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(57) ABSTRACT 
A processor System presented here has a plurality of execu 
tion cores and a plurality of stack caches, wherein each of the 
stack caches is associated with a different one of the execution 
cores. A method of managing stack data for the processor 
system is presented here. The method maintains a stack cache 
manager for the plurality of execution cores. The stack cache 
manager includes entries for stack data accessed by the plu 
rality of execution cores. The method processes, for a request 
ing execution core of the plurality of execution cores, a virtual 
address for requested Stack data. The method continues by 
accessing the Stack cache manager to search for an entry of 
the stack cache manager that includes the virtual address for 
requested Stack data, and using information in the entry to 
retrieve the requested Stack data. 
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STACK CACHE MANAGEMENT AND 
COHERENCE TECHNIQUES 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. This application claims the benefit of U.S. provi 
sional patent application No. 61/728,843, filed Nov. 21, 2012 
(the entire content of this provisional application is incorpo 
rated by reference herein). 

TECHNICAL FIELD 

0002 Embodiments of the subject matter described herein 
relate generally to memory caches of the type found in pro 
cessor Systems. More particularly, embodiments of the Sub 
ject matter relate to the management of stack caches that are 
utilized for stack data in a processor System. 

BACKGROUND 

0003. A central processing unit (CPU) may include or 
cooperate with one or more cache memories to facilitate 
quick access to data (rather than having to access data from 
the primary system memory). Memory latency, relative to 
CPU performance, is ever increasing. Caches can alleviate 
the average latency of a load operation by storing frequently 
accessed data in structures that have significantly shorter 
latencies associated therewith. Moreover, memory Subsystem 
performance can be increased by storing the most commonly 
used data in smaller but faster cache memories. For example, 
'stack data” (i.e., frequently used and/or recently accessed 
data) may be cached in Small stack caches that are distinct 
from the traditional and typical cache memory hierarchy of a 
processor system. 
0004. In a typical multicore processor system, stack data is 
“owned' or accessed by only one execution core at a time. In 
other words, stack data is usually private in nature. That said, 
there are certain situations where stack data is shared between 
different execution cores. Consequently, stack caches in a 
multicore processor system should be kept coherent and 
should be managed in an efficient and effective manner. 

BRIEF SUMMARY OF EMBODIMENTS 

0005. A method of managing stack data in a processor 
system having a plurality of execution cores and a plurality of 
stack caches is provided here. Each of the Stack caches is 
associated with a different one of the execution cores. The 
method maintains a stack cache manager for the plurality of 
execution cores, wherein the stack cache manager includes 
entries for stack data accessed by the plurality of execution 
cores. The method continues by processing, for a requesting 
execution core of the plurality of execution cores, a virtual 
address for requested Stack data. The method continues by 
accessing the Stack cache manager to search for an entry of 
the stack cache manager that includes the virtual address for 
requested Stack data, and using information in the entry to 
retrieve the requested Stack data. 
0006. Also provided is a processor system having a plu 

rality of execution cores, a plurality of stack caches config 
ured to cache Stack data for the execution cores, a plurality of 
stack translation lookaside buffers (TLBs) for the execution 
cores, a cache memory architecture, and a stack cache man 
ager. Each of the execution cores has one of the stack caches 
associated therewith, and each of the plurality of stack caches 
has one of the stack TLBs associated therewith. The cache 
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memory architecture is configured to cache data for the 
execution cores. The stack cache manager is operatively asso 
ciated with the execution cores and is operatively associated 
with the stack caches and the stack TLBs, wherein the stack 
cache manager maintains status entries for stack data 
accessed by the execution cores. 
0007 Also provided is a method of managing stack data in 
a processor System having a plurality of execution cores, a 
plurality of stack caches, a plurality of Stack TLBS, and a 
stack cache manager. Each of the execution cores has one of 
the stack caches associated therewith, each of the stack 
caches has one of the stack TLBs associated therewith, and 
each of the stack caches is associated with a different one of 
the execution cores. The method maintains, with the stack 
cache manager, status entries for stack data accessed by the 
execution cores. The method continues by obtaining an 
access request for requested Stack data, the access request 
originating from a first execution core of the plurality of 
execution cores, and the access request identifying a virtual 
memory address for the requested Stack data. The first execu 
tion core is associated with a first stack cache of the plurality 
of stack caches and is associated with a first stack TLB of the 
plurality of stack TLBs. The method continues by determin 
ing that the requested Stack data cannot be found in the first 
stack cache, and that an address translation for the virtual 
memory address cannot be found in the first stack TLB. In 
response to the determining, the method searches the stack 
cache manager to locate a status entry for the requested Stack 
data, and retrieves the requested Stack data in response to 
locating the status entry for the requested Stack data. 
0008. This summary is provided to introduce a selection of 
concepts in a simplified form that are further described below 
in the detailed description. This summary is not intended to 
identify key features or essential features of the claimed sub 
ject matter, nor is it intended to be used as an aid in determin 
ing the scope of the claimed Subject matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009. A more complete understanding of the subject mat 
ter may be derived by referring to the detailed description and 
claims when considered in conjunction with the following 
figures, wherein like reference numbers refer to similar ele 
ments throughout the figures. 
0010 FIG. 1 is a simplified block diagram of an embodi 
ment of a processor System; 
0011 FIG. 2 is a table that includes status entries for a 
Stack cache manager; 
0012 FIG. 3 is a schematic block diagram representation 
that depicts an embodiment of a processor System; 
0013 FIG. 4 is a flow chart that illustrates an embodiment 
of a stack data management process; and 
0014 FIG. 5 is a flow chart that illustrates an embodiment 
of a stack data coherence process. 

DETAILED DESCRIPTION 

0015 The following detailed description is merely illus 
trative in nature and is not intended to limit the embodiments 
of the Subject matter or the application and uses of Such 
embodiments. As used herein, the word “exemplary' means 
'serving as an example, instance, or illustration.” Any imple 
mentation described hereinas exemplary is not necessarily to 
be construed as preferred or advantageous over other imple 
mentations. Furthermore, there is no intention to be bound by 
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any expressed or implied theory presented in the preceding 
technical field, background, brief Summary or the following 
detailed description. 
0016 Techniques and technologies may be described 
herein in terms of functional and/or logical block compo 
nents, and with reference to symbolic representations of 
operations, processing tasks, and functions that may be per 
formed by various computing components or devices. Such 
operations, tasks, and functions are sometimes referred to as 
being computer-executed, computerized, Software-imple 
mented, or computer-implemented. It should be appreciated 
that the various block components shown in the figures may 
be realized by any number of hardware, software, and/or 
firmware components configured to perform the specified 
functions. For example, an embodiment of a system or a 
component may employ various integrated circuit compo 
nents, e.g., memory elements, logic elements, look-up tables, 
or the like, which may carry out a variety of functions under 
the control of one or more microprocessors or other control 
devices. 

0017 Moreover, when implemented in software or firm 
ware, the methods, processes, and/or tasks described herein 
may be associated with code segments or instructions that 
perform the various tasks. The program or code segments can 
be stored in a tangible processor-readable medium (e.g., a 
non-transitory medium). The “processor-readable medium’ 
or “machine-readable medium' may include any medium 
that can store or transfer information. Examples of the pro 
cessor-readable medium include an electronic circuit, a semi 
conductor memory device, a ROM, a flash memory, an eras 
able ROM (EROM), a floppy diskette, a CD-ROM, an optical 
disk, a hard disk, or the like. 
0018. The subject matter presented here relates to a pro 
cessor system and associated cache memory architectures, 
cache management techniques, and cache coherency tech 
niques. The processor system can be realized as a semicon 
ductor chip, product, or package. Such processor Systems are 
widespread and commonly used in many computer systems 
and electronic applications. Accordingly, for the sake of brev 
ity, conventional techniques, aspects, and features of com 
puter systems, processor Systems, and cache memory systems 
will not be described in detail herein. 

0019 Referring now to the drawings, FIG. 1 is a simplified 
block diagram of a processor system 100. In accordance with 
Some embodiments, the processor System 100 may include, 
without limitation: a plurality of execution cores 102; a cache 
architecture 104; at least one memory controller 106; a plu 
rality of stack caches 108; at least one stack cache manager 
110; and a plurality of stack translation lookaside buffers 112. 
These elements and features of the processor system 100 may 
be operatively associated with one another, coupled to one 
another, or otherwise configured to cooperate with one 
another as needed to support the desired functionality—in 
particular, the stack cache management functionality 
described herein. For ease of illustration and clarity, the vari 
ous physical, electrical, and logical couplings and intercon 
nections for these elements and features are not depicted in 
FIG.1. Moreover, it should be appreciated that embodiments 
of the processor system 100 will include other elements, 
modules, and features that cooperate to Support the desired 
functionality. For simplicity, FIG. 1 only depicts certain ele 
ments that relate to the stack cache management techniques 
described in more detail below. 
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0020 Each of the execution cores 102 represents a pro 
cessing unit that is designed and configured to execute com 
puter-readable instructions, which are stored in Some type of 
accessible memory. In accordance with conventional multi 
core technology, each of the execution cores 102 is capable of 
executing process threads in an independent manner. The 
cache architecture 104 is coupled to the execution cores 102, 
and provides a cache memory hierarchy for the execution 
cores 102. Accordingly, the cache architecture 104 is suitably 
configured to cache data for the execution cores as needed, 
and in accordance with any number of conventional caching 
methodologies. In operation, the execution cores 102 issue 
demand requests for data, and the cache architecture 104 may 
be searched in response to demand requests to determine if 
the requested data is cached. 
0021. The memory controller 106 may function as an 
interface between the processor system 100 and the system 
memory or main memory (not shown in FIG. 1) of the host 
computer system. The memory controller 106 is operatively 
associated with the cache architecture 104 Such that the 
memory controller 106 can control data caching operations 
that involve the cache architecture 104. In this regard, the 
memory controller 106 may be responsible for loading cache 
lines into the cache architecture 104 as needed. The memory 
controller 106 may also be involved when cached data is 
evicted from the cache architecture 104 to the system 
memory, as is well understood. Moreover, the memory con 
troller 106 may be further configured to control data caching 
operations that involve the stack caches 108. 
0022. In some embodiments, multiple stack caches 108 
are utilized to support the plurality of execution cores 102. 
For example, the stack caches 108 may be assigned to or 
designated for the execution cores 102 such that each execu 
tion core 102 is associated with one and only one stack cache 
108. In other embodiments, however, more than one stack 
cache 108 could be associated with a single execution core 
102. In yet other embodiments, a single stack cache 108 could 
be associated with two different execution cores 102. It 
should be appreciated that the stack caches 108 could be 
implemented as part of the cache architecture 104. FIG. 1 
depicts the stack caches 108 and the cache architecture 104 as 
distinct modules for ease of description and clarity. 
0023 The stack caches 108 are suitably configured to 
store/cache frequently-used Stack data for the execution cores 
102 (ideally, the stack caches 108 will not be used for non 
stack data). In certain embodiments, each stack cache 108 is 
virtually indexed and virtually tagged. Thus, stack data con 
tained in the stack caches 108 can be located and retrieved 
using a suitable virtual addressing scheme. 
0024. In some embodiments, multiple stack TLBs 112 are 
utilized to support the plurality of execution cores 102. For 
example, the stack TLBS 112 may be assigned to or desig 
nated for the execution cores 102 such that each execution 
core 102 is associated with one and only one stack TLB 112. 
In other embodiments, however, more than one stack TLB 
112 could be associated with a single execution core 102. In 
yet other embodiments, a single stack TLB 112 could be 
associated with two different execution cores 102. The stack 
TLBs 112 are utilized to store virtual-to-physical address 
translations for stack data, which may be virtually indexed 
and virtually tagged in certain implementations. If an access 
request for designated Stack data cannot be found in the 
identified stack cache 108, then the corresponding stack TLB 
112 will be searched in an attempt to locate the virtual address 
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of the designated Stack data. In this regard, the stack TLBS 
112 function in a manner that is similar to traditional TLBs 
that Support non-stack data. It should be appreciated that the 
stack TLBs 112 could be implemented as part of the cache 
architecture 104. FIG. 1 depicts the stack TLBs 112 and the 
cache architecture 104 as distinct modules for ease of descrip 
tion and clarity. 
0025. The stack cache manager 110 is maintained and 
updated for the execution cores 102. In accordance with some 
embodiments, only one stack cache manager 110 is utilized to 
support the multiple execution cores 102. In other embodi 
ments, however, more than one stack cache manager 110 
could be deployed. As described in more detail below, the 
stack cache manager 110 represents a centralized page or 
table that keeps track of the stack data handled by the proces 
sor system 100, regardless of which execution core 102 owns 
the stack data. In this regard, the stack cache manager 110 
may include or maintain status entries for the stack data 
accessed by the execution cores 102, where each entry is 
associated with or otherwise indicates a memory location for 
stack data. At least some of the entries in the stack cache 
manager 110 correspond to entries found in the stack TLBs 
112. Accordingly, the stack cache manager 110 may be opera 
tively associated with the execution cores 102, the stack 
caches 108, and the stack TLBs 112 as needed to support the 
techniques and methodologies described herein. As 
explained in more detail below, the status entries in the stack 
cache manager 110 can be used to maintain coherence for the 
stack data across the stack caches 108 and across the cache 
architecture 104. 

0026 FIG. 2 is a table 200 that includes several status 
entries for the stack cache manager 110. The table 200 may 
include any number of status entries for any number of the 
execution cores 102, and the illustrated table 200 is merely 
one possible example. As shown in FIG. 2, each entry in the 
table 200 includes, without limitation: a virtual page field 
202; a physical address field 204 (which is an optional field); 
and an execution core (or stack) identifier field 206. The 
virtual page field 202 indicates the virtual memory page for 
the stack data corresponding to the particular entry. The 
physical address field 204 indicates the physical memory 
address for the stack data corresponding to the particular 
entry. Note that the physical address field 204 is optional 
because if there is a match in the virtual page field 202, the 
physical address can be obtained by accessing the TLB of the 
owner stack. Thus, each entry in the table 200 includes a 
virtual-to-physical address translation or mapping for stack 
data. In this regard, each entry in the table 200 is similar to a 
corresponding entry in one of the stack TLBs 112. Indeed, the 
table 200 may include copies of the stack TLB entries that 
indicate the virtual pages for the stack data accessed by the 
execution cores 102. 

0027. Each of the status entries in the table 200 corre 
sponds to designated Stack data that is currently owned by one 
of the plurality of execution cores 102 (i.e., an owner execu 
tion core). The execution core identifier field 206 indicates the 
owner execution core for the designated Stack data corre 
sponding to the given entry. For example, Entry 0 in the table 
200 is for stack data currently owned by Core 1, Entry 1 is 
for stack data currently owned by Core 3, and so on. For an 
embodiment with multiple stack caches per execution core, 
the field 206 may specify which stack cache owns the virtual 
page. Notably, the table 200 may include any number (includ 
ing Zero) of status entries for each of the multiple execution 
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cores 102. Thus, the table 200 may be considered to be a 
“master TLB for the processor system 100. The status entries 
in the table 200 may be updated in an ongoing manner to 
reflect the current memory locations and ownership of the 
stack data and to maintain Stack data coherence. 
0028 FIG. 3 is a schematic block diagram representation 
that depicts an embodiment of a processor system 300. The 
processor system 300 shown in FIG.3 may be consistent with 
the arrangement of the processor system 100 shown in FIG.1. 
In other words, the processor system 300 may represent an 
alternative depiction and arrangement of the elements and 
features described above for the processor system 100. In this 
regard, certain features, elements, and functionality of the 
processor system 100 will not be redundantly described again 
in the context of the processor system 300. 
0029 FIG.3 depicts a simplified rendition of the processor 
system 300, which may include a processor device 302 and 
system memory 304 coupled to the processor device 302. The 
dashed vertical line in FIG. 3 is intended to represent the 
typical physical demarcation between the processor device 
302 and the system memory 304. In accordance with certain 
embodiments, the processor device 302 includes, without 
limitation: an execution core 306; a level one (L1) cache 
memory 308; a level two (L2) cache memory 310: a level 
three (L3) cache memory 312; a memory controller 314; a 
translation lookaside buffer (TLB) 316; a stack cache 318; 
and a stack TLB 320. 

0030. The cache memories 308,310,312 may form part of 
the cache architecture 104 shown in FIG.1. The cache memo 
ries 308,310,312 are coupled to the execution core 306, and 
are coupled together to form a cache hierarchy, with the L1 
cache memory 308 being at the top of the hierarchy and the L3 
cache memory 312 being at the bottom. The execution core 
306 may represent an execution core or unit that issues 
demand requests for data. Responsive to demand requests 
issued by the execution core 306, one or more of the cache 
memories 308, 310, 312, the TLB 316, the stack cache 318, 
and/or the stack TLB 320 may be searched to locate the 
requested data. If the data is found, then the requested data 
can be provided to the execution core 306. 
0031. As explained above in the context of FIG. 1, the 
processor system 300 may include a plurality of different 
execution cores 306. FIG.3 depicts only one execution core 
306 for clarity and ease of description. In practice, therefore, 
one or more of the cache memories 308, 310, 312 may be 
shared between two or more execution cores 306. For 
example, in some embodiments, two execution cores 306 
may share the L3 cache memory 312, while each individual 
execution core 306 may have separate, dedicated instances of 
the L1 cache memory 308 and the L2 cache memory 310. 
Other arrangements are also possible and contemplated. 
0032. The example presented hereassumes that the execu 
tion core 306 is associated with a respective stack cache 318 
and a respective stack TLB 320. In certain implementations, 
the stack TLB 320 may be realized as part of the “main” TLB 
316 for the particular execution core 306. Moreover, the TLB 
316 could be individually associated with the execution core 
306, or it could be shared by a plurality of different execution 
cores 306 as appropriate to the particular embodiment. This 
description refers to a simple and straightforward implemen 
tation where each individual execution core 306 includes its 
own corresponding stack cache 318 and its own correspond 
ing stack TLB 320. Accordingly, the processor system 300 
may actually have multiple instantiations of Some of the 
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elements depicted in FIG. 3, such that multiple execution 
cores 306 can be supported in the desired manner. 
0033. The processor device 302 also includes the memory 
controller 314, which provides an interface between the pro 
cessor device 302 and the system memory 304. The memory 
controller 314 may also be coupled to each of the cache 
memories 308,310,312. During operation, the memory con 
troller 314 may load cachelines (i.e., blocks of data stored in 
a cache memory) directly into any one or all of the cache 
memories 308,310,312. In some embodiments, the memory 
controller 314 may load a cache line into one or more of the 
cache memories 308, 310, 312 responsive to a demand 
request by the execution core 306 and resulting cache misses 
in each of the cache memories 308, 310,312. Similarly, the 
memory controller 314 may influence the operation of the 
stack cache 318 as needed. 

0034. The TLB 316 functions in accordance with conven 
tional methodologies to handle virtual memory addresses. In 
this regard, the TLB 316 represents a memory structure that 
stores virtual-to-physical address translations for the proces 
sor system 300. The TLB 316 is utilized in certain embodi 
ments that process virtual addresses from a load/store unit 
(not shown in FIG. 3). The TLB 316 can be used to obtain 
physical addresses as needed to locate requested data that 
resides in the L1 cache memory 308. For example, assume 
that the L1 cache memory 308 is virtually indexed and physi 
cally tagged. In accordance with Such an addressing scheme, 
data located in the L1 cache memory 308 can be obtained with 
a virtual address component (for the virtual index) and a 
physical address component (for the physical tag). The TLB 
316 is suitably configured to provide the virtual-to-physical 
translation required to obtain the physical address compo 
nent. For this reason, FIG.3 depicts the TLB 316 in parallel 
with the L1 cache memory 308; these two memory structures 
may be accessed concurrently because the virtual address 
component from the execution core 306 need not be trans 
lated. In alternative implementations, the TLB 316 could be 
accessed before accessing the L1 cache memory 308, how 
ever, performance is improved using the parallel arrangement 
depicted in FIG. 3. 
0035. For purposes of this description, it is assumed that 
L1 caches are virtually indexed and physically tagged (in 
accordance with typical systems). In other embodiments, 
however, other indexing and tagging schemes could be uti 
lized. Indeed, the indexing and tagging scheme of the L1 
caches is unimportant for purposes of the Subject matter pre 
sented here, and the use of a virtually indexed and physically 
tagged L1 cache memory 308 is not intended to limit or 
otherwise restrict the application or scope of this disclosure. 
0036. The stack cache 318 represents one of the stack 
caches 108 shown in FIG. 1, and the stack TLB 320 represents 
one of the stack TLBs 112 shown in FIG. 1. As depicted in 
FIG. 3, the stack cache 318 may be arranged in parallel with 
the L1 cache memory 308 such that the processor system 300 
can access stack data (which may be located in the stack cache 
318) or non-stack data (which may be located in the L1 cache 
memory 308) in an efficient manner in response to a data 
access request. This example assumes that the Stack cache 
318 is virtually indexed and virtually tagged. Accordingly, 
stack data that is present in the stack cache 318 can be 
accessed without having to perform a virtual-to-physical 
address translation. The stack TLB 320 is utilized in a manner 
similar to that described above for the TLB 316. More spe 
cifically, the stack TLB 320 is only accessed and searched 
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when the requested Stack data cannot be found in the stack 
cache 318 (i.e., there is a miss in the corresponding stack 
cache 318). In such situations, the stack TLB 320 can be 
searched in an attempt to locate the virtual address of the 
requested Stack data and, if the virtual address is found, the 
corresponding physical address can be utilized to locate the 
requested stack data in the cache hierarchy. Thus, FIG. 3 
depicts the stack TLB 320 leading to the L2 cache memory 
310 (because it is assumed that the L2 cache memory 310 will 
be accessed if there is a hit in the stack TLB 320). 
0037. In certain embodiments, the stack caches 108, 318 
are virtually addressed (virtually indexed and virtually 
tagged), and they are normally private Such that each stack 
cache stores data for use by one and only one execution core 
102,306. That said, the stack caches 108,318 should be kept 
coherent with the cache architecture 104 such that the pro 
cessor system can handle situations where the “ownership' of 
stack data has migrated from one execution core to another. 
One way to achieve Such coherency is to Snoop the stack 
caches 108, 318. Snooping the stack caches 108, 318, how 
ever, would require reverse address translations (physical-to 
virtual), and would rarely result in coherence hits, where a 
“coherence hit’ occurs when data requested by a requesting 
execution core is actually found in a memory structure asso 
ciated with a different execution core. For example, assume 
that a thread running on a first core utilizes Stack data resident 
in the stack cache of the first core, but the thread migrates to 
a second core. When the second core requests the stack data 
for the migrated thread, there will be a miss in the stack cache 
of the second core because the stack data still resides in the 
stack cache of the first core. 

0038 Accordingly, the processor systems presented here 
utilize the stack cache manager 110 to keep track of all stack 
TLB entries, along with which execution core owns the stack 
page at any given moment. Thus, during a page walk opera 
tion, the stack cache manager 110 can be checked and, in the 
rare case when the page is owned by a different execution 
core, the Stack cache of the previous execution core can be 
flushed to maintain coherence without the overhead of coher 
ence traffic that would otherwise result from conventional 
cache coherence approaches. 
0039. As mentioned above, the stack caches 108,318 store 
the Stack data using a virtual addressing scheme. Accord 
ingly, address translation is not required when the stack 
caches 108, 318 are accessed (due to the use of virtual 
addressing by the load/store units of the execution cores 102, 
306). Rather, address translation is utilized on eviction or 
stack cache misses. Moreover, although stack data is usually 
private, there can be situations where stack data might be 
shared. Accordingly, the stack caches 108,318 should be kept 
coherent. Maintaining coherence by means of reverse address 
translations (physical to linear) and Snooping the stack caches 
108, 318 on every coherence request requires an undesirable 
amount of energy, and rarely results in a coherence request 
hit. The methodology presented here uses less energy and less 
coherence traffic. 

0040. In practice, the stack caches 108, 318 need not be 
very large. For example, a stack cache could be configured 
such that it can only hold a few or several cache lines. More 
over, a typical stack cache stores a small set of virtual 
addresses over a long period of time; the stack is used over 
and over again to Support a given process or thread. There 
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fore, there should be few invalidations due to coherence and, 
accordingly, stack cache flushing should be relatively infre 
quent. 

0041. Due to the virtual addressing scheme utilized with 
the stack caches 108,318, address translation for stack data is 
performed for at least the following conditions: (1) on a stack 
cache miss; and (2) on a writeback to the L2 cache memory. 
In response to a stack cache miss, the processor System per 
forms a lookup into the stack TLB. If the virtual-to-physical 
address translation exists (i.e., a TLB hit), then the system 
accesses the L2 cache memory or the lower-level cache hier 
archy to find the data. If the translation does not exist in the 
stack TLB (i.e., a TLB miss), then the stack cache manager 
110 is accessed. For a writeback to the L2 cache, the proces 
sor system would access the TLB entry. 
0042. The methodology described in more detail herein is 
intended to eliminate the need to perform a reverse address 
translation on each coherence request (which is by physical 
address). Rather than Snooping the stack cache on every 
coherence request, which requires a physical-to-virtual trans 
lation, the stack cache manager 110 is maintained and 
updated with the virtual addresses of Stack pages owned by 
the different execution cores in the system, along with which 
core is the "owner core for the stack data. The size of the 
stack cache manager 110 will depend upon the size of the 
stack TLBs 112,320 assigned to each of the execution cores 
102,306. In practice, the size of the stack cache manager 110 
may be bounded by the combined size of the stack TLBs 112, 
320 for all of the execution cores 102, 306. Use of the stack 
cache manager 110 in the manner described herein results in 
a reduction of coherence traffic. 

0043. In response to a TLB miss from a different core 
(whether to a stack page or a non-stack page), the page walker 
consults the stack cache manager 110 to ensure that an 
inserted virtual-to-physical address translation does not con 
flict with a current virtual address page maintained by the 
stack cache manager 110. If there is such a conflict, the stack 
cache manager 110 is updated, and a shoot-down is sent to the 
stack TLB for the owning execution core. This entry is invali 
dated and the stack cache (or at least all entries from that 
page) is flushed. Notably, a flushofanentire stack cache is not 
unreasonable or unrealistic because each stack cache is envi 
Sioned to be relatively small and often only containing lines 
from a single page. 
0044. In certain implementations, a TLB lookup is per 
formed when allocating a new cache entry in any of the caches 
(whether part of the traditional cache architecture 104 or the 
stack caches 108). If there is a TLB miss, then the stack cache 
manager 110 is checked. Note that the Stack cache manager 
110 may be checked whether or not the data is being allocated 
in a stack cache or a non-stack data cache. When the stack 
cache manager 110 includes the translation, a shoot-down is 
sent to the owning core. If, however, the new translation is 
intended for a stack cache, then the stack cache manager 110 
is updated to reflect the new owner of the cache line. If the 
stack cache manager 110 access is a miss, then the system 
assumes that the TLB entry is not in any of the stack caches. 
0045. Once the stack cache manager 110 assigns a virtual 
page to a stack cache, those cache blocks are brought into the 
stack cache using physical addresses and the standard coher 
ence protocol. Once a block is located in a stack cache, the 
processor System can guarantee that no accessible copies of 
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the block exist outside of the stack cache because no TLBs 
contain valid translations to the block outside of the stack 
cache. 

0046. In practice, it is possible for a workload to have 
many shared entries. Accordingly, the processor System could 
be provided with a mechanism to keep track of the number of 
shoot-downs. Thus, if an excessive number of shoot-downs is 
detected, the processor System can disable the stack caches 
for those execution cores that are experiencing a high rate of 
shoot-downs and flushes. In Such situations, the stack cache 
functionality can be temporarily disabled such that the pro 
cessor system can continue operating using the traditional 
cache architecture 104. 

0047. The processor system 100, 300 described herein 
may be suitably configured to perform a variety of functions, 
methods, and operations, many of which are conventional in 
nature. For example, the processor system 100, 300 can 
execute instructions stored in the system memory 304, the 
cache architecture 104, and/or the stack caches 108. In addi 
tion to supporting conventional processor-related operations, 
the processor system 100, 300 is configured to access, 
retrieve, evict, flush, and otherwise manage the processing of 
stack data. In this regard, FIG. 4 is a flow chart that illustrates 
an embodiment of a stack data management process 400 that 
may be performed by the processor system 100, 300, and FIG. 
5 is a flow chart that illustrates an embodiment of a stack data 
coherence process 500 that may be performed by the proces 
sor system 100, 300. The various tasks of a process described 
herein may be performed by software, hardware, firmware, or 
any combination thereof. For illustrative purposes, the fol 
lowing description of the processes 400, 500 may refer to 
elements mentioned above in connection with FIGS. 1-3. In 
practice, portions of a process presented here may be per 
formed by different elements of the described processor sys 
tem 100, 300, e.g., an execution core, the memory controller, 
a stack cache, a TLB, the stack cache manager, or the like. It 
should be appreciated that a process described herein may 
include any number of additional or alternative tasks, the 
tasks shown in the figures need not be performed in the 
illustrated order, and a described process may be incorporated 
into a more comprehensive procedure or process having addi 
tional functionality not described in detail herein. Moreover, 
one or more of the tasks shown in a figure could be omitted 
from an embodiment of the illustrated process as long as the 
intended overall functionality remains intact. 
0048 Referring now to FIG.4, the stack data management 
process 400 involves a stack cache manager of the type 
described above with reference to FIG. 1. Accordingly, the 
process 400 maintains and updates the Stack cache manager 
as needed (block 402). As mentioned previously, at least one 
stack cache manager is maintained for the plurality of execu 
tion cores in the processor System. For simplicity, this 
description refers to only one stack cache manager. The stack 
cache manager maintains status entries (e.g., TLB entries) for 
at least some of the stack data accessed by the execution 
cores. In this context, the stack cache manager maintains a list 
of the virtual pages that are owned by the Stack caches. 
0049. This example assumes that the process 400 receives 
and processes a data access request (block 404), where the 
data access request originates from one of the execution 
cores. The originating core is referred to herein as the 
“requesting execution core' to distinguish it from the other 
execution cores in the processor system. The process 400 may 
continue by determining whether the obtained data access 
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request represents a request for stack data (query block 406). 
If the data access request calls for non-stack data (the “No” 
branch of the query block 406), then the process 400 may exit 
orinitiate an appropriate procedure related to the retrieval and 
processing of non-stack data (process 408). In connection 
with the query block 406, the process 400 may determine that 
the data access request is for non-stack databased at least in 
part on the address provided with the request. Alternatively, 
the process 400 may leverage any appropriate decision logic 
or algorithm to carry out the determination made in connec 
tion with the query block 406. Retrieving and processing 
non-stack data may initially involve the TLB 316 and the L1 
cache memory 308 (see FIG. 3) and, if the requested data is 
not found in the L1 cache memory 308, the processor system 
can proceed in a conventional fashion to search for the 
requested data in other locations in the cache hierarchy, the 
system memory 304, etc. 
0050. The following description assumes that the data 
access request is for stack data (the “Yes” branch of the query 
block 406). In certain embodiments, stack data is virtually 
indexed and virtually tagged. Thus, the process 400 identifies 
and processes the virtual memory address for the requested 
stack data (block 410). The virtual memory address may be 
processed as described in more detail herein in an attempt to 
locate the requested stack data. The virtual address of the 
requested Stack data can be used "directly to access and 
search the stack cache of the requesting execution core (block 
412). In this regard, the stack cache associated with the 
requesting execution core is searched in an attempt to find the 
virtual address of the requested Stack data and, consequently, 
to find the requested Stack data itself. In a typical implemen 
tation, the Stack cache is relatively small (e.g., holding only a 
few cache lines) and the operation associated with block 412 
can be performed quickly and efficiently. If the requested 
virtual address is found in the stack cache (the “Yes” branch 
of the query block 414), then the process 400 can retrieve the 
requested Stack data from the stack cache in a conventional 
manner (block 416) and return the requested stack data to the 
requesting execution core. 
0051) If, however, the process 400 determines that the 
requested Stack data cannot be found in the Stack cache, i.e., 
there is a miss in the stack cache (the “No” branch of the query 
block 414), then the process 400 may access the stack TLB of 
the requesting execution core to search for an entry that 
includes the virtual address (or a portion thereof) of the 
requested stack data (block 418). Thus, the stack TLB 
assigned to the requesting execution core is accessed to 
search for the requested stack data when the virtual address of 
the stack data is not found in the associated Stack cache. As 
explained previously, the stack TLB is searched in an attempt 
to find an address translation (virtual-to-physical) for the 
requested Stack data. If the requested virtual address is found 
in the stack TLB (the “Yes” branch of the query block 420), 
then the process 400 obtains the corresponding physical 
address that is mapped to the found virtual address (block 
422) and retrieves the requested stack data at the obtained 
physical address (block 424). The physical address obtained 
at block 422 may represent a physical address in the cache 
memory hierarchy, e.g., an address pointing to the L2 cache 
memory, the L3 cache memory, or the like. Referring again to 
FIG. 3, the arrow leading from the stack TLB 320 to the L2 
cache memory 310 represents this scenario—a hit in the stack 
TLB 320 results inaccess to the L2 cache memory 310 via the 
obtained physical address. It should be appreciated that the 
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obtained physical address need not always point to an L2 
cache location. In certain situations a hit in a stack TLB could 
lead to a physical address location in the L3 cache, or the like. 
In response to the retrieval of the requested Stack data, the 
process 400 may also update the corresponding stack cache of 
the requesting execution core Such that the requested Stack 
data can be accessed with greater ease the next time. 
0052. This example assumes that the process 400 deter 
mines that the virtual address of the requested Stack data 
cannot be found in the stack TLB, i.e., there is a miss in the 
stack TLB (the “No” branch of the query block 420). In 
response to a stack TLB miss, the process 400 accesses the 
stack cache manager and searches for an entry that includes 
the virtual address (or a portion thereof) for the requested 
stack data (block 426). Thus, the Stack cache manager is 
consulted when the requested Stack data cannot be found in 
the stack cache of the requesting execution core, and when an 
address translation for the requested Stack data cannot be 
found in the stack TLB assigned to the requesting execution 
COC. 

0053. The status entries of the stack cache manager can be 
searched in an attempt to find a virtual page owned by other 
stack caches. In other words, the process 400 attempts to 
locate and identify a status entry (which is akinto a TLB entry 
maintained by the stack cache manager) corresponding to the 
requested Stack data. If the requested virtual address is not 
found in the stack cache manager (the “No” branch of the 
query block 428), then the process 400 may exit or initiate an 
appropriate page walk procedure and (process 430) in an 
attempt to find an address translation for the requested Stack 
data. It should be appreciated that the process 430 may lever 
age well known and conventional page walk techniques and 
methodologies that need not be described in detail here. Thus, 
if the page walk process 430 finds an address translation for 
the requested Stack data, the stack cache manager can be 
updated with the translation. In addition, the translation is 
inserted into the associated Stack TLB, and the requested data 
is fetched and placed into the stack cache. 
0054 The following description assumes that there is a hit 
in the stack cache manager (the “Yes” branch of the query 
block 428). In other words, the process 400 locates a status 
entry in the Stack cache manager that includes the virtual 
address of the requested Stack data. As mentioned above with 
reference to FIG. 2, the located status entry may include 
information that can be used to search for and retrieve the 
requested Stack data. This information may include, without 
limitation: the virtual pages owned by the stack caches; an 
execution core identifier that identifies the execution core of 
the processor system that is currently designated as the 
“owner core for the requested Stack data; and, if an execution 
core has more than one stack cache, a stack cache identifier. 
The process 400 uses the information in the located status 
entry to identify the owner execution core and a physical 
address of the requested stack data (block 432), wherein the 
obtained physical address is associated with the owner execu 
tion core. In this regard, the obtained physical address may be 
associated with a physical address corresponding to the cache 
hierarchy for the owner execution core, associated with a 
physical address corresponding to the stack cache of the 
owner execution core, or associated with a physical address of 
Some other memory structure that is assigned to the owner 
execution core. 
0055. The process 400 may continue by accessing and 
retrieving the requested Stack data at the obtained physical 
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address (block 434) that points to the cache memory hierar 
chy. Thus, the requested stack data can be retrieved from the 
cache memory hierarchy even though the processor System 
cannot locate the requested Stack data in the stack cache 
associated with the originating execution core, and cannot 
locate an entry for the requested stack data in the stack TLB 
associated with the originating execution core. Rather, the 
process 400 is able to locate and retrieve the requested stack 
data from a structure or element that is associated with 
another execution core (other than the originating execution 
core), in response to a hit in the stack cache manager. In 
certain scenarios, the requested Stack data is retrieved by 
accessing and searching the stack cache associated with the 
owner execution core. In practice, therefore, the requested 
stack data may be accessed and retrieved using some or all of 
the physical address obtained from the stack cache manager 
and/or using some or all of the virtual address identified in the 
data access request (see block 404). 
0056. Thereafter, the process 400 may update the various 
memory structures as needed (block 436). For example, a new 
status entry could be created in the stack cache manager to 
identify the current location and owner execution core of the 
requested Stack data. As another example, the appropriate 
stack TLB could be updated with an entry for the requested 
stack data. Moreover, before or during Such updating, the 
process 400 will flush the stack cache of the owner execution 
core and the associated stack TLB. 

0057 Referring now to FIG. 5, the stack data coherence 
process 500 may be performed by the processor system 100, 
300 to maintain coherence across the stack caches 108, 318 
for the stack data that is accessed by the execution cores. 
Although conflicts in the stack caches 108,318 should be rare 
(due to the private nature of the stack caches 108, 318), the 
process 500 contemplates conflicts for the sake of complete 
CSS. 

0058. For this particular example, the process 500 
assumes that the processor System has received and processed 
a request for non-stack data. The process 500 may be initiated 
by processing a TLB miss for the requested non-stack data 
(block 502). The TLB miss in this context may refer to a miss 
in the “main” TLB 316 (see FIG. 3). In response to a TLB 
miss, the processor System initiates a page walk and obtains a 
“new” virtual-to-physical address translation for the 
requested non-stack data (block 504). This new translation is 
inserted into the appropriate main TLB. In addition, the page 
walker accesses the stack cache manager to ensure that the 
inserted translation does not conflict with a current virtual 
address page maintained by the stack cache manager (block 
506). Thus, the process 500 searches the stack cache manager 
for a conflicting status entry that includes the virtual address 
of the inserted translation. 

0059. If no conflicting entry is discovered (the “No” 
branch of the query block 508), then the process 500 contin 
ues by retrieving the data for the translated physical address 
and inserting it into the L1 cache (block 510). In contrast, if a 
conflicting entry is found (the “Yes” branch of the query block 
508), then the process 500 continues by deleting the conflict 
ing entry from the stack cache manager (block.512). Thus, the 
stack cache manager is updated to remove the conflicting 
reference to the requested Stack data. Moreover, the process 
500 sends a shoot-down to the owner stack TLB that contains 
the conflicting entry, invalidates the conflicting entry, and 
flushes the appropriate stack cache (block 514). The invali 
dation and flushing operations are necessary to maintain 
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coherence for the Stack data. Upon completion of the process 
500, the newly created address translation governs, and it 
ensures that no other stack caches own the virtual page. 
0060 Thus, when allocating a new cache entry in any of 
the caches and when accessing the L1 cache for non-stack 
data (because the L1 cache is usually physically tagged), a 
TLB lookup is performed. If there is a TLB miss, the stack 
cache manager is checked (whether or not the new cache 
entry is being allocated in a stack cache or a non-stack cache). 
If the Stack cache manager already contains the new address 
translation, the system sends a shoot-down to the owner 
execution core. If the new translation is intended for a stack 
cache, the status entry in the stack cache manager is updated 
to indicate the new owner core of that cache line. If there is a 
miss in the stack cache manager, then the system knows that 
the particular TLB entry does not appear in any of the stack 
caches. 

0061 While at least one exemplary embodiment has been 
presented in the foregoing detailed description, it should be 
appreciated that a vast number of variations exist. It should 
also be appreciated that the exemplary embodiment or 
embodiments described herein are not intended to limit the 
Scope, applicability, or configuration of the claimed Subject 
matter in any way. Rather, the foregoing detailed description 
will provide those skilled in the art with a convenient road 
map for implementing the described embodiment or embodi 
ments. It should be understood that various changes can be 
made in the function and arrangement of elements without 
departing from the scope defined by the claims, which 
includes known equivalents and foreseeable equivalents at 
the time offiling this patent application. 
What is claimed is: 

1. A method of managing Stack data in a processor system 
having a plurality of execution cores and a plurality of stack 
caches, each of the stack caches associated with a different 
one of the execution cores, the method comprising: 

maintaining a stack cache manager for the plurality of 
execution cores, the stack cache manager comprising 
entries for stack data accessed by the plurality of execu 
tion cores; 

processing, for a requesting execution core of the plurality 
of execution cores, a virtual address for requested Stack 
data; 

accessing the stack cache manager to search for an entry of 
the stack cache manager that includes the virtual address 
for requested Stack data; and 

using information in the entry to retrieve the requested 
stack data. 

2. The method of claim 1, wherein prior to accessing the 
stack cache manager, the method further comprises: 

accessing a first stack cache of the plurality of stack caches 
to search for the virtual address, wherein accessing the 
stack cache manager is performed when the virtual 
address is not found in the first stack cache and when a 
corresponding virtual-to-physical address translation is 
not found in a stack translation lookaside buffer associ 
ated with the first stack cache. 

3. The method of claim 2, wherein: 
the processor System comprises a plurality of Stack trans 

lation lookaside buffers (TLBs), each of the stack TLBs 
associated with a different one of the execution cores; 
and 
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the method further comprises, responsive to the virtual 
address not being in the first stack cache, accessing a first 
stack TLB of the plurality of stack TLBs to search for the 
virtual address. 

4. The method of claim 3, wherein accessing the stack 
cache manager is performed when the virtual address is not 
found in the first stack TLB. 

5. The method of claim 1, wherein using information in the 
entry to retrieve the requested Stack data comprises: 

identifying, from the entry, an owner execution core of the 
plurality of execution cores; 

obtaining a physical address that is mapped to the virtual 
address, wherein the physical address is associated with 
the owner execution core; and 

retrieving the requested Stack data at the physical address. 
6. The method of claim 1, wherein maintaining the stack 

cache manager comprises: 
maintaining virtual-to-physical address translations for the 

stack data. 
7. A processor System comprising: 
a plurality of execution cores; 
a plurality of Stack caches configured to cache Stack data 

for the execution cores; 
a plurality of stack translation lookaside buffers (TLBs) for 

the execution cores, each of the execution cores having 
one of the stack caches associated therewith, and each of 
the plurality of Stack caches having one of the stack 
TLBs associated therewith: 

a cache memory architecture configured to cache data for 
the execution cores; and 

a stack cache manager operatively associated with the 
execution cores and operatively associated with the 
stack caches and the stack TLBS, wherein the stack 
cache manager maintains status entries for stack data 
accessed by the execution cores. 

8. The processor system of claim 7, further comprising a 
memory controller operatively associated with the cache 
memory architecture, wherein the memory controller is con 
figured to control data caching operations that involve the 
cache memory architecture. 

9. The processor system of claim 8, wherein the memory 
controller is further configured to control data caching opera 
tions that involve the stack caches. 

10. The processor system of claim 8, wherein the stack 
cache manager responds to an access request for requested 
stack data to: 

access a first stack cache of the plurality of stack caches to 
search for the requested stack data, wherein the first 
stack cache is associated with a requesting execution 
core that originated the access request; and 

when the requested Stack data is not found in the first stack 
cache, access a first stack TLB of the plurality of stack 
TLBs to search for an address translation for the 
requested Stack data, wherein the first stack TLB is asso 
ciated with the requesting execution core. 

11. The processor system of claim 10, wherein, when an 
address translation for the requested Stack data is not found in 
the first stack TLB, the stack cache manager responds to: 

search the status entries of the Stack cache manager for a 
status entry corresponding to the requested Stack data. 

12. The processor system of claim 7, wherein: 
each of the stack caches is virtually indexed and virtually 

tagged; and 
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the status entries maintained by the stack cache manager 
comprise stack TLB entries that indicate virtual-to 
physical address translations for virtual pages owned by 
the stack caches. 

13. The processor system of claim 7, wherein: 
each of the status entries maintained by the stack cache 

manager corresponds to designated Stack data that is 
currently owned by an owner execution core of the plu 
rality of execution cores; and 

each of the status entries maintained by the stack cache 
manager comprises an execution core identifier that 
indicates the owner execution core. 

14. The processor system of claim 7, wherein the stack 
cache manager maintains coherence, for the stack data 
accessed by the execution cores, across the stack caches and 
the cache memory architecture. 

15. A method of managing stack data in a processor system 
having a plurality of execution cores, a plurality of stack 
caches, a plurality of Stack translation lookaside buffers 
(TLBs), and a stack cache manager, each of the execution 
cores having one of the stack caches associated therewith, and 
each of the stack caches having one of the stack TLBS asso 
ciated therewith, and each of the Stack caches associated with 
a different one of the execution cores, the method comprising: 

maintaining, with the stack cache manager, status entries 
for stack data accessed by the execution cores; 

obtaining an access request for requested Stack data, the 
access request originating from a first execution core of 
the plurality of execution cores, and the access request 
identifying a virtual memory address for the requested 
stack data, wherein the first execution core is associated 
with a first stack cache of the plurality of stack caches 
and is associated with a first stack TLB of the plurality of 
stack TLBs: 

determining that the requested Stack data cannot be found 
in the first stack cache, and that an address translation for 
the virtual memory address cannot be found in the first 
stack TLB; and 

in response to the determining, searching the stack cache 
manager to locate a status entry for the requested Stack 
data; and 

retrieving the requested Stack data in response to locating 
the status entry for the requested Stack data. 

16. The method of claim 15, wherein: 
the located status entry includes an execution core identi 

fier that identifies a second execution core of the plural 
ity of execution cores, wherein the second execution 
core is associated with a second stack cache of the plu 
rality of Stack caches; and 

retrieving the requested Stack data comprises accessing the 
second stack cache to search for the requested Stack data. 

17. The method of claim 15, wherein: 
the located status entry includes an execution core identi 

fier that identifies a second execution core of the plural 
ity of execution cores, wherein the second execution 
core is associated with a second stack TLB of the plu 
rality of stack TLBs; and 

retrieving the requested Stack data comprises accessing the 
second stack TLB to search for an address translation for 
the virtual memory address. 

18. The method of claim 17, further comprising: 
obtaining a physical address that is mapped to the virtual 
memory address, wherein the requested Stack data is 
retrieved from the obtained physical address. 
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19. The method of claim 17, wherein: 
each of the stack caches is virtually indexed and virtually 

tagged; and 
the status entries maintained with the stack cache manager 

comprise stack TLB entries that indicate virtual-to 
physical address translations for virtual pages owned by 
the stack caches. 

20. The method of claim 17, further comprising: 
maintaining coherence, for the stack data accessed by the 

execution cores, across the stack caches. 
21. The method of claim 20, wherein maintaining coher 

ence comprises: 
finding that another stack cache other than the first stack 

cache owns a requested virtual page; and 
in response to the finding, flushing the first stack TLB and 

the first stack cache, and updating the stack cache man 
ager. 

22. The method of claim 20, wherein maintaining coher 
ence comprises: 

obtaining a non-stack access request for non-stack data; 
detecting a miss for the non-stack access request in a main 
TLB of the processor system; 

obtaining a new virtual-to-physical address translation in 
response to detecting the miss for the non-stack access 
request; and 

searching the stack cache manager for a conflicting entry 
corresponding to the new virtual-to-physical address 
translation. 
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