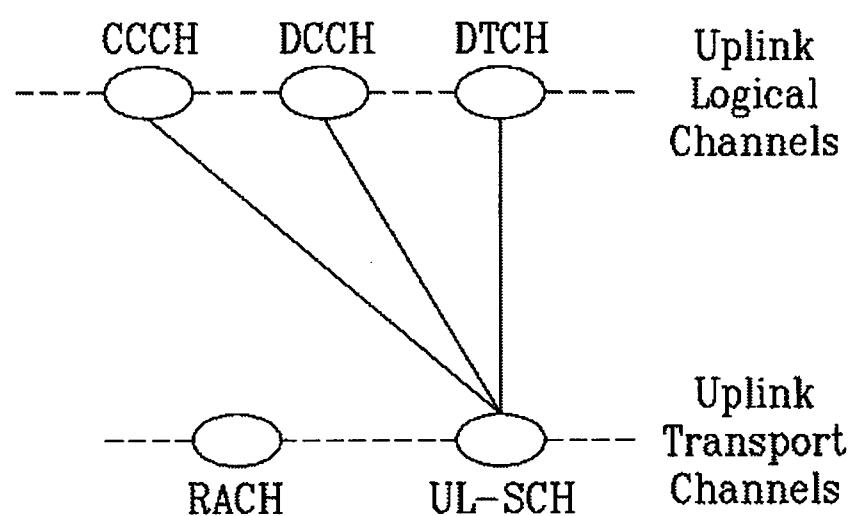
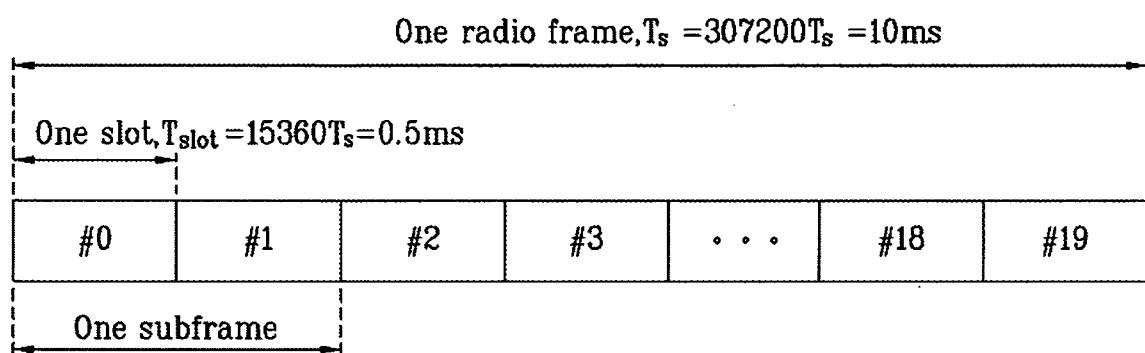

2/17

Figure 2



3/17

Figure 3



4/17

Figure 4

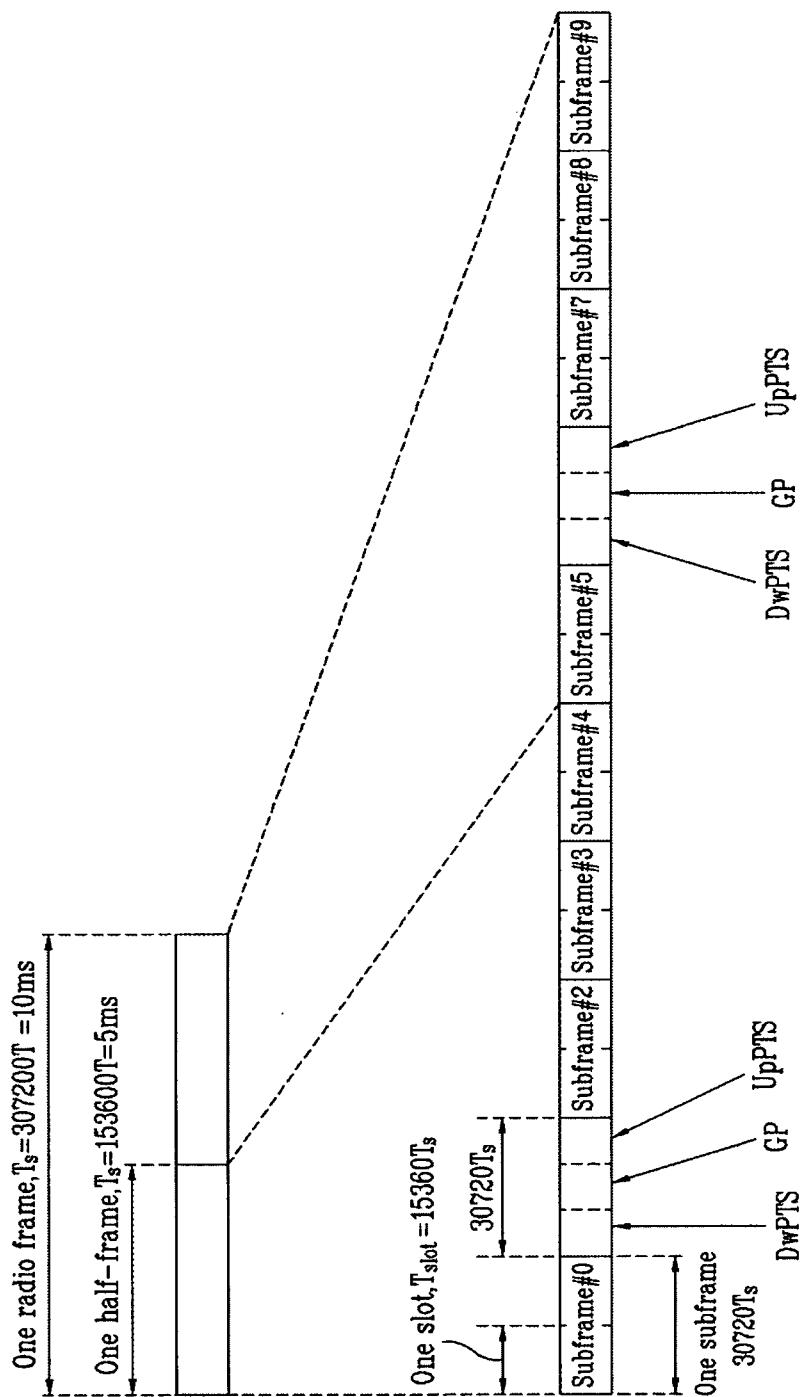

5/17

Figure 5

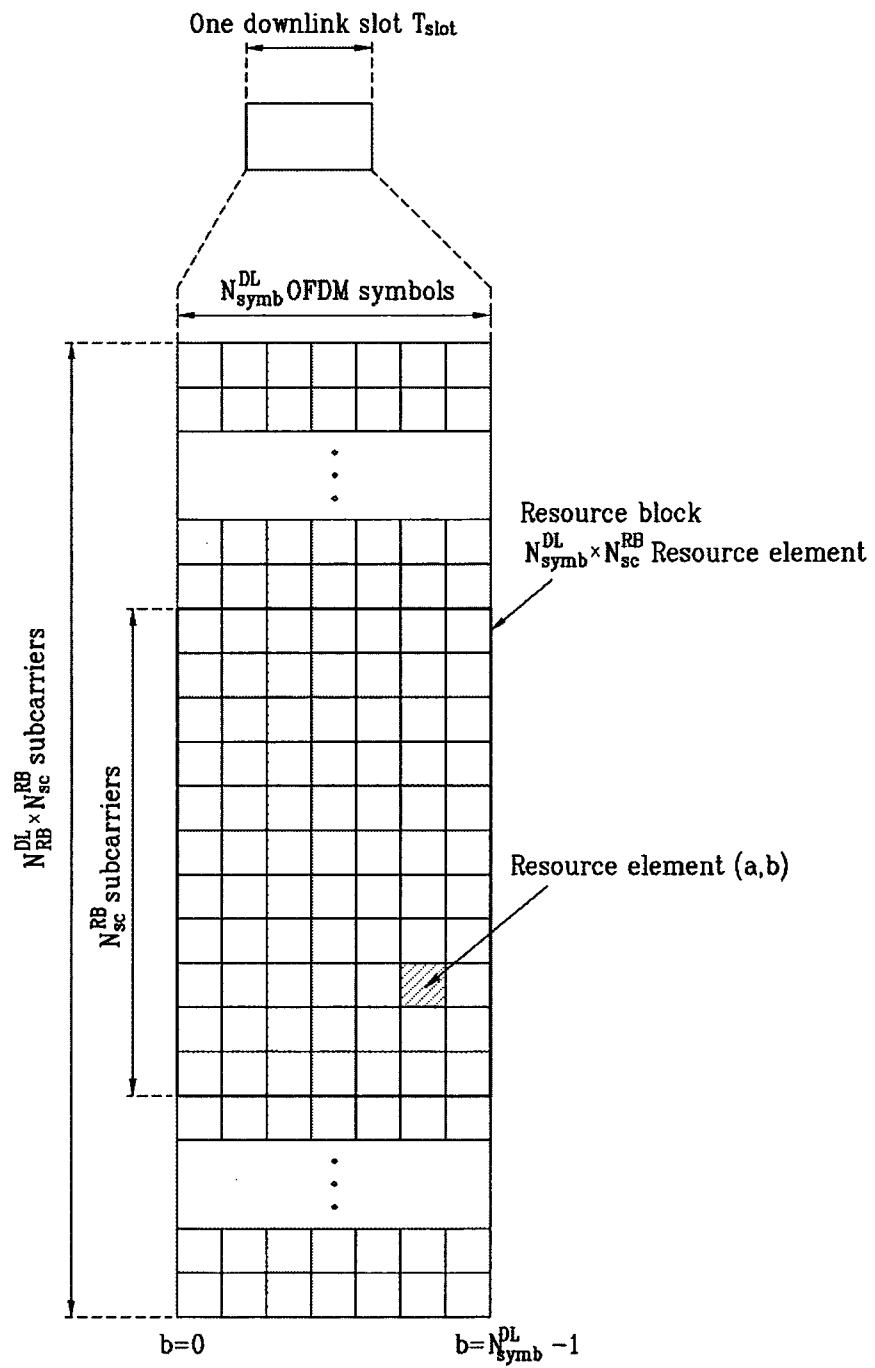
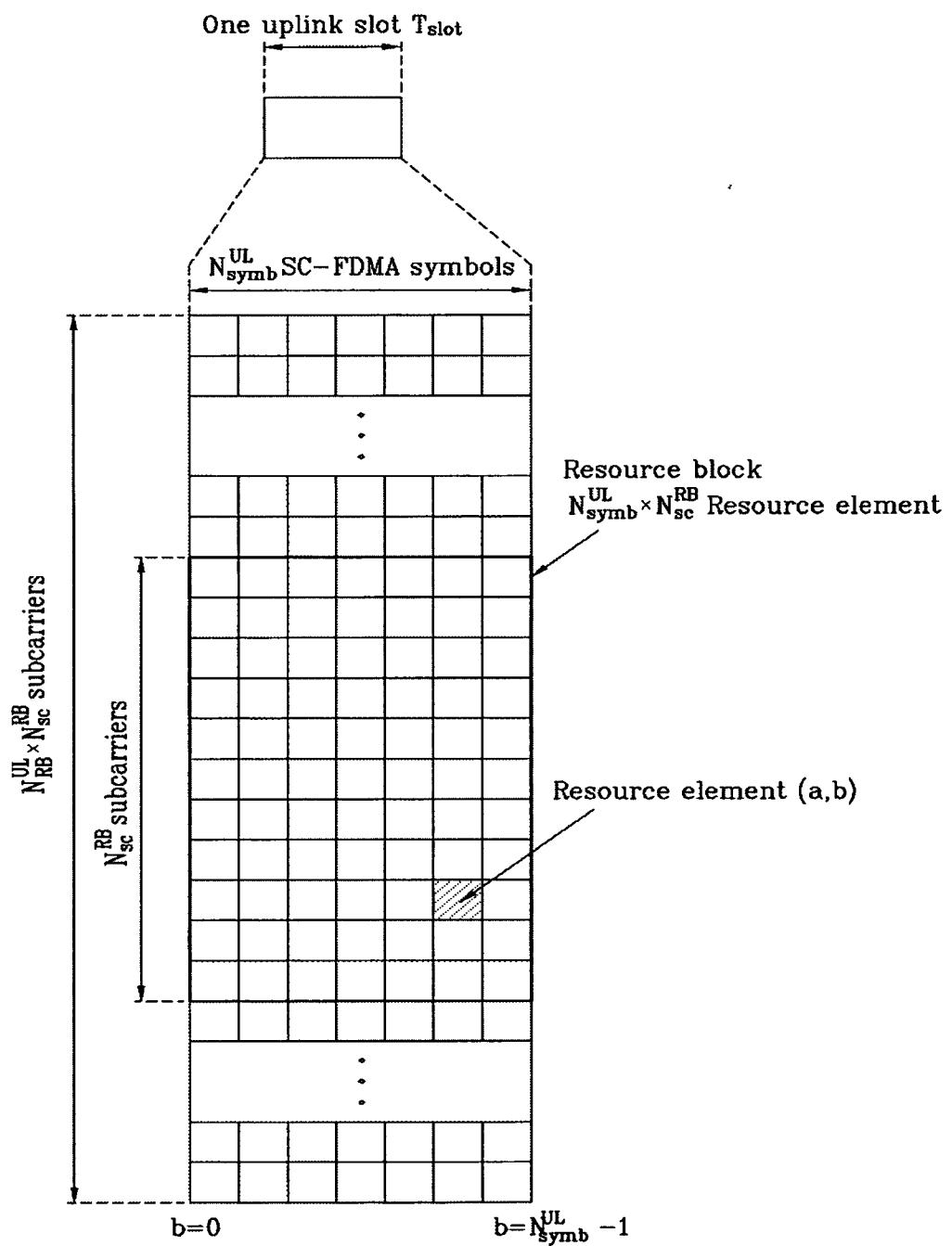
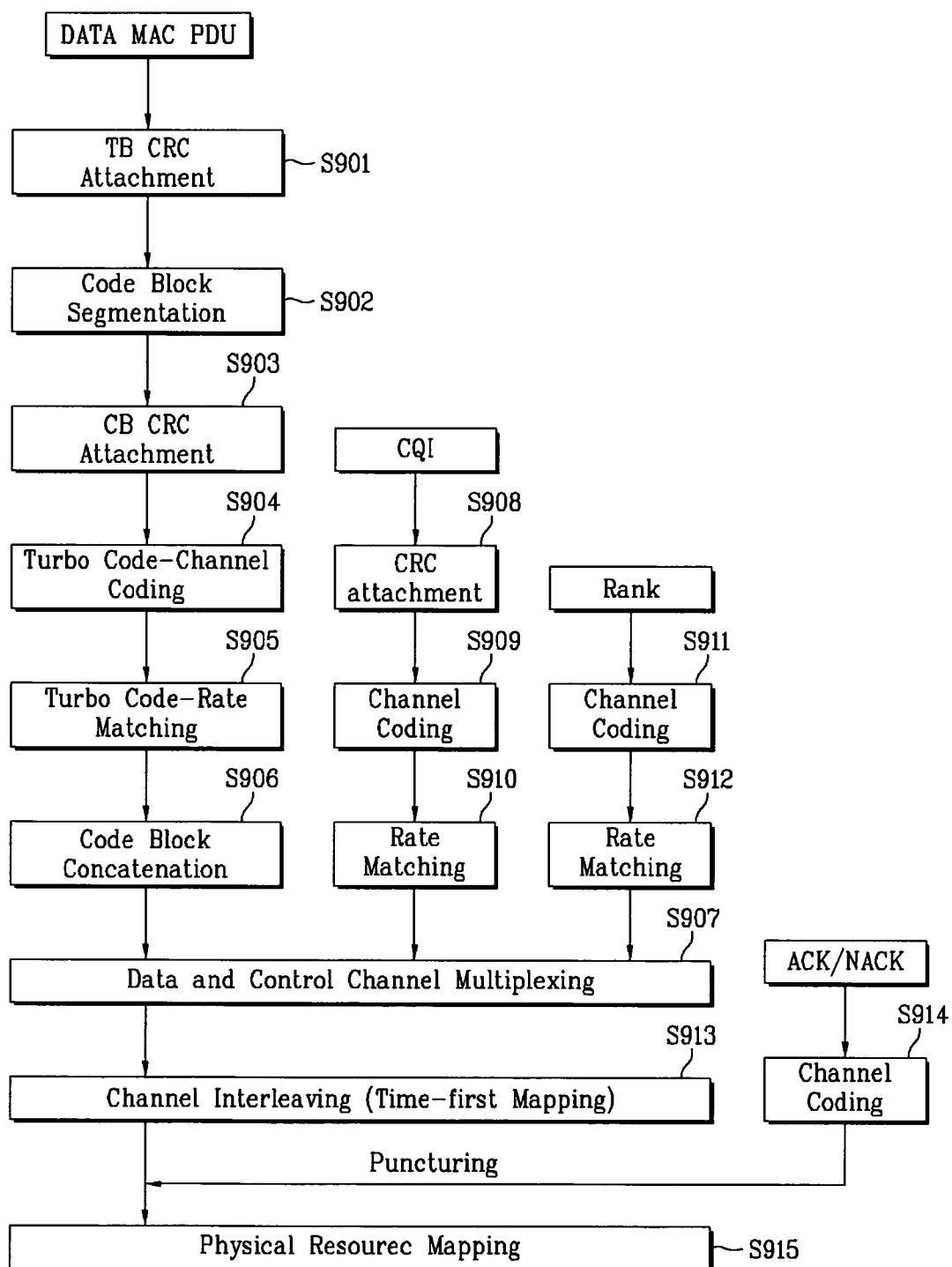

6/17

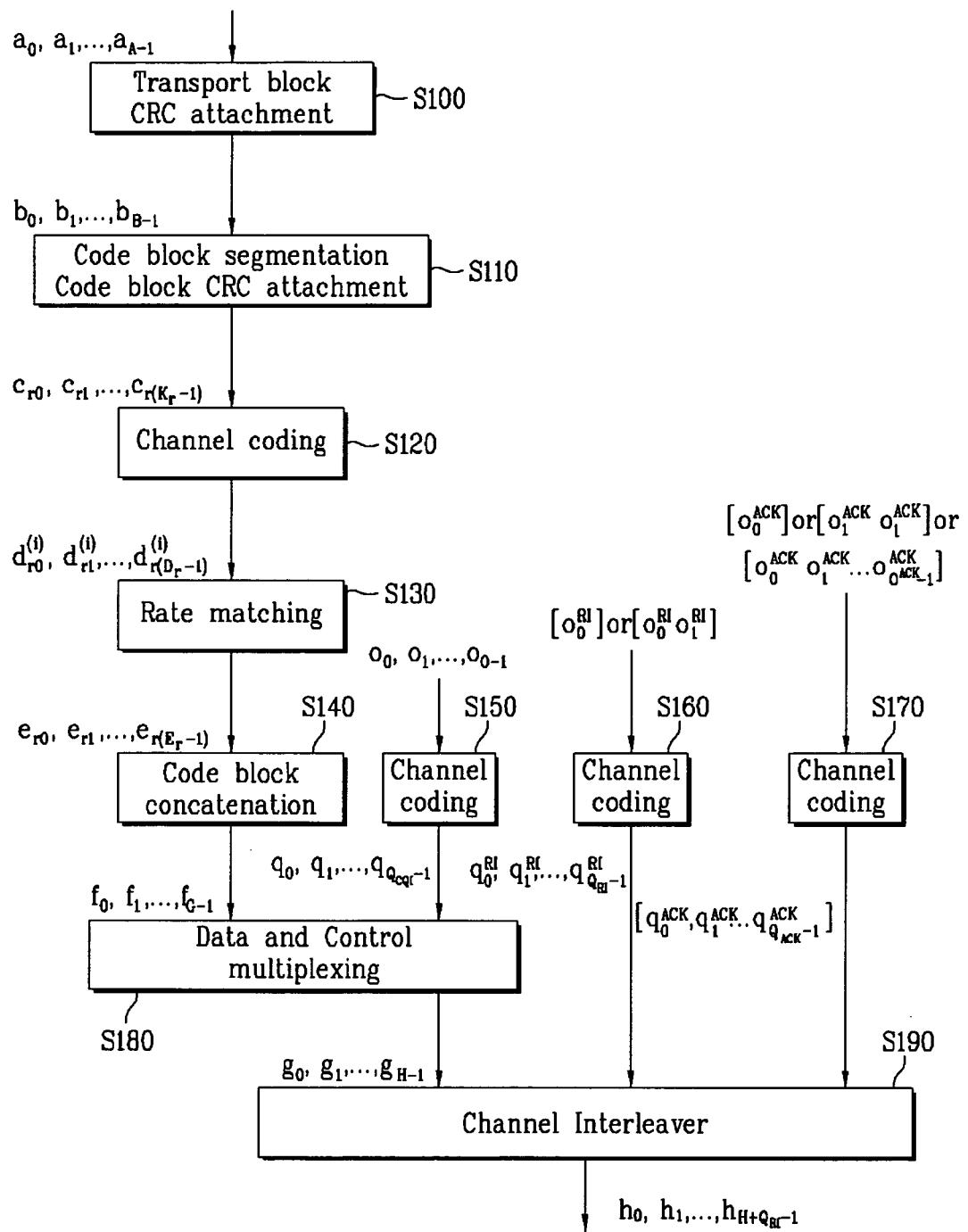
Figure 6



7/17


Figure 7

8/17


Figure 8

9/17

Figure 9

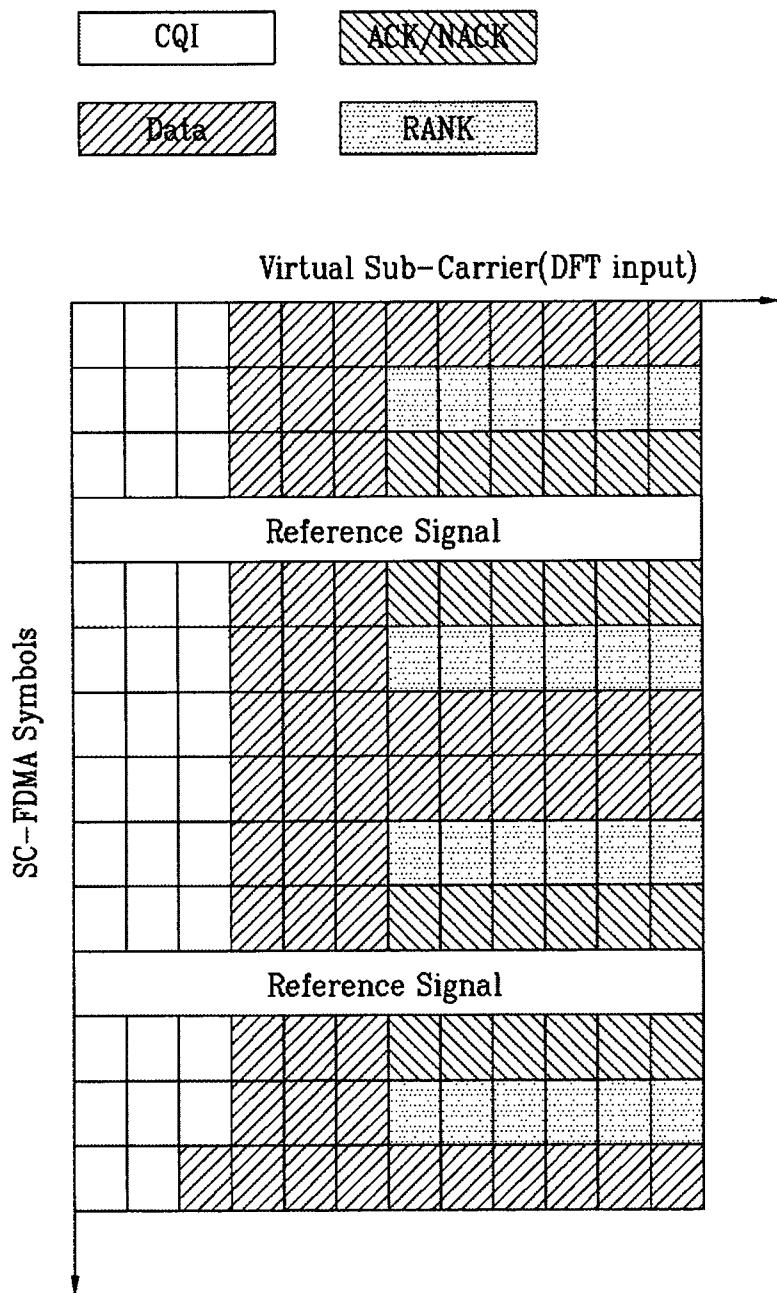

10/17

Figure 10

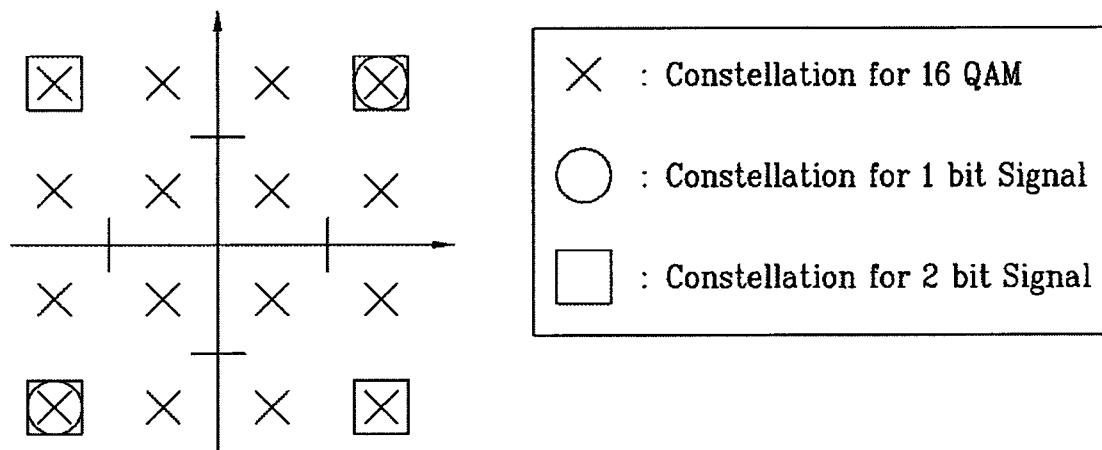

11/17

Figure 11

12/17

Figure 12

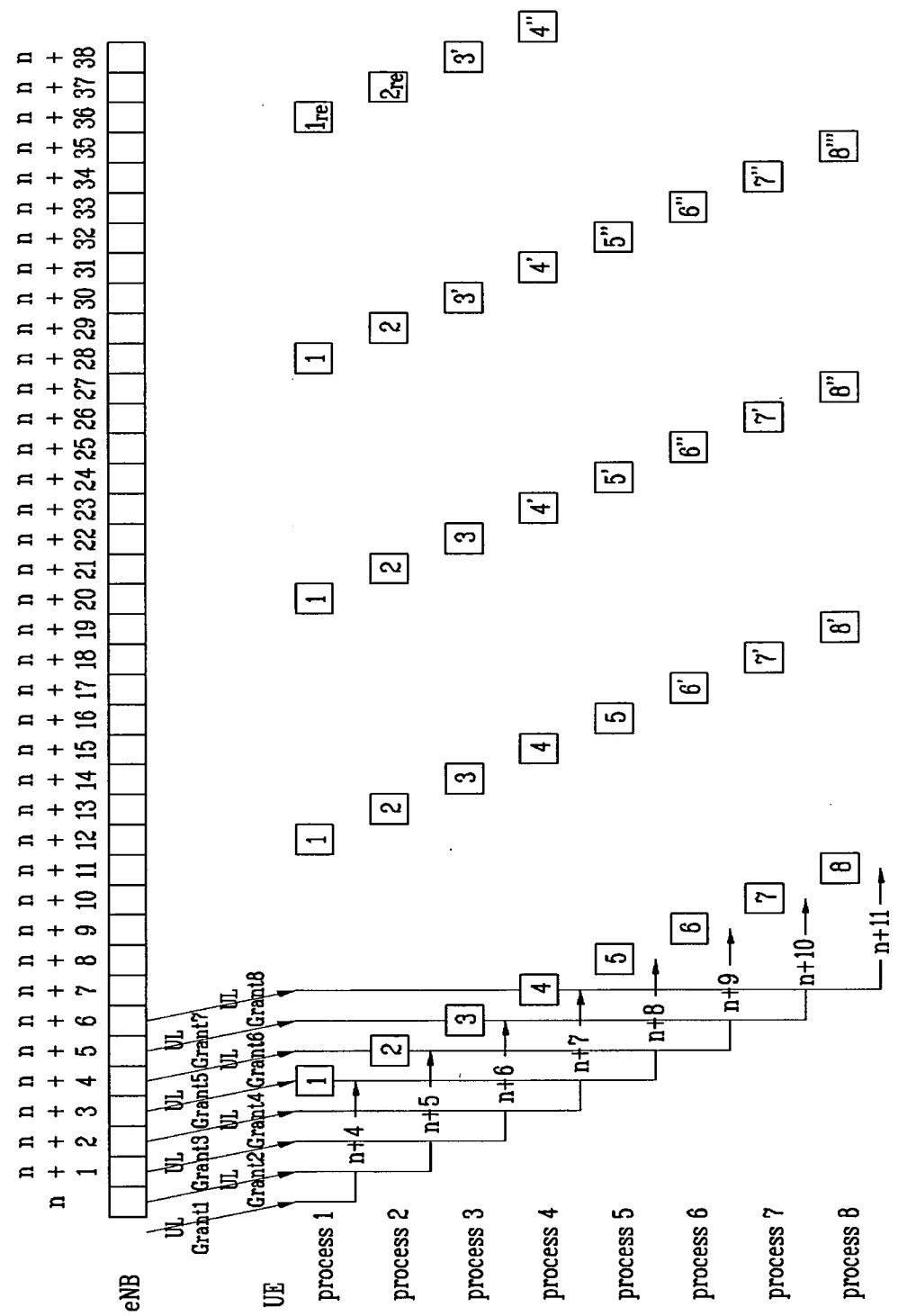

13/17

Figure 13

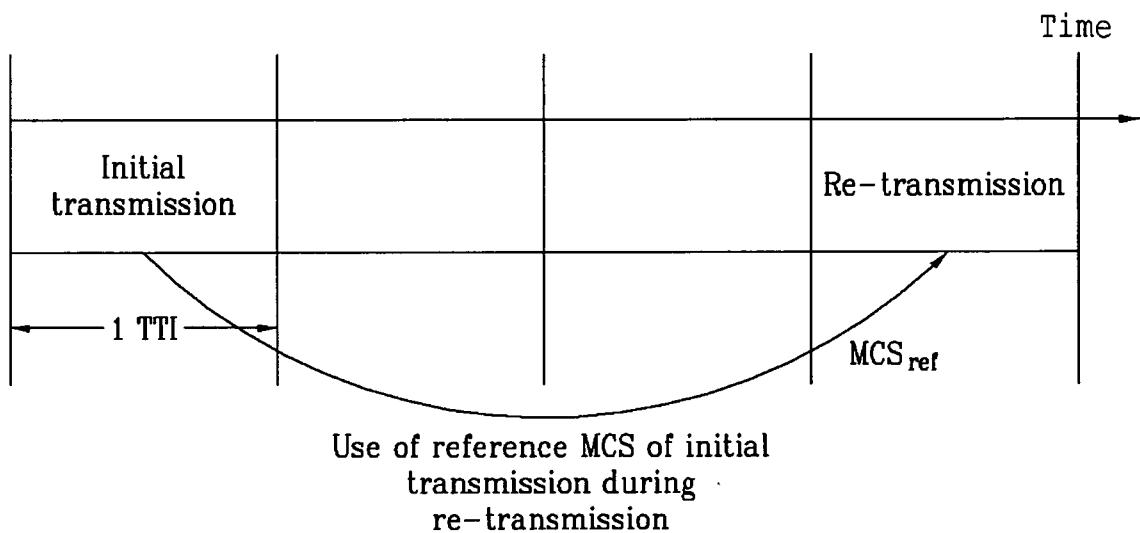

14/17

Figure 14

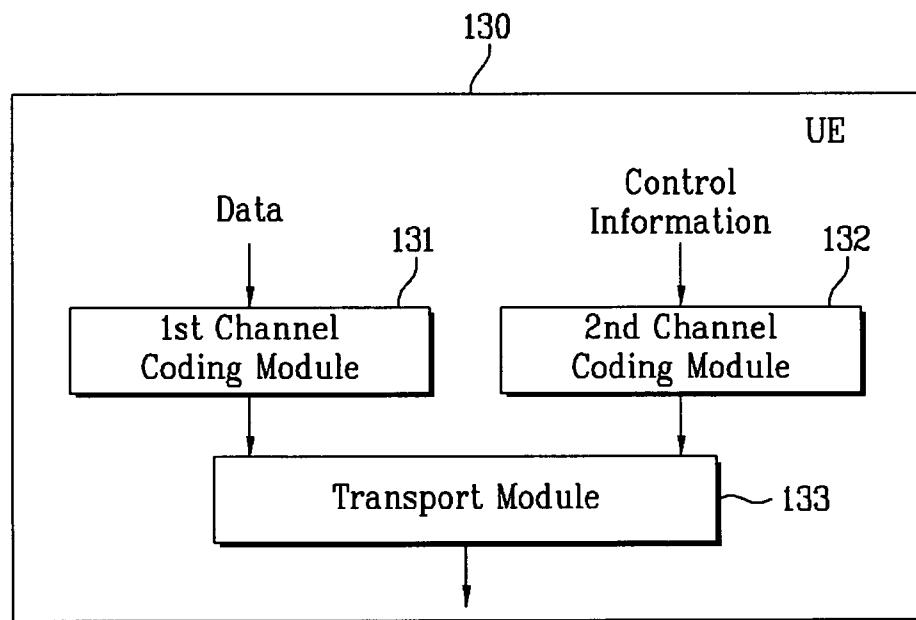

15/17

Figure 15

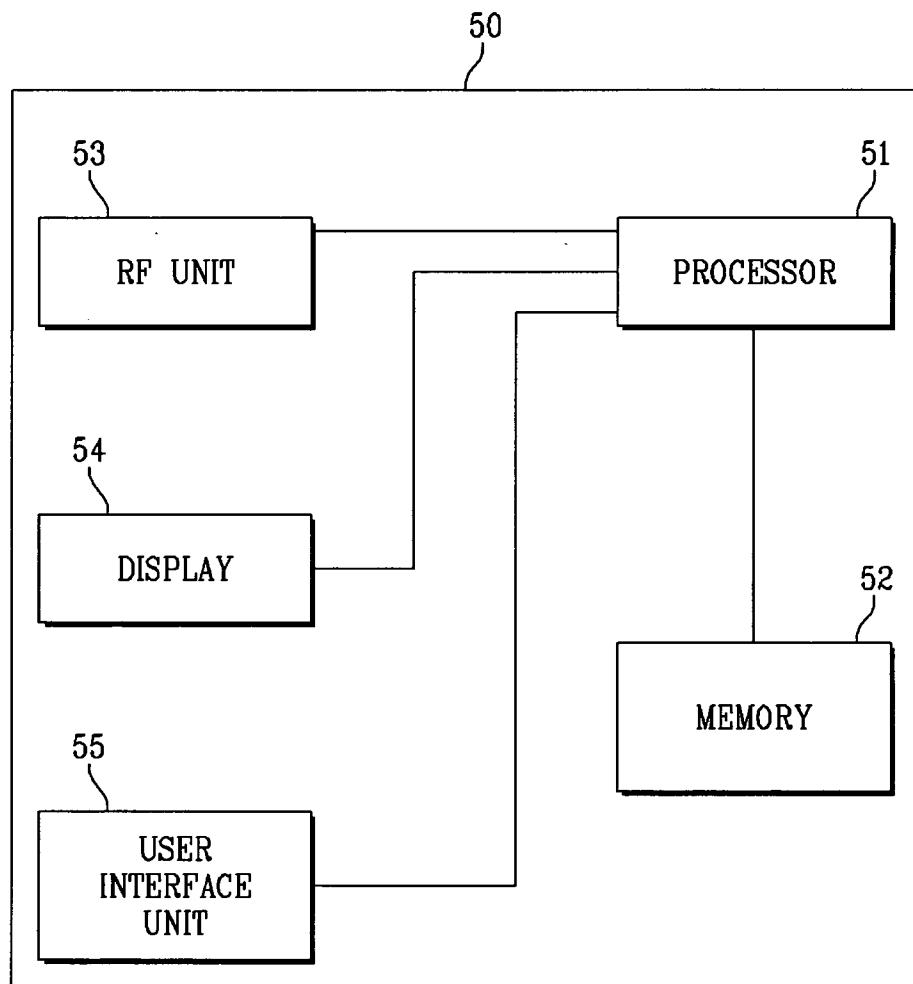

16/17

Figure 16

17/17

Figure 17

