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(57)【要約】
　本開示のいくつかの態様は、教師あり学習を使用して
、ニューラルネットワークモデルの入力／出力クラスの
ためのタグ（静的または動的）を作成するための方法お
よび装置を提供する。本方法は、複数のニューロンでニ
ューラルネットワークモデルを増強することと、１つま
たは複数のタグを決定するためにスパイクタイミング依
存可塑性（ＳＴＤＰ）を使用して増強ネットワークをト
レーニングすることとを含む。
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【特許請求の範囲】
【請求項１】
　人工ニューロンの１つまたは複数のインデックス付きクラスを備える第１のネットワー
クを識別することと、
　それらのインデックス付けに関わらず、人工ニューロンの前記１つまたは複数のクラス
のための１つまたは複数のタグを決定することと
を備える、方法。
【請求項２】
　人工ニューロンの前記１つまたは複数のクラスのための前記１つまたは複数のタグを決
定することが、
　１つまたは複数の人工ニューロンを備える第２のネットワークで、前記第１のネットワ
ークを増強することと、ここにおいて、前記第２のネットワーク内の各ニューロンがタグ
に対応する、
　ニューロンの前記１つまたは複数のクラスの各々を、１つまたは複数の可塑性接続を有
する前記第２のネットワーク内のすべての前記ニューロンに接続することと、
　前記第２のネットワーク内の各ニューロンが、そのインデックスに関わらず前記第１の
ネットワークの特定のクラスを表すように、教師あり学習アルゴリズムを使用して、前記
１つまたは複数の可塑性接続をトレーニングすることと
を備える、請求項１に記載の方法。
【請求項３】
　前記第２のネットワークが、人工ニューロンの単一のレイヤを備える、請求項２に記載
の方法。
【請求項４】
　前記教師あり学習アルゴリズムがスパイクタイミング依存可塑性（ＳＴＤＰ）を使用す
る、請求項２に記載の方法。
【請求項５】
　前記１つまたは複数の可塑性接続をトレーニングすることが、
　クラスの知られているシーケンスを前記第１のネットワーク内に送信することと、
　前記第２のネットワークの１つまたは複数の人工ニューロンを、特定のクラスごとにス
パイクするように強制することと、
　１つまたは複数の他のクラスのために、前記第２のネットワークの１つまたは複数の人
工ニューロンでのスパイキングを抑制することと、
　前記第１および前記第２のネットワーク内の前記スパイクに基づいて、前記１つまたは
複数の可塑性接続の重みを調整することと、
を備える、請求項２に記載の方法。
【請求項６】
　前記増強されたネットワークが、前記第１のネットワークの出力レイヤに接続される、
請求項２に記載の方法。
【請求項７】
　人工ニューロンの前記１つまたは複数のクラスが、教師なし学習アルゴリズムを使用し
て決定される、請求項１に記載の方法。
【請求項８】
　前記インデックス付きクラスのうちの１つが特定の時間パターンを備える、請求項１に
記載の方法。
【請求項９】
　人工ニューロンの前記インデックス付きクラスの各々が１つまたは複数のタグに対応し
得る、請求項１に記載の方法。
【請求項１０】
　前記１つまたは複数のタグが、前記第１のネットワークを装置に接続するために使用さ
れる、請求項１に記載の方法。



(3) JP 2016-538632 A 2016.12.8

10

20

30

40

50

【請求項１１】
　前記１つまたは複数のタグが、人工ニューロンの異なるクラス間の境界を決定するため
に使用される、請求項１に記載の方法。
【請求項１２】
　前記１つまたは複数のタグが、人工ニューロンの前記クラスのうちの１つまたは複数を
合体するために使用される、請求項１に記載の方法。
【請求項１３】
　人工ニューロンの前記１つまたは複数のクラスのための前記１つまたは複数のタグを決
定することが、
　１つまたは複数の人工ニューロンを備える第２のネットワークで、前記第１のネットワ
ークを増強することと、ここにおいて、前記第２のネットワーク内の各ニューロンがタグ
に対応する、
　ニューロンの前記１つまたは複数のクラスの各々を、１つまたは複数の可塑性接続を有
する前記第２のネットワーク内のすべての前記ニューロンに接続することと、
　監視信号がクラスと出力レイヤニューロンとの間に所望のマッピングを課するように、
前記可塑性接続を介してニューロンの前記１つまたは複数のクラスに監視バイアス信号を
提供することと
を備える、請求項１に記載の方法。
【請求項１４】
　監視バイアス信号を提供することが、
　所望の出力レイヤニューロン上で発火するためのバイアスを作成するために、発火しき
い値を下回る正の監視信号を提供することを備える、請求項１３に記載の方法。
【請求項１５】
　監視バイアス信号を提供することが、
　非所望の出力レイヤニューロン上の発火を防止するためのバイアスを作成するために負
の監視信号を提供することをさらに備える、請求項１４に記載の方法。
【請求項１６】
　監視バイアスのレベルが、前記出力レイヤニューロンでの所望のネットワーク出力と実
際のネットワーク出力との間の差に応じて調整されるように、前記監視信号の重みを調整
することをさらに備える、請求項１３に記載の方法。
【請求項１７】
　人工ニューロンの１つまたは複数のインデックス付きクラスを備える第１のネットワー
クを識別するための手段と、
　それらのインデックス付けに関わらず、人工ニューロンの前記１つまたは複数のクラス
のための１つまたは複数のタグを決定するための手段と
を備える、装置。
【請求項１８】
　人工ニューロンの前記１つまたは複数のクラスのための前記１つまたは複数のタグを決
定するための前記手段が、
　１つまたは複数の人工ニューロンを備える第２のネットワークで、前記第１のネットワ
ークを増強するための手段と、ここにおいて、前記第２のネットワーク内の各ニューロン
がタグに対応する、
　ニューロンの前記１つまたは複数のクラスの各々を、１つまたは複数の可塑性接続を有
する前記第２のネットワーク内のすべての前記ニューロンに接続するための手段と、
　前記第２のネットワーク内の各ニューロンが、そのインデックスに関わらず前記第１の
ネットワークの特定のクラスを表すように、教師あり学習アルゴリズムを使用して、前記
１つまたは複数の可塑性接続をトレーニングするための手段と
を備える、請求項１７に記載の装置。
【請求項１９】
　前記第２のネットワークが、人工ニューロンの単一のレイヤを備える、請求項１８に記
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載の装置。
【請求項２０】
　前記教師あり学習アルゴリズムがスパイクタイミング依存可塑性（ＳＴＤＰ）を使用す
る、請求項１８に記載の装置。
【請求項２１】
　前記１つまたは複数の可塑性接続をトレーニングするための前記手段が、
　クラスの知られているシーケンスを前記第１のネットワーク内に送信するための手段と
、
　前記第２のネットワークの１つまたは複数の人工ニューロンを、特定のクラスごとにス
パイクするように強制することと、
　１つまたは複数の他のクラスのために、前記第２のネットワークの１つまたは複数の人
工ニューロンでのスパイキングを抑制するための手段と、
　前記第１および前記第２のネットワーク内の前記スパイクに基づいて、前記１つまたは
複数の可塑性接続の重みを調整するための手段と、
を備える、請求項１８に記載の装置。
【請求項２２】
　前記増強されたネットワークが、前記第１のネットワークの出力レイヤに接続される、
請求項１８に記載の装置。
【請求項２３】
　人工ニューロンの前記１つまたは複数のクラスが、教師なし学習アルゴリズムを使用し
て決定される、請求項１７に記載の装置。
【請求項２４】
　前記インデックス付きクラスのうちの１つが特定の時間パターンを備える、請求項１７
に記載の装置。
【請求項２５】
　人工ニューロンの前記インデックス付きクラスの各々が１つまたは複数のタグに対応し
得る、請求項１７に記載の装置。
【請求項２６】
　前記１つまたは複数のタグが、前記第１のネットワークを装置に接続するために使用さ
れる、請求項１７に記載の装置。
【請求項２７】
　前記１つまたは複数のタグが、人工ニューロンの異なるクラス間の境界を決定するため
に使用される、請求項１７に記載の装置。
【請求項２８】
　前記１つまたは複数のタグが、人工ニューロンの前記クラスのうちの１つまたは複数を
合体するために使用される、請求項１７に記載の装置。
【請求項２９】
　人工ニューロンの前記１つまたは複数のクラスのための前記１つまたは複数のタグを決
定するための前記手段が、
　１つまたは複数の人工ニューロンを備える第２のネットワークで、前記第１のネットワ
ークを増強するための手段と、ここにおいて、前記第２のネットワーク内の各ニューロン
がタグに対応する、
　ニューロンの前記１つまたは複数のクラスの各々を、１つまたは複数の可塑性接続を有
する前記第２のネットワーク内のすべての前記ニューロンに接続するための手段と、
　監視信号がクラスと出力レイヤニューロンとの間に所望のマッピングを課するように、
前記可塑性接続を介してニューロンの前記１つまたは複数のクラスに監視バイアス信号を
提供するための手段と
を備える、請求項１７に記載の装置。
【請求項３０】
　監視バイアス信号を提供するための前記手段が、
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　所望の出力レイヤニューロン上で発火するためのバイアスを作成するために、発火しき
い値を下回る正の監視信号を提供するための手段を備える、請求項２９に記載の装置。
【請求項３１】
　監視バイアス信号を提供するための前記手段が、
　非所望の出力レイヤニューロン上の発火を防止するためのバイアスを作成するために負
の監視信号を提供するための手段をさらに備える、請求項３０に記載の装置。
【請求項３２】
　監視バイアスのレベルが、前記出力レイヤニューロンでの所望のネットワーク出力と実
際のネットワーク出力との間の差に応じて調整されるように、前記監視信号の重みを調整
するための手段をさらに備える、請求項２９に記載の装置。
【請求項３３】
　人工ニューロンの１つまたは複数のインデックス付きクラスを備える第１のネットワー
クを識別して、それらのインデックス付けに関わらず、人工ニューロンの前記１つまたは
複数のクラスのための１つまたは複数のタグを決定するように構成された少なくとも１つ
のプロセッサと、
　前記少なくとも１つのプロセッサに結合されたメモリと
を備える、装置。
【請求項３４】
　人工ニューロンの１つまたは複数のインデックス付きクラスを備える第１のネットワー
クを識別して、
　それらのインデックス付けに関わらず、人工ニューロンの前記１つまたは複数のクラス
のための１つまたは複数のタグを決定するための命令を記憶したコンピュータ可読媒体を
備える、プログラム製品。
【発明の詳細な説明】
【技術分野】
【０００１】
関連出願の相互参照
　[0001]本出願は、その全体が参照により本明細書に組み込まれる、２０１３年１０月２
８日に出願された米国特許出願第１４／０６５，０８９号の利益を主張する。
【０００２】
　[0002]本開示のいくつかの態様は、一般にニューラルネットワークに関し、より詳細に
は、教師あり学習（ｓｕｐｅｒｖｉｓｅｄ　ｌｅａｒｎｉｎｇ）を使用してクラスにタグ
付けすることに関する。
【背景技術】
【０００３】
　[0003]人工ニューラルネットワークは、人工ニューロン（すなわち、ニューロンモデル
）の相互結合されたグループからなる、数学的または計算モデルである。人工ニューラル
ネットワークは、ヒトの脳に見られるような、生物学的ニューラルネットワークの構造お
よび／または機能から得られ得る（または、少なくとも緩やかに基づく）。人工ニューラ
ルネットワークは観測から機能を推論することができるので、そのようなネットワークは
、タスクまたはデータの複雑さが人の手でこの機能を設計することを実行不可能にする適
用例において、特に有用である。
【０００４】
　[0004]１つのタイプの人工ニューラルネットワークはスパイキングニューラルネットワ
ークであり、これは、それの動作モデル、ならびにニューロンおよびシナプスの状態に時
間の概念を組み込み、それによって、このタイプのニューラルシミュレーションのリアリ
ズムのレベルを増加する。スパイキングニューラルネットワークは、膜電位がしきい値に
達した時にのみニューロンが発火するという概念に基づく。ニューロンが発火する時、そ
のニューロンは、他のニューロンに進むスパイクを生成し、他のニューロンは、今度は、
この受信されたスパイクに基づいてそれらの膜電位を上昇または低下させる。
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【０００５】
　[0005]教師なし学習（ｕｎｓｕｐｅｒｖｉｓｅｄ　ｌｅａｒｎｉｎｇ）アルゴリズムは
、多くの適用例において異なるクラスにデータを正確に分類するが、それらは、それらが
分離するクラスに一貫したインデックスを提供することはできない。代わりに、いくつか
のデータタイプを表すクラスインデックスは、異なるクラスにランダムに割り当てられ得
る。このランダムな割当ては、多くの適用例において、特に分類出力が１つまたは複数の
下流モジュールへの入力として使用される場合は、望ましくない場合がある。同じクラス
を一貫して表すクラスインデックスがないと、教師なし学習アルゴリズムを実装するモジ
ュールと下流モジュールとの間に、信頼できるインターフェースを構築することが可能で
はない場合がある。
【発明の概要】
【０００６】
　[0006]本開示のいくつかの態様は、クラスにタグ付けするための方法を提案する。本方
法は、一般に、人工ニューロンの１つまたは複数のインデックス付きクラスを備える第１
のネットワークを識別することと、それらのインデックス付けに関わらず、人工ニューロ
ンの１つまたは複数のクラスのための１つまたは複数のタグを決定することとを含む。
【０００７】
　[0007]本開示のいくつかの態様は、クラスにタグ付けするための装置を提案する。本装
置は、一般に、人工ニューロンの１つまたは複数のインデックス付きクラスを備える第１
のネットワークを識別するための手段と、それらのインデックス付けに関わらず、人工ニ
ューロンの１つまたは複数のクラスのための１つまたは複数のタグを決定するための手段
とを含む。
【０００８】
　[0008]本開示のいくつかの態様は、クラスにタグ付けするための装置を提案する。本装
置は、一般に、人工ニューロンの１つまたは複数のインデックス付きクラスを備える第１
のネットワークを識別して、それらのインデックス付けに関わらず、人工ニューロンの１
つまたは複数のクラスのための１つまたは複数のタグを決定するように構成された少なく
とも１つのプロセッサと、少なくとも１つのプロセッサに結合されたメモリとを含む。
【０００９】
　[0009]本開示のいくつかの態様は、クラスにタグ付けするためのプログラム製品を提案
する。本プログラム製品は、一般に、人工ニューロンの１つまたは複数のインデックス付
きクラスを備える第１のネットワークを識別して、それらのインデックス付けに関わらず
、人工ニューロンの１つまたは複数のクラスのための１つまたは複数のタグを決定するた
めの命令を記憶したコンピュータ可読媒体を含む。
【００１０】
　[0010]本開示の上述の特徴が詳細に理解され得るように、添付の図面にその一部が示さ
れる態様を参照することによって、上記で簡単に要約された内容のより具体的な説明が得
られ得る。ただし、その説明は他の等しく有効な態様に通じ得るので、添付の図面は、本
開示のいくつかの典型的な態様のみを示し、したがって、本開示の範囲を限定するものと
見なされるべきではないことに留意されたい。
【図面の簡単な説明】
【００１１】
【図１】[0011]本開示のいくつかの態様によるニューロンの例示的なネットワークを示す
図。
【図２】[0012]本開示のいくつかの態様による、計算ネットワーク（ニューラルシステム
またはニューラルネットワーク）の処理ユニット（ニューロン）の例を示す図。
【図３】[0013]本開示のいくつかの態様によるスパイクタイミング依存可塑性（ＳＴＤＰ
）曲線の一例を示す図。
【図４】[0014]本開示のいくつかの態様による、ニューロンモデルの挙動を定義するため
の正レジームと負レジームとを示す図。
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【図５】[0015]本開示のいくつかの態様による、ニューラルネットワークブロックを利用
するシステムの例示的な高レベルブロック図。
【図６】[0016]本開示のいくつかの態様による、例示的な刺激処理モデルを示す図。
【図７】[0017]本開示のいくつかの態様による、クラスにタグ付けするための例示的な方
法を示す図。
【図８】[0018]本開示のいくつかの態様による、ノードのクラスにタグ付けするための例
示的な動作を示す図。
【図８Ａ】[0019]図８に示される動作を実行することが可能な例示的な構成要素を示す図
。
【図９Ａ】[0020]本開示のいくつかの態様による、提案されたタグ付け方法を示す図。
【図９Ｂ】本開示のいくつかの態様による、提案されたタグ付け方法を示す図。
【図９Ｃ】本開示のいくつかの態様による、提案されたタグ付け方法を示す図。
【図１０】[0021]本開示のいくつかの態様による、例示的な可塑性ルールを示す図。
【図１１】[0022]本開示のいくつかの態様による、モータのための入力動作タグを作成す
る際の提案された方法の例示的な適用例を示す図。
【図１２】[0023]本開示のいくつかの態様による、クラス境界を作成する際の、提案され
たタグ付け方法の例示的な適用例を示す図。
【図１３Ａ】[0024]本開示のいくつかの態様による、クラスを合体するための提案された
タグ付け方法の別の例示的な適用例を示す図。
【図１３Ｂ】本開示のいくつかの態様による、クラスを合体するための提案されたタグ付
け方法の別の例示的な適用例を示す図。
【図１３Ｃ】本開示のいくつかの態様による、クラスを合体するための提案されたタグ付
け方法の別の例示的な適用例を示す図。
【図１４Ａ】[0025]本開示のいくつかの態様による、過剰完全表現（ｏｖｅｒ－ｃｏｍｐ
ｌｅｔｅ　ｒｅｐｒｅｓｅｎｔａｔｉｏｎ）を有するニューラルネットワークにおける提
案されたタグ付け方法の例示的な適用例を示す図。
【図１４Ｂ】本開示のいくつかの態様による、過剰完全表現（ｏｖｅｒ－ｃｏｍｐｌｅｔ
ｅ　ｒｅｐｒｅｓｅｎｔａｔｉｏｎ）を有するニューラルネットワークにおける提案され
たタグ付け方法の例示的な適用例を示す図。
【図１４Ｃ】本開示のいくつかの態様による、過剰完全表現（ｏｖｅｒ－ｃｏｍｐｌｅｔ
ｅ　ｒｅｐｒｅｓｅｎｔａｔｉｏｎ）を有するニューラルネットワークにおける提案され
たタグ付け方法の例示的な適用例を示す図。
【図１５】[0026]本開示のいくつかの態様による、ニューラルネットワークに新しいクラ
スを追加するための例示的な方法を示す図。
【図１６】[0027]本開示のいくつかの態様による、監視信号を利用する例示的なモデルを
示す図。
【図１７】[0028]本開示のいくつかの態様による、監視信号の適用例の例示的なタイミン
グを示す図。
【図１８】[0029]本開示のいくつかの態様による、監視信号の適用例の例示的な効果を示
す図。
【図１９】[0030]本開示のいくつかの態様による、監視信号を調整するための例示的なル
ールを示す図。
【図２０Ａ】本開示のいくつかの態様による、監視信号を調整するための例示的なルール
を示す図。
【図２０Ｂ】本開示のいくつかの態様による、監視信号を調整するための例示的なルール
を示す図。
【図２１】[0031]本開示のいくつかの態様による、汎用プロセッサを使用するニューラル
ネットワークの設計の例示的な実装形態を示す図。
【図２２】[0032]本開示のいくつかの態様による、メモリが個々の分散処理ユニットとイ
ンターフェースされ得るニューラルネットワークの設計の例示的な実装形態を示す図。
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【図２３】[0033]本開示のいくつかの態様による、分散メモリおよび分散処理ユニットに
基づいてニューラルネットワークの設計の例示的な実装形態を示す図。
【図２４】[0034]本開示のいくつかの態様による、ニューラルネットワークの例示的な実
装形態を示す図。
【発明を実施するための形態】
【００１２】
　[0035]添付の図面を参照しながら本開示の様々な態様について以下でより十分に説明す
る。ただし、本開示は、多くの異なる形態で実施され得、本開示全体にわたって提示され
る任意の特定の構造または機能に限定されるものと解釈されるべきではない。むしろ、こ
れらの態様は、本開示が周到で完全になり、本開示の範囲を当業者に十分に伝えるように
与えられる。本明細書の教示に基づいて、本開示の範囲は、本開示の任意の他の態様とは
無関係に実装されるにせよ、本開示の任意の他の態様と組み合わされるにせよ、本明細書
で開示する本開示のいかなる態様をもカバーするものであることを、当業者なら諒解され
たい。たとえば、本明細書に記載される態様をいくつ使用しても、装置は実装され得、ま
たは方法は実施され得る。さらに、本開示の範囲は、本明細書に記載される本開示の様々
な態様に加えてまたはそれらの態様以外に、他の構造、機能、または構造および機能を使
用して実施されるそのような装置または方法をカバーするものとする。本明細書で開示す
る本開示のいずれの態様も、請求項の１つまたは複数の要素によって実施され得ることを
理解されたい。
【００１３】
　[0036]「例示的」という単語は、本明細書では「例、事例、または例示の働きをするこ
と」を意味するために使用される。「例示的」として本明細書で説明するいかなる態様も
、必ずしも他の態様よりも好ましいまたは有利であると解釈されるべきであるとは限らな
い。
【００１４】
　[0037]本明細書では特定の態様について説明するが、これらの態様の多くの変形および
置換は本開示の範囲内に入る。好ましい態様のいくつかの利益および利点が説明されるが
、本開示の範囲は特定の利益、使用、または目的に限定されるものではない。むしろ、本
開示の態様は、様々な技術、システム構成、ネットワーク、およびプロトコルに広く適用
可能であるものとし、そのうちのいくつかを例として図および好ましい態様についての以
下の説明で示す。発明を実施するための形態および図面は、本開示を限定するものではな
く説明するものにすぎず、本開示の範囲は添付の特許請求の範囲およびそれの均等物によ
って定義される。
例示的なニューラルシステム、トレーニングおよび動作
　[0038]図１は、本開示のいくつかの態様による、複数のレベルのニューロンをもつ例示
的なニューラルシステム１００を示す。ニューラルシステム１００は、シナプス結合のネ
ットワーク１０４（すなわち、フィードフォワード結合）を介してニューロンの別のレベ
ル１０６に結合されたニューロンのあるレベル１０２を備え得る。簡単のために、図１に
は２つのレベルのニューロンのみが示されているが、典型的なニューラルシステムには、
より少ないまたはより多くのレベルのニューロンが存在し得る。ニューロンのいくつかは
、ラテラル結合を介して同じ層の他のニューロンに結合し得ることに留意されたい。さら
に、ニューロンのいくつかは、フィードバック結合を介して前の層のニューロンに戻る形
で結合し得る。
【００１５】
　[0039]図１に示すように、レベル１０２における各ニューロンは、前のレベル（図１に
図示せず）の複数のニューロンによって生成され得る入力信号１０８を受信し得る。信号
１０８は、レベル１０２のニューロンの入力電流を表し得る。この電流は、膜電位を充電
するためにニューロン膜上に蓄積され得る。膜電位がそれのしきい値に達すると、ニュー
ロンは、発火し、ニューロンの次のレベル（たとえば、レベル１０６）に転送されるべき
出力スパイクを生成し得る。そのような挙動は、アナログおよびデジタル実装形態を含む
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ハードウェアおよび／またはソフトウェアでエミュレートまたはシミュレートされ得る。
【００１６】
　[0040]生物学的ニューロンでは、ニューロンが発火するときに生成される出力スパイク
は、活動電位と呼ばれる。電気信号は、約１００ｍＶの振幅と約１ｍｓの持続時間とを有
する比較的急速で、一時的で、全か無かの神経インパルスである。一連の結合されたニュ
ーロンを有するニューラルシステムの特定の実施形態（たとえば、図１におけるあるレベ
ルのニューロンから別のレベルのニューロンへのスパイクの転送）では、あらゆる活動電
位が基本的に同じ振幅と持続時間とを有するので、信号における情報は、振幅によってで
はなく、スパイクの周波数および数、またはスパイクの時間によってのみ表される。活動
電位によって搬送される情報は、スパイク、スパイクしたニューロン、および他のスパイ
クまたは他の複数のスパイクに対するスパイクの時間によって決定される。
【００１７】
　[0041]図１に示すように、あるレベルのニューロンから別のレベルのニューロンへのス
パイクの転送は、シナプス結合（または単に「シナプス」）のネットワーク１０４によっ
て達成され得る。シナプス１０４は、レベル１０２のニューロン（シナプス１０４に対す
るシナプス前ニューロン）から出力信号（すなわち、スパイク）を受信し、それらの信号
を、調整可能なシナプス重み
【００１８】
【数１】

【００１９】
（ここでＰは、レベル１０２のニューロンとレベル１０６のニューロンとの間のシナプス
結合の総数である）に従ってスケーリングし得る。さらに、スケーリングされた信号は、
レベル１０６における各ニューロン（シナプス１０４に対するシナプス後ニューロン）の
入力信号として合成され得る。レベル１０６におけるあらゆるニューロンは、対応する合
成された入力信号に基づいて、出力スパイク１１０を生成し得る。出力スパイク１１０は
、次いで、シナプス結合の別のネットワーク（図１には図示せず）を使用して、別のレベ
ルのニューロンに転送され得る。
【００２０】
　[0042]生物学的シナプスは、電気シナプスまたは化学シナプスのいずれに分類され得る
。電気シナプスは、興奮性信号を送るために主に使用される一方、化学シナプスは、シナ
プス後ニューロンにおける興奮性活動または抑制性（過分極化）活動のいずれかを調停す
ることができ、ニューロン信号を増幅する役目を果たすこともできる。興奮性信号は通常
、膜電位を脱分極する（すなわち、静止電位に対して膜電位を増加させる）。しきい値を
超えて膜電位を脱分極するために十分な興奮性信号が一定時間期間内に受信された場合、
シナプス後ニューロンに活動電位が生じる。対照的に、抑制性信号は一般に、膜電位を過
分極する（すなわち、低下させる）。抑制性信号は、十分に強い場合、興奮性信号のすべ
てを相殺し、膜電位がしきい値に達するのを防止することができる。シナプス興奮を相殺
することに加えて、シナプス抑制は、自然に活発なニューロンに対して強力な制御を行う
ことができる。自然に活発なニューロンは、たとえば、それのダイナミクスまたはフィー
ドバックに起因するさらなる入力なしにスパイクするニューロンを指す。これらのニュー
ロンにおける活動電位の自然な生成を抑圧することによって、シナプス抑制は、一般にス
カルプチャリングと呼ばれる、ニューロンの発火のパターンを形成することができる。様
々なシナプス１０４は、望まれる挙動に応じて、興奮性シナプスまたは抑制性シナプスの
任意の組合せとして働き得る。
【００２１】
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　[0043]ニューラルシステム１００は、汎用プロセッサ、デジタル信号プロセッサ（ＤＳ
Ｐ）、特定用途向け集積回路（ＡＳＩＣ）、フィールドプログラマブルゲートアレイ（Ｆ
ＰＧＡ）もしくは他のプログラマブル論理デバイス（ＰＬＤ）、個別ゲートもしくはトラ
ンジスタ論理、個別ハードウェア構成要素、プロセッサによって実行されるソフトウェア
モジュール、またはそれらの任意の組合せによってエミュレートされ得る。ニューラルシ
ステム１００は、たとえば画像およびパターン認識、機械学習、モータ制御およびアライ
ク、かなりの適用範囲において利用され得る。ニューラルシステム１００における各ニュ
ーロンは、ニューロン回路として実装され得る。出力スパイクを開始するしきい値まで充
電されるニューロン膜は、たとえば、そこを通って流れる電流を積分するキャパシタとし
て実装され得る。
【００２２】
　[0044]一態様では、キャパシタは、ニューロン回路の電流積分デバイスとして除去され
得、その代わりにより小さいメモリスタ（memristor）要素が使用され得る。この手法は
、ニューロン回路において、ならびにかさばるキャパシタが電流積分器として利用される
様々な他の適用例において適用され得る。さらに、シナプス１０４の各々は、メモリスタ
要素に基づいて実装され得、シナプス重みの変化は、メモリスタ抵抗の変化に関係し得る
。ナノメートルの特徴サイズのメモリスタを用いると、ニューロン回路およびシナプスの
面積が大幅に低減され得、それによって、非常に大規模なニューラルシステムハードウェ
ア実装形態の実装が実用的になり得る。
【００２３】
　[0045]ニューラルシステム１００をエミュレートするニューラルプロセッサの機能は、
ニューロン間の結合の強さを制御し得る、シナプス結合の重みに依存し得る。シナプス重
みは、パワーダウン後にプロセッサの機能を維持するために、不揮発性メモリに記憶され
得る。一態様では、シナプス重みメモリは、主たるニューラルプロセッサチップとは別個
の外部チップ上に実装され得る。シナプス重みメモリは、交換可能メモリカードとしてニ
ューラルプロセッサチップとは別個にパッケージ化され得る。これは、ニューラルプロセ
ッサに多様な機能を提供することができ、特定の機能は、ニューラルプロセッサに現在取
り付けられているメモリカードに記憶されたシナプス重みに基づき得る。
【００２４】
　[0046]図２は、本開示のいくつかの態様による、計算ネットワーク（たとえば、ニュー
ラルシステムまたはニューラルネットワーク）の処理ユニット（たとえば、ニューロンま
たはニューロン回路）２０２の一例２００を示す。たとえば、ニューロン２０２は、図１
のレベル１０２のニューロンおよび１０６のニューロンのうちのいずれかに対応し得る。
ニューロン２０２は、ニューラルシステムの外部にある信号、または同じニューラルシス
テムの他のニューロンによって生成された信号、またはその両方であり得る、複数の入力
信号２０４１～２０４Ｎ（ｘ１～ｘＮ）を受信し得る。入力信号は、電流または電圧、実
数値または複素数値であり得る。入力信号は、固定小数点表現または浮動小数点表現をも
つ数値を備え得る。これらの入力信号は、調整可能なシナプス重み２０６１～２０６Ｎ（
ｗ１～ｗＮ）に従って信号をスケーリングするシナプス結合を通してニューロン２０２に
伝えられ得、Ｎはニューロン２０２の入力接続の総数であり得る。
【００２５】
　[0047]ニューロン２０２は、スケーリングされた入力信号を合成し、合成された、スケ
ーリングされた入力を使用して、出力信号２０８（すなわち、信号ｙ）を生成し得る。出
力信号２０８は、電流または電圧、実数値または複素数値であり得る。出力信号は、固定
小数点表現または浮動小数点表現をもつ数値を備え得る。出力信号２０８は、次いで、同
じニューラルシステムの他のニューロンへの入力信号として、または同じニューロン２０
２への入力信号として、またはニューラルシステムの出力として伝達され得る。
【００２６】
　[0048]処理ユニット（ニューロン）２０２は電気回路によってエミュレートされ得、そ
れの入力接続および出力接続は、シナプス回路をもつワイヤによってエミュレートされ得
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る。処理ユニット２０２、それの入力接続および出力接続はまた、ソフトウェアコードに
よってエミュレートされ得る。処理ユニット２０２はまた、電気回路によってエミュレー
トされ得るが、それの入力接続および出力接続はソフトウェアコードによってエミュレー
トされ得る。一態様では、計算ネットワーク中の処理ユニット２０２はアナログ電気回路
を備え得る。別の態様では、処理ユニット２０２はデジタル電気回路を備え得る。さらに
別の態様では、処理ユニット２０２は、アナログ構成要素とデジタル構成要素の両方をも
つ混合信号電気回路を備え得る。計算ネットワークは、上述の形態のいずれかにおける処
理ユニットを備え得る。そのような処理ユニットを使用した計算ネットワーク（ニューラ
ルシステムまたはニューラルネットワーク）は、たとえば画像およびパターン認識、機械
学習、モータ制御およびアライク、かなりの適用範囲において利用され得る。
【００２７】
　[0049]ニューラルネットワークをトレーニングする過程で、シナプス重み（たとえば、
図１の重み
【００２８】

【数２】

【００２９】
および／または図２の重み２０６１～２０６Ｎ）がランダム値により初期化され得、学習
ルールに従って増加または減少し得る。学習ルールのいくつかの例として、スパイクタイ
ミング依存可塑性（ＳＴＤＰ）学習ルール、Ｈｅｂｂ則、Ｏｊａ則、Ｂｉｅｎｅｎｓｔｏ
ｃｋ－Ｃｏｐｐｅｒ－Ｍｕｎｒｏ（ＢＣＭ）則などがある。非常に多くの場合、重みは、
２つの値のうちの１つに安定し得る（すなわち、重みの双峰分布）。この効果が利用され
て、シナプス重み当たりのビット数を低減し、シナプス重みを記憶するメモリとの間の読
取りおよび書込みの速度を上げ、シナプスメモリの電力消費量を低減し得る。
シナプスタイプ
　[0050]ニューラルネットワークのハードウェアおよびソフトウェアモデルでは、シナプ
ス関係機能の処理がシナプスタイプに基づき得る。シナプスタイプは、非塑性シナプス（
non-plastic synapse）（重みおよび遅延の変化がない）と、可塑性シナプス（重みが変
化し得る）と、構造遅延可塑性シナプス（重みおよび遅延が変化し得る）と、完全可塑性
シナプス（重み、遅延および結合性が変化し得る）と、それの変形（たとえば、遅延は変
化し得るが、重みまたは結合性の変化はない）とを備え得る。これの利点は、処理が再分
割され得ることである。たとえば、非塑性シナプスは、可塑性機能を実行すること（また
はそのような機能が完了するのを待つこと）を必要とし得ない。同様に、遅延および重み
可塑性は、一緒にまたは別々に、順にまたは並列に動作し得る動作に再分割され得る。異
なるタイプのシナプスは、適用される異なる可塑性タイプの各々の異なるルックアップテ
ーブルまたは式およびパラメータを有し得る。したがって、本方法は、シナプスのタイプ
の関係するテーブルにアクセスすることになる。
【００３０】
　[0051]また、スパイクタイミング依存構造可塑性がシナプス可塑性とは無関係に実行さ
れ得るという事実のさらなる含意がある。構造可塑性（すなわち、遅延量の変化）は前後
スパイク時間差（pre-post spike time difference）の直接関数であり得るので、構造可
塑性は、重みの大きさに変化がない場合（たとえば、重みが最小値または最大値に達した
か、あるいはそれが何らかの他の理由により変更されない場合）でも実行され得る。代替
的に、それは、重み変化量に応じて、または重みもしくは重み変化の限界に関係する条件
に基づいて設定され得る。たとえば、重み変化が生じたとき、または重みが最大限に達す
るのではなく、重みがゼロに達した場合のみ、シナプス遅延が変化し得る。しかしながら
、これらのプロセスが並列化され、メモリアクセスの数および重複を低減し得るように、
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独立した機能を有することが有利であり得る。
シナプス可塑性の決定
　[0052]神経可塑性（または単に「可塑性」）は、脳内のニューロンおよびニューラルネ
ットワークがそれらのシナプス結合と挙動とを新しい情報、感覚上の刺激、発展、損傷ま
たは機能不全に応答して変える能力である。可塑性は、生物学における学習および記憶に
とって、また計算論的神経科学およびニューラルネットワークにとって重要である。（た
とえば、Ｈｅｂｂ則理論による）シナプス可塑性、スパイクタイミング依存可塑性（ＳＴ
ＤＰ）、非シナプス可塑性、活性依存可塑性、構造可塑性および恒常的可塑性など、様々
な形の可塑性が研究されている。
【００３１】
　[0053]ＳＴＤＰは、ニューロン間のシナプス結合の強さを調整する学習プロセスである
。結合強度は、特定のニューロンの出力スパイクおよび受信入力スパイク（すなわち、活
動電位）の相対的タイミングに基づいて調整される。ＳＴＤＰプロセスの下で、あるニュ
ーロンに対する入力スパイクが、平均して、そのニューロンの出力スパイクの直前に生じ
る傾向がある場合、長期増強（ＬＴＰ）が生じ得る。その場合、その特定の入力はいくら
か強くなる。他方、入力スパイクが、平均して、出力スパイクの直後に生じる傾向がある
場合、長期抑圧（ＬＴＤ）が生じ得る。その場合、その特定の入力はいくらか弱くなるの
で、「スパイクタイミング依存可塑性」と呼ばれる。したがって、シナプス後ニューロン
の興奮の原因であり得る入力は、将来的に寄与する可能性がさらに高くなる一方、シナプ
ス後スパイクの原因ではない入力は、将来的に寄与する可能性が低くなる。結合の初期セ
ットのサブセットが残る一方で、その他の部分の影響がゼロまたはゼロの近くまで低減さ
れるまで、このプロセスは続く。
【００３２】
　[0054]ニューロンは一般に出力スパイクを、それの入力の多くが短い期間内に生じる、
すなわち、出力をもたらすのに十分な累積があるときに生成するので、通常残っている入
力のサブセットは、時間的に相関する傾向のあった入力を含む。さらに、出力スパイクの
前に生じる入力は強化されるので、最も早い十分に累積的な相関指示を提供する入力は結
局、ニューロンへの最終入力となる。
【００３３】
　[0055]ＳＴＤＰ学習ルールは、シナプス前ニューロンのスパイク時間ｔpreとシナプス
後ニューロンのスパイク時間ｔpostとの間の時間差（すなわち、ｔ＝ｔpost－ｔpre）に
応じて、シナプス前ニューロンをシナプス後ニューロンに結合するシナプスのシナプス重
みを効果的に適合させ得る。ＳＴＤＰの通常の公式化は、時間差が正である（シナプス前
ニューロンがシナプス後ニューロンの前に発火する）場合にシナプス重みを増加させ（す
なわち、シナプスを増強し）、時間差が負である（シナプス後ニューロンがシナプス前ニ
ューロンの前に発火する）場合にシナプス重みを減少させる（すなわち、シナプスを抑制
する）ことである。
【００３４】
　[0056]ＳＴＤＰプロセスでは、経時的なシナプス重みの変化は通常、以下の式によって
与えられるように、指数関数的減衰を使用して達成され得る。
【００３５】
【数３】

【００３６】
ここで、ｋ+およびｋ-はそれぞれ、正の時間差および負の時間差の時間定数であり、ａ+

およびａ-は対応するスケーリングの大きさであり、μは正の時間差および／または負の
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【００３７】
　[0057]図３は、ＳＴＤＰによる、シナプス前スパイクおよびシナプス後スパイクの相対
的タイミングに応じたシナプス重み変化の例示的なグラフ図３００を示す。シナプス前ニ
ューロンがシナプス後ニューロンの前に発火する場合、グラフ３００の部分３０２に示す
ように、対応するシナプス重みは増加し得る。この重み増加は、シナプスのＬＴＰと呼ば
れ得る。グラフ部分３０２から、シナプス前スパイク時間とシナプス後スパイク時間との
間の時間差に応じて、ＬＴＰの量がほぼ指数関数的に減少し得ることが観測され得る。グ
ラフ３００の部分３０４に示すように、発火の逆の順序は、シナプス重みを減少させ、シ
ナプスのＬＴＤをもたらし得る。
【００３８】
　[0058]図３のグラフ３００に示すように、ＳＴＤＰグラフのＬＴＰ（原因）部分３０２
に負のオフセットμが適用され得る。ｘ軸の交差３０６のポイント（ｙ＝０）は、層ｉ－
１からの原因入力の相関を考慮して、最大タイムラグと一致するように構成され得る。フ
レームベースの入力（すなわち、入力は、スパイクまたはパルスを備える特定の持続時間
のフレームの形態である）の場合、オフセット値μは、フレーム境界を反映するように計
算され得る。直接的にシナプス後電位によってモデル化されるように、またはニューラル
状態に対する影響の点で、フレームにおける第１の入力スパイク（パルス）が経時的に減
衰することが考慮され得る。フレームにおける第２の入力スパイク（パルス）が特定の時
間フレームの相関したまたは関連したものと考えられる場合、フレームの前および後の関
連する時間は、その時間フレーム境界で分離され、関連する時間の値が異なり得る（たと
えば、１つのフレームよりも大きい場合は負、１つのフレームよりも小さい場合は正）よ
うに、ＳＴＤＰ曲線の１つまたは複数の部分をオフセットすることによって、可塑性の点
で別様に扱われ得る。たとえば、曲線が、フレーム時間よりも大きい前後の時間で実際に
ゼロよりも下になり、結果的にＬＴＰの代わりにＬＴＤの一部であるようにＬＴＰをオフ
セットするために負のオフセットμが設定され得る。
ニューロンモデルおよび演算
　[0059]有用なスパイキングニューロンモデルを設計するための一般的原理がいくつかあ
る。良いニューロンモデルは、２つの計算レジーム、すなわち、一致検出および関数計算
の点で豊かな潜在的挙動を有し得る。その上、良いニューロンモデルは、時間コーディン
グを可能にするための２つの要素を有する必要がある。すなわち、入力の到着時間は出力
時間に影響を与え、一致検出は狭い時間ウィンドウを有し得る。最後に、計算上魅力的で
あるために、良いニューロンモデルは、連続時間に閉形式解を有することができ、ニアア
トラクター（near attractor）と鞍点とを含む安定した挙動を有し得る。言い換えれば、
有用なニューロンモデルは、実用的なニューロンモデルであり、豊かで、現実的で、生物
学的に一貫した挙動をモデル化するために使用され得、神経回路のエンジニアリングとリ
バースエンジニアリングの両方を行うために使用され得るニューロンモデルである。
【００３９】
　[0060]ニューロンモデルは事象、たとえば入力の到着、出力スパイク、または内部的で
あるか外部的であるかを問わず他の事象に依存し得る。豊かな挙動レパートリーを実現す
るために、複雑な挙動を示すことができる状態機械が望まれ得る。入力寄与（ある場合）
とは別個の事象の発生自体が状態機械に影響を与え、事象の後のダイナミクスを制限し得
る場合、システムの将来の状態は、単なる状態および入力の関数ではなく、むしろ状態、
事象および入力の関数である。
【００４０】
　[0061]一態様では、ニューロンｎは、下記のダイナミクスによって決定される膜電圧ｖ

n（ｔ）によるスパイキングリーキー積分発火ニューロンとしてモデル化され得る。
【００４１】
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【数４】

【００４２】
ここでαおよびβはパラメータであり、ｗm,nは、シナプス前ニューロンｍをシナプス後
ニューロンｎに結合するシナプスのシナプス重みであり、ｙm（ｔ）は、ニューロンｎの
細胞体に到着するまでΔｔm,nに従って樹状遅延または軸索遅延によって遅延し得るニュ
ーロンｍのスパイキング出力である。
【００４３】
　[0062]シナプス後ニューロンへの十分な入力が達成された時間からシナプス後ニューロ
ンが実際に発火する時間までの遅延があることに留意されたい。イジケヴィッチの単純モ
デルなど、動的スパイキングニューロンモデルでは、脱分極しきい値ｖtとピークスパイ
ク電圧ｖpeakとの間に差がある場合、時間遅延が生じ得る。たとえば、単純モデルでは、
電圧および復元のための１対の微分方程式、すなわち、
【００４４】

【数５】

【００４５】
【数６】

【００４６】
によってニューロン細胞体ダイナミクス（neuron soma dynamics）が決定され得る。ここ
でｖは膜電位であり、ｕは、膜復元変数であり、ｋは、膜電位ｖの時間スケールを記述す
るパラメータであり、ａは、復元変数ｕの時間スケールを記述するパラメータであり、ｂ
は、膜電位ｖのしきい値下変動に対する復元変数ｕの感度を記述するパラメータであり、
ｖrは、膜静止電位であり、Ｉは、シナプス電流であり、Ｃは、膜のキャパシタンスであ
る。このモデルによれば、ニューロンはｖ＞ｖpeakのときにスパイクすると定義される。
Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄモデル
　[0063]Ｈｕｎｚｉｎｇｅｒ　Ｃｏｌｄニューロンモデルは、豊かな様々な神経挙動を再
生し得る最小二重レジームスパイキング線形動的モデルである。モデルの１次元または２
次元の線形ダイナミクスは２つのレジームを有することができ、時間定数（および結合）
はレジームに依存し得る。しきい値下レジームでは、時間定数は、慣例により負であり、
一般に生物学的に一貫した線形方式で静止状態に細胞を戻す役目を果たすリーキーチャネ
ルダイナミクスを表す。しきい値上レジームにおける時間定数は、慣例により正であり、
一般にスパイク生成のレイテンシを生じさせる一方でスパイク状態に細胞を駆り立てる反
リーキーチャネルダイナミクスを反映する。
【００４７】
　[0064]図４に示すように、モデルのダイナミクスは２つの（またはそれよりも多くの）
レジームに分割され得る。これらのレジームは、負レジーム４０２（リーキー積分発火（
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および正レジーム４０４（反リーキー積分発火（ＡＬＩＦ）ニューロンモデルと混同され
ないように互換的にＡＬＩＦレジームとも呼ばれる）と呼ばれ得る。負レジーム４０２で
は、状態は将来の事象の時点における静止（ｖ-）の傾向がある。この負レジームでは、
モデルは一般に、時間的入力検出特性と他のしきい値下挙動とを示す。正レジーム４０４
では、状態はスパイキング事象（ｖs）の傾向がある。この正レジームでは、モデルは、
後続の入力事象に応じてスパイクにレイテンシを生じさせるなどの計算特性を示す。事象
の点からのダイナミクスの公式化およびこれら２つのレジームへのダイナミクスの分離は
、モデルの基本的特性である。
【００４８】
　[0065]線形二重レジーム２次元ダイナミクス（状態ｖおよびｕの場合）は、慣例により
次のように定義され得る。
【００４９】
【数７】

【００５０】
【数８】

【００５１】
ここでｑρおよびｒは、結合のための線形変換変数である。
【００５２】
　[0066]シンボルρは、ダイナミクスレジームを示すためにここで使用され、特定のレジ
ームの関係を論述または表現するときに、それぞれ負レジームおよび正レジームについて
符号「－」または「＋」にシンボルρを置き換える慣例がある。
【００５３】
　[0067]モデル状態は、膜電位（電圧）ｖおよび復元電流ｕによって定義される。基本形
態では、レジームは基本的にモデル状態によって決定される。正確で一般的な定義の微妙
だが重要な側面があるが、差し当たり、モデルが、電圧ｖがしきい値（ｖ+）を上回る場
合に正レジーム４０４にあり、そうでない場合に負レジーム４０２にあると考える。
【００５４】
　[0068]レジーム依存時間定数は、負レジーム時間定数であるτ-と正レジーム時間定数
であるτ+とを含む。復元電流時間定数τuは通常、レジームから独立している。便宜上、
τuと同様に、指数およびτ+が一般に正となる正レジームの場合に、電圧発展（voltage 
evolution）に関する同じ表現が使用され得るように、減衰を反映するために負の量とし
て負レジーム時間定数τ-が一般に指定される。
【００５５】
　[0069]２つの状態要素のダイナミクスは、事象において、ヌルクラインから状態をオフ
セットする変換によって結合され得、ここで変換変数は、
【００５６】
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【数９】

【００５７】
【数１０】

【００５８】
であり、δ、ε、βおよびｖ-、ｖ+はパラメータである。ｖρのための２つの値は、２つ
のレジームのための参照電圧のベースである。パラメータｖ-は、負レジームのためのベ
ース電圧であり、膜電位は一般に、負レジームにおいてｖ-に減衰することになる。パラ
メータｖ+は、正レジームのためのベース電圧であり、膜電位は一般に、正レジームにお
いてｖ+から離れる傾向となる。
【００５９】
　[0070]ｖおよびｕのためのヌルクラインは、それぞれ変換変数ｑρおよびｒの負によっ
て与えられる。パラメータδは，ｕヌルクラインの傾きを制御するスケール係数である。
パラメータεは通常、－ｖ-に等しく設定される。パラメータβは、両方のレジームにお
いてｖヌルクラインの傾きを制御する抵抗値である。τρ時間定数パラメータは、指数関
数的減衰だけでなく、各レジームにおいて別個にヌルクラインの傾きを制御する。
【００６０】
　[0071]モデルは、電圧ｖが値ｖsに達したときにスパイクするように定義される。続い
て、状態は通常、（技術的に、スパイク事象と同じ１つのものであり得る）リセット事象
でリセットされる。
【００６１】
【数１１】

【００６２】
【数１２】

【００６３】
ここで、
【００６４】
【数１３】

【００６５】
およびΔｕはパラメータである。リセット電圧
【００６６】
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【数１４】

【００６７】
は通常、ｖ-にセットされる。
【００６８】
　[0072]瞬時結合の原理によって、状態について（また、単一の指数項による）だけでは
なく、特定の状態に到達するために必要とされる時間についても、閉形式解が可能である
。閉形式状態解は、次のとおりである。
【００６９】
【数１５】

【００７０】
【数１６】

【００７１】
　[0073]したがって、モデル状態は、入力（シナプス前スパイク）または出力（シナプス
後スパイク）などの事象に伴ってのみ更新され得る。また、演算が（入力があるか、出力
があるかを問わず）任意の特定の時間に実行され得る。
【００７２】
　[0074]その上、瞬時結合原理によって、反復的技法または数値解法（たとえば、オイラ
ー数値解法）なしに、特定の状態に到達する時間が事前に決定され得るように、シナプス
後スパイクの時間が予想され得る。前の電圧状態ｖ0を踏まえ、電圧状態ｖfに到達するま
での時間遅延は、次の式によって与えられる。
【００７３】
【数１７】

【００７４】
　[0075]スパイクが、電圧状態ｖがｖsに到達する時間に生じると定義される場合、電圧
が所与の状態ｖにある時間から測定されたスパイクが生じるまでの時間量、または相対的
遅延に関する閉形式解は、次のとおりである。
【００７５】
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【数１８】

【００７６】
ここで、
【００７７】
【数１９】

【００７８】
は通常、パラメータｖ+にセットされるが、他の変形も可能であり得る。
【００７９】
　[0076]モデルダイナミクスの上記の定義は、モデルが正レジームにあるか、それとも負
レジームにあるかに依存する。上述のように、結合およびレジームρは、事象に伴って計
算され得る。状態の伝搬のために、レジームおよび結合（変換）変数は、最後の（前の）
事象の時間における状態に基づいて定義され得る。続いてスパイク出力時間を予想するた
めに、レジームおよび結合変数は、次の（最新の）事象の時間における状態に基づいて定
義され得る。
【００８０】
　[0077]Ｃｏｌｄモデルの、適時にシミュレーション、エミュレーションまたはモデルを
実行するいくつかの可能な実装形態がある。これは、たとえば、事象更新モード、ステッ
プ事象更新モード、およびステップ更新モードを含む。事象更新は、（特定の瞬間におけ
る）事象または「事象更新」に基づいて状態が更新される更新である。ステップ更新は、
間隔（たとえば、１ｍｓ）をおいてモデルが更新される更新である。これは必ずしも、反
復的技法または数値解法を必要とするとは限らない。また、事象がステップもしくはステ
ップ間で生じる場合または「ステップ事象」更新によってモデルを更新するのみによって
、ステップベースのシミュレータにおいて限られた時間分解能で事象ベースの実装形態が
可能である。
ニューラルコーディング
　[0078]図１の人工ニューロン１０２、１０６を備えるニューラルネットワークモデルな
どの有用なニューラルネットワークモデルは、一致コーディング、時間コーディングまた
はレートコーディングなど、様々な好適なニューラルコーディング方式のうちのいずれか
を介して情報を符号化することができる。一致コーディングでは、情報は、ニューロン集
団の活動電位（スパイキング活動）の一致（または時間的近接度）で符号化される。時間
コーディングでは、ニューロンは、絶対時間であるか相対時間であるかを問わず、活動電
位（すなわち、スパイク）の正確なタイミングを通して情報を符号化する。したがって、
情報は、ニューロン集団の間でスパイクの相対的タイミングで符号化され得る。対照的に
、レートコーディングは、発火レートまたは集団発火レートでニューラル情報をコーディ
ングすることを伴う。
【００８１】
　[0079]ニューロンモデルは、時間コーディングを実行し得る場合、（レートは単に、タ
イミングまたはスパイク間の間隔の関数であるので）レートコーディングも実行し得る。
時間コーディングを行うために、良いニューロンモデルは２つの要素を有する必要がある
。すなわち、（１）入力の到着時間は出力時間に影響を与え、（２）一致検出は狭い時間
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ウィンドウを有し得る。時間パターンの要素を適切に遅延させることによって、要素はタ
イミング一致に組み込まれ得るので、結合遅延は、一致検出を時間パターン復号に拡大す
るための１つの手段を提供する。
到着時間
　[0080]良いニューロンモデルでは、入力の到着の時間は、出力の時間に影響を与えるは
ずである。シナプス入力は、ディラックのデルタ関数であるか、成形シナプス後電位（Ｐ
ＳＰ：shaped post-synaptic potential）であるかを問わず、興奮性（ＥＰＳＰ）である
か、抑制性（ＩＰＳＰ）であるかを問わず、到着時間（たとえば、デルタ関数またはステ
ップもしくは他の入力関数の開始もしくはピークの時間）を有し、これは入力時間と呼ば
れ得る。ニューロン出力（すなわち、スパイク）は、（細胞体、軸索に沿ったポイント、
または軸索の端部など、どこで測定される場合でも）発生の時間を有し、これは出力時間
と呼ばれ得る。出力時間は、スパイクのピークの時間、スパイクの開始の時間、または出
力波形に関係する任意の他の時間であり得る。支配的原理は、出力時間が入力時間に依存
することである。
【００８２】
　[0081]一見したところ、すべてのニューロンモデルがこの原理に従うと思われるかもし
れないが、これは一般には当てはまらない。たとえば、レートベースのモデルは、この特
徴を有しない。多くのスパイキングモデルも、一般には適合しない。リーキー積分発火（
ＬＩＦ）モデルは、（しきい値を越えて）追加の入力がある場合にさらに速く発火するこ
とはない。その上、非常に高いタイミング分解能でモデル化された場合に適合する可能性
があるモデルは多くの場合、タイミング分解能がたとえば１ｍｓのステップに限定されて
いるときに適合しない。
入力
　[0082]ニューロンモデルへの入力はディラックのデルタ関数、たとえば電流としての入
力または伝導性ベースの入力を含み得る。後者の場合、ニューロン状態への寄与は連続的
または状況依存的であり得る。
【００８３】
　[0083]いくつかの態様では、ニューラルシステム１００は、本明細書に記載されるよう
に、教師あり学習を利用して出力クラスの各々にタグを割り当てるシステムにおいて使用
され得る。これらのタグは、静的に（一度）、または動的に（たとえば、時間で変化する
タグ割当てで）割り当てられ得る。
教師あり学習を使用してクラスにタグ付けするための例示的な方法および装置
　[0084]教師なし学習アルゴリズムは、多くの適用例において異なるクラスにデータを正
確に分類するが、それらは、それらが分離するクラスに一貫したインデックスを提供する
ことはできない。代わりに、いくつかのデータタイプを表すクラスインデックスは、異な
るクラスにランダムに割り当てられ得る。このランダムな割当ては、多くの適用例におい
て、特に分類出力が１つまたは複数の下流モジュールへの入力として使用される場合は、
望ましくない場合がある。同じクラスを一貫して表すクラスインデックスがないと、教師
なし学習アルゴリズムを実装するモジュールと下流モジュールとの間に、信頼できるイン
ターフェースを構築することが可能ではない場合がある。
【００８４】
　[0085]本開示のいくつかの態様は、教師あり学習とスパイクタイミング依存可塑性（Ｓ
ＴＤＰ）とを使用してクラスにタグ付けするための方法を提示する。提案された方法は、
それらのインデックス付けに関わらず、クラスの任意のシーケンスにタグ（静的または動
的）を適用し得る。
【００８５】
　[0086]本明細書に提示される方法は、Ｎ個の出力ニューロン（Ｎは、所望のクラスの数
を表し得る）と、任意のインデックス付きクラスニューロンと出力ニューロンとの間の網
羅的な（ａｌｌ－ｔｏ－ａｌｌ）可塑性接続とからなる、ニューラルネットワークを有す
る任意のモデルを増強し得る。次いで、この網羅的に接続されたニューラルネットワーク
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は、各出力ニューロンが常に同じクラスを表すように、教師あり学習を使用してトレーニ
ングされる。教師ありトレーニングは、クラスの知られているシーケンスをネットワーク
内に送り込むことと、出力ニューロンでスパイキングおよび／または非スパイキング活動
を強制することとによって実行される。
【００８６】
　[0087]任意に順序付けしたクラスニューロンは、そのクラスの提示時にスパイクし、こ
のクラスに関連付けられる出力ニューロンはスパイクするように強制されているので、こ
のニューロンのペア間にはスパイクの一致があるが、他のニューロンのペア間にはない。
この一致は、このニューロンのペア間の接続のシナプス重みをＳＴＤＰ曲線に応じて増加
させる。同時的に発火するニューロンの重みを増加させて、非同時的に発火するニューロ
ンの重みを減少させるためにこの曲線を構築することによって、継時的に、持続する唯一
の接続は同じクラスを表すニューロンのペア間になる。監督スパイキング信号だけが所望
の出力ニューロンに送信されたため、出力クラスニューロンの同じインデックス付けが、
元のクラスニューロンのインデックス付けに関わらず達成される。場合によっては、入力
として提示されているクラス以外のクラスに関連付けられる出力ニューロンでのスパイキ
ングは抑制され得る点に留意されたい。異なるラベルを保持する複数の出力レイヤニュー
ロンは分類器の出力に関連付けられ得る。
【００８７】
　[0088]図５は、本開示のいくつかの態様による、ニューラルネットワークを利用するシ
ステムの例示的な高レベルブロック図を示している。図示されるように、時間符号化モデ
ル５０２は、ニューラルブロックインターフェース５０６を通じて採餌回路（ｆｏｒａｇ
ｉｎｇ　ｃｉｒｃｕｉｔ）５０４に接続されている。時間符号化モデル５０２は、データ
を異なるクラス（たとえば、赤、青、および緑のクラス）に分離するために、教師なし学
習アルゴリズムを使用し得る。ニューラルネットワークインターフェースは、時間符号化
モデル５０２の各出力クラスを採餌回路５０４の入力ノードに正確に接続するために、そ
れらの正確な仕様／タグを知る必要がある。
【００８８】
　[0089]図６は、本開示のいくつかの態様による、例示的な刺激処理モデルを示している
。図示されるように、刺激処理モデル６１０は、入力刺激を処理して、１つまたは複数の
出力／出力クラスを生成し得る。たとえば、刺激処理モデルは、感覚入力６０２を処理し
て、出力クラス１　６０２、クラス２　６０４、クラス３　６０６を生成し得る。入力刺
激は、出力クラス６０２、６０４、および／または６０６のうちの１つまたは複数にラン
ダムに割り当てられ得る。その結果、入力刺激６０２を表すニューロンが刺激処理モデル
６１０の出力レイヤにランダムに配置され得る。下流ニューラルブロックは、特定の入力
刺激（たとえば、赤いボール（ｒｅｄ　ｂａｌｌ））のために発火する、特定のニューロ
ンまたはニューロンのクラスを想定する必要があり得る。したがって、刺激処理モデルの
性能は観察される必要があり得る。刺激処理モデル６１０は、時間符号化ブロック５０６
、ならびに／あるいはデータを処理および／または分類するために使用され得る他の任意
のニューラルネットワークブロックを含み得る。
【００８９】
　[0090]本開示のいくつかの態様は、教師なし学習アルゴリズムによって生成されたクラ
ス（たとえば、時間符号化ブロック５０６など）に、意味のあるタグでタグ付けするため
の方法を提供する。提案された方法で生成されたタグは、教師なし学習アルゴリズムから
出力されたクラスインデックスに関わらず一致する。いくつかの態様では、本明細書に提
示されるタグ付け方法は、教師あり学習およびスパイクタイミング依存可塑性（ＳＴＤＰ
）と結合されたシングルレイヤニューラルネットワークを使用し得る。本明細書に提示さ
れる実施例の大部分はシングルレイヤニューラルネットワークを想定しているが、本明細
書の教示は任意の数のレイヤを有する任意のニューラルネットワークに適用され得、その
すべてが本開示の範囲内に入る点に留意されたい。
【００９０】
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　[0091]図７は、本開示のいくつかの態様による、クラスにタグ付けするための提案され
た方法の例示的なブロック図である。図示されるように、ニューラルネットワークモデル
７１０の出力ノード（および／または、ノードの出力クラス）は増強モデル７２０に接続
され得る。この例では、各ノードは人工ニューロンを表し得る。増強モデル７２０の出力
の各々は、割当て（たとえば、タグ）に対応し得る。たとえば、出力７２２は赤色に対応
し得、出力７２４は緑色に対応し得、出力クラス７２４には青色に対応し得る。さらに、
ニューラルネットワークモデル７１０の出力の各々は、赤、緑、または青色のうちの１つ
にランダムに対応し得る。たとえば、出力ノード７１２は緑に対応し得、出力ノード７１
４は青に対応し得、出力ノード７１６は赤色に対応し得る。提案された解決策は、刺激ク
ラスと、その刺激クラスを表す１つまたは複数の出力ニューロン（ノード）との間の静的
マッピングを可能にする。本明細書では、いくつかの態様はタグを参照して説明されてい
るが、本明細書に記載の技法はまた、刺激クラスと１つまたは複数の出力ニューロンとの
間の動的なマッピングを達成するため（たとえば、システム環境における変化をキャプチ
ャするため）に、タグを動的に割り当てるために使用され得る。
【００９１】
　[0092]図８は、本開示のいくつかの態様による、人工ニューロンのクラスにタグ付けす
るための例示的な動作８００を示している。８０２で、第１のネットワークは、人工ニュ
ーロンの１つまたは複数のインデックス付きクラスを備えるとインデンティファイされ得
る。８０４で、それらのインデックス付けに関わらず、人工ニューロンの１つまたは複数
のクラスのための１つまたは複数のタグが決定され得る。例として、第１のネットワーク
は１つまたは複数の人工ニューロンを含み得る第２のネットワークで増強され得、第２の
ネットワーク内の各人工ニューロンはタグに対応する。人工ニューロンの１つまたは複数
のクラスの各々は、１つまたは複数の可塑性接続を有する第２のネットワーク内の人工ニ
ューロンのすべてに接続され得る。１つまたは複数の可塑性接続は、第２のネットワーク
の各人工ニューロンが、そのインデックス付けに関わらず第１のネットワークの特定のク
ラスを表すように、教師あり学習アルゴリズムを使用してトレーニングされ得る。
【００９２】
　[0093]図９Ａ～図９Ｃは、本開示のいくつかの態様による、提案されたタグ付け方法の
ために取られ得るステップを示している。図９Ａは、別のニューラルネットワークモデル
（たとえば、モデル増強７２０）で増強されるニューラルネットワークモデル７１０を示
している。ニューラルネットワークモデル７１０の出力レイヤノード（たとえば、人工ニ
ューロン）におけるノードは、可塑性シナプスを通じて増強モデル７２０のすべてのノー
ドに接続される。可塑性シナプスは、ノード間の接続の使用または不使用のいずれかに応
答して強度を変更し得る。この例では、増強モデル７２０はノードのレイヤを１つだけ有
するが、一般に、増強モデルは任意の数のレイヤと任意の数のノードとを有し得る。
【００９３】
　[0094]図９Ｂは、本開示のいくつかの態様による、ニューラルネットワークモデル７１
０においてスパイクを生成するための、および増強モデル７２０において監視スパイク（
ｓｕｐｅｒｖｉｓｏｒｙ　ｓｐｉｋｅ）を生成するための、例示的なタイミング図を示し
ている。図示されるように、時間ｔ0で、刺激９０２がニューラルネットワークモデル７
１０に提示され得る。時間ｔ1で、刺激９０２に応答して、ニューラルネットワークモデ
ル７１０の出力レイヤにスパイクがあり得る。たとえば、ニューラルネットワークモデル
７１０の出力ノード７１６は、時間ｔ1でスパイクを示し得る。時間ｔ2で、増強モデル７
２０の出力のうちの１つにおいて監視スパイク信号が生成され得る。たとえば、監視スパ
イクは、増強モデル７２０の出力ノード７２２で生成され得る。次に、２つのネットワー
ク７１０および７２０におけるノード間の可塑性接続の重みが、時間ｔ1およびｔ2でスパ
イクに基づいて決定される。たとえば、元のモデル７１０における時間ｔ1でスパイクし
たノード７１６（すなわち、ノードＺ）から、刺激を表す増強モデル７２０におけるニュ
ーロン（たとえば、ノードＲ７２２）へのシナプス重みが強化される（たとえば、＋δ（
Ｚ→Ｒ）でり、ここにおいて、δは接続の接続性の強度における変化を表す正の数である
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）。したがって、ノード７１６と７２２との間のシナプス重みが増加される。さらに、元
のモデル７１０の出力レイヤにおける他のノード（たとえば、Ｘおよび／またはＹ）が以
前にスパイクした場合、可塑性ルールは、増強モデルにおけるノードＲ７２２とのそれら
の関連付けを弱める（たとえば、－δ（Ｘ→Ｒ）および－δ（Ｙ→Ｒ））。出力ノードＧ
およびＢで「Ｘ」によって示されるように、入力として提示されているクラス以外のクラ
スに関連付けられる出力ニューロンでのスパイキングは抑圧され得る。
【００９４】
　[0095]図９Ｃは、刺激９０２をモデルに提示して、可塑性ルールを適用した後の、ニュ
ーラルネットワークモデル７１０におけるノードと、増強モデル７２０のノードＲ７２２
との間の最後の接続を示している。この図では、ノードＺ７１６とノードＲ７２２との間
の可塑性接続の重みが、ノードＲ７２２と元のモデル７１０の出力との間の他の接続の重
みよりも高いので、タグＲが元のモデル７１０のノード７１６に割り当てられ得る。
【００９５】
　[0096]図１０は、本開示のいくつかの態様による、提案されたタグ付け方法において使
用され得る例示的な可塑性ルールを示している。図面に示されるように、２つのノード間
の可塑性接続の重みは、ノードの各々がスパイクを示す時間に基づいて修正され得る。
【００９６】
　[0097]提案された技法は感覚刺激の分類に特有ではなく、任意のニューラルネットワー
クブロックの入力／出力のクラスのタグ付けに適用され得る点に留意されたい。たとえば
、提案された方法は、図１１に示されるように、モータ制御コマンドをモータに送信する
ニューラルネットワークブロックから出る動作のためのタグを作成するために適用され得
る。
【００９７】
　[0098]図１１は、本開示のいくつかの態様による、モータのための入力動作タグを作成
する際の提案された方法の例示的な適用例を示している。図示されるように、デバイス（
たとえば、ロボット１１１２）は、モータ動作を調節するモータニューロンＭI１１０８
およびＭr１１１０に接続され得る。モータニューロンＭI１１０８およびＭr１１１０は
、それぞれ外部刺激ニューロンの配列１１０４および１１０６に接続され得る。モータの
各々は、非塑性接続を通じて配列のうちの１つのニューロンのすべてに接続され得る。た
とえば、モータＭI１１０８は、配列１１０４のニューロンのすべてに接続され得る。ニ
ューロン１１０４および／または１１０６の配列の各々は、ロボットにおいて異なる動き
を引き起こし得る。
【００９８】
　[0099]次に、動作タグ（たとえば、前方（Ｆ）１１１４および／または後方（Ｂ）１１
１６）が、可塑性シナプスを通じて配列１１０４および１１０６の各々におけるニューロ
ンのすべてに接続され得る。デバイスにおける動きのための動作タグを決定するために、
教師あり動作分類器（ｓｕｐｅｒｖｉｓｅｄ　ａｃｔｉｏｎ　ｃｌａｓｓｉｆｉｅｒ）１
１１８は、動作タグのうちの１つ（たとえば、Ｂ１１１６）に監視スパイクを送信し得る
。外部刺激信号１１２２も、適切な時間にニューロンの配列に送信され得る。刺激および
監視信号に応答したデバイスの動きの方向に基づいて、入力動作タグは、デバイスの前方
および／または後方の動きのために作成され得る。場合によっては、いくつかのタグが作
成される時のタイミングは、デバイスの特定の動きに依存し得る。たとえば、デバイス（
たとえば、ロボット）が高い精度で後方または前方に動く場合、動作タグニューロンは直
ちに刺激され得る。一方、デバイスがより低い精度で動く場合、動作タグニューロンは、
ある程度の遅延で刺激され得る。可塑性のルールに沿ったこのタイミング効果は、段階的
な学習を可能にし得る。
【００９９】
　[00100]いくつかの態様では、提案されたタグ付け方法は、ノードのクラス間の境界を
作成するために使用され得る。図１２は、本開示のいくつかの態様による、クラス境界を
作成する際の、提案されたタグ付け方法の例示的な適用例を示している。図示されるよう
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に、ニューラルネットワークモデルは、２つの所望の出力（たとえば、青および／または
赤）を有し得る。この例では、紫の刺激１２０２（青と赤色との組合せ）は、赤または青
のいずれかとして分類され得る（たとえば、紫の色合い、より多くの青の色素を有するか
、および／またはより多くの赤の色素を有するかに応じて）。たとえば、Ｐ１は、青より
もより多くの赤色を含み得、Ｐ２は同量の赤および青色を含み得、Ｐ３は赤色よりも多く
の青を含み得る。所望の分類選択は、列１２０４に示されている。赤および青のクラス境
界１２０６は、提案されたタグ付け方法を使用して制御され得る。
【０１００】
　[0100]図１３Ａ～図１３Ｃは、本開示のいくつかの態様による、提案されたタグ付け方
法（たとえば、クラスを合体するための）の別の例示的な適用例を示している。図１３Ａ
は、複数のクラス（たとえば、赤、青、緑、および３つの紫クラスＰ１、Ｐ２、Ｐ３を含
む６つのクラス）を作成するためにトレーニングされ得る刺激処理モデル１３０２を示し
ている。提案されたタグ付け方法は、出力クラスの数を減少させるために使用され得る。
たとえば、提案されたタグ付け方法は、図１３Ａにおける出力クラスを、赤、緑、および
青の３つのクラスに減少させるために使用され得る。第１に、図１３Ｂに示されるように
、ネットワークが増強され得る。刺激処理モデルの出力レイヤにおけるニューロンのすべ
ては、可塑性シナプスを通じて増強モデルにおけるニューロンのすべてに接続され得る。
次に、図１３Ｃに示されるように、所望の境界１３０４を作成するためにネットワークが
トレーニングされ得る。増強ネットワークは、刺激処理モデル１３０２（たとえば、教師
なしネットワーク）と同時にトレーニングされ得る点に留意されたい。
【０１０１】
　[0101]図１４Ａ～図１４Ｃは、本開示のいくつかの態様による、過剰完全表現（ｏｖｅ
ｒ－ｃｏｍｐｌｅｔｅ　ｒｅｐｒｅｓｅｎｔａｔｉｏｎ）を有するニューラルネットワー
クにおける提案されたタグ付け方法の別の例示的な適用例を示している。図１４Ａに示さ
れるように、ニューラルネットワークモデルは、複数の所望のクラス（たとえば、赤、青
、および緑などの３つの異なるクラス）を作成するためにトレーニングされ得る。クラス
の各々は、図１４Ａに示されるように、出力レイヤにおけるニューロンの集団で表され得
る。たとえば、３つのニューロンは青によって表され得、２つのニューロンは赤によって
表され得、２つのニューロンは緑によって表され得る。図１４Ｂは、過剰完全表現が、集
団のサブセットがクラス平均までの距離を符号化することを可能にし得る方法を示してい
る。たとえば、紫の刺激Ｐ１は、青および赤のニューロン集団（たとえば、２つの赤のニ
ューロンと１つの青のニューロン）のサブセットにわたって表され得る。
【０１０２】
　[0102]図１４Ｃに示されるように、過剰完全表現は、紫の刺激（たとえば、ｐ１、ｐ２
、ｐ３）の各々が、青と赤の集団からのニューロンの混合によって表されることを可能に
し得る。増強ネットワークは、所望の分類１４０２を作成するためにトレーニングされ得
る。
【０１０３】
　[0103]本開示のいくつかの態様は、ニューラルネットワークモデルの出力クラスに新し
いクラスを追加するために、提案されたタグ付け方法を使用し得る。例として、図１５に
示されるように、ニューラルネットワークモデルに新しいクラスが追加され得る。この例
では、最初の分類は３つの出力クラス（たとえば、赤、緑、および青）を含む。新しいク
ラスは、追加の出力ニューロンを定義して、増強ネットワークをトレーニングすることに
よって、出力に追加され得る。
【０１０４】
　[0104]提案されたタグ付け方法への１つの代替は、教師なし学習アルゴリズムを実装す
るニューラルブロックをトレーニングして、次いで、モデルの出力を下流ブロックに手動
で関連付けることである。この手法は、すぐに面倒になり得る。この手法は、たとえば、
特定の刺激（たとえば、赤いボール）のためのモデルの出力をテストして、モデルの出力
レイヤにおける発火を評価することによって自動化され得る。しかしながら、この手法は
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、出力レイヤにおける複数のニューロンが刺激を表す場合（たとえば、集団符号化が使用
される場合）はシンプルではない場合がある。出力ニューロンを評価して、これらを刺激
クラスにマッピングする機能自体が複雑になり得る。比較すると、提案された方法は、マ
ッピング機能を作成するために教師ありトレーニングを使用する。したがって、提案され
たタグ付け方法は、集団符号化に対して堅牢である。
【０１０５】
　[0105]本明細書に提示される方法はまた、ネットワーク内の特定の時間的パターンのた
めのタグを作成するために使用され得る点に留意されたい。たとえば、デバッガにおいて
、無効な状態（たとえば、特定の時間的パターンを有し得る）は提案された方法を使用し
てタグ付けされ得る。一般に、提案されたタグ付け方法は、ＳＴＤＰを使用して特定のネ
ットワークパターンを識別するために使用され得る。一般に、図７に示されるように、増
強ネットワーク７２０は、刺激処理ネットワーク７１０の出力レイヤ、入力レイヤ、およ
び／または任意の中間レイヤに接続され得る点に留意されたい。次いで、所望のタグを作
成するために、２つのネットワークの組合せが監視トレーニングされ得る。
【０１０６】
　[0106]いくつかの態様では、ニューラルネットワークモデル７１０と、増強ネットワー
ク７２０によって作成されたタグとの間に１対多の関係があり得る。たとえば、タグは「
車（ｃａｒ）」として作成され得、また、より一般的なタグ（たとえば、車両（ｖｅｈｉ
ｃｌｅ））が作成されてもよく、および／またはより特定のタグ（たとえば、ホンダ（Ｈ
ｏｎｄａ））が作成されてもよい。
例示的な代替ソリューション
　[0107]いくつかの態様によれば、上述のモデルは、図１６に示されるように、出力レイ
ヤに直接監視スパイクを送信することによって増強され得る。この例では、監視スパイク
の適用例は、刺激クラスと、その刺激クラスを表す出力ニューロンの間の静的マッピング
を可能にし得る。いくつかの態様によれば、監視信号（抑制性または興奮性）を搬送する
ニューロンのセットは、出力レイヤに接続され得る。図１６に示されるように、監視シナ
プスは、すべての出力レイヤニューロンに接続され得る。いくつかのラベルにマッピング
するために所望される出力レイヤニューロンは、正の重みシナプス（興奮性）に接続され
、他の出力レイヤニューロンは負の重みシナプス（抑制性）に接続され得る。
【０１０７】
　[0108]図１７は、本開示のいくつかの態様による、監視信号の適用例の例示的なタイミ
ングを示している。図示されるように、一旦刺激が提示されると（ｔ０で）、監視信号が
ネットワークに送信される（ｔ１で）。監視ニューロンは、出力レイヤニューロン上で、
正の監視信号と、（任意で）負の監視信号を生成する（および、ｔ１’まで適用される）
。この監視入力は、それ自体は、出力レイヤニューロンにおいてスパイクを引き起こさな
いが、所望の出力レイヤニューロン上の発火のための正のバイアスを作成し（時間ｔ２で
）、他のニューロンの発火のための負のバイアスを任意で作成する。正および／または負
のバイアスの量は、シナプス重みを通じて制御され得る。
【０１０８】
　[0109]この監視の効果は、図１８に示されている。図示されるように、正のバイアスは
、発火しきい値により近い、所望の出力レイヤニューロン（図示された例におけるニュー
ロンＸ）をもたらし得る。同様に、任意の負のバイアスは、しきい値よりはるかに下の他
の出力レイヤニューロン（ＹおよびＺ）をもたらし得る。この監視「サブしきい値」バイ
アスはスパイク自体を引き起こさないが、ネットワーク入力を受信すると、クラスツー出
力（ｃｌａｓｓ－ｔｏ－ｏｕｔｐｕｔ）レイヤニューロンマッピングにおけるランダム性
の影響を克服することを助け得、また、ネットワーク入力を受信すると、ＹおよびＺを発
火しきい値未満に維持しながら、ニューロンＸだけが発火しきい値を超えることを確実に
するのを助け得る。
【０１０９】
　[0110]図１９および図２０に示されるように、上述のＳＴＤＰルールはまた、監視シナ
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プスの重みを調整するために適用され得る。図２０Ａに示されるように、正の監視バイア
スは、正確な出力が観察される時に減少され得る。一方、図２０Ｂに示されるように、負
の監視は、不正確な出力のために増加されてもよく、そうでなければ減少されてもよい。
上述のように、ＳＴＤＰルールは、ネットワークが学習すると、監視をオフにすることを
可能にし得る。場合によっては、監視入力を適用する期間（たとえば、図１８に示される
ｔ１からｔ１’）は、ネットワーク性能に基づいて調整され得る。
【０１１０】
　[0111]図２１は、本開示のいくつかの態様による、汎用プロセッサ２１０２を使用して
、ニューラルシステムにおけるクラスにタグ付けするための上述の方法の例示的な実装形
態２１００を示している。計算ネットワーク（ニューラルネットワーク）に関連付けられ
る変数（ニューラル信号）シナプス重み、およびシステムパラメータは、メモリブロック
２１０４に記憶され得、汎用プロセッサ２１０２で実行される関連する命令は、プログラ
ムメモリ２１０６からロードされ得る。本開示のある態様では、汎用プロセッサ２１０２
にロードされた命令は、ノードの１つまたは複数のインデックス付きクラスを備える第１
のネットワークを識別して、それらのインデックス付けに関わらず、ノードの１つまたは
複数のクラスのための１つまたは複数のタグを決定するためのコードを備え得る。
【０１１１】
　[0112]図２２は、本開示のいくつかの態様による、ニューラルシステムにおけるクラス
にタグ付けするための上述の方法の例示的な実装形態２２００を示しており、メモリ２２
０２は、相互接続ネットワーク２２０４を介して、計算ネットワーク（ニューラルネット
ワーク）の個々の（分散された）処理ユニット（ニューラルプロセッサ）２２０６とイン
ターフェースされ得る。計算ネットワーク（ニューラルネットワーク）に関連する変数（
ニューラル信号）、シナプス重み、およびシステムパラメータは、メモリ２２０２に記憶
されてよく、相互接続ネットワーク２２０４の接続を介してメモリ２２０２から各処理ユ
ニット（ニューラルプロセッサ）２２０６にロードされ得る。本開示のある態様では、処
理ユニット２２０６は、ノードの１つまたは複数のインデックス付きクラスを備える第１
のネットワークを識別して、それらのインデックス付けに関わらず、ノードの１つまたは
複数のクラスのための１つまたは複数のタグを決定するように構成され得る。
【０１１２】
　[0113]図２３は、本開示のいくつかの態様による、分散された重みメモリ２３０２と分
散された処理ユニット（ニューラルプロセッサ）２３０４とに基づいて、ニューラルシス
テムにおけるクラスにタグ付けするための上述の方法の例示的な実装形態２３００を示し
ている。図２３に示すように、１つのメモリバンク２３０２が、計算ネットワーク（ニュ
ーラルネットワーク）の１つの処理ユニット２３０４と直接インターフェースされてよく
、メモリバンク２３０２は、その処理ユニット（ニューラルプロセッサ）２３０４に関連
する変数（ニューラル信号）、シナプス重み、およびシステムパラメータを記憶すること
ができる。本開示のある態様では、処理ユニット２３０４は、ノードの１つまたは複数の
インデックス付きクラスを備える第１のネットワークを識別して、それらのインデックス
付けに関わらず、ノードの１つまたは複数のクラスのための１つまたは複数のタグを決定
するように構成され得る。
【０１１３】
　[0114]図２４は、本開示のいくつかの態様による、ニューラルネットワーク２４００の
例示的な実装形態を示す。図２４に示すように、ニューラルネットワーク２４００は、上
述した方法の様々な動作を実行し得る複数のローカル処理ユニット２４０２を備えること
ができる。各処理ユニット２４０２は、ローカル状態メモリ２４０４と、ニューラルネッ
トワークのパラメータを記憶するローカルパラメータメモリ２４０６とを備えることがで
きる。さらに、処理ユニット２４０２は、ローカル（ニューロン）モデルプログラムを有
するメモリ２４０８と、ローカル学習プログラムを有するメモリ２４１０と、ローカル接
続メモリ２４１２とを備えることができる。さらに、図２４に示すように、各ローカル処
理ユニット２４０２は、ローカル処理ユニットのローカルメモリのための設定を提供し得
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る設定処理のためのユニット２４１４と、またローカル処理ユニット２４０２間のルーテ
ィングを提供するルーティング接続処理要素２４１６とインターフェースされ得る。
【０１１４】
　[0115]本開示のいくつかの態様によれば、図８に示される動作８００は、たとえば、図
２４からの１つまたは複数の処理ユニット２４０２によって、ハードウェアで実行され得
る。
【０１１５】
　[0116]上述した方法の様々な動作は、対応する機能を実行することが可能な任意の好適
な手段によって実行され得る。それらの手段は、限定はしないが、回路、特定用途向け集
積回路（ＡＳＩＣ）、またはプロセッサを含む、様々なハードウェアおよび／またはソフ
トウェア構成要素および／またはモジュールを含み得る。概して、図に示されている動作
がある場合、それらの動作は、同様の番号をもつ対応するカウンターパートのミーンズプ
ラスファンクション構成要素を有し得る。たとえば、図８に示す動作８００は、図８Ａに
示す構成要素８００Ａに対応する。
【０１１６】
　[0117]例として、識別するための手段、決定するための手段、増強するための手段、接
続するための手段、および／またはトレーニングするための手段は、汎用プロセッサ、ま
たはデジタル信号プロセッサ（ＤＳＰ）、ＡＳＩＣ等の専用プロセッサなどの、処理要素
であり得る。
【０１１７】
　[0118]本明細書で使用する、項目のリスト「のうちの少なくとも１つ」を指す句は、単
一のメンバーを含む、それらの項目の任意の組合せを指す。一例として、「ａ、ｂ、また
はｃのうちの少なくとも１つ」は、ａ、ｂ、ｃ、ａ－ｂ、ａ－ｃ、ｂ－ｃ、およびａ－ｂ
－ｃを包含するものとする。
【０１１８】
　[0119]上述の方法の様々な動作は、様々なハードウェアおよび／またはソフトウェア構
成要素、回路、ならびに／あるいはモジュールなどの、動作を実行することが可能な任意
の適切な手段によって実行され得る。一般に、図面に示される任意の動作は、動作を実行
することが可能な対応する機能的手段によって実行され得る。
【０１１９】
　[0120]本開示に関連して説明した様々な例示的な論理ブロック、モジュール、および回
路は、汎用プロセッサ、デジタル信号プロセッサ（ＤＳＰ）、特定用途向け集積回路（Ａ
ＳＩＣ）、フィールドプログラマブルゲートアレイ信号（ＦＰＧＡ）または他のプログラ
マブル論理デバイス（ＰＬＤ）、個別ゲートまたはトランジスタ論理、個別ハードウェア
構成要素、あるいは本明細書で説明した機能を実行するように設計されたそれらの任意の
組合せを用いて実装または実行され得る。汎用プロセッサはマイクロプロセッサであり得
るが、代替として、プロセッサは、任意の市販のプロセッサ、コントローラ、マイクロコ
ントローラまたは状態機械であり得る。プロセッサはまた、コンピューティングデバイス
の組合せ、たとえば、ＤＳＰとマイクロプロセッサとの組合せ、複数のマイクロプロセッ
サ、ＤＳＰコアと連携する１つまたは複数のマイクロプロセッサ、あるいは任意の他のそ
のような構成として実装され得る。たとえば、識別するための手段、決定するための手段
、推論するための手段、および更新するための手段は、プロセッサ等の任意の適切な処理
要素であり得る。
【０１２０】
　[0121]本開示に関連して説明した方法またはアルゴリズムのステップは、ハードウェア
で直接実施されるか、プロセッサによって実行されるソフトウェアモジュールで実施され
るか、またはその２つの組合せで実施され得る。ソフトウェアモジュールは、当技術分野
で知られている任意の形態の記憶媒体中に常駐し得る。使用され得る記憶媒体のいくつか
の例としては、ランダムアクセスメモリ（ＲＡＭ）、読取り専用メモリ（ＲＯＭ）、フラ
ッシュメモリ、ＥＰＲＯＭメモリ、ＥＥＰＲＯＭ（登録商標）メモリ、レジスタ、ハード
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ディスク、リムーバブルディスク、ＣＤ－ＲＯＭなどを含む。ソフトウェアモジュールは
、単一の命令、または多数の命令を備えることができ、いくつかの異なるコードセグメン
ト上で、異なるプログラム間で、複数の記憶媒体にわたって分散され得る。記憶媒体は、
プロセッサがその記憶媒体から情報を読み取ることができ、その記憶媒体に情報を書き込
むことができるように、プロセッサに結合され得る。代替として、記憶媒体はプロセッサ
と一体化され得る。
【０１２１】
　[0122]本明細書で開示する方法は、説明した方法を達成するための１つまたは複数のス
テップまたはアクションを備える。本方法のステップおよび／またはアクションは、特許
請求の範囲から逸脱することなく互いに交換され得る。言い換えれば、ステップまたはア
クションの特定の順序が指定されない限り、特定のステップおよび／またはアクションの
順序および／または使用は、特許請求の範囲から逸脱することなく変更され得る。
【０１２２】
　[0123]説明した機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれら
の任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、１つまたは複
数の命令またはコードとしてコンピュータ可読媒体上に記憶されるか、あるいはコンピュ
ータ可読媒体を介して送信され得る。コンピュータ可読媒体は、ある場所から別の場所へ
のコンピュータプログラムの転送を可能にする任意の媒体を含む、コンピュータ記憶媒体
と通信媒体の両方を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利
用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、
ＲＡＭ、ＲＯＭ、ＥＥＰＲＯＭ、ＣＤ－ＲＯＭまたは他の光ディスクストレージ、磁気デ
ィスクストレージまたは他の磁気記憶デバイス、あるいは命令またはデータ構造の形態の
所望のプログラムコードを搬送または記憶するために使用され得、コンピュータによって
アクセスされ得る、任意の他の媒体を備えることができる。さらに、いかなる接続もコン
ピュータ可読媒体を適切に名づけられる。たとえば、ソフトウェアが、同軸ケーブル、光
ファイバーケーブル、ツイストペア、デジタル加入者回線（ＤＳＬ）、または赤外線（Ｉ
Ｒ）、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ
、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル
、ツイストペア、ＤＳＬ、または赤外線、無線、およびマイクロ波などのワイヤレス技術
は、媒体の定義に含まれる。本明細書で使用するディスク（disk）およびディスク（disc
）は、コンパクトディスク（disc）（ＣＤ）、レーザーディスク（登録商標）（disc）、
光ディスク（disc）、デジタル多用途ディスク（disc）（ＤＶＤ）、フロッピー（登録商
標）ディスク（disk）、およびＢｌｕ－ｒａｙ（登録商標）ディスク（disc）を含み、デ
ィスク（disk）は、通常、データを磁気的に再生し、ディスク（disc）は、データをレー
ザーで光学的に再生する。したがって、いくつかの態様では、コンピュータ可読媒体は非
一時的コンピュータ可読媒体（たとえば、有形媒体）を備え得る。さらに、他の態様では
、コンピュータ可読媒体は一時的コンピュータ可読媒体（たとえば、信号）を備え得る。
上記の組合せもコンピュータ可読媒体の範囲内に含まれるべきである。
【０１２３】
　[0124]したがって、いくつかの態様は、本明細書で提示する動作を実行するためのコン
ピュータプログラム製品を備え得る。たとえば、そのようなコンピュータプログラム製品
は、本明細書で説明する動作を実行するために１つまたは複数のプロセッサによって実行
可能である命令を記憶した（および／または符号化した）コンピュータ可読媒体を備え得
る。いくつかの態様では、コンピュータプログラム製品はパッケージング材料を含み得る
。
【０１２４】
　[0125]ソフトウェアまたは命令もまた、伝送媒体を介して伝送され得る。たとえば、ソ
フトウェアが、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者回
線（ＤＳＬ）、または赤外線、無線、マイクロ波などのワイヤレス技術を使用して、ウェ
ブサイト、サーバ、あるいは他のリモートソースから伝送される場合、同軸ケーブル、光
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どのワイヤレス技術は伝送媒体の定義に含まれる。
【０１２５】
　[0126]さらに、本明細書に記載の方法および技法を実行するためのモジュールおよび／
または他の適切な手段は、適用できる場合はユーザ端末および／または基地局によってダ
ウンロードおよび／または他の方法で取得され得ることが理解されるべきである。たとえ
ば、そのようなデバイスは、本明細書で説明した方法を実施するための手段の転送を可能
にするためにサーバに結合され得る。代替的に、本明細書で説明した様々な方法は、ユー
ザ端末および／または基地局が記憶手段をデバイスに結合または提供すると様々な方法を
得ることができるように、記憶手段（たとえば、ＲＡＭ、ＲＯＭ、コンパクトディスク（
ＣＤ）またはフロッピーディスクなどの物理記憶媒体など）によって提供され得る。その
上、本明細書で説明した方法および技法をデバイスに与えるための任意の他の好適な技法
が利用され得る。
【０１２６】
　[0127]特許請求の範囲は、上記で示した厳密な構成および構成要素に限定されないこと
を理解されたい。上記で説明した方法および装置の構成、動作および詳細において、特許
請求の範囲から逸脱することなく、様々な改変、変更および変形が行われ得る。
【０１２７】
　[0128]上記は、本開示の態様を対象としているが、本開示の他のおよびさらなる態様は
、その基本的な範囲から逸脱することなしに考案され得、その範囲は以下の特許請求の範
囲によって決定される。
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