
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0143497 A1

Olson et al.

US 2014.0143497A1

(43) Pub. Date: May 22, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(60)

STACK CACHE MANAGEMENT AND
COHERENCE TECHNIQUES

Applicant: ADVANCED MICRO DEVICES,
INC., Sunnyvale, CA (US)

Inventors: Lena E. Olson, Madison, WI (US);
Yasuko Eckert, Kirkland, WA (US);
Bradford M. Beckmann, Redmond, WA
(US)

Assignee: ADVANCED MICRO DEVICES,
INC., Sunnyvale, CA (US)

Appl. No.: 13/887,196

Filed: May 3, 2013

Related U.S. Application Data
Provisional application No. 61/728.843, filed on Nov.
21, 2012.

O

102
Execution
Cores

Memory
Controiler

Stack Cache
Manager

Publication Classification

(51) Int. Cl.
G06F 2/08 (2006.01)

(52) U.S. Cl.
CPC G06F 12/0875 (2013.01)
USPC .. 711/132

(57) ABSTRACT
A processor System presented here has a plurality of execu
tion cores and a plurality of stack caches, wherein each of the
stack caches is associated with a different one of the execution
cores. A method of managing stack data for the processor
system is presented here. The method maintains a stack cache
manager for the plurality of execution cores. The stack cache
manager includes entries for stack data accessed by the plu
rality of execution cores. The method processes, for a request
ing execution core of the plurality of execution cores, a virtual
address for requested Stack data. The method continues by
accessing the Stack cache manager to search for an entry of
the stack cache manager that includes the virtual address for
requested Stack data, and using information in the entry to
retrieve the requested Stack data.

Cache
Architecture

Patent Application Publication May 22, 2014 Sheet 1 of 5 US 2014/O143497 A1

Stack Cache
Manager

F.

US 2014/O143497 A1

~90%

May 22, 2014 Sheet 2 of 5 Patent Application Publication

Patent Application Publication May 22, 2014 Sheet 3 of 5 US 2014/O143497 A1

400
f Stack data
V management /

402
Maintain and update the stack
cache manager as needed

404
Receive and process a data access

request for a requesting execution core

46

-Stack dataNNo ?Non-stack data retrievay
N reqyes / V and processing /

40- Yes
identify and process the virtual

address for the requested stack data
42n

Access the stack cache of the
requesting execution Core and search

48 No
Access the stack TLB of the

requesting execution core and search for
an entry that includes the virtual address

46.

Retrieve the requested stack

Patent Application Publication May 22, 2014 Sheet 4 of 5 US 2014/O143497 A1

422

Obtain the physical address
that is mapped to the virtual

address
426 creerA.Y.-

Access the stack cache manager and Retrieve the requested Stack
search for an entry that includes the data at the physical address

/Page walk and related Y
processes

432 Yes
se information in the entry to

identify the owner execution core and
the physical address of the requested

stack data

434
Retrieve the requested stack
data at the physical address

FG,
Continued)

Patent Application Publication May 22, 2014 Sheet 5 of 5 US 2014/O143497 A1

500
Stack data
coherence)

52
Processa LB miss for

non-stack data

54 -
Obtain a new virtual-to-physical address
translation in response to the TB miss

58
Access the stack cache manager and

search for a conficting entry that
includes the new virtual address

58 5

52- Yes

stack cache manager
54 -

send a shoot-down to the TLB with the
conflicting entry, invalidate the s
conflicting entry, and flush the
corresponding stack cache

US 2014/O 143497 A1

STACK CACHE MANAGEMENT AND
COHERENCE TECHNIQUES

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application claims the benefit of U.S. provi
sional patent application No. 61/728,843, filed Nov. 21, 2012
(the entire content of this provisional application is incorpo
rated by reference herein).

TECHNICAL FIELD

0002 Embodiments of the subject matter described herein
relate generally to memory caches of the type found in pro
cessor Systems. More particularly, embodiments of the Sub
ject matter relate to the management of stack caches that are
utilized for stack data in a processor System.

BACKGROUND

0003. A central processing unit (CPU) may include or
cooperate with one or more cache memories to facilitate
quick access to data (rather than having to access data from
the primary system memory). Memory latency, relative to
CPU performance, is ever increasing. Caches can alleviate
the average latency of a load operation by storing frequently
accessed data in structures that have significantly shorter
latencies associated therewith. Moreover, memory Subsystem
performance can be increased by storing the most commonly
used data in smaller but faster cache memories. For example,
'stack data” (i.e., frequently used and/or recently accessed
data) may be cached in Small stack caches that are distinct
from the traditional and typical cache memory hierarchy of a
processor system.
0004. In a typical multicore processor system, stack data is
“owned' or accessed by only one execution core at a time. In
other words, stack data is usually private in nature. That said,
there are certain situations where stack data is shared between
different execution cores. Consequently, stack caches in a
multicore processor system should be kept coherent and
should be managed in an efficient and effective manner.

BRIEF SUMMARY OF EMBODIMENTS

0005. A method of managing stack data in a processor
system having a plurality of execution cores and a plurality of
stack caches is provided here. Each of the Stack caches is
associated with a different one of the execution cores. The
method maintains a stack cache manager for the plurality of
execution cores, wherein the stack cache manager includes
entries for stack data accessed by the plurality of execution
cores. The method continues by processing, for a requesting
execution core of the plurality of execution cores, a virtual
address for requested Stack data. The method continues by
accessing the Stack cache manager to search for an entry of
the stack cache manager that includes the virtual address for
requested Stack data, and using information in the entry to
retrieve the requested Stack data.
0006. Also provided is a processor system having a plu

rality of execution cores, a plurality of stack caches config
ured to cache Stack data for the execution cores, a plurality of
stack translation lookaside buffers (TLBs) for the execution
cores, a cache memory architecture, and a stack cache man
ager. Each of the execution cores has one of the stack caches
associated therewith, and each of the plurality of stack caches
has one of the stack TLBs associated therewith. The cache

May 22, 2014

memory architecture is configured to cache data for the
execution cores. The stack cache manager is operatively asso
ciated with the execution cores and is operatively associated
with the stack caches and the stack TLBs, wherein the stack
cache manager maintains status entries for stack data
accessed by the execution cores.
0007 Also provided is a method of managing stack data in
a processor System having a plurality of execution cores, a
plurality of stack caches, a plurality of Stack TLBS, and a
stack cache manager. Each of the execution cores has one of
the stack caches associated therewith, each of the stack
caches has one of the stack TLBs associated therewith, and
each of the stack caches is associated with a different one of
the execution cores. The method maintains, with the stack
cache manager, status entries for stack data accessed by the
execution cores. The method continues by obtaining an
access request for requested Stack data, the access request
originating from a first execution core of the plurality of
execution cores, and the access request identifying a virtual
memory address for the requested Stack data. The first execu
tion core is associated with a first stack cache of the plurality
of stack caches and is associated with a first stack TLB of the
plurality of stack TLBs. The method continues by determin
ing that the requested Stack data cannot be found in the first
stack cache, and that an address translation for the virtual
memory address cannot be found in the first stack TLB. In
response to the determining, the method searches the stack
cache manager to locate a status entry for the requested Stack
data, and retrieves the requested Stack data in response to
locating the status entry for the requested Stack data.
0008. This summary is provided to introduce a selection of
concepts in a simplified form that are further described below
in the detailed description. This summary is not intended to
identify key features or essential features of the claimed sub
ject matter, nor is it intended to be used as an aid in determin
ing the scope of the claimed Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. A more complete understanding of the subject mat
ter may be derived by referring to the detailed description and
claims when considered in conjunction with the following
figures, wherein like reference numbers refer to similar ele
ments throughout the figures.
0010 FIG. 1 is a simplified block diagram of an embodi
ment of a processor System;
0011 FIG. 2 is a table that includes status entries for a
Stack cache manager;
0012 FIG. 3 is a schematic block diagram representation
that depicts an embodiment of a processor System;
0013 FIG. 4 is a flow chart that illustrates an embodiment
of a stack data management process; and
0014 FIG. 5 is a flow chart that illustrates an embodiment
of a stack data coherence process.

DETAILED DESCRIPTION

0015 The following detailed description is merely illus
trative in nature and is not intended to limit the embodiments
of the Subject matter or the application and uses of Such
embodiments. As used herein, the word “exemplary' means
'serving as an example, instance, or illustration.” Any imple
mentation described hereinas exemplary is not necessarily to
be construed as preferred or advantageous over other imple
mentations. Furthermore, there is no intention to be bound by

US 2014/O 143497 A1

any expressed or implied theory presented in the preceding
technical field, background, brief Summary or the following
detailed description.
0016 Techniques and technologies may be described
herein in terms of functional and/or logical block compo
nents, and with reference to symbolic representations of
operations, processing tasks, and functions that may be per
formed by various computing components or devices. Such
operations, tasks, and functions are sometimes referred to as
being computer-executed, computerized, Software-imple
mented, or computer-implemented. It should be appreciated
that the various block components shown in the figures may
be realized by any number of hardware, software, and/or
firmware components configured to perform the specified
functions. For example, an embodiment of a system or a
component may employ various integrated circuit compo
nents, e.g., memory elements, logic elements, look-up tables,
or the like, which may carry out a variety of functions under
the control of one or more microprocessors or other control
devices.

0017 Moreover, when implemented in software or firm
ware, the methods, processes, and/or tasks described herein
may be associated with code segments or instructions that
perform the various tasks. The program or code segments can
be stored in a tangible processor-readable medium (e.g., a
non-transitory medium). The “processor-readable medium’
or “machine-readable medium' may include any medium
that can store or transfer information. Examples of the pro
cessor-readable medium include an electronic circuit, a semi
conductor memory device, a ROM, a flash memory, an eras
able ROM (EROM), a floppy diskette, a CD-ROM, an optical
disk, a hard disk, or the like.
0018. The subject matter presented here relates to a pro
cessor system and associated cache memory architectures,
cache management techniques, and cache coherency tech
niques. The processor system can be realized as a semicon
ductor chip, product, or package. Such processor Systems are
widespread and commonly used in many computer systems
and electronic applications. Accordingly, for the sake of brev
ity, conventional techniques, aspects, and features of com
puter systems, processor Systems, and cache memory systems
will not be described in detail herein.

0019 Referring now to the drawings, FIG. 1 is a simplified
block diagram of a processor system 100. In accordance with
Some embodiments, the processor System 100 may include,
without limitation: a plurality of execution cores 102; a cache
architecture 104; at least one memory controller 106; a plu
rality of stack caches 108; at least one stack cache manager
110; and a plurality of stack translation lookaside buffers 112.
These elements and features of the processor system 100 may
be operatively associated with one another, coupled to one
another, or otherwise configured to cooperate with one
another as needed to support the desired functionality—in
particular, the stack cache management functionality
described herein. For ease of illustration and clarity, the vari
ous physical, electrical, and logical couplings and intercon
nections for these elements and features are not depicted in
FIG.1. Moreover, it should be appreciated that embodiments
of the processor system 100 will include other elements,
modules, and features that cooperate to Support the desired
functionality. For simplicity, FIG. 1 only depicts certain ele
ments that relate to the stack cache management techniques
described in more detail below.

May 22, 2014

0020 Each of the execution cores 102 represents a pro
cessing unit that is designed and configured to execute com
puter-readable instructions, which are stored in Some type of
accessible memory. In accordance with conventional multi
core technology, each of the execution cores 102 is capable of
executing process threads in an independent manner. The
cache architecture 104 is coupled to the execution cores 102,
and provides a cache memory hierarchy for the execution
cores 102. Accordingly, the cache architecture 104 is suitably
configured to cache data for the execution cores as needed,
and in accordance with any number of conventional caching
methodologies. In operation, the execution cores 102 issue
demand requests for data, and the cache architecture 104 may
be searched in response to demand requests to determine if
the requested data is cached.
0021. The memory controller 106 may function as an
interface between the processor system 100 and the system
memory or main memory (not shown in FIG. 1) of the host
computer system. The memory controller 106 is operatively
associated with the cache architecture 104 Such that the
memory controller 106 can control data caching operations
that involve the cache architecture 104. In this regard, the
memory controller 106 may be responsible for loading cache
lines into the cache architecture 104 as needed. The memory
controller 106 may also be involved when cached data is
evicted from the cache architecture 104 to the system
memory, as is well understood. Moreover, the memory con
troller 106 may be further configured to control data caching
operations that involve the stack caches 108.
0022. In some embodiments, multiple stack caches 108
are utilized to support the plurality of execution cores 102.
For example, the stack caches 108 may be assigned to or
designated for the execution cores 102 such that each execu
tion core 102 is associated with one and only one stack cache
108. In other embodiments, however, more than one stack
cache 108 could be associated with a single execution core
102. In yet other embodiments, a single stack cache 108 could
be associated with two different execution cores 102. It
should be appreciated that the stack caches 108 could be
implemented as part of the cache architecture 104. FIG. 1
depicts the stack caches 108 and the cache architecture 104 as
distinct modules for ease of description and clarity.
0023 The stack caches 108 are suitably configured to
store/cache frequently-used Stack data for the execution cores
102 (ideally, the stack caches 108 will not be used for non
stack data). In certain embodiments, each stack cache 108 is
virtually indexed and virtually tagged. Thus, stack data con
tained in the stack caches 108 can be located and retrieved
using a suitable virtual addressing scheme.
0024. In some embodiments, multiple stack TLBs 112 are
utilized to support the plurality of execution cores 102. For
example, the stack TLBS 112 may be assigned to or desig
nated for the execution cores 102 such that each execution
core 102 is associated with one and only one stack TLB 112.
In other embodiments, however, more than one stack TLB
112 could be associated with a single execution core 102. In
yet other embodiments, a single stack TLB 112 could be
associated with two different execution cores 102. The stack
TLBs 112 are utilized to store virtual-to-physical address
translations for stack data, which may be virtually indexed
and virtually tagged in certain implementations. If an access
request for designated Stack data cannot be found in the
identified stack cache 108, then the corresponding stack TLB
112 will be searched in an attempt to locate the virtual address

US 2014/O 143497 A1

of the designated Stack data. In this regard, the stack TLBS
112 function in a manner that is similar to traditional TLBs
that Support non-stack data. It should be appreciated that the
stack TLBs 112 could be implemented as part of the cache
architecture 104. FIG. 1 depicts the stack TLBs 112 and the
cache architecture 104 as distinct modules for ease of descrip
tion and clarity.
0025. The stack cache manager 110 is maintained and
updated for the execution cores 102. In accordance with some
embodiments, only one stack cache manager 110 is utilized to
support the multiple execution cores 102. In other embodi
ments, however, more than one stack cache manager 110
could be deployed. As described in more detail below, the
stack cache manager 110 represents a centralized page or
table that keeps track of the stack data handled by the proces
sor system 100, regardless of which execution core 102 owns
the stack data. In this regard, the stack cache manager 110
may include or maintain status entries for the stack data
accessed by the execution cores 102, where each entry is
associated with or otherwise indicates a memory location for
stack data. At least some of the entries in the stack cache
manager 110 correspond to entries found in the stack TLBs
112. Accordingly, the stack cache manager 110 may be opera
tively associated with the execution cores 102, the stack
caches 108, and the stack TLBs 112 as needed to support the
techniques and methodologies described herein. As
explained in more detail below, the status entries in the stack
cache manager 110 can be used to maintain coherence for the
stack data across the stack caches 108 and across the cache
architecture 104.

0026 FIG. 2 is a table 200 that includes several status
entries for the stack cache manager 110. The table 200 may
include any number of status entries for any number of the
execution cores 102, and the illustrated table 200 is merely
one possible example. As shown in FIG. 2, each entry in the
table 200 includes, without limitation: a virtual page field
202; a physical address field 204 (which is an optional field);
and an execution core (or stack) identifier field 206. The
virtual page field 202 indicates the virtual memory page for
the stack data corresponding to the particular entry. The
physical address field 204 indicates the physical memory
address for the stack data corresponding to the particular
entry. Note that the physical address field 204 is optional
because if there is a match in the virtual page field 202, the
physical address can be obtained by accessing the TLB of the
owner stack. Thus, each entry in the table 200 includes a
virtual-to-physical address translation or mapping for stack
data. In this regard, each entry in the table 200 is similar to a
corresponding entry in one of the stack TLBs 112. Indeed, the
table 200 may include copies of the stack TLB entries that
indicate the virtual pages for the stack data accessed by the
execution cores 102.

0027. Each of the status entries in the table 200 corre
sponds to designated Stack data that is currently owned by one
of the plurality of execution cores 102 (i.e., an owner execu
tion core). The execution core identifier field 206 indicates the
owner execution core for the designated Stack data corre
sponding to the given entry. For example, Entry 0 in the table
200 is for stack data currently owned by Core 1, Entry 1 is
for stack data currently owned by Core 3, and so on. For an
embodiment with multiple stack caches per execution core,
the field 206 may specify which stack cache owns the virtual
page. Notably, the table 200 may include any number (includ
ing Zero) of status entries for each of the multiple execution

May 22, 2014

cores 102. Thus, the table 200 may be considered to be a
“master TLB for the processor system 100. The status entries
in the table 200 may be updated in an ongoing manner to
reflect the current memory locations and ownership of the
stack data and to maintain Stack data coherence.
0028 FIG. 3 is a schematic block diagram representation
that depicts an embodiment of a processor system 300. The
processor system 300 shown in FIG.3 may be consistent with
the arrangement of the processor system 100 shown in FIG.1.
In other words, the processor system 300 may represent an
alternative depiction and arrangement of the elements and
features described above for the processor system 100. In this
regard, certain features, elements, and functionality of the
processor system 100 will not be redundantly described again
in the context of the processor system 300.
0029 FIG.3 depicts a simplified rendition of the processor
system 300, which may include a processor device 302 and
system memory 304 coupled to the processor device 302. The
dashed vertical line in FIG. 3 is intended to represent the
typical physical demarcation between the processor device
302 and the system memory 304. In accordance with certain
embodiments, the processor device 302 includes, without
limitation: an execution core 306; a level one (L1) cache
memory 308; a level two (L2) cache memory 310: a level
three (L3) cache memory 312; a memory controller 314; a
translation lookaside buffer (TLB) 316; a stack cache 318;
and a stack TLB 320.

0030. The cache memories 308,310,312 may form part of
the cache architecture 104 shown in FIG.1. The cache memo
ries 308,310,312 are coupled to the execution core 306, and
are coupled together to form a cache hierarchy, with the L1
cache memory 308 being at the top of the hierarchy and the L3
cache memory 312 being at the bottom. The execution core
306 may represent an execution core or unit that issues
demand requests for data. Responsive to demand requests
issued by the execution core 306, one or more of the cache
memories 308, 310, 312, the TLB 316, the stack cache 318,
and/or the stack TLB 320 may be searched to locate the
requested data. If the data is found, then the requested data
can be provided to the execution core 306.
0031. As explained above in the context of FIG. 1, the
processor system 300 may include a plurality of different
execution cores 306. FIG.3 depicts only one execution core
306 for clarity and ease of description. In practice, therefore,
one or more of the cache memories 308, 310, 312 may be
shared between two or more execution cores 306. For
example, in some embodiments, two execution cores 306
may share the L3 cache memory 312, while each individual
execution core 306 may have separate, dedicated instances of
the L1 cache memory 308 and the L2 cache memory 310.
Other arrangements are also possible and contemplated.
0032. The example presented hereassumes that the execu
tion core 306 is associated with a respective stack cache 318
and a respective stack TLB 320. In certain implementations,
the stack TLB 320 may be realized as part of the “main” TLB
316 for the particular execution core 306. Moreover, the TLB
316 could be individually associated with the execution core
306, or it could be shared by a plurality of different execution
cores 306 as appropriate to the particular embodiment. This
description refers to a simple and straightforward implemen
tation where each individual execution core 306 includes its
own corresponding stack cache 318 and its own correspond
ing stack TLB 320. Accordingly, the processor system 300
may actually have multiple instantiations of Some of the

US 2014/O 143497 A1

elements depicted in FIG. 3, such that multiple execution
cores 306 can be supported in the desired manner.
0033. The processor device 302 also includes the memory
controller 314, which provides an interface between the pro
cessor device 302 and the system memory 304. The memory
controller 314 may also be coupled to each of the cache
memories 308,310,312. During operation, the memory con
troller 314 may load cachelines (i.e., blocks of data stored in
a cache memory) directly into any one or all of the cache
memories 308,310,312. In some embodiments, the memory
controller 314 may load a cache line into one or more of the
cache memories 308, 310, 312 responsive to a demand
request by the execution core 306 and resulting cache misses
in each of the cache memories 308, 310,312. Similarly, the
memory controller 314 may influence the operation of the
stack cache 318 as needed.

0034. The TLB 316 functions in accordance with conven
tional methodologies to handle virtual memory addresses. In
this regard, the TLB 316 represents a memory structure that
stores virtual-to-physical address translations for the proces
sor system 300. The TLB 316 is utilized in certain embodi
ments that process virtual addresses from a load/store unit
(not shown in FIG. 3). The TLB 316 can be used to obtain
physical addresses as needed to locate requested data that
resides in the L1 cache memory 308. For example, assume
that the L1 cache memory 308 is virtually indexed and physi
cally tagged. In accordance with Such an addressing scheme,
data located in the L1 cache memory 308 can be obtained with
a virtual address component (for the virtual index) and a
physical address component (for the physical tag). The TLB
316 is suitably configured to provide the virtual-to-physical
translation required to obtain the physical address compo
nent. For this reason, FIG.3 depicts the TLB 316 in parallel
with the L1 cache memory 308; these two memory structures
may be accessed concurrently because the virtual address
component from the execution core 306 need not be trans
lated. In alternative implementations, the TLB 316 could be
accessed before accessing the L1 cache memory 308, how
ever, performance is improved using the parallel arrangement
depicted in FIG. 3.
0035. For purposes of this description, it is assumed that
L1 caches are virtually indexed and physically tagged (in
accordance with typical systems). In other embodiments,
however, other indexing and tagging schemes could be uti
lized. Indeed, the indexing and tagging scheme of the L1
caches is unimportant for purposes of the Subject matter pre
sented here, and the use of a virtually indexed and physically
tagged L1 cache memory 308 is not intended to limit or
otherwise restrict the application or scope of this disclosure.
0036. The stack cache 318 represents one of the stack
caches 108 shown in FIG. 1, and the stack TLB 320 represents
one of the stack TLBs 112 shown in FIG. 1. As depicted in
FIG. 3, the stack cache 318 may be arranged in parallel with
the L1 cache memory 308 such that the processor system 300
can access stack data (which may be located in the stack cache
318) or non-stack data (which may be located in the L1 cache
memory 308) in an efficient manner in response to a data
access request. This example assumes that the Stack cache
318 is virtually indexed and virtually tagged. Accordingly,
stack data that is present in the stack cache 318 can be
accessed without having to perform a virtual-to-physical
address translation. The stack TLB 320 is utilized in a manner
similar to that described above for the TLB 316. More spe
cifically, the stack TLB 320 is only accessed and searched

May 22, 2014

when the requested Stack data cannot be found in the stack
cache 318 (i.e., there is a miss in the corresponding stack
cache 318). In such situations, the stack TLB 320 can be
searched in an attempt to locate the virtual address of the
requested Stack data and, if the virtual address is found, the
corresponding physical address can be utilized to locate the
requested stack data in the cache hierarchy. Thus, FIG. 3
depicts the stack TLB 320 leading to the L2 cache memory
310 (because it is assumed that the L2 cache memory 310 will
be accessed if there is a hit in the stack TLB 320).
0037. In certain embodiments, the stack caches 108, 318
are virtually addressed (virtually indexed and virtually
tagged), and they are normally private Such that each stack
cache stores data for use by one and only one execution core
102,306. That said, the stack caches 108,318 should be kept
coherent with the cache architecture 104 such that the pro
cessor system can handle situations where the “ownership' of
stack data has migrated from one execution core to another.
One way to achieve Such coherency is to Snoop the stack
caches 108, 318. Snooping the stack caches 108, 318, how
ever, would require reverse address translations (physical-to
virtual), and would rarely result in coherence hits, where a
“coherence hit’ occurs when data requested by a requesting
execution core is actually found in a memory structure asso
ciated with a different execution core. For example, assume
that a thread running on a first core utilizes Stack data resident
in the stack cache of the first core, but the thread migrates to
a second core. When the second core requests the stack data
for the migrated thread, there will be a miss in the stack cache
of the second core because the stack data still resides in the
stack cache of the first core.

0038 Accordingly, the processor systems presented here
utilize the stack cache manager 110 to keep track of all stack
TLB entries, along with which execution core owns the stack
page at any given moment. Thus, during a page walk opera
tion, the stack cache manager 110 can be checked and, in the
rare case when the page is owned by a different execution
core, the Stack cache of the previous execution core can be
flushed to maintain coherence without the overhead of coher
ence traffic that would otherwise result from conventional
cache coherence approaches.
0039. As mentioned above, the stack caches 108,318 store
the Stack data using a virtual addressing scheme. Accord
ingly, address translation is not required when the stack
caches 108, 318 are accessed (due to the use of virtual
addressing by the load/store units of the execution cores 102,
306). Rather, address translation is utilized on eviction or
stack cache misses. Moreover, although stack data is usually
private, there can be situations where stack data might be
shared. Accordingly, the stack caches 108,318 should be kept
coherent. Maintaining coherence by means of reverse address
translations (physical to linear) and Snooping the stack caches
108, 318 on every coherence request requires an undesirable
amount of energy, and rarely results in a coherence request
hit. The methodology presented here uses less energy and less
coherence traffic.

0040. In practice, the stack caches 108, 318 need not be
very large. For example, a stack cache could be configured
such that it can only hold a few or several cache lines. More
over, a typical stack cache stores a small set of virtual
addresses over a long period of time; the stack is used over
and over again to Support a given process or thread. There

US 2014/O 143497 A1

fore, there should be few invalidations due to coherence and,
accordingly, stack cache flushing should be relatively infre
quent.

0041. Due to the virtual addressing scheme utilized with
the stack caches 108,318, address translation for stack data is
performed for at least the following conditions: (1) on a stack
cache miss; and (2) on a writeback to the L2 cache memory.
In response to a stack cache miss, the processor System per
forms a lookup into the stack TLB. If the virtual-to-physical
address translation exists (i.e., a TLB hit), then the system
accesses the L2 cache memory or the lower-level cache hier
archy to find the data. If the translation does not exist in the
stack TLB (i.e., a TLB miss), then the stack cache manager
110 is accessed. For a writeback to the L2 cache, the proces
sor system would access the TLB entry.
0042. The methodology described in more detail herein is
intended to eliminate the need to perform a reverse address
translation on each coherence request (which is by physical
address). Rather than Snooping the stack cache on every
coherence request, which requires a physical-to-virtual trans
lation, the stack cache manager 110 is maintained and
updated with the virtual addresses of Stack pages owned by
the different execution cores in the system, along with which
core is the "owner core for the stack data. The size of the
stack cache manager 110 will depend upon the size of the
stack TLBs 112,320 assigned to each of the execution cores
102,306. In practice, the size of the stack cache manager 110
may be bounded by the combined size of the stack TLBs 112,
320 for all of the execution cores 102, 306. Use of the stack
cache manager 110 in the manner described herein results in
a reduction of coherence traffic.

0043. In response to a TLB miss from a different core
(whether to a stack page or a non-stack page), the page walker
consults the stack cache manager 110 to ensure that an
inserted virtual-to-physical address translation does not con
flict with a current virtual address page maintained by the
stack cache manager 110. If there is such a conflict, the stack
cache manager 110 is updated, and a shoot-down is sent to the
stack TLB for the owning execution core. This entry is invali
dated and the stack cache (or at least all entries from that
page) is flushed. Notably, a flushofanentire stack cache is not
unreasonable or unrealistic because each stack cache is envi
Sioned to be relatively small and often only containing lines
from a single page.
0044. In certain implementations, a TLB lookup is per
formed when allocating a new cache entry in any of the caches
(whether part of the traditional cache architecture 104 or the
stack caches 108). If there is a TLB miss, then the stack cache
manager 110 is checked. Note that the Stack cache manager
110 may be checked whether or not the data is being allocated
in a stack cache or a non-stack data cache. When the stack
cache manager 110 includes the translation, a shoot-down is
sent to the owning core. If, however, the new translation is
intended for a stack cache, then the stack cache manager 110
is updated to reflect the new owner of the cache line. If the
stack cache manager 110 access is a miss, then the system
assumes that the TLB entry is not in any of the stack caches.
0045. Once the stack cache manager 110 assigns a virtual
page to a stack cache, those cache blocks are brought into the
stack cache using physical addresses and the standard coher
ence protocol. Once a block is located in a stack cache, the
processor System can guarantee that no accessible copies of

May 22, 2014

the block exist outside of the stack cache because no TLBs
contain valid translations to the block outside of the stack
cache.

0046. In practice, it is possible for a workload to have
many shared entries. Accordingly, the processor System could
be provided with a mechanism to keep track of the number of
shoot-downs. Thus, if an excessive number of shoot-downs is
detected, the processor System can disable the stack caches
for those execution cores that are experiencing a high rate of
shoot-downs and flushes. In Such situations, the stack cache
functionality can be temporarily disabled such that the pro
cessor system can continue operating using the traditional
cache architecture 104.

0047. The processor system 100, 300 described herein
may be suitably configured to perform a variety of functions,
methods, and operations, many of which are conventional in
nature. For example, the processor system 100, 300 can
execute instructions stored in the system memory 304, the
cache architecture 104, and/or the stack caches 108. In addi
tion to supporting conventional processor-related operations,
the processor system 100, 300 is configured to access,
retrieve, evict, flush, and otherwise manage the processing of
stack data. In this regard, FIG. 4 is a flow chart that illustrates
an embodiment of a stack data management process 400 that
may be performed by the processor system 100, 300, and FIG.
5 is a flow chart that illustrates an embodiment of a stack data
coherence process 500 that may be performed by the proces
sor system 100, 300. The various tasks of a process described
herein may be performed by software, hardware, firmware, or
any combination thereof. For illustrative purposes, the fol
lowing description of the processes 400, 500 may refer to
elements mentioned above in connection with FIGS. 1-3. In
practice, portions of a process presented here may be per
formed by different elements of the described processor sys
tem 100, 300, e.g., an execution core, the memory controller,
a stack cache, a TLB, the stack cache manager, or the like. It
should be appreciated that a process described herein may
include any number of additional or alternative tasks, the
tasks shown in the figures need not be performed in the
illustrated order, and a described process may be incorporated
into a more comprehensive procedure or process having addi
tional functionality not described in detail herein. Moreover,
one or more of the tasks shown in a figure could be omitted
from an embodiment of the illustrated process as long as the
intended overall functionality remains intact.
0048 Referring now to FIG.4, the stack data management
process 400 involves a stack cache manager of the type
described above with reference to FIG. 1. Accordingly, the
process 400 maintains and updates the Stack cache manager
as needed (block 402). As mentioned previously, at least one
stack cache manager is maintained for the plurality of execu
tion cores in the processor System. For simplicity, this
description refers to only one stack cache manager. The stack
cache manager maintains status entries (e.g., TLB entries) for
at least some of the stack data accessed by the execution
cores. In this context, the stack cache manager maintains a list
of the virtual pages that are owned by the Stack caches.
0049. This example assumes that the process 400 receives
and processes a data access request (block 404), where the
data access request originates from one of the execution
cores. The originating core is referred to herein as the
“requesting execution core' to distinguish it from the other
execution cores in the processor system. The process 400 may
continue by determining whether the obtained data access

US 2014/O 143497 A1

request represents a request for stack data (query block 406).
If the data access request calls for non-stack data (the “No”
branch of the query block 406), then the process 400 may exit
orinitiate an appropriate procedure related to the retrieval and
processing of non-stack data (process 408). In connection
with the query block 406, the process 400 may determine that
the data access request is for non-stack databased at least in
part on the address provided with the request. Alternatively,
the process 400 may leverage any appropriate decision logic
or algorithm to carry out the determination made in connec
tion with the query block 406. Retrieving and processing
non-stack data may initially involve the TLB 316 and the L1
cache memory 308 (see FIG. 3) and, if the requested data is
not found in the L1 cache memory 308, the processor system
can proceed in a conventional fashion to search for the
requested data in other locations in the cache hierarchy, the
system memory 304, etc.
0050. The following description assumes that the data
access request is for stack data (the “Yes” branch of the query
block 406). In certain embodiments, stack data is virtually
indexed and virtually tagged. Thus, the process 400 identifies
and processes the virtual memory address for the requested
stack data (block 410). The virtual memory address may be
processed as described in more detail herein in an attempt to
locate the requested stack data. The virtual address of the
requested Stack data can be used "directly to access and
search the stack cache of the requesting execution core (block
412). In this regard, the stack cache associated with the
requesting execution core is searched in an attempt to find the
virtual address of the requested Stack data and, consequently,
to find the requested Stack data itself. In a typical implemen
tation, the Stack cache is relatively small (e.g., holding only a
few cache lines) and the operation associated with block 412
can be performed quickly and efficiently. If the requested
virtual address is found in the stack cache (the “Yes” branch
of the query block 414), then the process 400 can retrieve the
requested Stack data from the stack cache in a conventional
manner (block 416) and return the requested stack data to the
requesting execution core.
0051) If, however, the process 400 determines that the
requested Stack data cannot be found in the Stack cache, i.e.,
there is a miss in the stack cache (the “No” branch of the query
block 414), then the process 400 may access the stack TLB of
the requesting execution core to search for an entry that
includes the virtual address (or a portion thereof) of the
requested stack data (block 418). Thus, the stack TLB
assigned to the requesting execution core is accessed to
search for the requested stack data when the virtual address of
the stack data is not found in the associated Stack cache. As
explained previously, the stack TLB is searched in an attempt
to find an address translation (virtual-to-physical) for the
requested Stack data. If the requested virtual address is found
in the stack TLB (the “Yes” branch of the query block 420),
then the process 400 obtains the corresponding physical
address that is mapped to the found virtual address (block
422) and retrieves the requested stack data at the obtained
physical address (block 424). The physical address obtained
at block 422 may represent a physical address in the cache
memory hierarchy, e.g., an address pointing to the L2 cache
memory, the L3 cache memory, or the like. Referring again to
FIG. 3, the arrow leading from the stack TLB 320 to the L2
cache memory 310 represents this scenario—a hit in the stack
TLB 320 results inaccess to the L2 cache memory 310 via the
obtained physical address. It should be appreciated that the

May 22, 2014

obtained physical address need not always point to an L2
cache location. In certain situations a hit in a stack TLB could
lead to a physical address location in the L3 cache, or the like.
In response to the retrieval of the requested Stack data, the
process 400 may also update the corresponding stack cache of
the requesting execution core Such that the requested Stack
data can be accessed with greater ease the next time.
0052. This example assumes that the process 400 deter
mines that the virtual address of the requested Stack data
cannot be found in the stack TLB, i.e., there is a miss in the
stack TLB (the “No” branch of the query block 420). In
response to a stack TLB miss, the process 400 accesses the
stack cache manager and searches for an entry that includes
the virtual address (or a portion thereof) for the requested
stack data (block 426). Thus, the Stack cache manager is
consulted when the requested Stack data cannot be found in
the stack cache of the requesting execution core, and when an
address translation for the requested Stack data cannot be
found in the stack TLB assigned to the requesting execution
COC.

0053. The status entries of the stack cache manager can be
searched in an attempt to find a virtual page owned by other
stack caches. In other words, the process 400 attempts to
locate and identify a status entry (which is akinto a TLB entry
maintained by the stack cache manager) corresponding to the
requested Stack data. If the requested virtual address is not
found in the stack cache manager (the “No” branch of the
query block 428), then the process 400 may exit or initiate an
appropriate page walk procedure and (process 430) in an
attempt to find an address translation for the requested Stack
data. It should be appreciated that the process 430 may lever
age well known and conventional page walk techniques and
methodologies that need not be described in detail here. Thus,
if the page walk process 430 finds an address translation for
the requested Stack data, the stack cache manager can be
updated with the translation. In addition, the translation is
inserted into the associated Stack TLB, and the requested data
is fetched and placed into the stack cache.
0054 The following description assumes that there is a hit
in the stack cache manager (the “Yes” branch of the query
block 428). In other words, the process 400 locates a status
entry in the Stack cache manager that includes the virtual
address of the requested Stack data. As mentioned above with
reference to FIG. 2, the located status entry may include
information that can be used to search for and retrieve the
requested Stack data. This information may include, without
limitation: the virtual pages owned by the stack caches; an
execution core identifier that identifies the execution core of
the processor system that is currently designated as the
“owner core for the requested Stack data; and, if an execution
core has more than one stack cache, a stack cache identifier.
The process 400 uses the information in the located status
entry to identify the owner execution core and a physical
address of the requested stack data (block 432), wherein the
obtained physical address is associated with the owner execu
tion core. In this regard, the obtained physical address may be
associated with a physical address corresponding to the cache
hierarchy for the owner execution core, associated with a
physical address corresponding to the stack cache of the
owner execution core, or associated with a physical address of
Some other memory structure that is assigned to the owner
execution core.
0055. The process 400 may continue by accessing and
retrieving the requested Stack data at the obtained physical

US 2014/O 143497 A1

address (block 434) that points to the cache memory hierar
chy. Thus, the requested stack data can be retrieved from the
cache memory hierarchy even though the processor System
cannot locate the requested Stack data in the stack cache
associated with the originating execution core, and cannot
locate an entry for the requested stack data in the stack TLB
associated with the originating execution core. Rather, the
process 400 is able to locate and retrieve the requested stack
data from a structure or element that is associated with
another execution core (other than the originating execution
core), in response to a hit in the stack cache manager. In
certain scenarios, the requested Stack data is retrieved by
accessing and searching the stack cache associated with the
owner execution core. In practice, therefore, the requested
stack data may be accessed and retrieved using some or all of
the physical address obtained from the stack cache manager
and/or using some or all of the virtual address identified in the
data access request (see block 404).
0056. Thereafter, the process 400 may update the various
memory structures as needed (block 436). For example, a new
status entry could be created in the stack cache manager to
identify the current location and owner execution core of the
requested Stack data. As another example, the appropriate
stack TLB could be updated with an entry for the requested
stack data. Moreover, before or during Such updating, the
process 400 will flush the stack cache of the owner execution
core and the associated stack TLB.

0057 Referring now to FIG. 5, the stack data coherence
process 500 may be performed by the processor system 100,
300 to maintain coherence across the stack caches 108, 318
for the stack data that is accessed by the execution cores.
Although conflicts in the stack caches 108,318 should be rare
(due to the private nature of the stack caches 108, 318), the
process 500 contemplates conflicts for the sake of complete
CSS.

0058. For this particular example, the process 500
assumes that the processor System has received and processed
a request for non-stack data. The process 500 may be initiated
by processing a TLB miss for the requested non-stack data
(block 502). The TLB miss in this context may refer to a miss
in the “main” TLB 316 (see FIG. 3). In response to a TLB
miss, the processor System initiates a page walk and obtains a
“new” virtual-to-physical address translation for the
requested non-stack data (block 504). This new translation is
inserted into the appropriate main TLB. In addition, the page
walker accesses the stack cache manager to ensure that the
inserted translation does not conflict with a current virtual
address page maintained by the stack cache manager (block
506). Thus, the process 500 searches the stack cache manager
for a conflicting status entry that includes the virtual address
of the inserted translation.

0059. If no conflicting entry is discovered (the “No”
branch of the query block 508), then the process 500 contin
ues by retrieving the data for the translated physical address
and inserting it into the L1 cache (block 510). In contrast, if a
conflicting entry is found (the “Yes” branch of the query block
508), then the process 500 continues by deleting the conflict
ing entry from the stack cache manager (block.512). Thus, the
stack cache manager is updated to remove the conflicting
reference to the requested Stack data. Moreover, the process
500 sends a shoot-down to the owner stack TLB that contains
the conflicting entry, invalidates the conflicting entry, and
flushes the appropriate stack cache (block 514). The invali
dation and flushing operations are necessary to maintain

May 22, 2014

coherence for the Stack data. Upon completion of the process
500, the newly created address translation governs, and it
ensures that no other stack caches own the virtual page.
0060 Thus, when allocating a new cache entry in any of
the caches and when accessing the L1 cache for non-stack
data (because the L1 cache is usually physically tagged), a
TLB lookup is performed. If there is a TLB miss, the stack
cache manager is checked (whether or not the new cache
entry is being allocated in a stack cache or a non-stack cache).
If the Stack cache manager already contains the new address
translation, the system sends a shoot-down to the owner
execution core. If the new translation is intended for a stack
cache, the status entry in the stack cache manager is updated
to indicate the new owner core of that cache line. If there is a
miss in the stack cache manager, then the system knows that
the particular TLB entry does not appear in any of the stack
caches.

0061 While at least one exemplary embodiment has been
presented in the foregoing detailed description, it should be
appreciated that a vast number of variations exist. It should
also be appreciated that the exemplary embodiment or
embodiments described herein are not intended to limit the
Scope, applicability, or configuration of the claimed Subject
matter in any way. Rather, the foregoing detailed description
will provide those skilled in the art with a convenient road
map for implementing the described embodiment or embodi
ments. It should be understood that various changes can be
made in the function and arrangement of elements without
departing from the scope defined by the claims, which
includes known equivalents and foreseeable equivalents at
the time offiling this patent application.
What is claimed is:

1. A method of managing Stack data in a processor system
having a plurality of execution cores and a plurality of stack
caches, each of the stack caches associated with a different
one of the execution cores, the method comprising:

maintaining a stack cache manager for the plurality of
execution cores, the stack cache manager comprising
entries for stack data accessed by the plurality of execu
tion cores;

processing, for a requesting execution core of the plurality
of execution cores, a virtual address for requested Stack
data;

accessing the stack cache manager to search for an entry of
the stack cache manager that includes the virtual address
for requested Stack data; and

using information in the entry to retrieve the requested
stack data.

2. The method of claim 1, wherein prior to accessing the
stack cache manager, the method further comprises:

accessing a first stack cache of the plurality of stack caches
to search for the virtual address, wherein accessing the
stack cache manager is performed when the virtual
address is not found in the first stack cache and when a
corresponding virtual-to-physical address translation is
not found in a stack translation lookaside buffer associ
ated with the first stack cache.

3. The method of claim 2, wherein:
the processor System comprises a plurality of Stack trans

lation lookaside buffers (TLBs), each of the stack TLBs
associated with a different one of the execution cores;
and

US 2014/O 143497 A1

the method further comprises, responsive to the virtual
address not being in the first stack cache, accessing a first
stack TLB of the plurality of stack TLBs to search for the
virtual address.

4. The method of claim 3, wherein accessing the stack
cache manager is performed when the virtual address is not
found in the first stack TLB.

5. The method of claim 1, wherein using information in the
entry to retrieve the requested Stack data comprises:

identifying, from the entry, an owner execution core of the
plurality of execution cores;

obtaining a physical address that is mapped to the virtual
address, wherein the physical address is associated with
the owner execution core; and

retrieving the requested Stack data at the physical address.
6. The method of claim 1, wherein maintaining the stack

cache manager comprises:
maintaining virtual-to-physical address translations for the

stack data.
7. A processor System comprising:
a plurality of execution cores;
a plurality of Stack caches configured to cache Stack data

for the execution cores;
a plurality of stack translation lookaside buffers (TLBs) for

the execution cores, each of the execution cores having
one of the stack caches associated therewith, and each of
the plurality of Stack caches having one of the stack
TLBs associated therewith:

a cache memory architecture configured to cache data for
the execution cores; and

a stack cache manager operatively associated with the
execution cores and operatively associated with the
stack caches and the stack TLBS, wherein the stack
cache manager maintains status entries for stack data
accessed by the execution cores.

8. The processor system of claim 7, further comprising a
memory controller operatively associated with the cache
memory architecture, wherein the memory controller is con
figured to control data caching operations that involve the
cache memory architecture.

9. The processor system of claim 8, wherein the memory
controller is further configured to control data caching opera
tions that involve the stack caches.

10. The processor system of claim 8, wherein the stack
cache manager responds to an access request for requested
stack data to:

access a first stack cache of the plurality of stack caches to
search for the requested stack data, wherein the first
stack cache is associated with a requesting execution
core that originated the access request; and

when the requested Stack data is not found in the first stack
cache, access a first stack TLB of the plurality of stack
TLBs to search for an address translation for the
requested Stack data, wherein the first stack TLB is asso
ciated with the requesting execution core.

11. The processor system of claim 10, wherein, when an
address translation for the requested Stack data is not found in
the first stack TLB, the stack cache manager responds to:

search the status entries of the Stack cache manager for a
status entry corresponding to the requested Stack data.

12. The processor system of claim 7, wherein:
each of the stack caches is virtually indexed and virtually

tagged; and

May 22, 2014

the status entries maintained by the stack cache manager
comprise stack TLB entries that indicate virtual-to
physical address translations for virtual pages owned by
the stack caches.

13. The processor system of claim 7, wherein:
each of the status entries maintained by the stack cache

manager corresponds to designated Stack data that is
currently owned by an owner execution core of the plu
rality of execution cores; and

each of the status entries maintained by the stack cache
manager comprises an execution core identifier that
indicates the owner execution core.

14. The processor system of claim 7, wherein the stack
cache manager maintains coherence, for the stack data
accessed by the execution cores, across the stack caches and
the cache memory architecture.

15. A method of managing stack data in a processor system
having a plurality of execution cores, a plurality of stack
caches, a plurality of Stack translation lookaside buffers
(TLBs), and a stack cache manager, each of the execution
cores having one of the stack caches associated therewith, and
each of the stack caches having one of the stack TLBS asso
ciated therewith, and each of the Stack caches associated with
a different one of the execution cores, the method comprising:

maintaining, with the stack cache manager, status entries
for stack data accessed by the execution cores;

obtaining an access request for requested Stack data, the
access request originating from a first execution core of
the plurality of execution cores, and the access request
identifying a virtual memory address for the requested
stack data, wherein the first execution core is associated
with a first stack cache of the plurality of stack caches
and is associated with a first stack TLB of the plurality of
stack TLBs:

determining that the requested Stack data cannot be found
in the first stack cache, and that an address translation for
the virtual memory address cannot be found in the first
stack TLB; and

in response to the determining, searching the stack cache
manager to locate a status entry for the requested Stack
data; and

retrieving the requested Stack data in response to locating
the status entry for the requested Stack data.

16. The method of claim 15, wherein:
the located status entry includes an execution core identi

fier that identifies a second execution core of the plural
ity of execution cores, wherein the second execution
core is associated with a second stack cache of the plu
rality of Stack caches; and

retrieving the requested Stack data comprises accessing the
second stack cache to search for the requested Stack data.

17. The method of claim 15, wherein:
the located status entry includes an execution core identi

fier that identifies a second execution core of the plural
ity of execution cores, wherein the second execution
core is associated with a second stack TLB of the plu
rality of stack TLBs; and

retrieving the requested Stack data comprises accessing the
second stack TLB to search for an address translation for
the virtual memory address.

18. The method of claim 17, further comprising:
obtaining a physical address that is mapped to the virtual
memory address, wherein the requested Stack data is
retrieved from the obtained physical address.

US 2014/O 143497 A1

19. The method of claim 17, wherein:
each of the stack caches is virtually indexed and virtually

tagged; and
the status entries maintained with the stack cache manager

comprise stack TLB entries that indicate virtual-to
physical address translations for virtual pages owned by
the stack caches.

20. The method of claim 17, further comprising:
maintaining coherence, for the stack data accessed by the

execution cores, across the stack caches.
21. The method of claim 20, wherein maintaining coher

ence comprises:
finding that another stack cache other than the first stack

cache owns a requested virtual page; and
in response to the finding, flushing the first stack TLB and

the first stack cache, and updating the stack cache man
ager.

22. The method of claim 20, wherein maintaining coher
ence comprises:

obtaining a non-stack access request for non-stack data;
detecting a miss for the non-stack access request in a main
TLB of the processor system;

obtaining a new virtual-to-physical address translation in
response to detecting the miss for the non-stack access
request; and

searching the stack cache manager for a conflicting entry
corresponding to the new virtual-to-physical address
translation.

May 22, 2014

