ABSTRACT

Polypeptides are identified through an assay based on inhibiting AP-1 signalling activity and others to treat acute respiratory distress syndrome (ARDS) and clinical disorders associated with the development of ARDS.
% Neutrophil in BAL

naive nil D36TAT x1 D36TAT scr x1 D36TAT x3 D36TAT scr x3

LPS Treatment

Fig. 2
COMPOSITIONS AND USES THEREOF FOR THE TREATMENT OF ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) AND CLINICAL DISORDERS ASSOCIATED WITH THEREWITH

RELATED APPLICATION DATA

This application claims priority from U.S. Ser. No. 60/945,215 filed Jun. 20, 2007 the contents of which are incorporated herein.

FIELD OF THE INVENTION

The present invention relates to therapeutic and prophylactic methods for the treatment of acute respiratory distress syndrome (ARDS) and clinical disorders associated with the development of ARDS, and compositions and formulations therefore, especially intranasal formulations.

BACKGROUND OF THE INVENTION

Description of the Related Art

1. Acute Respiratory Distress Syndrome (ARDS)

Acute respiratory distress syndrome (“ARDS”) is a manifestation of a systemic inflammatory response that develops, for example, as a consequence of direct or indirect lung injury e.g., in both medical and surgical patients. The hallmark of ARDS is deterioration in blood oxygenation and respiratory system compliance as a consequence of permeability edema.

A consensus definition of ARDS, as recommended in 1994 by the American-European Consensus Conference Committee, distinguishes ARDS from other conditions such as acute lung injury (ALI) based on differing severity of clinical lung injury: patients with less severe hypoxemia are considered to have ALI, and those with more severe hypoxemia are considered to have the ARDS. As a consequence, ARDS is defined by the following criteria (Bernard et al., Am. J. Respir. Crit. Care Med 149, 818-824, 1994):

- 1. Acute onset;
- 2. Bilateral infiltrates on chest radiography;
- 3. Pulmonary-artery wedge pressure is less than or equal to 18 mm Hg or the absence of clinical evidence of left atrial hypertension; and
- 4. Hypoxemia, as determined by the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen, i.e., $\text{PaO}_2/\text{FiO}_2$, is less than or equal to 200.

In contrast, in ALI, hypoxemia as determined by the ratio $\text{PaO}_2/\text{FiO}_2$, is less than or equal to 300.

ARDS is often progressive, characterized by distinct stages exhibiting different clinical, histopathological and radiographic parameters.

An acute phase of ARDS involves acute neutrophil influx to the lungs e.g., arising from e.g., sepsis, pneumonia, aspiration, ischemia (circulatory arrest, hemorrhagic shock), trauma, severe asthma, poisoning, severe acute respiratory syndrome (SARS), influenza, or infection.

The acute phase of ARDS is characterized by rapid onset of respiratory failure in a patient having a predisposition for the condition, especially arterial hypoxemia that is refractory to oxygen supplementation. Broncho-alveolar-lavage (BAL) studies reveal substantial inflammation in areas that appear normal by radiography or tomography as well as in areas that exhibit alveolar filling, consolidation and atelectasis. Pathologically, the lung in this acute phase exhibits diffuse alveolar damage, with neutrophils, macrophages, erythrocytes, hyaline membranes, capillary injury and disruption of the alveolar epithelium.

More particularly, the acute phase of the condition is characterized by sloughing of the bronchiolar and alveolar epithelial cells, with the formation of protein-rich hyaline membranes on the basement membrane. Neutrophils have been detected adhering to the injured capillary endothelium and marginating through the interstitium into the air space, which is filled with edema fluid. In the air space, alveolar macrophages secrete cytokines such as the interleukins IL-1, IL-6, IL-8 and IL-10, and tumor necrosis factor-α (TNF-α), which act locally to stimulate chemotaxis and activate neutrophils to release oxidants, proteases, leukotrienes and other pro-inflammatory molecules such as platelet activating factor (PAF). The production of proinflammatory cytokines, and the balance between proinflammatory cytokines and anti-inflammatory mediators e.g., IL-1 receptor antagonist, soluble TNF, autoantibodies against IL-8, and anti-inflammatory cytokines IL-10 and IL-11 determine the extent of inflammatory response. The inflammatory response may result in vascular leakage of plasma proteins into the alveolar spaces of the lungs causing lung edema.

The acute phase may progress to fibrosing alveolitis with persistent hypoxemia, increased alveolar dead space and further decrease in alveolar compliance. In patients with ARDS the microvascular, interstitial and alveolar spaces of the lungs are the primary targets for fibrin deposition, and microthrombus formation can occur in multiple organs, with lungs and kidneys as the most exposed, leading to multiple organ failure (MOF). Pulmonary hypertension may arise from obliteration of the pulmonary capillary bed and, in severe cases this may cause right ventricular failure. Pneumothorax may occur in about 10-13% of subjects.

In subjects who recover, there is gradual resolution of hypoxemia and improved lung compliance and pulmonary function may be restored to normal in some subjects. In most subjects who survive ARDS, pulmonary function can take 6-12 months to be restored to nearly normal levels. Residual impairment of pulmonary mechanics may include mild restriction, obstruction, impairment of the diffusing capacity for carbon monoxide, or gas-exchange abnormalities with exercise, but these abnormalities are usually asymptomatic. Severe disease and prolonged mechanical ventilation identify patients at highest risk for persistent abnormalities of pulmonary function. Those who survive the illness have a reduced health-related quality of life as well as pulmonary-disease-specific health-related quality of life.

2. Risk Factors for ARDS

ARDS develops as a complication to acute diseases or injuries such as sepsis, pneumonia, aspiration, ischemia (circulatory arrest, hemorrhagic shock), trauma, severe asthma, poisoning, severe acute respiratory syndrome (SARS), influenza, infection e.g., by viral agents such as a coronavirus, influenza virus or Rous Sarcoma Virus (RSV), and others. Common risk factors for the development of ARDS include, but are not limited to, direct lung injury, commonly arising from pneumonia or aspiration of gastric contents and less commonly from pulmonary contusion, fat emboli, near-drowning, inhalational injury, reperfusion pulmonary edema following lung transplantation or pulmonary embolectomy. Sepsis, severe trauma with shock and multiple
transfusions, cardiopulmonary bypass, drug overdose, acute pancreatitis or transfusion of blood products, can also cause indirect lung injury associated with the development of ARDS.

Overall, sepsis and multi-organ dysfunction are associated with the highest risk of progression of ARDS, with sepsis causing approximately 40-60% of morbidity. The loss of epithelial integrity in ARDS appears to contribute to alveolar flooding and leading to septic shock in patients suffering from bacterial pneumonia. The specific injury to cuboidal type II epithelial cells also disrupts normal epithelial fluid transport thereby impairing removal of edema fluid from the alveolar space, reducing the production and turnover of surfactant. Furthermore, disorganized on insufficient epithelial repair contributes to alveolar fibrosis. These factors suggest that the degree of epithelial damage and/or epithelial repair is an important predictor(s) of outcome in ARDS patients.

3. Treatment Regimes for ARDS

Supportive care of mostly mechanical ventilation constitutes the current state of the art treatment for both ALI and ARDS patients in a critical care environment (Tobin, New Engl J Med 342, 21360-21361, 2000).

Surfactant therapy, which has been successful in treatment of neonatal respiratory distress syndrome, has had no effect on oxygenation, the duration of mechanical ventilation or survival in patients suffering from ARDS in one study (Anzueto et al., New Engl J Med 334, 1417-1421, 1996).

Results of randomized, double-blind studies of the effects of inhaled nitric oxide to cause pulmonary vasodilation have been discouraging, having no positive effect on outcome (e.g., Rossiant et al., New Engl J Med 328, 399-405, 1993; Dellinger et al., Crit Care Med 26, 15-23, 1998; Payen et al., Intensive Care Med, 25 Suppl. S166, abstract).

Glucocorticoids, such as methylprednisolone, alprostadil and ketocconazole, appear to be largely unsuccessful for treatment of early stage or acute ARDS, however may assist in treatment of fibrosing alveolitis (Bernard et al., New Engl J Med 317, 1565-1570, 1987; Luce et al., Am Rev Respir Dis. 136, 62-68, 1987; Sprung et al., New Engl J Med 311, 1137-1143, 1984; Meduri et al., Chest 100, 943-952, 1991; Meduri et al., Chest 105, 1516-1527, 1994; Meduri et al., JIMA 280, 159-165, 1998). Methylprednisolone also has the significant adverse effect of increasing the incidence of infection when used at high dosage.

Immunologic approaches to the treatment of sepsis, ARDS and MOF have been described which are directed at the inflammatory cascade, either to the inciting event or insult e.g., endotoxin, the mediators e.g., IL-1 or TNF-α, or to the effector cells e.g., neutrophils. However, no efficacious therapy has been identified based upon these approaches.

Thus, it is widely accepted that no pharmacological intervention has been demonstrated to reduce morbidity and mortality of patients with ARDS or its associated disorders such as ALI e.g., caused by sepsis. There is often a delay between a precipitating factor e.g., trauma, poisoning, viral infection, etc and the onset of ARDS.

Peptide Therapeutics for Non-ARDS-Related Conditions

It is known that proteins bind to other proteins, antigens, antibodies, nucleic acids, and carbohydrates. Such binding enables the protein to effect changes in a wide variety of biological processes in all living organisms. As a consequence, proteins represent an important source of natural modulators of phenotype. Accordingly, peptides that modulate the binding activity of a protein may represent attractive lead compounds (drug candidates) in primary or secondary drug screening. For example, the formation of a target biological interaction that has a deleterious effect (e.g., replication of a pathogen or of a cancer cell), can be assayed to identify lead compounds that antagonize the biological interaction.

Peptide therapeutics may provide advantages over nucleic acid-based therapeutics e.g., DNAzymes and DNA decoys, in terms of stability and consistent delivery.

Antibodies represent the fastest growing class of approved drugs in this area, however they require complex and expensive synthesis and are difficult to deliver via non-injectable routes. Furthermore, intracellular delivery of peptides is also now possible in vivo using protein transduction domains. These advances make peptide-based therapeutics an attractive alternative to antibody-based therapeutics.

Existing drawbacks associated with peptide-based therapeutics include their low affinity, high turnover in vivo and difficulties in their isolation compared to small molecules. For example, peptides that target protein interaction interfaces which may be large and relatively featureless are generally more difficult to produce and isolate when compared to small molecule inhibitors of enzyme-active sites that generally form small complex pockets. Accordingly, it is not facile to identify peptides that address these problems.

For example, random peptide libraries, e.g., synthetic or genetically-produced mimetic or mimotope libraries, can be produced using short random oligonucleotides produced by synthetic combinatorial chemistry, cloned into an appropriate vehicle for expression, and the encoded peptide screened using one of a variety of approaches. Alternatively, random peptide libraries can be produced by synthetic peptide chemistry in parallel format. However, the ability to isolate active peptides from random fragment libraries can be highly variable with low affinity interactions occurring between the peptide-binding partners. Moreover, the expressed peptides often show little or none of the secondary or tertiary structure required for efficient binding activity, and/or are unstable. This is not surprising, considering that biological molecules appear to recognize shape and charge rather than primary sequence (Yang and Honig J Mol Biol. 301(3), 691-711 2000) and that such random peptide aptamers are generally too small to comprise a protein domain or to form the secondary structure of a protein domain. Protein folds are understood in the art to mean independently folding peptide structures (i.e. a “subdomain”), e.g., a 19-residue fragment from the C-loop of the fourth epidermal growth factor-like domain of thrombomodulin as been described by Alder et al, J Biol Chem., 270: 23566-23572, 1995. Looser secondary structures have also been described which are predisposed to form folds on the surface of a partner protein. The relatively unstructured “linear” nature of these peptide aptamers also leads to their more rapid degradation and clearance following administration to a subject in vivo, thereby reducing their appeal as therapeutic agents.

To enhance the probability of obtaining useful bioactive peptides or proteins from random peptide libraries, peptides have previously been constrained within scaffold structures, e.g., thioredoxin (Trx) loop (Blum et al. Proc Natl Acad Sci. USA, 97, 2241-2246, 2000) or catalytically
inactive staphylococcal nuclease (Norman et al., Science, 285, 591-595, 1999), to enhance their stability. Constraint of peptides within such structures has been shown, in some cases, to enhance the affinity of the interaction between the expressed peptides and its target, presumably by limiting the degrees of conformational freedom of the peptide, and thereby minimizing the entropic cost of binding.

[0030] Recently, peptide mimotopes of less than about 50 amino acids in length from biodiverse genomic sources have been described that are capable of forming protein sub-domains by virtue of assuming conformations sufficient for binding to a target protein or target nucleic acid (“Phylomer™ peptides”, Phylologia, Perth, Western Australia, Australia) e.g., International Patent Application No. PCT/AU00/00414 and US Patent Publication No. 2003-0215846 A1. Such Phylomer™ peptides show promise in overcoming the existing drawings associated with peptide therapeutics. The conformation(s) of such Phylomer™ peptides is a product of secondary and/or tertiary structural features and, by virtue of the peptide binding to its target protein or protein interaction interface is compatible with, albeit not necessarily iterative of, the target protein(s) or target protein interface. Such secondary and super-secondary structural features may suggest that Phylomer™ peptides could, on average, have higher substrate affinities and longer half-lives than more conventional random peptides. On the other hand, Phylomer™ peptides may also provide production and delivery advantages compared to antibody-based and other protein-based therapies by virtue of their small size. Additionally, because Phylomer™ peptides are derived from libraries comprising mixtures of small genome fragments from evolutionarily diverse bacteria and/or eukaryotes having small albeit well-characterized genomes, they can be screened in silico to select against those peptides that are likely, because of their known function e.g., known toxins or allergens, to produce adverse reactions in recipient mammals, including humans. Similarly, if the Phylomer™ peptides specific for a particular target are identified through an intracellular screening method e.g., yeast two hybrid screening, those peptides which are generally toxic to cells may be eliminated from the screen because they kill the assay cells. Notwithstanding the need for empirical testing of therapeutic products, this “safety” feature of Phylomer™ peptides provides a significant potential advantage over peptides derived from mammals, including antibodies. In addition, since these Phylomer sequences did not evolve in order to bind to a human target with an intermediate affinity compatible with most biological function(s), the potential exists for identifying extremely high affinity interactors with the target which can outcompete natural partners of that target.

[0031] Conventional techniques of molecular biology, microbiology, virology, recombinant DNA technology, peptide synthesis in solution, solid phase peptide synthesis, and immunology are described, for example, in the following texts that are incorporated by reference:

and particularly the papers therein by Guitt, pp 1-22; Atkinson et al., pp 35-81; Sproat et al., pp 83-115; and Wu et al., pp 135-151;

[0038] J. F. Ramalho Origaoo, “The Chemistry of Peptide Synthesis” In: Knowledge database of Access to Virtual Laboratory website (Interactive, Germany);

SUMMARY OF INVENTION

1. Introduction

[0046] The present invention is based upon the identification by the inventors of compositions e.g., peptidyl compositions and non-peptidyl compositions that reduce neutrophilic-inflammation in a mouse model of ARDS or sepsis. As used herein, the term “neutrophilic inflammation” shall be taken to include neutrophil activation and/or infiltration into the lung and any direct or indirect consequence thereof in the development of ARDS or a side effect of ARDS e.g., vascular leakage of plasma proteins into the alveolar spaces of the lungs alveolar filling, lung edema, loss of epithelial integrity in alveoli, alveolar flooding, septic shock, impaired removal of edema fluid from the alveolar space, reduced surfactant production, reduced turnover of surfactant, disorganized on insufficient epithelial repair, alveolar fibrosis, hypoxemia, increased alveolar dead space, decrease in alveolar compliance, micro thrombus formation in multiple organs e.g., lungs and kidneys, pulmonary hypertension, ventricular failure or pneumothorax.

[0047] For example, such peptidyl compositions reduce neutrophilic inflammation e.g., selected individually or collectively from the AP-1 signalling inhibitory peptides and AP-1 signalling inhibitory peptide analogs set forth in the Sequence Listing e.g., a peptide selected from the group consisting of:

(a) a peptide encoded by a nucleic acid comprising a sequence set forth in any one of SEQ ID Nos: 1-25;

(b) a peptide comprising a sequence set forth in any one of SEQ ID Nos: 26-72, 121-124, 129 or 131; and
(c) an analog of (a) or (b) selected from the group consisting of (d) the sequence of (a) or (b) comprising one or more naturally-occurring amino acid substitutions; (e) the sequence of (a) or (b) comprising one or more non-naturally-occurring amino acid analogs; (f) an isostere of (a) or (b); (g) a retro-peptide or retro-inverted peptide analog of (a) or (b);

or more particularly, e.g., the retroinverted peptide analogs designated as PYC35, PYC36 and PYC38/39 or said peptide analog conjugated to a transport peptide such as TAT or retro-TAT. In this example, neutrophil inflammation is determined by the percentage of neutrophils in bronchovascular lavage (BAL) when administered to animals in which ARDS is induced by inhalation of lipopolysaccharide (LPS).

[0051] The data herein are consistent with therapeutic function for the peptides in the prophylactic and therapeutic treatment of ARDS and complications thereof, and for the prophylactic treatment of clinical disorders associated with the development of ARDS.

[0052] The data herein are also consistent with the use of the peptides to produce peptide formulations, especially injectable or intranasal formulations, for prophylactic and/or therapeutic intervention in ARDS and complications thereof, and for the prophylactic treatment of clinical disorders associated with the development of ARDS. In one example, the present invention provides for a use of a peptidyl inhibitor of AP-1 signaling in the preparation of a medicament for the treatment of ARDS or for treatment of a complication associated with ARDS or for the prevention of ARDS or for the treatment of a clinical disorder associated with the development of ARDS.

[0053] In the present context, the term ‘clinical disorders associated with the development of ARDS’ shall be taken to mean any risk factor associated with ARDS or a condition causing lung damage capable of leading to ARDS or its complications such as, for example, infection, asthma, poisoning, sepsis, pneumonia, aspiration, ischemia (circulatory arrest, hemorrhagic shock), trauma, pulmonary contusion, fat emboli, near-drowning, inhalational injury, repulsion pulmonary edema following lung transplantation or pulmonary embolectomy, cardiopulmonary bypass, drug overdose, acute pancreatitis or transfusion of blood products. A number of key proteins are implicated in the pathway of inflammation in ARDS e.g., Toll-like receptor-4 (TLR4), the adaptor proteins for TLR4 designated Mal and MYD88, Pak1 and NF-kB.

[0054] Without being bound by any theory or mode of action, the present invention also provides for utility of AP-1 signaling inhibitors generally in reducing or preventing neutrophilic inflammation in the treatment or prophylaxis of ARDS, or in the development of ARDS. This is because the peptides supra were described as AP-1 signaling inhibitors by the assignees of the inventors, based on reverse hybrid screening technology using c-Jun as a bait.

[0055] The peptides supra inhibit AP-1 signaling by indirect means e.g., involving factors upstream of c-Jun that are conserved between yeasts and mammals, or by direct means involving inhibition of c-Jun dimerization with c-Jun or other proteins. For example, yeast cells possess a stress-responsive MAPK (SAPK) cascade; a multistep phosphorylation system; and AP-1-like transcription factor (Yap1) that govern the response of yeasts to oxidative stress (Laker et al., Mutation Res. 569, 13-27, 2005), and which may be involved in regulating the apoptotic response to cytotoxic compounds used in the reverse hybrid screens. The yeast MAPK (SAPK) cascade involves signaling from a complex comprising yeast homologs of human Cdc42 and Pak1 (i.e., Cdc42 and Step 20, respectively) to the MAPKKK Ste11, which regulates the MAPKK Pbs2 and, in turn, the MAPK Hog1 to regulate gene expression, membrane transport, cell cycle progression, etc. The yeast phosphorylation system appears to converge on Pbs2 MAPKK of the Hog1 SAPK cascade and is initiated by the transmembrane protein Sho1 which activates Pbs2 through the MAPKKK Ste11 of the Hog1 SAPK cascade. The AP-1-like transcription factor (Yap1) appears to serve as an oxidative stress sensor that directly regulates transcription albeit independently of the SAPK pathway. Without being bound by any theory or mode of action, the present inventors reason that a Phylomer™ peptide identified in reverse hybrid screening of yeast cells may rescue yeast cells from an event upstream of Hog1 in yeast that would otherwise lead to activation of these stress responses leading to cell death. If the same Phylomer™ peptide also recognizes a homologous mammalian AP-1 pathway component upstream of c-Jun and/or JNK, inhibition of that component would also explain the observed reduction in AP-1 mediated activation of luciferase reporter gene expression observed in mammalian cells.

[0056] Accordingly, the peptides supra are designated herein as “AP-1 signaling inhibitors” or “AP-1 complex formation inhibitors” or “AP-1 signaling inhibitors” or similar term. It is to be understood that such terminology includes the direct c-Jun dimerization and/or upstream indirect effects e.g., acting on phosphorylation of MAPKK, JNK, Cdc42, Pak1 or Rac1, or dimerization of Cdc42, Pak1 or Rac1 in mammalian cells. Preferred AP-1 signaling inhibitory peptides will inhibit later steps in the AP-1 signaling pathway e.g., c-Jun dimerization, to thereby provide greater specificity than, for example, a JNK inhibitory peptide.

[0057] It is also to be understood that the term “c-Jun dimerization” includes c-Jun self-dimerization or homodimerization, and heterodimerization between c-Jun and another protein e.g., ATF-2, c-Fos or JNK and preferably between c-Jun and ATF-2 or between c-Jun and c-Fos (i.e., a c-Jun heterodimer) or an analog of said isolated peptide or protein domain.

[0058] Thus, the data herein are suggestive of the utility of AP-1 signaling inhibitors generally for the prophylactic and therapeutic treatment of ARDS and complications thereof, and for the prophylactic treatment of clinical disorders associated with the development of ARDS.

2. Specific Embodiments

[0059] The scope of the invention will be apparent from the claims as filed with the application that follow the examples. The claims as filed with the application are hereby incorporated into the description. The scope of the invention will also be apparent from the following description of specific embodiments.

[0060] In one example, the present invention provides a peptide formulation comprising:

(i) an amount of a peptide or analog thereof sufficient to reduce neutrophilic inflammation wherein a peptide or analog is selected individually or collectively from the group consisting of:

(a) a peptide encoded by a nucleic acid comprising a sequence set forth in any one of SEQ ID NOs: 1-25;

(b) a peptide comprising a sequence set forth in any one of SEQ ID NOs: 26-72, 121-124, 129, 131 or 163; and
(c) an analog of (a) or (b) selected from the group consisting of (d) the sequence of (a) or (b) comprising one or more naturally-occurring amino acid substitutions; (e) the sequence of (a) or (b) comprising one or more non-naturally-occurring amino acid analogs; (f) an isostere of (a) or (b); (g) a retro-peptide or retro-inverted peptide analog of (a) or (b); and
(ii) a suitable carrier or excipient e.g., a carrier or excipient is a carrier or excipient.

In one example, the formulation is for inhalation and the subject peptide is present in an amount suitable for administration by inhalation and the carrier or excipient is one suitable for inhalation. Inhalable formulations are preferred for prophylactic applications e.g., for administration to an asymptomatic subject at risk of developing ARDS or a complication associated therewith e.g., an asymptomatic subject having one or more risk factors for ARDS supra, and/or an asymptomatic subject exposed to an infectious agent, poison, allergen or irritant of the airways that is a risk factor for development of ARDS.

By "asymptomatic subject" is meant a subject that does not exhibit one or more symptoms associated with an acute phase of ARDS or breathing difficulty associated with ARDS.

In another example, the formulation is for injection and the subject peptide is present in an amount suitable for administration by injection e.g., subcutaneously, intravenously, intraperitoneally or intramuscularly, and the carrier or excipient is one suitable for injection e.g., subcutaneously, intravenously, intraperitoneally or intramuscularly. Injectable formulations are preferred for acute phase ARDS or complications associated therewith or in a non-acute phase where the subject has difficulty inhaling.

By "individually" is meant that the invention encompasses the recited peptides or groups of peptides separately, and that, notwithstanding that individual peptides or groups of peptides may not be separately listed herein the accompanying claims may define such peptides or groups of peptides separately and divisibly from each other.

By "collectively" is meant that the invention encompasses any number or combination of the recited peptides or groups of peptides, and that, notwithstanding that such numbers or combinations of peptides or groups of peptides may not be separately listed herein the accompanying claims may define such combinations or sub-combinations separately and divisibly from any other combination of peptides or groups of peptides.

Preferred formulations will comprise a peptide analog of a peptide selected individually or collectively from the group consisting of peptides designated as PYC35, PYC36 and PYC38/39, and more preferably one or more retroinverted peptide analogs comprising a sequence selected from the group consisting of SEQ ID Nos: 103, 104, 105, 106, 107, and 108 and mixtures thereof.

It is to be understood that it is a preferred embodiment for the peptide formulations of the present invention to have AP-1 signaling inhibitory activity conferred by the peptide component or peptide analog component of such formulations.

In an alternative embodiment, the present invention provides a formulation comprising (i) an amount of an AP-1 signaling inhibitor sufficient to reduce neutrophil inflammation; and (ii) a suitable carrier or excipient e.g., a carrier or excipient for inhalation or injection. The formulation may be packaged for multiple administrations e.g., it may be packaged as multiple injectable ampoules, capsules, etc. for repeated administration or repeated dosing.

Preferably, an inhibitor of AP-1 signaling interacts with JNK or a nucleic acid encoding same to reduce expression and/or activity thereof. For example, an inhibitor interacts with JNK and prevents JNK from phosphorylating a protein, such as, for example, c-Jun and/or ATF2 and/or c-Fos and/or Bel-2 and/or Bim and/or Bmf.

Alternatively, or in addition, an inhibitor of JNK-mediated signaling interacts with and reduces or prevents activity of another molecule involved in JNK-mediated signal transduction. Suitable molecules will be apparent to the skilled artisan and/or described herein. For example, an inhibitor inhibits and/or reduces activity and/or expression of a molecule that interacts with JNK, e.g., a protein phosphorylated and/or activated by JNK or nucleic acid encoding same and prevents activity or expression of that molecule. For example, an inhibitor reduces or prevents the expression and/or activity of c-Jun, ATF2, c-Fos and/or NFAT4. For instance, an inhibitor reduces or prevents formation of a heterodimer and/or homodimer comprising c-Jun.

The AP-1 signaling inhibitor may be a peptidyl or non-peptidyl composition. Suitable peptidyl compounds will be any one or more of the peptides described herein above, or alternatively a different peptide or antibody composition that inhibits AP-1 signaling e.g., as described in the ensuing Detailed Description. Suitable non-peptidyl compounds will be apparent to the skilled artisan based on the description herein, and include, for example, a nucleic acid, or a small molecule.

Preferably, the inhibitor is a retro-inverted peptide analog capable of inhibiting or reducing AP-1 signaling. For example, the retro-inverted peptide analog comprises an amino acid sequence set forth in any one of SEQ ID Nos: 73-120, 125-128, 130, 164 or 165. In one exemplified form of the invention, the retro-inverted peptide analog comprises an amino acid sequence set forth in SEQ ID NO: 103 or SEQ ID NO: 104 or SEQ ID NO: 105 or SEQ ID NO: 106 or SEQ ID NO: 107 or SEQ ID NO: 108.

Again, the present invention clearly encompasses formulations comprising mixtures of such peptide analogs.

In one example, a peptide or analog as described herein above or a peptidyl AP-1 signaling inhibitor, is conjugated to or fused to a protein transduction domain. A suitable protein transduction domain will be apparent to the skilled artisan based on the description herein and includes a ligand basic region peptide (e.g., comprising a sequence set forth in any one of SEQ ID Nos: 137-143) or a retroinverted analog thereof (e.g., comprising a sequence set forth in any one of SEQ ID Nos: 144-152). Another suitable protein transduction domain is a Kaposi fibroblast growth factor (FGF) hydrophobic peptide protein transduction domain (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 159 or 160) or a retro-inverted analog thereof (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 161 or 162).

The skilled artisan will be aware that an amount of the active ingredient suitable for reducing neutrophil inflammation will vary, e.g., as a result of variation in the bioactivity of an inhibitor, and/or the severity of the inflammatory response that would be elicited in the absence of treatment. Accordingly, this term is not to be construed to limit the invention to a specific quantity, e.g., weight of active ingredient.
In one example, a formulation as described herein according to any embodiment comprises an amount of a peptide or analog as described herein above or AP-1 signaling inhibitor sufficient to additionally enhance or induce alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury e.g., sufficient epithelial repair to prevent or reduce fibrosis. As used herein, the term “re-epithelialization” shall be taken to mean the process by which one or more alveolar epithelial cell types or layer is produced over and/or within injured tissue. In another example, the formulations described herein according to any embodiment comprise an amount of a peptide or analog as described herein above or an inhibitor of JNK-mediated signal transduction sufficient to enhance or induce re-epithelialization of injured alveolar tissue with reduced scar formation, e.g., compared to tissue to which the inhibitor has not been applied. In another example, the formulations described herein prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium because e.g., the subject has one or more risk factors for acute lung injury and/or ARDS but has not suffered the acute phase of ARDS at the time of administration of the formulation or has recovered from acute lung injury or ARDS and is at risk of subsequent attacks from the condition(s).

As used herein, the term “suitable carrier or excipient” shall be taken to mean a compound or mixture thereof that is suitable for use in a formulation albeit not necessarily limited in use to that context. In contrast, the term “carrier or excipient” is compound or mixture thereof that is described in the art only with reference to a use in a formulation. The term “carrier or excipient for inhalation” shall be taken to mean a compound or mixture thereof that is suitable for use in a formulation to be administered to a subject by inhalation. The term “carrier or excipient for injection” shall be taken to mean a compound or mixture thereof that is suitable for use in a formulation to be administered to a subject by injection.

A carrier and excipient useful in the formulation of the present invention will generally not inhibit to any significant degree a relevant biological activity of the active compound e.g., the carrier or excipient will not significantly inhibit the activity of the active compound with respect to reducing neutrophilic inflammation. Alternatively, or in addition, the carrier or excipient comprises a compound that enhances uptake and/or delivery and/or efficacy of the active compound.

Alternatively, or in addition, the carrier or excipient comprises a compound that enhances the activity of a peptide or analog as described herein above or, more generally, an AP-1 signaling inhibitor and/or reduces inhibition of said peptide or analog or AP-1 signaling inhibitor by degradative enzymes in the site of administration such as the mucusa, and/or en route to the site of action such as the Airways or lung tissue of a subject and or at the site of action such as the alveoli. For example, the carrier or excipient may comprise a protease inhibitor and/or a DNase inhibitor and/or an RNase inhibitor to thereby enhance the stability of a peptide or analog as described herein above or a peptidyl AP-1 signaling inhibitor.

In one example, the formulation as described herein according to any embodiment comprises an additional compound, such as, for example, a growth factor to further enhance or induce alveolar re-epithelialization or to further prevent or inhibit epithelial damage or loss and/or an antibiotic and/or an anesthetic. Suitable additional compounds will be apparent to the skilled artisan based on the description herein.

The present invention also provides a formulation comprising (i) an amount of a retroinverted peptide comprising an amino acid sequence set forth in SEQ ID NO: 105 or SEQ ID NO: 104 or SEQ ID NO: 105 or SEQ ID NO: 106 or SEQ ID NO: 107 or SEQ ID NO: 108 sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium; and (ii) a suitable carrier or excipient e.g., a carrier or excipient for inhalation or injection.

The present invention also provides a method for producing a formulation described herein according to any embodiment. For example, such a method comprises mixing or otherwise combining a peptide or analog as described herein above or AP-1 signaling inhibitor in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury, and/or to prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium, with a suitable carrier or excipient e.g., a carrier or excipient for inhalation or injection.

In one example, the method additionally comprises producing or obtaining said peptide or analog or AP-1 signaling inhibitor. For example, a peptide or analog or AP-1 signaling inhibitor is produced synthetically or recombinantly, using a method known in the art and/or described herein.

The present invention also provides a method of treatment of ARDS and/or one or more complications thereof or for the prophylactic treatment of one or more clinical disorders associated with the development of ARDS, the method comprising administering to a subject in need thereof a formulation comprising an AP-1 signaling inhibitor e.g., as described herein according to any embodiment, for a time and under conditions sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium.

There is often a delay between a precipitating factor e.g., trauma, poisoning, viral infection, etc. and the onset of ARDS, which the inventors reason provides a window of opportunity for administering a formulation of the invention or other formulation comprising an AP-1 signaling inhibitor. Accordingly, in one example, this invention provides a method for the prophylaxis or prevention of ARDS comprising administering to a subject at risk of developing ARDS or exposed to one or more risk factors of ARDS a formulation comprising an AP-1 signaling inhibitor e.g., a formulation according to any embodiment hereof for a time and under conditions sufficient to prevent neutrophilic inflammation and/or prevent alveolar epithelial injury or loss or damage in the subject. In one example, the subject is capable of inhaling the formulation and the formulation is administered to the subject by inhalation. In another example, the formulation is administered by injection.
In another example, the present invention provides a method of treatment of ARDS and/or one or more complications thereof comprising administering to a subject in need thereof a formulation comprising an AP-1 signaling inhibitor e.g., a formulation according to any embodiment hereof for a time and under conditions sufficient to reduce neutrophil inflammation and/or enhance or induce alveolar epithelialization, preferably with reduced scar formation, in a subject that has suffered alveolar epithelial injury. In one example, the subject is suffering from breathing difficulty and/or has reduced breathing capability and the formulation is administered to the subject by injection e.g., by an intravenous, intraperitoneal, intramuscular or subcutaneous route.

As used herein the term “treatment” includes therapeutic treatment of a subject who has already suffered ARDS or a complication thereof including neutrophil inflammation and its downstream consequences such as, for example, alveolar filling, alveolar epithelial damage or loss, amongst others, and prophylactic treatment of a subject having one or more risk factors for ARDS but that has not yet suffered an acute phase of ARDS or a complication thereof. In this respect, it will be evident that the reduction of neutrophil inflammation and enhancement/induction of alveolar re-epithelialization are more pertinent to therapeutic regimens, and that the prevention of neutrophil inflammation and/or the prevention or reduction of alveolar epithelial injury or loss are more pertinent to prophylactic regimens. Consistent with this construction, the term “prevent” or “prevention” as used throughout this specification shall not be taken to require an absolute i.e., 100% abrogation of neutrophil inflammation or epithelial damage/loss in a subject, and it is sufficient that there is a significant reduction in these adverse consequences of ARDS using the method and formulations of the present invention compared to the absence of treatment in accordance with the present invention. Similarly, the term “reduction” or “reduce” as used throughout this specification shall not be taken to require an abrogation of neutrophil inflammation or epithelial damage/loss in a subject more than a significant effect compared to the absence of treatment in accordance with the present invention. Similarly, the terms “enhance”, “enhancement”, “induce” and “induction” as used throughout this specification shall not be taken to require any particular quantitative improvement not significant compared to the absence of treatment in accordance with the present invention. The term “enhance” and “enhancement” will be understood or taken to mean an increase in the level or amount of a stated integer that is already present whereas the terms “induce” and “induction” refer to the increase in level or amount of an integer that is not detectable prior to the induction, however may be present in undetectable amounts.

As used herein, the term “administer” shall be taken to mean that a formulation is applied to the respiratory system of a subject including the nasal passage, buccal cavity, throat or esophagus or lung, by inhalation and/or applied to the circulatory system of a subject by injection intramuscularly, subcutaneously, intravenously, intraperitoneally etc., including single or repeated or multiple dosages by any administration route. As used herein the term “inhalation” shall be taken to include “aspiration”.

As used herein, the term “subject in need thereof” shall be taken to mean a subject that has developed or suffers from ARDS or one or more complications thereof or is predisposed by virtue of having one or more risk factors to suffering from ARDS or one or more complications thereof. In one example, the subject has already suffered from ARDS or neutrophil inflammation or one or more downstream effects thereof and/or has suffered alveolar epithelial loss or injury. In another example, the subject has not yet suffered significant impairment of breathing or significant damage to the alveolar epithelium and has one or more risk factors for ARDS or acute lung injury or a complication thereof.

The present invention clearly contemplates repeated administration of a formulation as described herein according to any embodiment in the therapy or prophylaxis of ARDS and complications thereof. For example, repeated injection and/or inhalation of a formulation of the present invention may be required to reduce or prevent inflammatory responses in the lung for a long period of time, e.g., during sepsis or persistent or long term infection by a bacterial agent or virus or when a subject is immune suppressed e.g., by virtue of post-transplant drug therapy to prevent tissue rejection or immunodeficiency virus infection e.g., by HIV-1.

Repeated administration of a peptide formulation as described herein may be timed so as to ensure a sufficiently high concentration of the bioactive peptide component of the formulation in plasma of the subject and/or at the site of action in the treatment regimen. For example, second and/or subsequent doses of a peptide formulation of the invention as described according to any embodiment hereof may be administered at a time when serum concentration of a peptide provided by one or more previous doses fall(s) below a desired level at which it is active or provides sufficient benefit to the patient. Such booster doses of a peptide formulation of the present invention are clearly contemplated in the prophylaxis and/or therapy of ARDS and/or one or more complications thereof according to the present invention.

In one example, a method of treatment or prophylaxis as described herein according to any embodiment additionally comprises providing or obtaining a formulation described herein or a composition of matter forming the active ingredient of such a formulation, or information concerning said formulation or active ingredient.

For example, the present invention provides a method of treatment or prophylaxis of a subject in need thereof, said method comprising:

(i) identifying a subject suffering from ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS or is at risk of suffering from ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS;

(ii) obtaining a formulation as described herein according to any embodiment; and

(iii) administering said formulation to said subject.

In another example, the present invention also provides a method of treatment or prophylaxis of a subject in need thereof, said method comprising:

(i) identifying a subject suffering from ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS or is at risk of suffering from ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS; and

(ii) recommending administration of a formulation as described herein according to any embodiment.

In another example, the invention provides a method of treatment or prophylaxis comprising administering or rec-
ommending a formulation as described herein according to any embodiment to a subject previously identified as suffering from ARDS and/or one or more complications thereof or suffering from one or more clinical disorders associated with the development of ARDS or otherwise at risk of developing ARDS.

In another example, the invention provides a method of treatment or prophylaxis comprising administering or recommending a formulation as described herein according to any embodiment to a subject at risk of developing ARDS and/or one or more complications thereof or suffering from one or more clinical disorders associated with the development of ARDS or otherwise at risk of developing ARDS.

In another example, the invention provides a method of treatment or prophylaxis comprising:

(i) identifying a subject suffering from ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS or is at risk of suffering from ARDS and/or one or more complications thereof or suffering from one or more clinical disorders associated with the development of ARDS or otherwise at risk of developing ARDS;

(ii) obtaining a composition as described herein that reduces or prevents neutrophilic inflammation and/or enhances or induces alveolar re-epithelialization preferably with reduced scar formation and/or prevents or reduces alveolar epithelial loss or damage; (iii) formulating the composition at (ii) with a suitable carrier and/or excipient, e.g., for inhalation and/or injection, wherein said composition is in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium; and

(iv) administering said formulation to said subject.

In yet another example, the present invention provides a method of treatment or prophylaxis comprising:

(i) identifying a subject suffering from ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS or is at risk of suffering from ARDS and/or one or more complications thereof or suffering from one or more clinical disorders associated with the development of ARDS or otherwise at risk of developing ARDS;

(ii) obtaining a composition as described herein that reduces or prevents neutrophilic inflammation and/or enhances or induces alveolar re-epithelialization preferably with reduced scar formation and/or prevents or reduces alveolar epithelial loss or damage;

(iii) formulating the composition at (ii) with a suitable carrier and/or excipient, e.g., for inhalation and/or injection, wherein said composition is in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium; and

(iv) recommending a formulation at (iii).

In a particularly preferred example of the present invention, the method of treatment or prophylaxis involves repeated injection of a peptide formulation of the invention wherein each injection is timed so as to ensure a sufficiently high concentration of the bioactive peptide component of the formulation in plasma of the subject in the treatment regimen and wherein the peptide is a retroinverted peptide e.g., comprising a sequence set forth in any one of SEQ ID Nos: 104, 106 or 108 or active fragment thereof, and more particularly comprising SEQ ID NO: 106 or active fragment thereof. By “active fragment” in this context is meant a fragment having AP-1 signaling inhibitory activity as defined herein. In another example, the peptide formulation is PEGylated.

The present invention also provides a method for identifying a compound for the treatment or prophylaxis of ARDS and/or one or more complications thereof or suffering from one or more clinical disorders associated with the development of ARDS, said method comprising:

(i) identifying a compound capable of inhibiting or reducing AP-1 signaling;

(ii) administering an amount of the compound identified at (i) sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium;

(iii) comparing the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in the subject at (ii) to the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in a subject to which the compound has not been administered; and

(iv) selecting a compound that reduces or prevents neutrophilic inflammation and/or enhances or induces alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury and/or prevents or reduces alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium thereby identifying a compound for the treatment or prophylaxis of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS.

In one example, this method of the present invention additionally comprises:

(v) optionally, determining the structure of the compound;

(vi) optionally, providing the name or structure of the compound; and

(vii) providing the compound.

The present invention also provides a method for isolating a compound for the treatment or prophylaxis of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS, said method comprising:

(i) identifying a mixture of compounds capable of inhibiting or reducing AP-1 signaling or a library comprising compounds capable of inhibiting or reducing AP-1 signaling;

(ii) administering said mixture or a plurality of compounds identified at (i) capable of inhibiting or reducing AP-1 signaling in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization prefer-
ably with reduced scar formation in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium;

[0127] (iii) comparing the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in the subject at (ii) to the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in a subject to which the mixture or plurality of compounds has not been administered;

[0128] (iv) identifying a mixture or a plurality of compounds that reduces or prevents neutrophilic inflammation and/or enhances or induces alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury and/or prevents or reduces alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium and

[0129] (v) separating a compound from the mixture or plurality of compounds that reduces the level of neutrophilic inflammation and/or increases the amount of alveolar re-epithelialization and/or prevents or reduces alveolar epithelial loss or damage, thereby isolating a compound for the treatment or prophylaxis of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS.

[0130] In one example, this method of the present invention additionally comprises:

[0131] (vi) optionally, determining the structure of the compound;

[0132] (vii) optionally, providing the name or structure of the compound; and

[0133] (viii) providing the compound.

[0134] Preferably, the term “separating” comprises the use of any chemical or biochemical purification process known in the art to fractionate the mixture of plurality of compounds coupled with assaying the fractions produced for activity with respect to neutrophilic inflammation and/or re-epithelialization and/or epithelial loss or damage, and selecting fractions having one or more of said activities.

[0135] More preferably, the term “separating” refers to a process comprises iterated use of any chemical or biochemical purification process known in the art to partially or completely purify a compound from a mixture of plurality of compounds and assaying the fractions produced in each iteration of the process for activity with respect to neutrophilic inflammation and/or re-epithelialization and/or epithelial loss or damage, and selecting at each iteration one or more fractions having one or more of said activities. Preferably, the process is repeated for n iterations wherein n is sufficient number of iterations to reach a desired purity of the compound e.g., 50% or 60% or 70% or 80% or 90% or 95% or 99%. More preferably, the process is repeated for zero to about ten iterations. As will be known to the skilled artisan, such iterations do not require iteration of precisely the same purification processes and more generally utilize different processes or purification conditions for each iteration.

[0136] In the case of a library of compounds displayed separately wherein each compound is substantially pure prior to performance of the method, such isolation results in the separation of the compound from other compounds in the library that do not have the requisite activity. In this case, the term “separating” extends to determining the activity of one library component relative to another library component and selecting a compound having the desired activity.

[0137] The present invention clearly extends to the direct product of any method of identification or isolation of a therapeutic compound described herein.

[0138] It is to be understood that an identified or isolated compound in substantially pure form i.e., free from contaminants that might cause adverse side effects or contraindications or antagonize the activity of the active compound, can be formulated into a medicament suitable for treatment of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS. Accordingly, in one example, the present invention further provides for the use of a peptide or analog as described herein above or AP-1 signaling inhibitor in the manufacture of a medicament for the treatment of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS. In another example, the present invention further provides for the use of a peptide or analog as described herein above or AP-1 signaling inhibitor in the manufacture of a medicament for the prevention of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS. Preferably, the peptide or analog as described herein above or AP-1 signaling inhibitor is used in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization preferably with reduced scar formation in a subject that has suffered alveolar epithelial injury and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium. Preferably, the medicament is an inhalable and/or injectable formulation.

3. General

[0139] This specification contains nucleotide and amino acid sequence information prepared using Patent In Version 3.3. Each nucleotide sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g., <210>1, <210>2, <210>3, etc). The length and type of sequence (DNA, protein (PRT), etc), and source organism for each nucleotide sequence, are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide sequences referred to in the specification are defined by the term “SEQ ID NO”: followed by the sequence identifier (e.g., SEQ ID NO: 1 refers to the sequence in the sequence listing designated as <400>1).

[0140] The designation of nucleotide residues referred to herein are those recommended by the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y represents a pyrimidine residue, R represents a purine residue, M represents Adenine or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W represents Adenine or Thymine, H represents a nucleotide other than Guanine, B represents a nucleotide other than Adenine, V represents a nucleotide other than Thymine, D represents a nucleotide other than Cytosine and N represents any nucleotide residue.
As used herein the term “derived from” shall be taken to indicate that a specified integer may be obtained from a particular source albeit not necessarily directly from that source.

Throughout this specification, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated step or element or integer or group of steps or elements or integers but not the exclusion of any other step or element or integer or group of elements or integers.

Throughout this specification, unless specifically stated otherwise or the context requires otherwise, reference to a single step, composition of matter, group of steps or group of compositions of matter shall be taken to encompass one and a plurality (i.e. one or more) of those steps, compositions of matter, groups of steps or group of compositions of matter.

Each embodiment described herein is to be applied mutatis mutandis to each and every other embodiment unless specifically stated otherwise.

Each embodiment describing a composition comprising a peptide or peptidyl analog as described herein above or peptidyl AP-1 signaling inhibitor shall be taken to apply mutatis mutandis to a formulation comprising a retro-inverted form of that peptide or peptidyl analog or peptidyl AP-1 signaling inhibitor, e.g., comprising two or more retro-inverted amino acids. Preferably, the retro-inverted form of the peptide comprises a reversed amino acid sequence and all amino other than glycine (which is not chiral) are D-amino acids.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purpose of exemplification only. Functionally-equivalent products, compositions and methods are clearly within the scope of the invention, as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graphical representation showing the percentage of neutrophils (y-axis) in bronchoalveolar lavage (BAL) in 8-week to 12-week old C57/BL6 mice receiving various treatments indicated by numbers on the x-axis as follows:

Columns 1-4 (open bars): Animals (n=5 per group) received either no LPS (column 1) or a dose of LPS intranasally (10 µg/mouse) and BAL was performed 1 hour (column 2), 4 hours (column 3) or 6 hours (column 4) later. No peptide was administered to these animals.

Columns 5-7 (filled bars): Animals (n=5 per group) received an intranasal dose of 10 mg/kg body weight of retroinverted peptide analog D-PYC36-TAT (SEQ ID NO: 106; column 5) or D-PYC35-TAT (SEQ ID NO: 104; column 6), or 5 mg/kg body weight of retroinverted peptide analog D-PYC38-TAT (SEQ ID NO: 108; column 7), by a repeated dose of the same peptide analog for each group co-administered intranasally with LPS (10 µg/mouse) and BAL was performed 6 hours later.

FIG. 2 is a graphical representation showing the percentage of neutrophils (y-axis) in bronchoalveolar lavage (BAL) in 8-week to 10-week old female C57/BL6 mice receiving various treatments indicated by numbers on the x-axis as follows:

Column 1 (naïve): Animals received no LPS and BAL was performed 6 hours later. No peptide was administered to these animals.

Column 2 (nil): Animals received an intranasal dose of E. coli LP (40 µg/mouse) and BAL was performed 6 hours later.

Column 3 (D36-TAT x1): Animals received a single intravenous injection of 10 mg/kg body weight of retroinverted peptide analog D-PYC36-TAT (SEQ ID NO: 106) followed 20 min later by an intranasal dose of LPS (40 µg/mouse). BAL was performed 6 hours after LPS administration.

Column 4 (D36-TATscr x1): Animals received a single intravenous injection of 10 mg/kg body weight of a peptide having a scrambled sequence relative to the retroinverted peptide analog D-PYC36-TAT (SEQ ID NO: 106) followed 20 min later by an intranasal dose of LPS (40 µg/mouse). BAL was performed 6 hours after LPS administration.

Column 5 (D36-TAT x3): Animals received a single intravenous injection of 10 mg/kg body weight of retroinverted peptide analog D-PYC36-TAT (SEQ ID NO: 106) followed 20 min later by an intranasal dose of LPS (40 µg/mouse), and two further intravenous injections of the same peptide at 2 hours post-LP treatment and 4 hours post-LPS treatment. BAL was performed 6 hours after LPS administration.

Column 6 (D36-TATscr x3): Animals received a single intravenous injection of 10 mg/kg body weight of a peptide having a scrambled sequence relative to the retroinverted peptide analog D-PYC36-TAT (SEQ ID NO: 106) followed 20 min later by an intranasal dose of LPS (40 µg/mouse), and two further intravenous injections of the same peptide at 2 hours post-LP treatment and 4 hours post-LPS treatment. BAL was performed 6 hours after LPS administration.

Cell counts were obtained to determine total cell numbers and differential counts were obtained on cytocentrifuge slide preparations to elucidate the percentage neutrophils in BAL. Data show means ± SEM. There is significantly reduced neutrophil infiltration in BAL in the presence of SEQ ID NO: 106 when administered before and after induction of
ARDS in the animal model, but no significant reduction in percentage neutrophils in the presence of the scrambled control peptide.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Peptides and Analogs

[0161] The peptides and analogs used in the formulations described herein are readily derived from the scope of peptidyl inhibitors of AP-1 signaling and analogs described below.

AP-1 Signaling Inhibitors

[0162] The compositions as described herein according to any embodiment may comprise any one or more AP-1 signaling inhibitors.

1. Non-Peptidyl Inhibitors of AP-1 Signaling

[0163] In one example of the invention, a non-peptidyl inhibitor of AP-1 signaling comprises nucleic acid that reduces or prevents expression of a protein or nucleic acid required for AP-1 signaling.

[0164] In this respect, the term “expression” will be understood by the skilled artisan to include transcription and/or translation. Accordingly, an inhibitor that reduces expression inhibits transcription and/or inhibits translation.

[0165] For example, an AP-1 signaling inhibitor reduces or prevents expression of JNK. For example, the inhibitor comprises nucleic acid such as, for example, an antisense nucleic acid, peptide nucleic acid (PNA), ribozyme, or small interfering RNA (siRNA), short hairpin RNA (shRNA) which is complementary, in whole or in part, to a target molecule comprising a sense strand, and can hybridize with a target molecule, e.g., JNK-encoding mRNA. When introduced into a cell using suitable methods, such a nucleic acid inhibits the expression of the JNK gene encoded by the sense strand. Antisense nucleic acid, ribozymes (e.g., Cech et al., U.S. Pat. No. 4,987,071; Cech et al., U.S. Pat. No. 5,116,742; Bartel and Szostak, Science 261, 1411-1418, 1993), nucleic acid capable of forming a triple helix (e.g., Helene, *Anticancer Drug Res.* 6, 569-584, 1991), PNA (Hyrup et al., *Bioorganic & Med. Chem.* 4, 5-23, 1996; O’Keefe et al., *Proc. Natl. Acad. Sci. USA* 93, 14670-14675, 1996), small interfering RNAs or shRNAs may be produced by standard techniques known to the skilled artisan, based upon the sequences disclosed herein. Examples of suitable siRNA include a siRNA comprising a sequence set forth in SEQ ID NO: 135 or 136.

[0166] In another example of the invention, an AP-1 signaling inhibitor reduces or prevents expression of a nucleic acid, peptide, polypeptide or protein that is phosphorylated and/or activated by JNK. For example, the inhibitor reduces or prevents expression of a protein such as, for example, c-Jun, ATF2 or c-Fos. An example of a suitable nucleic acid inhibitor is a DNAzyme designated Dz13 comprises a nucleotide sequence set forth in SEQ ID NO: 133. This DNAzyme has been previously shown to be capable of reducing expression of c-Jun in Khachigian et al., *J. Biol. Chem.* 277: 22985-22991, 2002. Optionally, the DNAzyme includes a 3’-3’ inverted thymidine linkage to thereby improve resistance against nuclelease degradation (Santiago et al., *Nat. Med.* 5: 1264-1269, 1999).

[0167] Another AP-1 signaling inhibitor that reduces or prevents expression of c-Jun is a siRNA comprising a nucleotide sequence set forth in SEQ ID NO: 134.

[0168] Alternatively, or in addition an inhibitor of AP-1 signaling reduces or inhibits transcriptional activity induced by AP-1 activity. For example, an AP-1 decoy oligonucleotide comprising a sequence set forth in SEQ ID NO: 132 binds to active members of the AP-1 protein complex. As discussed in Desmet et al., *Am. J. Crit. Care Med.* 172: 671-678, 2005 an oligonucleotide comprising a sequence set forth in SEQ ID NO: 132 is capable of reducing or inhibiting AP-1 signaling.

[0169] To facilitate cellular uptake, a nucleic acid inhibitor may be linked or conjugated to a protein transduction domain, e.g., as described herein. Suitable methods for linking or conjugating a nucleic acid to a protein transduction domain will be apparent to the skilled artisan and/or described in, for example, International Application No. PCT/US93/07833.

[0170] Alternatively, a nucleic acid inhibitor is identified from a library of nucleic acids using a method known in the art and/or described herein.

2. Peptidyl Inhibitors of AP-1 Signaling

[0171] In another example of the invention, an AP-1 signaling inhibitor is a peptide or a peptide analog or a peptide derivative. For example, the inhibitor binds to or interacts with JNK and inhibits JNK activity. For example, the peptide prevents or reduces the ability of JNK to phosphorylate a protein, such as, for example c-Jun, c-fos or ATF2. For example, a peptide inhibitor capable of binding to JNK and reducing or preventing JNK activity is a TI-JIP peptide comprising an amino acid sequence set forth in SEQ ID NO: 129 (e.g., as described in Barr et al., *J. Biol. Chem.* 277: 10987-10997, 2002). An example of an analog of TI-JIP is a retro-inverted analog of TI-JIP, e.g., comprising an amino acid sequence set forth in SEQ ID NO: 130. Examples of additional suitable peptides include a peptide described by Bouy et al., *Diabetes*, 50: 77-82, 2001, e.g., comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123 and SEQ ID NO: 124.

[0172] In another example, an AP-1 signaling inhibitor is a peptide capable of reducing or inhibiting the activity of a cellular component involved in activating or phosphorylating JNK, or, alternatively, capable of inhibiting a cellular component, e.g., a protein activated and/or phosphorylated by JNK. For example, a peptide inhibitor is capable of inhibiting activity of c-Jun and/or c-Fos and/or ATF2. For example, a peptide inhibitor is capable of inhibiting dimerization of c-Jun (e.g., homodimerization and/or heterodimerization of c-Jun) to thereby inhibit or reduce AP-1 signaling. Likewise an allosteric peptide inhibitor of JNK or its substrate c-JUN which is capable of inhibiting or reducing AP-1 signaling.

[0173] In one example, a suitable peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 26-72, 163 or a peptide encoded by a nucleic acid comprising a sequence set forth in any one of SEQ ID NOs: 1-25.

[0175] Preferred AP-1 signaling inhibitory peptides for use in the treatment or prophylaxis of ARDS are mimetic peptides that do not merely comprise a sequence corresponding to a
fragment of a native protein that they inhibit to prevent it binding to its cognate partner or substrate, e.g., they are not dominant negative mutants.

Protein Transduction Domains

To facilitate peptide entry into a cell, the peptide may be conjugated to (e.g., expressed as a fusion with) a protein transduction domain. As used herein, the term “protein transduction domain” shall be taken to mean a peptide or protein that is capable of enhancing, increasing or assisting penetration or uptake of a compound conjugated to the protein transduction domain into a cell either in vitro or in vivo.

Those skilled in the art will be aware that synthetic or recombinant peptides can be delivered into cells through association with a protein transduction domain such as the Tat sequence from HIV or the penetratin sequence derived from the Antennapedia homeodomain protein (see, for example, Temsamani and Vidal, Drug Discovery Today 9: 1012-1019, 2004, for review).

A suitable protein transduction domain will be apparent to the skilled artisan and includes, for example, HIV-1 Tat fragment (e.g., comprising an amino acid sequence set forth in any one of SEQ ID NOs: 137-143), signal sequence based peptide 1 (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 153), signal sequence based peptide 2 (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 154), transportan (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 155), amphiphilic model peptide (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 156), polyarginine (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 157) or a Kaposi fibroblast growth factor (FGF) hydrophobic peptide protein transduction domain (e.g., comprising an amino acid sequence set forth in SEQ ID NO: 159 or 160).

Additional suitable protein transduction domains are described, for example, in Zhao and Weisledder Medical Research Reviews, 24: 1-12, 2004 and Wagtstaff and Jans, Current Medicinal Chemistry, 13: 1371-1387, 2006.

Linkers

Each of the components of a peptide inhibitor described herein may optionally be separated by a linker that facilitates the independent folding of each of said components, or provides for an appropriate steric spacing between the peptide components. A suitable linker will be apparent to the skilled artisan. For example, it is often unfavorable to have a linker sequence with high propensity to adopt α-helix or β-strand structures, which could limit the flexibility of the protein and consequently its functional activity. Rather, a more desirable linker is a sequence with a preference to adopt extended conformation. In practice, most currently designed linker sequences have a high content of glycine residues that force the linker to adopt loop conformation. Glycine is generally used in designed linkers because the absence of a β-carbon permits the polypeptide backbone to access dihedral angles that are energetically forbidden for other amino acids.

Preferably, the linker is hydrophilic, i.e. the residues in the linker are hydrophilic.

In another example, a linker is a glycine residue. Linkers comprising glycine and/or serine have a high freedom degree for linking of two proteins, i.e., they enable the fused proteins to fold and produce functional proteins. Robison and Sauer Proc. Natl. Acad. Sci. 95: 5929-5934, 1998 found that it is the composition of a linker peptide that is important for stability and folding of a fusion protein rather than a specific sequence.

In one example, linkers join identical peptide target binding moieties to form homodimers. In another example, linkers join different peptide target binding moieties to form heterodimers.

In some forms of the invention, the linker is included in, for example a protein transduction domain.

Peptide Derivatives

The present invention also encompasses a derivative of a peptide inhibitor of AP-1 signaling. As used herein the term “derivative” shall be taken to mean a peptide that is derived from an inhibitory peptide as described herein e.g., a fragment or processed form of the peptide. The term “derivative” also encompasses fusion proteins comprising a peptide of the invention. For example, the fusion protein comprises a label, such as, for example, an epitope, e.g., a FLAG epitope or a V5 epitope or an HA epitope. For example, the epitope is a FLAG epitope. Such a tag is useful for, for example, purifying the fusion protein.

The term “derivative” also encompasses a derivatized peptide, such as, for example, a peptide modified to contain one or more chemical moieties other than an amino acid. The chemical moiety may be linked covalently to the peptide e.g., via an amino terminal amino acid residue, a carboxyl terminal amino acid residue, or at an internal amino acid residue. Such modifications include the addition of a protective or capping group on a reactive moiety in the peptide, addition of a detectable label, and other changes that do not adversely destroy the activity of the peptide compound.

Peptide Analogs

In another example of the invention, an AP-1 signaling inhibitor is a peptide analog. As used herein, the term “analog” shall be taken to mean a peptide that is modified to comprise one or more naturally-occurring and/or non-naturally-occurring amino acids, provided that the peptide analog is capable of inhibiting or reducing AP-1 signaling. For example, the term “analog” encompasses an inhibitory peptide comprising one or more conservative amino acid changes. The term “analog” also encompasses a peptide comprising, for example, one or more D-amino acids. Such an analog has the characteristic of, for example, protease resistance.

Suitable peptide analogs include, for example, a peptide comprising one or more conservative amino acid substitutions. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), n-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).

It also is contemplated that other sterically similar compounds may be formulated to mimic the key portions of
the peptide structure. Such compounds, which may be termed peptidomimetics, may be used in the same manner as an AP-1 signaling peptide inhibitor. The generation of such an analog may be achieved by the techniques of modeling and chemical design known to those of skill in the art. It will be understood that all such sterically similar peptide analogs fall within the scope of the present invention.

[0189] An example of an analog of a peptide of the invention comprises one or more non-naturally occurring amino acids or amino acid analogs. For example, a peptide inhibitor as described herein comprises one or more naturally occurring or non-genetically encoded L-amino acids, synthetic L-amino acids or D-enantiomers of an amino acid. For example, the peptide comprises only D-amino acids. For example, the analog comprises one or more residues selected from the group consisting of: hydroxyproline, β-alanine, 2,3-diaminopropionic acid, α-aminoisobutyric acid, N-methylglycine (sarcosine), ornithine, citrulline, t-butylalanine, t-butylycine, N-methylisoleucine, phenylglycine, cyclohexylalanine, norleucine, naphthylalanine, pyrrolidylalanine, 3-benzoenthienyl alanine 4-chlorophenylalanine, 2-fluorophenylalanine, 3-fluorophenylalanine, 4-fluorophenylalanine, penicillamine, 1,2,3,4-tetrahydro-tic isquinoline-3-carboxylic acid β-2-thienylalanine, methionine sulfide, homoserine, N-acetyl lysine, 2,4-diaminobutyric acid, D-aminophenylalanine. N-methylvaline, homocysteine, homoserine, ε-aminohexanoic acid, ε-aminovaleric acid, 2,3-diaminobutyric acid and mixtures thereof.

[0190] Other amino acid residues that are useful for making the peptides and peptide analogs described herein can be found, e.g., in Fasman, 1989, CRC Practical Handbook of Biochemistry and Molecular Biology, CRC Press, Inc., and the references cited therein.

[0191] The present invention additionally encompasses an isostere of a peptide described herein. The term “isostere” as used herein is intended to include a chemical structure that can be substituted for a second chemical structure because the steric conformation of the first structure fits a binding site specific for the second structure. The term specifically includes peptide back-bone modifications (i.e., amide bond mimetics) known to those skilled in the art. Such modifications include modifications of the amide nitrogen, the ε-carbon, amide carbonyl, complete replacement of the amide bond by a backbone crosslink, or the creation of a backbone crosslink in the peptide backbone modifications are known, including ψ[CH2S], ψ[CH2NH], ψ[CSNH2], ψ[NHCO], ψ[CONH2], and ψ[(E) or (Z) CH=CH]-. In the nomenclature used above, ψ indicates the absence of an amide bond. The structure that replaces the amide group is specified within the brackets.

[0192] Other modifications include, for example, an N-alkyl (or aryl) substitution (ψ[CONR]), or backbone crosslinking to construct lactams and other cyclic structures.

[0193] Other derivatives of the modulator compounds of the invention include C-terminal hydroxymethyl derivatives, O-modified derivatives (e.g., C-terminal hydroxymethyl benzyl ether), N-terminally modified derivatives including substituted amides such as alkylamides and hydrazides.

[0194] In another example, a peptide analog is a retro-peptide analog (see, for example, Goodman et al., Accounts of Chemical Research, 12:1-7, 1979). A retro-peptide analog comprises a reversed amino acid sequence of a peptide inhibitor described herein. For example, a retro-peptide analog of a peptide inhibitor comprises a reversed amino acid sequence of a sequence set forth in any one of SEQ ID NOs: 26-72, 121-124, 129, 131 or 163. For example, a retro-peptide analog of a peptide inhibitor comprises a reversed amino acid sequence of a sequence set forth in any one of SEQ ID NOs: 26-72 or 163. Optionally, the peptide analog comprises an additional feature, such as, for example, a protein transduction domain, which may also be a retro-peptide.

[0195] In a further example, an analog of a peptide described herein is a retro-inverso peptide (as described, for example, in Sela and Zisman, FASEB J. 11:449, 1997). Evolution has ensured the almost exclusive occurrence of L-amino acids in naturally occurring proteins. As a consequence, virtually all proteases cleave peptide bonds between adjacent L-amino acids. Accordingly, artificial proteins or peptides composed of D-amino acids are preferably resistant to proteolytic breakdown. Retro-inverso peptide analogs are isomers of linear peptides in which the direction of the amino acid sequence is reversed (retro) and the chirality, D- or L- of one or more amino acids therein is inverted (inverso) e.g., using D-amino acids rather than L-amino acids, e.g., Jameson et al., Nature, 368, 744-746 (1994); Brady et al., Nature, 368, 692-693 (1994). The net result of combining D-enantiomers and reverse synthesis is that the positions of carbonyl and amino groups in each amide bond are exchanged, while the position of the side-chain groups at each alpha carbon is preserved. An advantage of retro-inverso peptides is their enhanced activity in vivo due to improved resistance to proteolytic degradation, i.e., the peptide has enhanced stability. (e.g., Chorev et al., Trends Biotech. 13, 438-445, 1995).

[0196] Retro-inverso peptide analogs may be complete or partial. Complete retro-inverso peptides are those in which a complete sequence of a peptide described herein is reversed and the chirality of each amino acid in a sequence is inverted, other than glycine, because glycine does not have a chiral analog. Partial retro-inverso peptide analogs are those in which only some of the peptide bonds are reversed and the chirality of only those amino acid residues in the reversed portion is inverted. For example, one or two or three or four or five or six or seven or eight or nine or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen or seventeen or eighteen or nineteen or twenty or twenty one or twenty two or twenty three or twenty four or twenty five or twenty six or twenty seven or twenty eight or twenty nine or thirty or thirty one or thirty two or thirty three or thirty four or thirty five or thirty six or thirty seven or thirty eight amino acid residues are D-amino acids. The present invention clearly encompasses both partial and complete retro-inverso peptide analogs. For example, the present invention provides a retro-inverso peptide analog comprising an amino acid sequence set forth in any one of SEQ ID NOs: 73-120, 125-128, 130, 164 or 165. For example, a retro-inverso peptide analog comprises an amino acid sequence set forth in any one of SEQ ID NOs: 73-120, 164 or 165. In this respect, such a retroinverso peptide analog may optionally include an additional component, such as, for example, a protein transduction domain, which may also be retroinverted. For example, a retro-inverso peptide analog comprises an amino acid sequence set forth in any one of SEQ ID NOs: 74, 76, 78, 81, 83, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 104, 106, 108, 110, 112, 114, 116, 118, 120 or 165.

[0197] As will be apparent to the skilled artisan based on the foregoing description, the present invention provides peptide AP-1 signaling inhibitors e.g., selected individually or collectively from the group consisting of:
[0198] (i) a peptide comprising an amino acid sequence set forth in any one of SEQ ID NOs: 26-72, 121-124, 129, 131 or 163;

[0199] (ii) a peptide encoded by a nucleic acid comprising a sequence set forth in any one of SEQ ID NOs: 1-25;

[0200] (iii) the peptide of (i) or (ii) additionally comprising a protein transduction domain, e.g., a HIV tat basic region (e.g., comprising a sequence set forth in any one of SEQ ID NOs: 137-143) or a retroinverted analog thereof (e.g., comprising a sequence set forth in any one of SEQ ID NOs: 144-152);

[0201] (iii) an analog of any one of (i) to (iii) selected from the group consisting of (a) the sequence of any one of (i) to (iii) comprising one or more non-naturally-occurring amino acids; (b) the sequence of any one of (i) to (iii) comprising one or more non-naturally-occurring amino acid analogs; (c) an isostere of any one of (i) to (iii); (d) a retro-peptide analog of any one of (i) to (iii); and (e) a retro-inverted peptide analog of any one of (i) to (iii).

[0202] (iv) a retroinverted peptide analog comprising an amino acid sequence set forth in any one of SEQ ID NOs: 73-120, 125-128, 130, 164 or 165.

[0203] In one example, an analog peptide inhibitor of AP-1 signaling comprises an amino acid sequence set forth in SEQ ID NO: 103 or SEQ ID NO: 104 or SEQ ID NO: 105 or SEQ ID NO: 106 or SEQ ID NO: 107 or SEQ ID NO: 108.

[0204] The present invention also provides a composition comprising an AP-1 signal peptide inhibitor or an analog thereof, e.g., a peptidyl AP-1 signaling inhibitor or an analog thereof selected individually or collectively from the group consisting of;

[0205] (i) a functional fragment of a peptide comprising an amino acid sequence set forth in any one of SEQ ID NOs: 26-72, 121-124, 129, 131 or 163;

[0206] (ii) a functional fragment of a peptide encoded by a nucleic acid comprising a sequence set forth in any one of SEQ ID NOs: 1-25;

[0207] (iii) the peptide of (i) or (ii) additionally comprising a protein transduction domain, e.g., a HIV tat basic region (e.g., comprising a sequence set forth in any one of SEQ ID NOs: 137-143) or a retroinverted analog thereof (e.g., comprising a sequence set forth in any one of SEQ ID NOs: 144-152);

[0208] (iii) an analog of any one of (i) to (iii) selected from the group consisting of (a) the sequence of any one of (i) to (iii) comprising one or more non-naturally-occurring amino acids; (b) the sequence of any one of (i) to (iii) comprising one or more non-naturally-occurring amino acid analogs; (c) an isostere of any one of (i) to (iii); (d) a retro-peptide analog of any one of (i) to (iii); and (e) a retro-inverted peptide analog of any one of (i) to (iii).

[0209] (iv) a functional fragment of a retroinverted peptide analog comprising an amino acid sequence set forth in any one of SEQ ID NOs: 73-120, 125-128, 130, 164 or 165.

[0210] As used herein the term “functional fragment” shall be taken to mean a fragment of a peptide or analog thereof that is capable of reducing or preventing neutrophilic inflammation and/or to induce and/or enhance proliferation of a cell. In this respect, the activity of a functional fragment need not be the same as that of the peptide or analog from which the fragment is derived. For example, the fragment may have enhanced or reduced activity compared to the peptide or analog from which it is derived.

Peptide Synthesis

[0211] A peptide or an analog or derivative thereof is preferably synthesized using a chemical method known to the skilled artisan. For example, synthetic peptides are prepared using known techniques of solid phase, liquid phase, or peptide condensation, or any combination thereof, and can include natural and/or unnatural amino acids. Amino acids used for peptide synthesis may be standard Boc (Nα-amino protected Na-t-butyloxycarbonyl) amino acid resin with the deprotecting, neutralization, coupling and wash protocols of the original solid phase procedure of Merrifield, J. Am. Chem. Soc., 85:2149-2154, 1963, or the base-labile Na-amino protected 9-fluorenylethoxycarbonyl (Fmoc) amino acids described by Carpino and Han, J. Org. Chem., 37:3403-3409, 1972. Both Fmoc and Boc Na-amino protected amino acids can be obtained from various commercial sources, such as, for example, Fluka, Bachem, Advanced Chemtech, Sigma, Cambridge Research Biochemical, Bachem, or Peninsula Labs.

[0212] Generally, chemical synthesis methods comprise the sequential addition of one or more amino acids to a growing peptide chain. Normally, either the amino or carboxyl group of the first amino acid is protected by a suitable protecting group. The protected or derivatized amino acid can then be either attached to an inert solid support or utilized in solution by adding the next amino acid in the sequence having the complementary (amino or carboxyl) group suitably protected, under conditions that allow for the formation of an amide linkage. The protecting group is then removed from the newly added amino acid residue and the next amino acid (suitably protected) is then added, and so forth. After the desired amino acids have been linked in the proper sequence, any remaining protecting groups (and any solid support, if solid phase synthesis techniques are used) are removed sequentially or concurrently, to render the final polypeptide. By simple modification of this general procedure, it is possible to add more than one amino acid at a time to a growing chain, for example, by coupling (under conditions which do not remove the integral side chains) a protected tripeptide with a properly protected dipeptide to form, after deprotection, a pentapeptide. See, e.g., J. M. Stewart and J. D. Young, Solid Phase Peptide Synthesis (Pierce Chemical Co., Rockford, Ill. 1984) and G. Barany and R. H. Merrifield, The Peptides: Analysis, Synthesis, Biology, editors E. Gross and J. M. Meienhofer, Vol. 2, (Academic Press, New York, 1980), pp. 3-254, for solid phase peptide synthesis techniques; and M. Bodan-
droxyxymethylstyrene copolymers, divinylbenzene-chloromethylstyrene copolymers and divinylbenzene-
benzhydrylaminopolystyrene copolymers.

[0215] A peptide, analog or derivative as described herein can also be chemically prepared by other methods such as by the method of simultaneous multiple peptide synthesis. See, e.g., Houghten Proc. Natl. Acad. Sci. USA 82: 5131-5135, 1985 or U.S. Pat. No. 4,631,211.

[0216] As will be apparent to the skilled artisan based on the description herein, an analog or derivative of a peptide of the invention may comprise D-amino acids, a combination of D- and L-amino acids, and various unnatural amino acids (e.g., α-methyl amino acids, Co-methyl amino acids, and Nα-methyl amino acids, etc) to convey special properties. Synthetic amino acids include ornithine for lysine, fluorophenylalanine for phenylalanine, and norleucine for leucine or isoleucine. Methods for the synthesis of such peptides will be apparent to the skilled artisan based on the foregoing description.

Recombinant Peptide Production

[0217] Alternatively, or in addition, a peptide or analog or derivative thereof or fusion protein comprising same is produced as a recombinant protein. To facilitate the production of a recombinant peptide or fusion protein nucleic acid encoding same is preferably isolated or synthesized. Typically the nucleic acid encoding the recombinant protein is isolated using a known method, such as, for example, amplification (e.g., using PCR or splice overlap extension) or isolated from nucleic acid from an organism using one or more restriction enzymes or isolated from a library of nucleic acids. Methods for such isolation will be apparent to the ordinary skilled artisan and/or described in Ausubel et al (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 0471150338, 1987), Sambrook et al (In: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

[0218] For expressing protein by recombinant means, a protein-encoding nucleic acid is placed in operable connection with a promoter or other regulatory sequence capable of regulating expression in a cell-free system or cellular system. For example, nucleic acid comprising a sequence that encodes a peptide is placed in operable connection with a suitable promoter and maintained in a suitable cell for a time and under conditions sufficient for expression to occur. Nucleic acid encoding a peptide inhibitor of AP-1 signaling is described herein or is derived from the publicly available amino acid sequence.

[0219] As used herein, the term “promoter” is to be taken in its broadest context and includes the transcriptional regulatory sequences of a genomic gene, including the TATA box or initiator element, which is required for accurate transcription initiation, with or without additional regulatory elements (e.g., upstream activating sequences, transcription factor binding sites, enhancers and silencers) that alter expression of a nucleic acid (e.g., a transgene), e.g., in response to a developmental and/or external stimulus, or in a tissue specific manner. In the present context, the term “promoter” is also used to describe a recombinant, synthetic or fusion nucleic acid, or derivative which confers, activates or enhances the expression of a nucleic acid (e.g., a transgene and/or a selectable marker gene and/or a detectable marker gene) to which it is operably linked. Preferred promoters can contain additional copies of one or more specific regulatory elements to further enhance expression and/or alter the spatial expression and/or temporal expression of said nucleic acid.

[0220] As used herein, the term “in operable connection with”, “in connection with” or “operably linked to” means positioning a promoter relative to a nucleic acid (e.g., a transgene) such that expression of the nucleic acid is controlled by the promoter. For example, a promoter is generally positioned 5’ (upstream) to the nucleic acid, the expression of which it controls. To construct heterologous promoter/nucleic acid combinations (e.g., promoter/nucleic acid encoding a peptide), it is generally preferred to position the promoter at a distance from the gene transcription start site that is approximately the same as the distance between that promoter and the nucleic acid it controls in its natural setting, i.e., the gene from which the promoter is derived. As is known in the art, some variation in this distance can be accommodated without loss of promoter function.

[0221] Should it be preferred that a peptide or fusion protein of the invention is expressed in vitro a suitable promoter includes, but is not limited to a T3 or a T7 bacteriophage promoter (Hanes and Pläckhorn Proc. Natl. Acad. Sci. USA, 94 4937-4942 1997).

[0222] Typical expression vectors for in vitro expression or cell-free expression have been described and include, but are not limited to the TNT T7 and TNT T3 systems (Promega), the pEXpl-DEST and pEXP2-DEST vectors (Invitrogen).

[0223] Typical promoters suitable for expression in bacterial cells include, but are not limited to, the lacZ promoter, the IPTG inducible lacI promoter, T7 promoter, T3 promoter, SP6 promoter or semi-artificial promoters such as the IPTG-inducible lac promoter and lacUV5 promoter. A number of other gene construct systems for expressing the nucleic acid fragment of the invention in bacterial cells are well-known in the art and are described for example, in Ausubel et al (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 0471150338, 1987), U.S. Pat. No. 5,763,239 (Diversa Corporation) and Sambrook et al (In: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

[0224] Numerous expression vectors for expression of recombinant polypeptides in bacterial cells and efficient ribosome binding sites have been described, and include, for example, pKKC30 (Shimatake and Rosenberg, Nature 292, 128, 1981); pKK173-3 (Amann and Brosius, Gene 40, 183, 1985), pET1-3 (Stadler and Moffat, J. Mol. Biol. 189, 113, 1986); the pCR vector suite (Invitrogen), pGEM-T Easy vectors (Promega), the pl. expression vector suite (Invitrogen) the pBAD/TOPO or pBAD/thio—TOPO series of vectors containing an arabinose-inducible promoter (Invitrogen, Carlsbad, Calif.), the latter of which is designed to also produce fusion proteins with a Trx loop for conformational constraint of the expressed protein; the pFLEX series of expression vectors (Pfizer Inc., CT, USA); the pQE series of expression vectors (QIAGEN, CA, USA), or the pl. series of expression vectors (Invitrogen), amongst others.

[0225] Typical promoters suitable for expression in viruses of eukaryotic cells and eukaryotic cells include the SV40 late promoter, SV40 early promoter and cytomegalovirus (CMV) promoter, CMV IE (cytomegalovirus immediate early) promoter amongst others. Preferred vectors for expression in mammalian cells (e.g., 293, COS, CHO, 10T cells, 293T cells) include, but are not limited to, the pcDNA vector suite supplied by Invitrogen, in particular pCDNA3.1 mycHis-tag
comprising the CMV promoter and encoding a C-terminal 6xHis and MYC tag; and the retrovirus vector pSRoTkneo (Müller et al., Mol. Cell. Biol., 11, 1785, 1991).

A wide range of additional host/vector systems suitable for expressing a peptide or fusion protein of the present invention are available publicly, and described, for example, in Sambrook et al. (in: Molecular cloning, A laboratory manual, second edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989).

Means for introducing the isolated nucleic acid molecule or a gene construct comprising same into a cell for expression are well-known to those skilled in the art. The technique used for a given organism depends on the known successful techniques. Means for introducing recombinant DNA into cells include microinjection, transfection mediated by DEAE-dextran, transfection mediated by liposomes such as by using lipofectamine (Gibco, Md., USA) and/or cellfectin (Gibco, Md., USA), PEG-mediated DNA uptake, electroproporation and microparticle bombardment such as by using DNA-coated tungsten or gold particles (Agracetus Inc., WI, USA) amongst others.

3. Antibody Inhibitors

The present invention also includes an antibody-based AP-1 signaling inhibitor and/or uses thereof for the treatment and/or prophylaxis of ARDS and complications thereof. For example, an antibody or antibody-based inhibitor of AP-1 signaling is used in the preparation of a medicament for the treatment or prophylaxis of ARDS and/or complications thereof. Estus et al., J. Cell. Biol., 127: 1717-1727, 1994, for example, describe antibodies against c-Jun or Fos that are capable of inhibiting AP-1 signaling.

Methods for producing additional antibodies will be apparent to the skilled artisan. For example, a monoclonal antibody against a protein involved in or necessary for AP-1 signaling (e.g., MAPKK, MAPKK, JNK or c-Jun, or c-Fos or Cdc42 or Pak1 or Rac1) is produced by immunizing an animal, e.g., a mouse, with said protein or an immunogenic fragment thereof. Optionally, the protein or fragment is injected in the presence of an adjuvant, such as, for example Freund’s complete or incomplete adjuvant, lyssolecithin and/or dinitrophenol to enhance the immune response to the immunogen. Spleen cells are then obtained from the immunized animal. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed, for example, the spleen cells and myeloma cells may be combined with a nonionic detergent or electrofused and then grown in a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and growth media in which the cells have been grown is tested for the presence of binding activity against the polypeptide (immunogen). Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies are isolated from the supernatants of growing hybridoma colonies using methods such as, for example, affinity purification using the immunogen to isolate an antibody capable of binding thereto. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies are then harvested from the ascites fluid or the blood of such an animal subject. Contaminants are removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and/or extraction.

To ensure that the antibody is capable of entering a cell and inhibiting or reducing AP-1 signaling an antibody fragment or recombinant antibody may be produced and conjugated to a protein transduction domain, for example, a protein transduction domain described herein.

4. Small Molecule Inhibitors

In a still further example of the invention, an AP-1 signaling inhibitor is a small molecule. For example, CEP-1347 (or 3,9 bis(ethylthio)methyl)-K252a) is capable of inhibiting AP-1 signaling (Kane et al., J. Med. Chem., 40: 1863-1869, 1997). The present invention thus includes a small molecule AP-1 signaling inhibitor and/or uses thereof for the treatment and/or prophylaxis of ARDS and complications thereof. For example, a small molecule inhibitor of AP-1 signaling is used in the preparation of a medicament for the treatment or prophylaxis of ARDS and/or complications thereof.

Alternatively, a natural product such as, for example, curcumin, dihydrouguaretic acid or an anthraquinone derivative are capable of inhibiting AP-1 signaling by inhibiting the binding of AP-1 to an AP-1 binding site (Hahn et al., Cancer Lett., 184: 89-96, 2002; Park et al., Cancer Lett., 127: 23-28, 2998; and Goto et al., J. Antibiot., 51: 539-544, 1998).

Tsushima et al., J. Medicinal Chem., 49: 80-91, 2006, describes a number of small molecule inhibitors of AP-1 signaling based on the structure of a peptide inhibitor. These compounds include (R)-4-(4-methylpentanoyl)-8-(4-methylpentylidene)-1-thia-4-azaspiro[4,5]decane-3-carboxylic acid; (R)-8-(3-methylbutylidene)-4-(5-methylhexanoyl)-1-thia-4-azaspiro[4,5]decane-3-carboxylic acid; and 3-[2-isobutoxy-5-(4-isobutoxybenzoyloxy)phenyl]propionic acid. Tsushima et al., additionally describes methods for identifying additional AP-1 signaling inhibitors.

Alternatively, suitable small molecule inhibitor is identified from a library of small molecules. Techniques for synthesizing small organic compounds will vary considerably depending upon the compound, however such methods will be well known to those skilled in the art. In one embodiment, informatics is used to select suitable chemical building blocks from known compounds, for producing a combinatorial library. For example, QSR (Quantitative Structure Activity Relationship) modeling approach uses linear regressions or regression trees of compound structures to determine suitability. The software of the Chemical Computing Group, Inc. (Montreal, Canada) uses high-throughput screening experimental data on active as well as inactive compounds, to create a probabilistic QSR model, which is subsequently used to select lead compounds. The binary QSR method is based upon three characteristic properties of compounds that form a "descriptor" of the likelihood that a particular compound will or will not perform a required function; partial
charge, molar refraactivity (bonding interactions), and logP (lipophilicity of molecule). Each atom has a surface area in the molecule and it has these three properties associated with it. All atoms of a compound having a partial charge in a certain range are determined and the surface areas (Van der Walls Surface Area descriptor) are summed. The binary QSAR models are then used to make activity models or ADMET models, which are used to build a combinatorial library. Accordingly, lead compounds identified in initial screens, can be used to expand the list of compounds being screened to thereby identify highly active compounds.

Assays to Identify and Isolate Therapeutic and Prophylactic Compounds

[0237] In an additional or alternative embodiment of the invention, a compound library or mixture is screened by one or more of the following assays to isolate there from a compound that reduces neutrophilic inflammation and/or enhances re-epithelialization and, as a consequence, is suitable for the treatment of ARDS and complications thereof, and for the prophylactic treatment of clinical disorders associated with the development of ARDS. This may require repeated screening to eventually purify the compound free or substantially free of contaminants.

[0238] Alternatively, a previously-isolated compound not known to have the ability to reduce neutrophilic inflammation and/or enhance re-epithelialization is screened by one or more of the foregoing assays to determine whether or not it has this property and is therefore suitable for the treatment of ARDS and complications thereof, and for the prophylactic treatment of clinical disorders associated with the development of ARDS.

[0239] It is to be understood that the following assays can be utilized in separately or collectively and in any order determined empirically to identify or isolate the desired product at a level of purity and having an activity ascribed to it suitable for the treatment of ARDS and its complications. The activity and purity of the compounds determined by these assays make the compound suitable for formulations e.g., injectable and/or inhalable medicaments for treatment and/or prophylaxis.

[0240] The present invention encompasses the use of any in silico or in vitro analytical method and/or industrial process for carrying the screening methods described herein into a pilot scale production or industrial scale production of a compound identified in such screens. This invention also provides information for such production method(s). Accordingly, the present invention also provides a process for identifying or determining a compound supra, said method comprising:

[0241] (i) performing a method as described herein according to any embodiment to thereby identify a compound;

[0242] (ii) optionally, determining the amount of the compound;

[0243] (iii) optionally, determining the structure of the compound; and

[0244] (iv) providing the compound or the name or structure of the compound such as, for example, in a paper form, machine-readable form, or computer-readable form.

[0245] As used herein, the term “providing the compound” shall be taken to include any chemical or recombinant synthetic means for producing said compound (with or without derivitization) or alternatively, the provision of a compound that has been previously synthesized by any person or means.

[0246] In one example, the compound or the name or structure of the compound is provided with an indication as to its use e.g., as determined by a screen described herein.

[0247] The present invention additionally provides a process for producing a compound supra, said method comprising:

[0248] (i) performing a method as described herein according to any embodiment to thereby identify or determine a compound; and

[0249] (ii) optionally, determining the amount of the compound;

[0250] (iii) optionally, determining the structure of the compound;

[0251] (iv) optionally, providing the name or structure of the compound such as, for example, in a paper form, machine-readable form, or computer-readable form; and

[0252] (v) providing the compound.

[0253] In the case of a peptide, the method optionally further comprises providing a chemical derivative of the peptide by protection of the amino- or carboxy-terminus, cyclization of the peptide or construction of the peptide as a retroinverso peptide. The method also optionally involves identifying and/or validating one or more peptide(s) compounds such as by displaying a peptide in vitro or on a bacteriophage particle, e.g., using lytic T7-based or non-lytic M13-based phage display, identifying the sequence of the peptide, making the compound by recombinant means or peptide chemistry, and testing the ability of the peptide to produce a desired effect such as reduced or prevented neutrophilic inflammation or inhibition of a specific protein interaction involved in a neutrophilic inflammatory response. Preferably, the peptide is displayed within a protein-based scaffold e.g., a scaffold structure derived from lipopetin, ankyrin repeats, fibronectin, kunitz domains, A-domains, affibodies etc. Alternatively the inhibitory peptide can be grafted into such a protein based scaffold in order to enhance stability or improve stability.

[0254] In one example, the compound or the name or structure of the compound is provided with an indication as to its use e.g., as determined by a screen described herein.

[0255] The present invention also provides a method of manufacturing a compound identified by a screening method described herein according to any embodiment for use in medicine comprising:

[0256] (i) performing a method as described herein according to any embodiment to thereby identify or determine a compound; and

[0257] (ii) using the compound in the manufacture of a therapeutic for use in medicine.

[0258] In one example, the method comprises the additional step of isolating the compound. Alternatively, a compound is identified and is produced for use in the manufacture of a compound for use in medicine.

1. Assays Based Upon AP-1 Signaling Inhibitory Activity

[0259] In addition to providing a variety of AP-1 signaling inhibitors, the present invention contemplates identification of new inhibitory compounds. Suitable compounds for testing will be apparent to the skilled artisan based on the foregoing description.

[0260] The ability of a compound to inhibit AP-1 signaling is then determined by any of a variety of assays.
For example, Tsuchida et al., supra, describe an enzyme linked immunoassay (ELISA) that uses a double stranded oligonucleotide comprising an AP-1 binding site and an AP-1 bZIP peptide, The AP-1 bZIP peptide is coated onto a microtiter plate and blocked. Labeled oligonucleotide (e.g., digoxigenin labeled oligonucleotide) is added to the microtiter plate in the presence or absence of a test compound. Following washing to remove unbound oligonucleotide, the amount of label bound to the AP-1 peptide is determined. A compound that reduces the level of oligonucleotide bound to the peptide is considered to inhibit AP-1 signaling by virtue of inhibiting AP-1 transcriptional regulation.

An additional assay to determine an AP-1 signaling inhibitor comprises producing or obtaining a cell comprising a reporter gene operably connected to a promoter comprising an AP-1 binding site. The cell is then contacted with a test compound for a time and under conditions sufficient to inhibit or reduce AP-1 signaling and the level of reporter gene expression determined. A compound that reduces reporter gene expression is considered to inhibit or reduce AP-1 signaling.

Alternatively, a reverse hybrid assay is performed to identify an AP-1 signaling inhibitor. For example, a reverse two-hybrid assay is performed to identify a compound that inhibits interaction of two proteins, the interaction of which is required for AP-1 signaling. For example, a compound is identified that inhibits or reduces the interaction between JNK and c-Jun, a MAP kinase kinase kinase and JNK, JNK and JIP, or any of the proteins that interact to form AP-1. For example, an assay is performed to identify a compound that inhibits c-Jun dimerization. Reverse hybrid methods will be apparent to the skilled artisan and/or described in Watt et al. (USSN 09/227,652) or Erickson et al. (WO95/26400).

2. Assays Based Upon Ability to Inhibit Apoptosis and/or Necrosis
In one example of the invention, an AP-1 signaling inhibitor is also capable of inhibiting apoptosis and/or necrosis. In such assays, cell death can be artificially-induced by exposure to UV or gamma irradiation, exposure to TRAIL or exposure to apoptotic DNA damaging agents such as the drugs Etoposide or Cisplatin. Potential AP-1 signaling inhibitors are applied either before or after the exposure to the cytotoxic condition or irradiation, in order to see if they have a protective function in reducing the amount of cell death.

Methods for determining a compound that inhibits apoptosis will be apparent to the skilled artisan. For example, APOPTEST (available from Immunotech) stains cells early in apoptosis, and does not require fixation of the cell sample (Martin et al., 1994). This method utilizes an annexin V antibody to detect cell membrane reconfiguration that is characteristic of cells undergoing apoptosis. Apoptotic cells stained in this manner can then sorted either by fluorescence activated cell sorting (FACS), ELISA or by adhesion and panning using immobilized annexin V antibodies.

Alternatively, a terminal deoxynucleotidyl transferase-mediated biotinylated nick end-labeling (TUNEL) assay is used to determine the level of cell death. The TUNEL assay uses the enzyme terminal deoxynucleotidyl transferase to label 3'-OH DNA ends, generated during apoptosis, with biotinylated nucleotides. The biotinylated nucleotides are then detected by using streptavidin conjugated to a detectable marker. Kits for TUNEL staining are available from, for example, Intergen Company, Purchase, N.Y.

Alternatively, or in addition, an activated caspase, such as, for example, Caspase 3 is detected. Several caspases are effectors of apoptosis and, as a consequence, are only activated to significant levels in a cell undergoing programmed cell death. Kits for detection of an activated caspase are available from, for example, Promega Corporation, Madison Wis., USA. Such assays are useful for both immunocytochemical or flow cytometric analysis of cell death.

Methods for detecting necrosis or determining the level of necrosis, e.g., in a sample comprising cells are known in the art and/or described, for example, in Lemaire et al., Cell Death and Differentiation, 6: 813-820, 1999. The invention also encompasses the use of fluorescent activated cell sorting (FACS) to sort living or dying cells in a population of cells.

3. Assays Based Upon Cellular Proliferative Activity
In a further example of the invention, an AP-1 signaling inhibitor is also capable of inducing and/or enhancing proliferation of epithelial cells, especially alveolar epithelial cells. Methods for determining a compound that induces or enhances proliferation will be apparent to the skilled artisan. For example, incorporation of 3H-thymidine or 14C-thymidine into DNA as it is synthesized is an assay for DNA synthesis associated with cell division. In such an assay, cell is incubated in the presence of labeled thymidine for a time and under condition sufficient for cell division to occur. Following washing to remove any unincorporated thymidine, the amount of label (e.g., the radioactive label) in the sample is detected, e.g., using a scintillation counter. The amount of label detected is indicative of the level of proliferation of one or more cells in the sample. Assays for the detection of thymidine incorporation into a live cell are available from, for example, Amersham Pharmacia Biotech.

In another embodiment, cellular proliferation is measured using a 3-(4,5-dimethylthiazol-2)-2,5-diphenyltetrazolium bromide (MTT) assay. In such an assay, MTT is contacteld to live cells for a time and under conditions sufficient for cellular proliferation to occur. The yellow tetrazolium MTT is reduced by metabolically active cells, in part by the action of dehydrogenase enzymes, to generate reducing equivalents such as NADH and NADPH. The resulting intracellular purple formazan is then solubilized and quantified by spectrophotometric means. Assay kits for MTT assays are available from, for example, American Type Culture Collection.

Alternative assays for determining cellular proliferation, include, for example, measurement of DNA synthesis by BrdU incorporation (by ELISA or immunohistochemistry, kits available from Amersham Pharmacia Biotech), expression of proliferating cell nuclear antigen (PCNA) (by ELISA, FACS or immunohistochemistry, kits available from Oncogene Research Products) or a Focchast cell proliferation assay that detects DNA synthesis (available from Trevigen Inc.)

Alternatively, the growth rate of the cell is determined, for example, manually, by, for example observing or measuring the size of a colony of cells over a period of time or, alternatively or in addition counting the number of cells over a period of time.

Formulations
A compound of the invention as described herein according to any embodiment is formulated for therapy or prophylaxis with a carrier or excipient e.g., suitable for inhalation or injection.
[0274] The term “carrier or excipient” as used herein, refers to a carrier or excipient that is conventionally used in the art to facilitate the storage, administration, and/or the biological activity of an active compound. A carrier may also reduce any undesirable side effects of the active compound. A suitable carrier is, for example, stable, e.g., incapable of reacting with other ingredients in the formulation. In one example, the carrier does not produce significant local or systemic adverse effect in recipients at the dosages and concentrations employed for treatment. Such carriers and excipients are generally known in the art. Suitable carriers for this invention include those conventionally used, e.g., water, saline, aqueous dextrose, dimethyl sulfoxide (DMSO), and glycols are preferred liquid carriers, particularly (when isotonic) for solutions. Suitable pharmaceutical carriers and excipients include starch, cellulose, glucose, lactose, sucrose, gelatin, malt, rice, flour, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, glycerol, propylene glycol, water, ethanol, and the like.

[0275] The skilled artisan will be aware of a suitable carrier or excipient. For example, a carrier or excipient does not inhibit the anti-inflammatory activity and/or mitogenic activity of an AP-1 signaling inhibitor. In one example, the carrier or excipient permits the inhibitor to inhibit or reduce neutrophil inflammation in the lung and/or to induce alveolar re-epithelialization.

[0276] The formulations can be subjected to conventional pharmaceutical expedients, such as sterilization, and can contain a conventional pharmaceutical additive, such as a preservative and/or a stabilizing agent and/or a wetting agent and/or an emulsifying agent and/or a salt for adjusting osmotic pressure and/or a buffer and/or other additives known in the art. Other acceptable components in the composition of the invention include, but are not limited to, isotonicity-modifying agents such as water and/or saline and/or a buffer including phosphate, citrate, succinate, acetic acid, or other organic acids or their salts.

[0277] In an example, a formulation includes one or more stabilizers, reducing agents, anti-oxidants and/or anti-oxidant chelating agents. The use of buffers, stabilizers, reducing agents, anti-oxidants and chelating agents in the preparation of compositions, is known in the art and described, for example, in Wang et al. J. Parent. Drug Assn. 34:452-462, 1980; Wang et al. J. Parent. Sci. Tech. 42:S4-S26 (Supplement), 1988. Suitable buffers include acetate, adipate, benzoate, citrate, lactate, maleate, phosphate, tartarate, borate, trihydroxymethyl aminomethane), succinate, glycine, histidine, the salts of various amino acids, or the like, or combinations thereof. Suitable salts and isotonicizers include sodium chloride, dextrose, mannitol, sucrose, trehalose, or the like. Where the carrier is a liquid, it is preferred that the carrier is hypotonic or isotonic with oral, conjunctival, or dermal fluids and has a pH within the range of 4.5-8.5. Where the carrier is in powdered form, it is preferred that the carrier is also within an acceptable non-toxic pH range.

[0278] In another example, a formulation as described herein according to any embodiment additionally comprises a compound that enhances or facilitates uptake of a compound. Suitable dermal permeation enhancers are, for example, a lipid disrupting agent (LDA), a solubility enhancer, or a surfactant.

[0279] LDAs are typically fatty acid-like molecules proposed to fluidize lipids in the human skin membrane. Suitable LDAs are described, for example, in Francoeur et al., Pharm. Res., 7: 621-627, 1990 and U.S. Pat. No. 5,503,843. For example, a suitable LDA is a long hydrocarbon chain with a cis-unsaturated carbon-carbon double bond. These molecules have been shown to increase the fluidity of the lipids, thereby increasing drug transport. For example, oleic acid, cetyl alcohol, decanoic acid, and butene diol are useful LDAs.

[0280] Solubility enhancers act by increasing the maximum concentration of drug in a composition, thus creating a larger concentration gradient for diffusion. For example, a lipophilic vehicle isopropyl myristate (IPM) or an organic solvent ethanol or N-methyl pyrrolidinone (NMP) or dimethyl sulfoxide (DMSO) are suitable solubility enhancers (Jin et al., Pharm. Res. 8: 938-944, 1991; and Yoneto et al., J. Pharm. Sci. 84: 853-860, 1995).

[0281] Surfactants are amphiphilic molecules capable of interacting with the polar and lipid groups in the skin. These molecules have affinity to both hydrophilic and hydrophobic groups, which facilitate in traversing complex regions of the dermis. Suitable surfactants include, for example, an anionic surfactant laurel sulfate (SDS) or a nonionic surfactant polysorbate 80 (Tween 80). Suitable surfactants are described, for example, in Sarbandar et al., J. Pharm. Sci. 75: 176-181, 1986.

[0282] In another example, the formulation is a microemulsion. Microemulsions are useful for enhancing transdermal delivery of a compound. Characteristics of such microemulsion systems are sub-micron droplet size, thermodynamic stability, optical transparency, and solubility of both hydrophilic and hydrophobic components. Microemulsion systems have been shown to be useful for transdermal delivery of compounds and to exhibit improved solubility of hydrophobic drugs as well as sustained release profiles (Lawrence, et al. Int. Journal of Pharmaceutics 111: 63-72, 1998).

[0283] In another example, a formulation comprises a peptidyl moiety conjugated to a hydrolysable polyethylene glycol (PEG) essentially as described by Tsubery et al., J. Biol. Chem. 279 (37) pp. 38118-38124. Without being bound by any theory or mode of action, such formulations provide for extended or longer half-life of the peptide moiety in circulation.

[0284] In another example, a formulation comprises a nanoparticle comprising the peptide moiety or other active ingredient bound to it or encapsulated within it. Without being bound by any theory or mode of action, delivery of a peptidyl composition from a nanoparticle may reduce renal clearance of the peptide(s).

[0285] In another example, a formulation comprises a liposome carrier or excipient to facilitate uptake of an inhibitor into a cell. Liposomes are considered to interact with a cell by stable absorption, endocytosis, lipid transfer, and/or fusion (Egerdie et al., J. Urol. 142:300, 1989). For example, liposomes comprise molecular films, which fuse with cells and provide optimal conditions for wound healing (K. Reimer et al., Dermatology 195(suppl. 2):93, 1999). Generally, liposomes have low antigenicity and can be used to encapsulate and deliver components that cause undesirable immune responses in patients (Natsume et al., Jpn. J. Cancer Res. 91:363-367, 2000).

[0286] For example, anionic or neutral liposomes often possess excellent colloidal stability, since substantially no aggregation occurs between the carrier and the environment. Consequently their biodistribution is excellent, and their potential for irritation and cytotoxicity is low.
Alternatively, cationic liposomal systems, e.g. as described in Mauer et al., Molecular Membrane Biology, 16: 129-140, 1999 or Maedel et al., BBA 1464: 251-261, 2000 are useful for delivering compounds into a cell. Such cationic systems provide high loading efficiencies. Moreover, PEGylated cationic liposomes show enhanced circulation times in vivo (Sample BBA 1510, 152-166, 2001).

Amphoteric liposomes are a recently described class of liposomes having an anionic or neutral charge at pH 7.4 and a cationic charge at pH 4. Examples of these liposomes are described, for example, in WO 02/066490, WO 02/066012 and WO 03/070735. Amphoteric liposomes have been found to have a good biodistribution and to be well tolerated in animals and they can encapsulate nucleic acid molecules with high efficiency.

U.S. Ser. No. 09/738,046 and U.S. Ser. No. 10/218, 797 describe liposomes suitable for the delivery of peptides or proteins into a cell.

Injectable Formulations

Injectable formulations comprising peptide(s) of the invention or other active ingredient and a suitable carrier or excipient preferably have improved stability and/or rapid onset of action, and are for intravenous, subcutaneous, intra-dermal or intramuscular injection.

For parenteral administration, the peptidyl component or other active ingredient, may be administered as injectable doses of a solution or suspension in a physiologically acceptable diluent with a pharmaceutical carrier which can be a sterile liquid such as water or oil e.g., petroleum, vegetable or synthetic oil including any one or more of peanut oil, soybean oil, mineral oil, etc. Surfactant and other pharmaceutically acceptable adjuvants or excipients may be included. In general, water, saline, aqueous dextrose or other related sugar solution, ethanol or glycol e.g., polyethylene glycol or propylene glycol, is a preferred carrier.

The injectable formulations may also contain a chelator e.g., EDTA, and/or a dissolution agent e.g., citric acid. Such components may assist rapid absorption of the active ingredient into the blood stream when administered by injection.

One or more solubilizing agents may be included in the formulation to promote dissolution in aqueous media. Suitable solubilizing agents include e.g., wetting agents such as polysorbates, glycerin, a poloxamer, non-ionic surfactant, ionic surfactant, food acid, food base e.g., sodium bicarbonate, or an alcohol. Buffer salts may also be included for pH control.

Stabilizers are used to inhibit or retard drug decomposition reactions in storage or in vivo which include, by way of example, oxidative reactions, hydrolysis and proteolysis. A number of stabilizers may be used e.g., protease inhibitors, polysaccharides such as cellulose and cellulose derivatives, and simple alcohols, such as glycerol; bacteriostatic agents such as phenol, m-cresol and methylparaben; isotonic agents, such as sodium chloride, glycerol, and glucose; lecithins, such as example natural lecithins (e.g. egg yolk lecithin or soya bean lecithin) and synthetic or semisynthetic lecithins (e.g. dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine or distearoylphosphatidylcholine; phosphatidic acids; phosphatidylethanolamines; phosphatidylserines such as distearoylphosphatidylserine, dipalmitoylphosphatidylserine and diarachidoylphosphatidylserine; phosphatidylglycerols; phosphatidylinositol, cardiolipins, sphingomyelins. In one example, the stabilizer may be a combination of glycerol, bacteriostatic agents and isotonic agents.

In one example, the peptidyl component or other active ingredient of an injectable formulation is provided as a dry powder in a sterile vial or ampule. This is mixed with a pharmaceutically acceptable carrier, excipient, and other components of the formulation shortly before or at the time of administration. Such an injectable formulation is produced by mixing components such as a carrier and/or excipient e.g., saline and/or glycerol and/or dissolution agent and/or chelator etc to form a solution to produce a "diluent", and then and sterilizing the diluent e.g., by heat or filtration. The peptidyl component or other active agent is added separately to sterile water to form a solution, sterile-filtered, and a designated amount is placed into each of a number of separate sterile injection bottles. The peptide or other active agent solution is then lyophilized to form a powder and stored e.g., separately from the diluent to retain its stability. Prior to administration, the diluent is added to the injection bottle containing the dried peptidyl component or other active agent. After the predetermined amount of formulation is injected into the patient, the remaining solution may be stored, e.g., frozen or refrigerated.

In another example, the formulation is prepared as a frozen mixture ready for use upon thawing. For example, the peptidyl component or other active agent is combined with the diluent, sterile filtered into multi-use injection bottles or ampoules and frozen prior to use.

Intranasal Formulations

For intranasal administration, powdery preparations having improved absorbability have been proposed. They are prepared e.g., by adsorbing physiologically active linear peptides onto a polyvalent metal compound such as hydroxyapatite or calcium carbonate (e.g., EP 0 681 833 A2). Peptides can be cyclized to improve their stability and resistance to peptidases in the nasal mucosa.

Preferably, the peptide is dispersed homogeneously in a and adsorbed homogeneously onto a physiologically acceptable particulate carrier, which can be a physiologically acceptable powdery or crystalline polyvalent metal carrier and/or organic carrier, whose mean particle size is in the range of 20 to 500 microns.

Suitable polyvalent metal component of the carrier include physiologically acceptable metal compounds having more than 2 valency, and may include, for example, aluminum compounds, calcium compounds, magnesium compounds, silicon compounds, iron compounds and zinc compounds. Such metal compounds are commonly used as excipients, stabilizers, filling agents, disintegrants, lubricants, adsorbents and coating agents for medical preparations.

Preferred aluminum compounds include, for example, dry aluminum hydroxide gel, aluminum hydroxychloride, synthetic aluminum silicate, light aluminum oxide, colloidal aluminum silicate hydrate, aluminum magnesium hydroxide, aluminum hydroxide, aluminum hydroxide gel, aluminum sulfate, dihydroxyaluminum aminoacetate, aluminum stearate, natural aluminum silicate, aluminum monostearate and potassium aluminum sulfate. Among them, the preferable aluminum compound is aluminum hydroxide.

Preferred calcium compounds include, for example, apatite, hydroxyapatite, calcium carbonate, calcium disodium EDTA, calcium chloride, calcium citrate, calcium glycerophosphate, calcium gluconate, calcium silicate, calcium oxide, calcium hydroxide, calcium stearate, calcium phos-
phate tribasic, calcium lactate, calcium pantothenate, calcium oleate, calcium palmitate, calcium D-pantothenate, calcium alginate, calcium phosphate anhydride, calcium hydrogenphosphate, calcium primary phosphate, calcium acetate, calcium saccharate, calcium sulfate, calcium secondary phosphate, calcium para-aminoacetylace and bio-calculitie compounds. Bio-calculitie compounds such as crystalline calcium pyrophosphate, calcium secondary phosphate, octocalcium phosphate, tricalcium phosphate and crystalline calcium oxalate are analogous to hydroxyapatite and may also be used as a physiologically acceptable powder or crystalline carrier. Preferable calcium compounds are hydroxyapatite, calcium carbonate or calcium lactate.

0302 Preferred magnesium compound components of the physiologically acceptable powder or crystalline carrier include, for example, magnesium L-aspartate, magnesium chloride, magnesium gluconate, magnesium aluminum silicate, magnesium silicate, magnesium oxide, magnesium hydroxide, magnesium stearate, magnesium carbonate, magnesium alumininate metasilicate, magnesium sulfate, sodium magnesium silicate and synthetic sodium magnesium silicate. Among them, preferable magnesium compound is magnesium stearate.

0303 Other metal compounds with more than 2 valency may be silicon compounds such as silicon oxide hydrate, light silieic anhydride, synthetic hydroxalite, diatomaceous earth and silicon dioxide; iron compounds such as ferrous sulfate; and zinc compounds such as zinc chloride, zinc stearate and zinc sulfate.

0304 Particulate organic carriers may be a fine powder from grain, preferably of rice, wheat, buck wheat, barley, soybean, corn, millet, foxtail millet and the like.

0305 Such formulations may optionally comprise an absorption enhancer. Preferred absorption enhancers which may be one of the components of the usually administrable composition is a pharmaceutically acceptable natural (e.g. cellulose, starch and their derivatives) or unnatural polymer material. A preferred embodiment of the cellulose and its derivatives is microcrystalline cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, hydroxystarch, pullulan and the like. Other natural polymers such as agar, sodium alginate, chitin, chitosan, egg yolk lecithin, gum arabic, tragacanth, gelatine, collagen, casein, albumin, fibrinogen, and fibrin may also be used as absorption enhancer. A preferable embodiment of the unnatural polymer is sodium polycrylate, polyvinyl pyrrolidone, and the like. Preferred absorption enhancers are fine powder of rice, glutinous rice starch, wheat starch, pregelatinized starch, dextrin, sodium carboxymethyl starch, hydroxypropyl starch, pullulan and the like. Preferable absorption enhancers are fine powder of glutinous rice, starch, gelatine, hydroxypropyl cellulose, hydroxyproplymethyl cellulose, polyvinyl pyrrolidone, egg yolk lecithin, gum arabic, tragacanth or a mixture thereof. More preferable absorption enhancers are fine powder of glutinous rice, starch, gelatine, hydroxypropyl cellulose, hydroxyproplymethyl cellulose, polyvinyl pyrrolidone, tragacanth or a mixture thereof. Even more preferable absorption enhancers are fine powder of glutinous rice or hydroxypropyl cellulose. Most preferable absorption enhancer is fine powder of glutinous rice. The mean particle size of the absorption enhancer is preferably not more than 250 microns, more preferably from 20 to 180 microns.

0306 The above absorption enhancers may be used alone or in combination of two or more absorption enhancers in the physiologically acceptable powder or crystalline carrier.

0307 Water-soluble carriers are preferred to increase adsorption of the active substance in the nasal mucosa. Alternatively, this is achieved by homogeneous dispersion of the active substance in a water-insoluble carrier e.g., hydroxyapatite, calcium carbonate, calcium lactate, aluminum hydroxide or magnesium stearate, preferably in the presence of an absorption enhancer, and homogeneously adsorbing the active substance thereonto.

0308 Calcium carbonate, calcium lactate, aluminum hydroxide or magnesium stearate is usually used as a stabilizer, lubricant, agent to add luster, excipient, dispersing agent or coating agent for a pharmaceutical preparation; however, it has been found that these compounds having a mean particle size of not more than 500 microns can be used as a carrier for the intranasal formulations, and promote absorption of a physiologically active substances into the body by nasal administration.

Additional Components

0309 In another example of the invention, a formulation comprises an additional component or compound e.g., a compound associated with increased re-epithelialization. For example, the formulation can comprise a growth factor, such as, for example, transforming growth factor 13 and/or platelet derived growth factor and/or nerve growth factor and/or heparin binding epidermal growth factor and/or epidermal growth factor and/or keratinocyte growth factor and/or platelet derived activating factor and/or platelet derived growth factor and/or a fibroblast growth factor and/or a keratinocyte growth factor. For example, Paulakkainen et al., J. Surg. Res., 58: 321-329, 1995 describe formulations comprising transforming growth factor 13; compositions comprising platelet derived growth factor have been described by Lepisto et al., J. Surg. Res., 53: 596-601, 1992; formulations comprising fibroblast growth factor are described, for example, in Brown et al., Surg., 121: 372-380, 1997; formulations comprising nerve growth factor are described in, for example, Matsuda et al., J. Exp. Med., 187: 297-306, 1998.

Modes of Administration

0310 The present invention contemplates any modes of administration of a medicament or formulation as described herein, however one or a plurality of intranasal and/or injected doses is preferred. Combinations of different administration routes are also encompassed e.g., intranasal and intravenous injection.

0311 Compositions according to the present invention are administered in an aqueous solution as a nasal spray or pulmonary spray and may be dispensed in spray form by a variety of methods known to those skilled in the art. Preferred systems for dispensing liquids as a nasal spray are disclosed in U.S. Pat. No. 4,511,069. Such formulations may be conveniently prepared by dissolving compositions according to the present invention in water to produce an aqueous solution, and rendering the solution sterile. The formulations may be presented in multi-dose containers, for example in the sealed dispensing system disclosed in U.S. Pat. No. 4,511,069. Other suitable nasal spray delivery systems have been
described in Transdermal Systemic Medication, Y. W. Chien Ed., Elsevier Publishers, New York, 1985; and in U.S. Pat. No. 4,778,810 (each incorporated herein by reference). Additional aerosol delivery forms may include, e.g., compressed air-, jet-, ultrasonic-, and piezoelectric nebulizers, which deliver the biologically active agent dissolved or suspended in a pharmaceutical solvent, e.g., water, ethanol, or a mixture thereof.

[0312] Nasal and pulmonary spray solutions of the present invention typically comprise the drug or drug to be delivered, optionally formulated with a surface active agent, such as a nonionic surfactant (e.g., polysorbate-80), and one or more buffers. In some embodiments of the present invention, the nasal spray solution further comprises a propellant. The pH of the nasal spray solution is optionally between about pH 6.8 and 7.2, but when desired the pH is adjusted to optimize delivery of a charged macromolecular species (e.g., a therapeutic protein or peptide) in a substantially unionized state. The pharmaceutical solvents employed can also be a slightly acidic aqueous buffer (pH 4-6). Suitable buffers for use within these compositions are as described above or as otherwise known in the art. Other components may be added to enhance or maintain chemical stability, including preservatives, surfactants, dispersants, or gases. Suitable preservatives include, but are not limited to, phenol, methyl paraben, para- ben, m-cresol, thiomersal, benzalkonium chloride, and the like. Suitable surfactants include, but are not limited to, oleic acid, sorbitan trioleate, polysorbates, lecithin, phospho- tidyloleines, and various long chain diglycerides and phospholipids. Suitable dispersants include, but are not limited to, ethylenediaminetetraacetic acid, and the like. Suitable gases include, but are not limited to, nitrogen, helium, chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), carbon dioxide, air, and the like.

[0313] Within alternate embodiments, mucosal formulations are administered as dry powder formulations comprising the biologically active agent in a dry, usually lyophilized, form of an appropriate particle size, or within an appropriate particle size range, for intranasal delivery. Minimum particle size appropriate for deposition within the nasal or pulmonary passages is often about 0.5 micron mass median equivalent aerodynamic diameter (MMAD), commonly about 1 micron MMAD, and more typically about 2 micron MMAD. Maximum particle size appropriate for deposition within the nasal passages is often about 10 micron MMAD, commonly about 8 micron MMAD, and more typically about 4 micron MMAD. Intranasally respirable powders within these size ranges can be produced by a variety of conventional techniques, such as jet milling, spray drying, solvent precipitation, supercritical fluid condensation, and the like. These dry powders of appropriate MMAD can be administered to a patient via a conventional dry powder inhaler (DPI) which rely on the patient’s breath, upon pulmonary or nasal inhalation, to disperse the powders into an aerosolized amount. Alternatively, the dry powder may be administered via air assisted devices that use an external power source to disperse the powder into an aerosolized amount, e.g., a piston pump.

[0314] Dry powder devices typically require a powder mass in the range from about 1 mg to 20 mg to produce a single aerosolized dose ("puff"). If the required or desired dose of the biologically active agent is lower than this amount, the powdered active agent will typically be combined with a pharmaceutical dry bulking powder to provide the required total powder mass. Preferred dry bulking powders include sucrose, lactose, mannitol, glycine, trehalose, human serum albumin (HSA), and starch. Other suitable dry bulking powders include cellobiose, dextran, maltotriose, pectin, sodium citrate, sodium ascorbate, and the like.

[0315] Standard methods are used to administer injectable formulations of the present invention.

[0316] The present invention is described further in the following non-limiting examples:

Example 1

Isolation of an Inhibitor of AP-1 Signaling

[0317] Nucleic acid was isolated from the following bacterial species:

<table>
<thead>
<tr>
<th>Bacterial Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Archaeoglobus fulgidus</td>
<td></td>
</tr>
<tr>
<td>2 Aquifex aeolicus</td>
<td></td>
</tr>
<tr>
<td>3 Aeropyrum pernix</td>
<td></td>
</tr>
<tr>
<td>4 Bacillus subtilis</td>
<td></td>
</tr>
<tr>
<td>5 Boekelmannia peronii TOX6</td>
<td></td>
</tr>
<tr>
<td>6 Borrelia burgdorferi</td>
<td></td>
</tr>
<tr>
<td>7 Chlamydia trachomatis</td>
<td></td>
</tr>
<tr>
<td>8 Escherichia coli K12</td>
<td></td>
</tr>
<tr>
<td>9 Haemophilus influenzae</td>
<td></td>
</tr>
<tr>
<td>10 Helicobacter pylori</td>
<td></td>
</tr>
<tr>
<td>11 Methanobacterium thermoautotrophicum</td>
<td></td>
</tr>
<tr>
<td>12 Methanococcus jannaschii</td>
<td></td>
</tr>
<tr>
<td>13 Methanopyrus kandlerii</td>
<td></td>
</tr>
<tr>
<td>14 Mycoplasma pneumoniae</td>
<td></td>
</tr>
<tr>
<td>15 Neisseria meningitidis</td>
<td></td>
</tr>
<tr>
<td>16 Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td>17 Pyrococcus horikoshii</td>
<td></td>
</tr>
<tr>
<td>18 Thermoplasma volcanium</td>
<td></td>
</tr>
<tr>
<td>19 Thermus aquaticus</td>
<td></td>
</tr>
</tbody>
</table>

[0318] Nucleic acid fragments were generated from the genomic DNA of each genome using 2 consecutive rounds of primer extension amplification using tagged random oligonucleotides with the sequence: PCR amplification was performed using the Klenow fragment of E. coli DNA polymerase I in the following primer extension reaction:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA (100-200 ng)</td>
<td>4 µl</td>
</tr>
<tr>
<td>Oligonucleotide comprising SEQ ID NO: 33 (25 µM)</td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>to 17.4 µl</td>
</tr>
</tbody>
</table>

[0319] Samples were then boiled for 3-5 minutes to denature the nucleic acid isolated from the bacteria, before being snap cooled, to allow the tagged random oligonucleotides to anneal to said nucleic acid. These samples were then added to the following reagents:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klenow buffer</td>
<td>3 µl</td>
</tr>
<tr>
<td>dNTP (2 mM)</td>
<td>3 µl</td>
</tr>
<tr>
<td>Klenow</td>
<td>0.6 µl</td>
</tr>
<tr>
<td>Polyethylene Glycol (8,500)</td>
<td>6 µl</td>
</tr>
</tbody>
</table>
Primer extension reactions were then incubated at 15° C. for 30 minutes, then at room temperature for 2 hours, before being heated to 37° C. for 15 minutes. Samples were boiled for 5 minutes to again denature the nucleic acid, before being snap cooled to allow renaturation of said nucleic acid. Another 0.5 μl of the Klenow fragment of *E. coli* DNA polymerase I was added to each reaction and the samples incubated at 15° C. for 30 minutes, then at room temperature for 2 hours, before being heated to 37° C. for 15 minutes.

Following boiling the samples, following snap cooling another 2 rounds of primer extension were completed using the tagged random oligonucleotide:

5' - GACTCAAGAGACGACGCCAGAGCCAGCTATACATACACAG-3'

To complete this the following reagents were added to the samples of the previous step:

<table>
<thead>
<tr>
<th>Oligonucleotide (25 μM)</th>
<th>4 μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klenow Buffer</td>
<td>1 μl</td>
</tr>
<tr>
<td>dNTP(2 mM)</td>
<td>3 μl</td>
</tr>
<tr>
<td>Klenow</td>
<td>0.5 μl</td>
</tr>
<tr>
<td>H2O</td>
<td>to 40 μl</td>
</tr>
</tbody>
</table>

Samples were then incubated at 15° C. for 30 minutes, then at room temperature for 2 hours, before being heated to 37° C. for 15 minutes.

Samples were boiled for 5 minutes to again denature the nucleic acid, before being snap cooled to allow renaturation of said nucleic acid. Another 0.50 μl of the Klenow fragment of *E. coli* DNA polymerase I was added to each reaction and the samples incubated at 15° C. for 30 minutes, then at room temperature for 2 hours, before being heated to 37° C. for 15 minutes.

Following completion of the primer extension amplification all sample volumes were increased to 5000 with TE buffer and added to an Amicon spin column. These columns were then centrifuged for 15 minutes at 3,800 rpm in a microcentrifuge. Columns were then inverted and 30 μl of TE buffer was added before the columns were centrifuged for 2 minutes at 3,800 rpm, with this fraction collected for later use. The Klenow amplified DNA was then used in subsequent DNA manipulations.

The now purified primer extension products were then used in a PCR reaction with an oligonucleotide comprising the following sequence: 5' - GAGAGAATTCAGGGTCAGACTACAAGGACGACGACGACAAG-3', wherein an EcoRI restriction endonuclease site is shown in bold text, and three stop codons are underlined. Note that each of the stop codons is in a different reading frame.

Thus, the following PCR reaction was used:

<table>
<thead>
<tr>
<th>Oligonucleotide comprising</th>
<th>12 μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ ID NO: 35 (10 μM)</td>
<td>5 μl</td>
</tr>
<tr>
<td>PCR buffer</td>
<td>5 μl</td>
</tr>
<tr>
<td>dNTP (2 mM)</td>
<td>5 μl</td>
</tr>
<tr>
<td>Taq polymerase (Boehringer) 5.5 U/μl</td>
<td>0.4 μl</td>
</tr>
<tr>
<td>H2O</td>
<td>26.6 μl</td>
</tr>
<tr>
<td>Klenow amplified DNA</td>
<td>2 μl</td>
</tr>
</tbody>
</table>

Reactions were then cycled in a thermocycler using the following program:

95° C. for 2 min; 60° C. for 30 sec; 72° C. for 1 min;
95° C. for 20 sec; 60° C. for 30 sec; 72° C. for 1 min (repeated 29 times); and
72° C. for 5 min.

PCR products were then purified using Amicon spins columns which fractionate on the basis of size.

The PCR products were then analyzed by electrophoresis on standard TAE-agarose gels to determine the approximate size of the nucleic acid fragments generated as shown in FIG. 2. The nucleic acid concentration of the samples was also determined.

PCR products from each of the 19 bacterial species were then pooled to generate a biodiverse nucleic acid library. To do so, DNA from each organism was added in an equimolar amount when compared to the amount of nucleic acid added to the pool from the organism with the smallest genome. Between 1 μg and 10 μg of DNA from each organism was used, depending on the genome size of the organism from which the DNA was obtained.

Amplified fragments were digested with EcoRI and Acc651. The resulting fragments were then purified using a QIAquick PCR purification column (Qiagen) essentially according to manufacturer's instructions. The expression vector pMI4-5 (Phylogenetic Limited, Perth, Australia) was also digested with EcoRI and Acc651, treated with shrimp alkaline phosphatase and then purified using a QIAquick PCR purification column (Qiagen) essentially according to manufacturer's instructions. Ligation were then performed at a molar ratio of 10:1 insert:vector, and transformed into TOP10 electrocompetent cells (Invitrogen).

These vectors were then isolated from bacteria using standard methods and transformed into the PR151 yeast strain (with the genotype MALA1; his3, trp1, ura3, 6 LEX-A-LEU2, lys2::3 clp-LYS2, C1H2R, ade2::G418-pZ ero-ade2, met15::Zeo-pBLUE-met15, his5::bygroK). Transforms were then aliquoted and snap frozen in 15% glycerol.

The bait and prey used in the present screen were JUN1 and JUNZ fragments of c-Jun. Briefly, nucleic acid encoding the JUN1 protein was cloned into the prey vector pJF83 in operable connection with a nuclear localisation signal, and a B42 activation domain. The nucleic acid encoding the JUNZ protein was cloned into the bait vector pDD in operable connection with the LexA DNA binding domain. The pDD vector also contains a nucleic acid encoding the HIS3 gene. These vectors were then transformed into the yeast strain PR1480 (with the genotype MALA1; his3, trp1, 13m3, 4 LEX-A-LEU2, lys2::3 clp-LYS2, C1H2R, ade2::2 LEX-A-CYH2-ZEO, his5::1 LEX-A-URAS3-G418).

The yeast that carry the bait and prey proteins and the potential binding peptides were then mass mated, and from approximately 300,000 clones, 95 positives were identified (i.e., approximately 1/3000). Only a few of these primary hits were shown to have activity as AP-1 signaling inhibitors in an AP-1-dependent transcription assay (see below).

Two methods of analysis were used to identify interaction-blocking activity:

The first of these comprised plating approximately 500 cells per half plate onto HTU media containing plates and...
counting the number of colonies growing after 3 days. In these conditions, an interaction of JUN1 and JUNZ enables the cells to grow.

[0342] Accordingly, a reduction in the number of colonies indicates that the library being screened comprises peptide inhibitors of the JUN1/JUNZ interaction.

[0343] The second screening method involved isolation and streaking of 10 individual colonies to new HTU media containing plates and analysing for growth of new single colonies. After 3 days, those that express a peptide inhibitor generally have very little or no new growth, while those that do not express a peptide inhibitor have re-grown a streak of single colonies. As a positive control a known inhibitor of JUN1/JUNZ interaction, FosZ, was used. As a negative control empty pYTH3 vector with no peptide insert was used. A score of 1-10 given depending on growth of 10 individual clones of each peptide compared to the two control samples.

[0344] The score from method 1 and method 2 was then combined to determine if a specific colony expressed a peptide inhibitor of JUN1/JUNZ interaction. In the present case a cell expressing a peptide inhibitor was one that showed >50% reduction of growth compared to negative control in both tests.

[0345] All scoring was performed by two independent individuals and scores of both individuals were combined.

[0346] Following screening peptides comprising a sequence set forth in any one of SEQ ID Nos: 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 or 72 were identified.

[0347] In one validation assay, the ability of the peptides to interact with JUN1 was then confirmed with a forward two-hybrid assay. Each of the identified peptides capable of inhibiting the interaction of JUN1 and JUNZ was cloned into the bait vector pDD. Additionally, nuclease acid encoding a peptide known not to inhibit the interaction between JUN1 and JUNZ was also cloned into pDD. The pDD vector and the JUN1 prey vector was transformed into the yeast strain PKT480 and the interaction of the encoded peptide and JUN1 assessed by determining the amount of growth in the absence of uracil.

[0348] In another validation assay, the ability of the peptides to block AP-1-dependent expression of a luciferase gene was determined. The K562 cell line was stably-transfected with the AP-1 luciferase reporter of the Mercury Profiling kit (Clontech, U.S.A.), and a clonal cell line established. In 24-well tissue culture plate format, K562-AP1 cells were transfected with either pcDNA3-peptide-negative control, pcDNA3-TAM67 (dominant negative cJun) positive control, or pcDNA3-peptide. Transfections were performed using Lipofectamine2000 (Life Technologies), according to manufacturer's instructions, and each transfection included a co-transfected Renilla plasmid as a transfection control. Transfections were incubated for 24 hours and AP-1 expression was induced with PMA. At 48 hours post-transfection, cells were collected and protein lysates extracted for luciferase assay according to Promega’s Dual Reporter Luciferase kit and associated protocols. Luciferase expression levels were measured in a luminometer, and normalised to the expression levels of the Renilla co-transfection control. Luciferase assays were performed in quadruplicate (two independent duplicates). The results for each peptide subjected to statistical analysis of variance (ANOVA) to determine if they were different to TAM67 (Jun positive control for AP-1 inhibition) or pcDNA3-peptide-negative control (negative control for AP-1 activation inhibition/activation).

[0349] This selection process yielded the peptides set forth in SEQ ID Nos: 26-72.

[0350] Base peptide sequences were modified to produce the corresponding retroinverted peptide sequences e.g., to enhance serum stability and/or conjugated to the IAT transport sequence, as exemplified by SEQ ID Nos: 73-120.

Example 2

Inhibition of Neutrophil Infiltration by Inhalation of Peptidyl Inhibitors of AP-1 Signaling in an Animal Model of ARDS and Sepsis

1.1 Materials and Methods

Animals

[0351] 8-12 week old C57/B16 mice were purchased from the Animal Resource Center, Murdoch University, Western Australia and used for all experiments. All experiments were approved by the necessary institutional animal ethics committees and were performed in accordance with the National Health and Medical Research Council (NHMRC) Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.

Peptides

[0352] Peptides used were synthesised by Mimotopes Pty Ltd (Melbourne, Australia) and supplied as a lyophilised powder (purity >90%).

[0353] Peptides comprising the sequences set forth in SEQ ID Nos: 104 and 106 are D-form retro-inverted mimetics of peptides originally identified in a screen for inhibitors of AP-1 signaling e.g., by virtue of inhibiting c-Jun dimerization (as described in Example 1, i.e., peptides comprising amino acid sequences set forth in SEQ ID Nos: 57, 59 and 61, respectively), each being fused to the TAT 10-mer for penetration across cell membranes, with a linking glycine between the peptide and TAT sequence to facilitate the independent folding of each of said components.

Procedure

[0354] Test animals were pre-treated 1 hour before LPS administration, by intra nasal delivery of 10 mg/kg body weight of retroinverted peptide D-PYC35-TAT (SEQ ID NO: 104) or D-PYC36-TAT (SEQ ID NO: 104), or 5 mg/kg body weight D-PYC38-TAT (SEQ 50 ID NO: 106). A negative control was also performed using 10 mg/kg body weight of a scrambled sequence of SEQ ID NO: 104 designated D-PYC36-scrambled-TAT. A repeat treatment of peptide was also administered intranasally with LPS (10 μg/mouse) 1 hour later. Six hours after LPS treatment, bronchoalveolar lavage (BAL) was performed on the animals using 1 ml GKN/0.2% BSA. Cell counts were obtained to determine total cell numbers and differential counts were obtained on cytocentrifuge slide preparations to elucidate the percentage neutrophils in BAL. In control experiments to demonstrate the effect of LPS administration on neutrophilic inflammation, LPS was administered intranasally in the absence of any treatment and bronchoalveolar lavage performed 1 hour or 4 hours or 6 hours later. Data are presented in FIG. 1. The data shows significant induction of neutrophil infiltration into BAL by the LPS treatment, and significantly-reduced neutro-
phil infiltration in BAL in the presence of SEQ ID NO: 104 or 106 or 108, but not in the presence of the scrambled control peptide.

Example 3
Inhibition of Neutrophil Infiltration by Injection of Peptidyl Inhibitors of AP-1 Signaling in an Animal Model of ARDS and Sepsis

1.1 Materials and Methods

20 Animals

[0355] 8-10 week old female C57/B16 mice were purchased from the Animal Resource Centre, Murdoch University, Western Australia and used for all experiments. Mice were maintained free of pathogens at the Telethon Institute for Child Health Research (TICHR). All animal care handling techniques and experimental methods were approved by the TICHR Animal Experimentation Ethics Committee, which operates under the strict guidelines set out by the National Health and Medical Research Council (NHMRC).

Peptides

[0356] Peptides used were synthesised by Mimotopes Pty Ltd (Melbourne, Australia) and supplied as a lyophilised powder (purity >95%).

[0357] Peptides comprising the sequence set forth in SEQ ID NO: 106 is a D-form retro-inverted mimic of a peptide originally identified in a screen for inhibitors of AP-1 signaling e.g., by virtue of inhibiting c-Jun dimerization (as described in Example 1, i.e., the peptide comprising the amino acid sequence set forth in SEQ ID NO: 59, fused to the TAT 10-mer for penetration across cell membranes, with a linking glycine between the peptide and TAT sequence to facilitate the independent folding of each of said components. The peptide designated D-PYC36scrambled-TAT comprises a sequence that is scrambled relative to SEQ ID NO: 106, and acts as a negative control.

Procedure

[0358] Test animals were pre-treated 20 minutes before LPS administration, with an intravenous injection of 10 mg/kg body weight of retroinverted peptide D-PYC36-TAT (SEQ ID NO: 106) or the D-PYC36scrambled-TAT negative control in 200 μl PBS. Repeat injections of peptide or negative control were also performed 2 hours and 4 hours after LPS administration.

[0359] Six hours after LPS treatment, bronchoalveolar lavage (BAL) was performed on the animals using 1 ml GKN/0.2% BSA. Briefly, animals were tracheotomized, and 1 ml PBS was gently instilled to inflate the lungs and then retrieved. This process was repeated three times. Cells were collected by centrifugation of BAL fluid for 7 mins at 1500 rpm. Total cell counts were obtained to determine total cell numbers and differential counts were obtained on cytocentrifuge slide preparations stained using Diff-Quik (Lab Aids Pty Ltd, Narrabeen, Australia) to elucidate the percentage neutrophils in BAL.

[0360] Data are presented in FIG. 2. The data shows significant induction of neutrophil infiltration into BAL by the LPS treatment, and significantly-reduced neutrophil infiltration in BAL by repeated injection of SEQ ID NO: 106, but not following administration of the scrambled control peptide.

SEQUENCE LISTING

```plaintext
<160> NUMBER OF SEQ ID NOS: 165
<210> SEQ ID NO 1
<211> LENGTH: 419
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<221 NAME/KEY: misc_feature
<222 LOCATION: (10...11)
<223 OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221 NAME/KEY: misc_feature
<222 LOCATION: (22...23)
<223 OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221 NAME/KEY: misc_feature
<222 LOCATION: (34...34)
<223 OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221 NAME/KEY: misc_feature
<222 LOCATION: (241...241)
<223 OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221 NAME/KEY: misc_feature
<222 LOCATION: (300...300)
<223 OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221 NAME/KEY: misc_feature
<222 LOCATION: (321...321)
<223 OTHER INFORMATION: n is a, c, g, or t
```
FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (324)...(324)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (333)...(333)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (339)...(339)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (354)...(354)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (356)...(356)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (365)...(365)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (366)...(366)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (378)...(378)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (381)...(381)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (386)...(386)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (388)...(388)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (392)...(392)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (394)...(394)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (397)...(397)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (400)...(400)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (403)...(403)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (407)...(407)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (415)...(415)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<400> SEQUENCE: 1

gggagaccc gcgttgtgtac cngcgtcpga tccngtatgg gtaagctcat cccttaacct
 60
tcctcgtgct tgtgatcttc acaagccttg ggtgtctccc caaaaaagaa gagaaaagga
 120
gtgaattca ggtcagacta caaggcgcag gcggacgaag cttatcaact cagtgatgt
 180
gaaagccgct tctggacaa tgcactgcc cctgcccata ggaatgcacaa gagggttcc 240
naagaccggg tctcgcgaa cctgacagtt ctagaagc acatgttgc caagactacn 300
agtgagacc cttcccgcgac ngcctctgac attaactccnt tttctttta tggcnncaag 360
atcagacga ctaggtgttc gntanmnnnt gntmnctntn tmntgmggt ctgacntgg 419

<210> SEQ ID NO 2
<211> LENGTH: 243
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC6 peptide
<220> FEATURE:
<221> NAME/KEY: micro_feature
<222> LOCATION: (10) ...(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: micro_feature
<222> LOCATION: (22) ...(23)
<223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 2

gggagaccc cngctcgga tcccagatgg gtaagctctc ccctactcct 60
cctccccgtgc tccgatctcc acaagctagt ggtgctctcc caaaaaagag ggaagagcctc 120
gtggagatc gttccagact caagacgac gacgacgcg cttatcactc taagacactt 180
tgaagatgt gcccacatgg catgccgcct aagtaaccac acaacgcctc tcccacccg 240
tga 243

<210> SEQ ID NO 3
<211> LENGTH: 367
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYCS peptide

<400> SEQUENCE: 3

aggtcagact acaagggcga ggaagcaag gttatcaat caacctagc taatgaagag 60
gagagagaga aacaattttg atcggcagaa aagagccggat cctataccga tctctttgta 120
aacagagc aatagcatct taatctcga tagttgtaag aagcctctca tagttgtaag 180
atcagaggt tgagatgcac gacgatctgc tcggtagctg cctatgacca 240
atggggtcg actagtcgag cggccatac cggcctcgac ccggcctcgac 300
cgggctcgc actataaggg cccatgcag taattgtgt tgcacagcttc aacatcagc 360
cctccccca ctcctgctct aacgaa 387

<210> SEQ ID NO 4
<211> LENGTH: 193
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC12 peptide

<400> SEQUENCE: 4

agtgagacc acaagggcga ggaagcaag gttatcaag aatcgcacac aagcctctgg 60
gagagagaga cagccctgg ccggctctgt ggcgtccttc ggctgctgtga 120
tgaccccgtcag cctggatcgc gggactgcata ggcggcgtg ggcggcctcgac 180
-continued

tacgccggcc gc

<210> SEQ ID NO 5
<211> LENGTH: 709
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<222> LOCATION: (10) . .(11)
<223> OTHER INFORMATION: n is a, c, g, or t

<210> SEQ ID NO 6
<211> LENGTH: 255
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC15 peptide

<400> SEQUENCE: 5

aggagaaccon ngcttgctac cmmgctgctg tccagtattg gtaaaccaat ccctaacoctc 60
cctctccttc acatcttgat gcagctcttc caaaaaaaaa caagaaaggta 120
gctgaaata caggcagatg gctatctctag gacagcaagt 240
gattaaga caagaaaaag agcagcttca agatattaa atttgtcttggtgtctgaattga 300
gttacacttc ctctatctgctg tggagattgct cagagatat ttcgatcgtctg 360
acactctctc ggtgctttga asatatgtgtg gatagttatttt ccactatctctgctctggatagttatgat 420
cactctctcg cagctctctc gagcctcttt cagctctctt 480
attgtattg ataactctgatg cctgttccct cctgttccct ctgtttttgattgtattg 540
cgacgcgtttt cagctctctc gagcctctct cttgagctttt cttgagctttt cttgagctttt 600
attctatactgctccctct cagctctctc cagctctctc cagctctctc cagctctctc 660
tggagctctc ccgctctctc tggagctctc tggagctctc 709

<210> SEQ ID NO 7
<211> LENGTH: 244
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC19 peptide

<400> SEQUENCE: 6

agagctggca tccagctatgg tagctatccct taaccttcttc ctcagcctctg atctcatcaca 60
agcattgttg gccccttt cgcccaaat cggcaagctg caattttagtct cgtctctctgctctctct 120
gacagcgac gaaaggctt ataatctcgtg tcaaatcagc gagccccgagc 180
agcatttata aataacaat gccgccccgccgctcctgctcctgctctgctctcctctctct 240
cctttcgtta tottc 255
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (23),(25)
<223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 7

tgagagact cggcattgt acnnngctcog gatcaoagtat gggtagcct atnoctaacc 60
cctctccgg tctcgattct acacaagctta tggggtcctt tocaaaaaag aagagaaggg 120
tagctgtatt cagggcagc tacaagacgc acagacgcacac gccctatcaat caatcatacg 180
cataacocata catttaactaa ttattgacat tattttagatg taogttggt attagtggt 240
cctct 244

<210> SEQ ID NO 8
<211> LENGTH: 211
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC20 peptide

<400> SEQUENCE: 8

aggtcagact acaagggcaag cggagcagag atttattctat caatttcatg gggagaaaaa 60
tgtttggttct caaacgcttaa ttgatagtaaa tgggtgattga tgataagcc 120
tttctgtgct gctctgctga gttctgacctg tgcaccatgtt atgcagctgtag acggtaata 180
gctggagccg atggcggcgg gctgatcccg g 211

<210> SEQ ID NO 9
<211> LENGTH: 120
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC21 peptide

<400> SEQUENCE: 9

aggtcagact acaagggcaag cggagcagag atcatataattt atatatcttatt tctctctttt 60
tataagcataa aggacaattg gtttaactca gtaaacttca ttatataag 120

<210> SEQ ID NO 10
<211> LENGTH: 253
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC22 peptide

<400> SEQUENCE: 10

ggtcgagcctg gatcagatag gtaagcctta tccactaaccc tctctctcggc tctgatttctta 60
cannnttta tgggtgtccct tocaaaaaag aagagaaggg tagctgattt caggtcagac 120
tacaagcag acagacgcacac gcaagaccatc atacgcggcc gccggagaaa tatccctcog 180
caggaagtgc aggccgtct cattgctctc cccgaagtcg tcaatgcgeg ggtcactcccc 240
<210> SEQ ID NO 11
<211> LENGTH: 255
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC24 peptide
<400> SEQUENCE: 11

ctcgagtcgg atcsgatgag gtagctacct cctactacct cctctggctct cggattctaca 60
caggttagg ggctctccg ccctataagc agaaggtac tggatttcag gcagactacg 120
aagacagacg acagacgagc atatactacgc atacagctcg ctacaaaaag atgagtttttt 180
gcggcggcg taggactacgc atacatccg taggattctg tgataagcct tcctgtggctc 240
gtctctgcgt tcctgta 255

<210> SEQ ID NO 12
<211> LENGTH: 247
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC29 peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (30) .. (33)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (90) .. (111)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (200) .. (231)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (320) .. (331)
<223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 12

ggacacgtg tcatctgctg cmctgtatgg tggctcctc tccatcgtctc cctacccctc 60
tctgtggct ctgtcctac ccacatgtag gtcggctcctc cccccggag acgaaggtcg 120
cctactgc tctactccc acagagcagc aggccgagc tctccgctc atcattgcctc 180
tctgtctcgc tctgtggtct cctgcctgactc atgagtagcgt cgctatgcgc actagctgga 240
cctccata 247

<210> SEQ ID NO 13
<211> LENGTH: 247
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC30 peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (100) .. (111)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (210) .. (231)
<223> OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (34)..(34)
OTHER INFORMATION: n is a, c, g, or t

SEQUENCE: 13

ggggagcccn ngctgtgtaac nnnngctgga ttccngttag gtaagcctat cccctaaccc 60
tctctcggtc togattsctac acaagctatg ggtgcotccc caaaaaaga gagaagaaga 120
gctgattca ggcgcagacta caagagcac gcagcagaga aggactcoaat acgctgggctc 180
gggagagaata ttctcgtgca ggaagtcgag gcgccttcct ctgctgcttct ccgaagtcgctc 240
aatggcgc 247

SEQ ID NO: 14
LENGTH: 544
TYPE: DNA
ORGANISM: artificial
FEATURE: NAME/KEY: misc_feature
LOCATION: (11)..(11)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (22)..(23)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (379)..(379)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (445)..(445)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (451)..(451)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (463)..(465)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (473)..(473)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (486)..(486)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (498)..(498)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (502)..(502)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (508)..(508)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (512)..(512)
OTHER INFORMATION: n is a, c, g, or t
FEATURE: NAME/KEY: misc_feature
LOCATION: (515)..(517)
OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (520) ... (520)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (525) ... (525)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (529) ... (529)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (531) ... (531)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (535) ... (535)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (539) ... (539)
<223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 14

gggagaccca ngcttgcac cnngctcgg tccagtatgg gttaagctat ccttaacctt 60
tctctgcgc tcgatctac acaagctatg ggtgcctcct caaaaagaga gaagaagta 120
gctgaactca gtctagacta caaggaacac gcgagaatca ccccccaact ctcggatggc 180
cacaaatct ccctattctc cagcttttct tccagtttct gcgtagacta taggtgtgya 240
aattcctca gttacttct ctacaagct aaacaagtag aactgattga ttgataagcc 300
ttgtgctgt cgtctccgtga gttggacctg gtcaacactt cgtcagctat acggtacta 360
gtggagcccg atatgctgctc gctgtacagct gccccttact tacatgtgca 420
cctaaatgt agaagctgctc gatcggcttc cagaccccttct tctatgtgctc agacactctgn 480
ngttgacctc cccgctgctc tntttganc ttcgamngcnc tctcnctgnc ntttntntana 540
aagtcctagct acaaggaaga cgaagcacaag gttatatcaat caatcataag gcaccttgtaa 60
attgtcgtgt cgcgagcagaaga gctgtctgtt tctgtgttttct gatgacctttt aagtgttttcg 120
agcggatcc caaagcagac gcgaataattt ccaacgtttgac ggaagagcc cccggtgctg 180
tctcgtcttc atntctgcaac gtttt 205

<210> SEQ ID NO 15
<211> LENGTH: 205
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (192) ... (192)
<223> OTHER INFORMATION: DNA encoding FLAG-PYC3 peptide

<400> SEQUENCE: 15

aggtgctagct acaaggaaga cgaagcacaag gttatatcaat caatcataat gcaccttgtaa 60
attgtcgtgt cgcgagcagaaga gctgtctgtt tctgtgttttct gatgacctttt aagtgttttcg 120
agcggatcc caaagcagac gcgaataattt ccaacgtttgac ggaagagcc cccggtgctg 180

tctcgtcttc atntctgcaac gtttt 205

<210> SEQ ID NO 16
<211> LENGTH: 243
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (192) ... (192)
<223> OTHER INFORMATION: DNA encoding FLAG-PYC34 peptide
-continued

<220> SEQUENCE: 16
<221> NAME/KEY: Misc Feature
<222> LOCATION: (10)\ldots(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> SEQUENCE: 60

```
gggagaccc ngcttggtac cngctcagt cctaaacct ctctctcgct tcgatttcac
```

60

<220> SEQUENCE: 120
<221> NAME/KEY: Misc Feature
<222> LOCATION: (10)\ldots(10)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> SEQUENCE: 180

```
caagagcgc gacgccaga gtttcacat ccacagtata ccacagactgac pretend gacagactgac
```

180

<220> SEQUENCE: 240
<221> NAME/KEY: Misc Feature
<222> LOCATION: (21)\ldots(23)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> SEQUENCE: 243

```
agtagtagtgc ggcagttgac gcacatgg gtaagcctat ccaattgat
```

243

<220> SEQUENCE: 255
<221> NAME/KEY: Misc Feature
<222> LOCATION: (10)\ldots(10)
<223> OTHER INFORMATION: DNA encoding FLAG-PYC35 peptide
<220> SEQUENCE: 192

```
tgggagaccc ngcttggtac cngctcagt cctaaacct ctctctcgct ttcgatttcac
```

192

<220> SEQUENCE: 255
<221> NAME/KEY: Misc Feature
<222> LOCATION: (21)\ldots(23)
<223> OTHER INFORMATION: DNA encoding FLAG-PYC36 peptide
<220> SEQUENCE: 240

```
tgtagagcgc gcacagctgt ggtaagcct atccatatc ccacagctgat
```

240

<220> SEQUENCE: 255
<221> NAME/KEY: Misc Feature
<222> LOCATION: (10)\ldots(10)
<223> OTHER INFORMATION: DNA encoding FLAG-PYC38 peptide
<220> SEQUENCE: 192

```
tgggagaccc ngcttggtac cngctcagt cctaaacct ctctctcgct ttcgatttcac
```

192
<400> SEQUENCE: 19

tcaccctct ccctcgtcct gattctacac aegctatggg tgcctcctca aaaaaaga 60
gaaagtgac tcgaatctag tcagactaca aagagaacg gaacaaggga ctacaaggc 120
gcgcagacc tcgcagacag cctcaagggcc gctggagtttg acgcgcttt ccagcgcagc 180
gatagccagc cg 192

<210> SEQ ID NO 20
<211> LENGTH: 243
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC59 peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (22) (24)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (24) (24)
<223> OTHER INFORMATION: DNA encoding FLAG-PYC54 peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3) (3)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (363) (363)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (377) (377)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3) (3)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2) (2)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (21) (21)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (24) (24)
<223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 21

gggagaccca agcttggtgct ctnntcggta ccaggaaggg 60
gctttcgcac tcgatctctc acaagctagt ggtgctcctc assasaagaa gagaaggt 120
gctggctgga gctcagatta caaagacagc aagacagagc gactacaagc cagccgacag 180
cctggccasg acgcctcaagc gcgtggagt ggaacgogcgc ttccagcgcga tcgataggca 240
gcc 243
gggagacca aagttggtae ctnnntccgn nnnnnnttgg gtaagctтан nnnttaacce 60
cctcctggtc tctatttac caaaactatg ggtgctcctc caaaaasaaa gagaaggtta 120
gctgaattca ggtcagact caagggacgac gagaacgaggg tttaaacttaa aataaagcttg 180
gcagctgcc cggcgacac cctcgagacca ttctctttttg gttcgtgctc tctcactgcc 240
cgaattatt cctgagcgcac tcatgaaacg atgatgtgggt atatctgtctg tctgtgctctt 300
tgtgtggta cccgtcagca cttgatgtcat cgatacgggt actagnccga cctgatagc 360
ggnctctgca gctggtcctgct agagggccct atttcatatgt gtcacaacta attgtgagct 420
cggtctgacgg ctcctgctcttg ggtcagctcat ctgtgtgtgct cccctctccc 480
gtcctcctct gcatcctgga agtggtcact cccactgctc tctccataa aatgagggaa 540
attgtcagc cttctgtcag taggtgtcctc ttctttctgg gggtgtgggt gggtggagggc 600
agcagaggg agga 614

<210> SEQ ID NO 22
<211> LENGTH: 323
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC58 peptide

<400> SEQUENCE: 22
aggtcagact caaagggcag cgaagacaga ggtattcaat caatcatatgc agtgccgccc 60
cagcgaaggc cttggcctgt gcgttccgaa cccgctagggg cgggatcggc 120
tccggtgtc agaccctgct tttacctgg cgtgctgctgct cttctgggtt 180
agttggcct cggcattact gatgctgtca tatcaggtat agtcgagccg cattgccccg 240
ggcgtacgcc gcggggtgctgc ggcagctagc tataagggcct cattgctaaa ttagtttgt 300
cacagttaccc tctgagcctt cccc 323

<210> SEQ ID NO 23
<211> LENGTH: 220
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC59 peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (189) .. (189)
<223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 23
getcggatcc agttaccctgta agcgatccaa taaccctcctc ctcgggttctcg attctacaca 60
agttcaggtg gctcctccaa aagaagagag aaggtcgtact cagactacaaa 120
gagctcgacgc gagaagcttta ataatcactc cgtggtctctg gctgctgctttg ttagttgacc 180
tggtacacgt cggacctgcc attggtactc taggtgaccc 220

<210> SEQ ID NO 24
<211> LENGTH: 253
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA encoding FLAG-PYC60 peptide

<400> SEQUENCE: 24
Continued

FLAG-PYC4 peptide

SEQUENCE:

```plaintext
AGGTCAAGCAT ACGGACAG GCTAATAAT TCCTCTACT
CGAGTTATAT TATAAGAT TCTACTGCG

**LENGTH:** 255
**TYPE:** DNA
**ORGANISM:** artificial
**OTHER INFORMATION:** DNA encoding FLAG-PYC4 peptide

**FLAG-PYC6 peptide**

**SEQUENCE:**

```plaintext
TATGTCACG CTT

LENGTH: 15
TYPE: PRT
ORGANISM: artificial
OTHER INFORMATION: FLAG-PYC4 peptide

OTHER INFORMATION:

Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Met

1 5 10 15

FLAG-PYC6 peptide

SEQUENCE:

```plaintext
ALATYR GLNASER MET

**LENGTH:** 5
**TYPE:** PRT
**ORGANISM:** artificial
**OTHER INFORMATION:** FLAG-PYC6 peptide

**OTHER INFORMATION:**

Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Lys Arg

1 5 10 15

Leu

**SEQUENCE:**

```plaintext
LA

LENGTH: 7
TYPE: PRT
Continued

 Ala Tyr Gln Ser Lys Arg Leu

 1 5

 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile

 1 5 10 15
 Ala Asn Glu Glu Arg Glu Lys Asn Phe Ala Ser Ser Lys Lys Asp

 20 25 30
 Gly Ser Tyr Thr Asp Leu Leu

 35

 Ala Tyr Gln Ser Ile Ile Ala Asn Glu Glu Glu Arg Lys Asn Phe

 1 5 10 15
 Ala Ser Ser Lys Lys Asp Gly Ser Tyr Thr Asp Leu Leu

 20 25

 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Glu Ser Thr

 1 5 10 15
 Lys Ala Leu Val Glu Gly Gly Ala Asp Leu Ile Leu Ile Glu Thr Val

 20 25 30
 Leu Val Val Val Leu Val Val

 35 40

 Ala Tyr Gln Glu Ser Thr Lys Ala Leu Val Glu Gly Gly Ala Asp Leu

 1 5 10 15
<210> SEQ ID NO 34
<211> LENGTH: 141
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE: OTHER INFORMATION: FLAG-PYC15 peptide
<400> SEQUENCE: 34
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Thr Tyr Gln Ser Ile Lys
 1 5 10 15
Gly Pro Glu Asn Lys Val Lys Met Tyr Phe Leu Asn Asp Leu Asn Phe
 20 25 30
Ser Arg Arg Ala Gly Phe Ala Arg Lys Asp Ala Leu Asp Ile
 35 40 45
Ala Ser Asp Tyr Glu Asn Ile Ser Val Asn Ile Pro Leu Trp Gly
 50 55 60
Gly Val Val Gln Arg Ile Ile Ser Ser Lys Leu Ser Thr Phe Leu
 65 70 75 80
Cys Gly Leu Glu Asn Lys Asp Val Ile Phe Asn Phe Pro Met Ala
 85 90 95
Lys Pro Phe Trp His Ile Leu Ser Phe Phe His Arg Leu Leu Lys Phe
100 105 110
Arg Ile Val Leu Leu Ile Asp Lys Pro Cys Arg Arg Arg Pro Cys
115 120 125
Ser Leu Thr Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
130 135 140

<210> SEQ ID NO 35
<211> LENGTH: 131
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE: OTHER INFORMATION: PYC15 peptide
<400> SEQUENCE: 35
 Thr Tyr Gln Ser Ile Lys Gly Pro Glu Asn Lys Val Lys Met Tyr Phe
 1 5 10 15
Leu Asn Asp Leu Asp Phe Ser Arg Arg Asp Ala Gly Phe Lys Ala Arg
 20 25 30
Lys Asp Ala Leu Asp Ile Ala Ser Asp Tyr Glu Asn Ile Ser Val Val
 35 40 46
Asn Ile Pro Leu Trp Gly Gly Gly Val Val Gln Arg Ile Ile Ser Ser Val
 50 55 60
Lys Leu Ser Thr Phe Leu Cys Gly Leu Glu Asn Lys Asp Val Leu Ile
 65 70 75 80
Phe Asn Phe Pro Met Ala Lys Pro Phe Trp His Ile Leu Ser Phe Phe
 85 90 95
His Arg Leu Leu Lys Phe Arg Ile Val Leu Leu Ile Asp Lys Pro
100 105 110
Cys Arg Arg Arg Pro Cys Ser Leu Thr Trp Tyr Gln Leu Met His Arg
115 120 125
Tyr Arg Tyr
130
<210> SEQ ID NO 36
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC18 peptide

<400> SEQUENCE: 36
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile His
1 5 10 15

<210> SEQ ID NO 37
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC18 peptide

<400> SEQUENCE: 37
Ala Tyr Gln Ser Ile Ile His
1 5

<210> SEQ ID NO 38
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC19 peptide

<400> SEQUENCE: 38
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Leu Ile Aen Gln Ser Tyr
1 5 10 15
Ala Tyr Pro Tyr Ile Tyr
20

<210> SEQ ID NO 39
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC19 peptide

<400> SEQUENCE: 39
Leu Ile Aen Gln Ser Tyr Ala Tyr Pro Tyr Ile Tyr
1 5 10

<210> SEQ ID NO 40
<211> LENGTH: 29
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC20 peptide

<400> SEQUENCE: 40
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ile Tyr Ser Ser Ile Leu
1 5 10 15
Trp Gly Thr Lys Trp Cys Val Leu Leu Val Ile Thr Pro
20 25

<210> SEQ ID NO 41
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC20 peptide

<400> SEQUENCE: 41
Ile Tyr Ser Ser Ile Leu Trp Gly Thr Lys Trp Cys Val Leu Leu Val
1 5 10 15
Ile Thr Pro

<210> SEQ ID NO 42
<211> LENGTH: 34
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC21 peptide

<400> SEQUENCE: 42
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ile Ile Ile Tyr Ile Phe
1 5 10 15
Leu Asn Ile Ser Asn Ser Ile Lys Asn Ile Phe Asp Asn Met Gly Lys
20 25 30
Ile Arg

<210> SEQ ID NO 43
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC21 peptide

<400> SEQUENCE: 43
Ile Ile Ile Tyr Ile Phe Leu Asn Ile Ser Asn Ser Ile Lys Asn Ile
1 5 10 15
Phe Asp Asn Met Gly Lys Ile Arg
20

<210> SEQ ID NO 44
<211> LENGTH: 51
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC22 peptide

<400> SEQUENCE: 44
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Asp Ser Ile Arg Arg
1 5 10 15
Arg Gly Glu Asn Ile Ser Ser Glu Glu Val Glu Ala Val Leu Met Ser
20 25 30
His Pro Glu Val Val Asn Ala Val Tyr Pro Val Arg Gly Asp Leu
35 40 45
Pro Gly Asp
50

<210> SEQ ID NO 45
<211> LENGTH: 41
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC22 peptide
<400> SEQUENCE: 45
Lys Asp Ser Ile Arg Arg Arg Gly Asn Ile Ser Ser Gln Glu Val
1 5 10 15
Glu Ala Val Leu Met Ser His Pro Glu Val Val Asn Ala Ala Val Tyr
20 25 30
Pro Val Arg Gly Asp Leu Pro Gly Asp
35 40

<210> SEQ ID NO 46
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC24 peptide

<400> SEQUENCE: 46
Arg Ser Asp Tyr Lys Asp Asp Lys Leu Tyr Gln Ser Leu Leu
1 5 10 15
Thr Ala Thr Lys Glu Leu Leu Thr Ala Thr Lys Glu Leu Leu Phe Val Ala Pro Val Ala Lys Ala Phe
20 25 30
Thr Ser Cys Asp
35

<210> SEQ ID NO 47
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC24 peptide

<400> SEQUENCE: 47
Leu Tyr Gln Ser Leu Leu Thr Ala Thr Lys Glu Leu Leu Phe Val Ala
1 5 10 15
Pro Val Ala Lys Ala Phe Thr Ser Cys Asp
20 25

<210> SEQ ID NO 48
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC29 peptide

<400> SEQUENCE: 48
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ser
1 5 10 15
Phe Leu Ser Gln
20

<210> SEQ ID NO 49
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC29 peptide

<400> SEQUENCE: 49
Ala Tyr Gln Ser Ile Ser Phe Leu Ser Gln
1 5 10
<210> SEQ ID NO 50
<211> LENGTH: 51
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PCY30 peptide

<400> SEQUENCE: 50
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Lys Asp Ser Ile Arg Arg
1 5 10 15
Arg Gly Glu Asn Ile Ser Ser Gln Glu Val Ala Val Leu Met Ser
20 25 30
His Pro Glu Val Val Asn Ala Ala Val Tyr Pro Val Arg Gly Asp Leu
35 40 45
Pro Gly Asp
50

<210> SEQ ID NO 51
<211> LENGTH: 41
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC30 peptide

<400> SEQUENCE: 51
Lys Asp Ser Ile Arg Arg Arg Gly Glu Ann Ile Ser Ser Gln Glu Val
1 5 10 15
Glu Ala Val Leu Met Ser His Pro Glu Val Val Ala Ala Val Tyr
20 25 30
Pro Val Arg Gly Asp Leu Pro Gly Asp
35 40

<210> SEQ ID NO 52
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PCY32 peptide

<400> SEQUENCE: 52
Arg Ser Asp Tyr Lys Asp Asp Asp Asn Thr Pro His Ser Ser Asp
1 5 10 15
Gly His Ann Ann Pro
20

<210> SEQ ID NO 53
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC32 peptide

<400> SEQUENCE: 53
Ann Thr Pro His Ser Ser Asp Gly His Ann Ann Pro
1 5 10

<210> SEQ ID NO 54
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC34 peptide

<400> SEQUENCE: 54

Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Asn
1 5 10 15

Ser Ser Pro Val Leu Pro Glu Asn Ser Gln Glu Leu Ser Leu His Leu
20 25 30

Lys Gln His Val Thr Lys Ser
35

<210> SEQ ID NO 55
<211> LENGTH: 29
<212> TYPE: PRT
<213> ORGANISM: artificial

<220> FEATURE:
<223> OTHER INFORMATION: PYC34 peptide

<400> SEQUENCE: 55

Ala Tyr Gln Ser Ile Asn Ser Ser Pro Val Leu Pro Glu Asn Ser Gln
1 5 10 15

Glu Leu Ser Leu His Leu Lys Gln His Val Thr Lys Ser
20 25

<210> SEQ ID NO 56
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: artificial

<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC35 peptide

<400> SEQUENCE: 56

Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Arg
1 5 10 15

Ser Gly Gly Ile Glu Ser Ser Ser Lys Arg Gly Arg
20 25

<210> SEQ ID NO 57
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: artificial

<220> FEATURE:
<223> OTHER INFORMATION: PYC35 peptide

<400> SEQUENCE: 57

Ala Tyr Gln Ser Ile Arg Ser Gly Gly Ile Glu Ser Ser Ser Lys Arg
1 5 10 15

Glu Arg

<210> SEQ ID NO 58
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: artificial

<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC36 peptide

<400> SEQUENCE: 58

Arg Ser Asp Tyr Lys Asp Asp Asp Lys Gly Leu Gln Gly Arg Arg
1 5 10 15

Arg Gln Gly Tyr Gln Ser Ile Lys Pro
20 25
<210> SEQ ID NO 59
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC36 peptide
<400> SEQUENCE: 59

Gly Leu Gln Gly Arg Arg Gln Gly Tyr Gln Ser Ile Lys Pro
1 5 10 15

<210> SEQ ID NO 60
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC38 peptide
<400> SEQUENCE: 60

Arg Ser Asp Tyr Lys Asp Asp Asp lye Gln Leu Gln Gly Arg Arg
1 5 10 15
Gln Pro Gly Gln Gln Pro Gln Gly Arg Trp Ser Gly Arg Ala Leu Pro
20 25 30
Ala His Arg
35

<210> SEQ ID NO 61
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC39 peptide
<400> SEQUENCE: 61

Gly Leu Gln Gly Arg Arg Gln Pro Gly Gln Gln Pro Gln Gly Arg Trp
1 5 10 15
Ser Gly Arg Ala Leu Pro Ala His Arg
20 25

<210> SEQ ID NO 62
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC39 peptide
<400> SEQUENCE: 62

Arg Ser Asp Tyr Lys Asp Asp Asp lye Gln Leu Gln Gly Arg Arg
1 5 10 15
Gln Pro Gly Gln Gln Pro Gln Gly Arg Trp Ser Gly Arg Ala Leu Pro
20 25 30
Ala His Arg
35

<210> SEQ ID NO 63
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC39 peptide
<400> SEQUENCE: 63
-continued

Gly Leu Gln Gly Arg Arg Gln Pro Gly Gln Gln Pro Gln Gly Arg Trp
1 5 10 15
Ser Gly Arg Ala Leu Pro Ala His Arg
20 25

<210> SEQ ID NO 64
<211> LENGTH: 71
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC54 peptide

<400> SEQUENCE: 64
Arg Ser Asp Tyr Lys Asp Asp Lys Ala Tyr Gln Ser Ile Ser
1 5 10 15
Leu Ala Gly Tyr His Gly Asp Thr Ser Arg Thr Phe Leu Val Gly Ser
20 25 30
Val Ser Ala Thr Ala Arg Lys Leu Val Glu Ala Thr Gln Glu Thr Met
35 40 45
Ile Asp Tyr Thr Cys Arg Arg Arg Cys Ser Leu Thr Trp Tyr Gln
50 55 60
Leu Met His Arg Tyr Arg Tyr
65 70

<210> SEQ ID NO 65
<211> LENGTH: 61
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC54 peptide

<400> SEQUENCE: 65
Ala Tyr Gln Ser Ile Ser Leu Ala Gly Tyr His Gly Asp Thr Ser Arg
1 5 10 15
Thr Phe Leu Val Gly Ser Val Ser Ala Thr Ala Arg Lys Leu Val Glu
20 25 30
Ala Thr Gln Glu Thr Met Ile Asp Tyr Thr Cys Arg Arg Arg Pro Cys
35 40 45
Ser Leu Thr Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
50 55 60

<210> SEQ ID NO 66
<211> LENGTH: 73
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYC58 peptide

<400> SEQUENCE: 66
Arg Ser Asp Tyr Lys Asp Asp Lys Ala Tyr Gln Ser Ile Met
1 5 10 15
Ala Val Ala Ala Gln Gln Pro Val Ala Phe Leu Val Gly Arg Gln Arg
20 25 30
Arg Arg Gly Gln Val Gly Ile Asp Ser Gly Asp Gln His Leu Arg Thr
35 40 45
Pro Leu Phe His Glu Leu Cys Arg Arg Arg Pro Cys Ser Leu Ala Trp
50 55 60
-continued

Tyr Gln Leu Met His Arg Tyr Arg Tyr
65 70

<210> SEQ ID NO 67
<211> LENGTH: 63
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYCS8 peptide

<400> SEQUENCE: 67
Ala Tyr Gln Ser Ile Met Ala Val Ala Ala Gln Pro Val Ala Phe
1 5 10 15
Leu Val Gly Arg Gln Arg Arg Arg Gly Gln Val Gly Ile Asp Ser Gly
20 25 30
Asp Gln His Leu Arg Thr Pro Leu Phe His Glu Leu Cys Arg Arg Arg
35 40 45
Pro Cys Ser Leu Ala Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
50 55 60

<210> SEQ ID NO 68
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYCS9 peptide

<400> SEQUENCE: 68
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ser
1 5 10 15
Val Val Val Leu Val Val
20

<210> SEQ ID NO 69
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYCS9 peptide

<400> SEQUENCE: 69
Ala Tyr Gln Ser Ile Ser Val Val Val Val Leu Val Val
1 5 10

<210> SEQ ID NO 70
<211> LENGTH: 27
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: FLAG-PYCS0 peptide

<400> SEQUENCE: 70
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Asn Gln Leu Pro Lys
1 5 10 15
Ile Leu Ala Gln Arg Leu Ile Phe Ile Lys Cys
20 25

<210> SEQ ID NO 71
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
OTHER INFORMATION: PYC60 peptide

 Ala Asn Gln Leu Pro Lys Ile Leu Ala Gly Arg Leu Ile Phe Ile Lys
 1 5 10 15

Cys

SEQ ID NO 72
LENGTH: 74
TYPE: PRT
ORGANISM: artificial
FEATURE:
OTHER INFORMATION: FLAG-PYC60 peptide

Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
 1 5 10 15
Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala Leu Thr Gly Val Tyr His
 20 25 30
Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly Gln Ala Ile Ser Pro Lye
 35 40 45
Asn Thr Ala His Ala Gln Gln Cys Arg Arg Arg Pro Cys Ser Leu Thr
 50 55 60
Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
 65 70

SEQ ID NO 73
LENGTH: 5
TYPE: PRT
ORGANISM: artificial
FEATURE:
OTHER INFORMATION: PYC4D peptide (the retroinverted form of PYC4 peptide all amino acids other than glycine are D-amino acids)

Met Ser Gln Tyr Ala
 1 5

SEQ ID NO 74
LENGTH: 16
TYPE: PRT
ORGANISM: artificial
FEATURE:
OTHER INFORMATION: PYC4D-TAT peptide (the retroinverted form of PYC4 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

Met Ser Gln Tyr Ala Gly Arg Arg Gln Arg Arg Lys Lys Arg Gly
 1 5 10 15

SEQ ID NO 75
LENGTH: 7
TYPE: PRT
ORGANISM: artificial
FEATURE:
OTHER INFORMATION: PYC6D peptide (the retroinverted form of PYC4 peptide all amino acids other than glycine are D-amino acids)

Leu Arg Lys Ser Gln Tyr Ala
<210> SEQ ID NO 76
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC6-TAT peptide (the retroinverted form of PYC6 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 76
Leu Arg Lys Ser Glu Tyr Ala Gly Arg Arg Glu Arg Arg Lys Lys
1 5 10 15
Arg Gly

<210> SEQ ID NO 77
<211> LENGTH: 29
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC6-TAT peptide (the retroinverted form of PYC6 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 77
Leu Leu Asp Thr Tyr Ser Gly Lys Ser Ser Ala Phe Asn Lys
1 5 10 15
Glu Arg Glu Glu Glu Asn Ala Ile Ile Ser Gin Tyr Ala
20 25

<210> SEQ ID NO 78
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC6-TAT peptide (the retroinverted form of PYC6 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 78
Leu Leu Asp Thr Tyr Ser Gly Lys Ser Ser Ala Phe Asn Lys
1 5 10 15
Glu Arg Glu Glu Glu Asn Ala Ile Ile Ser Gin Tyr Ala Gly Arg Arg
20 25 30
Arg Gin Arg Arg Lys Lys Arg Gly
35 40

<210> SEQ ID NO 79
<211> LENGTH: 30
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC12D peptide (the retroinverted form of PYC12 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 79
Val Val Leu Val Val Val Val Leu Val Thr Glu Ile Leu Ile Leu Asp
1 5 10 15
Ala Gly Gly Glu Val Leu Ala Lys Thr Ser Gin Tyr Ala
20 25 30
<210> SEQ ID NO 80
<211> LENGTH: 41
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC12D-TAT peptide (the retroinverted form of PYC12 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 80
Val Val Leu Val Val Val Val Thr Glu Ile Leu Ile Leu Asp
1 5 10 15
Ala Gly Gly Glu Val Leu Ala Lys Thr Ser Glu Gln Tyr Ala Gly Arg
20 25 30
Arg Arg Gin Arg Arg Lys Lys Arg Gly
35 40

<210> SEQ ID NO 81
<211> LENGTH: 131
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC15D peptide (the retroinverted form of PYC15 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 81
Tyr Arg Tyr Arg His Met Leu Gin Tyr Trp Thr Leu Ser Cys Pro Arg
1 5 10 15
Arg Arg Cys Pro Gin Asp Asp Ile Leu Leu Val Ile Arg Phe Lys Leu
20 25 30
Leu Arg His Phe Phe Ser Leu Ile His Trp Phe Pro Lys Ala Met Pro
35 40 45
Phe Asn Phe Ile Leu Val Asp Gin Asl Gin Leu Gly Cys Leu Phe Thr
50 55 60
Ser Leu Lys Val Ser Ser Ile Ile Arg Gin Val Val Gly Gly Trp Leu
65 70 75 80
Pro Ile Asn Val Val Ser Ile Gin Glu Tyr Asp Ser Ala Ile Asp Leu
85 90 95
Ala Asp Lys Arg Ala Lys Phe Gly Ala Asp Arg Arg Ser Phe Asn Leu
100 105 110
Asp Asn Leu Phe Tyr Met Leu Val Lys Asn Gin Pro Gly Lys Ile Ser
115 120 125
Gln Tyr Thr

<210> SEQ ID NO 82
<211> LENGTH: 142
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC15D-TAT peptide (the retroinverted form of PYC15 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 82
Tyr Arg Tyr Arg His Met Leu Gin Tyr Trp Thr Leu Ser Cys Pro Arg
1 5 10 15
Arg Arg Cys Pro Lys Asp Asp Ile Leu Leu Val Ile Arg Phe Lys Leu
Arg Arg His Phe Phe Ser Leu Ile His Trp Phe Pro Lys Ala Met Pro
Phe Asn Phe Ile Leu Val Asp Lys Asn Glu Leu Gly Cys Leu Phe Thr
Ser Leu Lys Val Ser Ser Ile Ile Arg Glu Val Val Gly Gly Glu Leu
Ser Ile Asn Val Val Ser Ile Asn Glu Tyr Asp Ser Ala Ile Asp Leu
Asp Asp Leu Phe Tyr Met Lys Val Lys Asn Glu Pro Gly Lys Ile Ser
Gln Tyr Thr Gly Arg Arg Arg Gln Arg Arg Arg Lys Arg Gly

<210> SEQ ID NO 83
<211> TYPE: PRT
<212> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC18D peptide (the retroinverted form of PYC18 peptide all amino acids other than glycine are D-amino acids)

His Ile Ile Ser Gln Tyr Ala
1

<210> SEQ ID NO 84
<211> TYPE: PRT
<212> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC18D-TAT peptide (the retroinverted form of PYC18 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

His Ile Ile Ser Gln Tyr Ala Gly Arg Arg Arg Gln Arg Arg Arg Lys Lys
1

Arg Gly

<210> SEQ ID NO 85
<211> TYPE: PRT
<212> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC19D peptide (the retroinverted form of PYC19 peptide all amino acids other than glycine are D-amino acids)

Tyr Ile Tyr Pro Tyr Ala Tyr Ser Gln Asn Ile Leu
1

<210> SEQ ID NO 86
<211> TYPE: PRT
<212> ORGANISM: artificial
<220> FEATURE:
OTHER INFORMATION: PYC19D-TAT peptide (the retroinverted form of PYC19 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

SEQUENCE: 86

Tyr Ile Tyr Pro Tyr Ala Tyr Ser Gln Asn Ile Leu Gly Arg Arg Arg
1 5 10 15
Gln Arg Arg Lys Lys Arg Gly
20

OTHER INFORMATION: PYC20D peptide (the retroinverted form of PYC20 peptide all amino acids other than glycine are D-amino acids)

SEQUENCE: 87

Pro Thr Ile Val Leu Leu Val Cys Trp Lys Thr Gly Trp Leu Ile Ser
1 5 10 15
Ser Tyr Ile

OTHER INFORMATION: PYC20D-TAT peptide (the retroinverted form of PYC20 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

SEQUENCE: 88

Pro Thr Ile Val Leu Leu Val Cys Trp Lys Thr Gly Trp Leu Ile Ser
1 5 10 15
Ser Tyr Ile Gly Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
20 25 30

OTHER INFORMATION: PYC21D peptide (the retroinverted form of PYC21 peptide all amino acids other than glycine are D-amino acids)

SEQUENCE: 89

Arg Ile Lys Gly Met Asn Asp Phe Ile Asn Lys Ile Ser Asn Ser Ile
1 5 10 15
Asn Leu Phe Ile Tyr Ile Ile Ile
20

OTHER INFORMATION: PYC21D-TAT peptide (the retroinverted form of PYC21 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)
<400> SEQUENCE: 90

Arg Ile Lys Gly Met Asn Asp Phe Ile Asn Lys Ile Ser Asn Ser Ile
1 5 10 15

Asn Leu Phe Ile Tyr Ile Ile Gly Arg Arg Glu Arg Arg Lys
20 25 30

Lys Arg Gly
35

<210> SEQ ID NO 91
<211> LENGTH: 41
<212> TYPE: PRT
<213> ORGANISM: artificial
<223> OTHER INFORMATION: PYC22D peptide (the retroinverted form of PYC22 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 91

Asp Gly Pro Leu Asp Gly Arg Val Pro Tyr Val Ala Ala Asn Val Val
1 5 10 15

Glu Pro His Ser Met Leu Val Ala Glu Val Glu Gln Ser Ser Ile Asn
20 25 30

Glu Gly Arg Arg Arg Ile Ser Asp Lys
35 40

<210> SEQ ID NO 92
<211> LENGTH: 52
<212> TYPE: PRT
<213> ORGANISM: artificial
<223> OTHER INFORMATION: PYC22D-TAT peptide (the retroinverted form of PYC22 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 92

Asp Gly Pro Leu Asp Gly Arg Val Pro Tyr Val Ala Ala Asn Val Val
1 5 10 15

Glu Pro His Ser Met Leu Val Ala Glu Val Glu Gln Ser Ser Ile Asn
20 25 30

Glu Gly Arg Arg Arg Ile Ser Asp Lys Gly Arg Arg Arg Glu Arg Arg
35 40 45

Lys Lys Arg Gly
50

<210> SEQ ID NO 93
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: artificial
<223> OTHER INFORMATION: PYC224 peptide (the retroinverted form of PYC24 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 93

Asp Cys Ser Thr Phe Ala Lys Ala Val Pro Ala Val Phe Leu Leu Glu
1 5 10 15

Lys Thr Ala Thr Leu Leu Ser Gln Tyr Leu
20 25

<210> SEQ ID NO 94
<211> LENGTH: 37
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC24D-TAT peptide (the retroinverted form of PV24 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 94

Asp Cys Ser Thr Phe Ala Lys Ala Val Pro Ala Val Phe Leu Leu Glu
1 5 10 15

Lys Thr Ala Thr Leu Leu Ser Gln Tyr Leu Gly Arg Arg Arg Gln Arg
20 25 30

Arg Lys Lys Arg Gly
35

<210> SEQ ID NO 95
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC29D peptide (the retroinverted form of PYC29 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 95

Gln Ser Leu Phe Ser Ile Ser Gln Tyr Ala
1 5

Arg Lys Lys Arg Gly
20

<210> SEQ ID NO 96
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC29D-TAT peptide (the retroinverted form of PV24 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 96

Gln Ser Leu Phe Ser Ile Ser Gln Tyr Ala Gly Arg Arg Arg Gln Arg
1 5 10

Arg Lys Lys Arg Gly
20

<210> SEQ ID NO 97
<211> LENGTH: 41
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC30D peptide (the retroinverted form of PYC30 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 97

Asp Gly Pro Leu Asp Gln Arg Val Pro Tyr Val Ala Ala Asn Val Val
1 5 10

Glu Pro His Ser Met Leu Val Ala Glu Val Glu Gln Ser Ser Ile Asn
20 25 30

Glu Gly Arg Arg Arg Ile Ser Asp Lys
35 40

<210> SEQ ID NO 98
<211> LENGTH: 52
<212> TYPE: PRT
<210> SEQ ID NO 99
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC3D peptide (the retroinverted form of PYC30 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 98

Asp Gly Pro Leu Asp Gly Arg Val Pro Tyr Val Ala Ala Asn Val Val
1 5 10 15

Glu Pro His Ser Met Leu Val Ala Glu Val Glu Gln Ser Ser Ile Asn
20 25 30

Glu Gly Arg Arg Arg Ile Ser Asp Lys Gly Arg Arg Arg Gln Arg Arg
35 40 45

Lys Lys Arg Gly
50

<210> SEQ ID NO 100
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC32D peptide (the retroinverted form of PYC32 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 100

Pro Asn Asn His Gly Asp Ser Ser His Pro Thr Asn
1 5 10

Glu Pro Leu Val Pro Ser Ser His Pro Thr Asn Gly Arg Arg Arg
1 5 10 15

Gln Arg Arg Lys Lys Arg Gly
20

<210> SEQ ID NO 101
<211> LENGTH: 29
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC34D peptide (the retroinverted form of PYC34 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 101

Ser Lys Thr Val His Gln Lys Leu His Leu Ser Leu Glu Gln Ser Asn
1 5 10 15

Glu Pro Leu Val Pro Ser Ser Asn Ile Ser Gin Tyr Ala
20 25

<210> SEQ ID NO 102
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: artificial
FEATURE: OTHER INFORMATION: PYC34D-TAT peptide (the retroinverted form of PYC34 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

SEQUENCE: 102

Ser Lys Thr Val His Gln Lys Leu His Leu Ser Leu Glu Gln Ser Asn
1 5 10 15
Glu Pro Leu Val Pro Ser Ser Asn Ile Ser Gln Tyr Ala Gly Arg Arg
20 25 30
Arg Gln Arg Arg Lys Lys Arg Gly
35 40

SEQ ID NO 103
LENGTH: 18
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: PYC35D peptide (the retroinverted form of PYC35 peptide all amino acids other than glycine are D-amino acids)

SEQUENCE: 103

Arg Glu Arg Lys Ser Ser Ser Glu Ile Gly Gly Ser Arg Ile Ser Gln
1 5 10 15
Tyr Ala

SEQ ID NO 104
LENGTH: 29
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: PYC35D-TAT peptide (the retroinverted form of PYC35 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

SEQUENCE: 104

Arg Glu Arg Lys Ser Ser Ser Glu Ile Gly Gly Ser Arg Ile Ser Gln
1 5 10 15
Tyr Ala Gly Arg Arg Arg Glu Arg Arg Lys Lys Arg Gly
20 25

SEQ ID NO 105
LENGTH: 15
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: PYC36D peptide (the retroinverted form of PYC36 peptide all amino acids other than glycine are D-amino acids)

SEQUENCE: 105

Pro Lys Ile Ser Gln Tyr Gly Gln Arg Arg Arg Glu Gln Leu Gly
1 5 10 15

SEQ ID NO 106
LENGTH: 26
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: PYC36D-TAT peptide (the retroinverted form of PYC36 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)
<400> SEQUENCE: 106

Pro Lys Ile Ser Gln Tyr Gly Gln Arg Arg Gly Gln Leu Gly Gly
1 5 10 15

Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
20 25

<210> SEQ ID NO 107
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC38D peptide (the retroinverted form of PYC38 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 107

Arg His Ala Pro Leu Ala Arg Gly Ser Trp Arg Gly Gln Pro Gln Gln
1 5 10 15

Gly Pro Gln Arg Arg Gly Gln Leu Gly
20 25

<210> SEQ ID NO 108
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC38D-TAT peptide (the retroinverted form of PYC38 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 108

Arg His Ala Pro Leu Ala Arg Gly Ser Trp Arg Gly Gln Pro Gln Gln
1 5 10 15

Gly Pro Gln Arg Arg Gly Gln Leu Gly Gly Arg Arg Arg Gln Arg Arg
20 25 30

Lys Lys Arg Gly
35

<210> SEQ ID NO 109
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC39D peptide (the retroinverted form of PYC39 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 109

Arg His Ala Pro Leu Ala Arg Gly Ser Trp Arg Gly Gln Pro Gln Gln
1 5 10 15

Gly Pro Gln Arg Arg Gly Gln Leu Gly
20 25

<210> SEQ ID NO 110
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC39D-TAT peptide (the retroinverted form of PYC39 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)
Arg His Ala Pro Leu Ala Arg Gly Ser Trp Arg Gly Gln Pro Gln Gln 1 5 10 15
Lys Lys Arg Arg Gly 35

Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Thr Leu Ser Cys Pro Arg 1 5 10 15
Arg Arg Cys Thr Tyr Asp Ile Met Thr Glu Gln Thr Ala Glu Val Leu 20 25 30
Lys Arg Ala Thr Ala Ser Val Ser Gly Val Leu Phe Thr Arg Ser Thr 35 40 45
Asp Gly His Tyr Gln Asp Leu Ser Ile Ser Gln Tyr Ala 50 55 60

Arg Gln Arg Arg Lys Lys Arg Gly 65 70

Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Ala Leu Ser Cys Pro Arg 1 5 10 15
Arg Arg Cys Thr Tyr Asp Ile Met Thr Glu Gln Thr Ala Glu Val Leu 20 25 30
Lys Arg Ala Thr Ala Ser Val Ser Gly Val Leu Phe Thr Arg Ser Thr 35 40 45
Asp Gly His Tyr Gln Asp Leu Ser Ile Ser Gln Tyr Ala 50 55 60

Lys Lys Arg Arg Gly 35

<210> SEQ ID NO 111
<211> LENGTH: 61
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC54D peptide (the retroinverted form of PYC54 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 111

Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Thr Leu Ser Cys Pro Arg 1 5 10 15
Arg Arg Cys Thr Tyr Asp Ile Met Thr Glu Gln Thr Ala Glu Val Leu 20 25 30
Lys Arg Ala Thr Ala Ser Val Ser Gly Val Leu Phe Thr Arg Ser Thr 35 40 45
Asp Gly His Tyr Gln Ala Leu Ser Ile Ser Gln Tyr Ala 50 55 60

<210> SEQ ID NO 112
<211> LENGTH: 72
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC54D-TAT peptide (the retroinverted form of PYC54 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 112

Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Thr Leu Ser Cys Pro Arg 1 5 10 15
Arg Arg Cys Thr Tyr Asp Ile Met Thr Glu Gln Thr Ala Glu Val Leu 20 25 30
Lys Arg Ala Thr Ala Ser Val Ser Gly Val Leu Phe Thr Arg Ser Thr 35 40 45
Asp Gly His Tyr Gln Ala Leu Ser Ile Ser Gln Tyr Ala 50 55 60
Arg Gln Arg Arg Lys Lys Arg Gly 65 70

<210> SEQ ID NO 113
<211> LENGTH: 63
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC58 peptide all amino acids other than glycine are D-amino acids

<400> SEQUENCE: 113

Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Ala Leu Ser Cys Pro Arg 1 5 10 15
US 2011/0053831 A1

-Mar. 3, 2011

58

-continued

Arg Arg Cys Leu Glu His Phe Leu Pro Thr Arg Leu His Gln Asp Gly

20 25 30

Ser Asp Ile Gly Val Gln Gly Arg Arg Gln Arg Gly Val Leu Phe

35 40 45

 Ala Val Pro Gln Gln Ala Ala Val Ala Met Ile Ser Gln Tyr Ala

50 55 60

Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly

65 70

<210> SEQ ID NO 114
<211> LENGTH: 74
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC58D-TAT peptide (the retroinverted form of PYC58 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 114
Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Ala Leu Ser Cys Pro Arg
1 5 10 15
Arg Arg Cys Leu Glu His Phe Leu Pro Thr Arg Leu His Gln Asp Gly
20 25 30
Ser Asp Ile Gly Val Gln Gly Arg Arg Gln Arg Gly Val Leu Phe
35 40 45
Ala Val Pro Gln Gln Ala Ala Val Ala Met Ile Ser Gln Tyr Ala
50 55 60
Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
65 70

<210> SEQ ID NO 115
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC59D peptide (the retroinverted form of PYC59 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 115
Val Val Leu Val Val Val Ser Ile Ser Gln Tyr Ala
1 5 10

<210> SEQ ID NO 116
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC59D-TAT peptide (the retroinverted form of PYC59 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 116
Val Val Leu Val Val Val Val Ser Ile Ser Gln Tyr Ala Gly Arg Arg
1 5 10 15
Arg Gln Arg Arg Lys Lys Arg Gly
20

<210> SEQ ID NO 117
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC60D peptide (the retroinverted form of PYC60 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 117

Cys Lys Ile Phe Ile Leu Arg Gly Ala Leu Ile Lys Pro Leu Gln Asn
1 5 10 15

Ala

<210> SEQ ID NO 118
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC60D-TAT peptide (the retroinverted form of PYC60 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 119

Cys Lys Ile Phe Ile Leu Arg Gly Ala Leu Ile Lys Pro Leu Gln Asn
1 5 10 15

Ala Gly Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
20 25

<210> SEQ ID NO 119
<211> LENGTH: 64
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC66D peptide (the retroinverted form of PYC66 peptide all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 119

Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Thr Leu Ser Cys Pro Arg
1 5 10 15

Arg Arg Cys Gln Gln Ala His Ala Thr Asn Lys Pro Ser Ile Ala Gln
20 25 30

Gly Glu Leu Trp Ile Thr Gly Arg Asp Ala His Tyr Val Gly Thr Leu
35 40 45

Ala Lys Ile Leu Thr Ser Lys Gly Ala Gly Ile Ser Gln Tyr Ala
50 55 60

<210> SEQ ID NO 120
<211> LENGTH: 75
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PYC66D-TAT peptide (the retroinverted form of PYC66 peptide comprising an N-terminal tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids)

<400> SEQUENCE: 120

Tyr Arg Tyr Arg His Met Leu Gln Tyr Trp Thr Leu Ser Cys Pro Arg
1 5 10 15

Arg Arg Cys Gln Gln Ala His Ala Thr Asn Lys Pro Ser Ile Ala Gln
20 25 30

Gly Glu Leu Trp Ile Thr Gly Arg Asp Ala His Tyr Val Gly Thr Leu
35 40 45

Ala Lys Ile Leu Thr Ser Lys Gly Ala Gly Ile Ser Gln Tyr Ala
50 55 60
Gly Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
65 70 75

<210> SEQ ID NO 121
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: JNK inhibitory peptide IB-1

<400> SEQUENCE: 121

Asp Thr Tyr Arg Pro Lys Arg Pro Thr Thr Leu Asn Leu Phe Pro Gln
1 5 10 15
Val Pro Arg Ser
20

<210> SEQ ID NO 122
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: JNK inhibitory peptide IB-2

<400> SEQUENCE: 122

Glu Glu Pro His Lys His Arg Pro Thr Thr Leu Arg Leu Thr Thr Leu
1 5 10 15
Gly Ala Gln Asp Ser
20

<210> SEQ ID NO 123
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Generic IB JNK inhibitory peptide

<400> SEQUENCE: 123

Xaa Arg Pro Thr Thr Leu Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln
1 5 10 15
Asp Ser Xaa

<210> SEQ ID NO 124
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Generic IB JNK inhibitory peptide

<400> SEQUENCE: 124

Asp Ser Xaa
Xaa Arg Pro Thr Thr Leu Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln
1 5 10 15
Asp Thr Xaa

Xaa Ser Asp Gln Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Leu Thr Thr
1 5 10 15
Pro Arg Xaa Leu
20
OTHER INFORMATION: Xaa can be any naturally occurring amino acid

NAME/KEY: misc_feature

LOCATION: (19) .. (19)

OTHER INFORMATION: Xaa can be any naturally occurring amino acid

SEQUENCE: 126

Xaa Thr Asp Gln Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Leu Xaa Leu Thr Thr
1 5 10 15

Pro Arg Xaa Leu
20

SEQ ID NO 127
LENGTH: 23
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: Retro-inverted IB-1 JNK inhibitory peptide
(wherein each amino acid other than glycine is a D amino acid)

SEQUENCE: 127
Thr Asp Gln Ser Arg Pro Val Gln Pro Phe Leu Asn Leu Thr Thr Pro
1 5 10 15
Arg Lys Pro Arg Tyr Thr Asp
20

SEQ ID NO 128
LENGTH: 22
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: Retro-inverted IB-2 JNK inhibitory peptide
(wherein each amino acid other than glycine is a D amino acid)

SEQUENCE: 128
Ser Asp Gln Ala Gly Leu Thr Thr Leu Arg Leu Thr Thr Pro Arg His
1 5 10 15
Lys His Pro Glu Glu Leu
20

SEQ ID NO 129
LENGTH: 11
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: TI-JIP peptide

SEQUENCE: 129
Arg Pro Lys Arg Pro Thr Thr Leu Asn Leu Phe
1 5 10

SEQ ID NO 130
LENGTH: 11
TYPE: PRT
ORGANISM: artificial

FEATURE:
OTHER INFORMATION: Retro-inverted TI-JIP peptide (wherein each
amino acid other than glycine is a D amino acid)

SEQUENCE: 130
Phe Leu Asn Leu Thr Thr Pro Arg Lys Pro Arg
1 5 10
Sequences:

1. **Sequence ID No. 137**
 - Length: 10
 - Type: PRT
 - Organism: artificial
 - Feature: HIV tat basic region protein transduction domain
 - Sequence:
 - Gly
 - Arg
 - Lys
 - Arg
 - Gly
 - Lys
 - Arg
 - Arg
 - Arg

2. **Sequence ID No. 138**
 - Length: 11
 - Type: PRT
 - Organism: artificial
 - Feature: HIV tat basic region protein transduction domain
 - Sequence:
 - Gly
 - Arg
 - Lys
 - Arg
 - Gly
 - Lys
 - Arg
 - Arg
 - Arg
 - Pro

3. **Sequence ID No. 139**
 - Length: 12
 - Type: PRT
 - Organism: artificial
 - Feature: HIV tat basic region protein transduction domain
 - Sequence:
 - Gly
 - Arg
 - Lys
 - Arg
 - Gly
 - Lys
 - Arg
 - Arg
 - Arg
 - Pro
 - Pro

4. **Sequence ID No. 140**
 - Length: 11
 - Type: PRT
 - Organism: artificial
 - Feature: HIV tat basic region protein transduction domain
 - Sequence:
 - Gly
 - Arg
 - Lys
 - Arg
 - Gly
 - Lys
 - Arg
 - Arg
 - Arg
 - Gly

5. **Sequence ID No. 141**
 - Length: 12
 - Type: PRT
 - Organism: artificial
 - Feature: HIV tat basic region protein transduction domain
 - Sequence:
 - Gly
 - Arg
 - Lys
 - Arg
 - Gly
 - Lys
 - Arg
 - Arg
 - Arg
 - Gly
 - Pro
 - Glyn
<400> SEQUENCE: 142
Gly Arg Lys Arg Arg Gln Arg Arg Arg Pro Gly
1 5 10

<210> SEQ ID NO 143
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: HIV tat basic region protein transduction domain

<400> SEQUENCE: 143
Gly Arg Lys Arg Arg Gln Arg Arg Arg Pro Pro Gly
1 5 10

<210> SEQ ID NO 144
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids

<400> SEQUENCE: 144
Gly Arg Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Gly
1 5 10

<210> SEQ ID NO 145
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids

<400> SEQUENCE: 145
Arg Arg Arg Gln Arg Arg Lys Lys Gly
1 5 10

<210> SEQ ID NO 146
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids

<400> SEQUENCE: 146
Pro Arg Arg Gln Arg Arg Lys Lys Arg Gly
1 5 10

<210> SEQ ID NO 147
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids

<400> SEQUENCE: 147
<210> SEQ ID NO 148
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids
<400> SEQUENCE: 148

Gln Pro Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
1 5 10

<210> SEQ ID NO 149
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids
<400> SEQUENCE: 149

Gly Arg Arg Arg Glu Arg Arg Lys Lys Arg Gly
1 5 10

<210> SEQ ID NO 150
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids
<400> SEQUENCE: 150

Gly Pro Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
1 5 10

<210> SEQ ID NO 151
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids
<400> SEQUENCE: 151

Gly Pro Pro Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
1 5 10

<210> SEQ ID NO 152
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted HIV tat basic region protein transduction domain wherein all amino acids other than glycine are D-amino acids
<400> SEQUENCE: 152
-continued

Gly Gln Pro Pro Arg Arg Arg Gln Arg Arg Lys Lys Arg Gly
1 5 10

<210> SEQ ID NO 153
<211> LENGTH: 27
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: signal sequence peptide 1 protein transduction domain

<400> SEQUENCE: 153
Gly Ala Leu Phe Leu Gln Trp Leu Gln Ala Ala Gly Ser Thr Met Gly
1 5 10 15

Ala Trp Ser Gln Pro Lys Lys Lys Arg Lys Val
20 25

<210> SEQ ID NO 154
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: signal sequence peptide 2 protein transduction domain

<400> SEQUENCE: 154
Ala Ala Val Ala Leu Leu Pro Ala Val Leu Leu Ala Leu Ala Pro
1 5 10 15

<210> SEQ ID NO 155
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: transmembrane protein transduction domain

<400> SEQUENCE: 155
Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Lys Ile Asn Leu Lys
1 5 10 15

Ala Leu Ala Ala Leu Ala Lys Lys Ile Leu
20 25

<210> SEQ ID NO 156
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: amphiphilic signal peptide protein transduction domain

<400> SEQUENCE: 156
Lys Leu Ala Leu Lys Leu Ala Leu Leu Ala Leu Lys Ala Leu Lys
1 5 10 15

Leu Ala

<210> SEQ ID NO 157
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: polyarginine protein transduction domain

<400> SEQUENCE: 157
-continued

Arg Arg
1 5

<210> SEQ ID NO 158
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: transdermal delivery peptide

<400> SEQUENCE: 158

Ala Cys Ser Ser Ser Pro Ser Lys His Cys Gly
1 5 10

<210> SEQ ID NO 159
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Kaposi fibroblast growth factor (KGF)
hydrophobic peptide protein transduction domain

<400> SEQUENCE: 159

Ala Ala Val Leu Leu Pro Val Leu Leu Ala Ala Pro
1 5 10

<210> SEQ ID NO 160
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Kaposi fibroblast growth factor (KGF)
hydrophobic peptide protein transduction domain

<400> SEQUENCE: 160

Gly Ala Ala Val Leu Leu Pro Val Leu Leu Ala Ala Pro
1 5 10

<210> SEQ ID NO 161
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted Kaposi fibroblast growth factor
(PGF) hydrophobic peptide protein transduction domain (wherein
each amino acid other than glycine is a D amino acid)

<400> SEQUENCE: 161

Pro Ala Ala Leu Leu Val Pro Leu Leu Val Ala Ala
1 5 10

<210> SEQ ID NO 162
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: retroinverted Kaposi fibroblast growth factor
(PGF) hydrophobic peptide protein transduction domain (wherein
each amino acid other than glycine is a D amino acid)

<400> SEQUENCE: 162

Pro Ala Ala Leu Leu Val Pro Leu Leu Val Ala Ala Gly
1 5 10

<210> SEQ ID NO 163
1. An injectable peptide formulation comprising:
 (i) an amount of a peptide or analog thereof sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury, and/or to prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium, wherein a peptide or analog is selected individually or collectively from the group consisting of:
 (a) a peptide encoded by a nucleic acid comprising a sequence set forth in any one of SEQ ID Nos: 1-25;
 (b) a peptide comprising a sequence set forth in any one of SEQ ID Nos: 26-72, 121-124, 129, 131 or 163; and
 (c) an analog of (a) or (b) selected from the group consisting of (d) the sequence of (a) or (b) comprising one or more naturally-occurring amino acid substitutions;
 (e) the sequence of (a) or (b) comprising one or more non-naturally-occurring amino acid analogs; (f) an isostere of (a) or (b);
 (g) a retro-peptide or retro-inverted peptide analog of (a) or (b); and
 (ii) a suitable carrier or excipient.
2. The injectable peptide formulation according to claim 1 comprising an analog selected individually or collectively from the group consisting of SEQ ID Nos: 73-120, 125-128, 130, 164 and 165 or mixtures thereof.
3. The injectable peptide formulation according to claim 1 comprising an analog selected individually or collectively from the group consisting of SEQ ID Nos: 103, 104, 105, 106, 107 and 108 or mixtures thereof.
4. The injectable peptide formulation according to claim 1 comprising an analog selected individually or collectively from the group consisting of SEQ ID NO: 104, SEQ ID NO: 106 and SEQ ID NO: 108 and mixtures thereof.
5-6. (canceled)
7. The injectable peptide formulation of claim 1, wherein the peptide or analog is formulated for intravenous injection.
8. The injectable peptide formulation of claim 1, wherein the peptide or analog is formulated for intramuscular injection.
9. The injectable peptide formulation of claim 1, wherein the peptide or analog is formulated for subcutaneous injection.
10-19. (canceled)
20. The injectable peptide formulation according to claim 1 additionally comprising a growth factor.
21-26. (canceled)
27. A method for producing a formulation comprising mixing or otherwise combining a peptide or analog or AP-1...
signaling inhibitor in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury, and/or to prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium, with a suitable carrier or excipient, wherein a peptide or analog is selected individually or collectively from the group consisting of:
(a) a peptide encoded by a nucleic acid comprising a sequence set forth in any one of SEQ ID NOs: 1-25;
(b) a peptide comprising a sequence set forth in any one of SEQ ID NOs: 26-72, 121-124, 129, 131, or 163; and
(c) an analog of (a) or (b) selected from the group consisting of (d) the sequence of (a) or (b) comprising one or more naturally-occurring amino acid substitutions; (e) the sequence of (a) or (b) comprising one or more non-naturally-occurring amino acid analogs; (f) an isostere of (a) or (b); (g) a retro-peptide or retro-inverted peptide analog of (a) or (b).
28. (canceled)
29. The method of claim 27, wherein the carrier or excipient is a carrier or excipient for injection.
30-32. (canceled)
33. A method for the prevention of ARDS comprising administering to a subject at risk of developing ARDS or exposed to one or more risk factors of ARDS a formulation of claim 1 for a time and under conditions sufficient to prevent neutrophilic inflammation and/or prevent alveolar epithelial loss or damage in the subject.
34. (canceled)
35. The method of claim 33, wherein the formulation is administered to the subject by injection.
36. A method of treatment of ARDS and/or one or more complications thereof comprising administering to a subject in need thereof a formulation a formulation of the invention according to claim 1 for a time and under conditions sufficient to reduce neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury.
37. The method of claim 36, wherein the subject is suffering from breathing difficulty and/or has reduced breathing capability and the formulation is administered to the subject by injection.
38. The method of claim 36, wherein the formulation is administered to the subject by intravenous injection.
39. The method of claim 36, wherein the formulation is administered to the subject by intramuscular injection.
40. The method of claim 36, wherein the formulation is administered to the subject by subcutaneous injection.
41-44. (canceled)
45. A method of treatment or prophylaxis comprising:
(i) identifying a subject suffering from ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS or is at risk of suffering from ARDS;
(ii) obtaining a composition comprising a peptide or analog or AP-1 signaling inhibitor that reduces or prevents neutrophilic inflammation and/or enhances or induces alveolar re-epithelialization and/or prevents or reduces alveolar epithelial loss or damage;
(iii) formulating the composition at (ii) with a suitable carrier and/or excipient wherein said composition is in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium; and
(iv) administering said formulation to said subject.
46. (canceled)
47. A method for identifying a compound for the treatment of ARDS and/or one or more complications thereof or suffering from one or more clinical disorders associated with the development of ARDS, said method comprising:
(i) identifying a compound capable of inhibiting or reducing AP-1 signaling;
(ii) administering an amount of the compound identified at (i) sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium;
(iii) comparing the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in the subject at (ii) to the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in a subject to which the compound has not been administered; and
(iv) selecting a compound that reduces or prevents neutrophilic inflammation and/or enhances or induces alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury and/or prevents or reduces alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium thereby identifying a compound for the treatment of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS.
48-49. (canceled)
50. A method for isolating a compound for the treatment of treatment of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS, said method comprising:
(i) identifying a mixture of compounds capable of inhibiting or reducing AP-1 signaling or a library comprising compounds capable of inhibiting or reducing AP-1 signaling;
(ii) administering said mixture or a plurality of compounds identified at (i) capable of inhibiting or reducing AP-1 signaling in an amount sufficient to reduce or prevent neutrophilic inflammation and/or enhance or induce alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury, and/or prevent or reduce alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium;
(iii) comparing the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in the subject at (ii) to the level of neutrophilic inflammation and/or the amount of alveolar re-epithelialization and/or the amount of epithelial loss or damage in a subject to which the mixture or plurality of compounds has not been administered; and
(iv) identifying a mixture or a plurality of compounds that reduces or prevents neutrophilic inflammation and/or
enhances or induces alveolar re-epithelialization in a subject that has suffered alveolar epithelial injury and/or prevents or reduces alveolar epithelial loss or damage in a subject that has not yet suffered significant damage to the alveolar epithelium; and

(v) separating a compound from the mixture or plurality of compounds that reduces the level of neutrophilic inflammation and/or increases the amount of alveolar re-epithelialization and/or prevents or reduces alveolar epithelial loss or damage, thereby isolating a compound for the treatment of ARDS and/or one or more complications thereof or one or more clinical disorders associated with the development of ARDS.

51-52. (canceled)

53. The injectable peptide formulation of claim 1 comprising a peptidyl moiety conjugated to a non-hydrolysable polyethylene glycol (PEG).