
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0318476A1

Huelsman et al.

US 2010.0318476A1

(43) Pub. Date: Dec. 16, 2010

(54)

(76)

(21)

(22)

(63)

(60)

RULE PROCESSING METHOD AND
APPARATUS PROVIDING AUTOMATIC USER
INPUT SELECTION

Inventors: David L. Huelsman, Reynoldsburg,
OH (US); Douglas M. Mair,
Westerville, OH (US)

Correspondence Address:
Stolowitz Ford Cowger LLP
621 SW Morrison St, Suite 600
Portland, OR 97205 (US)

Appl. No.: 12/797,573

Filed: Jun. 9, 2010

Related U.S. Application Data

Continuation of application No. 1 1/527,638, filed on
Sep. 27, 2006, now Pat. No. 7,761,397, which is a
continuation-in-part of application No. 10/101,154,
filed on Mar. 20, 2002, now Pat. No. 7,188,091, which
is a continuation-in-part of application No. 10/101,
151, filed on Mar. 20, 2002, now Pat. No. 6,965,887.

Provisional application No. 60/278,655, filed on Mar.
21, 2001, provisional application No. 60/721,090,
filed on Sep. 28, 2005.

Original
include ZOD

Publication Classification

(51) Int. Cl.
G06N 5/02 (2006.01)

(52) U.S. Cl. ... 706/11: 706/47

(57) ABSTRACT

An improvement in decision automation employing a ZDD
rule model indicative of a business or engineering rule to
provide decision Support to a user. The computer-imple
mented improvement automatically identifies compliant
inputs for the rule processing system according to at least one
input initially Supplied by a user, and is particularly useful for
determining product configuration, engineering designs,
various outcome of planning scenarios, etc. Once a user
selects an initial value(s), remaining compliant values unique
to the user-selected value(s) are automatically identified. The
improvement reduces time required to manually select inputs.
In one embodiment, the improvement includes an I/O inter
face to enable the user to choose and observe inputs, an
autoselect ZDD constructed from compliant inputs of the rule
model, and a ZDD processing module that processes said
autoselect ZDD in order to provide for the user a set compli
ant inputs for the ZDD rule model according to the user input.
The automatic input selection routine may be executed at
decision automation runtime, or executed and stored a priori
for Subsequent processing during runtime.

Patent Application Publication Dec. 16, 2010 Sheet 1 of 16 US 2010/0318476 A1

Your Selections

OO Bundles

* O P4 - 900 MHz
- O P5 - 2.0 GHz
- Opé - 3.6 GHz

Hard Drive
* 0 120 Gig O8
+ O 250 Gig

+ O Next Day
+ O 2 Day
* O Ground

Patent Application Publication US 2010/0318476 A1 Dec. 16, 2010 Sheet 2 of 16

Your Selections:

Bundles
O2

CPU O4
- O P4 - 900 MHz
- O P5 - 2.0 GHz
* O P6 - 3.6 GHz

Hard Drive

* O 120 Gig 2.
+ O 250 Gig FL
+ O 80 Gio m

Memory
* G 1 GB
- O 2 GB
- O 512 MB

+ O. Next Day
+ O 2 Day
* O Ground

Patent Application Publication Dec. 16, 2010 Sheet 3 of 16 US 2010/0318476 A1

Exemplary Definition & Layout of Rule Model

Attribute Name Attribute Enumeration Names and Number
Number

Bundles 0 Best (0), Better (1), Cheap (2), Good (3)

Ge (26B (1552MB6
FedEx (17), UPS (18), USPS (19
Next Day (20), 2 Day (21), Ground (22

120 Gig (11), 250 Gig (12), 80 Gig (13

Shipping Method

Fig. 3

Patent Application Publication Dec. 16, 2010 Sheet 4 of 16 US 2010/0318476 A1

Original F7
include ZDD

Fig. 4.

Patent Application Publication Dec. 16, 2010 Sheet 5 of 16 US 2010/031847.6 A1

Original
Exclude ZDD

+

W

9
P

G3)

A (s
t

t

t
t

t

V

Patent Application Publication Dec. 16, 2010 Sheet 6 of 16 US 2010/0318476 A1

Remove
Unused ZDD

Nodes to be
removed.
They must be
of the bottorn
of the ZOD.

Patent Application Publication Dec. 16, 2010 Sheet 7 of 16 US 2010/0318476 A1

include Result
of Remove 36

Unused C /
f

Patent Application Publication Dec. 16, 2010 Sheet 8 of 16 US 2010/0318476 A1

Patent Application Publication Dec. 16, 2010 Sheet 9 of 16 US 2010/0318476 A1

Add Always

Patent Application Publication Dec. 16, 2010 Sheet 10 of 16 US 2010/0318476A1

Final AutoSelect ZDD. F7

54

Patent Application Publication Dec. 16, 2010 Sheet 11 of 16 US 2010/0318476 A1

Patent Application Publication Dec. 16, 2010 Sheet 12 of 16 US 2010/031847.6 A1

6O 62 164 66

Step 2: Step 3: Step 4: \ Step 5:

F17 F17

Bundle: Good

CPU: P4 - 900 MHz G4) C4O G4).

CPU: P5 - 2,0 GHz

G8) G8) CB) CB) CB)

Hard Drive: 120 Gig GD G11) G1) GD

Hard Drive: 250 Gig
A.

f o
Memory: 80 Gig

Memory: 1 GB C14) G14) G14) G14)

Memory; 512 MB - G16)

US 2010/0318476 A1 Dec. 16, 2010 Sheet 13 of 16 Patent Application Publication

US 2010/0318476 A1 Dec. 16, 2010 Sheet 14 of 16 Patent Application Publication

2.61

US 2010/0318476 A1 Dec. 16, 2010 Sheet 15 of 16 Patent Application Publication

19 | 610 | 619 | 9 | 092 | 0Z|, i

TOEG?TI LITE?O_
| || ||

ZOZ | O2 OOZ

Patent Application Publication

5
O)

1.
O
2

s
.
l

:

Dec. 16, 2010 Sheet 16 of 16 US 2010/0318476 A1

US 2010/031847.6 A1

RULE PROCESSING METHOD AND
APPARATUS PROVIDING AUTOMATIC USER

INPUT SELECTION

CROSS-REFERENCE TO RELATED PATENTS
AND PATENT APPLICATIONS

0001. This invention claims the benefit of U.S. Provisional
Application No. 60/721,090 filed Sep. 28, 2005 in the name of
the same inventors hereof.
0002. This invention concerns improvements to inven
tions disclosed in commonly-owned, U.S. Application Ser.
Nos. 10/101,151 filed Mar. 20, 2002 (now U.S. Pat. No.
6,965,887) and 10/101,154 filed Mar. 20, 2002, each of which
is incorporated herein.

BACKGROUND

0003. This invention relates to a rule processing system or
method that provides automatic decision support, but more
specifically, to an improvement that enables automatic selec
tion or identification of rule inputs based on an initial input
Supplied by a user.
0004. During automated decision support, a user may
input one or more selections of rule parameters in order to
attain satisfiability of a business or engineering rule, such as
product configuration rule or specifications for an engineer
ing system. Generically, user selections may take the form of
selected enumeration values of attributes that characterize the
rule. In a product configuration rule for a desktop computer
system, for example, an attribute may comprise bundle type
and selectable enumerations of that attribute may comprise
Multimedia, Power PC, Business Workstation, or Entry
Level. Depending on an initial selection of bundle type, enu
merations of other product attributes (e.g., CPU speed, DVD
speed, HardDrive Capacity, RAM memory size, etc.) may or
may not be compatible.
0005. In order to lessen the amount of effort required of the
user to select appropriate enumerations of other attributes
once other attributes are selected, it is desirable to provide the
user with automatic selections or identification of enumera
tions for the other product attributes, i.e., to automatically
identify or suggest compatible inputs that satisfy the product
configuration rule based on the user's manually-supplied
inputs. In other words, it is desirable to automatically identify
enumerations that are valid with each other and also valid
with previous selections made by the user. Such automati
cally-supplied advice guides the user in choosing correct
enumerations that reside in various valid combinations of
attributes and enumerations and speeds attainment of rule
compliance. In addition to product configuration, such auto
matic selection of enumerations may be applied to any other
type of business or engineering rule processing system or
method.

0006. In the related disclosures over which the present
invention is an improvement, the rule being automated is
modeled by a zero-suppressed binary decision diagram
(ZDD), but may also take the form of BDDs (binary decision
diagrams) or DAGs directed acyclic diagrams). Using a ZDD
rule model, the user's inputs are converted to a traversal ZDD
which is used to traverse the rule model in order to produce an
indication of satisfiability as well as conflict and select
advice. Conflict and selection advice informs the user which
entries invoke compliance and which entries invoke noncom
pliance after the user has made his or her selections of enu

Dec. 16, 2010

merations. Based on the advice, the user may change the
selections according to desired configuration or other condi
tions.

SUMMARY OF THE INVENTION

0007. In accordance with a first aspect of the invention,
there is provided in a computer-implemented rule processing
system utilizing a ZDD rule model that responds to user
inputs by providing advice to a user for achieving compliancy
of the rule model, an improvement comprising an autoselect
system implemented with the rule processing system to iden
tify a set of compliant inputs based on at least one initial user
input chosen by the user where the autoselect system includes
a user interface to enable the user to enter at least one user
input and a processor to automatically generate and indicate
to the user other compliant inputs of the set based on the user's
initial input. To identify the other compliant inputs, the pro
cessor utilizes an autoselect ZDD constructed from compliant
inputs of the rule model. Inputs may be in the form of a
selection of attributes of a business or engineering rule and a
selection of enumerations of the attributes.
0008. According to another aspect of the invention, a com
puter-implemented rule processing system utilizing a ZDD
rule model that responds to selection of attributes and enu
merations thereof in order to provide selection advice to a
user for achieving compliancy of the rule model includes an
improvement comprising an autoselect system implemented
with the rule processing system in order to provide additional
compliant selections based on at least one initial input Sup
plied by the user. In this aspect, the autoselect system includes
a user interface to enable the user to enter the initial input, an
autoselect ZDD constructed from compliant inputs of the rule
model, and a processing module responsive to the initial input
of the user to automatically provide the additional compliant
selections.
0009. In yet another aspect of the invention, there is pro
vided in combination with a rule processing system employ
ing a ZDD rule model indicative of a business or engineering
rule to provide decision support to a user, a computer-imple
mented system to automatically identify compliant inputs for
the rule processing system according to at least one user input
wherein the computer-implemented system comprises an I/O
interface to enable the user to choose and observe inputs, an
autoselect ZDD constructed from compliant inputs of the rule
model, and a ZDD processing module that processes the
autoselect ZDD in order to provide for the user a set compli
ant inputs for the ZDD rule model according to the at least one
user input. Further, the processing module may enable the
user to change an initial input and, in response thereto, to
provide alternative compliant inputs based on a change in the
initial user input.
0010. In a further aspect of the invention, a computer
implemented rule processing system to determine satisfiabil
ity of a business or engineering rule represented by a Zero
suppressed binary decision diagram (ZDD) rule model
comprises an execution module to indicate compliancy of the
rule according to selection of attributes and enumerations
values of the attributes, an autoselect module that provides
automatic selection of enumeration values based on selection
of an initial value of at least one enumeration, a user interface
to enable a user to select a value of at least one enumeration,
and a processing module to determine compliant enumeration
values of other attributes according to the enumeration value
selected by the user and to provide to the user compliant

US 2010/031847.6 A1

enumeration values of the other attributes. In addition, the
processing module may iteratively enable the user to select an
alternative enumeration value whereby, in response, the pro
cessing module determines and identifies other compliant
enumeration values based on the alternative enumeration
value selected by the user.
0011. In yet another aspect of the invention, there is pro
vided in a computer-implemented rule processing method to
determine satisfiability of a ZDD representation of a business
or engineering rule, a method of providing a set of compliant
enumeration values for respective attributes of the rule com
prising the steps of obtaining a user selection of at least one
enumeration value of an attribute, determining a set of com
pliant enumeration values of other attributes according to user
selection, providing a complete set of compliant enumeration
values to the user, and iteratively enabling the user to select
other enumeration values whereby to provide further com
plete sets of compliant enumeration values to the user.
0012. In yet another aspect of the invention, there is pro
vided in a computer-implemented method of rule processing
utilizing a Zero-suppressed binary decision diagram (ZDD) to
provide decision Support, a method of automatically provid
ing a user with additional compliant input selections based on
at least one initial user input Supplied by the user comprising
the steps of providing a user interface to indicate possible
inputs to the ZDD; enabling the user to enter at least one
input; in response to an input selected by the user, generating
a set of additional inputs that are compliant with each other
and compliant with the input(s) entered by the user; and
indicating the set of additional compliant inputs to said user.
Indicating may occur by displaying results or selection advice
on a computer monitor.
0013. In yet a further aspect of the invention, there is
provided a computer-readable medium to effect automatic
identification of inputs during automated rule processing of a
ZDD rule by a data processing system where the medium
comprises program instructions to effect display on a graphi
cal user interface of selectable inputs for the ZDD rule, to
effect selection by the user of at least one input, to build an
autoselect ZDD from compliant inputs of the ZDD rule, to
generate a set of compliant inputs based on an input selected
by the user, and to indicate to the user said set of compliant
inputs according to an input selected by the user.
0014. Other features and aspects of the invention will
become apparent upon review of the following disclosure
taken in connection with the accompanying drawings. The
invention, though, is pointed out with particularity by the
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 is a screen print of a graphical user interface
(GUI) depicting a user selection of a “Cheap' enumeration
within a bundle type attribute for a desktop computer system
along with a number of “floating attributes (CPU, DVD,
Hard Drive. Memory, Shipping Company, and Shipping
Method) each having an enumeration that is automatically
selected in accordance with the a method or system of the
present invention.
0016 FIG. 2 shows a screen print similar to FIG. 1, but
having the “Best enumeration being user-selected in the
Bundles attribute whereby alternative enumerations are auto
matically selected or identified for the remaining attributes in

Dec. 16, 2010

accordance with the present invention (but additionally
including an enumeration/index value column on the left to
help explain the invention).
0017 FIG. 3 is a table describing the attributes and enu
merations of a computer system configuration rule exempli
fied throughout this disclosure.
0018 FIG. 4 is a Zero-suppressed binary decision diagram
(ZDD) representing the original Include component of the
configuration rule characterizing compatible or allowable
configurations of the computer system described in FIG. 3.
(0019 FIG. 5 is a ZDD representing the original Exclude
component of a product configuration rule characterizing
compatible or allowable configurations of the computer sys
tem described in FIG. 3.
0020 FIG. 6 illustrates removal of unused ZDD nodes
(e.g., removal of unused computer configurations) of the
Include ZDD shown in FIG. 4.
(0021 FIG. 7 shows the resulting FIG. 6 ZDD after
removal of unused nodes.
(0022 FIG. 8 shows an XOR (exclusive OR) ZDD that is
used to expand out the paths in the ZDD of FIG. 7 to include
all of the attributes.
(0023 FIG.9 shows the ZDD of FIG. 7 expanded out by the
XOR ZDD of FIG.8.
0024 FIG. 10 is a final AutoSelect ZDD that is used to
automatically select attribute enumerations based on initial
user-selected enumeration(s). It is a combination of an ASIn
clude ZDD possessing all possible Included combinations
and an ASExclude ZDD having certain Excluded combina
tions.
(0025 FIG. 11 is an intermediate ZDD generated by a
user-selection of the “good’ enumeration in the bundles
attribute of the illustrated rule, which is a ZDD representation
of all valid combinations that have enumeration 3.
0026 FIG. 12 shows a series of ZDDs internally generated
by the invention in order to produce recommended enumera
tion selections based on an initial user-selection of the
“cheap' enumeration for the bundles attribute.
0027 FIG. 13 is a table of results generated by the process
of FIG. 12, which separately shows Include and Exclude
enumerations.
0028 FIG. 14 shows Include advice produced by the
invention in the form of two arrays of enumeration inputs
called Selection Input Floating and Selection Input Fixed.
(0029 FIG. 15 shows advice indications for the respective
Bundles, CPU, DVD, Hard Drive, and Memory attribute
groups.
0030 FIG. 16A shows advice computation using floating
AutoSelected Attributes.
0031 FIG. 16B shows advice computation using a fixed
AutoSelect value instead of the floating AutoSelect
Attributes.
0032 FIG. 17 shows the results of NORing Include
Results and the Exclude Results to produce an advice array.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

0033) AutoSelect is an algorithm that provides automatic
selection or identification of a complete set of attributes and
enumerations of a rule based on a partial set of attributes and
enumerations Supplied by a user. AutoSelect may be imple
mented as a process or a system that implements a process.
0034) To implement Autoselect, a rule modeler during a
rule definition phase designs or builds a rule model while

US 2010/031847.6 A1

assigning some attributes to be of the AutoSelect type. Once
defined, an AutoSelect attribute may have two states, floating
(denoted {FL) or fixed (denoted {FX}). In certain cases,
more than two states may be provided but the illustrated
embodiments disclosed herein assume only two states.
0035. In the fixed state, the user has made a choice of the
value of an attribute so the particular enumeration value cho
sen becomes fixed. In the floating state, no value at all for the
attribute is fixed and the system or method according to the
present invention automatically determines the appropriate
enumeration value for the attribute and either selects the
value(s) on behalf of the user or communicates the value(s) to
the user.
0036 Complications, however, may arise because enu
meration values for AutoSelected attributes must be valid
with each other and also valid with other, preferably all,
user-selected enumerations. This implies that all valid com
binations of such attributes are known all the times. It is
relatively easy to ascertain if any one combination is valid but
to obtain all valid combinations is a more complex problem.
This is similar to the Boolean Satisfiability Problem, which
has an NP-complete solution. NP-complete suggests that no
polynomial Solution is known to exist.
0037. The example of FIG. 1 is used throughout this dis
closure to describe the invention. The example concerns
selecting/defining components of a computer system bundle,
e.g., a combination of compatible hardware and Software
components for a computer system where an end user (or
purchaser) is provided with a number of selections. At some
point after the user begins the component selection process,
the system or method automatically chooses or Suggests enu
meration values for the remaining attributes (CPU, DVD, etc)
that are valid with each other and also valid with prior user
selections for the bundle. Afterwards, the user may fine-tune
the selections by rejecting one or more of the automatically
selected values by changing them to meet his or her particular
needs.

0038. The graphical user interface of FIG. 1, i.e., a screen
print 100, is presented to a user on a computer monitor. The
initial state of enumeration selections shown is valid for all
attribute groups, which include Bundles (or quality), CPU
speed, DVD speed, hard drive capacity, RAM memory capac
ity, shipping company, and shipping method. Each Such
attribute has a number of enumerations. The initial group of
attributes and enumerations having a compatible state, in the
example of FIG.1, defines a low-quality or “cheap' computer
bundle. Selection of the “cheap' enumeration in the
“bundles' group causes other attributes, which are AutoSe
lected, to assume the most recommended valid combination
of enumerations within their respective attribute groups. As a
whole, the initial group of enumeration selections are the
“cheap” selection in CPU type attribute box 102, “Pentium
4-900 Mhz” in CPU attribute box 104, “1x” speed in DVD
type attribute box 106, “120 Gig' selection in Hard Drive
capacity attribute box 108, “512 MB in RAM memory size
attribute box 110, “USPS' shipping in shipper attribute box
112, and “Ground as the shipping method in attribute box
114. The “floating icons 120 next to the AutoSelect attribute
boxes 102-114 indicate that the attribute lays in a floating
state, which means that the system or method herein
described automatically changes the preselected enumeration
values based on alternative user selections.

0039. The icon can be either floating or fixed (example of
fix icon 122 is shown in FIG. 13). If the icon is fixed, then the

Dec. 16, 2010

attribute’s enumeration value is fixed and cannot be changed
automatically. To unfix the enumeration value, a user may
click on the icon to toggle it back to floating.
0040. If the user selects the Best value for the enumeration
in the Bundles attribute box 102, as indicated in FIG. 2, the
rule processing system or method thereof automatically
effects a change in floating enumeration values of the other
attributes 104-114, also indicated in FIG. 2. With a single
change in a user selection, the system or method advanta
geously automatically selects the proper values for the other
six attributes, such as, P6 for CPU type 104,8xfor DVD speed
106, one hundred twenty Gigs for hard drive capacity 108,
one GB for RAM size 110, USPS for shipper identity 112, and
Ground for shipping method 114. Thus, the AutoSelect algo
rithm and/or apparatus implementing the same guarantees
that all of the selections are valid together, and are also valid
with the user selection. Since much work in selecting valid
hardware/software combinations of the computer bundle is
accomplished by the rule processing system, the user need
only fine-tune the computer bundle. It should also be noted
that even though examples described herein may refer to “all”
elements, values, components, etc., “all” need not be required
to obtain the benefit of the invention.

0041. In order to support the AutoSelect feature, AutoSe
lect ZDDs may be built at the time of rule packaging and
Subsequently used by the execution engine at runtime to
determine AutoSelect enumeration values for the various
attribute. AutoSelect ZDDs are also used at runtime during
advice determination. During creation of the rule, the mod
eler specifies which attributes are to be AutoSelected. The
modeler may also specify the AutoSelect Priority of the
attribute. Other details of the process of model creation
including the concepts of Attributes, Enumerations, and
Packaging remain unchanged from the process described in
the common-owned, incorporated Ser. Nos. 10/101,151 and
10/101,154applications.

Creating AutoSelect Components:

0042. During rule packaging, the rule modeler chooses
which attributes are to be AutoSelect attributes. Then, the set
of other attributes related to the AutoSelected attributes is
found. The union of these two sets identifies the attributes
involved in the AutoSelect feature.

0043. A next step involves splitting up of the involved
attributes into groups of independent attributes called
AutoSelect components. A standard transitive closure routine
as described by Judith Gerstling, Mathematical Structures for
Computer Science, Forth Edition, W. H. Freeman and Com
pany (1999) is used to split up the attributes into the indepen
dent groups. Later, at runtime, these AutoSelect components
are processed to determine the valid combinations of AutoSe
lected enumeration values. Splitting up the AutoSelect
attributes into groups reduces the size of the AutoSelect com
ponent ZDD.

AutoSelect Components:

0044 FIG. 3 illustrates an example having seven attribute
groups 0, 1, 2, 3, 4, 5 and 6. Attribute groups 0, 1, 2, 3 and 4
(Bundle, CPU speed, DVD speed, Hard Drive capacity,
Memory capacity) are interrelated by rules so the transitive
closure routine places them into a first AutoSelect compo

US 2010/031847.6 A1

nent. Attribute groups 5 and 6 (Shipping Company and Ship
ping Method) define a second AutoSelect component.

Critical Attributes:

0045. Sometimes, when attempting to split the attributes
into components for more convenient manipulation, a com
ponent may still be too large because too many attributes are
interrelated. A method to determine such condition involves
counting the number of attributes in an AutoSelect compo
nent. If the number of attributes exceeds thirty, for example,
the group may be deemed too large. Another method of deter
mining whether the component group is too large entails
attempting to create its associated ZDD. If this takes too long
or if memory need is exceeded, then the components may be
deemed too large.
0046. If an AutoSelect component is too large, the com
ponent may be segmented using another method that splits up
the attributes around non-AutoSelected attributes. These
attributes are called Critical Attributes.
0047. The best candidate for a Critical Attribute around
which to segment components is an attribute that is non
AutoSelected and related by rules to many other attributes. So
another aspect of the invention concerns searching for Such
attributes. Once these attributes are found, a transitive closure
routine is used to split up the attributes as if the Critical
Attribute did not exist. Such a routine is further described in
sister application filed of even date herewith by the same
inventors hereof, entitled "Rule Processing Method and
Apparatus Providing Exclude Cover Removal To Simplify
Selection and/or Conflict Advice.” This creates a number of
groups that are again independent of each other, except that
only the Critical Attribute(s) relates these groups to each other
0048 If a Critical Attribute is found that splits up the
AutoSelect components sufficiently, the system or method
adds the Critical Attribute to all of these groups and continues.
Otherwise, the next most related attribute is used as the Criti
cal Attribute and the group is split again.
0049. In the illustrated example, there are two AutoSelect
components and both of the components have less than thirty
attributes. Thus, the components need not be further seg
mented.
0050. At this point one or more AutoSelect components
exists; a list of the set of attributes in each component; and a
set of Zero, one, or more critical attributes for each compo
nent, all of which must be provided to the runtime engine for
proper execution. In addition, the attributes in each of the
AutoSelect Components must be placed in an AutoSelect
Priority order prior to execution. The illustrated system or
method establishes an arbitrary order by ranking the
attributes in alphabetical order of their names and then allows
the modeler to make any further adjustments desired.
0051. The two AutoSelect components in the illustrated
example are put into AutoSelect Priority order as attributes 0.
1, 2, 3, 4 in the first AutoSelect Component and attributes 5
and 6 in the second AutoSelect Component. The AutoSelect
Priority order is used at runtime by engine, so the system or
method reports the AutoSelect Priority ordering to the execu
tion engine as well.

Building AutoSelect ZDDs:
0052. After determining the AutoSelect components,
ZDDs for each of these groups are created. The resulting
ZDDs thus contain every valid combination for each AutoSe

Dec. 16, 2010

lect component and may therefore grow quite large, thus the
importance of making each component as Small as possible.
0053. In the exemplary model, valid combinations are
split between Exclude ZDD 130 and Include ZDD 140
respectively shown in FIGS. 4 and 5. As subsequently
described, the system or method incrementally creates a new
ASInclude ZDD. The new ZDD has the same structure as the
Include ZDD in the 151 or 154application. The following
processes are performed for each AutoSelect component:

0054 Reordering the ZDDs
0.055 Removing Unused Enumerations
0056. Adding Always Paths to Include ZDD
0057 Transferring Exclude to Include ZDD
0.058 Removing Excluded Paths
0059 Storing the ZDD in a pac file.

0060. These steps are described in detail below for one of
the AutoSelect components with the understanding that the
same or similar steps are performed with respect to the other
component(s). The Include and Exclude ZDDs are the result
of packaging the rules in the rule model as described in the
related disclosures. The ASInclude ZDD 130 (FIG. 4) started
out as a copy of the Include ZDD representing the configu
ration of rule attributes and enumerations of the FIG.3 rule
model while the ASExclude ZDD 140 (FIG.5) started out as
a copy of Exclude ZDD of the FIG.3 rule model.

Reordering the ZDDs:
0061. Using standard ZDD reordering algorithms
described in F. Somenzi, CUDD: CU Decision Diagram
Package, http://vlsi.colorado.edu/-fabio/CUDD, the ASIn
clude ZDD 130 and the ASExclude ZDD 140 are reordered to
place the enumerations for the first AutoSelect components at
the top of the respective ZDDs in the same order. By placing
them in the same order it is possible to perform meaningful
operations between the two ZDDs.
0062. As shown in FIG.4, the exemplary ASInclude ZDD
130 includes enumeration nodes 4 through 22. Enumeration
nodes 17 through 22 (e.g., selections for Shipping Company
and Shipping Method) are not involved in the first AutoSelect
component, so after reordering they are placed at the bottom
of ZDD 130. This is where they were initially so the ASIn
clude ZDD does not change in this step.
0063. As shown in FIG. 5, the ASExclude ZDD includes
enumeration nodes 0, 1, 2, 3, 7, 8, 9 and 10. All of these
enumerations are included in the AutoSelect component. The
reordering technique applied to the ASExclude ZDD 140 was
the same as that applied to the ordering of the ASInclude ZDD
130 so the ASExclude ZDD remains the same after reorder
1ng.

Removal of Unused Enumerations:

0064 FIG. 6 illustrates removal of enumeration nodes
from the resulting ASInclude ZDD that were not involved in
any of the AutoSelect components. The routine that does this
removal requires that any unused enumerations at the bottom
of the ZDD. FIG. 6 shows the ASInclude ZDD 130 from our
example for the first AutoSelect component with the nodes in
the ZDD to be removed (i.e., nodes 17-22) being marked by
an “X” through them.
0065. The algorithm to do this traverses every path in the
ASInclude ZDD 132. As indicated above, it is essential that
the enumerations in this AutoSelect component be located at
the top of the ASInclude ZDD 132. As the algorithm traverses

US 2010/031847.6 A1

the paths, it checks if the node index is to be removed. When
it hits the first node to be removed, the algorithm immediately
reroutes that edge to the constant “1” node 134.
0066. In the illustrated example, the algorithm traverses
down from node 4 to node 16, examines the THEN leg of node
16 to find node 17, which is the topmost enumeration to be
removed, and so the THEN leg of node 16 is rerouted to the
constant “1” node 134.
0067. This traversing and rerouting occurs for every path
in the ZDD and eventually, nothing will be pointing to node
17. At that point node 17 and all the nodes below it have been
removed from the ZDD.

0068. The ZDD of FIG. 7 shows the result of removing
unused enumerations of the ASInclude ZDD 132, which it
now becomes the new or modified ASInclude ZDD 136. The
“one node 138 lies at the bottom of ZDD 136.

Add Always Paths to Include:

0069. The ASInclude ZDD of FIG. 7 for the AutoSelect
component now has all of the possible included paths. These
paths are not complete because they only contain enumera
tion nodes 4 through 16. A next step involves expanding out
the paths to include all of the attributes in the AutoSelect
component.
0070. An “Add Always' routine adds cover details for all
attributes from the AutoSelect component that reside only in
the ASExclude ZDD. A cover or “set cover is defined by
National Institute of Science and Technology at http://www.
nist.gov/dads/HTML/setcover.html. See also, http://www.cs.
sunysb.edu/-algorith/files/set-cover.shtml. Cover details are
also explained in commonly-owned copending provisional
application Ser. No. 60/721,089, incorporated herein.
0071. In our example, Attribute 0 resides only in the
ASExclude ZDD, but not the ASInclude ZDD. According to
the present invention, an aspect thereof adds an XOR cover
for “0” attribute. ZDD 150 of FIG. 8 shows the XOR cover
that is added to (i.e., combined by multiplying) the ASInclude
ZDD. If there was another attribute residing only in the ASEx
clude ZDD, an aspect of the invention would effect adding in
another XOR cover for that attribute. The standard
UnateProduct of algorithm described in F. Somenzi, CUDD:
CU Decision Diagram Package, is used to “multiply the two
ZDDS.

0072. The resulting ZDD 152 of FIG. 9 contains all
included combinations for the AutoSelect component. ZDD
152 thus becomes the new or modified ASInclude ZDD. The
next step involves removing those combinations that are
excluded by the ASExclude ZDD.

Transferring Exclude to Include:

0073. The rule processing system or method may employ
a ZDD manager to keep ZDDs with different ordering and
sets of enumerations separated so as to minimize the total
amount of memory needed to process the ZDDs. The ZDD
manager also keeps the ordering information and the canon
icity of its ZDDs.
0074 At this point there is produced an ASInclude ZDD
with all possible Included combinations and an ASExclude
ZDD that contains the combinations to be excluded. The two
ZDDs may be maintained by separate ZDD managers. Before
removal of the excluded paths from the ASInclude ZDD, both
the ASInclude ZDD and ASExclude ZDD are preferably

Dec. 16, 2010

handled by the same ZDD manager. To accomplish this, the
ASExclude ZDD may be transferred into the ASInclude ZDD
manager Space.
0075. The transfer routine is called TransferZDD, which
transfers a ZDD from one ZDD manager space to another. It
decomposes a ZDD in its existing ZDD manager using a
Shannon Expansion described in C. E. Shannon, The synthe
sis of two-terminal Switching circuits, Trans. of the American
Institute of Electrical Engineers, 28, 1, 59-98, (1949), and
then reassembles the ZDD in the new manager space using a
ZddITE operation. ITE is shorthand for If Then-Else.
0076 Both of these routines, TransferZDD and ZddITE,
are similar to standard routines written for BDDs, as
explained in F. Somenzi, CUDD: CU Decision Diagram
Package.
(0077. The ASExclude ZDD in the new ZDD manager
space looks exactly like it did in the ASExclude ZDD man
ager, but it has different node memory addresses because it is
now ordered and managed by the ASInclude ZDD manager.

Removal of Excluded Paths

(0078. With both ZDDs being handled by the same man
ager, operations can be performed that involve both ZDDs.
including removal of excluded combinations from the ASIn
clude ZDD.
0079. This operation can result in relatively large ZDDs
because the information from two ZDD is merged into a
single ZDD. Specifically, all possible valid combinations are
represented in one ZDD. Care should be taken to minimize
the size of the ASInclude and ASExclude ZDDs up to this
point.
0080. After all of the excluded combinations have been
removed from the ZDD, there is produced a Final ZDD 154,
as shown in FIG. 10. At this point, the Final ZDD154 may be
reordered using conventional reordering techniques of F.
Somenzi, CUDD: CU Decision Diagram Package, in order to
reduce its size.

Store the AutoSelect Component ZDD.
0081. The Final AutoSelect ZDD 154 of FIG. 10 is stored
in a packaged file for the AutoSelect component using the
techniques described in the related disclosures Ser. Nos.
10/101,151 and 10/101,154. Both AutoSelect component
ZDDs are processes similarly.

Alternate Method of Building AutoSelect ZDDs (At Runt
ime):
0082. When the AutoSelect ZDDs are built at runtime,
they may be constructed as described above with respect to
packaging. To implement the AutoSelect feature at runtime,
the steps (Reordering ZDDs, Removal Unused Enumera
tions. Adding Always Paths to Include, Transferring Exclude
to Include, and Removal of Excluded Paths) as described
above are performed upon loading of the execution engine.
Also, the steps described above need only be performed once
per AutoSelect component. So the runtime engine may also
perform those operations and cache the results for future
iterations. At the beginning of every execution engine cycle,
the same AutoSelect component ZDD is used and a Fix Selec
tions routine (described later) is called.
I0083 Putting this type of code into the execution engine
requires a more Sophisticated execution engine. Depending
upon the implementation language, the runtime execution

US 2010/031847.6 A1

engine may be over worked. Creating all of the AutoSelect
Component ZDDS at packaging time has advantage in that
precious time may be saved during runtime and that the
runtime engine only has to deal with executing the AutoSelect
ZDDS.

Executing the AutoSelect Components at Runtime:
0084. For every AutoSelect component, packaging creates
a list of the attributes in the component, an AutoSelect ASIn
clude ZDD, and a list of critical attributes.

Attribute List

0085. The list of attributes contains all of the attributes
involved in the AutoSelect component. This list is sorted in an
AutoSelect Priority order. At design time, a rule modeler
assigns an AutoSelect Priority value to every auto-selectable
attribute. Any ties in the ordering are resolved by alphabeti
cally sorting the attribute name. If the modeler does not set the
AutoSelect Priority for attributes, the AutoSelect Priority
order is alphabetical by attribute name.

ASInclude ZDD

0086. The AutoSelect ASInclude ZDD has all valid com
binations for all of the attributes in this AutoSelect Compo
nent. The preceding section described in detail how to create
an ASInclude ZDD.

Critical Attributes

0087. The critical attribute list has all of the attributes
determined to be critical during rule packaging. An attribute
is only selected to be a critical attribute if it was defined, for
example, to never allow a floating state. Thus, it may be an
illegal condition for any of the critical attributes to be found in
a floating state at run time.
0088. The system cannot determine the floating AutoSe
lect values for the AutoSelect Component when in this illegal
state. So, if any critical attribute is floating, the system or
method sets all of the floating AutoSelect attributes in the
AutoSelect component to their default value, and exits the
AutoSelect algorithm.

Fix Selections Routine

I0089. A FixSelections routine is used by AutoSelect to
find the best combination based on the current set of user
inputs. Every attribute in the AutoSelect component has an
enumeration selected and the system or method finds the best
enumeration for each attribute. During creation of the
AutoSelect component, the attribute list is placed in AutoSe
lect Priority order so it becomes a matter of finding the best
enumeration value for each attribute in that order.

0090. A Recommended Order routine is used to find the
best enumeration. At the time of rule design, the modeler may
specify the order in which enumerations are recommended. If
the Recommended Order is not specified, the method of appa
ratus of the invention may be arranged to default to an alpha
betical order by enumeration name.
0091. For the illustrated example, the AutoSelect Priority

is alphabetical and the Recommended Order for each attribute
is also alphabetical. It is then considered how to handle
AutoSelecting the enumerations for the first AutoSelect Com
ponent.

Dec. 16, 2010

0092. The operation is started by obtaining all of the
attribute values for non-AutoSelected attributes in the group.
0093. In the illustrated example, it is shown what happens
when a user selects the “Good’ enumeration from the
“Bundle' attribute 102 (FIG. 1), which is enumeration 3 in
FIG. 11. The AutoSelect feature starts with the ASInclude
ZDD. Then, it removes all paths that do not have the enu
meration 3 in them. The resulting ZDD 156 is shown in FIG.
11, which is a Zdd representation of all valid combinations
that have enumeration 3. There are twelve paths in ZDD 156,
which means that there are twelve valid combinations that use
the “Good’ enumeration.
(0094. If the ZDD 156 was empty at this point, then there
are no valid combinations having the user selection. This
means that, with the given values for the non-AutoSelected
attributes, there were no valid combinations of AutoSelect
values. In this case, the AutoSelect feature of the invention
sets all of the floating attributes to their default enumeration
values, and is done.
(0095. If the ZDD 156 is not empty, there are one or more
valid combinations. The AutoSelect feature now seeks to find
the best valid combination.
0096. At this point, AutoSelect goes through the ordered

list of attributes in the AutoSelect component to find the
highest recommended enumeration for each attribute. The
existence of an enumeration in the ZDD 154 implies that it
resides in Some valid combination(s). AutoSelect may then
fix this value in the ZDD and look to the next attribute in the
AutoSelect Component. When all the attributes have fixed
enumerations, the combination is valid and the system or
method provides to the user these enumerations as recom
mended selections for the AutoSelect Attributes.
0097 FIG. 12 illustrates the steps of providing advice to a
user. Notice that the more selection the system makes, the
more refined the ZDD becomes and the fewer valid combi
nations are available.

(0.098 Step 1: Enumeration 3 in ZDD 158 is fixed
because the user selected the Good Bundle.

0099 (In steps Step2-Step5: the attributes are fixed
from the AutoSelect Attribute list.)

0100 Step2: Enumeration 4 in ZDD 160 is the highest
recommended enumeration for CPU attribute. Note that
enumeration 5 is removed.

0101 Step3: Enumeration 8 in ZDD 162 is the highest
recommended enumeration for DVD attribute.

0102 Step4: Enumeration 11 in ZDD 164 is the highest
recommended enumeration for Hard Drive attribute.
Enumerations 12 and 13 are removed.

(0103) Step5: Enumeration 14 in ZDD 166 is the highest
recommended enumeration for Memory attribute. Enu
meration 16 is removed. At this point there is a single
valid path. These enumeration values are used as the
selections for the AutoSelected Attributes.

Advice Changes to Support AutoSelect:
0104. The related disclosures describe, in detail, how to
generate advice for a set of user selections on a given set of
attributes. The present invention extends that advice genera
tion to handle AutoSelected attributes. The AutoSelect opera
tion is completed before the advice routine starts, but the
results of the AutoSelect operation are used by the advice
routine in several ways.
0105. If there are no valid AutoSelect combinations, the
AutoSelect feature selects default values for all AutoSelect

US 2010/031847.6 A1

attributes. This has an effect on advice for any related
attributes. After auto-selections are determined (whether
valid or invalid), user advice for each enumeration is deter
mined, one attribute group at a time. The advice computation
comprises three steps, with context switching based on
whether the attribute group is an auto-select group with no
user selections. Include and Exclude advice differs in their
respective computations.
0106 FIG. 13 Summarizes how advice is computed using
AutoSelect Attributes. The Cheap selection of Bundle
attribute group 172 and the P4 selection of CPU attribute
group 174 are selected. On the left side of FIG. 13 are col
umns 182, 184, and 186 showing the results of Include and
Exclude advice. Note that there are two columns for Exclude
results 184. The left Exclude Column is computed with fixed
selections, and the right Exclude Column is computed with
the floating selections. The Result column 186 is a NOR
operation between the Include and the Exclude columns 182
and 184. The following three sections describe how to com
pute the details of Include Advice, Exclude Advice and how
the AutoSelect feature combines them to provide Overall
Advice to a user.

Include Advice

0107 FIG. 15 shows advice indications for the respective
Bundles, CPU, DVD, Hard Drive, and Memory attribute
groups in row 196. Selectable enumerations for the groups
appear in row 197. For Include advice, AutoSelect creates two
arrays 192 and 194 (FIG. 14) of enumeration inputs, one
called Selection Input Floating and a second called Selection
Input Fixed. Array 192 has all of the user selections and
preferably all of the floating AutoSelect attributes with their
AutoSelected values. Array 194 has all of the user selections
and preferably all of the floating AutoSelect attributes are
seen as if they were floating. As the advice for each attribute
is calculated, the attribute values for related attributes are
pulled from one of these arrays. If the attribute is a floating
AutoSelect attribute, the values for the Selection Input Fixed
array are used. All other attributes use the values from the
Selection Input Floating array.
0108. As describe above, Include Advice uses one of the
two input arrays shown in FIG. 14, depending upon whether
or not an AutoSelect attribute is floating, to generate the
Include result depicted in FIG. 15. The computation of
Include Advice values, however, is unchanged from that
shown in incorporated application Ser. No. 10/101,151 (now
U.S. Pat. No. 6,965,887).
0109 The illustrated example assumes that the user has
made a selection of the “Cheap' enumeration in the Bundles
attribute group and “1x” in the DVD attribute group. Advice
for all five groups will proceed with two initial contexts. For
Bundles and DVD, since they are attribute groups with a user
selection of enumerations, CPU, Hard Drive and Memory
will appear as if they are floating since no selection has been
made.
0110. The Advice module for the Include rules will return

all pluses (e.g., “available' or “compatible' selections) in
both of these attributes since they are not in any Include rule
together (the example assumes that Bundles and DVD reside
in an Exclude rule, and that DVD, CPU, Hard Drive and
Memory reside in an Include rule).
0111 Since all other attributes are considered floating,
they cannot affect the advice associated with Bundles and
DVD selections. For CPU, Hard Drive and Memory, all

Dec. 16, 2010

attributes will appear as if they have a selection (with the
auto-selection appearing as the selection in auto-selected
attributes). Hence, CPU will show a "+" sign on “P4', as “P4”
is the only valid selection with the “Cheap' selection. Hard
Drive will show all pluses, and Memory will show a “+” on
“512 MB (the only valid choice with “Cheap'). In FIG. 15,
the “0” notation in row 198 is associated with a “minus’
notation for user advice while the “1” notation is associated
with a “plus notation for user advice.

Exclude Advice

0112 FIGS. 16A and 16B show Exclude advice. Determi
nation of Exclude advice is simultaneously performed for all
attributes as described in the aforementioned incorporated
patent applications Ser. Nos. 10/101,151 (now U.S. Pat.
6,965,887) and 10/01,154, so the process for determining
whether to use the AutoSelected or floating values for
AutoSelected attributes is different. To support AutoSelect,
Exclude advice is calculated twice, once with AutoSelected
attributes in a floating state and once with AutoSelected
attributes using their AutoSelected values. In FIG. 16A, row
200 identities the attribute groups, row 201 indicates select
able enumerations for the respective attribute groups, and row
202 indicates advice. In FIG. 16B, row 203 also represents
advice provided to the user.
0113. The grids of FIGS. 16A and 16B show the resulting
Exclude advice results in row 202 and 203 for the illustrated
example. FIG. 16A shows advice computation in row 202
using floating AutoSelected Attributes. FIG. 16B shows
advice computation in row 203 using a fixed AutoSelect value
instead of the floating AutoSelect Attributes. The significance
and interpretations of the results shown in rows 202 and 203
are similar to that described in connection with FIG. 15.

Overall Advice

0114 FIG. 17 illustrates details the changes from the over
all advice disclosed in incorporated disclosures Ser. Nos.
10/101,151 (now U.S. Pat. No. 6,965,887) and 10/01,154
where the Include Results and the Exclude Results are
NOR'ed to produce advice array 206. In FIG. 17, row 204
identifies the attribute group, row 205 identifies enumerations
within the respective attribute groups, and row 206 indicates
the advice provided to the user. To support AutoSelect, the
NOR operation considers both of the Exclude Result arrays
202 and 203 (FIGS. 16A and 16B). During the NOR opera
tion, the system uses the values from the floating array for
attributes that are fixed, and from the fixed array for attributes
that are floating.
0.115. As described in the incorporated related disclosures,
AutoSelect inspects each enumeration in the Include Result
array from left to right. The difference here is that if the
enumeration is in a floating AutoSelect attribute, the system
or method uses the enumeration value from the Exclude Fixed
Result array 202, and if the enumeration is from a fixed
attribute, the system uses the enumeration value from the
Exclude Floating Result array 203. AutoSelect uses those
values to produce the final NOR result array 206 shown in
FIG. 17. In other words, the results/advice shown in array 206
(FIG. 17) results from a NOR operation of the results/advice
of arrays 202 and 203 (FIGS. 16A and 16B).
0116. According to the illustrated example, it is seen that
AutoSelect feature may be implemented as a method or in a
computer apparatus to facilitate the selection of choices by a

US 2010/031847.6 A1

user during rule processing or decision automation. AutoSe
lect may be deployed to assista user in processing a business
or engineering rule. Although shown with a single user input,
any number of available attributes may be designated user
selectable, “floating,” or “fixed.” DAGs or BDDs, under cer
tain circumstances may also be used to carry out the inven
tion. The underlying teachings hereof may also be emulated
to achieve the same or similar result. Accordingly, the inven
tion is not limited by the illustrated examples but includes all
Such variations and emulations as may come within the scope
of the appended claims.

1. In a computer-implemented rule processing system uti
lizing a ZDD representation of a rule that responds to user
inputs to provide advice that guides a user to achieve compli
ancy of said rule, an improvement comprising:

an autoselect system implemented with said rule process
ing system to identify a set of compliant inputs of said
rule based on at least one user input selected by said user,
said autoselect system including a user interface to
enable the user to select said at least one user input and
a processor to automatically generate and indicate to
said user other compliant inputs of said set based on said
at least one user input.

2. The improvement of claim 1, wherein said inputs com
prises enumerations of attributes of a business or engineering
rule.

3. The improvement of claim 2, wherein said autoselect
system builds an autoselect ZDD based on compliant inputs
of said rule and processes the autoselect ZDD to produce set
of compliant selections for said inputs.

4. The improvement of claim 3, wherein said autoselect
system separately builds an autoselect Include ZDD and an
autoselect Exclude ZDD to represent said autoselect ZDD.

5. The improvement of claim 4, wherein said autoselect
system reorders nodes of said autoselect Include ZDD and
autoselect Exclude ZDD to reduce the complexity thereof.

6. The improvement of claim 5, wherein nodes of said
ZDDs have respective index numbers associated with said
attributes and enumerations thereof and said autoselect sys
tem aligns the indices of respective nodes of said autoselect
Include and autoselect Exclude ZDDs to facilitate processing.

7. The improvement of claim 6, wherein said autoselect
system builds and stores the autoselect ZDD during rule
packaging whereby to reduce processing time during execu
tion of said rule processing system.

8. The improvement of claim 6, wherein said autoselect
system builds the autoselect ZDD on-the-fly during runtime
of said computer-implemented rule processing system.

9. In a computer-implemented rule processing system uti
lizing a ZDD rule model that responds to selection of enu
merations of attributes in order to provide selection advice to
a user for achieving compliancy of said rule model, an
improvement comprising:

an autoselect system implemented with said rule process
ing system to provide additional compliant selections
based on at least one initial input enumeration of said
user, said autoselect system including a user interface to
enable the user to select said initial input enumeration;
an autoselect ZDD constructed from compliant enu
merations of said rule model; and a processing module
responsive to said initial input enumeration of said user
to automatically provide said additional compliant
Selections of enumerations.

Dec. 16, 2010

10. The improvement of claim 9, wherein said processing
module divides said autoselect ZDD into an autoselect
Include ZDD and an autoselect Exclude ZDD prior to auto
matically providing said user with additional compliant
selections.

11. In combination with a rule processing system employ
ing a ZDD rule model indicative of a business or engineering
rule to provide decision Support to a user, a computer-imple
mented system to automatically identify compliant inputs for
the rule processing system according to at least one user
input, said computer-implemented system comprising:

an I/O interface to enable the user to choose and observe
inputs,

an autoselect ZDD constructed from compliant inputs of
said rule model, and

a ZDD processing module that processes said autoselect
ZDD in order to provide for the user a set compliant
inputs for said ZDD rule model according to said at least
one user input.

12. The computer-implemented system of claim 11,
wherein said processing module enables the user to change an
initial user input and, in response thereto, provides alternative
compliant inputs based on a change in said initial user input.

13. A computer-implemented rule processing system to
determine satisfiability of a business or engineering rule rep
resented by a Zero-suppressed binary decision diagram
(ZDD) rule model, said system comprising:

an execution module to indicate compliancy of said rule
according to selection of attributes and enumerations
values for said attributes,

an autoselect module that provides automatic selection of
enumeration values based on selection of an initial value
for at least one enumeration,

a user interface to enable a user to select a value for at least
one enumeration, and

a processing module to determine compliant enumeration
values for other attributes according to the enumeration
value selected by said user and to provide said compliant
enumeration values of said other attributes to said user.

14. The computer-implement system of claim 13, wherein
said processing module iteratively enables said user to select
an alternative enumeration value whereby, in response, said
processing module determines and identifies other compliant
enumeration values based on said alternative enumeration
value selected by said user.

15. In a computer-implemented rule processing method to
determine satisfiability of a ZDD representation of a business
or engineering rule, a method of providing a set of compliant
enumeration values for respective attributes of said rule com
prising:

obtaining a user selection of at least one enumeration value
of an attribute,

determining a set of compliant enumeration values of other
attributes according to said user selection,

providing a complete set of compliant enumeration values
to said user, and

iteratively enabling said user to select other enumeration
values whereby to provide further complete sets of com
pliant enumeration values to said user.

16. In a computer-implemented method of rule processing
utilizing a Zero-suppressed binary decision diagram (ZDD) to
provide decision Support, a method of automatically provid
ing a user with additional compliant inputs based on at least
one user input Supplied by said user, said method comprising:

US 2010/031847.6 A1

providing a user interface to indicate possible inputs to the
ZDD,

enabling the user to enter at least one input,
in response to an input entered by said user, generating a set

of additional inputs that are compliant with each other
and compliant with said input entered by said user, and

indicating the set of additional compliant inputs to said
USC.

17. The method of claim 16, further comprising providing
inputs in the form of attributes and enumeration values of said
attributes.

18. The method of claim 17, wherein said generating step
includes building an autoselect ZDD based on compliant
inputs of a ZDD rule and processing the autoselect ZDD to
produce a complete set of compliant inputs to the ZDD rule
according to said at least one input entered by said user.

19. The method of claim 18, wherein said generating step
further includes separately building an autoselect Include
ZDD and an autoselect Exclude ZDD to represent said
autoselect ZDD whereby to facilitate ZDD manipulation.

20. The method of claim 19, wherein the separately build
ing step includes reordering nodes of said autoselect Include
and autoselect Exclude ZDDs to reduce the number of nodes
and complexity thereof.

Dec. 16, 2010

21. The method of claim 20 wherein nodes of the ZDDs
have respective index numbers associated with said attributes
and enumeration values thereof and said separately building
step includes aligning the indices of the respective nodes of
said autoselect Include and autoselect Exclude ZDDs to facil
ity ZDD manipulations.

22. The method of claim 21, further comprising separately
building and storing the autoselect ZDD during rule packag
ing whereby to reduce processing time during execution of
said rule processing system.

23. The method of claim 21, further comprising separately
building and storing said autoselect ZDD on-the-fly during
runtime of said computer-implemented rule method.

24. A computer readable medium to effect automatic iden
tification of inputs during automated rule processing of a
ZDD rule by a data processing system, said medium compris
ing program instructions to effect display on a graphical user
interface of selectable inputs for the ZDD rule, to effect
selection by said user of at least one input, to build an autose
lect ZDD from compliant inputs of said ZDD rule, to generate
a set of compliant inputs based on an input selected by said
user, and to indicate to said user said set of compliant inputs
according to an input selected by said user.

c c c c c

