

US 20070025970A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2007/0025970 A1**
Kingsman et al. (43) **Pub. Date:** **Feb. 1, 2007**

(54) **VECTOR SYSTEM**

(75) Inventors: **Alan John Kingsman**, Oxford (GB);
Nicholas D. Mazarakis, Oxford (GB);
Enca Martin-Rendon, Oxfordshire
(GB); **Mimoun Azzouz**, Sheffield (GB);
Jonathan Rohll, Oxford (GB)

Correspondence Address:
FROMMER LAWRENCE & HAUG
745 FIFTH AVENUE- 10TH FL.
NEW YORK, NY 10151 (US)

(73) Assignee: **Oxford Biomedica (UK) Limited**

(21) Appl. No.: **11/486,914**

(22) Filed: **Jul. 14, 2006**

Related U.S. Application Data

(60) Division of application No. 10/408,456, filed on Apr. 7, 2003, which is a continuation-in-part of application No. PCT/GB01/04433, filed on Oct. 5, 2001.

(30) **Foreign Application Priority Data**

Oct. 6, 2000 (GB) 0024550.6

Publication Classification

(51) **Int. Cl.**

A61K 48/00 (2007.01)
C12N 15/867 (2007.01)

(52) **U.S. Cl.** **424/93.2; 435/456; 977/802**

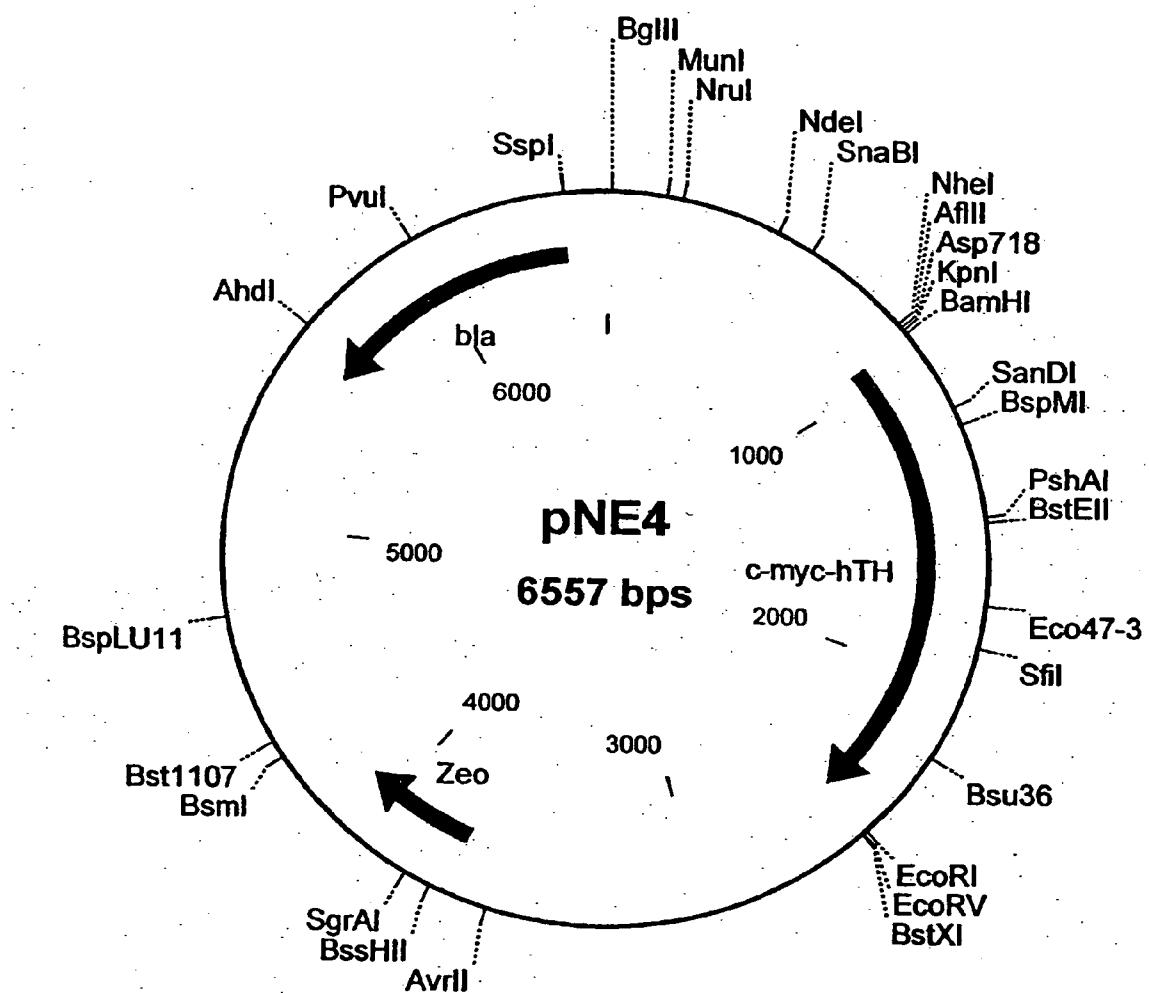
(57) **ABSTRACT**

The present invention relates to retroviral vector genomes and to vector systems comprising such genomes. In particular the present invention relates to a retroviral vector genome comprising two or more NOIs operably linked by one or more Internal Ribosome Entry Site(s); a lentiviral vector genome comprising two or more NOIs suitable for treating a neurodegenerative disorder; and a lentiviral vector genome which encodes tyrosine hydroxylase, GTP-cyclohydrolase I and optionally Aromatic Amino Acid Dopa Decarboxylase.

Figure 1**5'hTH2**

5'-GC GGATCC GCC ACC ATG GAA AAA CTC ATC TCA GAA GAG GAT
BamH I
CTG CCC ACCCCC GAC GCC ACC ACG -3'

3'hTH2


5'- GAA CCG CGG GGA CTG CCC TCT TAC C- 3'

5'hTH3

5'-GGT AAA GAG GGC AGT CCC CGC GGT TC- 3'

3'-hTH1

5'- CG AAGCTT CTA GCC AATGGC ACT CAG CGC ATG GGC-3'
HindIII

Figure 2

Figure 3

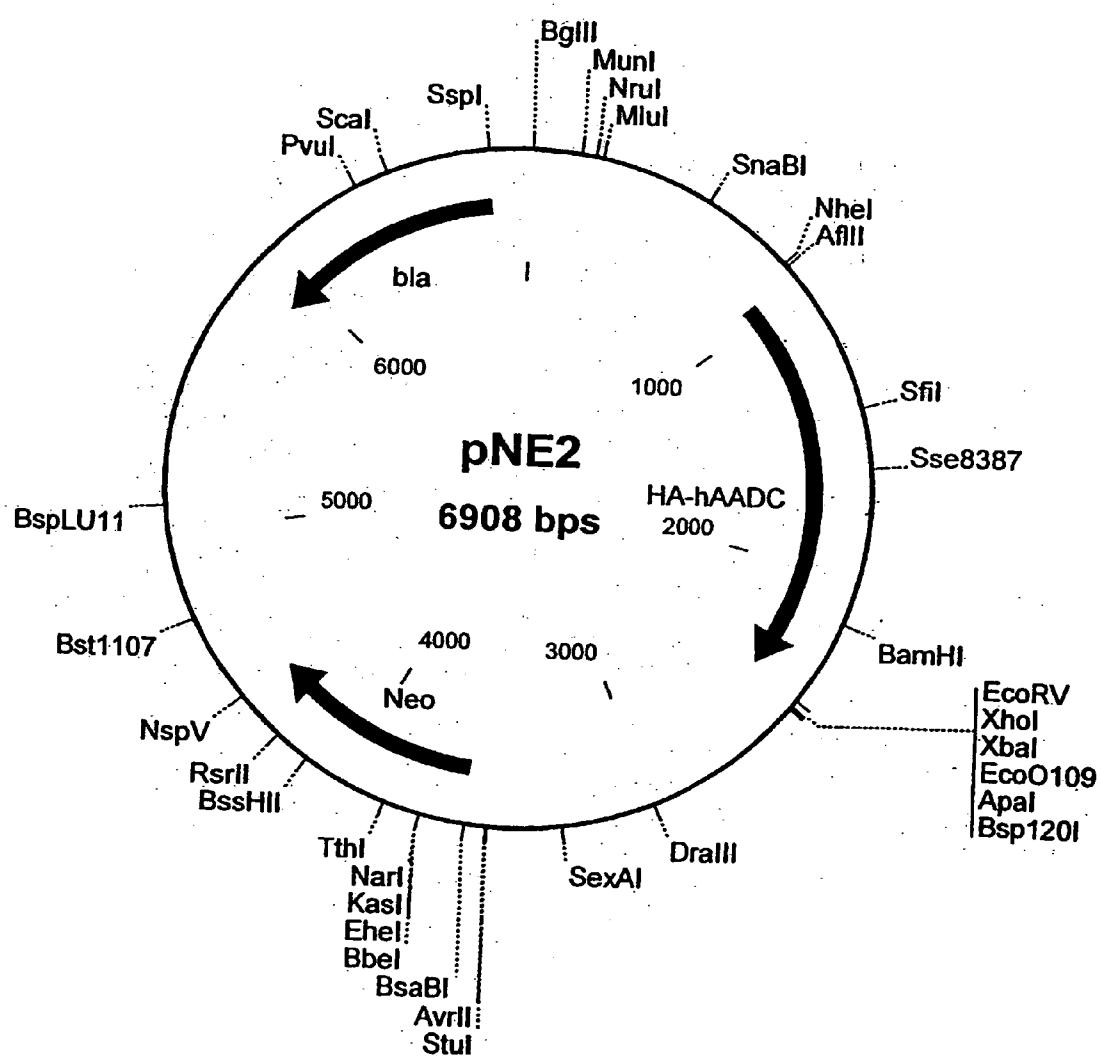
5'hAADC

5'- CG AGA TCT GCC ACC ATG TAC CCC TAC GAC GTG CCC GAC TAC
Bgl II

GCC AAC GCA AGT GAA TTC CGA AGG-3'

3'hAADC

5'- CG AAG CTT CTA CTC CCT CTC TGC TCG C-3'
HindIII



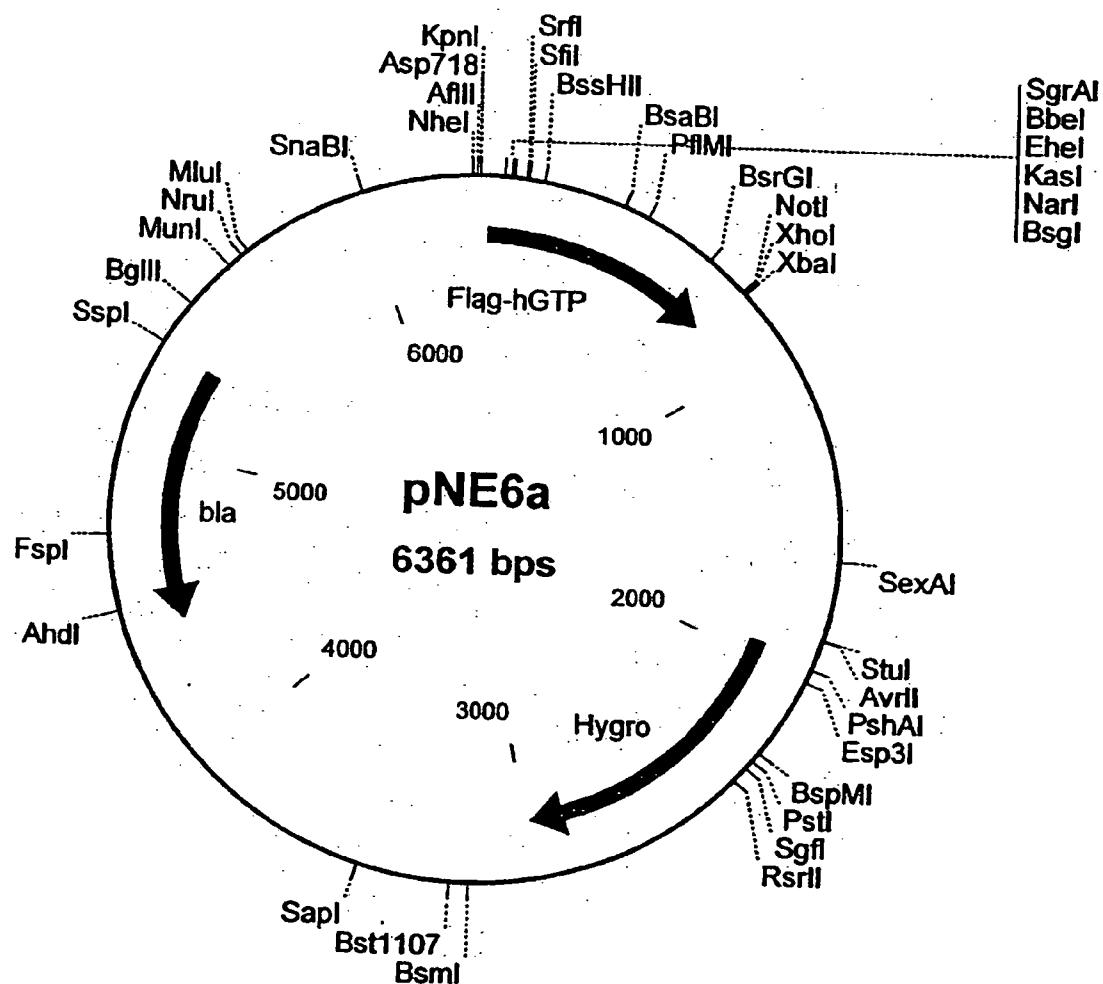

Figure 4

Figure 5**5'hGTP**

5'- CG AGA TCT GCC ACC ATG GAC TAC AAG GAC GAC GAT GAC GAG
Bgl II
AAG GGC CCT GTG CGG CG-3'

3'hGTP

5'- CG AAG CTT TCA GCT CCT AAT GAG AGT CAG GAA-3'
HindIII

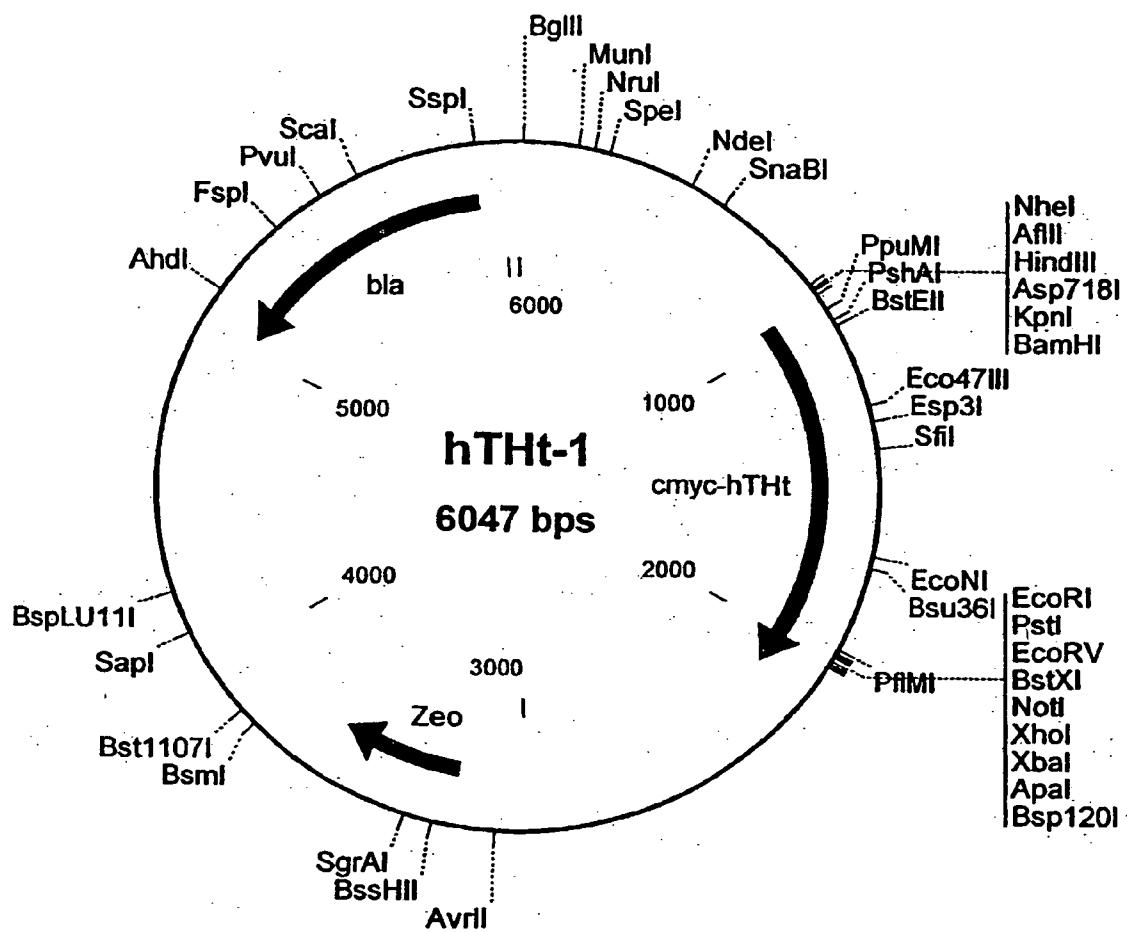

Figure 6

Figure 7**5'hTHt**

5'-CG AAG CTT GGA TCC GCC ACC ATG GAA CAA AAA CTC ATC TCA
HindIII BamHI
GAA GAG GAT CTG AAG GTC CCC TGG TTC CCA AGA AAA-3'

3'hTHt

5'- CG GAA TTC CTA GCC AAT GGC ACT CAG CGC ATG GGC-3'
EcoRI

Figure 8

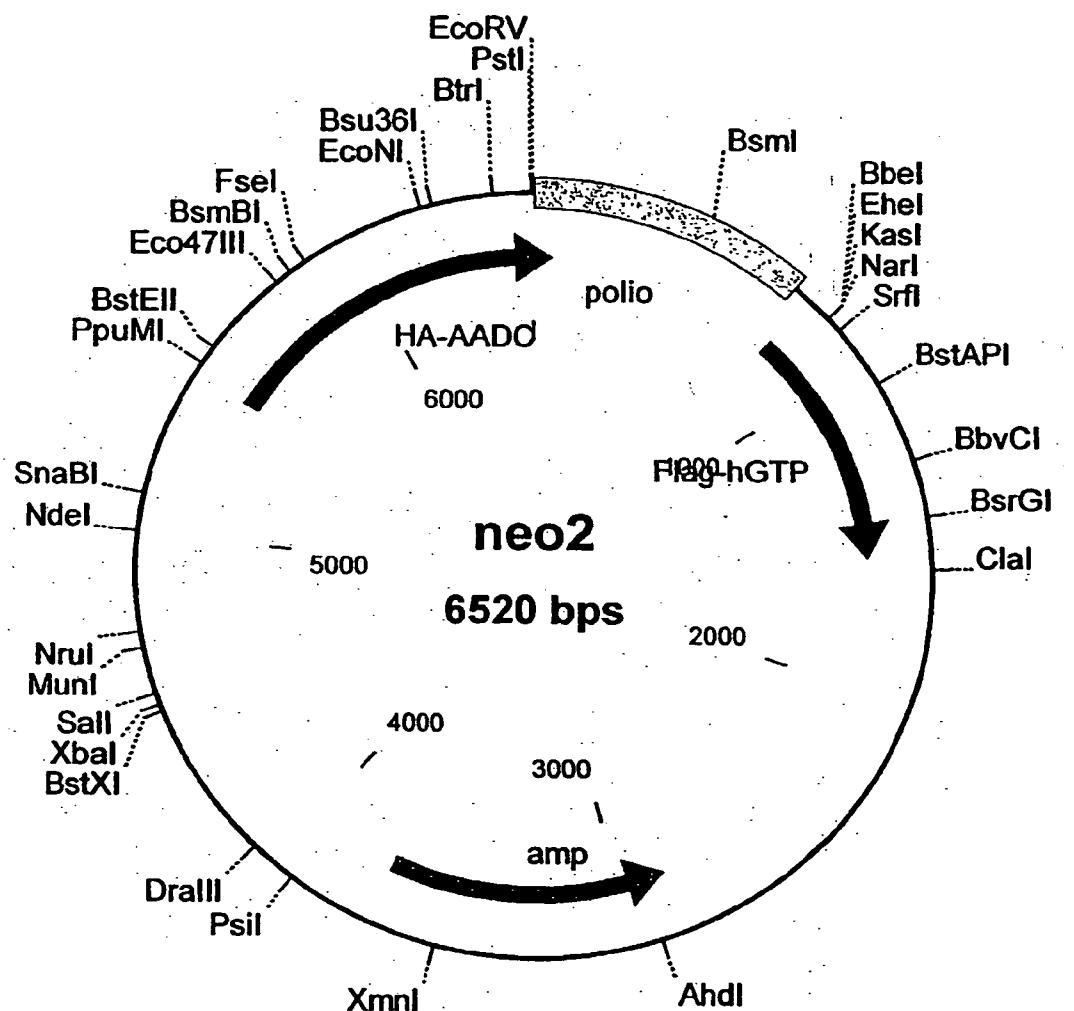
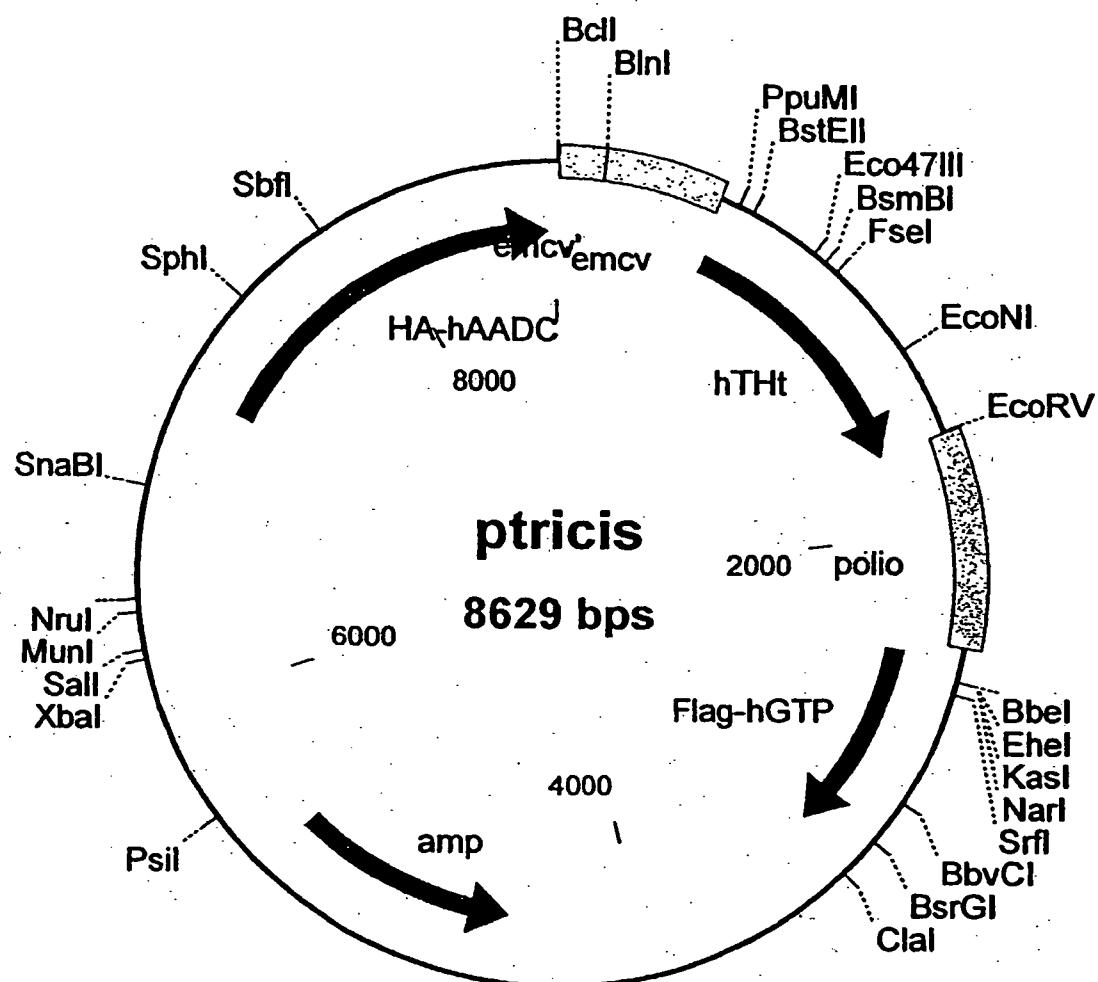
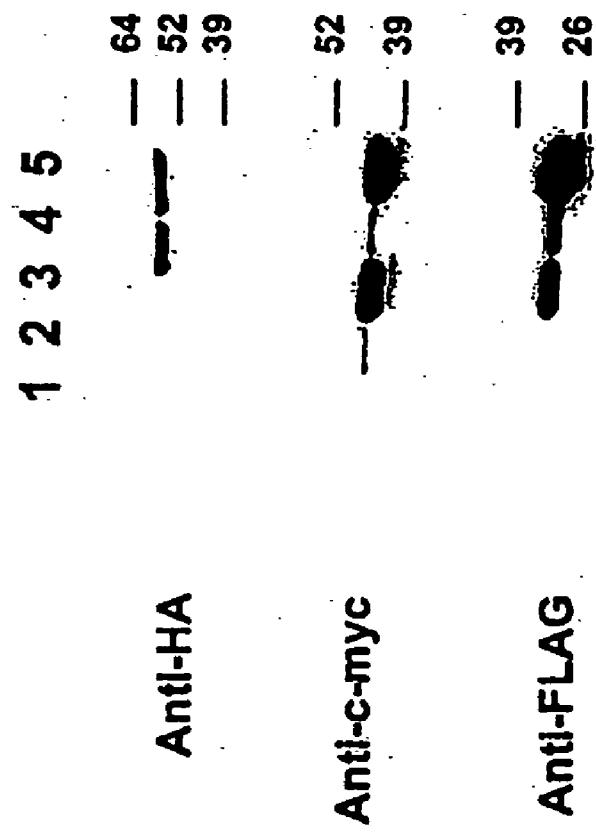




Figure 9

Figure 10

Figure 11

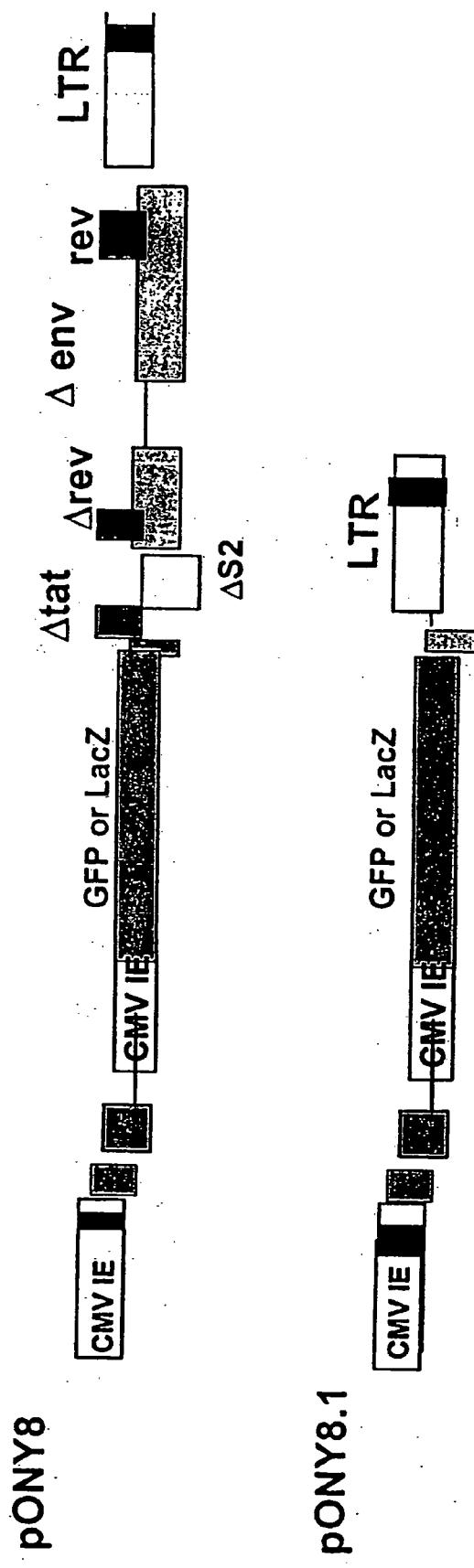

Figure 12

Figure 13

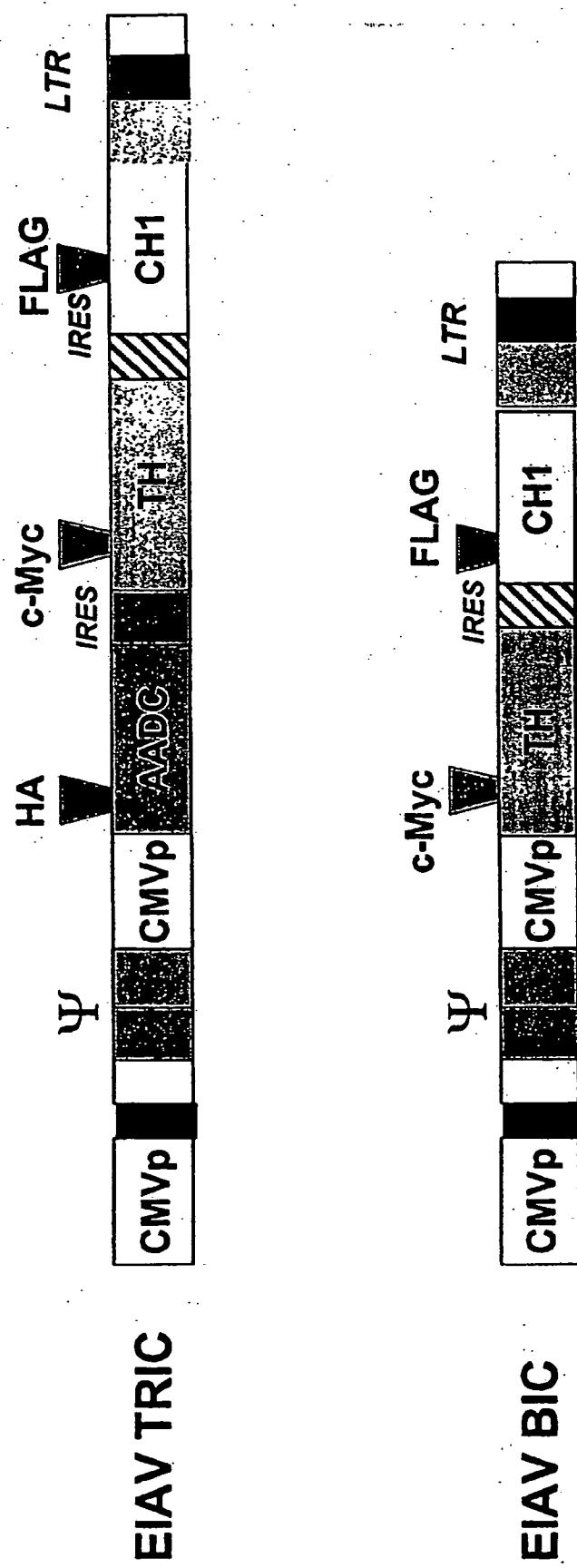
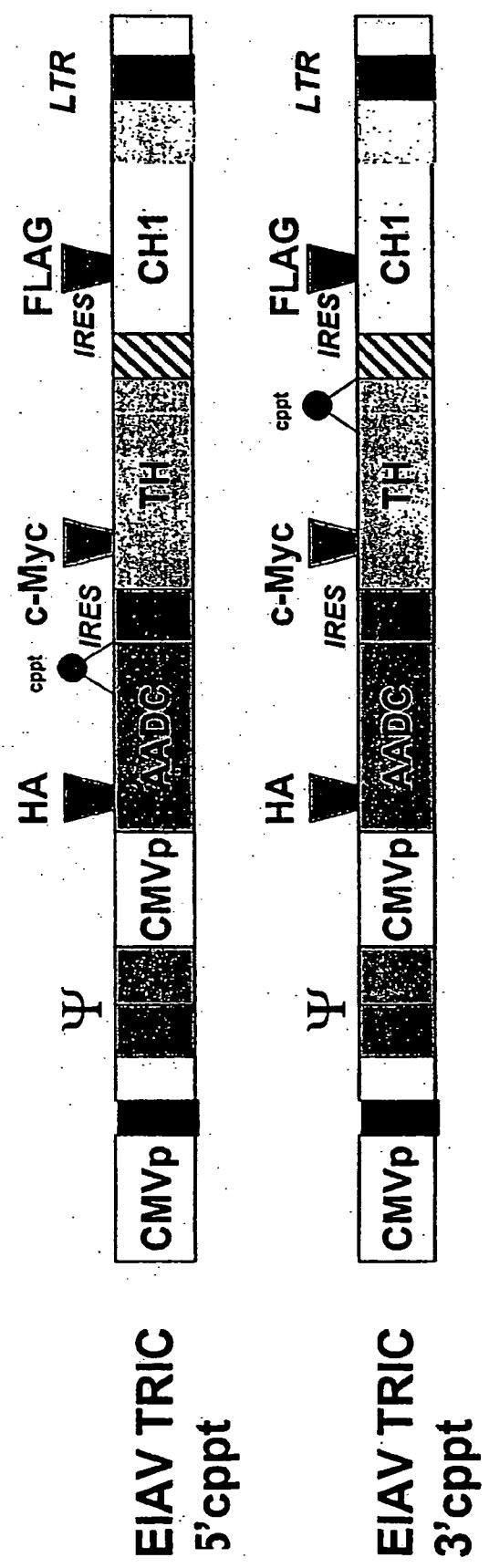
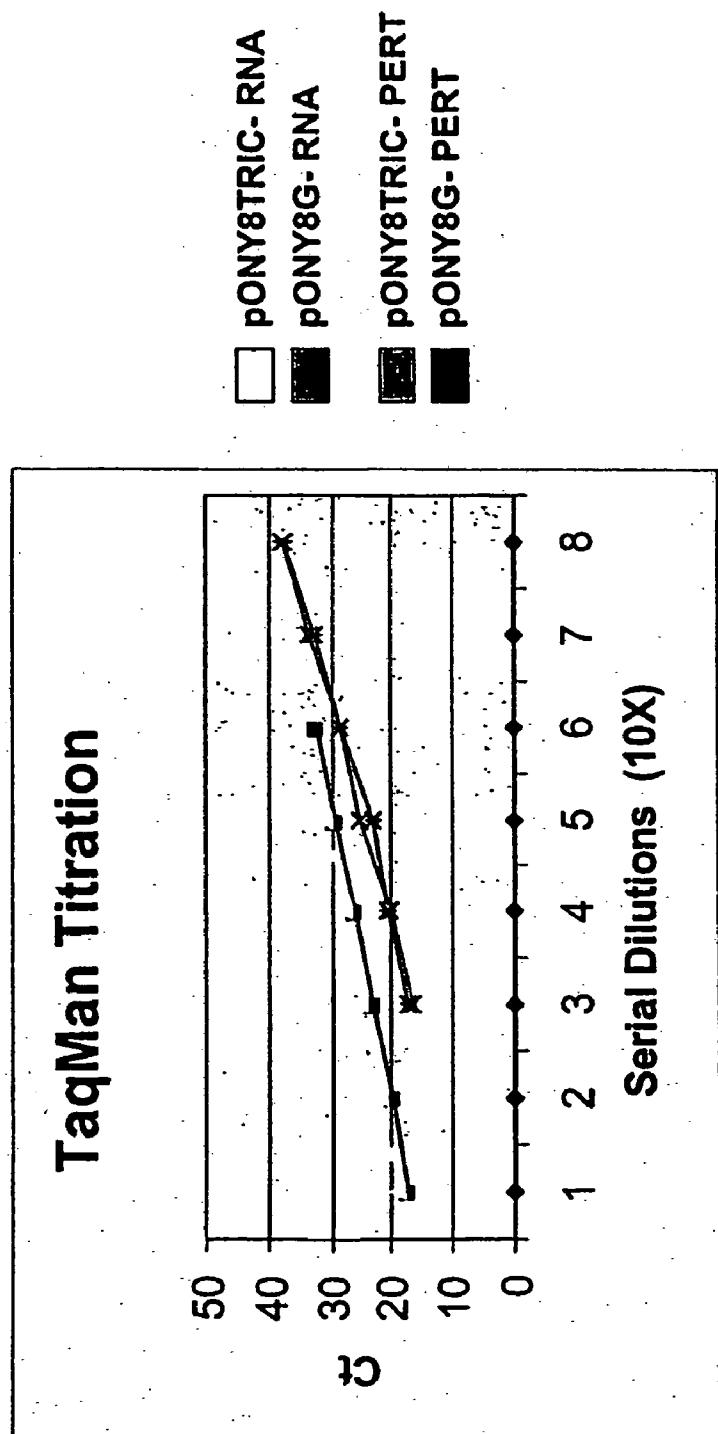
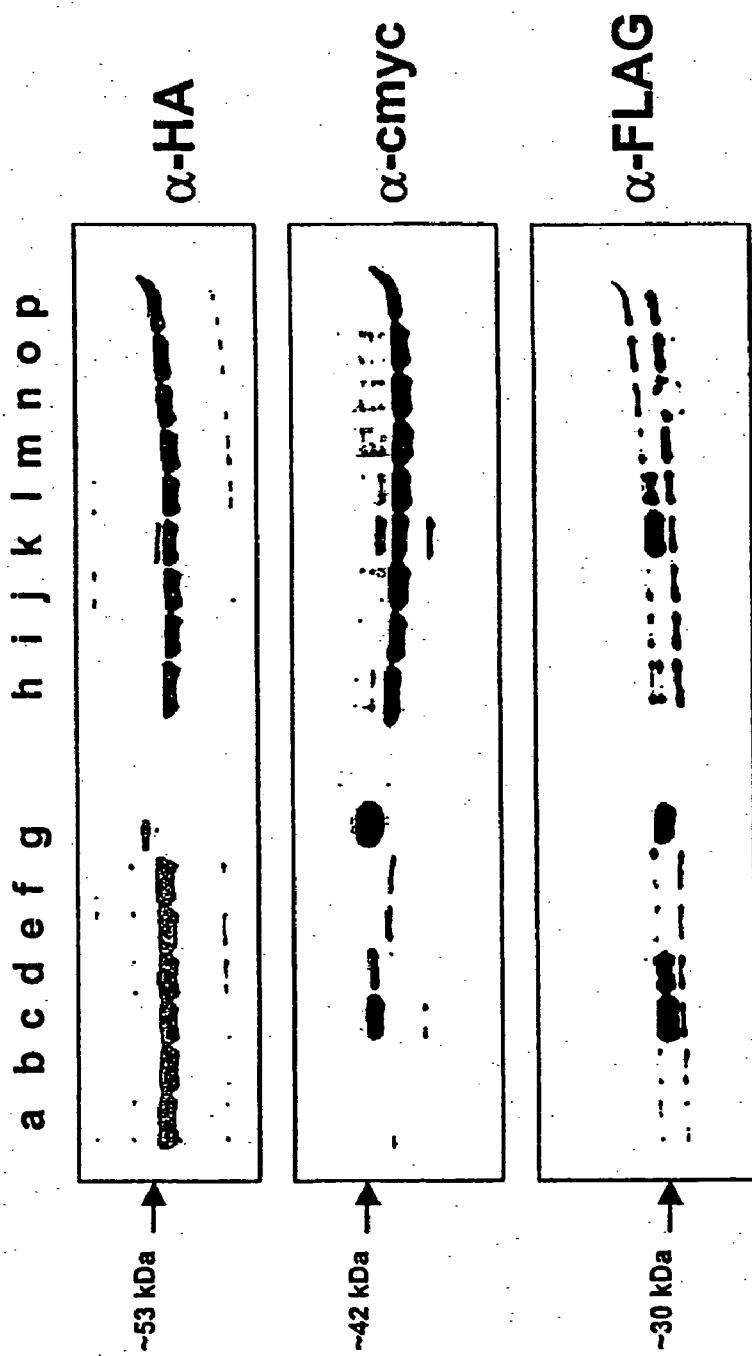
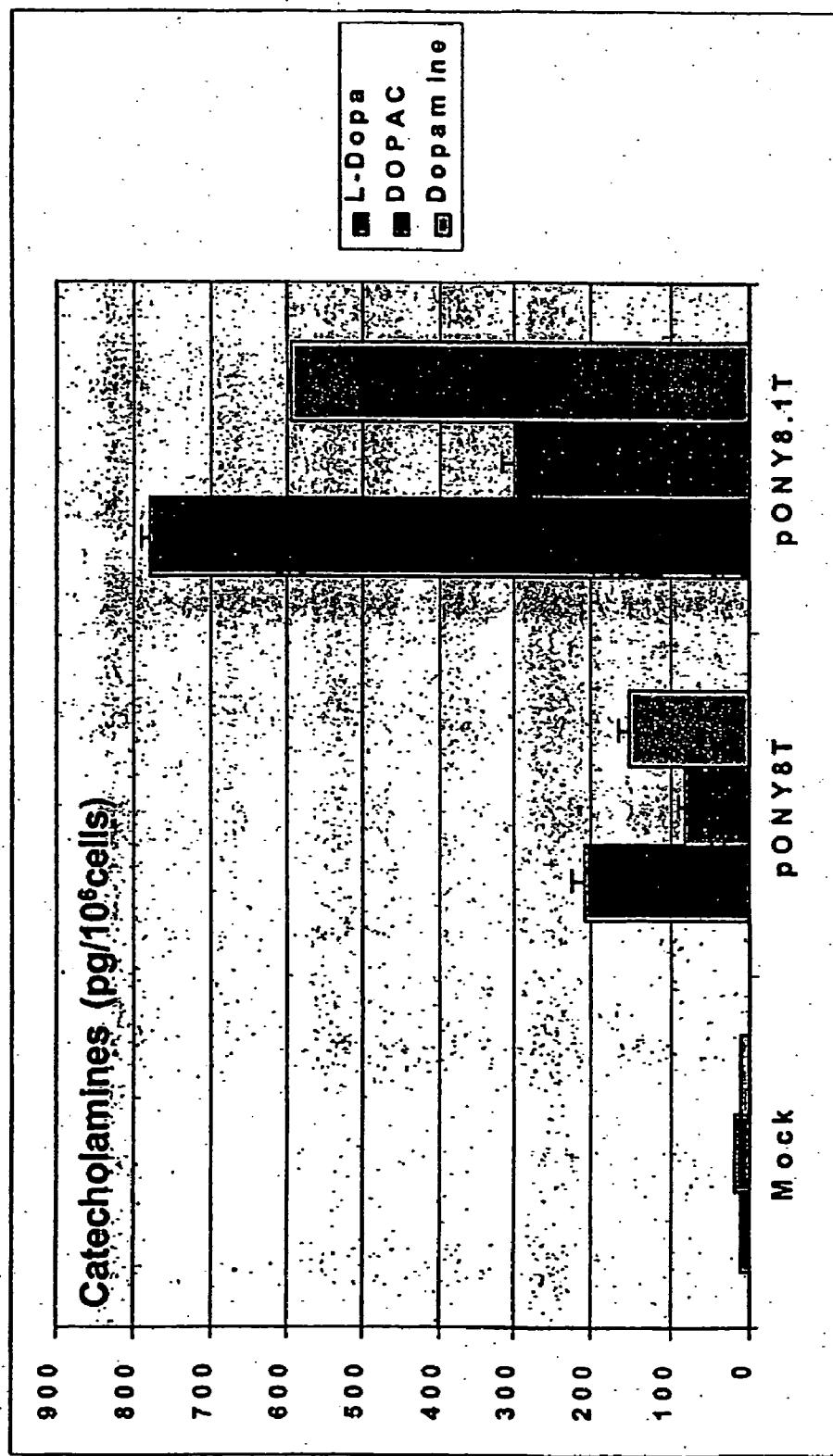





Figure 14



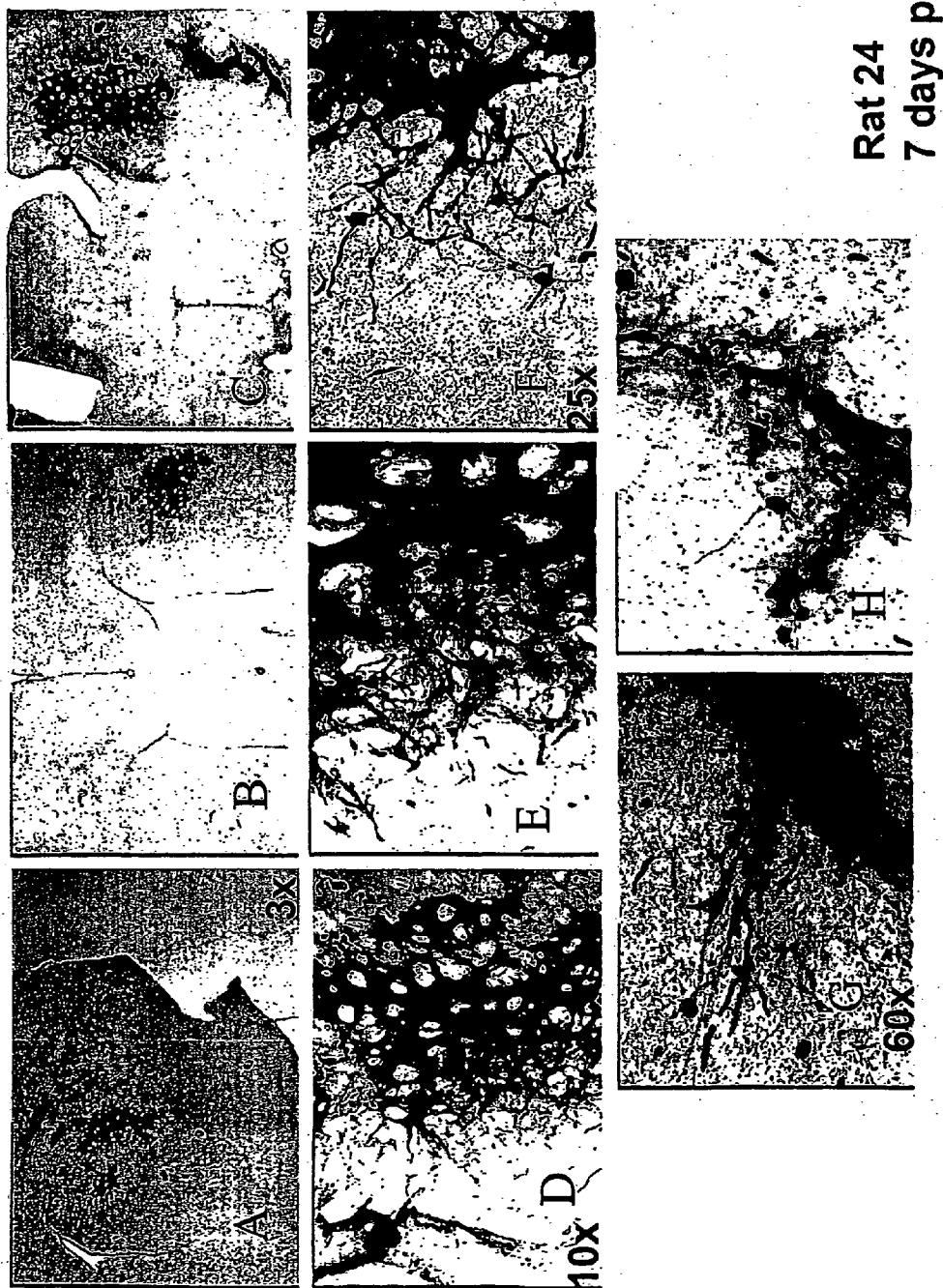

Figure 15**Comparison of Lentiviral preps by PERT/RNA ratio**

Figure 16

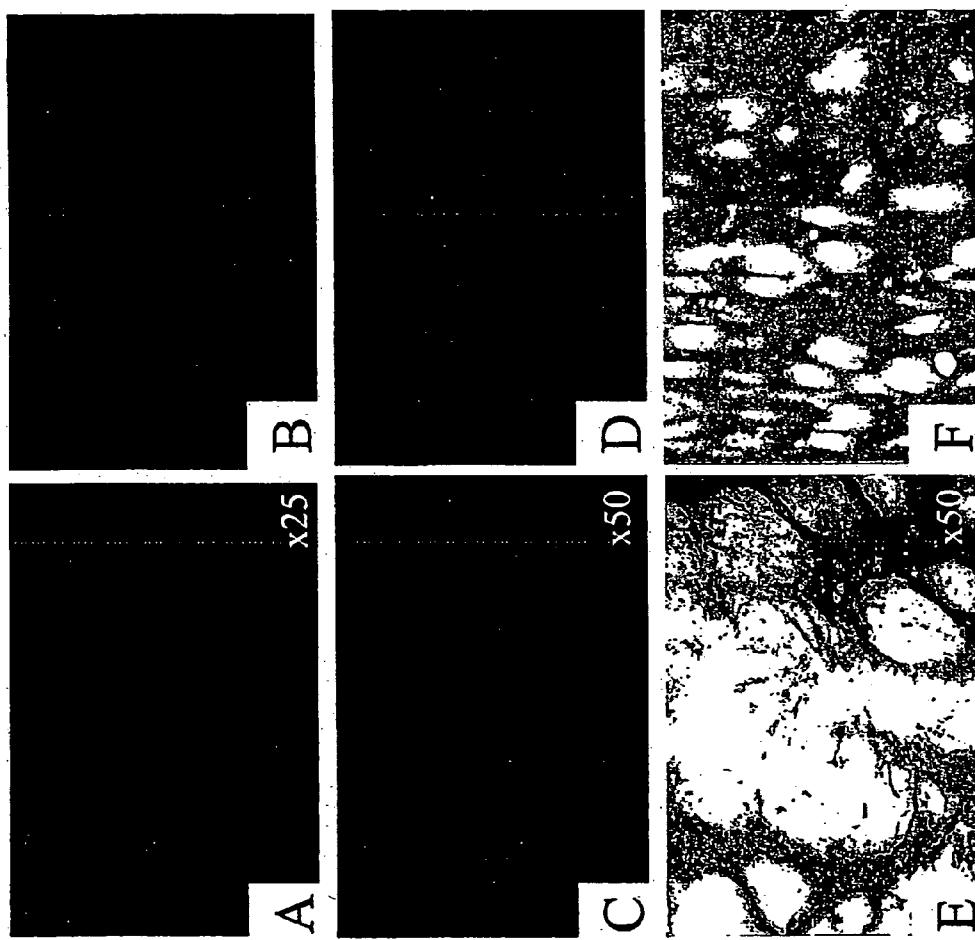

Figure 17

Figure 18

Figure 19

FIGURE 20

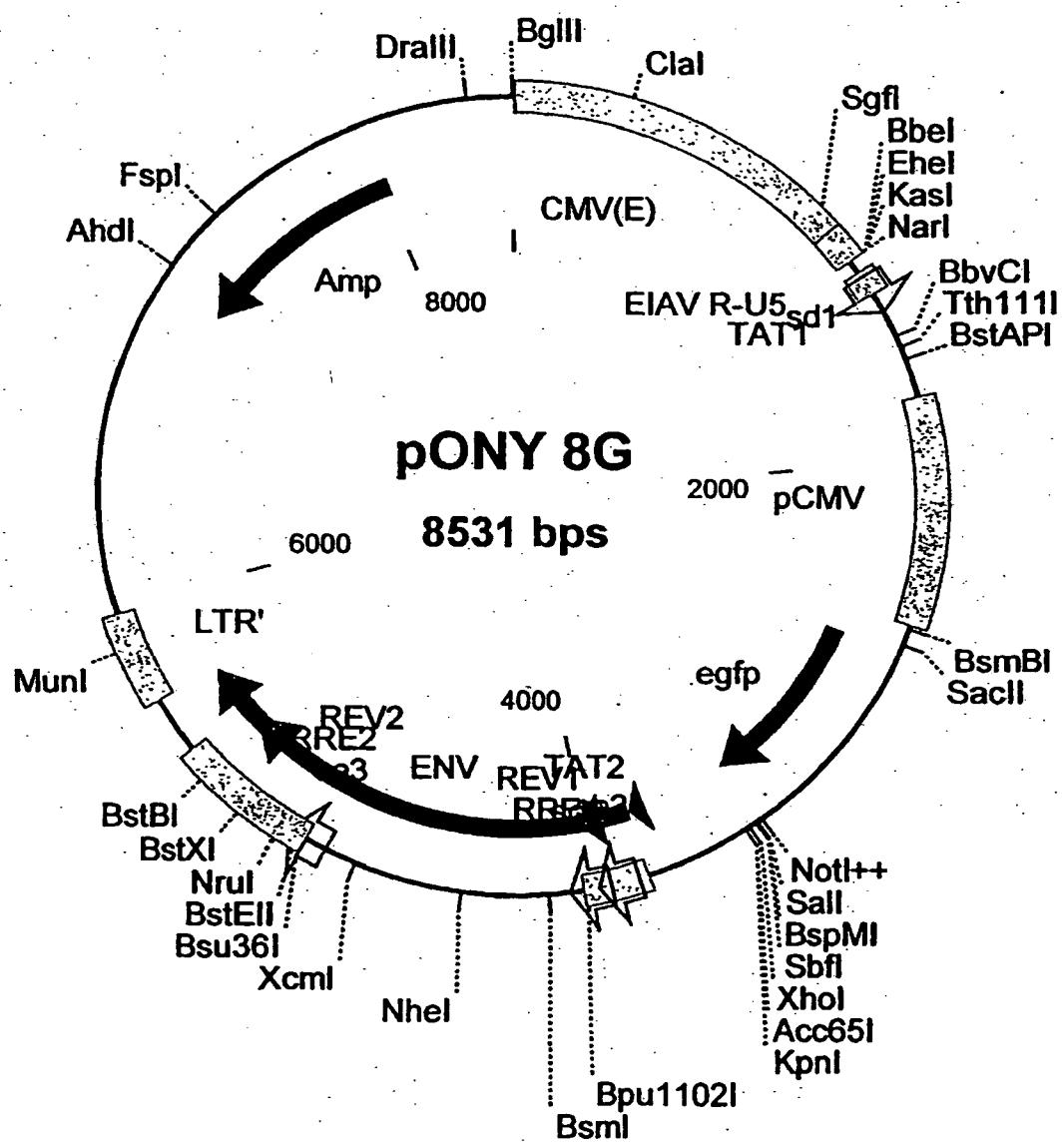
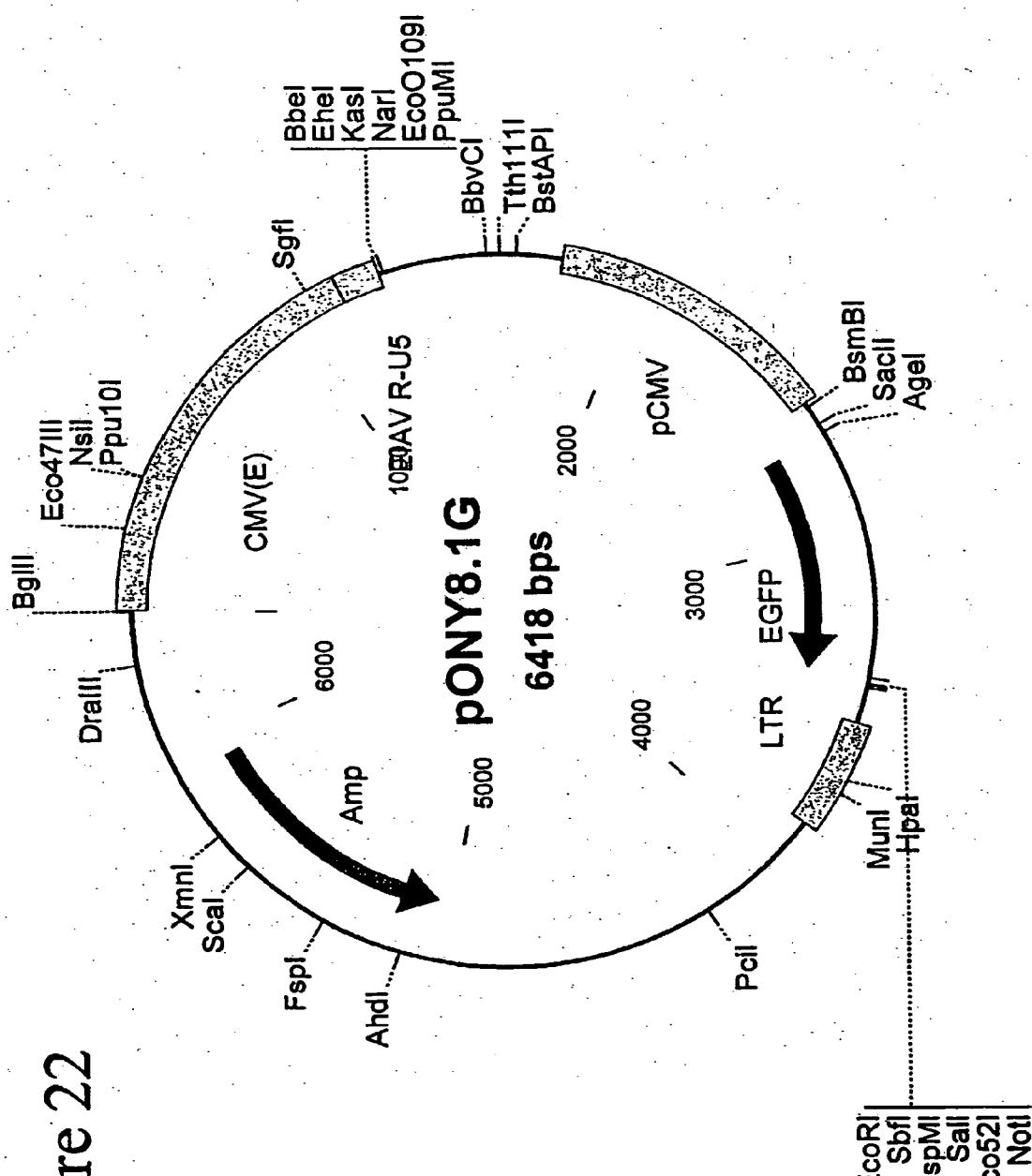
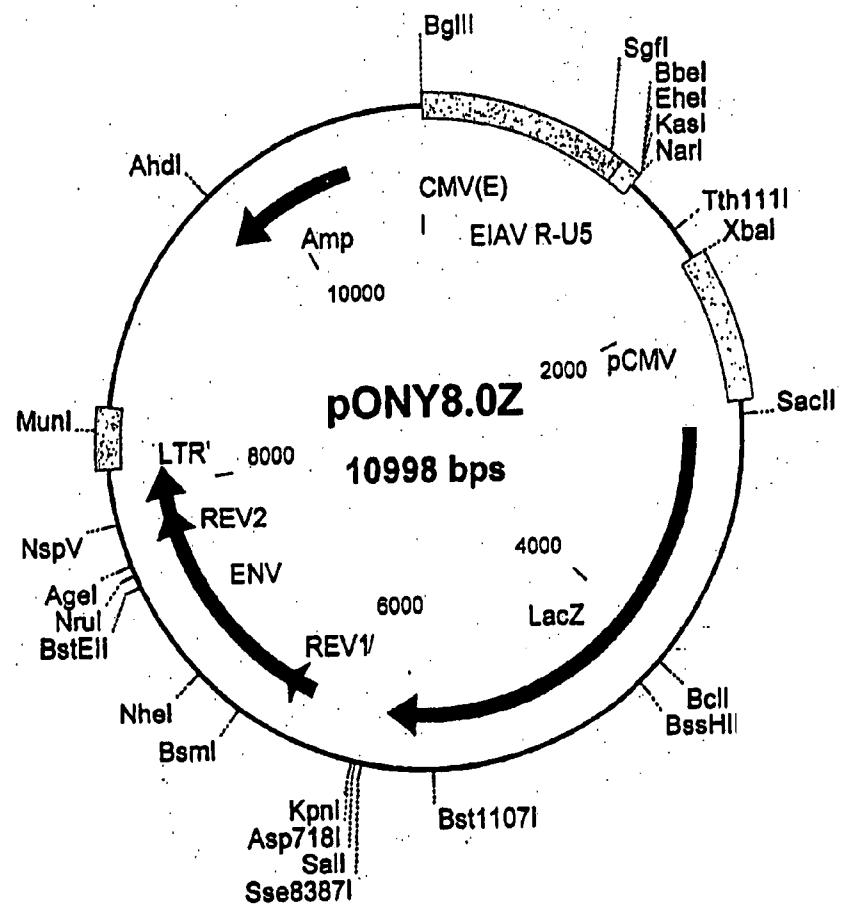
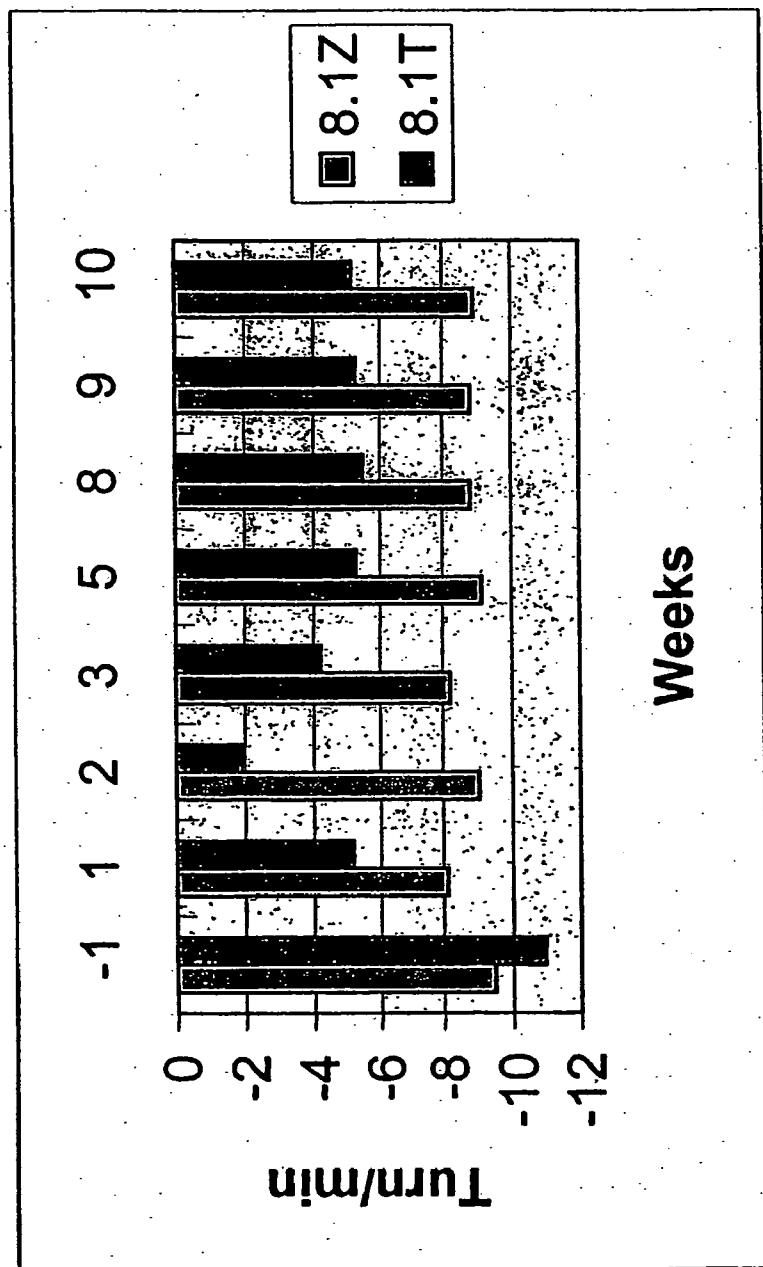
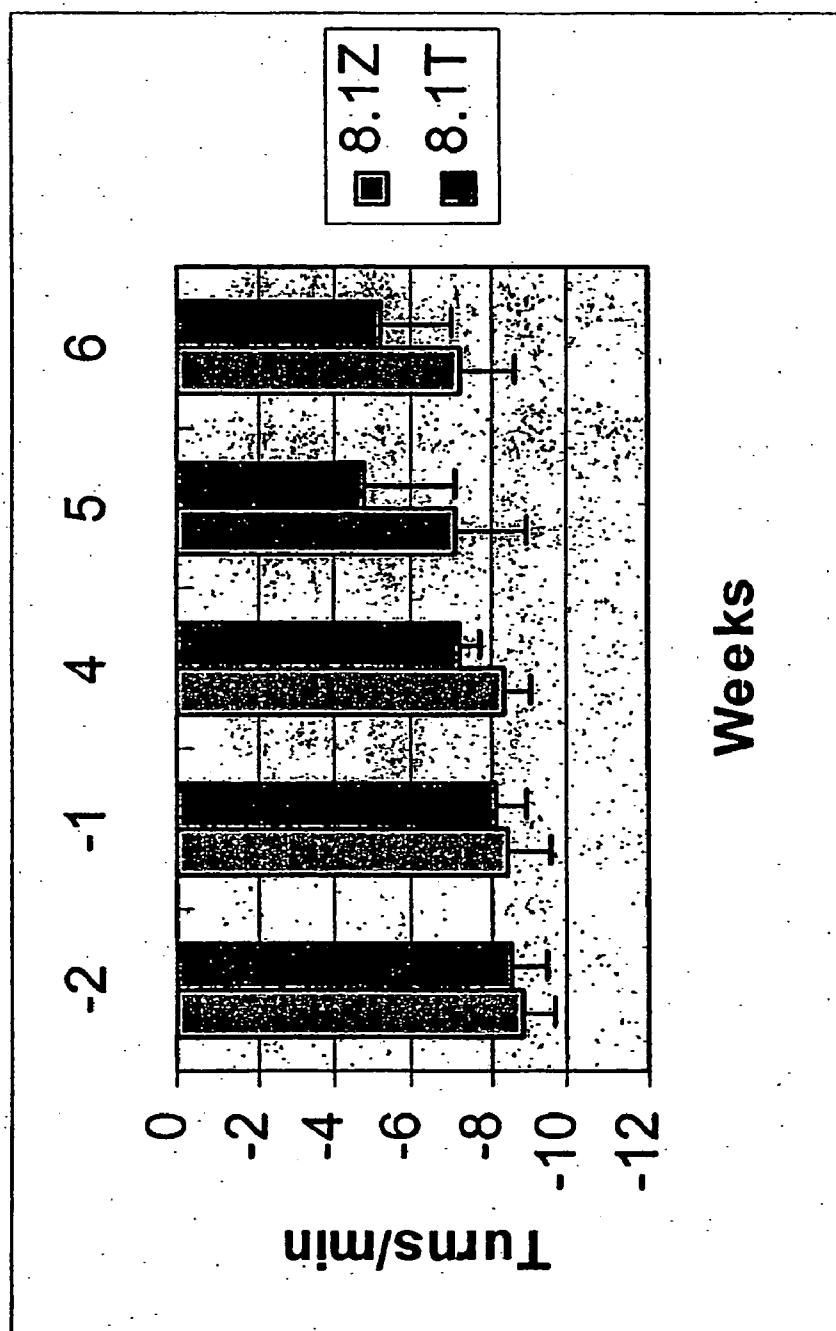






Figure 21

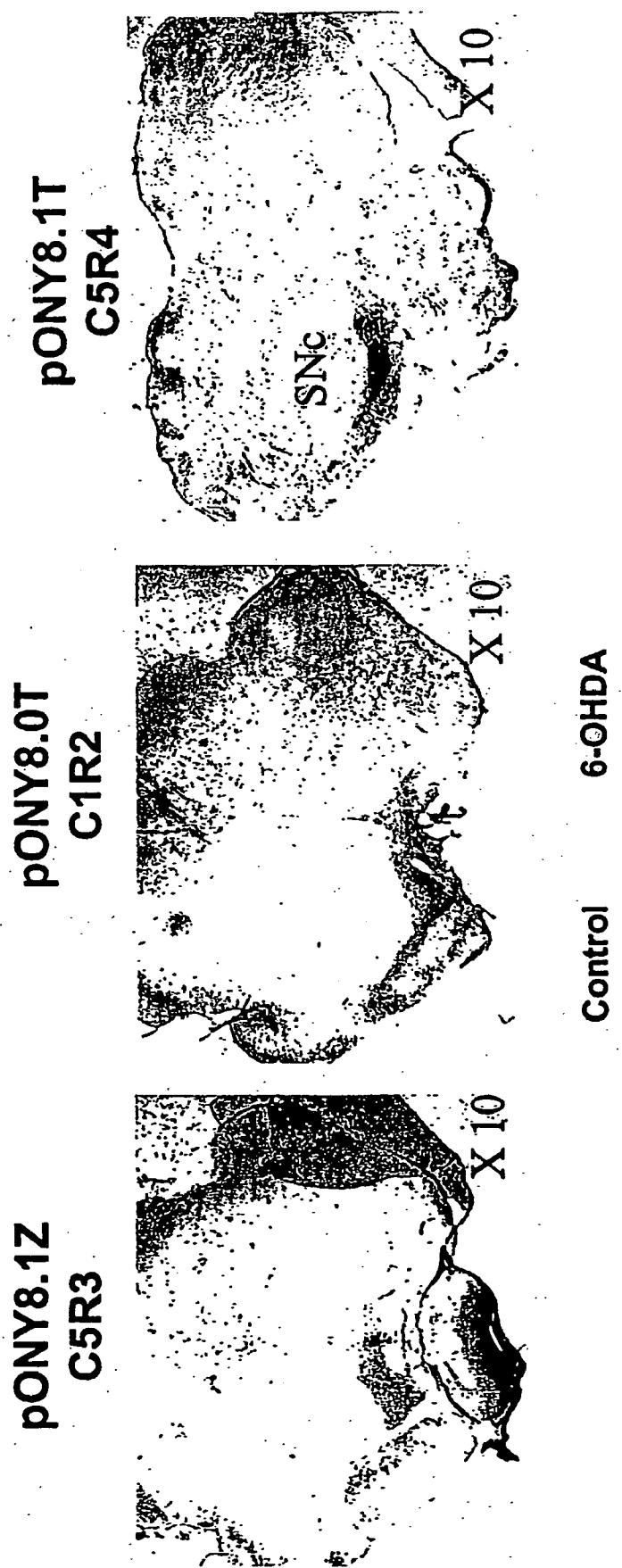


Figure 23

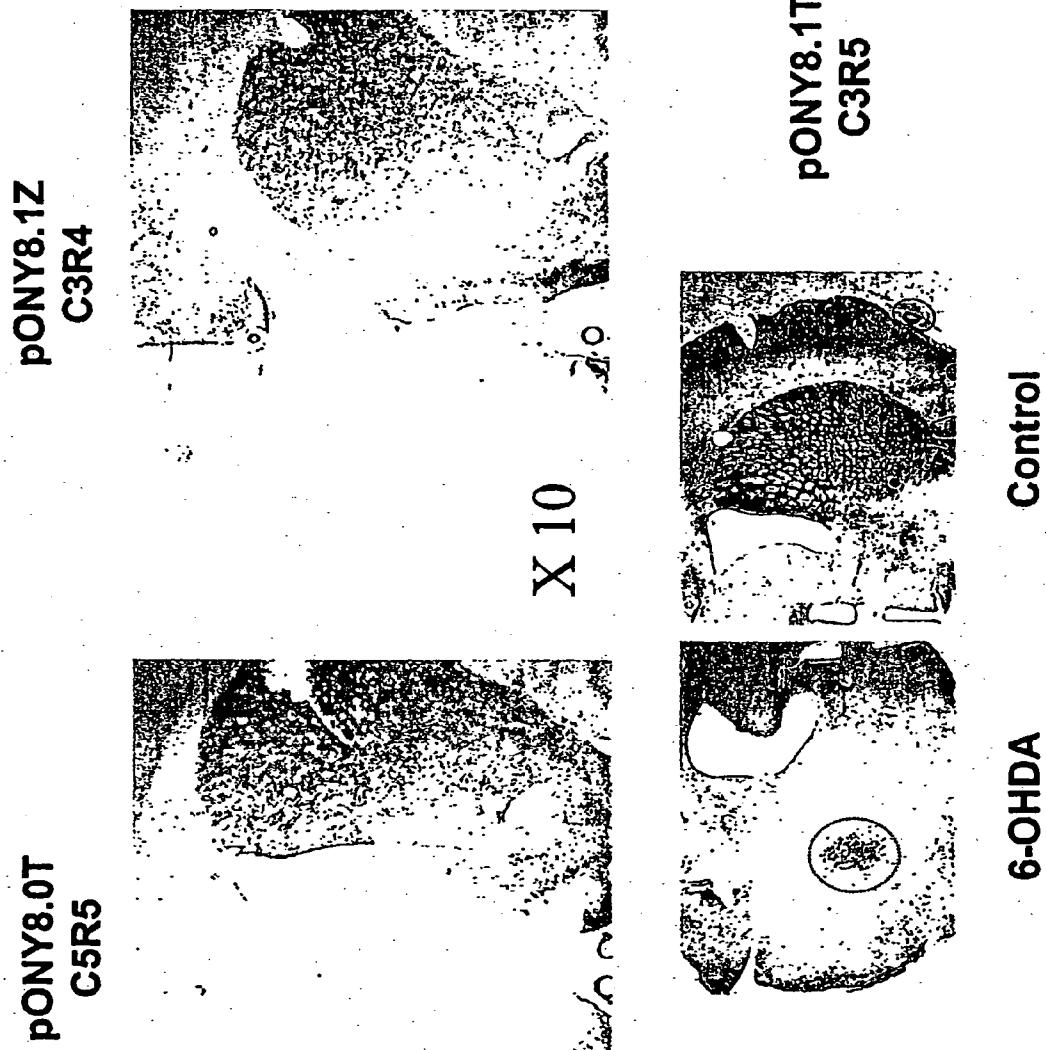
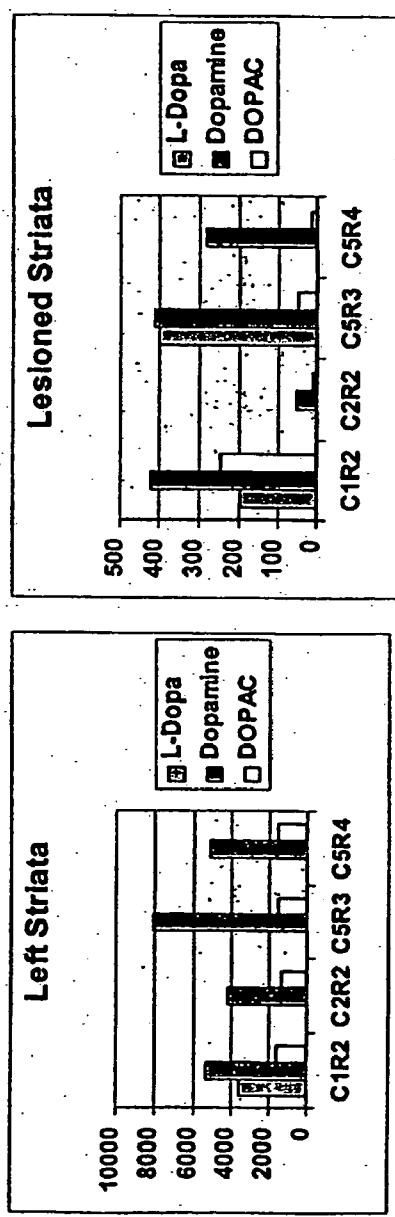

Figure 24.A

Figure 24.B


Figure 25.A

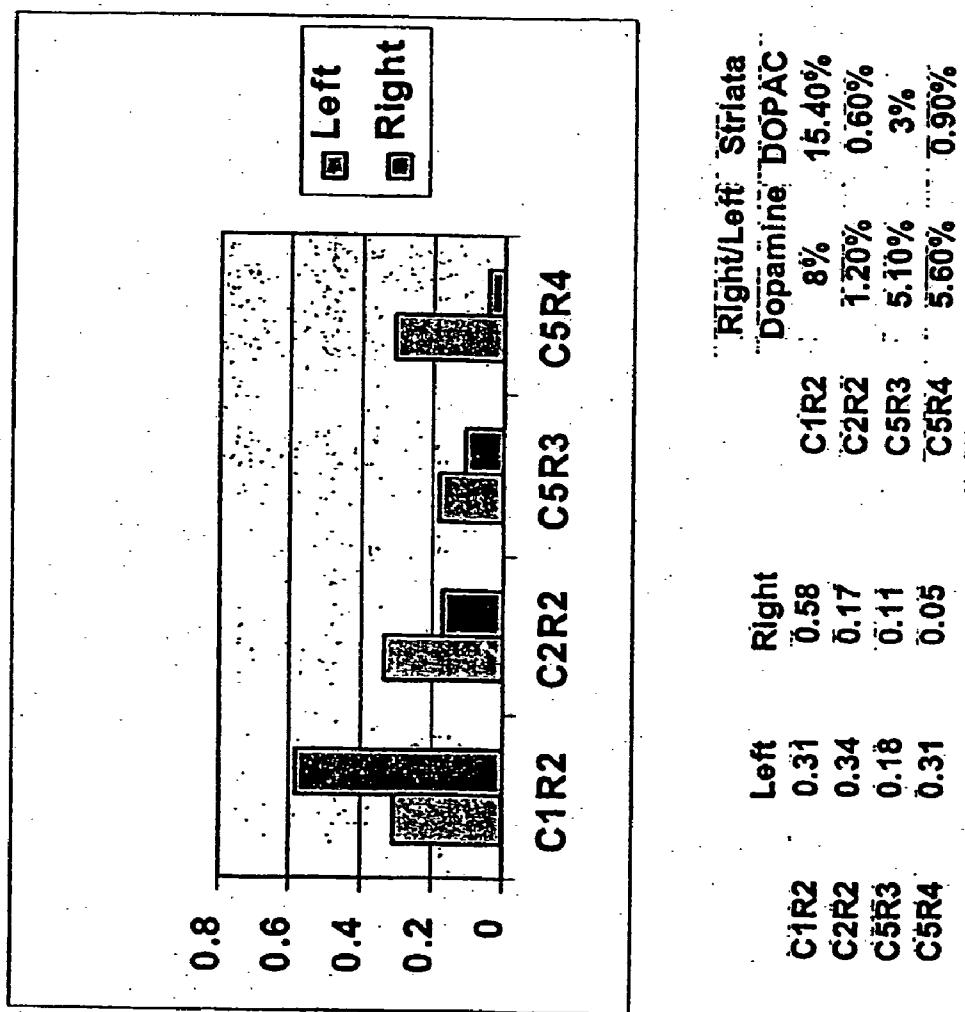

Figure 25.B

Figure 26: Catecholamines (pg/mg wet tissue)

Striata	Virus	Volume	L-Dopa	Dopamine	DOPAC	DOPAC/DA
C1R2	Left	3600	5274	1612	0.31	...
C2R2	Left	~100	4216	1424	0.34	...
C5R3	Left	~100	8112	1532	0.18	...
C5R4	Left	~100	5112	1586	0.31	...

Figure 27: DOPAC/Dopamine ratio

Figure 28

A. Amino acid sequence of codon-optimized GTP-cyclohydrolase I (SEQ ID NO:18)

```
1 MEKGPVRAPA EKPRGARCSN GFPERDPPRP GPSRPAEKPP
  RPEAKSAQPA
 51 DGWKGGERPRS EEDNELNLPN LAAAYSSILS SLGENPQRQG
  LLKTPWRAAS
 101 AMQFFTKGYQ ETISDVLNDA IFDEDHDEMV IVKDIIDMFSM
  CEHHLVPFVG
 151 KVHIGYLPNK QVLGLSKLAR IVEIYSRRLQ VQERLTKQIA
  VAITEALRPA
 201 GVGVVVEATH MCMVMRGVQK MNSKTVTSTM LGVFREDPKT
  REEFLTLIRS
```

B. Nucleotide sequence of codon-optimized GTP-cyclohydrolase I (SEQ ID NO:19)

```
atggagaaggccctgtgcgcgccccggccgagaagccgcggcgcccgctgcagcaatgggtcccgagc
gcgacccggccgcggcccgccagcaggccggccgagaagcccccgccggccaaagagcgcgcag
cccgccgacggctggaaaggcgagcccccgcagcgaggacaacgagctgaacctccctaacctggcc
gccgcctactcctccatcctgagctcgctggcgagaacccccagccggcagggctgctaagaccccctggagg
gcggcctcgccatgcagtcttaccaaggctaccaggagaccatctcagacgtcctgaacgcacgtatctcga
cgaagatcagcatgagatggatgtgcaggacatagacatgtctccatgtgcgagcacccacctggccattgt
ggaaaggccatatcggtcacctgcataacaaggcaggctgggcctcagcaagctggcgaggattgtggaaatct
atagtagaagactacagggtcaggagcgcctaccaaacaattgtgtggcaatcacggaaaggcctgcggcctgct
ggagtggggctgtggtaagcaacacacatgtgtatggatgtgcgagggtacagaaaatgaacacagcaaaacc
gtgaccaggcacaatgcgtgggtgtttccggaggatccaaagactcggaaagagttcctgactctcatcaggagctg
a
```

C. Amino acid sequence of wild type GTP-cyclohydrolase I (SEQ ID NO:20)

```
1 MEKGPVRAPA EKPRGARCSN GFPERDPPRP GPSRPAEKPP
  RPEAKSAQPA
 51 DGWKGGERPRS EEDNELNLPN LAAAYSSILS SLGENPQRQG
  LLKTPWRAAS
 101 AMQFFTKGYQ ETISDVLNDA IFDEDHDEMV IVKDIIDMFSM
  CEHHLVPFVG
 151 KVHIGYLPNK QVLGLSKLAR IVEIYSRRLQ VQERLTKQIA
  VAITEALRPA
 201 GVGVVVEATH MCMVMRGVQK MNSKTVTSTM LGVFREDPKT
  REEFLTLIRS
```

Figure 28 (cont.)

D. Nucleotide sequence of wild type GTP-cyclohydrolase I (SEQ ID NO:21)

```
atggagaagggccctgtgcgggcaccggcggagaagccgcggggcgccagggtgcagcaatgggtccccgagc  
gggatccgcccgcggccggcccccagcaggccggcggagaagccccccgcggcccgaggccaagagcgccgca  
cccgccggacggcttggaaaggcgagcggcccccgcagcgaggagataacgagctgaacctccctaacctggcag  
ccgcctactcgccatcctgagctcgctggcgagaaccccccagcggcaaggcgctgcataagacgcctggaggg  
cgccctggccatgcagttcaccaggagaccatctcagatgtcctaaacgatgtatattgtatga  
agatcatgtatgagatggattgtgaaggacatagacatgtttccatgtgtgagcatcacttggccatttgtggaaag  
gtccatattggatcttcctaacaagcaagtccctggccctcagcaaacttgcgaggattgttagaaatctatagtagaaag  
actacaagttcaggagcgcctacaaaacaaattgttagcaatcacggaaaggcttgcggccctgtggagtcgggg  
tagtggtaagcaacacacatgttatggtaatgcgagggttagaaaaatgaacagcaaaactgtgaccagcac  
aatgtgggtgtgtccggaggatccaaagactcgggaagagttcctgactctcattaggagctga
```

Figure 29

A. Amino acid sequence of codon-optimized truncated tyrosine hydroxylase, type 2, from 8.9.4 MV opti Y (SEQ ID NO:22)

1 MVKVPWFPRK VSELDKCHHL VTKFDPDLDL DHPGFSDQVY
RQRRKLIAEI
51 AFQYRHDPI PRVEYTAEEI ATWKEVYTTL KGLYATHACG
EHLEAFALLE
101 RFSGYREDNI PQLEDVSRFL KERTGFQLRP VAGLLSARDF
LASLAFRVFQ
151 CTQYIRHASS PMHSPEPDCC HELLGHVPML ADRTFAQFSQ
DIGLASLGAS
201 DEEIEKLSTL YWFTVEFGLC KQNGEVKAYG AGLLSSYGEL
LHCLSEEPEI
251 RAFDPEAAAV QPYQDQTYQS VYFVSESFSD AKDKLRSYAS
RIQRPFSSVKF
301 DPYTLAIDVL DSPQAVRRSL EGVQDELDTL AHALSAIG

B. Nucleotide sequence of codon-optimized truncated tyrosine hydroxylase, type 2, from 8.9.4 MV opti Y (SEQ ID NO:23)

Figure 29 (cont.)

C. Amino acid sequence of codon-optimized truncated tyrosine hydroxylase, type 2 with serine at position 211 (SEQ ID NO:24)

1 MVKVPWFPRK VSELDKCHHL VTKFDPDLDL DHPGFSDQVY
RQRRKLIAEI
51 AFQYRHGDPI PRVEYTAEEI ATWKEVYTTL KGLYATHACG
EHLEAFALLE
101 RFSGYREDNI PQLEDVSRFL KERTGFQLRP VAGLLSARDF
LASLAFRVFQ
151 CTQYIRHASS PMHSPEPDCC HELLGHVPML ADRTFAQFSQ
DIGLASLGAS
201 DEEIEKLSTL SWFTVEFGLC KQNGEVKAYG AGLLSSYGEL
LHCLSEEPEI
251 RAFDPEAAAV QPYQDQTYQS VYFVSESFSD AKDKLRSYAS
RIQRPFPSVKF
301 DPYTLAIDVL DSPQAVRRSL EGVQDELDTL AHALSAIG*

D. Nucleotide sequence of codon-optimized tyrosine hydroxylase, type 2 with serine encoded by nucleotides 631-633 (SEQ ID NO:25)

atggtaaggtaaccctggttccaaagaaaagtgtcagagctggacaagtgtcatcacctggcaccaagttcgaccc
cgacctggacttggaccaccacccggcttctggaccagggttaccgcgcaggatcgatcgctgatcgcc
ttccagttacaggcacggcgaccgcatccccgtgtggagttacaccggcggaggagatcgccacctggaaaggaggtc
tacaccacccgtgaagggccttacgccaacccacgcctgcggggagacgcacccatggcccttgcgttgcggagcgcttc
agcggttacccggaaagacaacatcccccgatcccgacttgcgttgcggccatggccatggccatggccatggccat
ctggccggccgtggccgcctgtgtccggggacttgcgttgcggccatggccatggccatggccatggccatggccat
tatatccggccacgcgttgcgttgcggccatgcactccctgagccggacttgcgttgcggccatggccatggccat
gctggccggccatggccatggccatggccatggccatggccatggccatggccatggccatggccatggccatggccat
cgagaagctgtccactctgtcatgggtacgggtggagttcgggtgtgttaagcagaacggggagggtgaaggcctatg
gtggccggccgtgtcccttacggggagcttgcgttgcactggccatggccatggccatggccatggccatggccat
aggctgccccgtgcaggccatccaagaccagacgttaccaggacttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
aaggacaagctcaggagctatgccagcccatccagcgcggccatggccatggccatggccatggccatggccat
cgacgtgtggacagccccccaggccgtgcggcgctccctggagggtgtccaggatgagcttgcgttgcgttgcgttgcgt
gctggccatggccatggccatggccatggccatggccatggccatggccatggccatggccatggccatggccatggccat

Figure 29 (cont.)

E. Amino acid sequence of wild type truncated tyrosine hydroxylase, type 2 with tyrosine at position 211 (SEQ ID NO:26)

```
1 MVKVPWFPRK VSELDKCHHL VTKFDPDLDL DHPGFSDQVY
  RQRRKLIAEI
 51 AFQYRHGDPI PRVEYTAEEI ATWKEVYTTL KGLYATHACG
  EHLEAFALLE
 101 RFSGYREDNI PQLEDVSRL KERTGFQLRP VAGLLSARD
  LASLAFRVFQ
 151 CTQYIRHASS PMHSPEPDCC HELLGHVPML ADRTFAQFSQ
  DIGLASLGAS
 201 DEEIEKLSTL YWFTVEFGLC KQNGEVKAYG AGLLSSYGEL
  LHCLSEEPEI
 251 RAFDPEAAAV QPYQDQTYQS VYFVSESFSD AKDKLRSYAS
  RIQRPFNSVKF
 301 DPYTLAIDVL DSPQAVRRSL EGVQDELDL AHALSAIG
```

F. Nucleotide sequence of truncated wild type tyrosine hydroxylase, type 2, with tyrosine encoded by nucleotides 631-633 (SEQ ID NO:27)

```
atggtaaggtaaccctggttccaaagaaaagtgtcagagctggacaagtgtcatcacctggtcaccaagtgcaccc
gacctggacttggaccaccgggcttcgcgaccagggttacccgcacgcaggaagctgattgtgagatgcctt
ccagtacaggcacggcaccggattcccggtggagttacaccggcggaggagattgccacctggaaaggagggtcta
caccacgtgaaggcccttacgccacgcacgcctggggagcacctggaggccttgcttgcggagcgtca
gcggctaccggaaagacaatatcccccaagctggaggacgttccgccttgcggatggaggagccacggcttcagct
gcggctgtggccggcctgttccgcggacttccgtggccagcgttccgcgttccagtgccatgtggccatgt
atccgcacgcgttccgcggccatgcactccctggggactgttccgcgttccagtgccatgtggccatgt
ggccgaccgcacccgcgcagttcgcaggacattggctggctccctggggccctggatggaaaatttag
aagctgtccacgcgttactggttacggtgaggttccgcgttgcggatggaggatggccatgtgc
cggttccgcgttccgcggggacttccgtggccagcgttccgcgttccagtgccatgtggccatgt
ggccgcgttccgcggccatccaaagaccagacgttccgttgcggatggaggatggccatgtggccatgt
caagctcaggagctatgcctacgcacgcacgcgttccgttgcggatggaggatggccatgtggccatgt
gctggacagccccccaggccgtgcggcgccctggagggttccaggatggacaccctggccatgcgt
agtgcattggctag
```

Figure 29 (cont.)**G. Amino acid sequence of full-length tyrosine hydroxylase, type 2, with tyrosine at position 374 (SEQ ID NO:28)**

```

1 MPTPDATTPQ AKGFRRAVSE LDAKQAEAIM VRGQSPRFIG
RRQSLIEDAR
51 KEREAAVAAA AAAPSEPGD PLEAVAFEEK EGKAVLNLLF
SPRATKPSAL
101 SRAVKVFETF EAKIHHLETR PAQRPRAGGP HLEYFVRLEV
RRGDLAALLS
151 GVRQVSEDEV SPAGPKVPWF PRKVSELDKC HHLVTKFDPD
LDLDHPGFSD
201 QVYRQRRKLI AEIAFQYRHG DPIPRTVEYTA EEIATWKEVY
TTLKGLYATH
251 ACGEHLEAFA LLERFSGYRE DNIPQLEDVS RFLKERTGFQ
LRPVAGLLSA
301 RDFLASLAFR VFQCTQYIRH ASSPMHSPEP DCCHELLGHV
PMLADRTFAQ
351 FSQDIGLASL GASDEEIEKL STLYWFTVEF GLCKQNGEVK
AYGAGLLSSY
401 GELLHCLSEE PEIRAFDPEA AAVQPYQDQT YQSVYFVSES
FSDAKDKLRS
451 YASRIQRPFV VKFDPYTLAI DVLDSPQAVR RSLEGVQDEL
DTLAHALSAI
501 G*

```

H. Nucleotide sequence of full-length tyrosine hydroxylase, type 2, which encodes tyrosine with nucleotides 1120-1122 (SEQ ID NO:29)

```

atgcccaccccccacgcgccaccacgcacaggccaagggttcgcagggccgtgtcgagctggacgcacgcaggcaga
ggccatcatgttaagaggcagttcccgccgttcattgggcgcaggcagagccctatcgaggacgcggcaaggagcggg
ggcggcggtggcagcagccgcgtgcagttccctcgagccccggggacccctggaggctgtggccttggaggagaagga
ggggaaaggccgtctaaacctgtctctcccgaggccaccaagccctggcgctgtcccgagctgtgaagggtttgagac
gttgaagccaaaatccacatctagagacccggccgcacggccgcagctggggcccccacctggagtactcgtg
cgccctcgagggtgcgcggaggggacccgtggccgcgtcaaglggtgtgcgcagggtcagaggacgtgcgcagcccgccg
ggcccaagggtcccctggttcccaagaaaaaggtcagagctggacaagtgtcatcacctggtcaccaagttcgaccctgacctgg
acttggaccacccggcttcggaccagggttacccgcgcaggatgtgcgcacccgtgtacccacgtgaaggccctctac
gcgacccgttccctgtggagttacccgcgcaggatgtgcgcacccgtgtacccacgtgaaggccctctac
gccacgcacgcctggggagcacctggaggccttgtttgcgtggagcgcttcgcggctaccggaaagacaataatccccca
gctggaggacgtctcccgcttcgtggaggagcgcacgggcttcgcgtgcggccgtgtggccggccgtgtccgcggggactt
ccctggccacgcgtggccatccgcgtgtccagtgcacccagtataatccgcacgcgtcctgcggccatgcactccctgagccggact
gcgtggccacgcgtggggcacgtgcggccatgcgtggccgcacccgtgcgcacccgtgtacccacgtgaaggccctctac
ggggccctcggtgaggaaattgagaaggctgtccacgcgtgtactgggtcagggcgtgttaaggcagaacgggg
aggtaaggccatgggtccggggctgtgtccctacggggagctccgtcactgcgtgtcaggagcgtggatgtccggccctc
gaccctggaggctgcggccgtgcagccctaccaagaccagacgtaccagtgcgtacttcgtgtcaggatgtccggccctc
aaggacaagctcaggagctatgcctacgcacccgttccgtgaagttcgaccctgacacgcgtggccatgcacgt
ctggacagcccccaggccgtgcgcgtccctggagggtgtccaggatgtggacacccttgcggccatgcgtgagtgccatt
ggctag

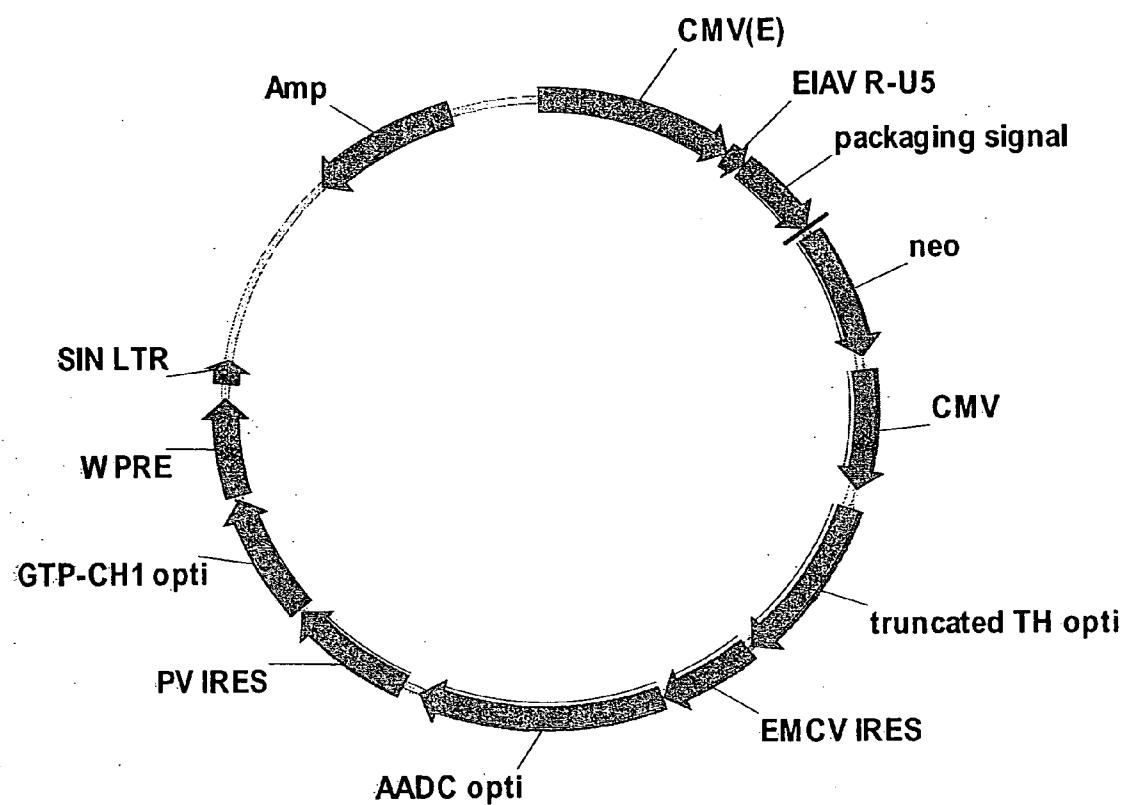
```

Figure 30

A. Amino acid sequence of codon-optimized aromatic amino acid decarboxylase in pONY8.9.4 MV opti Y (SEQ ID NO:30)

1 MDASEFRRRG KEMVDYVANY MEGIEGRQVY PDVEPGYLRP
LIPAAAPQEP
51 DTFEDIINDV EKIIIMPGVTH WHSPYFFAYF PTASSYPAML
ADMLCGAIGC
101 IGFSSWAASPA CTELETVMMD WLGMKMLELPK AFLNEKAGEG
GGVIQGSASE
151 ATLVALLAAR TKVIHRLQAA SPELTQAAIM EKLVAYSSDQ
AHSSVERAGL
201 IGGVKLKAIP SDGNFAMRAS ALQEALERDK AAGLIPFFMV
ATLGTTTCCS
251 FDNLLEVGPPI CNKEDIWLHV DAAYAGSAFI CPEFRHLLNG
VEFADSFNFN
301 PHKWLLVNFD CSAMWVKKRT DLTGAFRLDP TYLKHSHQDS
GLITDYRHWO
351 IPLGRRFRSL KMWFVFRMYG VKGLQAYIRK HVQLSHEFES
LVRQDPRFEI
401 CVEVILGLVC FRLKGSNKVN EALLQRINSA KKIHLVPCHL
RDKFVLRFAl
451 CSRTVESAHV ORAWEHIKEL AADVLRAERE *

B. Nucleotide sequence of codon-optimized aromatic amino acid decarboxylase in pONY8.9.4 MV opti Y (SEQ ID NO:31)


Figure 30 (cont.)

C. Amino acid sequence of wild type aromatic amino acid decarboxylase (SEQ ID NO:32)

1	MNASEFRRRG	KEMVDYVANY	MEGIEGRQVY	PDVEPGYLRP
	LIPAAAPQEP			
51	DTFEDIINDV	EKIIMPGVTH	WHSPYFFAYF	PTASSYPAML
	ADMLCGAIGC			
101	IGFSWAASPA	CTELETVMMD	WLGKMLELPK	AFLNEKAGEG
	GGVIQGSASE			
151	ATLVALLAAR	TKVIHRLQAA	SPELTQAAIM	EKLVAYSSDQ
	AHSSVERAGL			
201	IGGVKLKAIP	SDGNFAMRAS	ALQEALERDK	AAGLIPFFMV
	ATLGTTTCCS			
251	FDNLLEVGPPI	CNKEDIWLHV	DAAYAGSAFI	CPEFRHLLNG
	VEFADSFNFN			
301	PHKWLLVNFD	CSAMWVKKRT	DLTGAFRLDP	TYLKHSHQDS
	GLITDYRHQWQ			
351	IPLGRRFRSL	KMWVFVFRMYG	VKGLOQAYIRK	HVQLSHEFES
	LVRQDPRFEI			
401	CVEVILGLVC	FRLKGNSNKVN	EALLQRINSA	KKIHLVPCHL
	RDKFVLRFAI			
451	CSRTVESAHV	ORAWEHIKEL	AADVLRAERE	*

D. Nucleotide sequence of wild type aromatic amino acid decarboxylase (SEQ ID NO:33)

Figure 31

VECTOR SYSTEM

REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. application Ser. No. 10/408,456, allowed, which is a Continuation-in-Part of PCT/GB01/04433, filed on Oct. 5, 2001, designating the U.S., published on Apr. 11, 2002 as WO 02/29065, and claiming priority from GB 0024550.6, filed on Oct. 6, 2000. All of the above-mentioned applications, as well as all documents cited herein, and documents referenced or cited in documents cited herein, are incorporated by reference.

[0002] The present invention relates to a vector system. In particular, the present invention relates to a lentiviral vector system for the treatment of Parkinson's disease.

BACKGROUND

[0003] Parkinson's Disease

[0004] Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of the nigrostriatal pathway. Although the cause of Parkinson's disease is not known, it is associated with the progressive death of dopaminergic (tyrosine hydroxylase (TH) positive) mesencephalic neurons, inducing motor impairment. The characteristic symptoms of Parkinson's disease appear when up to 70% of TH-positive nigrostriatal neurons have degenerated.

[0005] There is currently no satisfactory cure for Parkinson's disease. Symptomatic treatment of the disease-associated motor impairments involves oral administration of dihydroxyphenylalanine (L-DOPA). L-DOPA is transported across the blood-brain barrier and converted to dopamine, partly by residual dopaminergic neurons, leading to a substantial improvement of motor function. However, after a few years, the degeneration of dopaminergic neurons progresses, the effects of L-DOPA are reduced and side-effects reappear. Better therapy for Parkinson's disease is therefore necessary.

[0006] An alternative strategy for therapy is neural grafting, which is based on the idea that dopamine supplied from cells implanted into the striatum can substitute for lost nigrostriatal cells. Clinical trials have shown that mesencephalic TH positive neurons obtained from human embryo cadavers (aborted foetuses) can survive and function in the brains of patients with Parkinson's disease. However, functional recovery has only been partial, and the efficacy and reproducibility of the procedure is limited. Also, there are ethical, practical and safety issues associated with using tissue derived from aborted human foetuses. Moreover, the large amounts of tissue required to produce a therapeutic effect is likely to prove to be prohibitive. Some attempts have been made to use TH positive neurons from other species (in order to circumvent some of the ethical and practical problems). However, xenotransplantation requires immunosuppressive treatment and is also controversial due to, for example, the possible risk of cross-species transfer of infectious agents. Another disadvantage is that, in current grafting protocols, no more than 5-20% of the expected numbers of grafted TH positive neurons survive. In order to develop a practicable and effective transplantation protocol, an alternative source of TH positive neurons is required.

[0007] A further alternative strategy for therapy is gene therapy. It has been suggested that gene therapy could be

used in Parkinson's disease in two ways: to replace dopamine in the affected striatum by introducing the enzymes responsible for L-DOPA or dopamine synthesis (for example, tyrosine hydroxylase); and to introduce potential neuroprotective molecules that may either prevent the TH-positive neurons from dying or stimulate regeneration and functional recovery in the damaged nigrostriatal system (Dunnet S. B. and Björklund A. (1999) *Nature* 399 A32-A39).

[0008] In vivo, dopamine is synthesised from tyrosine by two enzymes, tyrosine hydroxylase (TH) and aromatic amino acid DOPA-decarboxylase (AADC). Parkinson's disease has been shown to be responsive to treatments that facilitate dopaminergic transmission in caudate-putamen. In experimental animals, genetically modified cells that express tyrosine hydroxylase, and thereby synthesise L-DOPA, induce behavioural recovery in rodent models of PD (Wolff et al. (1989) *PNAS (USA)* 86:9011-14; Freed et al (1990) *Arch. Neurol.* 47:505-12; Jiao et al. (1993) *Nature* 262:4505).

[0009] Functional activity of tyrosine hydroxylase depends on the availability of its cofactor tetrahydrobiopterin (BH₄). The level of cofactor may be insufficient in the denervated striatum, and so it is thought that GTP cyclohydrolase I, the enzyme that catalyses the rate limiting step on the pathway of BH₄-synthesis, may also need to be transduced to obtain sufficient levels of L-DOPA production in vivo (Bencsics et al (1996) *J. Neurosci* 16:4449-4456; Leff et al (1998) *Exp. Neurol.* 151:249-264).

[0010] Although in vivo and ex vivo gene therapy strategies for the treatment of Parkinson's disease have already been proposed (Dunnet and Björklund (1999) as above; Raymon et al (1997) *Exp. Neurol.* 144:82-91; Kang (1998) *Mov. Dis.* 13: 59-72) significant progress in this technology has been hampered by the limited efficiency of gene transfer and expression in the target cells. One problem in this regard is that the target cells are usually non-dividing cells (i.e. neurones) which are notoriously recalcitrant to transduction.

[0011] Expression of More than One Protein

[0012] WO 98/18934 relates to a polynucleotide sequence for use in gene therapy, which polynucleotide sequence comprises two or more therapeutic genes operably linked to a promoter, and encodes a fusion protein product of the therapeutic genes. This provides a way of expressing two therapeutic genes from a single "chimeric gene". In a preferred embodiment, the polynucleotide sequence is capable of encoding a fusion protein comprising tyrosine hydroxylase and DOPA decarboxylase in either TH-DD or DD-TH order, linked by a flexible linker.

[0013] As discussed in WO/18924, amongst gene transfer systems, retroviral vectors hold substantial promise for gene therapy. These systems can transfer genes efficiently and new vectors are emerging that are particularly useful for gene delivery to brain cells (Naldini et al., 1996 *Science* 272, 263). However, it is clear from the literature that retroviral vectors achieve the highest titres and most potent gene expression properties if they are kept genetically simple (PCT/GB96/01230; Bowtell et al., 1988 *J. Virol.* 62, 2464; Correll et al., 1994 *Blood* 84, 1812; Emerman and Temin 1984 *Cell* 39, 459; Ghattas et al., 1991 *Mol. Cell. Biol.* 11, 5848; Hantzopoulos et al., 1989 *PNAS* 86, 3519; Hatzoglou

et al., 1991 J. Biol. Chem 266, 8416; Hatzoglou et al., 1988 J. Biol. Chem 263, 17798; Li et al., 1992 Hum. Gen. Ther. 3, 381; McLachlin et al., 1993 Virol. 195, 1; Overell et al., 1988 Mol. Cell Biol. 8, 1803; Scharfman et al., 1991 PNAS 88, 4626; Vile et al., 1994 Gene Ther 1, 307; Xu et al., 1989 Virol. 171, 331; Yee et al., 1987 PNAS 84, 5197). This means using a single transcription unit within the vector genome and orchestrating appropriate gene expression from sequences either within the 5' LTR or from an internal promoter using a self-inactivating LTR, or using the split-intron technology described in the WO99/15683.

[0014] According to WO 98/18934, if there is a need to express two proteins from a single retroviral vector it is preferable to express them as a fusion protein (encoded by a single nucleotide sequence) than to use an internal ribosome entry site (IRES) to initiate translation of the second coding sequence in a poly-cistronic message. This is because, according to WO 98/18934 the efficiency of an IRES is often low and tissue dependent making the strategy undesirable when one is seeking to maximise the efficiency of metabolic conversion of, for example, tyrosine through to dopamine.

[0015] When located between open reading frames in an RNA, an IRES allows translation of the downstream open reading frame by promoting entry of the ribosome at the IRES element followed by downstream initiation of translation. The use of IRES elements in retroviral vectors has been investigated (see, for example, WO 93/0314) but expression of the cDNA situated downstream of the IRES has often been found to be inefficient. This may be due to competition for ribosomes and other cellular factors. The efficiency of translation initiation would therefore be expected to decrease with increasing numbers of IRES elements.

[0016] Expression of Large Heterologous Genes

[0017] Although the concept of using viral vectors to deliver a heterologous gene to a recipient cell is well known (Verma and Somia (1997) *Nature* 389:239-242), it is widely accepted that there are limits on the size of the heterologous gene which can be successfully transduced (see, for example page 446, Chapter 9 of Coffin et al "Retroviruses" 1997 Cold Spring Harbour Laboratory Press). If incorporation of the heterologous gene and associated regulatory elements dramatically increases the size of the viral genome, then there is a significant risk that it will no longer be able to be successfully packaged, or at least that packaging efficiency will be significantly reduced.

[0018] Despite the apparent prejudice in the art, the present inventors have shown that lentiviral vectors expressing a bicistronic cassette (encoding TH and GTP-CH1) and even a tricistronic cassette (encoding TH, AADC and GTP-CH1) can yield expression of the appropriate enzymes in heterologous cells in culture and *in vivo*. Incorporation of the tricistronic cassette into the lentiviral vector causes an increase in the size of the RNA genome of approximately 10%-30% (over the wild-type RNA genome) but surprisingly, gene transfer efficiency is not markedly affected. Integration efficiencies are comparable and efficient gene transfer to neurons is demonstrated. Moreover, the inventors have shown that such vectors may be used to increase the levels of certain catecholamines in denervated tissue and therefore correct rodent and primate models of Parkinson's disease.

SUMMARY OF THE INVENTION

[0019] The first aspect of the invention relates to viral vector genomes. In a first embodiment of the first aspect of the invention there is provided a retroviral vector genome comprising two or more NOIs (nucleotide sequences of interest) operably linked by one or more Internal Ribosome Entry Site(s). Preferably the genome comprises three or more NOIs operably linked by two or more Internal Ribosome Entry Site(s). Preferably each NOI is useful in the treatment of a neurodegenerative disorder. Preferably the genome is a lentiviral vector genome.

[0020] In a second embodiment of the first aspect of the invention there is provided a lentiviral vector genome comprising two or more NOIs suitable for treating a neurodegenerative disorder. Preferably the genome comprises three or more NOIs suitable for treating a neurodegenerative disorder. Preferably the NOIs are operably linked by one or more Internal Ribosome Entry Site(s).

[0021] Preferably the NOIs of these first and second embodiments of the invention are capable of encoding a protein selected from the following group: Tyrosine Hydroxylase, GTP-cyclohydrolase I, Aromatic Amino Acid Dopa Decarboxylase and Vesicular Monoamine Transporter 2 (VMAT2). More preferably the NOIs are capable of encoding Tyrosine Hydroxylase, GTP-cyclohydrolase I and optionally Aromatic Amino Acid Dopa Decarboxylase or Aromatic Amino Acid Dopa Decarboxylase and Vesicular Monoamine Transporter 2. The NOIs of the embodiments may also encode proteins such as growth factors and antibodies.

[0022] In a third embodiment of the first aspect of the invention there is provided a lentiviral vector genome capable of encoding tyrosine hydroxylase and GTP-cyclohydrolase I. Preferably the genome is also capable of encoding Aromatic Amino Acid Dopa Decarboxylase or Aromatic Amino Acid Dopa Decarboxylase and Vesicular Monoamine Transporter 2. Preferably the enzymes are encoded by NOIs, which are operably linked by one or more Internal Ribosome Entry sites.

[0023] The second aspect of the invention relates to vector systems.

[0024] In a first embodiment of the second aspect of the invention there is provided a vector system comprising a genome according to the first aspect of the invention.

[0025] In a second embodiment of the second aspect of the invention there is provided a lentiviral vector system which is capable of delivering an RNA genome to a recipient cell, wherein the genome is longer than the wild type genome of the lentivirus. Preferably the lentiviral vector system is an EIAV vector system.

[0026] According to further aspects of the invention, there is provided:

[0027] a method for producing a lentiviral particle which comprises introducing such a viral genome into a producer cell;

[0028] a viral particle produced by such a system or method;

[0029] a pharmaceutical composition comprising such a genome, system or particle;

[0030] the use of such a genome, system or particle in the manufacture of a pharmaceutical composition to treat and/or prevent a disease;

[0031] a cell which has been transduced with such a system;

[0032] a method of treating and/or preventing a disease by using such a genome, system, viral particle or cell;

[0033] According to a yet further aspect there is provided a bicistronic cassette comprising a nucleotide sequence capable of encoding tyrosine hydroxylase and a nucleotide sequence capable of encoding GTP-cyclohydrolase I operably linked by one or more IRES(s). There is also provided a bicistronic cassette encoding Aromatic Amino Acid Dopa Decarboxylase and Vesicular Monoamine Transporter 2.

[0034] According to a yet further aspect there is provided a tricistronic cassette comprising a nucleotide sequence capable of encoding tyrosine hydroxylase, a nucleotide sequence capable of encoding GTP-cyclohydrolase I and a nucleotide sequence capable of encoding Aromatic Amino Acid Dopa Decarboxylase operably linked by two or more IRES(s).

DETAILED DESCRIPTION OF THE INVENTION

[0035] The first aspect of the invention relates to retroviral and lentiviral vector genomes.

[0036] Retroviruses

[0037] The concept of using viral vectors for gene therapy is well known (Verma and Somia (1997) *Nature* 389:239-242).

[0038] There are many retroviruses. For the present application, the term "retrovirus" includes: murine leukemia virus (MLV), human immunodeficiency virus (HIV), equine infectious anaemia virus (EIAV), mouse mammary tumour virus (MMTV), Rous sarcoma virus (RSV), Fujinami sarcoma virus (FuSV), Moloney murine leukemia virus (Mo-MLV), FBR murine osteosarcoma virus (FBR MSV), Moloney murine sarcoma virus (Mo-MSV), Abelson murine leukemia virus (A-MLV), Avian myelocytomatisis virus-29 (MC29), and Avian erythroblastosis virus (AEV) and all other retroviridae including lentiviruses.

[0039] A detailed list of retroviruses may be found in Coffin et al ("Retroviruses" 1997 Cold Spring Harbour Laboratory Press Eds: J M Coffin, S M Hughes, H E Varmus pp 758-763).

[0040] Lentiviruses also belong to the retrovirus family, but they can infect both dividing and non-dividing cells (Lewis et al (1992) *EMBO J.* 3053-3058).

[0041] The lentivirus group can be split into "primate" and "non-primate". Examples of primate lentiviruses include the human immunodeficiency virus (HIV), the causative agent of human acquired immunodeficiency syndrome (AIDS), and the simian immunodeficiency virus (SIV).

[0042] The non-primate lentiviral group includes the prototype "slow virus" visna/maedi virus (VMV), as well as the related caprine arthritis-encephalitis virus (CAEV), equine infectious anaemia virus (EIAV) and the more recently

described feline immunodeficiency virus (FIV) and bovine immunodeficiency virus (BIV).

[0043] Details on the genomic structure of some lentiviruses may be found in the art. By way of example, details on HIV and EIAV may be found from the NCBI Genbank database (i.e. Genome Accession Nos. AF033819 and AF033820 respectively), maintained by the National Institutes of Health. Details of HIV variants may also be found at the HIV databases maintained by Los Alamos National Laboratory. Details of EIAV variants may be found at the NCBI website.

[0044] During the process of infection, a retrovirus initially attaches to a specific cell surface receptor. On entry into the susceptible host cell, the retroviral RNA genome is then copied to DNA by the virally encoded reverse transcriptase which is carried inside the parent virus. This DNA is transported to the host cell nucleus where it subsequently integrates into the host genome. At this stage, it is typically referred to as the provirus. The provirus is stable in the host chromosome during cell division and is transcribed like other cellular genes. The provirus encodes the proteins and other factors required to make more virus, which can leave the cell by a process sometimes called "budding".

[0045] Each retroviral genome comprises genes called gag, pol and env which code for virion proteins and enzymes. These genes are flanked at both ends by regions called long terminal repeats (LTRs). The LTRs are responsible for proviral integration, and transcription. They also serve as enhancer-promoter sequences. In other words, the LTRs can control the expression of the viral genes. Encapsulation of the retroviral RNAs occurs by virtue of a psi sequence located at the 5' end of the viral genome.

[0046] The LTRs themselves are identical sequences that can be divided into three elements, which are called U3, R and U5. U3 is derived from the sequence unique to the 3' end of the RNA. R is derived from a sequence repeated at both ends of the RNA and U5 is derived from the sequence unique to the 5' end of the RNA. The sizes of the three elements can vary considerably among different retroviruses.

[0047] For the viral genome, the site of transcription initiation is at the boundary between U3 and R in the left hand side LTR and the site of poly (A) addition (termination) is at the boundary between R and U5 in the right hand side LTR. U3 contains most of the transcriptional control elements of the provirus, which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins. Some retroviruses have any one or more of the following genes that code for proteins that are involved in the regulation of gene expression: tat, rev, tax and rex.

[0048] With regard to the structural genes gag, pol and env themselves, gag encodes the internal structural protein of the virus. Gag protein is proteolytically processed into the mature proteins MA (matrix), CA (capsid) and NC (nucleocapsid). The pol gene encodes the reverse transcriptase (RT), which contains DNA polymerase, associated RNase H and integrase (IN), which mediate replication of the genome. The env gene encodes the surface (SU) glycoprotein and the transmembrane (TM) protein of the virion, which form a complex that interacts specifically with cellular receptor

proteins. This interaction leads ultimately to infection by fusion of the viral membrane with the cell membrane.

[0049] Retroviruses may also contain “additional” genes which code for proteins other than gag, pol and env. Examples of additional genes include in HIV, one or more of vif, vpr, vpx, vpu, tat, rev and nef. EIAV has, for example, the additional genes S2 and dUTPase.

[0050] Proteins encoded by additional genes serve various functions, some of which may be duplicative of a function provided by a cellular protein. In EIAV, for example, tat acts as a transcriptional activator of the viral LTR. It binds to a stable, stem-loop RNA secondary structure referred to as TAR. Rev regulates and co-ordinates the expression of viral genes through rev-response elements (RRE). The mechanisms of action of these two proteins are thought to be broadly similar to the analogous mechanisms in the primate viruses. The function of S2 is unknown. In addition, an EIAV protein, Ttm, has been identified that is encoded by the first exon of tat spliced to the env coding sequence at the start of the transmembrane protein.

[0051] Delivery Systems

[0052] Retroviral vector systems have been proposed as a delivery system for inter alia the transfer of a NOI to one or more sites of interest. The transfer can occur in vitro, ex vivo, in vivo, or combinations thereof. Retroviral vector systems have even been exploited to study various aspects of the retrovirus life cycle, including receptor usage, reverse transcription and RNA packaging (reviewed by Miller, 1992 *Curr Top Microbiol Immunol* 158:1-24).

[0053] A recombinant retroviral vector particle is capable of transducing a recipient cell with an NOI. Once within the cell the RNA genome from the vector particle is reverse transcribed into DNA and integrated into the DNA of the recipient cell.

[0054] As used herein, the term “vector genome” refers to both to the RNA construct present in the retroviral vector particle and the integrated DNA construct. The term also embraces a separate or isolated DNA construct capable of encoding such an RNA genome. A retroviral or lentiviral genome should comprise at least one component part derivable from a retrovirus or a lentivirus. The term “derivable” is used in its normal sense as meaning a nucleotide sequence or a part thereof which need not necessarily be obtained from a virus such as a lentivirus but instead could be derived therefrom. By way of example, the sequence may be prepared synthetically or by use of recombinant DNA techniques. Preferably the genome comprises a psi region (or an analogous component which is capable of causing encapsidation).

[0055] The viral vector genome is preferably “replication defective” by which we mean that the genome does not comprise sufficient genetic information alone to enable independent replication to produce infectious viral particles within the recipient cell. In a preferred embodiment, the genome lacks a functional env, gag or pol gene.

[0056] The viral vector genome may comprise some or all of the long terminal repeats (LTRs). Preferably the genome comprises at least part of the LTRs or an analogous sequence which is capable of mediating proviral integration, and transcription. The sequence may also comprise or act as an enhancer-promoter sequence.

[0057] The viral vector genome of the first aspect of the invention may be provided as a kit of parts. For example, the kit may comprise (i) a plasmid or plasmids containing the NOIs and IRES sequence(s); and (ii) a retroviral genome construct with suitable restriction enzyme recognition sites for cloning the NOIs and IRES(s) into the viral genome.

[0058] It is known that the separate expression of the components required to produce a retroviral vector particle on separate DNA sequences cointroduced into the same cell will yield retroviral particles carrying defective retroviral genomes that carry therapeutic genes (e.g. Reviewed by Miller 1992). This cell is referred to as the producer cell (see below).

[0059] There are two common procedures for generating producer cells. In one, the sequences encoding retroviral Gag, Pol and Env proteins are introduced into the cell and stably integrated into the cell genome; a stable cell line is produced which is referred to as the packaging cell line. The packaging cell line produces the proteins required for packaging retroviral RNA but it cannot bring about encapsidation due to the lack of a psi region. However, when a vector genome according to the first aspect of the invention (having a psi region) is introduced into the packaging cell line, the helper proteins can package the psi-positive recombinant vector RNA to produce the recombinant virus stock. This can be used to transduce the NOI into recipient cells. The recombinant virus whose genome lacks all genes required to make viral proteins can infect only once and cannot propagate. Hence, the NOI is introduced into the host cell genome without the generation of potentially harmful retrovirus. A summary of the available packaging lines is presented in “Retroviruses” (1997 Cold Spring Harbour Laboratory Press Eds: J M Coffin, S M Hughes, H E Varmus pp 449).

[0060] The present invention also provides a packaging cell line comprising a viral vector genome of the first aspect of the invention. For example, the packaging cell line may be transduced with a viral vector system comprising the genome or transfected with a plasmid carrying a DNA construct capable of encoding the RNA genome. The present invention also provides a retroviral (or lentiviral) vector particle produced by such a cell.

[0061] The second approach is to introduce the three different DNA sequences that are required to produce a retroviral vector particle i.e. the env coding sequences, the gag-pol coding sequence and the defective retroviral genome containing one or more NOIs into the cell at the same time by transient transfection and the procedure is referred to as transient triple transfection (Landau & Littman 1992; Pear et al 1993). The triple transfection procedure has been optimised (Soneoka et al 1995; Finer et al 1994). WO 94/29438 describes the production of producer cells in vitro using this multiple DNA transient transfection method.

[0062] The components of the viral system which are required to complement the vector genome may be present on one or more “producer plasmids” for transfecting into cells.

[0063] The present invention also provides a vector system, comprising

[0064] (i) a viral genome according to the first aspect of the invention;

[0065] (ii) a nucleotide sequence coding for lentiviral gag and pol proteins;

[0066] (iii) nucleotide sequences encoding other essential viral packaging components not encoded by the nucleotide sequence of ii). In a preferred embodiment, the nucleotide sequence of (iii) is capable of encoding an env protein. The present invention also provides a cell transfected with such a vector system and a retroviral vector particle produced by such a cell. Preferably the gag-pol sequence is codon optimised for use in the particular producer cell (see below).

[0067] The env protein encoded by the nucleotide sequence of iii) may be a homologous retroviral or lentiviral env protein. Alternatively, it may be a heterologous env, or an env from a non-retro or lentivirus (see below under "pseudotyping").

[0068] The term "viral vector system" is used generally to mean a kit of parts which can be used when combined with other necessary components for viral particle production to produce viral particles in host cells. For example, the retroviral vector genome may lack one or more of the genes needed for viral replication. This may be combined in a kit with a further complementary nucleotide sequence or sequences, for example on one or more producer plasmids. By cotransfection of the genome together with the producer plasmid(s), the necessary components should be provided for the production of infectious viral particles.

[0069] Alternatively, the complementary nucleotide sequence(s) may be stably present within a packaging cell line that is included in the kit.

[0070] The present invention also relates to a lentiviral vector system which is capable of delivering an RNA genome to a recipient cell, wherein the genome is longer than the wild type genome of the lentivirus. The vector system may, for example, be an EIAV vector system.

[0071] Preferably the RNA genome of the vector system has up to 5%, more preferably up to 10% or even up to 30% more bases than the wild-type genome. Preferably the RNA genome is about 10% longer than the wild-type genome. For example, wild type EIAV comprises an RNA genome of approximately 8 kb. An EIAV vector system of the present invention may have an RNA genome of up to (preferably about) 8.8 kb.

[0072] Preferably the retroviral vector system of the present invention is a self-inactivating (SIN) vector system.

[0073] By way of example, self-inactivating retroviral vector systems have been constructed by deleting the transcriptional enhancers or the enhancers and promoter in the U3 region of the 3' LTR. After a round of vector reverse transcription and integration, these changes are copied into both the 5' and the 3' LTRs producing a transcriptionally inactive provirus. However, any promoter(s) internal to the LTRs in such vectors will still be transcriptionally active. This strategy has been employed to eliminate effects of the enhancers and promoters in the viral LTRs on transcription from internally placed genes. Such effects include increased transcription or suppression of transcription. This strategy can also be used to eliminate downstream transcription from the 3' LTR into genomic DNA. This is of particular concern in human gene therapy where it may be important to prevent

the adventitious activation of an endogenous oncogene. Yu et al., (1986) PNAS 83: 3194-98; Marty et al., (1990) Biochimie 72: 885-7; Naviaux et al., (1996) J. Virol. 70: 5701-5; Iwakuma et al., (1999) Virol. 261: 120-32; Deglon et al., (2000) Human Gene Therapy 11: 179-90.

[0074] Preferably a recombinase assisted mechanism is used which facilitates the production of high titre regulated lentiviral vectors from the producer cells of the present invention.

[0075] As used herein, the term "recombinase assisted system" includes but is not limited to a system using the Cre recombinase/loxP recognition sites of bacteriophage P1 or the site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 34 bp FLP recognition targets (FRTs).

[0076] The site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 34 bp FLP recognition targets (FRTs) has been configured into DNA constructs in order to generate high level producer cell lines using recombinase-assisted recombination events (Karaman et al (1996) NAR 24:1616-1624). A similar system has been developed using the Cre recombinase/loxP recognition sites of bacteriophage P1 (Vannin et al (1997) J. Virol 71:7820-7826). This was configured into a lentiviral genome such that high titre lentiviral producer cell lines were generated.

[0077] By using producer/packaging cell lines, it is possible to propagate and isolate quantities of retroviral vector particles (e.g. to prepare suitable titres of the retroviral vector particles) for subsequent transduction of, for example, a site of interest (such as adult brain tissue). Producer cell lines are usually better for large scale production or vector particles.

[0078] Transient transfection has numerous advantages over the packaging cell method. In this regard, transient transfection avoids the longer time required to generate stable vector-producing cell lines and is used if the vector genome or retroviral packaging components are toxic to cells. If the vector genome encodes toxic genes or genes that interfere with the replication of the host cell, such as inhibitors of the cell cycle or genes that induce apoptosis, it may be difficult to generate stable vector-producing cell lines, but transient transfection can be used to produce the vector before the cells die. Also, cell lines have been developed using transient infection that produce vector titre levels that are comparable to the levels obtained from stable vector-producing cell lines (Pear et al 1993, PNAS 90:8392-8396).

[0079] Producer cells/packaging cells can be of any suitable cell type. Producer cells are generally mammalian cells but can be, for example, insect cells.

[0080] As used herein, the term "producer cell" or "vector producing cell" refers to a cell which contains all the elements necessary for production of retroviral vector particles.

[0081] Preferably, the producer cell is obtainable from a stable producer cell line.

[0082] Preferably, the producer cell is obtainable from a derived stable producer cell line.

[0083] Preferably, the producer cell is obtainable from a derived producer cell line.

[0084] As used herein, the term “derived producer cell line” is a transduced producer cell line which has been screened and selected for high expression of a marker gene. Such cell lines support high level expression from the retroviral genome. The term “derived producer cell line” is used interchangeably with the term “derived stable producer cell line” and the term “stable producer cell line”.

[0085] Preferably the derived producer cell line includes but is not limited to a retroviral and/or a lentiviral producer cell.

[0086] Preferably the derived producer cell line is an HIV or EIAV producer cell line, more preferably an EIAV producer cell line.

[0087] Preferably the envelope protein sequences, and nucleocapsid sequences are all stably integrated in the producer and/or packaging cell. However, one or more of these sequences could also exist in episomal form and gene expression could occur from the episome.

[0088] As used herein, the term “packaging cell” refers to a cell which contains those elements necessary for production of infectious recombinant virus which are lacking in the RNA genome. Typically, such packaging cells contain one or more producer plasmids which are capable of expressing viral structural proteins (such as codon optimised gag-pol and env) but they do not contain a packaging signal.

[0089] The term “packaging signal” which is referred to interchangeably as “packaging sequence” or “psi” is used in reference to the non-coding, cis-acting sequence required for encapsidation of retroviral RNA strands during viral particle formation. In HIV-1, this sequence has been mapped to loci extending from upstream of the major splice donor site (SD) to at least the gag start codon.

[0090] Packaging cell lines suitable for use with the above-described vector constructs may be readily prepared (see also WO 92/05266), and utilised to create producer cell lines for the production of retroviral vector particles. As already mentioned, a summary of the available packaging lines is presented in “Retroviruses” (as above).

[0091] Also as discussed above, simple packaging cell lines, comprising a provirus in which the packaging signal has been deleted, have been found to lead to the rapid production of undesirable replication competent viruses through recombination. In order to improve safety, second generation cell lines have been produced wherein the 3'LTR of the provirus is deleted. In such cells, two recombinations would be necessary to produce a wild type virus. A further improvement involves the introduction of the gag-pol genes and the env gene on separate constructs so-called third generation packaging cell lines. These constructs are introduced sequentially to prevent recombination during transfection.

[0092] Preferably, the packaging cell lines are second generation packaging cell lines.

[0093] Preferably, the packaging cell lines are third generation packaging cell lines.

[0094] In these split-construct, third generation cell lines, a further reduction in recombination may be achieved by

changing the codons. This technique, based on the redundancy of the genetic code, aims to reduce homology between the separate constructs, for example between the regions of overlap in the gag-pol and env open reading frames.

[0095] The packaging cell lines are useful for providing the gene products necessary to encapsidate and provide a membrane protein for a high titre vector particle production. The packaging cell may be a cell cultured in vitro such as a tissue culture cell line. Suitable cell lines include but are not limited to mammalian cells such as murine fibroblast derived cell lines or human cell lines. Preferably the packaging cell line is a primate or human cell line, such as for example: HEK293, 293-T, TE671, HT1080.

[0096] Alternatively, the packaging cell may be a cell derived from the individual to be treated such as a monocyte, macrophage, blood cell or fibroblast. The cell may be isolated from an individual and the packaging and vector components administered ex vivo followed by re-administration of the autologous packaging cells.

[0097] It is highly desirable to use high-titre virus preparations in both experimental and practical applications. Techniques for increasing viral titre include using a psi plus packaging signal as discussed above and concentration of viral stocks.

[0098] As used herein, the term “high titre” means an effective amount of a retroviral vector or particle which is capable of transducing a target site such as a cell.

[0099] As used herein, the term “effective amount” means an amount of a regulated retroviral or lentiviral vector or vector particle which is sufficient to induce expression of the NOIs at a target site.

[0100] A high-titre viral preparation for a producer/packaging cell is usually of the order of 10^5 to 10^7 retrovirus particles per ml. For transduction in tissues such as the brain, it is necessary to use very small volumes, so the viral preparation is concentrated by ultracentrifugation. The resulting preparation should have at least 10^8 t.u./ml, preferably from 10^8 to 10^9 t.u./ml, more preferably at least 10^9 t.u./ml. (The titer is expressed in transducing units per ml (t.u./ml) as titred on a standard D17 cell line—see Example 9). Other methods of concentration such as ultrafiltration or binding to and elution from a matrix may be used.

[0101] The expression products encoded by the NOIs may be proteins which are secreted from the cell. Alternatively the NOI expression products are not secreted and are active within the cell. For some applications, it is preferred for the NOI expression product to demonstrate a bystander effect or a distant bystander effect; that is the production of the expression product in one cell leading to the modulation of additional, related cells, either neighbouring or distant (e.g. metastatic), which possess a common phenotype. Zennou et al., (2000) Cell 101: 173; Folleuzi et al., (2000) Nat. Genetics 25: 217; Zennou et al., (2001) Nat. Biotechnol. 19: 446.

[0102] The presence of a sequence termed the central polypurine tract (cPPT) may improve the efficiency of gene delivery to non-dividing cells. This cis-acting element is located, for example, in the EIAV polymerase coding region element. Preferably the genome of the present invention comprises a cPPT sequence.

[0103] Preferably the viral genome comprises a post-translational regulatory element. For example, the genome may comprise an element such as the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Zufferey et al., (1999) *J. Virol.* 73: 2886; Barry et al., (2001) *Human Gene Therapy* 12: 1103.

[0104] In addition, or in the alternative, the viral genome may comprise a translational enhancer.

[0105] The NOIs may be operatively linked to one or more promoter/enhancer elements. Transcription of one or more NOIs may be under the control of viral LTRs or alternatively promoter-enhancer elements. Preferably the promoter is a strong viral promoter such as CMV, or is a cellular constitutive promoter such as PGK, beta-actin or EF1alpha. The promoter may be regulated or tissue-specific. Such promoters may be selected from genes such as neurofilaments, nestin, parkin, dopamine receptors, tyrosine hydroxylase. Such promoters may also contain neurorestrictive suppressor sequences such as that found in the mu-opioid receptor gene. In a preferred embodiment, the promoter may be glial-specific or neuron-specific. The control of expression can also be achieved by using such systems as the tetracycline system that switches gene expression on or off in response to outside agents (in this case tetracycline or its analogues).

[0106] Pseudotyping

[0107] In the design of retroviral vector systems it is desirable to engineer particles with different target cell specificities to the native virus, to enable the delivery of genetic material to an expanded or altered range of cell types. One manner in which to achieve this is by engineering the virus envelope protein to alter its specificity. Another approach is to introduce a heterologous envelope protein into the vector particle to replace or add to the native envelope protein of the virus.

[0108] The term pseudotyping means incorporating in at least a part of, or substituting a part of, or replacing all of, an env gene of a viral genome with a heterologous env gene, for example an env gene from another virus. Pseudotyping is not a new phenomenon and examples may be found in WO 99/61639, WO-A-98/05759, WO-A-98/05754, WO-A-97/17457, WO-A-96/09400, WO-A-91/00047 and Mebatsion et al 1997 *Cell* 90, 841-847.

[0109] In a preferred embodiment of the present invention the vector system is pseudotyped with a gene encoding at least part of the rabies G protein. In a further preferred embodiment of the present invention the vector system is pseudotyped with a gene encoding at least part of the VSV-G protein.

[0110] It has been demonstrated that a lentivirus minimal system can be constructed from HIV, SIV, FIV, and EIAV viruses. Such a system requires none of the additional genes vif, vpr, vpx, vpu, tat, rev and nef for either vector production or for transduction of dividing and non-dividing cells. It has also been demonstrated that an EIAV minimal vector system can be constructed which does not require S2 for either vector production or for transduction of dividing and non-dividing cells. The deletion of additional genes is highly advantageous. Firstly, it permits vectors to be produced without the genes associated with disease in lentiviral (e.g. HIV) infections. In particular, tat is associated with disease.

Secondly, the deletion of additional genes permits the vector to package more heterologous DNA. Thirdly, genes whose function is unknown, such as S2, may be omitted, thus reducing the risk of causing undesired effects. Examples of minimal lentiviral vectors are disclosed in WO-A-99/32646 and in WO-A-98/17815.

[0111] Thus, preferably, the delivery system used in the invention is devoid of at least tat and S2 (if it is an EIAV vector system), and possibly also vif, vpr, vpx, vpu and nef. More preferably, the systems of the present invention are also devoid of rev. Rev was previously thought to be essential in some retroviral genomes for efficient virus production. For example, in the case of HIV, it was thought that rev and RRE sequence should be included. However, it has been found that the requirement for rev and RRE can be reduced or eliminated by codon optimisation (see below) or by replacement with other functional equivalent systems such as the MPMV system. As expression of the codon optimised gag-pol is REV independent, RRE can be removed from the gag-pol expression cassette, thus removing any potential for recombination with any RRE contained on the vector genome.

[0112] In a preferred embodiment the viral genome of the first aspect of the invention lacks the Rev response element (RRE).

[0113] In a preferred embodiment, the system used in the present invention is based on a so-called "minimal" system in which some or all of the additional genes have been removed.

[0114] Codon Optimisation

[0115] Codon optimisation has previously been described in WO99/41397. Different cells differ in their usage of particular codons. This codon bias corresponds to a bias in the relative abundance of particular tRNAs in the cell type. By altering the codons in the sequence so that they are tailored to match with the relative abundance of corresponding tRNAs, it is possible to increase expression. By the same token, it is possible to decrease expression by deliberately choosing codons for which the corresponding tRNAs are known to be rare in the particular cell type. Thus, an additional degree of translational control is available.

[0116] Many viruses, including HIV and other lentiviruses, use a large number of rare codons and by changing these to correspond to commonly used mammalian codons, increased expression of the packaging components in mammalian producer cells can be achieved. Codon usage tables are known in the art for mammalian cells, as well as for a variety of other organisms.

[0117] Codon optimisation has a number of other advantages. By virtue of alterations in their sequences, the nucleotide sequences encoding the packaging components of the viral particles required for assembly of viral particles in the producer cells/packaging cells have RNA instability sequences (INS) eliminated from them. At the same time, the amino acid sequence coding sequence for the packaging components is retained so that the viral components encoded by the sequences remain the same, or at least sufficiently similar that the function of the packaging components is not compromised. Codon optimisation also overcomes the Rev/RRE requirement for export, rendering optimised sequences Rev independent. Codon optimisation also reduces homolo-

gous recombination between different constructs within the vector system (for example between the regions of overlap in the gag-pol and env open reading frames). The overall effect of codon optimisation is therefore a notable increase in viral titre and improved safety.

[0118] In one embodiment only codons relating to INS are codon optimised. However, in a much more preferred and practical embodiment, the sequences are codon optimised in their entirety, with the exception of the sequence encompassing the frameshift site.

[0119] The gag-pol gene comprises two overlapping reading frames encoding gag and pol proteins respectively. The expression of both proteins depends on a frameshift during translation. This frameshift occurs as a result of ribosome "slippage" during translation. This slippage is thought to be caused at least in part by ribosome-stalling RNA secondary structures. Such secondary structures exist downstream of the frameshift site in the gag-pol gene. For HIV, the region of overlap extends from nucleotide 1222 downstream of the beginning of gag (wherein nucleotide 1 is the A of the gag ATG) to the end of gag (nt 1503). Consequently, a 281 bp fragment spanning the frameshift site and the overlapping region of the two reading frames is preferably not codon optimised. Retaining this fragment will enable more efficient expression of the gag-pol proteins.

[0120] For EIAV the beginning of the overlap has been taken to be nt 1262 (where nucleotide 1 is the A of the gag ATG). The end of the overlap is at 1461 bp. In order to ensure that the frameshift site and the gag-pol overlap are preserved, the wild type sequence has been retained from nt 1156 to 1465.

[0121] Derivations from optimal codon usage may be made, for example, in order to accommodate convenient restriction sites, and conservative amino acid changes may be introduced into the gag-pol proteins.

[0122] In a highly preferred embodiment, codon optimisation was based on highly expressed mammalian genes. The third and sometimes the second and third base may be changed.

[0123] Due to the degenerate nature of the Genetic Code, it will be appreciated that numerous gag-pol sequences can be achieved by a skilled worker. Also there are many retroviral variants described which can be used as a starting point for generating a codon optimised gag-pol sequence. Lentiviral genomes can be quite variable. For example there are many quasi-species of HIV-1 which are still functional. This is also the case for EIAV. These variants may be used to enhance particular parts of the transduction process. Examples of HIV-1 variants may be found at in the HIV databases maintained by Los Alamos National Laboratory. Details of EIAV clones may be found at the NCBI database.

[0124] The strategy for codon optimised gag-pol sequences can be used in relation to any retrovirus. This would apply to all lentiviruses, including EIAV, FIV, BIV, CAEV, VMR, SIV, HIV-1 and HIV-2. In addition this method could be used to increase expression of genes from HTLV-1, HTLV-2, HFV, HSIV and human endogenous retroviruses (HERV), MLV and other retroviruses.

[0125] Codon optimisation can render gag-pol expression Rev independent. In order to enable the use of anti-rev or

RRE factors in the retroviral vector, however, it would be necessary to render the viral vector generation system totally Rev/RRE independent. Thus, the genome also needs to be modified. This is achieved by optimising vector genome components. Advantageously, these modifications also lead to the production of a safer system absent of all additional proteins both in the producer and in the transduced cell.

[0126] As described above, the packaging components for a retroviral vector include expression products of gag, pol and env genes. In addition, efficient packaging depends on a short sequence of 4 stem loops followed by a partial sequence from gag and env (the "packaging signal"). Thus, inclusion of a deleted gag sequence in the retroviral vector genome (in addition to the full gag sequence on the packaging construct) will optimise vector titre. To date efficient packaging has been reported to require from 255 to 360 nucleotides of gag in vectors that still retain env sequences, or about 40 nucleotides of gag in a particular combination of splice donor mutation, gag and env deletions. It has surprisingly been found that a deletion of all but the N-terminal 360 or so nucleotides in gag leads to an increase in vector titre. Thus, preferably, the retroviral vector genome includes a gag sequence which comprises one or more deletions, more preferably the gag sequence comprises about 360 nucleotides derivable from the N-terminus.

[0127] NOIs

[0128] In the present invention, the term NOI (nucleotide sequence of interest) includes any suitable nucleotide sequence, which need not necessarily be a complete naturally occurring DNA or RNA sequence. Thus, the NOI can be, for example, a synthetic RNA/DNA sequence, a codon optimised RNA/DNA sequence, a recombinant RNA/DNA sequence (i.e. prepared by use of recombinant DNA techniques), a cDNA sequence or a partial genomic DNA sequence, including combinations thereof. The sequence need not be a coding region. If it is a coding region, it need not be an entire coding region. In addition, the RNA/DNA sequence can be in a sense orientation or in an anti-sense orientation. Preferably, it is in a sense orientation. Preferably, the sequence is, comprises, or is transcribed from cDNA.

[0129] The NOI(s), also referred to as "heterologous sequence(s)", "heterologous gene(s)" or "transgene(s)", may be any one or more of, for example, a selection gene(s), marker gene(s) and therapeutic gene(s).

[0130] The NOI may be a candidate gene which is of potential significance in a disease process. Thus the vector system of the present invention may, for example, be used for target validation purposes.

[0131] The NOI may have a therapeutic or diagnostic application. Suitable NOIs include, but are not limited to: sequences encoding enzymes, cytokines, chemokines, hormones, antibodies, anti-oxidant molecules, engineered immunoglobulin-like molecules, a single chain antibody, fusion proteins, immune co-stimulatory molecules, immunomodulatory molecules, anti-sense RNA, a transdominant negative mutant of a target protein, a toxin, a conditional toxin, an antigen, a tumour suppresser protein and growth factors, membrane proteins, vasoactive proteins and peptides, anti-viral proteins and ribozymes, and derivatives thereof (such as with an associated reporter group). The NOIs may also encode pro-drug activating enzymes.

[0132] Preferably the NOI is useful in the treatment of a neurodegenerative disorder.

[0133] More preferably the NOI is useful in the treatment of Parkinson's disease.

[0134] The NOI may encode an enzyme involved in dopamine synthesis or storage. For example, the enzyme may be one of the following: Tyrosine Hydroxylase, GTP-cyclohydrolase I and/or Aromatic Amino Acid Dopa Decarboxylase. The sequences of all three genes are available: Accession Nos. X05290, U19523 and M76180 respectively.

[0135] Alternatively the NOI may encode the vesicular monoamine transporter 2 (VMAT2, Accession number L23205.1). In a preferred embodiment the viral genome comprises an NOI encoding Aromatic Amino Acid Dopa Decarboxylase and an NOI encoding VMAT 2. Such a genome may be used in the treatment of Parkinson's disease, in particular in conjunction with peripheral administration of L-DOPA.

[0136] Alternatively the NOI may encode a growth factor capable of blocking or inhibiting degeneration in the nigrostriatal system. An example of such a growth factor is a neurotrophic factor. For example the NOI may encode glial cell-line derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), persephin growth factor, artemin growth factor, or neurturin growth factor, ciliary neurotrophic factor (CNTF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), pannoptic neurotrophin, and other related or unrelated neurotrophic factors. WO99/14235; WO00/18799; U.S. Pat. No. 6,090,778; U.S. Pat. No. 5,834,914; WO97/08196; U.S. Pat. No. 6,090,778; U.S. Pat. No. 5,288,622; WO92/05254; U.S. Pat. No. 6,037,320; WO95/33829; Baumgartner, B J and Shine, H D, J. Neurosci. 17: 6504-11 (1997). In a preferred embodiment, a lentiviral vector comprises one or more of these NOIs encoding neurotrophic factors.

[0137] Alternatively the NOI may encode a neuroprotective factor. In particular, the NOI(s) may encode molecules which prevent TH-positive neurons from dying or which stimulate regeneration and functional recovery in the damaged nigrostriatal system.

[0138] The NOI may encode all or part of the protein of interest ("POI"), or a mutant, homologue or variant thereof. For example, the NOI may encode a fragment of the POI which is capable of functioning in vivo in an analogous manner to the wild-type protein.

[0139] In a highly preferred embodiment, one of the NOIs comprises a truncated form of the TH gene, lacking the regulatory domain. Such an NOI avoids feed-back inhibition by dopamine which may limit expression of the full-length enzyme.

[0140] The term "mutant" includes POIs which include one or more amino acid variations from the wild-type sequence. For example, a mutant may comprise one or more amino acid additions, deletions or substitutions. A mutant may arise naturally, or may be created artificially (for example by site-directed mutagenesis).

[0141] Here, the term "homologue" means an entity having a certain homology with the NOI, or which encodes a protein having a degree of homology with the POI. Here, the term "homology" can be equated with "identity".

[0142] In the present context, an homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence. Typically, the homologues will comprise the same active sites etc. as the subject amino acid sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

[0143] In the present context, an homologous sequence is taken to include a nucleotide sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence. Typically, the homologues will comprise the same sequences that code for the active sites etc. as the subject sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

[0144] Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

[0145] % homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.

[0146] Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

[0147] However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible—reflecting higher relatedness between the two compared sequences—will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Besfit package the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

[0148] Calculation of maximum % homology therefore firstly requires the production of an optimal alignment,

taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 *ibid*—Chapter 18), FASTA (Atschul et al., 1990, *J. Mol. Biol.*, 403-410) and the GENWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 *ibid*, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8 and tatiana@ncbi.nlm.nih.gov).

[0149] Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix—the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.

[0150] Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

[0151] The sequences may also have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent substance. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

[0152] Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	G A P I L V
	Polar - uncharged	C S T M N Q
	Polar - charged	D E K R
AROMATIC		H F W Y

[0153] The present invention also encompasses homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue, with an alternative residue) may occur i.e. like-for-like substitution such as basic for basic, acidic for acidic, polar for polar etc. Non-homologous substitution may also occur i.e. from one class of residue to another.

[0154] Preferably the NOI encodes a single POI or a mutant, homologue or variant thereof. In a highly preferred embodiment, the NOI does not encode a fusion protein. As used herein, the term “fusion protein” is used in its conventional sense to mean an entity which comprises two or more protein activities, joined together by a peptide bond to form a single chimeric protein. A fusion protein is encoded by a single polynucleotide driven by a single promoter.

[0155] Internal Ribosome Entry Site (IRES)

[0156] The viral genome of the first aspect of the invention comprises two or more NOIs. In order for both of the NOIs to be expressed, there may be two or more transcription units within the vector genome, one for each NOI. However, it is clear from the literature that retroviral vectors achieve the highest titres and most potent gene expression properties if they are kept genetically simple (PCT/GB96/01230; Bowtell et al., 1988 *J. Virol.* 62, 2464; Correll et al., 1994 *Blood* 84, 1812; Emerman and Temin 1984 *Cell* 39, 459; Ghattas et al., 1991 *Mol. Cell. Biol.* 11, 5848; Hantzopoulos et al., 1989 *PNAS* 86, 3519; Hatzoglou et al., 1991 *J. Biol. Chem.* 266, 8416; Hatzoglou et al., 1988 *J. Biol. Chem.* 263, 17798; Li et al., 1992 *Hum. Gen. Ther.* 3, 381; McLachlin et al., 1993 *Virol.* 195, 1; Overell et al., 1988 *Mol. Cell Biol.* 8, 1803; Scharfman et al., 1991 *PNAS* 88, 4626; Vile et al., 1994 *Gene Ther* 1, 307; Xu et al., 1989 *Virol.* 171, 331; Yee et al., 1987 *PNAS* 84, 5197) and so it is preferable to use an internal ribosome entry site (IRES) to initiate translation of the second (and subsequent) coding sequence(s) in a polycistronic message (Adam et al 1991 *J. Virol.* 65, 4985).

[0157] Insertion of IRES elements into retroviral vectors is compatible with the retroviral replication cycle and allows expression of multiple coding regions from a single promoter (Adam et al (as above); Koo et al (1992) *Virology* 186:669-675; Chen et al 1993 *J. Virol.* 67:2142-2148). IRES elements were first found in the non-translated 5' ends of picomaviruses where they promote cap-independent translation of viral proteins (Jang et al (1990) *Enzyme* 44: 292-309). When located between open reading frames in an RNA, IRES elements allow efficient translation of the downstream open reading frame by promoting entry of the ribosome at the IRES element followed by downstream initiation of translation.

[0158] A review on IRES is presented by Mounfford and Smith (TIG May 1995 vol 11, No 5:179-184). A number of different IRES sequences are known including those from encephalomyocarditis virus (EMCV) (Ghattas, I. R., et al., *Mol. Cell. Biol.*, 11:5848-5859 (1991); BiP protein [Macejak and Sarnow, *Nature* 353:91 (1991)]; the *Antennapedia* gene of *Drosophila* (exons d and e) [Oh, et al., *Genes & Development*, 6:1643-1653 (1992)] as well as those in polio virus (PV) [Pelletier and Sonenberg, *Nature* 334: 320-325 (1988); see also Mounfford and Smith, TIG 11, 179-184 (1985)].

[0159] According to WO-A-97/14809, IRES sequences are typically found in the 5' non-coding region of genes. In

addition to those in the literature they can be found empirically by looking for genetic sequences that affect expression and then determining whether that sequence affects the DNA (i.e. acts as a promoter or enhancer) or only the RNA (acts as an IRES sequence).

[0160] IRES elements from PV, EMCV and swine vesicular disease virus have previously been used in retroviral vectors (Coffin et al, as above).

[0161] The term "IRES" includes any sequence or combination of sequences which work as or improve the function of an IRES.

[0162] The IRES(s) may be of viral origin (such as EMCV IRES, PV IRES, or FMDV 2A-like sequences) or of cellular origin (such as FGF2 IRES, NRF IRES, Notch 2 IRES or EIF4 IRES). Examples of IRES elements and references in which they are described are set forth below.

NOI, the IRESs may be of different origins, that is, heterologous to one another. For example, one IRES may be from EMCV and the other IRES may be from polio virus.

[0172] Other Methods of Expressing Multiple Genes from One Vector

[0173] Although IRESs are an efficient way to co-express multiple genes from one vector, other methods are also useful, and may be used alone or in conjunction with IRESs. These include the use of multiple internal promoters in the vector (Overell et al., *Mol Cell Biol.* 8: 1803-8 (1988)), or the use of alternate splicing patterns leading to multiple RNA species derived from the single viral genome that expresses the different genes. This strategy has previously been used by itself for two genes (Cepko et al. *Cell* 37: 1053 (1984)).

Virus/gene type	Virus/gene	Reference
<u>Viral RNAs</u>		
Picornaviruses	Poliovirus (PV)	Pelletier & Sonenberg (1988)
	Encephalomyocarditis virus (EMCV)	Jang et al. (1988)
	Foot-and-mouth disease virus (FMDV)	Kuhn et al. (1990)
Flavivirus	Hepatitis C virus (HCV)	Reynolds et al. (1995)
Pestivirus	Classical swine fever virus (CSFV)	Pestova et al. (1998)
Retrovirus	Murine leukemia virus (MLV)	Berlioz & Darlix (1995)
Lentivirus	Simian immunodeficiency virus (SIV)	Ohlmann et al. (2000)
<u>Cellular mRNAs</u>		
Translation initiation factors	EIF4G	Johannes & Sarnow (1998)
	DAP5	Henis-Korenblit et al. (2000)
Transcription factors	c-Myc	Stoneley et al. (2000)
	NE- κ B-repressing factor (NRF)	Oumrad et al. (2000)
Growth factors	Vascular endothelial growth factor (VEGF)	Huez et al. (1998)
	Fibroblast growth factor 2 (FGF-2)	Vagner et al. (1995)
	Platelet-derived growth factor B (PDGF B)	Bernstein et al. (1997)
Homeotic genes	<i>Antennapedia</i>	Oh et al. (1992)
Survival proteins	Apaf-1	Coldwell et al. (2000)
Miscellaneous	BiP	Macejak & Samow (1991)

[0163] In order for the IRES to be capable of initiating translation of each NOI, it should be located between or prior to NOIs in the vector genome. For example, for a multicistronic sequence containing n NOIs, the genome may be as follows:

[0164] $[(NOI_1\text{-}IRES_1) \dots NOI_n \text{ n=1} \rightarrow n]$

[0165] For bi and tricistronic sequences, the order may be as follows:

[0166] $NOI_1\text{-}IRES_1\text{-}NOI_2$

[0167] $NOI_1\text{-}IRES_1\text{-}NOI_2\text{-}IRES_2\text{-}NOI_3$

[0168] Alternative configurations of IRESs and NOIs can also be utilised. For example transcripts containing the IRESs and NOIs need not be driven from the same promoter.

[0169] An example of this arrangement may be:

[0170] $IRES_1\text{-}NOI_1\text{-}promoter\text{-}NOI_2\text{-}IRES_2\text{-}NOI_3$.

[0171] In a preferred embodiment, in any construct utilising an internal cassette having more than one IRES and

[0174] Transduced Cells

[0175] The present invention also relates to a cell which has been transduced with a vector system comprising a viral genome according to the first aspect of the invention.

[0176] Transduction with the vector system of the present invention may confer or increase the ability of the cell to produce catecholamines. It may, for example, confer or increase the ability of the cell to convert tyrosine to L-dopa and/or L-dopa to dopamine. Release of catecholamines can be measured by techniques known in the art, for example by using an electrochemical detector connected to an analytical cell. In addition of the catecholamines themselves, biproducts associated with catecholamine release (such as DOPAC, a specific degradation product of dopamine) may also be detected.

[0177] The cell may be transduced in vivo, in vitro or ex vivo. For example, if the cell is a cell from a mammalian subject, the cell may be removed from the subject and transduced ready for reimplantation into the subject (ex vivo transduction). Alternatively the cell may be transduced by direct gene transfer in vivo, using the vector system of the

present invention in accordance with standard techniques (such as via injection of vector stocks expressing the NOIs). If the cell is part of a cell line which is stable in culture (i.e. which can survive numerous passages and can multiple in vitro) then it may be transduced in vitro by standard techniques, for example by exposure of the cell to viral supernatants comprising vectors expressing the NOIs.

[0178] The cell may be any cell which is susceptible to transduction. If the vector system is capable of transducing non-dividing cells (for example if it is a lentiviral system) then the cell may be a non-dividing cell such as a neuron.

[0179] In a preferred embodiment the transduced cell forms part of a genetically modified neuronal cell line. Such a cell line may, for example, be transplanted into the brain for the treatment of Parkinson's disease.

[0180] In a further embodiment the cell is a neuronal stem cell. Such a cell line may, for example, be transplanted into the brain for the treatment of Parkinson's disease.

[0181] In a further embodiment the cell is a cell in the striatum of a subject, such as a neuron or glial cell. Direct gene transfer in vivo to such a cell may, for example, convert it into a dopamine-producer cell.

[0182] Cassettes

[0183] The present invention also provides multicistronic cassettes comprising two or more NOIs operably linked by an IRES. These cassettes may be used in a method for producing the vector genome in a producer cell.

[0184] The present invention also provides an expression vector comprising such a cassette. Transfection of a suitable cell with such an expression vector should result in a cell which expresses each POI encoded by the NOI in the cassette. The present invention also provides such a transfected cell.

[0185] Cloning of the cassette into an expression vector and transfection of cells with the vector (to give expression of the cassette) can be carried out by techniques well known in the art (such as those described in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks).

[0186] Preferably the cassette comprises a promoter. In a highly preferred embodiment the cassette is bicistronic or tricistronic and comprises the following elements:

[0187] Promoter-(NOI₁)-(IRES₁)-(NOI₂)

[0188] Promoter-(NOI₁)-(IRES₁)-(NOI₂)-(IRES₂)-(NOI₃)

[0189] In a particularly preferred embodiment the cassette is bicistronic and comprises an NOI encoding tyrosine hydroxylase (or a mutant, variant or homologue thereof) and an NOI encoding GTP-cyclohydrolase I (or a mutant, variant or homologue thereof) in either order. In another particularly preferred embodiment the cassette is bicistronic and comprises an NOI encoding Aromatic Amino Acid Dopa Decarboxylase and an NOI encoding Vesicular Monoamine Transporter 2, in either order.

[0190] In another particularly preferred embodiment the cassette is tricistronic and comprises an NOI encoding tyrosine hydroxylase (or a mutant, variant or homologue thereof), an NOI encoding GTP-cyclohydrolase I (or a

mutant, variant or homologue thereof) and an NOI encoding Aromatic Amino Acid Dopa Decarboxylase (or a mutant, variant or homologue thereof) in any order.

[0191] Pharmaceutical Compositions

[0192] The present invention also provides the use of a retroviral vector genome as defined in the first aspect of the invention in the manufacture of a pharmaceutical composition. The pharmaceutical composition may be used for treating an individual by gene therapy, wherein the composition comprises a therapeutically effective amount of a retroviral vector particle according to the present invention.

[0193] The pharmaceutical composition may be used to treat a human or animal subject. Preferably the subject is a mammalian subject. More preferably the subject is a human. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient.

[0194] The composition may optionally comprise a pharmaceutically acceptable carrier, diluent, excipient or adjuvant. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as (or in addition to) the carrier, excipient or diluent, any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), and other carrier agents that may aid or increase the viral entry into the target site (such as for example a lipid delivery system).

[0195] Where appropriate, the pharmaceutical compositions can be administered by any one or more of: inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

[0196] Preferably the viral vector particles of the present invention are administered by injection into the caudate putamen.

[0197] Diseases

[0198] The retroviral vector genome and vector particles of the present invention are particularly useful for the treatment and/or prevention of neurodegenerative diseases.

[0199] Diseases which may be treated include, but are not limited to: Parkinson's disease; motor neuron disease, Huntington's disease and disorders of movement which are responsive to L-dopa, such as dystonias.

[0200] In particular, the present invention is useful in treating and/or preventing Parkinson's disease.

[0201] Treatment by gene therapy with vectors capable of delivering, for example, TH, GTP-CH1 and optionally AADC or AADC and VMAT2, is likely to be particularly useful for the late stages of PD patients which do not respond significantly to L-dopa treatment. Treatment using AADC or AADC and VMAT2, in combination with L-dopa administered peripherally may also be useful for late stage PD patients.

[0202] The present invention will now be described only by way of example, in which reference will be made to the following Figures and Tables

[0203] FIG. 1: Oligonucleotide sequences of the primers (SEQ ID NOS: 8-11) used for cloning the human Tyrosine Hydroxylase Type 2 cDNA (Accession number X05290). Restriction endonuclease recognition sites (BamHI and HindIII) appear underlined, consensus Kozak sequence in italic, and c-myc epitope in bold.

[0204] FIG. 2: Plasmid map of pNE4. A mammalian expression plasmid derived from pcDNA3.1/Zeo that expresses the c-myc tagged human Tyrosine Hydroxylase Type 2 (cmyc-hTH).

[0205] FIG. 3: Oligonucleotide sequences of the primers (SEQ ID NOS: 12 and 13) used for cloning the human Aromatic Amino Acid Dopa Decarboxylase cDNA (Accession number M76180 M30772). Restriction endonuclease recognition sites (Bgl II and HindIII) appear underlined, consensus Kozak sequence in italic, and HA epitope in bold.

[0206] FIG. 4: Plasmid map of pNE2. A mammalian expression plasmid derived from pcDNA3.1/Neo that expresses the HA tagged human Aromatic Amino Acid Dopa Decarboxylase (HA-hAADC).

[0207] FIG. 5: Oligonucleotide sequences of the primers (SEQ ID NOS: 14 and 15) used for cloning the human GTP-cyclohydrolase 1 cDNA (Accession number U19523). Restriction endonuclease recognition sites (Bgl II and HindIII) appear underlined, consensus Kozak sequence in italic, and FLAG epitope in bold.

[0208] FIG. 6: Plasmid map of pNE6. A mammalian expression plasmid derived from pcDNA3.1/Hygro that expresses the FLAG tagged human GTP-cyclohydrolase 1 (FLAG-hGTP).

[0209] FIG. 7: Oligonucleotide sequences of the primers (SEQ ID NOS: 16 and 17) used for cloning a truncated form of the human Tyrosine hydroxylase Type 2. Restriction endonuclease recognition sites (BamHI, HindIII and EcoRI) appear underlined, consensus Kozak sequence in italic, and c-myc epitope in bold.

[0210] FIG. 8: Plasmid map of pHTh-1. A mammalian expression plasmid derived from pcDNA3.1/Zeo that expresses the truncated form of hTH tagged with the c-myc epitope (cmyc-hTH).

[0211] FIG. 9: Plasmid map of pneo2. A mammalian expression plasmid derived from BL-EP (Science (1995) 269:847) that expresses cmyc-hTH and FLAG-hGTP as a bicistronic cassette. The polio virus IRES is located downstream the cmyc-hTH gene.

[0212] FIG. 10: Plasmid map of ptrc1s. A mammalian expression plasmid derived from BL-EP (Science (1995) 269:847) that expresses HA-hAADC, cmyc-hTH and

FLAG-hGTP as a tricistronic cassette. The EMCV IRES is located downstream the HA-hAADC gene and polio virus IRES downstream the cmyc-hTH gene.

[0213] FIG. 11: Transient expression of the Bicistronic and Tricistronic cassettes in HEK 293T cells. Western Blot probed with specific mouse monoclonal antibodies. The tagged proteins bound to the antibodies are detected with a horse radish peroxidase (HRP) conjugated anti mouse rabbit IgG. Lanes: 1, Mock; 2, pHTh; 3, Bicistronic plasmid (pneo2); 4, Tricistronic plasmid (ptrc1s) and 5, the three monocistronic plasmids (pHTh, pNE2 and pNE6).

[0214] FIG. 12: A schematic diagram of EIAV minimal vectors.

[0215] FIG. 13: A schematic diagram of EIAV BIC and EIAV TRIC vectors.

[0216] FIG. 14: A schematic diagram of EIAV TRIC vectors containing the central polypurine tract (cppt).

[0217] FIG. 15: PERT and viral RNA content of EIAV vectors

[0218] FIG. 16: Expression of EIAV BIC and EIAV TRIC vectors in D17 cells transduced at different MOIs (MOI). Western Blot probed with specific mouse monoclonal antibodies. The tagged proteins bound to the antibodies are detected with a horse radish peroxidase (HRP) conjugated anti mouse rabbit IgG. Lanes: a, pONY8G (100 \times); b, pONY8.1Z (100 \times); c, pONY8.1BIC (100 \times); d, pONY8.1BIC (10 \times); e, pONY8BIC (1 \times); f, untransduced cells; h, pONY8.1TRIC (100 \times); i, pONY8.1TRIC (10 \times); j, pONY8.1TRIC (1 \times); k, pONY8TRIC (100 \times); l, pONY8TRIC (10 \times); m, pONY8TRIC (1 \times); n, pONY8.1TRIC-B(100 \times); o, pONY8.1TRIC-B (10 \times); p, pONY8.1TRIC-B (1 \times); and g, HEK 293T cells transfected with the monocistronic plasmids (see FIG. 11).

[0219] FIG. 17: Expression of EIAV TRIC vectors in D17 cells transduced at an MOI--100. (A) Immunostaining of D17 cells transduced with EIAVlacZ or EIAV TRIC vectors using rabbit polyclonal anti LacZ or mouse monoclonal anti-HA, respectively. The antibody bound to the native proteins was detected with Alexa 488 (green) conjugated goat anti-rabbit or goat anti-mouse IgG (Magnification ~10 \times). (B) D17 cells transduced with EIAV TRIC vectors. Immunostaining as in (A)+propidium iodide (red) that stains the nuclei (Magnification ~40 \times).

[0220] FIG. 18: Catecholamines (pg/10 6 cells) produced by HEK 293T cells transduced with EIAV TRIC vectors.

[0221] FIG. 19: Transduction of the adult rat striatum with EIAV lacZ vectors. Panels A-C correspond to 3 independent 50 μ m coronal sections stained with X-gal. About fifty of such sections are stained per animal, indicating that the transduction spans the rat striatum. Panels D-H represent higher magnification of the section in C showing that many of the cells transduced have neuronal morphology both within striatum (D-F) and in nucleus accumbens (G-H).

[0222] FIG. 20: Transduction of the adult rat striatum with EIAV TRIC vectors. Panel A represents 50 μ m coronal sections stained with mouse monoclonal HA antibody. Immunofluorescent detection with a FITC secondary antibody indicates expression of AADC. Panel C represents 50 μ m coronal sections stained with mouse monoclonal FLAG

antibody. Immunofluorescent detection with Alexa 488 indicates expression of GTP-CH1. No expression is detected on the contralateral striatum (Panels B and D). Panel E represents staining with mouse monoclonal c-myc antibody detected with DAB immunohistochemistry. The results indicate that TH is expressed in the ipsilateral but not in the contralateral striatum (panel F). The cell specificity of the expression of these proteins in the transduced side is further confirmation of effective transduction.

[0223] FIG. 21: Plasmid map of pONY8G

[0224] FIG. 22: Plasmid map of pONY8.1G

[0225] FIG. 23: Plasmid map of pONY8Z

[0226] FIG. 24. (A) Histogram showing the change in turns/minute induced by apomorphine stimulation (0.05 mg/kg) in 6-OHDA lesioned rats after injection of pONY8.1Z or pONY8.1T. pONY8.1Z n=5, pONY8.1T n=2. (B) Apomorphine-induced rotational behavior in the 6-OHDA lesioned rats following injection of pONY8.1 Z (n=4) or pONY8.1T (n=7).

[0227] FIG. 25. Tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (A) and the striatum (B) of 6-OHDA lesioned rats injected with EIAV TRIC vectors. Note that there is no TH immunoreactivity on the ipsilateral side, compared with the contralateral side (control), indicating that the 6-OHDA has affected the dopaminergic neurons in substantia nigra pars reticulata (SNr).

[0228] FIG. 26: Catecholamines (ng/mg wet tissue) content in the normal and denervated striata of 6-OHDA lesioned rats injected with EIAV TRIC vectors. The amount of catecholamines detected in the denervated striatum confirm that the 6-OHDA lesion has affected most of the dopaminergic neurons of the nigra. The amount of dopamine produced by EIAV TRIC varies between 5-8% compared to the unlesioned striatum.

[0229] FIG. 27: DOPAC/Dopamine ratios in the normal and denervated striata of 6-OHDA lesioned rats injected with EIAV TRIC vectors. Note that the injected animals that had more pronounced reduction in drug-induced rotations are the animals where the DOPAC/Dopamine ratio (dopamine turnover) in the denervated striatum was lower.

[0230] FIG. 28A shows the amino acid sequence of codon-optimised GTP-cyclohydrolase I (SEQ ID NO:18). FIG. 28B shows the nucleotide sequence of codon-optimised GTP-cyclohydrolase I (SEQ ID NO:19). FIG. 28C shows the amino acid sequence of wild type GTP-cyclohydrolase I (SEQ ID NO:20). FIG. 28D shows the nucleotide sequence of wild type GTP-cyclohydrolase I (SEQ ID NO:21).

[0231] FIG. 29A shows the amino acid sequence of codon-optimised truncated tyrosine hydroxylase, type 2, from 8.9.4 MV opti Y (SEQ ID NO:22). The tyrosine hydroxylase sequence starts at position 3. MV is a "leader" required for efficient translation. FIG. 29B shows the nucleotide sequence of codon-optimised truncated tyrosine hydroxylase, type 2, from 8.9.4 MV opti Y (SEQ ID NO:23). FIG. 29C shows the amino acid sequence of codon-optimised truncated tyrosine hydroxylase, type 2 with serine at position 211 (SEQ ID NO:24). FIG. 29D shows the nucleotide sequence of codon-optimised tyrosine hydroxylase, type 2 with serine encoded by nucleotides 631-633 (SEQ ID NO:25). FIG. 29E shows the amino acid sequence of wild

type truncated tyrosine hydroxylase, type 2 with tyrosine at position 211 (SEQ ID NO:26). FIG. 29F shows the nucleotide sequence of truncated wild type tyrosine hydroxylase, type 2, with tyrosine encoded by nucleotides 631-633 (SEQ ID NO:27). FIG. 29G shows the amino acid sequence of full-length tyrosine hydroxylase, type 2, with tyrosine at position 374 (SEQ ID NO:28). FIG. 29H shows the nucleotide sequence of full-length tyrosine hydroxylase, type 2, which encodes tyrosine with nucleotides 1120-1122 (SEQ ID NO:29).

[0232] FIG. 30A shows the amino acid sequence of codon-optimised aromatic amino acid decarboxylase in pONY8.9.4 MV opti Y (SEQ ID NO:30). FIG. 30B shows the nucleotide sequence of codon-optimised aromatic amino acid decarboxylase in pONY8.9.4 MV opti Y (SEQ ID NO:31). FIG. 30C shows the amino acid sequence of wild type aromatic amino acid decarboxylase (SEQ ID NO:32). FIG. 30D shows the nucleotide sequence of wild type aromatic amino acid decarboxylase (SEQ ID NO:33).

[0233] FIG. 31 shows a plasmid map of pONY8.9.4 MV opti Y.

[0234] Table 1: Catecholamines (ng/hour/10⁶ cells) released by HEK 293T cells transfected with either the monocistronic, bicistronic or tricistronic plasmids (n.d., no detectable).

[0235] Table 2: Catecholamines (ng/10⁶ cells) produced by HEK 293T cells transfected with either the monocistronic, bicistronic or tricistronic plasmids (n.d., no detectable).

[0236] Table 3: Integration efficiency of EIAV vectors.

[0237] Experimental

EXAMPLE 1

Cloning of the Human Tyrosine Hydroxylase 1 Type 2 cDNA

[0238] The human Tyrosine Hydroxylase 1 Type 2 cDNA (Accession number X05290) is amplified by RT-PCR from human Substantia nigra poly A⁺ mRNA (Clontech) and epitope tagged with the c-myc epitope using the primers described in FIG. 1. A 169 bp fragment corresponding to the 5' end of the gene is amplified using 5'hTH2 and 3'hTH2 primers (FIG. 1) whilst the 1418 bp 3' end fragment of the tyrosine hydroxylase cDNA is obtained using primers 5'hTH3 and 3'hTH1 (FIG. 1).

[0239] Titan One Tube RT-PCR kit (Boehringer) was used to perform the RT-PCR reaction. Typically the reaction is composed of two solutions.

[0240] Solution A

[0241] Contains 0.2 kg of human substantia nigra poly A⁺ RNA, 32 μ M each dNTPs, 10 mM DTT, 1 μ l RNase Inhibitor (RNAsin, Promega), ~100 ng each primer and water, up to 25 μ l.

[0242] Solution B

[0243] Contains 10 μ l of 5 \times RT-PCR Buffer, 1 μ l Enzyme mix, and water up to 25 μ l.

[0244] Solutions A and B are mixed and the RT-PCR conditions set.

[0245] 1.1. Amplification of the 169 bp product is carried out at 50° C., 30 min, to allow the RT reaction to take place, followed by 2 min at 94° C., and 35 cycles of 30 sec at 94° C., 30 sec at 60° C. and 45 sec at 68° C.

[0246] 1.2. Amplification of the 1418 bp product is performed at 50° C., 30 min, to allow the RT reaction to take place, followed by 2 min at 94° C., and 35 cycles of 1 min at 94° C., 1 min at 60° C. and 2 min at 68° C.

[0247] Both fragments are purified and used as template in a third PCR reaction to obtain the full length Tyrosine Hydroxylase (TH) cDNA. The recombinant PCR reaction is carried out using primers 5'hTH2 and 3'hTH1 (FIG. 1) and a KlenTaq kit (Clontech) according to the instructions of the manufacturer. The PCR conditions are set up as follows: 35 cycles of 1 min at 94° C., 1 min at 60° C. and 2 min at 68° C. The recombinant PCR product is cloned into pGEM-Teasy vector (Promega) to create pNE3.

[0248] The TH cDNA is then excised from pNE3 as a BamHI-EcoRI 1.57 kb fragment and ligated to pcDNA3.1/Zeo (Invitrogen) previously digested with the same enzymes. The newly generated mammalian expression plasmid is called pNE4 (FIG. 2).

EXAMPLE 2

Cloning of the Human Aromatic Amino Acid Dopa Decarboxylase 1 cDNA

[0249] The human Aromatic Amino Acid Dopa Decarboxylase (AADC) cDNA (Accession number M76180 M30772) is amplified from a human liver cDNA expression library (Clontech) and epitope tagged with the HA epitope using the primers 5'hAADC and 3'hAADC, described in FIG. 3. The PCR reaction was performed using a KlenTaq kit (Clontech) following the instructions of the manufacturer. The reaction contains 4 µl human liver cDNA and 1 µM of each primer, in a final volume of 50 µl. The PCR conditions are as follows: A first step, 30 sec at 94° C.; a second step, 5 cycles of 30 sec at 94° C., 30 sec at 58° C. and 2 min at 68° C. and a third step, 30 cycles of 30 sec at 94° C., 30 sec at 55° C. and 2 min at 68° C.

[0250] The PCR amplifies the two expected bands, 1.485 kb and 1.36 kb, corresponding to the two transcripts of the Aromatic Amino Acid Dopa Decarboxylase (AADC). The 1.485 kb band is purified and cloned into pGEM-Teasy vector (Promega) to generate the plasmid called pNE1. The human AADC full-length cDNA is excised from pNE1 as a ~1.5 kb BgIII-SalI fragment and ligated to pcDNA3.1/Neo digested previously with BamHI and XbaI enzymes. The new plasmid generated is called pNE2 (FIG. 4).

EXAMPLE 3

Cloning of the Human GTP-Cyclohydrolase 1 cDNA

[0251] The human GTP-cyclohydrolase I (GTP-CH1) cDNA (Accession number U19523) is amplified from Poly A+ mRNA from human Substantia nigra and epitope tagged with the FLAG epitope using the primers 5'hGTP and 3'hGTP (FIG. 5). Titan One Tube RT-PCR kit (Boehringer) was used to perform the RT-PCR reaction. Typically the reaction is composed of two solutions, as described above in Example 1. Solutions A and B are mixed and the RT-PCR

conditions set as follows: 50° C., 30 min, to allow the RT reaction to take place, followed by 30 sec at 94° C., and 35 cycles of 30 sec at 94° C., 30 sec at 60° C. and 1 min at 68° C.

[0252] The RT-PCR product (~0.75 kb) is purified and cloned into pGEM-Teasy vector (Promega) to generate plasmid pNE5. The GTP-CH1 cDNA is excised from pNE5 as a ~0.75 kb BgIII-NotI and ligated to pcDNA3.1/Hygro digested with BamHI and NotI enzymes to generate pNE6 (FIG. 6).

EXAMPLE 4

Cloning of a Truncated form of the Human Tyrosine Hydroxylase I Type 2

[0253] To avoid feed-back inhibition by dopamine on the TH enzyme it was decided to use the truncated form of TH type 2 lacking the regulatory domain. TH is activated by phosphorylation at sites located in this N-terminal domain and undergoes feedback end-product inhibition mediated by at least one of this phosphorylation sites (J. Biol. Chem. (1992) 267:25754-25758; Adv. Exp. Med. & Biol. (1993) 338:87-92). This truncated TH (hTHt) is epitope tagged with the c-myc epitope and amplified by PCR using the primers 5'hTHt and 3'hTHt (FIG. 7) and plasmid pNE4 as template. The PCR reaction is carried out using Pfu I Polymerase (Stratagene) at 95° C., 1 min and 30 cycles of 1 min at 95° C., 1 min at 60° C. and 1 min at 72° C. A ~1.04 kb band is amplified, digested with BamHI and EcoRI enzymes and ligated to pcDNA3.1/Zeo previously digested with the same enzymes. The new plasmid generated is called pHTh (FIG. 8).

EXAMPLE 5

Cloning of TH, AADC and GTP-CH into a Mammalian Expression Vector

[0254] The hTHt cDNA is cloned into BL-EP plasmid (Science, 269:847 (1995)) downstream the EMCV IRES. To achieve this, CMVp-hTHt fragments from pHTh is excised as a BgIII-EcoRV and cloned into BLEM digested with BamHI-EcoRV to generate pneo1. The CMVp-DC fragment is excised from pNE2 as a BgIII-EcoRV and ligated to BLEM cut with SmaI-BamHI to generate BLEM-CMV-DC.

[0255] To create a mammalian expression cassette comprising the hTHt and GTP-CH1 genes (bicistronic cassette), the GTP-CH1 cDNA is cloned downstream of the polio IRES as follows. The GTP-CH1 cDNA is excised from pNE6 as a ~0.75 kb NheI-XbaI fragment and cloned into BLEM-THT digested with the same enzymes. The new plasmid is called BLEM-THT-CH1. The CMVp-THT fragment is excised from pneo1 as a XbaI-EcoRV fragment and ligated to BLEM-hTHt-CH1 digested with the same enzymes to generate pneo2 (pbclis) (FIG. 9).

[0256] To create a tricistronic cassette comprising the hTHt, GTP-CH1 and AADC genes, BLEM-CMVp-DC and BLEM-hTHt-CH1 are digested with BlnI-ClaI to generate ptclics (FIG. 10). This creates a cassette which has the CMV promoter, DC, hTHt and GTP-CH1 in that order.

EXAMPLE 6

Transient Expression from the Bicistronic and Tricistronic Cassettes in Heterologous Human Cells

[0257] Human embryonic kidney 293T (HEK293T) cells do not synthesise any catecholamines and they do not

express any catecholaminergic enzymes. They are chosen to determine if the bicistronic and tricistronic expression cassettes are functional. HEK 293T cells are seeded in a 6× well plates at a density of ~2-3×10⁵ cells/well. Twenty-four hours post-plating the cells are transfected with 2 µg of plasmid DNA using Fugene™ (Roche) in serum-free medium, following the instructions of the manufacturer. As control of transfection 0.2 µg (1/10th) of the GFP expressing plasmid pEGFP-C1 (Clontech) is added to the DNA-Fugene™ mix.

[0258] Approximately 48 h post-transfection the cells are washed in Phosphate Buffer Saline (PBS) and harvested. Total cell extracts are prepared using Lysis buffer (Promega). Approximately 10 µg of total protein are loaded onto three 10% SDS-PAGE gel and the proteins are separated and transferred to a nitrocellulose ECL-western membrane (Amersham-Pharmacia). The membranes are probed with 1/1000th dilution of either mouse anti-HA (Roche), mouse anti-cmyc (Roche) or mouse anti-FLAG (Sigma) antibodies. The secondary antibody was a 1/2000th dilution of HRP-labelled rabbit anti-mouse (Dako). The antibodies bound to the membranes are detected using an ECL-Western detection kit.

[0259] Proteins of the appropriate apparent molecular weight are detected in the transfected cells and not in the mock control: HA-hAADC, ~53 kDa; cmyc-hTHt, ~42 kDa and FLAG-GTP/CH1, ~30 kDa. The bicistronic and tricistronic cassettes express two or three of the enzymes, respectively (FIG. 11).

EXAMPLE 7

Production of Catecholamines in Transiently Transfected Human Cells

[0260] As described in example 6, HEK 293T cells are seeded in a 6× well plates at a density of ~2-3×10⁵ cells/well. Twenty-four hours post-plating the cells are transfected with 2 µg of plasmid DNA using Fugene™ (Roche) in serum-free medium, following the instructions of the manufacturer. As control of transfection 0.2 µg (1/10th) of the GFP expressing plasmid pEGFP-C1 (Clontech) is added to the DNA-Fugene™ mix.

[0261] Approximately 48 h post-transfection the cells are washed in Phosphate Buffer Saline (PBS). To measure the catecholamines release into the medium, 0.5 ml of 'Release Buffer' (Hank's Balanced Salt Solution, 25 mM Hepes pH7.4, 0.25% BSA and 1 nM tyrosine) is added to the transfected cells. These cells are incubated at 37°C. for 30 min. No tetra-hydrobiopterin (BH₄), the TH cofactor, is added to the cells in this experiment. The catecholamines present in the buffer are extracted with the same volume of 0.8M perchloric acid (PCA) and 0.2 mM EDTA. Cell debris is removed by spinning down in a microfuge at 4°C., 10,000 rpm, for 15 min. The release step can be repeated for another 30 min. The catecholamines produced in the cells are extracted in 0.5 ml 0.4M PCA and 0.1 mM EDTA.

[0262] The catecholamines are separated in a reverse phase C18 column (ESA Analytical) by HPLC (Dionex) using Cat-A-Phase mobile phase (ESA Analytical) at a flow rate of 1.5 ml/min for 15 min. Approximately 20 µl are injected in the system. The catecholamines are detected in an electrochemical detector (ESA Analytical) connected to an Analytical cell (model 5144, ESA Analytical) with input

potentials as follows: Guard cell, +250 mV; Channel 1, 10 mV and Channel 2, -250 mV. The amount of catecholamines in the samples is calculated by integrating the area of the peaks to known standards separated following the same protocol. This method allows the detection of L-dopa, Dopamine and DOPAC, a specific degradation product of dopamine.

[0263] The detection of catecholamines released (Table 1) and/or produced (Table 2) by heterologous cells independent of BH₄ confirms that the enzymes are functional. As expected, L-dopa is produced by mono-, bi- and tricistronic expression cassettes whilst dopamine is only produced by the tricistronic cassette. The bicistronic makes far greater amount of L-dopa than TH alone confirming the utility of GTP-CH1 for providing BH₄ in these cells. Dopamine is also produced by the bicistronic in combination with AADC. DOPAC, the specific degradation product of dopamine is only detected when high amounts of dopamine are produced.

EXAMPLE 8

Construction of Lentiviral Vector Expressing the Bicistronic and Tricistronic Cassettes

[0264] Lentiviral vectors are particularly useful for gene transfer to non-dividing cells. Amongst many important non-dividing target cells are the neurons of the human brain. These cells might be target cells for the delivery of TH; AADC and GTP-CH1 for the treatment of Parkinson's disease. Here we describe the construction of minimal EIAV based vectors that will deliver and express TH, AADC and GTP-CH1 and will be capable of producing the neurotransmitter (dopamine) missing in the severely affected Parkinsonian brain. This therapy will be appropriate for late stages of PD patients that do not respond to L-DOPA treatment. The structure of the general minimal EIAV vectors is shown in FIG. 12.

[0265] pONY8G Construction

[0266] pONY8G was derived from pONY8.0Z by exchange of the LacZ reporter gene for the enhanced green fluorescent protein (GFP) gene. This was done by transferring the SacII-KpnI fragment corresponding to the GFP gene and flanking sequences from pONY2.13GFP (WO99/32646) into pONY8.0Z cut with the same enzymes. pONY8.0Z was derived from pONY4.0Z (WO99/32646) by introducing mutations which 1) prevented expression of TAT by an 83 nt deletion in the exon 2 of tat) prevented S2 ORF expression by a 51 nt deletion 3) prevented REV expression by deletion of a single base within exon 1 of rev and 4) prevented expression of the N-terminal portion of gag by insertion of T in ATG start codons, thereby changing the sequence to ATTG from ATG. With respect to the wild type EIAV sequence Acc. No. U01866 these correspond to deletion of nt 5234-5316 inclusive, nt 5346-5396 inclusive and nt 5538. The insertion of T residues was after nt 526 and 543.

[0267] The Bicistronic cassette expressing the human THt and GTP-CH1 genes is excised from pneo2 as a XhoI-XbaI fragment and ligated to pONY8G (SEQ ID NO 1, FIG. 21), the construction of which is described above, digested with the same enzymes. In this case the CMVp-GFP cassette is replaced by the CMVp-hTHt-CH1 cassette. The new plasmid is called pONY8-BIC (SEQ ID No 4).

[0268] The Tricistronic cassette expressing the human AADC, THt and GTP-CH1 genes is excised from pTricis as a XhoI-XbaI fragment and ligated to the backbone of pONY8G (SEQ ID NO 1, FIG. 21), the construction of which is described above. The new plasmid is called pONY8TRIC (SEQ ID NO 5). The resulting vector RNA genome size of this vector is 8.8 kb and therefore 10% longer than that of the 8 kb EIAV RNA genome.

[0269] pONY8.1Z and pONY8.1G Construction

[0270] pONY8.1Z was obtained directly from pONY8.0Z by digestion with SalI and partial digestion with SapI. Following restriction the overhanging termini of the DNA were made blunt ended by treatment with T4 DNA polymerase. The resulting DNA was then religated. This manipulation results in a deletion of sequence between the LacZ reporter gene and just upstream of the 3'PPT. The 3' border of the deletion is nt 7895 with respect to wild type EIAV, Acc. No. U01866. Thus pONY8.1Z does not contain sequences corresponding to the EIAV RREs. pONY8.1G was derived from pONY8G using the same strategy.

[0271] Both the Bicistronic and Tricistronic cassettes are excised as NsiI-XhoI fragments from pONY8BIC (SEQ ID NO: 4) or pONY8TRIC (SEQ ID NO: 5) respectively and ligated to the backbone of pONY8.1G (construction described above, SEQ ID NO 2, FIG. 22) digested with the same enzymes. The two new plasmids are called pONY8.1BIC and pONY8.1TRIC (FIG. 13).

[0272] The presence of a sequence termed the central polypurine tract (cPPT) may improve the efficiency of gene delivery to non-dividing cells. This cis-acting element is located in the EIAV polymerase coding region element and can be obtained as a functional element by using PCR amplification using any plasmid that contains the EIAV polymerase coding region (for example pONY3.1, which is described in WO 99/32646 (eg. see example 9, FIG. 6)) as follows. The PCR product includes the cPPT and the central termination sequences (CTS). The oligonucleotide primers used in the PCR reaction were:

[0273] EIAV cPPT PD POS:

[0274] 5'-CGG ATC AGA TCT TGA TCA CTG CAG GCT CTC ATT ACT TGT AAC AAA GGG AG-3' (SEQ ID NO: 6)

[0275] EIAV cPPT PD NEG:

[0276] 5'-AG CTC GGA TCC CTG CAG CAT GTT CAC CAG GGA TTT TG-3' (SEQ ID NO: 7)

[0277] The recognition site for BgIII is underlined, for BcII in italic, for BamHI in bold italic and PstI in bold. The introduction of the cPPT/CTS into a position upstream of the EMCV IRES or PV IRES was achieved by subcloning the unique BcII-BssHII fragment of pONY8TRIC into pSL-1180 (Pharmacia) using the same sites in the vector. This was termed pSL-1180-PD. Digestion of the cPPT/CTS PCR product with BgIII and BamHI allowed the insertion into the BcII site upstream of the EMCV IRES or with PstI, into the unique PstI site upstream of the polio IRES, to generate pSL-1180-PD-5'cPPT or pSL-1180-PD-3'cPPT, respectively. The orientation of the fragment cloned into pSL-1180-PD was confirmed by DNA sequencing. The BcII-BssHII fragment from these two clones was ligated into pONY8TRICdeICTS, a modified form of pONY8TRIC.

PONY8TRICdeICTS was constructed by ligating the SalI-PinAI fragment from pONY8ZdeICTS (described below) into pONY8TRIC digested with XhoI and PinAI. The two new vector genomes are called pONY8TRIC5'cPPT and pONY8TRIC3'cPPT. A schematic representation of these vector genomes is shown in FIG. 14.

[0278] Construction of pONY8ZdeICTS

[0279] pONY8Z (SEQ ID NO 3, FIG. 23) is modified to remove the CTS which already is present the pONY8Z vector. This is achieved by subcloning the SalI to ScaI fragment encompassing the CTS and RRE region from pONY8Z into pSP72, prepared for ligation by digestion with SalI and EcoRV. The CTS region is then removed by digestion with KpnI and PpuMI, the overhanging ends 'blunted' by T4 DNA polymerase treatment and then the ends religated. The modified EIAV vector fragment is then excised using SalI and NheI and ligated into pONY8Z prepared for ligation by digestion with the same enzymes. This new EIAV vector is termed pONY8Z deI CTS.

[0280] Construction of pONY 8.9.4 MV opti Y pONY8.9.4 MV opti Y (SEQ ID NO:34, FIG. 31) is a derivative of pONY8Z (SEQ ID NO:3, FIG. 23) obtained as a result of multiple routine molecular biological manipulations. The features of the plasmid are as follows:

[0281] 1) Immediate early promoter of human cytomegalovirus: nucleotides (nt) 1-1108;

[0282] 2) EIAV R-U5-packaging signal region: nt 1109-1748. This sequence corresponds to 268 to 897 from EIAV Gen bank Accession No. U01866 except that there is an additional C residue present after nucleotides 270 and 8178. These correspond to the 4th position of the R region, and these additional residues are incorporated into the genome of pONY8.9.4 MV opti Y. The vector sequence also contains alterations in the EIAV Gag encoding region, which alter all ATG codons to ATTG;

[0283] 3) A linker region including a Kozak consensus sequence for efficient initiation of translation: nt 1749-1791;

[0284] 4) Neomycin phosphotransferase gene: nt 1792-2586;

[0285] 5) A linker region: nt 2587-2663;

[0286] 6) Immediate early promoter of human cytomegalovirus (CMV): nt 2664-3389, corresponding to human herpesvirus 5 strain AD169, complete genome. BK000394 nt 175388-174652;

[0287] 7) 5'untranslated region, which includes a Kozak consensus sequence for efficient initiation of translation: nt 3390-3508;

[0288] 8) Codon-optimised truncated tyrosine hydroxylase (TH) gene (SEQ ID NO:23): nt 3509-4525, including stop codon. The sequence of the gene differs from that of the wild type TH type 2 (SEQ ID NO:27);

[0289] 9) Linker region: nt 4526-4549;

[0290] 10) Encephalomyocarditis virus (EMCV) sequence which acts as an internal ribosome entry site (IRES): nt 4550-5126;

[0291] 11) Linker: nt 5127-5128. The last two bases of the EMCV IRES before AUG 11 (AT) are changed to (CC) to introduce an NcoI site;

[0292] 12) Codon-optimised aromatic amino acid decarboxylase gene (SEQ ID NO:31): nt 5129-6571, which includes the stop codon;

[0293] 13) Linker: nt 6572-6675;

[0294] 14) Poliovirus sequence which acts as an internal ribosome entry site: nt 6676-7407. This sequence is derived from poliovirus type 11 (Lansing strain), however IRESs from other polioviruses could be substituted;

[0295] 15) Linker: nt 7408-7428;

[0296] 16) Codon-optimised GTP-cyclohydrolase I sequence (SEQ ID NO:19): nt 7429-8181, which includes the stop codon;

[0297] 17) Linker: nt 8182-8205;

[0298] 18) Modified form of the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE): 8206-8795. The modifications ablate expression of the X-protein of the hepatitis virus and any peptides derived from it. This element boosts expression 2-3 fold in 293T cells and is optional;

[0299] 19) Linker: nt 8796-8809;

[0300] 20) EIAV sequence including the 3'PPT and approximately 25 nucleotides from the 5' end of the U3 region: nt 8809-8902;

[0301] 21) EIAV sequence including approximately 5 nucleotides from the extreme 3' end of the U3 sequence and the R-U5 sequence: nt 8910-9030; and

[0302] 22) Sequences derived from the backbone of pBS II KS+: nt 9031-11622.

EXAMPLE 9

Production of Lentiviral Vector Stocks Expressing Therapeutic Genes

[0303] The three plasmids transfection method as described previously (Soneoka et al., 1995) was used to generate pseudotyped lentiviral vectors. Transfections are carried out in HEK 293T cell line (Soneoka et al., 1995) to produce the vector virions. Culture supernatants were harvested 48 h post-transfection and filtered through 0.45 μ m pore-size filters (Millipore). The viral supernatant is concentrated 100-1000 fold by ultracentrifugation (Bums et al., 1993 PNAS 90:8033-8037) and resuspended in PBS.

[0304] The number of particles in the viral stocks were titrated by Performance Enhanced Reverse Transcriptase (PERT) assays and compared to a standard pONY8G viral prep with known biological titer. The biological titer is evaluated by transducing D17 cells, a dog osteosarcoma cell line. The titer is expressed in transducing units per ml (t.u./ml). For this purpose, cells were seeded into 12xwell tissue culture plates the day before infection at 1×10^5 cells per well. Viral supernatants prepared by transfecting 293T cells with appropriate plasmids, as described above, are added to the target cells. Polybrene (8 μ g/ml) is added to each well at the time of transduction into 0.5 ml of the culture supernatant used for infection. Approximately 2-5 hours post-transduction, the culture supernatant is replaced by fresh medium. Cells expressing GFP (green) are viewed under UV light and counted.

[0305] The PERT assay uses real time quantitative RT-PCR technology to detect a specific PCR product from MS2 RNA and the retroviral reverse transcriptase present in the viral particles (in this case EIAV RT). Briefly, the viral particles are disrupted by mixing 1:1 volumes of viral vector stocks and disruption buffer (40 mM Tris-HCl pH7.5, 50 mM KCl, 20 mM DTT and 0.2% NP-40). Serial dilutions of the disrupted particles are carried out prior to adding them to the RT-PCR TaqMan reaction mix (Perkin-Elmer). In addition, the reaction mix contains $\frac{1}{10}$ th volume of disrupted viral particles, 300 nM PERT forward primer, 300 nM PERT reverse primer, 150 nM PERT probe, $\frac{1}{10}$ th of 0.8 mg/ml MS2 RNA. The RT-PCR conditions are as follows: Hold, 48° C. for 30 min; hold, 95° C. for 10 min; forty cycles, 95° C. for 15 sec and 60° C. for 1 min. The data is analysed using ABI PRISM[®] Sequence Detection System (Perkin-Elmer).

[0306] Similarly, the RNA content of the viral preps is also estimated by RT-PCR comparing to a standard pONY8G viral prep. Viral RNA is isolated from the viral stocks using a Qiagen viral RNA kit (Qiagen) and DNase I treated (Ambion). Serial dilutions of the viral RNA are used as template in the RT-PCR reaction. Two reaction mixtures are prepared, +RT and -RT, containing $\frac{1}{10}$ th volume of viral RNA template and the specific forward and reverse primers and probe. The RT-PCR conditions are as follows: Hold, 48° C. for 30 min; hold, 95° C. for 10 min; forty cycles, 95° C. for 15 sec and 60° C. for 1 min. The data is analysed using ABI PRISM[®] Sequence Detection System (Perkin-Elmer). FIG. 15 shows the PERT assay results and the viral RNA content of EIAV TRIC and EIAV GFP vectors. EIAV TRIC vectors seem to have similar number of particles per prep, but ~4 times less RNA than EIAV GFP.

[0307] The efficiency of integration of the EIAV-TRIC vector genomes is measured by quantitative real-time PCR of total genomic DNA from transduced cells. For this purpose, target cells such as D17 or HT1080 cells are transduced with EIAV-TRIC or EIAV-GFP at different MOI(s) as described previously. The transduced cells are split at least three times prior to isolating total DNA from them. Approximately 100 ng of total DNA is used as template in the PCR reaction. Amplification of the EIAV packaging signal fragment is quantified by comparing to the amplification of a house-keeping gene, such as beta-actin or GAPDH. Real time quantitative PCR conditions are as follows: hold, 95° C. for 10 min; forty cycles, 95° C. for 15 sec and 60° C. for 1 min. The data is analysed using ABI PRISM[®] Sequence Detection System (Perkin-Elmer). Table 3 shows the integration efficiency of EIAV vectors.

EXAMPLE 10

EIAV-BIC and -TRIC Vectors Yield Expression of TH, AADC and GTP-CH1 in Heterologous Cells in Culture

[0308] Heterologous cells, such as D17 or HEK 293T cells are transduced with EIAV-TRIC vectors at different multiplicity of infection (MOI). Viral supernatants are prepared by transfecting 293T cells with the appropriate plasmids and added to the target cells as described in previous examples. The cells are split at least three times before analysing them to ensure that there is no pseudotransduction. Expression of the TH, AADC and GTP-CH1 genes is analysed by Western blot (FIG. 16) and immunocytochemistry (FIG. 17). Bands

of the appropriate apparent molecular weight are detected in cell extracts of transduced D17 cells: HA-hAADC, ~53 kDa; cmyc-hTHt, ~42 kDa and FLAG-GTP/CH1, ~30 kDa. Mouse monoclonal antibodies that recognise the tagged proteins have been used as described before. The antibodies bound to the proteins are detected with an HRP conjugated rabbit anti-mouse IgG. The bicistronic and tricistronic cassettes express two or three of the enzymes, respectively (FIG. 16).

[0309] The transduction of D17 cells is determined by immunocytochemistry using mouse monoclonal HA antibody (Roche) and Alexa 488 conjugated goat anti-mouse IgG (Molecular Probes) (FIG. 17). As control, D17 cells were transduced with EIAV lacZ.

[0310] The catecholamines produced in the transduced cells are extracted in 0.5 ml 0.4M PCA and 0.1 mM EDTA, separated by HPLC and detected electrochemically as previously described in the above examples. L-dopa, Dopamine and DOPAC are produced by HEK 293T cells transduced with EIAV TRIC vectors (FIG. 18).

EXAMPLE 11

EIAV Vectors Yield Expression of TH, AADC and GTP-CH1 in the Caudate Nucleus of Adult Rats

[0311] Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of the nigrostriatal pathway and is responsive to treatments that facilitate dopaminergic transmission in caudate-putamen. In experimental animals, genetically modified cells that express tyrosine hydroxylase, and thereby synthesize dihydroxyphenylalanine (L-dopa), induce behavioural recovery in rodent models of PD (Wolff et al. (1989) PNAS (USA) 86:9011-14; Freed et al (1990) Arch. Neurol. 47:505-12; Jiao et al. (1993) Nature 262:4505). An alternative approach is that of direct *in vivo* somatic cell gene transfer whereby the cells of the striatum are converted into dopamine producer cells by transduction with a vector expressing TH, AADC and GTP-CH1.

[0312] In order to examine virally encoded gene expression EIAV-TRIC and EIAVlacZ are stereotactically micro-injected into the adult rat striatum as follows. Rats are anesthetized with hypnorm and hypnovel (Wood et al., (1994) Gene Therapy 1:283-291) and injected with 2×1 µl of viral stocks (for EIAV lacZ is typically 1-5×10⁹ t.u./ml) into the striatum, at coordinates: Bregma 3.5 mm lateral, 4.75 mm vertical from dura, and 1 mm rostral, 3.5 mm lateral 4.75 mm vertical using a fine drawn glass micropipette over a period of 2 min. The pipette was pulled up 1 mm and left for another 2 min before retracting slowly to the surface. Animals are analysed 1 and 2 weeks following injection. Rats are perfused with 4% paraformaldehyde (PFA) containing 2 mM MgCl₂ and 5 mM ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Brains are removed and placed in fixative overnight, submerged in 30% sucrose at 4° C. overnight and frozen on Tissue-Tech OCT embedding compound (Miles Ind. USA). Fifty-micrometer sections are cut on a freezing microtome and floated briefly in PBS-2 mM MgCl₂ at 4° C. as a wash. Expression of lacZ is determined by placing the sections in X-gal staining solution for 3-5 hours. EIAV TRIC is injected into the rat striatum using the same coordinates as described above. In

addition two more injection sites at Bregma 2.5 mm lateral, 4.75 mm vertical and 1.8 mm rostral, 2.5 mm lateral and 5 mm vertical were performed. Expression of AADC, TH and GTP-CH1 is detected by immunohistochemistry using mouse monoclonal antibodies raised against the epitope tags, HA, c-myc and FLAG respectively. These antibodies will distinguish between the rat and the human proteins. Brains sections are incubated with mouse anti-HA (Santa Cruz), anti-c-myc (Santa Cruz) or anti-FLAG (Sigma) antibodies (1:100th dilutions) at 4° C. overnight in PBS-10% goat serum and 0.5% TritonX-100. Sections are washed with PBS and then incubated with Alexa 488 (Molecular Probes) or FITC (Jackson Laboratories) conjugated goat anti-mouse or anti-rabbit IgG (1/1000th dilutions) at room temperature for 2-3 hours. After washing the sections are examined under a fluorescence microscope. For DAB staining sections were developed using the avidin-biotin system (Vectastain kit (Vactor Laboratories)).

[0313] TH is not expressed within either neurons or glia of the rat striatum (Chatterjee et al. (1992) Science 258:1485-88). Endogenous TH immunoreactivity (TH-IR) within the striatum is limited to the dopaminergic terminals of afferent fibers from substantia nigra. To determine whether the cells transduced are neurons or glial-cells a TH antibody is used in conjunction with antibodies that recognise either neuronal (NeuN) or glial (GFAP) markers. Double immunostaining is carried out on brain sections. Sections are incubated with rabbit polyclonal TH antibody (1/100th; Affinitti) and mouse monoclonal neurofilament (NeuN) antibody (1/50th; Chemicon), or mouse monoclonal GFAP (1/50th; Chemicon) at 4° C. overnight in PBS-10% goat serum and 0.5% TritonX-100. Sections are washed with PBS and then incubated with Alexa 488 conjugated goat anti rabbit IgG (1/200th; Molecular Probes) or CY3 conjugated goat anti-mouse IgG (1/200th; Jackson Laboratories) at room temperature for 2-3 hours. After washing the sections are examined under a fluorescence microscope.

[0314] FIG. 19 shows transduction of the adult rat striatum with pONY8Z seven days following injection. FIG. 20 shows transduction of the rat striatum with pONY8TRIC two weeks following injection.

EXAMPLE 12

Efficacy of EIAV-TRIC Vectors in a Rodent Model of Parkinson's Disease: Apomorphine-Induced Rotational Behavior

[0315] The aim of the present study is to replace dopamine in the striatum of animal model of Parkinson's disease. Rats receive 6-OHDA lesions of the right medial forebrain bundle (MFB). Stereotaxic injections are performed under anesthesia using 10 µl Hamilton syringe with 33-gauge blunt tip needle. Each rat receives 4 µl of 4 µg/µl 6-OHDA HCl (Sigma) dissolved in 2 mg/ml ascorbate-saline (0.2% ascorbic acid, 0.9% NaCl). The solution is slowly infused at the speed of 0.5 µl/min. Three weeks following 6-OHDA lesion, rats are tested for amphetamine-induced rotation. Animals are injected i.p. with 2.5 mg/kg D-amphetamine (Sigma). Amphetamine is diluted in PBS. Rotational asymmetry is monitored over 90 minutes. Only rats with >7 turns per minute are used for the following experiment. For apomorphine-induced rotation, animals are tested twice on 0.05 mg/kg sc 4 days apart. Fifteen rats show good homogeneity

as to the extent of the 6-OHDA lesions. Two experiments are performed with EIAV-TRIC vectors. Three weeks after 6-OHDA lesions, EIAV-based lentiviral vectors carrying the genes involved in the dopamine synthesis are unilaterally injected into the striatum (ipsilateral to the lesion). Two groups of animals are included in each study: in the first experiment pONY8.1Z n=5; pONY8.1T n=4; in the second study pONY8.1Z n=4; pONY8.1T n=7. In order to assess a possible functional benefit of the treatment, apomorphine-induced rotation is tested weekly after the viral injection (FIG. 24.A). Two pONY8.1T-injected animals (C3R5 & C5R4) showed reduction in contralateral rotation than the pre-apo2 rotation during the whole experiment period, reaching a 65 and 70% decrease 3 weeks after viral injection (The present inventors suggest that the 70% is probably an artefact since one rat slipped out of the hamess during this rotation). A 60 and 35% decrease is observed 10 weeks following injection of the viral solution for these two rats. In the second study, dopamine replacement did reduce the number of apomorphine-induced rotations experienced in 6 animals (from 7 rats) injected with pONY8.1T (FIG. 24.B). The average of reduction in rotations 6 weeks after viral injection is about 45% compared to pre-apomorphine 2.

[0316] At the end of each experiment, rats are perfused with ice-cold PBS containing 0.02% ascorbic acid and 5000 units of heparin followed by 4% paraformaldehyde solution. The brains are dissected and placed overnight in 4% paraformaldehyde solution followed by the cryoprotection in 30% sucrose solution. TH-immunohistochemical labeling is performed on nigral and striatal sections to test the extension of the lesion. TH-immunostaining is performed using polyclonal Rabbit anti-TH antibodies on nigral (FIG. 25.A) and striatal (FIG. 25.B) sections. Catecholamines produced by EIAV TRIC vectors in the denervated striata of 6-OHDA rats are determined by HPLC and electrochemical detection, as described in the previous examples. The results are shown in FIGS. 26 and 27.

EXAMPLE 13

EIAV-TRIC Vectors Used for Correcting the 6-OHDA Primate Model of Parkinson's Disease

[0317] This model comprises unilateral injection of 6-hydroxydopamine (6-OHDA) into the nigrostriatal bundle of the small New World monkey the common marmoset (*Callithrix jacchus*). As in the rodent model, the asymmetry caused by the toxin in receptor sensitivity between the denervated and intact striatum results in rotational behaviour upon i.m. administration of domapinegeric factors, such as apomorphine (Annett et al., (1997). The rate of amphetamine-induced rotations is directly related to the striatal dopaminergic dysfunction and is used to evaluate the therapeutic efficacy of different treatments for PD (Annett et al. (1994) *Exp Neurol.* 125:228-246; Annett et al. (1992) *Brain*, 115:825-856). Marmosets aged 18-24 months are lesioned under anesthesia by delivery of 4 mg/ml free base weight 6-OHDA (Sigma) dissolved in 0.01% ascorbate-saline. 6-OHDA was injected stereotactically into five sites in the nigrostriatal bundle on one side of the brain (coordinates: AP+6.5; L±1.2, V+6 and +7; L±2.2, V+6.5 and V+7.5, L±3.2, V+7.5, as described in Stephan et al. (1980) Berlin: Springer-Verlag). Three microlitres are injected in the most lateral site and two microlitres in the other four sites. The

6-OHDA lesioned animals are examined for rotational behaviour prior to the lesion, after the lesion before the viral vectors injection and one month after the vectors are injected. Rotations are recorded during 30 min sessions starting 30 min after the injection of the drug. The marmosets are filmed while in a transparent Perspex box and the number of complete turns are counted.

[0318] Four 6-OHDA lesioned animals are injected with 30 µl of EIAV-TRIC or EIAVlacZ viral stocks into the Caudate Putamen at 6 sites (5 µl/site). Behavioural assessment of the monkeys on reaching tasks and apomorphine-induced rotations tests will be made one month post-injection and at regular interval for several months for long-term follow-up. Animals are sacrificed and brain tissue sections are analysed for TH immunoreactivity as described previously. The level of catecholamines in the denervated striatum is determined by HPLC and electrochemical detection (as described above).

EXAMPLE 14

EIAV-TRIC Vectors Used for Correcting the MPTP Primate Model of Parkinson's Disease

[0319] The primate model of Parkinson's disease is considered the gold-standard model for evaluation of potential therapies prior to entering human clinical trials. This model is originally developed from the observation in the early 1980s that groups of younger people are developing a neurodegenerative disorder strikingly similar to idiopathic Parkinson's disease. The source of this disorder is traced to the use of a street drug, and specifically to the chemical known as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Langston (1985) *Trends in Pharmacol. Sci.* 6:375-378). When MPTP is given to primates, the animals developed a parkinsonian disorder that has become the principle model for testing anti-parkinsonian agents. Peripherally administered MPTP will cross the blood brain barrier, whereupon is converted into MPP+ by monoamine oxidase B (MAO-B). MPP+ is a potent neurotoxin that eventually causes the degeneration of nigro-striatal dopamine pathway, as seen in Parkinson's disease.

[0320] Cynomolgus monkeys (*Macaca fascicularis*) are rendered parkinsonian by weekly intravenous injections of 0.5-1 mg/kg MPTP for ten consecutive months. Animals are trained to perform fine motor tasks prior to the administration of MPTP. The parkinsonian monkeys are tested for marked reduction of spontaneous activity, bilateral action tremor, freezing and posture and balance impairment to assess the efficacy of the lesion. Motor deficits are assessed according to a nonhuman primate disability rating scale (Herrero et al., (1993) *Neuroscience* 56:965-72). In addition, apomorphine (0.1 mg/kg, i.m.) is also given every two weeks to test the appearance of circling behaviour. The monkeys are allowed to recover from the last MPTP administration for 3 months prior to the intrastriatal transduction. Animals are anesthetized with a mixture of ketamine (10 mg/kg) and midazolan (1 mg/kg) and placed in the stereotactic frame. A hole is drilled in the skull at the level of the right frontal ventricle according to the atlas of Szabo and Cowan (Szabo and Cowan (1984) *J. Comp. Neurol.* 222:265-300), and a ventriculography is performed by injecting 0.4 ml of Omnidrast into the right ventricle. The

intercommisural line (AC-PC line) is measured and the coordinates for the putamen nucleus are adjusted according to the atlas.

[0321] EIAV-TRIC and EIAVlacZ viral vectors (5 μ l of $\sim 1-5 \times 10^9$ t.u./ml) are stereotactically injected unilaterally into the left putamen in two sites along the rostrocaudal axis using a Hamilton syringe. Briefly, 2 \times 5 μ l of $\sim 1-5 \times 10^9$ t.u./ml are injected into the putamen nucleus as follows: rostral putamen, AP+3.4 mm from the midpoint of the AC-PC line; ML 12 mm from the longitudinal sinus, and VD 15 mm below dura mater. Animal receive antibiotics (ampicillin 250 mg/day, i.m.) prophylactically for two weeks and analgesia with nonsteroidal anti-inflammatory drugs (flunixin, 2.5 mg/kg). Animals are followed periodically (every two weeks) for 3-5 months in order to determine whether the therapeutic vectors improve the parkinsonian behaviour (During et al. (1994)). They are tested for motor deficits as described above. At the end of the experimental period, animals are transcardially perfused with 4% PFA in PBS. The brains are fixed overnight in the same fixative at 4° C. and then immersed in 30% sucrose in PBS. Coronal brain sections (30 μ m thick) were cut on a freezing microtome and collected in PBS. TH immunoreactivity and levels of catecholamines in the denervated putamen are analysed as described previously.

[0322] All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention.

Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in chemistry, biology or related fields are intended to be within the scope of the following claims.

TABLE 1

DNA	L-DOPA	DOPAC	DA
Mock	n.d.	n.d.	n.d.
TRIC	0.745 +/- 0.047	n.d.	0.545 +/- 0.055
BIC + AADC	0.729 +/- 0.045	0.531 +/- 0.10	11.31 +/- 1.01
BIC	58.55 +/- 6.20	n.d.	n.d.
hTHt	0.845	n.d.	n.d.

[0323]

TABLE 2

DNA	L-DOPA	DOPAC	DA
Mock	n.d.	n.d.	n.d.
TRIC	0.745 +/- 0.047	n.d.	0.545 +/- 0.055
BIC + AADC	0.729 +/- 0.045	0.531 +/- 0.10	11.31 +/- 1.01
BIC	58.55 +/- 6.20	n.d.	n.d.
hTHt	0.845	n.d.	n.d.

[0324]

TABLE 3

Relative Integration Efficiency of EIAV Vectors						
MOI	pONY8G	pONY8T-1	pONY8T-2	pONY8.1Z	pONY8.1T	Integrase-
100X	10.61	11.44	10.6	11.6	11.6	2.1
10X	7	6.16	5.7	8.67	6.63	2.4
1X	4.37	4.8	n.d.	7.09	4.6	n.d.

D17 cells have been transduced at different MOIs with EIAV vectors. The dCT values represent the ratio of β -actin/EIAV genomes in 100 ng of total DNA (dCT = β actin Ct - CMVp Ct). The PCR reaction amplifies the CMV promoter region present in the integrated EIAV genome. The dCT values of untransduced cells was ~ 1.85 . Similar results are obtained using the EIAV packaging signal.

[0325]

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 34

<210> SEQ ID NO 1

<211> LENGTH: 8531

<212> TYPE: DNA

<213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 1

agatcttcaa taataaaatg tgggtttgtc cgaaatacgc gttttgagat ttctgtcgcc 60

gactaaattc atgtcgcgcg atagtgggt ttatcgccga tagagatggc gatattggaa 120

-continued

aaattgatat ttgaaaatat ggcattattga aatgtcgcc gatgtgagtt tctgtgtaac	180
tgatatcgcc attttccaa aagtgatttt tgggcatacg cgatatctgg cgatagcgct	240
tatatacgitt acggggatg gcgatagacg actttggtga cttggcgat tctgtgtgc	300
gcaaatatcg cagttcgat ataggtgaca gacgatatacg ggctatcg ccgatagagg	360
cgacatcaag ctggcacatg gccaatgcat atcgatctat acattgaatc aatattggcc	420
attagccata ttattcattt gttatatacg ataaatcaat attggctatt ggccattgca	480
tacgttgtat ccatacgta atatgtacat ttatattggc tcatgtccaa cattaccgcc	540
atgttgcacat tgattattga ctagttatata atagtaatca attacggggat cattagttca	600
tagccatata atggagttcc gcggtacata acttacggta aatggccgc ctggctgacc	660
gccaacgac ccccgccat tgacgtcaat aatgacgtat gttcccatag taacgcaat	720
agggactttc cattgacgtc aatgggttga gtatattacgg taaactgccc acttggcagt	780
acatcaagtg tatcatatgc caagtccgc ccctatttgc gtcaatgacg gtaaaatggcc	840
cgcctggcat tatgcccagt acatgacctt acgggacttt cctacttgc agtacatcta	900
cgtatttagtc atcgcttata ccatggtgat gcggttttgg cagtagacca atggcgttgc	960
atagcggttt gactcacggg gatttccaag tctccacccc attgacgtca atggagttt	1020
gttttggcac caaaatcaac gggactttc aaaatgtcgt aacaactgacg atcgccgc	1080
cgttgcacgc aaatggcgg taggcgttgc cggtggagg tctatataag cagagctcgt	1140
ttagtgaacc gggcactcag attctgcgtt ctgagttccct tctctgttgc gctgaaaagg	1200
cctttgtaat aaatataatt ctctactcag tccctgttctc tagttgtct gttcgagatc	1260
ctacagttgg cggccgaaca gggacctgag aggggcgcag accctacctg ttgaacctgg	1320
ctgatcgttag gatccccggg acagcagagg agaacttaca gaagtcttgc ggagggttgc	1380
ctggccagaa cacaggagga caggttaagat tggagaccc tttgacattt gagaaggcgc	1440
ctcaagaagt tagagaaggt gacggtaacaa gggctcaga aattaactac tggtaactgt	1500
aattggcgc taagtctagt agacttattt catgatacca actttgtaaa agaaaaggac	1560
tggcagctga gggatgtcat tccatttgcgtt gaagatgtaa ctcagacgt gtcaaggacaa	1620
gaaagagagg ctttggaaag aacatggtgg gcaatttctg ctgtaaagat gggccctccag	1680
attaataatg tagtagatgg aaaggcatca ttccagctcc taagagcgaat atatgaaaag	1740
aagactgcta ataaaaagca gtctgagccc tctgaagaat atctctagaa ctgttgcattc	1800
ccccggcgtt caggagtggg gaggcacat ggcgcgtttt gtcgaggcgg atccggccat	1860
tagccatatt attcattggt tatatacgat aaatcaatatt tggctattgg ccattgcata	1920
cgttgtatcc atatcataat atgtacattt atattggctc atgttcaaca ttaccggccat	1980
gttgcattt attattgact agtttataat agtaatcaat tacgggttca ttagttcata	2040
gcccataat gtagttccgc gttacataac ttacggtaaa tggccgcct ggctgaccgc	2100
ccaacgaccc cggccatttgc acgtcaataa tgacgtatgt tcccatagta acgccaatag	2160
ggactttcca ttgacgtca tgggtggagg atttacggta aactgcccac ttggcgttgc	2220
atcaagtgttca tcatatgcac agtacgcccc ctattgacgtt caatgacgggt aaatggcccg	2280
cctggcatttta tgcccatgtac atgaccttataat gggactttcc tacttggcag tacatctacg	2340
tatttagtcat cgcttattacc atgggtatgc ggtttggca gtacatcaat gggcgttgc	2400

-continued

agcggttga	ctcacgggga	tttccaagtc	tccacccat	tgacgtcaat	gggagttgt	2460
tttggcacca	aaatcaacgg	gactttccaa	aatgtcgtaa	caactccgccc	ccattgacgc	2520
aaatgggcgg	taggcatgt	cggtgggagg	tctatataag	cagagctcgt	ttatgttgcacc	2580
gtcagatcgc	ctggagacgc	catccacgc	gttttgacct	ccatagaaga	caccgggacc	2640
gatccagcct	ccgcggcccc	aagcttgcgt	ggatccaccc	gtcgccacca	tggtgagcaa	2700
gggcgaggag	ctgttcacccg	gggtgggtcc	catcctggtc	gagctggacgc	gcgacgtaaa	2760
cggccacaag	ttagcgtgt	ccggcgagggg	cgagggcgat	gccacctacg	gcaagctgac	2820
cctgaagttc	atctgcacca	ccggcaacgt	ccccgtgccc	tggccccc	tcgtgaccac	2880
cctgacctac	ggcgtgcagt	gcttcagccg	ctaccccgac	cacatgaacg	agcacgactt	2940
cttcaagttc	gccccatggc	aaggctacgt	ccaggagcgc	accatcttct	tcaaggacga	3000
cggcaactac	aagaccccg	ccgaggtgaa	gttcgagggc	gacacccctgg	tgaaccgcatt	3060
cggactgttgc	ggcatcgact	tcaaggagga	cgccaacatc	ctggggcaca	agctggagta	3120
caactacaac	agccacaacg	tctatatacat	ggccgacaag	cagaagaacg	gcatcaaggt	3180
gaacttcaag	atccgcccaca	acatcgagga	cgccagcg	cagctcgcc	accactacca	3240
gcagaacacc	cccatcgccg	acggcccg	gctgctgccc	gacaaccact	acctgagcac	3300
ccagtccgccc	ctgagcaac	accccaacg	gaagcgcgt	cacatggtcc	tgctggagtt	3360
cgtgaccgccc	gccgggatca	ctctcgccat	ggacgagctg	tacaagtaaa	gcggccgcga	3420
ctctagagtc	gacctgcagg	catgcaacgt	ttagctgctc	gagggggggc	ccggtaacca	3480
gctttgttc	ccttttagtga	gggttaatttgc	cgcgaaagt	attttactact	aatcaagcac	3540
aagtaataca	tgagaaactt	ttactacacg	aagcacaatc	ctccaaaaaa	ttttgttttt	3600
acaaaatccc	tggtaacat	gatttggaaagg	gacctactag	ggtgctgtgg	aagggtgatg	3660
gtgcagtagt	agttaatgtat	gaaggaaagg	gaataattgc	tgttaccat	accaggacta	3720
agttactaat	aaaaccaaat	tgagtattgt	tgcaggaacgc	aagacccaaac	taccattgtc	3780
agctgtgttt	cctgacacct	atatttttta	taagggttga	tatgaatccc	agggggaaatc	3840
tcaaccccta	ttacccaaca	gtcagaaaaaa	tctaaatgt	aggagaacac	aatgtttcaa	3900
ccttattgtt	ataataatga	cagtaagaac	agcatggcag	aatcgaagga	agcaagagac	3960
caagaatgaa	cctgaaagaa	gaatctaaag	aagaaaaaaag	aagaaatgac	tggtgaaaaa	4020
taggtatgtt	tctgttatgc	ttagcaggaa	ctactggagg	aatactttgg	tggtatgaag	4080
gactcccaaca	gcaacattat	atagggttgg	tggcgatagg	gggaagat	aacggatctg	4140
gccaatcaaa	tgctatagaa	tgctgggggtt	ccttccggg	gtgttagacca	tttcaaaatt	4200
acttcagttt	tgagaccaat	agaagcatgc	atatggataa	taatactgt	acattattag	4260
aagctttaac	caatataact	gctctataaa	taacaaaaca	gaatttagaaa	catggaaatt	4320
agtaaaagact	tctggcataa	ctcccttacc	tatttcttct	gaagctaaaca	ctggactaat	4380
tagacataag	agagattttg	gtataagtgc	aatagtggca	gctattgt	ccgctactgc	4440
tattgtctgt	agcgctacta	tgtcttatgt	tgctctaaact	gagggttaca	aaataatgga	4500
agtacaaaat	catacttttg	aggttagaaaa	tagtactcta	aatggtatgg	atthaataga	4560
acgacaaataa	aagatattat	atgctatgtat	tcttcaaaaca	catgcagatg	ttcaactgtt	4620
aaaggaaaga	caacaggtag	aggagacatt	taatttaattt	ggatgtatag	aaagaacaca	4680

-continued

tgtatTTTgt catactggtc atccctggaa tatgtcatgg ggacattaa atgagtcaac	4740
acaatggat gactggtaa gcaaaatgga agatTTaaat caagagatac taactacact	4800
tcatggagcc aggaacaatt tggcacaatc catgataaca ttcaatacac cagatagtat	4860
agctcaattt ggaaaagacc tttggagtca tattggaaat tggattcctg gattggagc	4920
ttccattata aaatatata tag ttagtTTTT gcttatttat ttgttactaa cctcttcGCC	4980
taagatcctc agggccctct ggaaggtgac cagtggtgca gggtcctccg gcagtcgtta	5040
cctgaagaaa aaattccatc acaaacatgc atcgcgagaa gacacctggg accaggccca	5100
acacaacata cacctagcag gctgtaccgg tggatcaggg gacaaatact acaagcagaa	5160
gtactccagg aacgactgga atggagaatc agaggagtac aacaggcggc caaagagctg	5220
ggtgaagtca atcgaggcat ttggagagag ctatatttcc gagaagacca aaggggagat	5280
ttctcagcct ggggcggcta tcaacgagca caagaacggc tctggggga acaatcctca	5340
ccaagggtcc ttagacctgg agattcgaag cgaaggagga aacatttatg actgttgcatt	5400
taaagcccaa gaaggaactc tcgctatccc ttgctgtgga tttcccttat ggctattttg	5460
gggactagta attatagtag gacgcatacg aggctatgga ttacgtggac tcgctgttat	5520
aataaggatt tgtatttagag gcttaaattt gatattgaa ataatcagaa aaatgcttga	5580
ttatatttggaa agagctttaa atcctggcac atctcatgt acaatgcctc agtatttttta	5640
aaaaacaacaa gggggaaactg tggggTTTT atgaggggTT ttataaatgaa ttataagagt	5700
aaaaagaaaatg ttgctgatgc tctcataacc ttgtataacc caaaggacta gctcatgttgc	5760
ctaggcaact aaaccgcaat aaccgcattt gtgacgcgag ttcccccattt gtgacgcgtt	5820
aacttcctgt ttttacagta tataagtgc ttttgcatttgc caattggca ctcagattct	5880
gcggtctgag tcccttctct gctgggttgc aaaggccctt gtaataaata taattctcta	5940
ctcagtcctt gtcctctagtt ttttgcatttgc agatcctaca gagctcatgc cttggcgtaa	6000
tcatggtcat agtgcatttcc ttttgcatttgc caattggca ctcagattct	6060
cgagccggaa gcataaaatg taaagcctgg ggtgcctaat gagtgagacta actcacattt	6120
attgcgttgc gctcaactgca cggccggaa accgcgttgc ttttgcatttgc gctgcatttgc	6180
tgaatcggcc aacgcgcggg gagaggcggg ttttgcatttgc ggtgcatttgc cggccggaa	6240
ctcaactgact cggccggaa accgcgttgc ttttgcatttgc ggtgcatttgc cggccggaa	6300
gcggtaatac gtttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa	6360
ggccagcaaa aggcaggaa cggtaaaaatg gggccgttgc ttttgcatttgc cggccggaa	6420
cggccggaa accgcgttgc ttttgcatttgc ggtgcatttgc cggccggaa	6480
ggactataaa gataccaggc gtttatccat ggtgcatttgc ttttgcatttgc cggccggaa	6540
accctggccca ttaccggata ctttgcatttgc ttttgcatttgc ggtgcatttgc cggccggaa	6600
catagctcac gtttatccat ttttgcatttgc ggtgcatttgc ttttgcatttgc cggccggaa	6660
gtgcacgaac ccccggttca gcccggccgg ttttgcatttgc ggtgcatttgc cggccggaa	6720
tccaaaccggg taagacacga ctttgcatttgc ggtgcatttgc cggccggaa	6780
agagcggat atgttaggcgg ttttgcatttgc ggtgcatttgc cggccggaa	6840
actagaagga cgttacatTTTT tatctgcgttca ttttgcatttgc ggtgcatttgc cggccggaa	6900
gttggtagct ttttgcatttgc ctttgcatttgc ggtgcatttgc cggccggaa	6960

-continued

aaggcagcaga ttacgcgcag aaaaaaagga tctcaagaag atccttgat cttttctacg	7020
gggtctgacg ctcagtgaa cggaaactca cgtaaggga ttttggatc gagattatca	7080
aaaaggatct tcaccttagat cttttaaat taaaaatgaa gttttaaatc aatctaaatg	7140
atatatgagt aaacctggtc tgacagttac caatgctta tcagtggacg acctatctca	7200
gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcggtta gataactacg	7260
atacgggagg gcttaccatc tggcccccagt gctgcaatga taccgagaga cccacgctca	7320
ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtgg	7380
cctgcaactt tatccgcctc catccagtct attaattgtt gccggaaagc tagagtaagt	7440
agttcgccag ttaatagttt gcgcaacgtt gttgccattt ctacaggcat cggtgttca	7500
cgctcgctgt ttggatggc ttcattcagc tccgggtccc aacgatcaag gcgagttaca	7560
tgtatccccca tggatggcaaa aaaaagcggtt agctccctcg gtcctccat cggtgtcaga	7620
agtaagttgg ccgcagtggtt atcactcatg gttatggcag cactgcataa ttctcttact	7680
gtcatgccat ccgtaagatg ctttctgtt actgggtgagt actcaaccaa gtcattctga	7740
gaatagtgtt tgcggcgacc gagttgtct tggccgggtt caataccggaa taataccggc	7800
ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc	7860
tcaaggatct taccgctgtt gagatccagt tcgatgttac ccactcggtt acccaactga	7920
tcttcagcat ctttacttt caccagcggtt tctgggtgag caaaaacagg aaggcaaaat	7980
ggcgaaaaaaa agggataaag ggcgacacgg aaatgttcaa tactcataact cttccctttt	8040
caatattattttaa gaagcattta tcagggttat tgcgtcatga gcgatatacat atttgaatgt	8100
attttagaaaa ataaacaaaat aggggttccg cgacatttc cccgaaaatg gccaccaaaa	8160
ttgtaagcgt taatatttttgc taaaattcg cgttaaattt ttgttaatc agctcatttt	8220
ttaaccaata ggccgaaatc ggcaaaatcc cttataaaatc aaaagaatag accgagatag	8280
ggttgagtgt tggatggcgtt tggacaacaaga gtccactatt aaagaacgtt gactccaaacg	8340
tcaaaggcgaaa aaaaaccgtc tatcaggcgatggccact acgtgaacca tcaccctaat	8400
caagttttt ggggtcgagg tggcgtaaag cactaaatcg gaaccctaaa gggagcccccc	8460
gattttagagc ttgacgggaa aagccaaacct ggcttatcga aattaatacg actcactata	8520
ggggagaccggc	8531

<210> SEQ ID NO 2
 <211> LENGTH: 6418
 <212> TYPE: DNA
 <213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 2

agatcttgcgaa taataaaatg tggatggcgtt cggaaataacgc gttttggat ttctgtcgcc	60
gactaaatc atgtcgcccg ataggatgggtt ttatcgccga tagagatggc gatattggaa	120
aaattgtat ttgaaaatat ggcataatttgc aaatgtcgcc gatgtggat ttctgtgttac	180
tgatatcgcc attttccaa aagtgtttt tgggcataacg cgatatctgg cgatagcgct	240
tatatcggtt acggggatgc gcgatagacg actttggatc cttggccat tctgtgttgc	300
gcaaaatatcg cagtttcgtt ataggatggcata gacgatatcg ggcttatcga ccgtatcgagg	360
cgacatcaag ctggcacatg gccaatgcgtt atcgatctat acattgtatc aatattggcc	420

-continued

attagccata ttattcattg gttatatagc ataaatcaat attggctatt ggccattgca	480
tacgttgtat ccatatcgta atatgtacat ttatattggc tcatgtccaa cattaccgcc	540
atgttgacat tgattattga ctagttatta atagtaatca attacgggt cattagttca	600
tagcccatat atggagttcc gctttacata acttacggta aatggccgc ctggctgacc	660
gcccaacgac ccccgcccat tgacgtcaat aatgacgtat gttccatag taacgccaat	720
agggacttcc cattgacgtc aatgggtgaa gtatccatgg taaactgccc acttggcagt	780
acatcaagtg tatcatatgc caagtccgccc ccctattgac gtcaatgacg gttaatggcc	840
cgcctggcat tatgcccagt acatgacctt acgggacttt cctacttggc agtacatcta	900
cgtatttagtc atcgcttata ccatggtgat gcggtttgg cagtagacca atgggctgg	960
atagcggttt gactcacggg gatccaaatg tctccacccc attgacgtca atgggagttt	1020
gttttggcac caaaatcaac gggactttcc aaaaatgtcgt aacaactgcg atcgccgc	1080
ccgttgcgc aaatgggggg taggcgtgta cgggtggagg tctatataag cagagctcg	1140
ttagtgaacc gggactcag attctgcggg ctgagtcct tctctgtgg gctgaaaagg	1200
cctttgtaat aaaaataatt ctctactcag tccctgtctc tagttgtct gttcgagatc	1260
ctacagttgg cggccgaaca gggacctgag aggggcgcag accctacctg ttgaacctgg	1320
ctgatcgttag gatccccggg acagcagagg agaacttaca gaagtcttct ggaggttgc	1380
ctggccagaa cacaggagga caggtaagat tgggagaccc tttgacattt gagcaaggcg	1440
ctcaagaagt tagagaaggt gacggtaacaa gggcttcaga aattaactac tggtaactgt	1500
aattgggcgc taagtctagt agacttattt catgataccaa actttgtaaa agaaaaggac	1560
tggcagctga gggatgtcat tccattgctg gaagatgtaa ctcagacgct gtcaggacaa	1620
gaaagagagg ccttggaaag aacatggtgg gcaatttctg ctgttaagat gggctccag	1680
attaataatg tagtagatgg aaaggcatca ttccagctcc taagagcga atatgaaaag	1740
aagactgcta ataaaaagca gtctgagccc tctgaagaat atctctagaa ctatgtggatc	1800
ccccgggctg caggagtggg gaggcacat gggcgcttgc gtcgaggcgg atccggccat	1860
tagccatatt attcattgg tatatacgat aaatcaatatt tggctattgg ccattgcata	1920
cgttgatcc atatcataat atgtacattt atattggctc atgtccaaca ttaccggcat	1980
gttgacattt attattgtact agtttataat agtaatcaat tacggggtca ttagttcata	2040
gcccatatat ggatccgc gttacataac ttacggtaaa tggccgcct ggctgaccgc	2100
ccaacgaccc ccccccattt acgtcaataa tgacgtatgt tcccatagta acgccaatag	2160
ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagttac	2220
atcaagtgtt tcatatgcata agtacgcccc ctattgacgt caatgacgggt aaatggcccg	2280
cctggcattt tgcccaagtac atgaccttattt gggactttcc tacttggcag tacatctacg	2340
tatttagtcat cgcttattacc atgggtgtac ggttttggca gtacatcaat gggcgtggat	2400
agcggtttga ctcacgggaa tttccaagtc tccacccat tgacgtcaat gggagttgt	2460
tttggcacca aatcaacgg gactttccaa aatgtcgtaa caactccgccc ccattgacgc	2520
aaatgggcgg taggcgtgta cgggtggagg tctatataag cagagctcgat ttagtgaacc	2580
gtcagatcgc ctggagacgc catccacgcgt gttttgaccc ccatagaaga caccggacc	2640
gatccagcct cccggggcccc aagcttggat ggttccaccc gtcgcccacca tggtgagcaa	2700

-continued

gggcgaggag	ctgttcacccg	gggtggtgcc	catcctggtc	gagctggacg	gcgacgtaaa	2760
cggccacaag	ttcagcgtgt	ccggcgaggag	cgagggcgat	gccacctacg	gcaagctgac	2820
cctgaagttc	atctgcacca	ccggcaagct	gcccgtgccc	tggcccaccc	tcgtgaccac	2880
cctgacctac	ggegtgcagt	gcttcagccg	ctaccccgac	cacatgaagc	agcaegactt	2940
cttcaagtcc	gccatgccc	aaggctacgt	ccaggagcgc	accatcttct	tcaaggacga	3000
cggcaactac	aagaccgcg	ccgaggtgaa	gttcgagggc	gacaccctgg	tgaaccgcat	3060
c gagctgaag	ggcatcgact	tcaaggagga	cggcaacatc	ctggggcaca	agctggagta	3120
caactacaac	agccacaacg	tctatatcat	ggccgacaag	cagaagaacg	gcatcaaggt	3180
gaacttcaag	atccgccaca	acatcgagga	cggcagcgtg	cagctcgccg	accactacca	3240
gcagaacacc	cccatcgccg	acggcccccgt	gctgctgccc	gacaaccact	acctgagcac	3300
ccagtccgccc	ctgagcaag	accccaacg	gaagcgcgat	cacatggtcc	tgctggagtt	3360
cgtgaccgccc	gcccggatca	ctctcggt	ggacgagctg	tacaagtaaa	gcggccgcga	3420
ctctagagtc	gacctgcagg	aattcgatat	caagcttatac	gataccgtcg	aatttgaaga	3480
gctttaaatc	ctggcacatc	tcatgtatca	atgcctcagt	atgttttagaa	aaacaagggg	3540
ggaactgtgg	ggttttatg	aggggtttta	taaatgatta	taagagtaaa	aagaaagttt	3600
ctgtatgtct	cataacccctg	tataacccaa	aggactagct	catgttgcta	ggcaactaaa	3660
ccgcaataac	cgcatttgcg	acgcgagttc	cccattggtg	acgcgttaac	ttcctgtttt	3720
tacagtataat	aagtgcgtgt	attctgacaa	ttgggcactc	agattctgcg	gtctgagttc	3780
cttctctgt	gggctgaaaa	ggccctttgt	ataaaatataa	ttctctactc	agtccctgtc	3840
tctagttgt	ctgttcgaga	tcctacagag	ctcatgcctt	ggcgtaatca	tggctatagc	3900
tgtttccctgt	gtgaaattgt	tatccgtca	caattccaca	caacatacga	gcggaaagca	3960
taaagtgtaa	agcctgggg	gcctaatgag	ttagactaact	cacattaatt	gcgttgcgt	4020
caactgcccgc	tttccagtcg	ggaaacctgt	cgtgccagct	gcattaatga	atcgcccaac	4080
gcgcggggag	aggcggttt	cgtattgggc	gctttccgc	ttcctcgctc	actgactcgc	4140
tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacgg	4200
tatccacaga	atcagggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	4260
ccaggaaccg	taaaaaggcc	gcgttgcgt	cgtttttcca	taggtcgcgc	ccccctgacg	4320
agcatcacaa	aaatcgacgc	tcaagtca	ggtggcgaaa	cccgacagga	ctataaagat	4380
accaggcggt	tccccctgga	agcccttcg	tgcgctctcc	tgttccgacc	ctgcccgtta	4440
ccggataacct	gtccgccttt	ctcccttcgg	gaagcgtggc	gttttctcat	agctcacgct	4500
gttaggtatct	cagttcggt	taggtcggtc	gctccaagct	gggctgtgtg	cacgaacccc	4560
ccgttcagcc	cgtaccgcgtc	gccttatccg	gtaactatcg	tcttgagttc	aaaccggtaa	4620
gacacgactt	atcgccactg	gcagcagcc	ctggtaacag	gattagcaga	gcgaggat	4680
taggcgggtc	tacagagttc	ttgaagtgg	ggcctaacta	cggtacact	agaaggacag	4740
tatttggat	ctgcgctcg	ctgaaggcc	ttaccttcgg	aaaaagatgt	gttagcttt	4800
gatccggcaa	acaaaccacc	gttggtagcg	gtggttttt	tgtttgcaag	cagcagat	4860
cgcgcagaaa	aaaaggatct	caagaagatc	cttgcgtat	ttctacgggg	tctgacgctc	4920
agtggAACGA	aaactcacgt	taagggattt	tggcatgag	attatcaaaa	aggatctca	4980

-continued

cctagatcct	tttaaattaa	aatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	5040
cttggctctga	cagttaccaa	tgcttaatca	gtgaggccacc	tatctcagcg	atctgtctat	5100
ttcggttcatc	catagttgcc	tgactccccg	tcgtgttagat	aactacgata	cgggagggct	5160
taccatctgg	ccccagtgtct	gcaatgatac	cgcgagaccc	acgctcaccg	gctccagatt	5220
tatcagcaat	aaaccagcca	gccggaaggg	ccgagcgcag	aagtggtcct	gcaactttat	5280
cgcctccat	ccagtctatt	aattgttgc	ggaaagctag	agtaagttagt	tcgcccagtt	5340
atagtttgcg	caacgttgtt	gccattgcta	caggcatcgt	ggtgtcacgc	tcgtcggtt	5400
gtatggcttc	attcagctcc	ggttccaaac	gatcaaggcg	agttacatga	tcccccattgt	5460
tgtgcaaaaa	agcggttagc	tccttcggtc	ctccgatcgt	tgtcagaagt	aagttggccg	5520
cagtgttatac	actcatggtt	atggcagcac	tgcataattc	tcttactgtc	atgcccattcg	5580
taagatgctt	tcttgtgact	ggtgagttact	caaccaagtc	attctgagaa	tagtgtatgc	5640
ggcgaccgag	ttgctcttgc	ccggcgtcaa	tacgggataa	taccgcgc	catagcagaa	5700
ctttaaaagt	gctcatcatt	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	5760
cgcgtttag	atccagttcg	atgtaaccca	ctcgatcacc	caactgtatct	tcagcatctt	5820
ttactttcac	cagcgtttct	gggtgagcaa	aaacaggaag	gcaaaatgcc	gcaaaaaagg	5880
gaataagggc	gacacggaaa	tgttgaatac	tcataacttt	ccttttcaa	tattattgaa	5940
gcatttatca	gggttattgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	6000
aacaaatagg	ggttccgcgc	acatttcccc	gaaaagtgcc	acctaaattt	taagcgtaa	6060
tattttgtta	aaattcgcgt	taaatttttg	ttaaatcagc	tcattttta	accaataggc	6120
cggaaatcg	aaaatccctt	ataaaatcaa	agaatagacc	gagatagggt	tgagtgttgt	6180
tccagtttgg	aacaagagtc	cactattaaa	gaacgtggac	tccaaacgtca	aaggcgaaa	6240
aaccgtctat	cagggcgatg	gcccactacg	tgaaccatca	ccctaataca	gtttttggg	6300
gtcgaggtgc	cgtaaagcac	taaatcgaa	ccctaaaggg	agcccccgat	tttagagctt	6360
acggggaaaag	ccaacctggc	ttatcgaaat	taatacgact	cactataggg	agaccggc	6418

<210> SEQ ID NO 3
 <211> LENGTH: 10998
 <212> TYPE: DNA
 <213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 3

agatcttgaa	taataaaatg	tgtgtttgtc	cgaaatacgc	gttttgagat	ttctgtcgcc	60
gactaaattc	atgtcgcg	atagtgggt	ttatcgccga	tagagatggc	gatattggaa	120
aaattgat	ttgaaaat	ggcataattga	aatgtcgcc	gatgtgagtt	tctgtgttaac	180
tgatatcgcc	attttccaa	aagtgtat	tgggcatacg	cgatatctgg	cgatagcgct	240
tatatcgitt	acgggggatg	gcatagacg	actttggtga	cttggccat	tctgtgtgtc	300
gcaaatatcg	cagttcgat	ataggta	gacgatata	ggctata	ccgatagagg	360
cgacatcaag	ctggcacatg	gccaatgc	atcgatctat	acattgaa	atattggcc	420
attagccata	ttattcattg	gttatata	ataaaatca	attggctatt	ggccattgca	480
tacgttgtat	ccatatcgta	atagtcat	ttataattggc	tcatgtccaa	cattaccgccc	540
atgttgacat	tgattattga	ctagttatta	atagtaatca	attacgggt	cattagttca	600

-continued

tagcccatat atggagttcc	gcgttacata acttacggta	aatggccgc	ctggctgacc	660		
gccccacgac	ccccggccat	tgacgtcaat	aatgacgtat	gttcccatag	taacgcoaat	720
agggacttcc	cattgacgtc	aatgggtgga	gtatttacgg	taaaactgccc	acttggcagt	780
acatcaagtg	tatcatatgc	caagtccgc	ccctattgac	gtcaatgacg	gtaaatggcc	840
cgcctggcat	tatgcccagt	acatgacctt	acgggacttt	cctacttggc	agtacatcta	900
cgtatttagtc	atcgcttatta	ccatggtgat	gcgggtttgg	cagtagacca	atgggctgtgg	960
atacgcggtt	gactcacggg	gatttccaag	tctccacccc	attgacgtca	atgggagttt	1020
gttttggcac	caaataatcaac	gggactttcc	aaaatgtcgt	aacaactgcg	atcgcccgcc	1080
cgcgttgcgc	aaatgggcgg	taggcgtgta	cgggtggagg	tctatataag	cagagctcgt	1140
ttagtgaacc	gggcactcag	attctgcggg	ctgagtcct	tctctgtgg	gctgaaaagg	1200
cctttgtaat	aaatataatt	ctctactcag	tccctgtctc	tagttgtct	gttcgagatc	1260
ctacagttgg	cgcggcgaaca	gggacctgag	agggggcgcag	accctacctg	ttgaacctgg	1320
ctgatcgtag	gatccccggg	acagcagagg	agaacttaca	gaagtcttct	ggaggtgttc	1380
ctggccagaa	cacaggagga	caggtaagat	tgggagaccc	tttgacattg	gagcaaggcg	1440
ctcaagaagt	tagagaaggt	gacggtacaa	gggtctcaga	aattaactac	tggtaactgt	1500
aattgggcgc	taagtctagt	agacttattt	catgatacca	actttgtaaa	agaaaaggac	1560
tggcagctga	gggatgtcat	tccattgtcg	gaagatgtaa	ctcagacgct	gtcaggacaa	1620
gaaagagagg	cctttgaaag	aacatggtgg	gcaatttctg	ctgtaaagat	gggcctccag	1680
attaataatg	tagtagatgg	aaaggcatca	ttccagctcc	taagagcga	atatgaaaag	1740
aagactgcta	ataaaaagca	gtctgagccc	tctgaagaat	atctctagaa	ctagtggatc	1800
ccccgggctg	caggagtggg	gaggcacgat	ggccgctttg	gtcgaggcgg	atccggccat	1860
tagccatatt	attcattggt	tatatacgat	aaatcaataat	tggctattgg	ccattgcata	1920
cgttgtatcc	atatcataat	atgtacattt	atattggctc	atgtccaaca	ttaccggccat	1980
gttgcatttgc	attattgtact	agtttataat	agtaatcaat	tacgggtca	ttagttcata	2040
gccccatata	ggagttccgc	gttacataac	ttacggtaaa	tggccgcct	ggctgaccgc	2100
ccaacgaccc	ccgcccatttgc	acgtcaataa	tgacgtatgt	tcccatagta	acgccaatag	2160
gactttcca	ttgacgtcaa	tgggtggagt	atttacggta	aactgcccac	ttggcagttac	2220
atcaagtgtt	tcatatgcca	agtacgcccc	ctattgacgt	caatgacggt	aaatggcccg	2280
cctggcatttgc	tgccttgcgtac	atgaccttat	gggactttcc	tacttggcag	tacatctacg	2340
tatttagtcat	cgcttattacc	atgggtatgc	ggttttggca	gtacatcaat	gggcgtggat	2400
agcggtttga	ctcacgggaa	tttccaagtc	tccacccat	tgacgtcaat	gggagttgt	2460
tttggcacca	aaatcaacgg	gactttccaa	aatgtcgtaa	caactccgc	ccattgacgc	2520
aaatgggcgg	taggcgtat	cggtggagg	tctatataag	cagagctcgt	ttagtgaacc	2580
gtcagatcgc	ctggagacgc	catccacgct	gttttgcac	ccatagaaga	caccggacc	2640
gatccagcct	ccgcggccccc	aagcttcagc	tgctcgagga	tctgcggatc	cggggaattc	2700
cccagtcgtca	ggatccacca	tggggatcc	cgtcgttta	caacgtcg	actggggaaaa	2760
ccctggcggtt	acccaactta	atcgccctgc	agcacatccc	ccttcggcca	gctggcgtaa	2820
tagcgaagag	gccccgcaccc	atcgcccttc	ccaacagttg	cgcagcctga	atggcgaatg	2880

-continued

ggcgtttgcc	tggttccgg	caccagaagc	ggtgcggaa	agctggctgg	agtgcgatct	2940
tcctgaggcc	gatactgtcg	tcgtccctc	aaactggcag	atgcacggtt	acgatgcgcc	3000
catctacacc	aacgtaacct	atcccattac	ggtcaatccg	ccgtttgttc	ccacggagaa	3060
tccgacgggt	tgttactcgc	tcacattta	tgttcatgaa	agctggctac	aggaaggcca	3120
gacgcgaatt	attttgatg	gcgttaactc	ggcggttcat	ctgtggtgca	acggggcgtg	3180
gtcgggtac	ggccaggaca	gtcggttgc	gtctgaattt	gacctgagcg	catttttacg	3240
cgcggagaa	aaccgcctcg	cggtgatggt	gctgcgttgg	agtgacggca	gttatctgga	3300
agatcaggat	atgtggcgg	tgagcggcat	tttccgtgac	gtctcggtgc	tgcataaacc	3360
gactacacaa	atcagcgatt	tccatgttgc	cactcgctt	aatgtatgatt	tcagccgcgc	3420
tgtactggag	gctgaagttc	agatgtgcgg	cgagttgcgt	gactacctac	ggtaacagt	3480
ttctttatgg	cagggtgaaa	cgcaggctcg	cagcggcacc	gccccttcg	gcgggtgaaat	3540
tatcgatgag	cgtgggtggtt	atgcccgtc	cgtcacacta	cgtctgaac	tcgaaaaccc	3600
gaaactgtgg	agcggccaaa	tcccgaatct	ctatcgctcg	gtgggtgaac	tgcacaccgc	3660
cgcggcacg	ctgattgaag	cagaagcctc	cgatgtcggt	ttccgcgagg	tgcggttattga	3720
aaatggctcg	ctgctgctga	acggcaagcc	gttgctgatt	cgaggcgat	accgtcacga	3780
gcacatcct	ctgcatggtc	aggtcatgaa	tgagcagacg	atggtgcagg	atatcctgct	3840
gatgaagcag	aacaacttta	acgccgtcg	ctgttcgcatt	tatccgaacc	atccgtgtg	3900
gtacacgctg	tgcgaccgct	acggcctgta	tgtgggtgat	gaagccaata	ttgaaaccca	3960
cggcatggtg	ccaatgaatc	gtctgaccga	tgatccgcgc	tggctacccg	cgatgagcga	4020
acgcgtaaacg	cgaatggtgc	agcgcgtatc	taatcacccg	agtgtatca	tctggtcgt	4080
ggggaatgaa	tcaggccacg	gcgctaatca	cgacgcgcgt	tatcgctgaa	tcaaatactgt	4140
cgatccttcc	cgcgggtgc	agtatgaagg	cgccggagcc	gacaccacgg	ccaccgatat	4200
tatttgcgg	atgtacgcgc	gcgtggatga	agaccagccc	ttcccgctg	tgccgaaatg	4260
gtccatcaaa	aaatggcttt	cgctacctgg	agagacgcgc	ccgctgtatcc	tttgcgaaata	4320
cgcacacgcg	atgggtaaca	gtcttggcgg	tttcgctaaa	tactggcagg	cgtttcgtca	4380
gtatccccgt	ttacagggcg	gttcgtctg	ggactgggtg	gatcagtgc	tgattaaata	4440
tgataaaaac	ggcaacccgt	ggtcggctta	cgccgggtat	tttggcgata	cgccgaacga	4500
tcgcctgttc	tgtatgaac	gtctggcttt	tgccgaccgc	acgcccgcattc	cagcgtgcac	4560
ggaagcaaaa	caccagcgc	agtttttcca	gttccgttta	tccggcaaa	ccatcgaaat	4620
gaccagcgaa	tacctgttcc	gtcatagcga	taacgagctc	ctgcactgaa	tggtggcgct	4680
ggatggtaag	ccgctggcaa	ggcgttaagt	gcctctggat	gtcgctccac	aaggtaaaca	4740
gttggattgaa	ctgcctgaaac	tacgcagcc	ggagagcgc	ggcaactct	ggctcacagt	4800
acgcgtatgt	caaccgaacg	cgaccgcattc	gtcagaagcc	gggcacatca	gcgcctggca	4860
gcagtggcgt	ctggcgaaa	acctcagtgt	gacgcgtcccc	gccgcgtccc	acgcctccc	4920
gcacatcgacc	accagcgaaa	tggatttttg	catcgagctg	ggtaataac	gttggcaatt	4980
taaccgcac	tcaggcttcc	tttcacagat	gtggattggc	gataaaaaac	aactgtgcac	5040
gccgcgtgcgc	gatcgttca	cccgtgcacc	gctggataac	gacattggcg	taagtgaagc	5100
gaccgcatt	gaccctaacg	cctgggtcga	acgctggaaag	gcggcgggccc	attaccaggc	5160

-continued

-continued

cttcgcctaa gatcctcagg gccccttggg aggtgaccag tggtgccaggg tcctccggca	7500
gtcggttaccc gaagaaaaaa ttccatcaca aacatgcatac gcgagaagac acctgggacc	7560
aggcccaaca caacatacac ctagcaggcg tgaccgggttgg atcaggggac aaatactaca	7620
agcagaagta ctccaggaac gactggaatg gagaatcaga ggagtacaac aggccggccaa	7680
agagctgggt gaagtcaatc gaggcattt gagagagcta tatttccgag aagaccaaag	7740
gggagatttc tcagcctggg gcggctatca acgagcacaa gaacggctct ggggggaaca	7800
atcctcacca agggtcctta gacctggaga ttcgaagcga aggaggaaac atttatgact	7860
gttgcattaa agcccaagaa ggaactctcg ctatcccttgc tggatccatggc	7920
tattttgggg actagtaatt atagtaggac gcatagcagg ctatggatta cgtggactcg	7980
ctgttataat aaggattttgtt attagaggct taaatttgcg atttgcgaaa atcagaaaaa	8040
tgcttgatttta tatttggaa gctttaaatc ctggcacatc tcatgtatca atgcctcagt	8100
atgttttagaa aaacaagggg ggaactgtgg ggtttttatg aggggtttta taaatgatta	8160
taagagtaaa aagaaagtttgc ctgtatgtct cataacccttgc tataacccaa aggactagct	8220
catgttgcata ggcactaaa ccgcaataac cgcatttgc acgcgagttc cccattgggt	8280
acgcgttaac ttccctgttt tacagtataat aagtgcgttgcg attctgcgaaa ttgggcactc	8340
agattctgcg gtcgttgcgc tttctctgttgc gggctgaaaa ggcctttgttataaaatataa	8400
ttctctactc agtccctgttc tctagttgttgc tttccatggatgc tttccatggatgc	8460
ggcgtaatca tggtcatagc tggatccatgttgc tttccatggatgc tttccatggatgc	8520
caacatacga gcccggaaagca taaagtgttgc aacccctgggttgc tttccatggatgc	8580
cacattaatttgcgttgc tttccatggatgc tttccatggatgc tttccatggatgc	8640
gcattaaatgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	8700
ttccctgcgtc actgactcgc tttccatggatgc tttccatggatgc tttccatggatgc	8760
ctcaaaaggcg tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	8820
agcaaaaggcg tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	8880
taggctccgc ccccccgttgc tttccatggatgc tttccatggatgc tttccatggatgc	8940
cccgacagga ctataaagat accaggcggttgc tttccatggatgc tttccatggatgc	9000
tgttccgacc ctggatccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9060
gtttctcat agtcacgttgc tttccatggatgc tttccatggatgc tttccatggatgc	9120
gggctgtgttgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9180
tcttgatgttgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9240
gattagcaga gtcgttgc tttccatggatgc tttccatggatgc tttccatggatgc	9300
cggttacacttgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9360
aaaaagatgttgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9420
tgtttgcgttgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9480
ttcttacgggg tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9540
attatcaaaa aggttgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9600
ctaaatgttgc tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9660
tatctcagcg tttccatggatgc tttccatggatgc tttccatggatgc tttccatggatgc	9720

-continued

aactacgata	cgggaggggct	taccatctgg	ccccagtgt	gcaatgatac	cgcgagaccc	9780
acgctcacccg	gctccagatt	tatcagcaat	aaaccaggcca	gccggaaagg	ccgagcgcag	9840
aagtggctct	gcaacttitat	ccgcctccat	ccagtcatt	aattgttgcc	ggaaagctag	9900
agtaagtagt	tcgcagttt	atagttgcg	caacgttgtt	gccattgcta	caggecatcgt	9960
ggtgtcacgc	tcgtcggtt	gtatggcttc	attcagctcc	ggttcccaac	gatcaaggcg	10020
agttacatga	tccccatgt	tgtgcaaaaa	agcggttagc	tccttcggtc	ctccgatcgt	10080
tgtcagaagt	aagttggccg	cagtgttac	actcatggtt	atggcagcac	tgcataattc	10140
tcttactgtc	atgcacatccg	taagatgctt	ttctgtgact	ggtgagact	caaccaagtc	10200
attctgagaa	tagtgtatgc	ggcgaccgag	ttgctcttgc	ccggcgtcaa	tacggataa	10260
taccgcgcca	catagcagaa	cttaaaagt	gctcatcatt	ggaaaacgtt	cttcggggcg	10320
aaaactctca	aggatcttac	cgctgtttag	atccagttcg	atgtaaaccca	ctcggtgcacc	10380
caactgatct	tcagcatctt	ttactttcac	cagcgtttct	gggtgagcaa	aaacaggaag	10440
gcaaaatgcc	gcaaaaaagg	gaataaggc	gacacggaaa	tgttgaatac	tcataactt	10500
ccttttcaa	tattattgaa	gcattttatca	gggttattgt	ctcatgagcg	gatacatatt	10560
tgaatgtatt	tagaaaaata	aacaaatagg	ggttccgcgc	acatttcccc	gaaaagtgc	10620
acctaatttgc	taagcgttta	tattttgtt	aaattcgcgt	taaatttttgc	ttaaatcagc	10680
tcattttta	accaataggc	cgaaatccgc	aaaatccctt	ataaaatcaaa	agaatagacc	10740
gagatagggt	ttagtgttgt	tccagtttgg	aacaagagtc	cactattaaa	gaacgtggac	10800
tccaaacgtca	aagggcgaaa	aaccgttat	caggcgcgt	gcccactacg	tgaaccatca	10860
ccctaataaa	gtttttggg	gtcgagggtgc	cgtaaaagcac	taaatcgaa	ccctaaagg	10920
agccccccgat	ttagagcttgc	acggggaaag	ccaaccttgc	ttatcgaaat	taatacgact	10980
cactataggg	agacccgc					10998

<210> SEQ ID NO 4

<211> LENGTH: 10448

<212> TYPE: DNA

<213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 4

gtcaccaagt	tcgaccctga	cctggacttg	gaccacccgg	gcttctcgga	ccaggtgtac	60
cgcgcgcga	ggaagctgtat	tgctgagatc	gccttccagt	acaggcacgg	cgaccggatt	120
ccccgtgtgg	agtacaccgc	cgaggagatt	gccaccttgg	aggaggtcta	caccacgctg	180
aagggcctct	acgccacgca	cgcctgcggg	gagcacctgg	aggccttgc	tttgcgtggag	240
cgcttcagcg	gctaccggga	agacaataatc	ccccagctgg	aggacgtctc	ccgccttcctg	300
aaggagcgca	cgggcttcca	gctgcggcct	gtggccggcc	tgctgtccgc	ccgggacttc	360
ctggccagcc	tggcccttccg	cgtgttccag	tgccacccagt	atatccgcca	cgcgctctcg	420
cccatgcact	ccccctgagcc	ggactgtgc	cacgagctgc	tggggcacgt	gccccatgt	480
gccgaccgcga	ccttcgcgcga	gttctcgca	gacattggcc	tggcgccct	ggggggctcg	540
gatgaggaaa	ttgagaagct	gtccacgtcg	tcatggttca	cggtggagtt	cgggctgtgt	600
aagcagaacg	gggaggtgaa	ggccatgtgt	gcccgggtgc	tgtccctcta	cgggggagctc	660
ctgcactgcc	tgtctgagga	gcctgagatt	cgggccttgc	accctgaggc	tgccggccgt	720

-continued

cagccctacc aagaccagac gtaccagtca gtctacttcg tgtctgagag cttcagtgac	780
gccaaggaca agctcaggag ctatgcctca cgcatccaga gcccccttcg cgtgaagttc	840
gaccctgtaca cgctggccat cgacgtgtcg gacagcccc agggcggtcg ggcgtccctg	900
gagggtgtcc aggtatggact ggacaccctt gccccatgcgc tgagtgcctat tggctggaaat	960
tctgcagata tcttaaaaca gctctggggt tgtacccacc ccagaggccc acgtggcgcc	1020
tagtactccg gtattgcggt acctttgtac gcctgtttta tactcccttc ccccgtaact	1080
tagaaggcaca atgtccaaat tcaataggag ggggtacaaa ccagtaccac cacgaacaag	1140
cacttctgtttt ccccccgtga ggctgtatag gctgtttca cggctaaag cggctgtatcc	1200
gttatccgct catgtacttc gagaaggccta gtatcacctt ggaatcttcg atgcgttgcg	1260
ctcaacactc aaccccgag tagttagctt gtcgtatgt ctggacgttc ctcaccggcg	1320
acgggtggcc aggctgcgtt ggccggccat ctgtggccca aagccacagg acgctagttt	1380
tgaacaagggt gtgaagagcc tatttagtca ccttagatgc tcctggcccc tgaatgcggc	1440
taatcctaacc cacggagcag gcagtgccaa tccagcgcacc agcctgtcgt aacgcgcag	1500
ttcgtggccgg aaccgactac tttgggtgtc cgtgttttca aatggctgc	1560
ttagtggac aatcattgtat tttttatata aagcaaatgg tattggccat ccgggtgagaa	1620
tttgattatt aaattactct tttttttttt gaaatctgtt gcaactcacac	1680
ctattggaat tacctcatttgc ttaaacgcgt ctagctagcg tttaaactta agcttggcac	1740
cgagctcgga tctgcccacca tggactacaa ggacgacgtt gacgagaagg gcccgtgcg	1800
ggcacccggcg gagaagccgc gggggcgccag gtgcagcaat gggttcccg agcggggatcc	1860
ggcgccggcc gggcccgacca ggccggcgaa gaagcccccg cggcccgagg ccaagagcgc	1920
gcagcccccg gacggcttggaa agggcgagcg gccccgcagc gaggaggata acgagctgaa	1980
cctccctaac ctggcagccg cctactcgatc catcctgagc tcgctggcg agaaccggca	2040
gcggcaagggg ctgctcaaga cggccctggag ggcggccctcg gccatgcagt tcttccacaa	2100
gggctaccatcg gagaccatct cagatgtccat aaacgtatgtt atatttgcgtt aagatcatga	2160
tgagatgggtt attgtgaagg acatagacat gttttccatg ttttgatgtt accttgggttcc	2220
atttgttggaa aaggccata ttgggttatct tcctaacaatg caagtcccttgc ctcacacaa	2280
acttgcgagg attgttagaaat tctatagtag aagactacaa gttcaggagc gccttacaaa	2340
acaaattgtctt gtagcaatca cggaaaggcctt gcccgcctcg ggagtccgggg tagtgggttga	2400
agcaacacac atgtgtatgg taatgcgagg ttttgcgtt ggaatgttgcgaa	2460
cagcacaatgtt tgggtgtgt tccgggaggaa tccaaagact cggaaaggat tcctgactct	2520
cattaggagc tggaaaggcttc gatcactatgtt gatattgcgtt cggccgttggggggccgg	2580
tacccagctt ttgtttccctt tagtgggggtt taattgcgtt ggaatgttgcgaa	2640
aaggcacaatgtt aatccctgggtt gaaatgttgcgtt ggaatgttgcgaa	2700
gtttttacaa aatccctgggtt gaaatgttgcgtt ggaatgttgcgaa	2760
gtgtatgggcg agtagtagttt aatgtatgtt gaaatgttgcgtt ccattaaacca	2820
ggactaaggatctt actaataaaaa ccaaattgtttt gatgttgcgtt ggaatgttgcgtt	2880
attgtcagctt gttttccctt gatgttgcgtt aatccctgggtt ggaatgttgcgtt	2940
ggaatctcaa ccccttattac ccaacagtca gaaaaatctt aatgtgttgcgtt gaaatgttgcgtt	3000

-continued

tttcaaccctt	attgttataa	taatgacagt	aagaacagca	tggcagaatc	gaaggaagca	3060
agagaccaag	aatgaacctg	aaagaagaat	ctaaagaaga	aaaaagaaga	aatgactggt	3120
gaaaaatagg	tatgtttctg	ttatgcttag	caggaactac	tggaggaata	ctttgggtgt	3180
atgaaggact	cccacagcaa	cattatata	ggttgggtgc	gataggggaa	agattaaacg	3240
gatctggcca	atcaaatgct	atagaatgct	ggggttccctt	cccggggtgt	agaccatttc	3300
aaaattactt	cagttatgag	accaatagaa	gcatgcata	ggataataat	actgctacat	3360
tattagaagc	tttaaccaat	ataactgctc	tataaataac	aaaacagaat	tagaaacatg	3420
gaagtttagta	aagacttctg	gcataactcc	tttacctt	tcttctgaag	ctaacactgg	3480
actaattaga	cataagagag	attttggat	aagtgcata	gtggcagct	ttgttagccgc	3540
tactgctatt	gctgctagcg	ctactatg	ttatgttgct	ctaactgagg	ttaacaaaat	3600
aatggaaagta	caaaatcata	cfffftaggt	agaaaatagt	actctaaatg	gtatggattt	3660
aatagaacga	caaataaaga	tattatatgc	tatgattctt	caaacacatg	cagatgttca	3720
actgttaaag	gaaagacaac	aggttagagga	gacat	ttaattggat	gtatagaaag	3780
aacacatgta	ttttgtcata	ctggcatcc	ctggaaatatg	tcatgggac	atttaatga	3840
gtcaacacaa	tggatgact	gggtaagcaa	aatggaagat	ttaaatcaag	agataactaac	3900
tacacccat	ggagccagga	acaatggc	acaatccatg	ataacattca	atacaccaga	3960
tagtatagct	caatttgaa	aagaccttg	gagtcata	ggaaatttgg	ttcctggatt	4020
gggagcttcc	attataaaat	atatagtgt	gtttttgtt	atttatttgt	tactaacctc	4080
ttcgcctaag	atcctcagg	ccctctggaa	ggtgcac	gggtgcagggt	cctccggcag	4140
tcgttacctg	aagaaaaat	tccatcacaa	acatgcatcg	cgagaagaca	cctgggacca	4200
ggcccaacac	aacatacacc	tagcaggcgt	gaccgggtg	tcaggggaca	aatactacaa	4260
gcagaagttac	tccaggaacg	actggatgg	agaatcagag	gagtcacaa	ggcggccaaa	4320
gagctgggtg	aagtcaatcg	aggcatttg	agagagctat	atttccgaga	agaccaaagg	4380
ggagatttct	cagcctgggg	cggctatcaa	cgagcacaag	aacggctctg	ggggaaacaa	4440
tcctcaccaa	gggtcccttag	acctggagat	tcgaagcgaa	ggaggaaaca	tttatgactg	4500
ttgcattaaa	gcccagaag	gaactctcg	tatcccttc	tgtggatttc	ccttatggct	4560
attttgggaa	ctagtaatta	tagtaggacg	catagcaggc	tatggattac	gtggactcgc	4620
tgttataata	aggatttgta	ttagaggctt	aaatttgata	tttggaaataa	tcagaaaaat	4680
gcttgattat	attggaaagag	ctttaatcc	tggcacatct	catgtatcaa	tgcctcagta	4740
tgttttagaaa	aacaaggggg	gaactgtgg	gttttatga	ggggttttat	aaatgattat	4800
aagataaaa	agaaagttgc	tgtgcctc	ataacccatgt	ataacccaaa	ggactagctc	4860
atgttgctag	gcaactaaac	cgcaataacc	gcatttgta	cgcgagtcc	ccattggta	4920
cgcgttaact	tcctgttttt	acagttata	agtgcctgta	ttctgacaaat	tgggactc	4980
gattctgcgg	tctgagtccc	ttctctgtct	ggctgaaaag	gcctttgtaa	taaatataat	5040
tctctactca	gtccctgtct	ctagttgtc	tgttcgagat	cctacagacg	tcatgcctt	5100
gcgtaatcat	ggtcata	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	5160
aacatacagag	cgccaagcat	aaagtgtaaa	gcctgggtg	cctaattgagt	gagctaaactc	5220
acattaatttgc	cggtgcgtc	actgcccgt	ttccagtcgg	gaaacctgtc	gtgccagctg	5280

-continued

cattaatgaa	tcggccaacg	cgcggggaga	ggcggttgc	gtattggcg	ctcttccgct	5340
tcctcgctca	ctgactcgct	gwgctcggtc	gttcggctgc	ggcgagcgg	atcagctcac	5400
tcaaaggcgg	taatacggtt	atccacagaa	tcagggata	acgcaggaaa	gaacatgtga	5460
gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gttttccat	5520
aggctccgccc	cccctgacga	gcatcacaaa	aatcgacgct	caagttagag	gtggcgaaac	5580
cgcacaggac	tataaagata	ccaggcggtt	ccccctggaa	gctccctcg	gwgctctcct	5640
gttccgaccc	tgccgcttac	cggatacctg	tccgccttgc	tcccttcggg	aagcgtggcg	5700
ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	aggtcgctcg	ctccaaagctg	5760
ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctg	ccttatccgg	taactatcg	5820
cttgagtcca	accggtaag	acacgactta	tcgcaactgg	cagcagccac	tggtaacagg	5880
attagcagag	cggaggtatgt	aggcggtgct	acagagttct	tgaagtgtgt	gcctaactac	5940
ggctacacta	gaaggacagt	atttggatc	tgcgcctcg	tgaagccagt	tacccctgg	6000
aaaagagttg	gtagctcttgc	atccggcaaa	caaaccacgg	ctggtagcgg	tggtttttt	6060
gtttgcaagc	agcagattac	gwgcaaaaaa	aaaggatctc	aagaagatcc	tttgatctt	6120
tctacggggt	ctgacgctca	gtggaaacgaa	aactcacgtt	aaaggatttt	ggtcatgaga	6180
ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	6240
taaagtataat	atagataaac	ttggtctgac	agttaccaat	gcttaatcag	tgaggcacct	6300
atctcagcga	tctgtctatt	tcgatcatcc	atagttgcct	gactccccgt	cgtgtagata	6360
actacgatac	gggagggtt	accatctggc	cccagtgc	caatgatacc	gwgagaccca	6420
cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	6480
agtggcctg	caactttatc	cgcctccatc	cagtctat	attgttgcgg	ggaagctaga	6540
gtaagtagtt	cgcaggtaa	tagttgcgc	aacgttgcgt	ccattgtac	aggcatcg	6600
gtgtcacgct	cgtcggttgg	tatggctca	tgcagctccg	gttcccaacg	atcaaggcga	6660
gttacatgat	cccccatgtt	gtcaaaaaaa	gcggtagct	cttcggtcc	tccgatcg	6720
gtcagaagta	agttggccgc	agtgttatca	ctcatggta	tggcagact	gcataattct	6780
cttactgtca	tgccatccgt	aagatgctt	tctgtgactg	gtgagtagt	aaccaagtca	6840
ttctgagaat	agtgttatgc	gwgaccgagt	tgctcttgc	cggcgtaat	acggataat	6900
accgcgccac	atagcagaac	tttaaaatgt	ctcatcatg	gaaaacgtt	ttcggggcga	6960
aaactctcaa	ggatcttacc	gtgtttaga	tccagttcga	tgttaaccac	tcgtgcaccc	7020
aactgatctt	cagcatctt	tacttacc	agcggttctg	ggtagcaaa	aacaggaagg	7080
caaaatgccg	caaaaaagg	aataaggccg	acacggaaat	gttgaatact	catactctc	7140
cttttcaat	attattgtt	catttatcg	gttattgtc	tcatgagcg	atacatattt	7200
gaatgtat	agaaaaataa	acaaatagg	gttccgc	cattttcccg	aaaagtgc	7260
cctaaattgt	aagcgtaat	atttggtaa	aattcgctt	aaattttgt	taaatcagct	7320
catttttaa	ccaataggcc	gaaatcgca	aaatccctt	taaatcaaa	gaatagaccg	7380
agatagggtt	gagtgttgg	ccagtttgg	acaagagtc	actattaaag	aacgtggact	7440
ccaacgtcaa	aggcgaaaa	accgtctatc	agggcgatgg	cccactacgt	gaaccatcac	7500
cctaatcaag	tttttgggg	tcgaggtgcc	gtaaagcact	aaatcgaaac	cctaaaggaa	7560

-continued

-continued

cattgacgta aatgggtgga ctatttacgg taaaactgccc acttggcagt acatcaagtg	9900
tatcatatgc caagtacgcc ccctattgac gtcaatgacg gtaaatggcc cgccctggcat	9960
tatgcccagt acatgacctt atgggacttt cctacttggc agtacatcta cgtatttagtc	10020
atcgcttatta ccatggtgat ggggtttgg cagtagatca atgggctgg atagegggtt	10080
gactcacggg gatttccaag tctccacccc attgacgtca atgggagttt gtttggcac	10140
caaaatcaac gggactttcc aaaatgtcg aacaactccg ccccatggac gcaaatggc	10200
ggtaggcgtg tacgggtggga ggtctatata agcagagctc tctggctaac tagagaaccc	10260
actgcttaact ggcttatacg aattaatacg actcactata gggagaccca agctggctag	10320
cgtttaact taagcttggt accgagctcg gatccgccac catggaacaa aaactcatct	10380
cagaagagga tctgaaggta ccctggttcc caagaaaagt gtcagagctg gacaagtgtc	10440
atcacacgt	10448

<210> SEQ ID NO 5

<211> LENGTH: 11058

<212> TYPE: DNA

<213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 5

tacgactcac tatagggaga cccaaagctgg ctagcggtta aacttaagct tggtaaccgag	60
ctcggatctg ccaccatgta cccctacgac gtgcccact acgccaacgc aagtgaattc	120
cgaaggagag ggaaggagat ggtggattac gtggccaact acatggaagg cattgaggga	180
cgccaggctt accctgacgt ggagcccggt tacctgcggc cgctgatccc tgccgctgccc	240
cctcaggagc cagacacgtt tgaggacatc atcaacgcg ttgagaagat aatcatgcct	300
ggggtgacgc actggcacag cccctacttc ttgcctact tccccactgc cagctcgat	360
ccggccatgc ttgcggacat gctgtgcggg gccattggct gcatcggtt ctccctggcg	420
gcaagcccaag catgcacaga gctggagact gtgatgtgg actggctcgq gaagatgctg	480
gaactaccaa aggcatttt gaatgagaaa gctggagaag ggggaggaggt gatccaggaa	540
agtgccagtg aagccaccct ggtggccctg ctggccgcgc ggaccaaagt gatccatcg	600
ctgcaggcag cgtccccaga gctcacacag gccgctatca tggagaagct ggtggcttac	660
tcatccgatc aggcacactc ctcagtgaa agagctgggt taattgggtt agtgaattt	720
aaagccatcc cctcagatgg caacttcgcg atgcgtgcgt ctgcctgc ggaagccctg	780
gagagagaca aagcggctgg cctgattctt ttctttatgg ttgccaccct gggaccaca	840
acatgctgct cctttgacaa tctcttagaa gtcggctta tctgcaacaa ggaagacata	900
tggctgcacg ttgatgcgcg ctacgcggc agtgcattca tctgcctgc gttccggcac	960
cttcgtaatg gagtggagtt tgcagattca ttcaacttta atccccacaa atggctattt	1020
gtgaattttt actgttctgc catgtgggtt aaaaagagaa cagacttaac gggacccctt	1080
agactggacc ccacttaccc gaagcacagc catcaggatt cagggcttacactgactac	1140
cggcattggc agataccact gggcagaaga tttcgcttt taaaatgtg gtttgtattt	1200
aggatgtatg gagtcaaagg actgcaggct tatatccgcg acatgtccca gctgtcccat	1260
gagtttgagt cactggtgcg ccaggatccc cgctttgaaa tctgtgtggaa agtcattctg	1320
gggattgtat gctttcggtt aaagggttcc aacaaagtga atgaagctct tctgcaaaaga	1380

-continued

ataaacagtgc	ccaaaaaaat	ccacttggtt	ccatgtcacc	tcagggacaa	gtttgtcctg	1440
cgctttgcca	tctgttctcg	cacgggtggaa	tctgccccatg	tgccggcgcc	ctggaaacac	1500
atcaaagagc	tggcgccgca	cgtgctgcga	gcagagaggg	agtagaaagct	tcgatcacta	1560
gtgaattctg	cagatgggt	gcaggaattc	tgatcacgccc	cctctccctc	ccccccccc	1620
aacgttactg	gccgaagccg	cttggataaa	ggccgggtgt	cgtttgcata	tatgttattt	1680
tccaccataat	tgccgtcttt	tggcaatgtg	agggcccgga	aacctggccc	tgtcttcttg	1740
acgagcattc	ctaggggtct	ttcccccctc	gccaaggaa	tgcaaggct	gttgaatgtc	1800
gtgaaggaag	cagttccctc	ggaagcttct	tgaagacaaa	caacgtctgt	agcgaccctt	1860
tgcaggcagc	ggaacccccc	acctggcgac	aggtgcctct	gcccggaaaa	gccacgtgt	1920
taagatacac	ctgcaaaaggc	ggcacaaccc	cagtgcacag	ttgtgagttg	gatagttgt	1980
gaaagagtc	aatggctc	ctcaagcgta	ttcaacaagg	ggctgaagga	tgcccagaag	2040
gtacccctatt	gtatggatc	tgatctgggg	cctcggtgca	catgcttac	atgtgttag	2100
tcgaggttaa	aaaacgtcta	ggccccccga	accacgggg	cgtggtttc	ctttgaaaaa	2160
cacgatgata	agcttgcac	aaccatggaa	caaaaactca	tctcagaaga	ggatctgaag	2220
gtcccccgtt	tcccaagaaa	agtgtcagag	ctggacaagt	gtcataccct	ggtcaccaag	2280
ttcgaccctg	acctggactt	ggaccacccg	ggcttctcg	accagggtta	ccggcagcgc	2340
aggaagctga	ttgctgagat	cgcctccag	tacaggcacg	gcgacccgat	tccccgtgt	2400
gagtagacccg	ccgaggagat	tgccacctgg	aaggaggct	acaccacgct	gaaggccctc	2460
tacgcccacgc	acgcctgcgg	ggagcacctg	gaggcccttg	ctttgctgga	gcgcgttgc	2520
ggctaccggg	aagacaatat	cccccagctg	gaggacgtct	cccgcttct	gaaggagcgc	2580
acggggcttcc	agctgcccc	tgtggccggc	ctgctgtccg	cccgggactt	cctggccagc	2640
ctggcccttcc	gcgtgttcca	gtgcacccag	tatatccgc	acgcgtcctc	gcccacgcac	2700
tcccccgtgc	cggactgctg	ccacgagctg	ctggggcacg	tgcccatgct	ggccgaccgc	2760
accttcgcgc	agttctcgca	ggacattggc	ctggcgtccc	tggggccctc	ggatgaggaa	2820
attgagaagc	tgtccacgct	gtcatggttc	acgggtggagt	tcgggctgt	taagcagaac	2880
ggggaggtga	aggcctatgg	tgccgggctg	ctgtccctc	acggggagct	cctgcactgc	2940
ctgtctgagg	agcctgagat	tcggggcttc	gaccctgagg	ctgcggccgt	gcagccctac	3000
caagaccaga	cgtaccagtc	agtctacttc	gtgtctgaga	gcttcagtga	cgccaaggac	3060
aagctcagga	gctatgcctc	acgcacccat	ccgtgaagtt	cgacccgtac	3120	
acgctggcca	tcgacgtgt	ggacagcccc	caggccgtgc	ggcgctccct	ggaggggtgc	3180
caggatgagc	tggacaccct	tgcccatgctg	ctgagtgca	ttggctagga	attctgcaga	3240
tatctaaaaa	cagctctggg	gttgtacca	ccccagagggc	ccacgtggcg	gctagtaact	3300
cggatttgcg	gtacctttgt	acgcctgttt	tatactccct	tcccccgtaa	cttagaaagca	3360
caatgtccaa	gttcaatagg	agggggtaca	aaccagtacc	accacgaaca	agcacttctg	3420
ttccccccgt	gaggctgtat	aggctgtttc	cacggctaaa	agcggctgtat	ccgttatccg	3480
ctcatgtact	tcgagaagcc	tagtaccc	ttggaaatctt	cgatgcgttg	cgctcaacac	3540
tcaacccca	agttgttagtt	aggtcgatg	gtctggacgt	tcctcaccgg	cgacgggtgt	3600
ccaggctgcg	ttggcgccct	acctgtggcc	caaagccaca	ggacgctagt	tgtgaacaag	3660

-continued

gtgtgaagag cctattgagc tacctgagag tcctccggcc cctgaatgcg gctaattccta 3720
accacggagc aggcagtggc aatccagcga ccagcctgc gtaacgcgcgca agttcgtggc 3780
ggaaaccgact actttgggtg tccgttgc ctttatattt tacaatggct gcttatggtg 3840
acaatcattt attgttatca taaagcaaat tggattggcc atccggtgag aatttgattt 3900
ttaaattact ctcttgggg gattgctcct ttgaaatctt gtgcactcac acctatttgg 3960
attacctcat tgtaaacgc gtctagctag cgtttaaact taagcttggg accgagctcg 4020
gatctgccc catggactac aaggacgacg atgacgagaa gggccctgtg cgggcacccg 4080
cggagaagcc gcggggcgcc aggtgcagca atgggttccc cgagcgggat cccggcgcc 4140
ccggggccag caggccggcg gagaagcccc cgccggccga gccaagagc gcgcagcccg 4200
cgacggctg gaagggcgag cggcccccga gcgaggagga taacgagctg aacccctta 4260
acctggcagc cgcctactcg tccatccctga gctcgctggg cgagaacccc cagccgcaag 4320
ggctgctcaa gacgccttgg agggccgccc cggccatgc gttcttcacc aagggttacc 4380
aggagaccat ctcagatgtc ctaaacgatg ctatatttga tgaagatcat gatgagatgg 4440
tgattgtgaa ggacatagac atgttttcca tgggtgagca tcaacttggg ccattttttg 4500
gaaagggtcca tattggttat cttcctaaca agcaagtccct tggccctcagc aaacttgcga 4560
ggattgtttagt aatctatagt agaagactac aagttcagga gcgccttaca aaacaaattt 4620
ctgttagcaat cacggaaagcc ttgcggcctg ctggagtcgg ggttagtggg gaagcaacac 4680
acatgtgtat ggtaatgcga ggtgtacaga aaatgaacag caaaactgtg accagcacaa 4740
tgggttgggtgt gttccggag gatccaaaga ctggaaaga gttccctgact ctcatttagga 4800
gtgaaagct tcgatcaacta gtgaaattcgc ggcgcctcga gggggggccc ggtacccagc 4860
ttttgttccc tttagtgagg gttaaatttgcg cggaaagtat ttatcaactaa tcaagcacaa 4920
gtataatcatg agaaaactttt actacagcaa gcacaatccct ccaaaaaattt ttgtttttac 4980
aaaatccctg gtgaacatga ttggaaaggga cctacttaggg tgctgtggaa gggtgatgg 5040
gcagtagtag ttaatgtatga agggaaaggga ataattgtg taccattaac caggactaaag 5100
ttactaataa aaccaaattt agtatttttg caggaagcaa gacccaaacta ccattgtcag 5160
ctgtgtttcc tgacactaat attttttata aggtttgata tgaatcccg ggggaatctc 5220
aacccttattt acccaacagt cagaaaaatc taagtgttag gagaacacaa tgtttcaacc 5280
ttatattttt aataatgaca gtaagaacag catggcagaa tgcgaaggaag caagagacca 5340
agaatgtacc tgaaaagaaga atctaaagaa gaaaaaagaa gaaatgtactg gtggaaaata 5400
ggtatgtttc tggttatgtt agcaggaact actggaggaa tactttgggt gtatgtgg 5460
ctcccacagc aacattat atgggttggg gcgatagggg gaagattaaa cggatctggc 5520
caatcaaattt ctatagaatg ctgggggttcc ttccgggggt gtagaccatt tcaaaatttac 5580
ttcagttatg agaccaatag aagcatgcat atggataata atactgtac attatttagaa 5640
gttttaacca atataactgc tctataaata acaaaacaga attagaaaca tggaaatgttag 5700
taaagacttc tggcataact cctttacca tttcttctga agctaactgg gggactaattt 5760
gacataagag agattttggt ataagtgcgaa tagtggcagc tattgttagcc gctactgtca 5820
ttgctgttag cgctactatg tcttatgttgc ctctaaactga ggttaacaaa ataatgtgg 5880
tacaaaatca tacttttggag gttagaaaata gtactctaa tggatggat ttaatagaac 5940

-continued

-continued

tagaaggaca	gtatggta	tctgcgtct	gctgaagcca	gttaccttcg	aaaaaagagt	8280
ttggtagctct	tgatccggca	aacaaaccac	cgctggtagc	gggggggggg	ttgtttgcaa	8340
gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	tttctacggg	8400
gtctgacgct	cagtggaaacg	aaaactcacg	ttaagggatt	ttgggtcatga	gattatcaaa	8460
aaggatctc	accttagatcc	ttttaaatttta	aaaatgaagt	tttaaatcaa	tctaaagtat	8520
atatgagtaa	acttggctcg	acagttacca	atgcttaatc	agtgaggcac	ctatctcagc	8580
gatctgtcta	tttcgttcat	ccatagttgc	ctgactcccc	gtcgtgtaga	taactacgat	8640
acgggggggc	ttaccatctg	gccccagtgc	tgcaatgata	ccgcgagacc	cacgctcacc	8700
ggctccagat	ttatcagcaa	taaaccagcc	agccggaaagg	gccgagcgc	gaagtggtcc	8760
tgcaacttta	tccgcctcca	tccagttat	taattgttgc	cgggaagcta	gagtaatgat	8820
ttcgccttgtt	aatagtttcg	caacacgtgt	tgccattgtc	acaggcatcg	ttgtgtcacg	8880
ctcgctgttt	ggtatggctt	cattcagctc	cggttcccaa	cgatcaaggc	gagttacatg	8940
atccccatg	ttgtgcaaaaa	aagcggttag	ctcccttcgt	cctccgatcg	ttgtcagaag	9000
taagttggcc	gcagtgttat	cactcatgtt	tatggcagca	ctgcataatt	ctcttactgt	9060
catgccccatcc	gtaagatgt	tttctgtgac	ttgtgtgatc	tcaaccaatg	cattctgaga	9120
atagtgtatg	cggcgaccga	tttgcttttg	ccggcggtca	atacggata	ataccgcgc	9180
acatagcaga	actttaaaag	tgctcatcat	tggaaaacgt	tcttcggggc	aaaaactctc	9240
aaggatctta	ccgctgttga	gatccagttc	gatgttaaccc	actcgtgcac	ccaaactgatc	9300
ttcagcatct	tttactttca	ccagcggttc	ttgggtgagca	aaaacaggg	ggcaaaatgc	9360
cgcaaaaaaaag	ggaataaggg	cgacacggaa	atgttgaata	ctcataactct	tcccttttca	9420
atattatttga	agcattttatc	agggttattt	tctcatgagc	ggatacatat	ttgaatgtat	9480
ttagaaaaat	aaacaaatag	gggttcccg	cacatttccc	cgaaaagtgc	cacctaaattt	9540
gtaagcgtta	atattttgtt	aaaattcgcg	ttaaattttt	gtttaatcag	ctcatttttt	9600
aaccaatagg	ccgaaatcg	aaaatccct	tataaataaa	aagaatagac	cgagataaggg	9660
ttgagtgttg	ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	ctccaaacgtc	9720
aaaggcgaa	aaaccgtcta	tcagggcgat	ggcccactac	gtgaaccatc	accctaatac	9780
agttttttgg	ggtcgagggt	ccgtaaagca	ctaaatcgaa	accctaaagg	gagcccccg	9840
tttagagctt	gacggggaaa	gccaacctgg	cttatcgaaa	ttaatacgac	tcactatagg	9900
gagaccggca	gatcttgaat	aataaaatgt	gtgtttgtcc	gaaatacgcg	ttttgagatt	9960
tctgtcgccg	actaaattca	tgtcgcgca	tagtgggttt	tatcgccat	agagatggcg	10020
atattggaaa	aattgatatt	tgaaaatatg	gcataattgaa	aatgtcgccg	atgtgatgtt	10080
ctgtgttaact	gatatcgcca	ttttccaaa	agtgattttt	gggcatacgc	gatatcgcc	10140
gatagcgctt	atatcgttt	cgggggatgg	cgatagacga	ctttggtgac	ttggggcatt	10200
ctgtgtgtcg	caaataatcgc	agtttcgata	tagtgacag	acgatatgag	gctatatacg	10260
cgatagaggc	gacatcaagc	tggcacatgg	ccaatgcata	tcgatctata	cattgaatca	10320
atattggcca	ttagccatat	tattcattgg	ttatatacgca	taaatcaata	ttggctattt	10380
gccatttgcat	acgttgtatc	catatcgaa	tatgtacatt	tatattggct	catgtccaaac	10440
attaccgcca	tgttgacatt	gattatttgc	tagttattaa	tagtaatcaa	ttacggggtc	10500

-continued

```

attagttcat agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc 10560
tggctgaccg cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt 10620
aacgccaata gggacttcc attgacgtca atgggtggag tatttacggt aaactgccc 10680
cttggcagta catcaagtgt atcatatgcc aagtccgccc cctattgacg tcaatgacgg 10740
taaatggccc gcctggcatt atgcccagta catgaccta cgggacttcc ctacttggca 10800
gtacatctac gtattagtca tcgcttattac catggtgatg cggtttggc agtacaccaa 10860
tgggcgtgga tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa 10920
tgggagtttgc accatcaacg ggactttca aatatgtcgta acaactgcga 10980
tcgcccggcc cggtgacgca aatggcgggt aggcgtgtac ggtgggaggt ctatataagc 11040
agagctcggtt tagtgaac 11058

```

```

<210> SEQ ID NO 6
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 6

cggatcagat cttgatcaact gcaggctctc attacttgta acaaaggag 50

```

```

<210> SEQ ID NO 7
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 7

agctcggatc cctgcagcat gttcaccagg gattttg 37

```

```

<210> SEQ ID NO 8
<211> LENGTH: 65
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 8

gcggatccgc caccatggaa aaactcatct cagaagagga tctgcccacc cccgacgcca 60
ccacg 65

```

```

<210> SEQ ID NO 9
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 9

gaaccgcggg gactgcccctc ttacc 25

```

```

<210> SEQ ID NO 10
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 10

ggtaaagagg gcagtcggcc 26

```

```

<210> SEQ ID NO 11
<211> LENGTH: 35
<212> TYPE: DNA

```

-continued

<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 11
cgaagcttct agccaatggc actcagcgca tgggc 35

<210> SEQ ID NO 12
<211> LENGTH: 65
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 12
cgagatctgc caccatgtac ccctacgacg tgcccgacta cgccaaacgca agtgaattcc 60
gaagg 65

<210> SEQ ID NO 13
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 13
cgaagcttct actccctctc tgctcgc 27

<210> SEQ ID NO 14
<211> LENGTH: 58
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 14
cgagatctgc caccatggac tacaaggacg acgatgacga gaagggccct gtgcggcg 58

<210> SEQ ID NO 15
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 15
cgaagcttcc agtcctaat gagagtcagg aa 32

<210> SEQ ID NO 16
<211> LENGTH: 77
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 16
cgaagcttgg atccgccacc atggaacaaa aactcatctc agaagaggat ctgaagggcc 60
cctgggttccc aagaaaa 77

<210> SEQ ID NO 17
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 17
cggaattcct agccaatggc actcagcgca tgggc 35

<210> SEQ ID NO 18
<211> LENGTH: 250
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens

-continued

<400> SEQUENCE: 18

```

Met Glu Lys Gly Pro Val Arg Ala Pro Ala Glu Lys Pro Arg Gly Ala
1           5           10          15

Arg Cys Ser Asn Gly Phe Pro Glu Arg Asp Pro Pro Arg Pro Gly Pro
20          25          30

Ser Arg Pro Ala Glu Lys Pro Pro Arg Pro Glu Ala Lys Ser Ala Gln
35          40          45

Pro Ala Asp Gly Trp Lys Gly Glu Arg Pro Arg Ser Glu Glu Asp Asn
50          55          60

Glu Leu Asn Leu Pro Asn Leu Ala Ala Tyr Ser Ser Ile Leu Ser
65           70           75          80

Ser Leu Gly Glu Asn Pro Gln Arg Gln Gly Leu Leu Lys Thr Pro Trp
85           90           95

Arg Ala Ala Ser Ala Met Gln Phe Phe Thr Lys Gly Tyr Gln Glu Thr
100          105          110

Ile Ser Asp Val Leu Asn Asp Ala Ile Phe Asp Glu Asp His Asp Glu
115          120          125

Met Val Ile Val Lys Asp Ile Asp Met Phe Ser Met Cys Glu His His
130          135          140

Leu Val Pro Phe Val Gly Lys Val His Ile Gly Tyr Leu Pro Asn Lys
145          150          155          160

Gln Val Leu Gly Leu Ser Lys Leu Ala Arg Ile Val Glu Ile Tyr Ser
165          170          175

Arg Arg Leu Gln Val Gln Glu Arg Leu Thr Lys Gln Ile Ala Val Ala
180          185          190

Ile Thr Glu Ala Leu Arg Pro Ala Gly Val Gly Val Val Val Glu Ala
195          200          205

Thr His Met Cys Met Val Met Arg Gly Val Gln Lys Met Asn Ser Lys
210          215          220

Thr Val Thr Ser Thr Met Leu Gly Val Phe Arg Glu Asp Pro Lys Thr
225          230          235          240

Arg Glu Glu Phe Leu Thr Leu Ile Arg Ser
245          250

```

<210> SEQ ID NO 19

<211> LENGTH: 753

<212> TYPE: DNA

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 19

```

atggagaagg gcccgtgcg cgccccggcc gagaagccgc gcggcgcccg ctgcagcaat      60
gggtccccc agcgcgaccc gccgcgcccc gggcccgagca ggccggccga gaagcccccg      120
cgccccgagg ccaagagcgc gcagccccgcg gacggctgga agggcgagcg ccccccgcagc      180
gaggaggaca acgagctgaa cttccctaac ctggccgcgg cctactctc catcctgagc      240
tcgctggcg agaaccggca gcggcagggg ctgctcaaga cccctggag ggccggcctcg      300
gccatgcagt tcttcaccaa gggctaccag gagaccatct cagacgtcct gaacgcacgt      360
atcttcgacg aagatcacga tgagatggtg atcgtgaagg acatagacat gttctccatg      420
tgcgagcacc acctgggtcc atttgtggaa aaggtccata tcggctacct gcctaacaag      480
caggtcctgg gcctcagcaa gctggcgagg attgtggaaa tctatagtag aagactacag      540

```

-continued

gttcaggagc	gccttaccaa	acaaattgct	gtggcaatca	cggaagcctt	gcggcctgct	600
ggagtccccgg	tcgtgggtgg	agcaacacac	atgtgtatgg	tgtgcgagg	tgtacagaaa	660
atgaacagca	aaaccgtgac	cagcacaatg	ctgggtgtgt	tccgggagga	tccaaagact	720
cgggaagagt	tcctgactct	catcaggagc	tga			753

<210> SEQ ID NO 20

<211> LENGTH: 250

<212> TYPE: PRT

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 20

Met	Glu	Lys	Gly	Pro	Val	Arg	Ala	Pro	Glu	Lys	Pro	Arg	Gly	Ala
1	5	10							15					

Arg	Cys	Ser	Asn	Gly	Phe	Pro	Glu	Arg	Asp	Pro	Pro	Arg	Pro	Gly	Pro
20	25								30						

Ser	Arg	Pro	Ala	Glu	Lys	Pro	Pro	Arg	Pro	Glu	Ala	Lys	Ser	Ala	Gln
35	40									45					

Pro	Ala	Asp	Gly	Trp	Lys	Gly	Glu	Arg	Pro	Arg	Ser	Glu	Glu	Asp	Asn
50	55								60						

Glu	Leu	Asn	Leu	Pro	Asn	Leu	Ala	Ala	Tyr	Ser	Ser	Ile	Leu	Ser
65	70								75			80		

Ser	Leu	Gly	Glu	Asn	Pro	Gln	Arg	Gln	Gly	Leu	Leu	Lys	Thr	Pro	Trp
85	90								95						

Arg	Ala	Ala	Ser	Ala	Met	Gln	Phe	Phe	Thr	Lys	Gly	Tyr	Gln	Glu	Thr
100	105								110						

Ile	Ser	Asp	Val	Leu	Asn	Asp	Ala	Ile	Phe	Asp	Glu	Asp	His	Asp	Glu
115	120								125						

Met	Val	Ile	Val	Lys	Asp	Ile	Asp	Met	Phe	Ser	Met	Cys	Glu	His	His
130	135								140						

Leu	Val	Pro	Phe	Val	Gly	Lys	Val	His	Ile	Gly	Tyr	Leu	Pro	Asn	Lys
145	150							155		160					

Gln	Val	Leu	Gly	Leu	Ser	Lys	Leu	Ala	Arg	Ile	Val	Glu	Ile	Tyr	Ser
165	170								175						

Arg	Arg	Leu	Gln	Val	Gln	Glu	Arg	Leu	Thr	Lys	Gln	Ile	Ala	Val	Ala
180	185								190						

Ile	Thr	Glu	Ala	Leu	Arg	Pro	Ala	Gly	Val	Gly	Val	Val	Val	Glu	Ala
195	200								205						

Thr	His	Met	Cys	Met	Val	Met	Arg	Gly	Val	Gln	Lys	Met	Asn	Ser	Lys
210	215								220						

Thr	Val	Thr	Ser	Thr	Met	Leu	Gly	Val	Phe	Arg	Glu	Asp	Pro	Lys	Thr
225	230								235		240				

Arg	Glu	Glu	Phe	Leu	Thr	Leu	Ile	Arg	Ser						
245	250														

<210> SEQ ID NO 21

<211> LENGTH: 753

<212> TYPE: DNA

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 21

atggagaagg	ccccctgtcg	ggcacccggcg	gagaagccgc	ggggcgccag	gtgcagcaat	60
gggttccccg	agcgggatcc	gcccggggccc	ggggccagca	ggccggcgga	gaagcccccg	120

-continued

cggccccgagg	ccaagagcgc	gcagccccgc	gacggctgga	agggcgagcg	ccccccgc	180
gaggaggata	acgagctgaa	cctccctaaac	ctggcagccg	cctactcgtc	catcctgagc	240
tcgcgtggcg	agaacccca	gcccgaaggg	ctgctcaaga	cgcctggag	ggcgccctcg	300
gccccatgcagt	tcttcaccaa	gggctaccag	gagaccatct	cagatgtcct	aaacgatgct	360
atatttgatg	aagatcatga	tgagatgtg	attgtgaagg	acatagacat	gtttccatg	420
tgtgagcatc	acttggttcc	atttggtggaa	aaggccata	ttggttatct	tcctaacaag	480
caagtcccttgc	cctcagccaa	acttgcgagg	attttagaaa	tctatagtag	aagactacaa	540
gttcaggagc	gccttacaaa	acaaattgt	gtagcaatca	cggaaaggc	tttgcgtct	600
ggagtcgggg	tagtggttga	agcaacacac	atgtgtatgg	taatgcgagg	tgtacagaaa	660
atgaacacgca	aaactgtgac	cagcacaatg	ttgggtgtgt	tccgggagga	tccaaagact	720
cqqqaaqagt	tcctqactct	cattaaqqaqc	tqa			753

<210> SEQ ID NO 22

<211> LENGTH: 338

<212> LENGTH: 33

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 22

Met Val Lys Val Pro Trp Phe Pro Arg Lys Val Ser Glu Leu Asp Lys
1 5 10 15

Cys His His Leu Val Thr Lys Phe Asp Pro Asp Leu Asp Leu Asp His
20 25 30

Pro Gly Phe Ser Asp Gln Val Tyr Arg Gln Arg Arg Lys Leu Ile Ala
35 40 45

Glu Ile Ala Phe Gln Tyr Arg His Gly Asp Pro Ile Pro Arg Val Glu
50 55 60

Tyr Thr Ala Glu Glu Ile Ala Thr Trp Lys Glu Val Tyr Thr Thr Leu
 65 70 75 80

Lys Gly Leu Tyr Ala Thr His Ala Cys Gly Glu His Leu Glu Ala Phe
85 90 95

Ala Leu Leu Glu Arg Phe Ser Gly Tyr Arg Glu Asp Asn Ile Pro Gln
100 105 110

Leu Glu Asp Val Ser Arg Phe Leu Lys Glu Arg Thr Gly Phe Gln Leu
115 120 125

Arg Pro Val Ala Gly Leu Leu Ser Ala Arg Asp Phe Leu Ala Ser Leu
130 135 140

Ala Phe Arg Val Phe Gln Cys Thr Gln Tyr Ile Arg His Ala Ser Ser
145 150 155 160

Pro Met His Ser Pro Glu Pro Asp Cys Cys His Glu Leu Leu Gly His
165 170 175

Val Pro Met Leu Ala Asp Arg Thr Phe Ala Gln Phe Ser Gln Asp Ile
180 185 190

Gly Leu Ala Ser Leu Gly Ala Ser Asp Glu Glu Ile Glu Lys Leu Ser
195 200 205

Thr Leu Tyr Trp Phe Thr Val Glu Phe Gly Leu Cys Lys Gln Asn Gly
 210 215 220

Glu Val Lys Ala Tyr Gly Ala Gly Leu Leu Ser Ser Tyr Gly Glu Leu
 225 230 235 240

Leu His Cys Leu Ser Glu Glu Pro Glu Ile Arg Ala Phe Asp Pro Glu

-continued

245	250	255	
Ala Ala Ala Val Gln Pro Tyr Gln Asp Gln Thr Tyr Gln Ser Val Tyr			
260	265	270	
Phe Val Ser Glu Ser Phe Ser Asp Ala Lys Asp Lys Leu Arg Ser Tyr			
275	280	285	
Ala Ser Arg Ile Gln Arg Pro Phe Ser Val Lys Phe Asp Pro Tyr Thr			
290	295	300	
Leu Ala Ile Asp Val Leu Asp Ser Pro Gln Ala Val Arg Arg Ser Leu			
305	310	315	320
Glu Gly Val Gln Asp Glu Leu Asp Thr Leu Ala His Ala Leu Ser Ala			
325	330	335	
Ile Gly			

<210> SEQ ID NO 23

<211> LENGTH: 1014

<212> TYPE: DNA

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 23

atgggtgaagg taccctgggtt cccaagaaaa gtgtcagagc tggacaagtg tcacacacgt	60
gtcaccaagt tcgaccccgaa cctggacttg gaccaccccg gcttctcgga ccaggtgtac	120
cgcacagcgca ggaagctgtat cgctgagatc gccttccagt acaggcacgg cgacccgatc	180
ccccgtgtgg agtacaccgcg cgaggagatc gccacctgga aggaggtcta caccacccctg	240
aaggggctct acgcccaccca cgcctgcggg gagcacctgg aggcccttgc tttgctggag	300
cgcttcagcg gctaccggga agacaacatc ccccaagatgg aggacgttctc ccgccttccgt	360
aaggagcgca caggcttcca gctgcggccc gtggccggcc tgctgtccgc ccgggacttc	420
ctggccagcc tggccttcccg cgtgttccag tgacccaggat atatccgcca cgcgttctcg	480
cccatgcact cccctgagcc ggactgtgcg cacgagctgc tggggcacgt gccccatgtcg	540
ggcgaccgca ctttcgcgca gttcagccag gacatcgccg tggcgtccct gggggccagc	600
gatgaggaaa tcgagaagct gtccactctg tactggttca cggtgaggatt cgggctgtgt	660
aagcagaacg gggaggtgaa ggcctatggt gcccggctgc tgccctccata cggggagctc	720
ctgcactgcc tgcgttggaa gcctgagatc cggggcttccg accctgaggc tgccggccgt	780
cagccctacc aagaccagac gtaccagtca gtctacttccg tgcgttggaa cttcagcgac	840
gccaaggaca agctcaggag ctatgccagc cgcacccatc gccccttctc cgtgaagttc	900
gaccctgtaca ccctggccat cgacgtgtcg gacagcccc agggcgtgcg gcgctccctg	960
gagggtgtcc aggatgagct ggacaccctt gcccacccatc tgacgcgttccat cggc	1014

<210> SEQ ID NO 24

<211> LENGTH: 338

<212> TYPE: PRT

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 24

Met Val Lys Val Pro Trp Phe Pro Arg Lys Val Ser Glu Leu Asp Lys			
1	5	10	15
Cys His His Leu Val Thr Lys Phe Asp Pro Asp Leu Asp Leu Asp His			
20	25	30	
Pro Gly Phe Ser Asp Gln Val Tyr Arg Gln Arg Arg Lys Leu Ile Ala			

-continued

35	40	45
Glu Ile Ala Phe Gln Tyr Arg His Gly Asp Pro Ile Pro Arg Val Glu		
50	55	60
Tyr Thr Ala Glu Glu Ile Ala Thr Trp Lys Glu Val Tyr Thr Thr Leu		
65	70	75
Lys Gly Leu Tyr Ala Thr His Ala Cys Gly Glu His Leu Glu Ala Phe		
85	90	95
Ala Leu Leu Glu Arg Phe Ser Gly Tyr Arg Glu Asp Asn Ile Pro Gln		
100	105	110
Leu Glu Asp Val Ser Arg Phe Leu Lys Glu Arg Thr Gly Phe Gln Leu		
115	120	125
Arg Pro Val Ala Gly Leu Leu Ser Ala Arg Asp Phe Leu Ala Ser Leu		
130	135	140
Ala Phe Arg Val Phe Gln Cys Thr Gln Tyr Ile Arg His Ala Ser Ser		
145	150	155
Pro Met His Ser Pro Glu Pro Asp Cys Cys His Glu Leu Leu Gly His		
165	170	175
Val Pro Met Leu Ala Asp Arg Thr Phe Ala Gln Phe Ser Gln Asp Ile		
180	185	190
Gly Leu Ala Ser Leu Gly Ala Ser Asp Glu Glu Ile Glu Lys Leu Ser		
195	200	205
Thr Leu Ser Trp Phe Thr Val Glu Phe Gly Leu Cys Lys Gln Asn Gly		
210	215	220
Glu Val Lys Ala Tyr Gly Ala Gly Leu Leu Ser Ser Tyr Gly Glu Leu		
225	230	235
Leu His Cys Leu Ser Glu Glu Pro Glu Ile Arg Ala Phe Asp Pro Glu		
245	250	255
Ala Ala Ala Val Gln Pro Tyr Gln Asp Gln Thr Tyr Gln Ser Val Tyr		
260	265	270
Phe Val Ser Glu Ser Phe Ser Asp Ala Lys Asp Lys Leu Arg Ser Tyr		
275	280	285
Ala Ser Arg Ile Gln Arg Pro Phe Ser Val Lys Phe Asp Pro Tyr Thr		
290	295	300
Leu Ala Ile Asp Val Leu Asp Ser Pro Gln Ala Val Arg Arg Ser Leu		
305	310	315
Glu Gly Val Gln Asp Glu Leu Asp Thr Leu Ala His Ala Leu Ser Ala		
325	330	335
Ile Gly		

```

<210> SEQ_ID NO 25
<211> LENGTH: 1017
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 25

atggtaagg taccctgggtt cccaagaaaa gtgtcagagc tggacaagtg tcacacactg 60
gtcaccaagt tcgaccccgat cctggacttg gaccaccccg gcttctcgga ccaggtgtac 120
cgccagcgca ggaagctgat cgctgagatc gccttccagt acaggcacgg cgacccgatc 180
ccccgtgtgg agtacaccgc cgaggagatc gccacctgga aggaggtcta caccaccctg 240
aagggcctct acgccaccca cgccctgcggg gagcacctgg aggcctttgc tttgtggag 300

```

-continued

cgcttcagcg	gctaccggga	agacaacatc	ccccagctgg	aggacgtctc	ccgcttcctg	360
aaggagcgca	caggcttcca	gctgcggccc	gtggccggcc	tgctgtccgc	ccgggacttc	420
ctggccagcc	tggccttccg	cgtgttccag	tgcacccagt	atatccgcca	cgcgtccctcg	480
cccatgcact	cccctgagcc	ggactgctgc	cacgagctgc	tggggcagct	gccccatgctg	540
gccgaccgca	ctttcgcgca	gttcagccag	gacatcgcc	tggcgtccct	gggggcccagc	600
gatgaggaaa	tcgagaagct	gtccactctg	tcatggttca	cggtgaggatt	cgggctgtgt	660
aagcagaacg	gggaggtgaa	ggcctatggt	gccgggctgc	tgtcctccct	cggggagctc	720
ctgcaactgcc	tgtctgagga	gcctgagatc	cgggccttcg	accctgaggc	tgccggccgtg	780
cagccctacc	aagaccagac	gtaccagtca	gtctacttcg	tgtctgagag	cttcagcgcac	840
gccaaggaca	agctcaggag	ctatgccagc	cgcacccgc	gcccccttc	cgtgaagttc	900
gaccctgtaca	ccctggccat	cgacgtgtcg	gacagcccc	aggccgtgcg	gcccgtccctg	960
gagggtgtcc	aggatgagct	ggacaccctt	gccccatgcgc	tgagcgcct	cggctga	1017

<210> SEQ ID NO 26

<211> LENGTH: 338

<212> TYPE: PRT

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 26

Met	Val	Lys	Val	Pro	Trp	Phe	Pro	Arg	Lys	Val	Ser	Glu	Leu	Asp	Lys
1					5			10				15			
Cys	His	His	Leu	Val	Thr	Lys	Phe	Asp	Pro	Asp	Leu	Asp	Leu	Asp	His
					20			25				30			
Pro	Gly	Phe	Ser	Asp	Gln	Val	Tyr	Arg	Gln	Arg	Arg	Lys	Leu	Ile	Ala
					35			40			45				
Glu	Ile	Ala	Phe	Gln	Tyr	Arg	His	Gly	Asp	Pro	Ile	Pro	Arg	Val	Glu
					50			55			60				
Tyr	Thr	Ala	Glu	Glu	Ile	Ala	Thr	Trp	Lys	Glu	Val	Tyr	Thr	Thr	Leu
					65			70			75			80	
Lys	Gly	Leu	Tyr	Ala	Thr	His	Ala	Cys	Gly	Glu	His	Leu	Glu	Ala	Phe
					85			90			95				
Ala	Leu	Leu	Glu	Arg	Phe	Ser	Gly	Tyr	Arg	Glu	Asp	Asn	Ile	Pro	Gln
					100			105			110				
Leu	Glu	Asp	Val	Ser	Arg	Phe	Leu	Lys	Glu	Arg	Thr	Gly	Phe	Gln	Leu
					115			120			125				
Arg	Pro	Val	Ala	Gly	Leu	Leu	Ser	Ala	Arg	Asp	Phe	Leu	Ala	Ser	Leu
					130			135			140				
Ala	Phe	Arg	Val	Phe	Gln	Cys	Thr	Gln	Tyr	Ile	Arg	His	Ala	Ser	Ser
					145			150			155			160	
Pro	Met	His	Ser	Pro	Glu	Pro	Asp	Cys	Cys	His	Glu	Leu	Leu	Gly	His
					165			170			175				
Val	Pro	Met	Leu	Ala	Asp	Arg	Thr	Phe	Ala	Gln	Phe	Ser	Gln	Asp	Ile
					180			185			190				
Gly	Leu	Ala	Ser	Leu	Gly	Ala	Ser	Asp	Glu	Glu	Ile	Glu	Lys	Leu	Ser
					195			200			205				
Thr	Leu	Tyr	Trp	Phe	Thr	Val	Glu	Phe	Gly	Leu	Cys	Lys	Gln	Asn	Gly
					210			215			220				
Glu	Val	Lys	Ala	Tyr	Gly	Ala	Gly	Leu	Leu	Ser	Ser	Tyr	Gly	Glu	Leu
					225			230			235			240	

-continued

Leu His Cys Leu Ser Glu Glu Pro Glu Ile Arg Ala Phe Asp Pro Glu
 245 250 255

Ala Ala Ala Val Gln Pro Tyr Gln Asp Gln Thr Tyr Gln Ser Val Tyr
 260 265 270

Phe Val Ser Glu Ser Phe Ser Asp Ala Lys Asp Lys Leu Arg Ser Tyr
 275 280 285

Ala Ser Arg Ile Gln Arg Pro Phe Ser Val Lys Phe Asp Pro Tyr Thr
 290 295 300

Leu Ala Ile Asp Val Leu Asp Ser Pro Gln Ala Val Arg Arg Ser Leu
 305 310 315 320

Glu Gly Val Gln Asp Glu Leu Asp Thr Leu Ala His Ala Leu Ser Ala
 325 330 335

Ile Gly

<210> SEQ ID NO 27
 <211> LENGTH: 1017
 <212> TYPE: DNA
 <213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 27

atggtaagg taccctggtt cccaagaaaa gtgtcagagc tggacaagtg tcacacactg 60
 gtcaccaagt tcgaccctga cctggacttg gaccacccgg gcttctcgga ccaggtgtac 120
 cgccagcgca ggaagctgat tgctgagatc gccttccagt acaggcacgg cgaccggatt 180
 cccctgtgtgg agtacaccgcg cgaggagatt gccacctgga aggaggtcta caccacgctg 240
 aaggccctct acgccacgca cgccctgcggg gagcacctgg aggcctttgc tttgtggag 300
 cgcttcagcg gctaccggga agacaatatac ccccaagctgg aggacgtctc ccgccttcctg 360
 aaggagcgca cgggcttcca gctgccccct gtggccggcc tgctgtccgc ccgggacttc 420
 ctggccagcc tggccttccg cgtgttccag tgacccctgt atatccggca cgcgttctcg 480
 cccatgcact cccctgagcc ggactgctgc cacgagctgc tggggcacgt gcccattgt 540
 gccgaccgca ctttcgcgc gttctcgcag gacattggcc tggcgttccct gggggctcg 600
 gatgaggaaa ttgagaagct gtccacgttg tactggttca cggtgagatt cgggctgtgt 660
 aacgagaacg gggaggtgaa ggcctatggt gccccggctgc tggccttctca cggggagctc 720
 ctgcactgcc tggctgagga gcctgagatt cgggcttccg accctgaggc tgccggccgtg 780
 cagcccttacc aagaccagac gtaccaggta gtctacttccg tggctgagag cttcagtgtac 840
 gccaaggaca agctcaggag ctatgcctca cgcattccagc gccccttctc cgtgaagttc 900
 gaccctgtaca cgtggccat cgacgtgtccg gacagcccccc agggccgtgc ggcgttccctg 960
 gaggggtgtcc aggatgagct ggacaccctt gcccattgcgc tgagtgcctat tggctag 1017

<210> SEQ ID NO 28
 <211> LENGTH: 501
 <212> TYPE: PRT
 <213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 28

Met Pro Thr Pro Asp Ala Thr Thr Pro Gln Ala Lys Gly Phe Arg Arg
 1 5 10 15

Ala Val Ser Glu Leu Asp Ala Lys Gln Ala Glu Ala Ile Met Val Arg
 20 25 30

-continued

Gly Gln Ser Pro Arg Phe Ile Gly Arg Arg Gln Ser Leu Ile Glu Asp
 35 40 45
 Ala Arg Lys Glu Arg Glu Ala Ala Val Ala Ala Ala Ala Ala Val
 50 55 60
 Pro Ser Glu Pro Gly Asp Pro Leu Glu Ala Val Ala Phe Glu Glu Lys
 65 70 75 80
 Glu Gly Lys Ala Val Leu Asn Leu Leu Phe Ser Pro Arg Ala Thr Lys
 85 90 95
 Pro Ser Ala Leu Ser Arg Ala Val Lys Val Phe Glu Thr Phe Glu Ala
 100 105 110
 Lys Ile His His Leu Glu Thr Arg Pro Ala Gln Arg Pro Arg Ala Gly
 115 120 125
 Gly Pro His Leu Glu Tyr Phe Val Arg Leu Glu Val Arg Arg Gly Asp
 130 135 140
 Leu Ala Ala Leu Leu Ser Gly Val Arg Gln Val Ser Glu Asp Val Arg
 145 150 155 160
 Ser Pro Ala Gly Pro Lys Val Pro Trp Phe Pro Arg Lys Val Ser Glu
 165 170 175
 Leu Asp Lys Cys His His Leu Val Thr Lys Phe Asp Pro Asp Leu Asp
 180 185 190
 Leu Asp His Pro Gly Phe Ser Asp Gln Val Tyr Arg Gln Arg Arg Lys
 195 200 205
 Leu Ile Ala Glu Ile Ala Phe Gln Tyr Arg His Gly Asp Pro Ile Pro
 210 215 220
 Arg Val Glu Tyr Thr Ala Glu Glu Ile Ala Thr Trp Lys Glu Val Tyr
 225 230 235 240
 Thr Thr Leu Lys Gly Leu Tyr Ala Thr His Ala Cys Gly Glu His Leu
 245 250 255
 Glu Ala Phe Ala Leu Leu Glu Arg Phe Ser Gly Tyr Arg Glu Asp Asn
 260 265 270
 Ile Pro Gln Leu Glu Asp Val Ser Arg Phe Leu Lys Glu Arg Thr Gly
 275 280 285
 Phe Gln Leu Arg Pro Val Ala Gly Leu Leu Ser Ala Arg Asp Phe Leu
 290 295 300
 Ala Ser Leu Ala Phe Arg Val Phe Gln Cys Thr Gln Tyr Ile Arg His
 305 310 315 320
 Ala Ser Ser Pro Met His Ser Pro Glu Pro Asp Cys Cys His Glu Leu
 325 330 335
 Leu Gly His Val Pro Met Leu Ala Asp Arg Thr Phe Ala Gln Phe Ser
 340 345 350
 Gln Asp Ile Gly Leu Ala Ser Leu Gly Ala Ser Asp Glu Glu Ile Glu
 355 360 365
 Lys Leu Ser Thr Leu Tyr Trp Phe Thr Val Glu Phe Gly Leu Cys Lys
 370 375 380
 Gln Asn Gly Glu Val Lys Ala Tyr Gly Ala Gly Leu Leu Ser Ser Tyr
 385 390 395 400
 Gly Glu Leu Leu His Cys Leu Ser Glu Glu Pro Glu Ile Arg Ala Phe
 405 410 415
 Asp Pro Glu Ala Ala Ala Val Gln Pro Tyr Gln Asp Gln Thr Tyr Gln
 420 425 430

-continued

Ser	Val	Tyr	Phe	Val	Ser	Glu	Ser	Phe	Ser	Asp	Ala	Lys	Asp	Lys	Leu
435						440					445				

Arg	Ser	Tyr	Ala	Ser	Arg	Ile	Gln	Arg	Pro	Phe	Ser	Val	Lys	Phe	Asp
450						455					460				

Pro	Tyr	Thr	Leu	Ala	Ile	Asp	Val	Leu	Asp	Ser	Pro	Gln	Ala	Val	Arg
465						470				475			480		

Arg	Ser	Leu	Glu	Gly	Val	Gln	Asp	Glu	Leu	Asp	Thr	Leu	Ala	His	Ala
						485			490			495			

Leu	Ser	Ala	Ile	Gly											
					500										

<210> SEQ ID NO 29

<211> LENGTH: 1506

<212> TYPE: DNA

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 29

atgcccaccc	ccgacgcccac	cacgcccacag	gccaagggt	tccgcagggc	cgtgtctgag	60
ctggacgcca	agcaggcaga	ggccatcatg	gtaagaggc	agtccccggc	gttcattggg	120
cgcaggcaga	gcctcatgca	ggacgcccgc	aaggagcggg	aggcggcgggt	ggcagcagcg	180
gccgctgcag	tcccctcgga	gcccggggac	cccctggagg	ctgtggcctt	tgaggagaag	240
gaggggaaagg	ccgtgctaaa	cctgcttcc	tcccgaggg	ccaccaagcc	ctcggcgctg	300
tcccgagctg	tgaagggttt	tgagacgttt	gaagccaaa	tccaccatct	agagacccgg	360
cccgccccaga	ggccgcgagc	tgggggcccc	cacctggagt	acttcgtcg	cctcgagggt	420
cgcggagggg	acctggccgc	cctgctcagt	ggtgtgcgccc	aggtgtcaga	ggacgtgcgc	480
agcccccgcc	ggeccaagggt	cccctggttc	ccaagaaaa	tgtcagagct	ggacaagtgt	540
catcacctgg	tcaccaagtt	cgaccctgac	ctggacttgg	accacccggg	cttctoggac	600
cagggtgtacc	gccagcgcag	gaagctgatt	gctgagatcg	ccttccagta	caggcacggc	660
gaccggattc	cccggtgtgga	gtacacccgc	gaggagattg	ccacctggaa	ggaggtctac	720
accacgctga	agggcctcta	cgccacgcac	gcctgcgggg	agcacctgga	ggcctttgct	780
ttgctggagc	gtttcagegg	ctaccggaa	gacaatatcc	cccagctgga	ggacgtctcc	840
cgcttcctga	aggagcgcac	gggcttccag	ctgcggccctg	tggccggcct	gtgtccgccc	900
cgggacttcc	tggccagect	ggccttccgc	gtgttccagt	gcacccagta	tatccggcac	960
gcgtcctcgc	ccatgcactc	ccctgagccg	gactgtgcc	acgagctgt	ggggcacgtg	1020
cccatgctgg	ccgaccgcac	cttcgcgcag	ttctcgcaagg	acatggct	ggcgtccctg	1080
ggggcctcgg	atgagaaat	tgagaagctg	tccacgctgt	actggttcac	ggtgaggatc	1140
gggctgtgta	agcagaacgg	ggaggtgaag	gcctatggtg	ccgggctgt	gtcctctac	1200
ggggagctcc	tgcactgect	gtctgaggag	cctgagattc	gggccttgc	ccctgaggct	1260
gcggccgtgc	agccctacca	agaccagacg	taccagtcag	tctacttcgt	gtctgagac	1320
ttcagtgacg	ccaaggacaa	gctcaggagc	tatgcctcac	gcatccagcg	cccttctcc	1380
gtgaagttcg	accctacac	gctggccatc	gacgtgctgg	acagccccca	ggccgtgcgg	1440
cgctccctgg	agggtgtcca	ggatgagctg	gacacccttg	cccatgcgt	gagtgcatt	1500
ggcttag						1506

-continued

<210> SEQ ID NO 30

<211> LENGTH: 480

<212> TYPE: PRT

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 30

Met	Asp	Ala	Ser	Glu	Phe	Arg	Arg	Gly	Lys	Glu	Met	Val	Asp	Tyr	
1				5				10				15			
Val	Ala	Asn	Tyr	Met	Glu	Gly	Ile	Glu	Gly	Arg	Gln	Val	Tyr	Pro	Asp
	20				25					30					
Val	Glu	Pro	Gly	Tyr	Leu	Arg	Pro	Leu	Ile	Pro	Ala	Ala	Ala	Pro	Gln
	35				40				45						
Glu	Pro	Asp	Thr	Phe	Glu	Asp	Ile	Ile	Asn	Asp	Val	Glu	Lys	Ile	Ile
	50				55				60						
Met	Pro	Gly	Val	Thr	His	Trp	His	Ser	Pro	Tyr	Phe	Phe	Ala	Tyr	Phe
65					70			75						80	
Pro	Thr	Ala	Ser	Ser	Tyr	Pro	Ala	Met	Leu	Ala	Asp	Met	Leu	Cys	Gly
	85					90			95						
Ala	Ile	Gly	Cys	Ile	Gly	Phe	Ser	Trp	Ala	Ala	Ser	Pro	Ala	Cys	Thr
	100				105				110						
Glu	Leu	Glu	Thr	Val	Met	Met	Asp	Trp	Leu	Gly	Lys	Met	Leu	Glu	Leu
	115				120				125						
Pro	Lys	Ala	Phe	Leu	Asn	Glu	Lys	Ala	Gly	Glu	Gly	Gly	Val	Ile	
	130				135				140						
Gln	Gly	Ser	Ala	Ser	Glu	Ala	Thr	Leu	Val	Ala	Leu	Leu	Ala	Ala	Arg
145					150			155					160		
Thr	Lys	Val	Ile	His	Arg	Leu	Gln	Ala	Ala	Ser	Pro	Glu	Leu	Thr	Gln
	165					170			175						
Ala	Ala	Ile	Met	Glu	Lys	Leu	Val	Ala	Tyr	Ser	Ser	Asp	Gln	Ala	His
	180				185			190							
Ser	Ser	Val	Glu	Arg	Ala	Gly	Leu	Ile	Gly	Gly	Val	Lys	Leu	Lys	Ala
	195					200			205						
Ile	Pro	Ser	Asp	Gly	Asn	Phe	Ala	Met	Arg	Ala	Ser	Ala	Leu	Gln	Glu
	210					215			220						
Ala	Leu	Glu	Arg	Asp	Lys	Ala	Ala	Gly	Leu	Ile	Pro	Phe	Phe	Met	Val
225					230			235			240				
Ala	Thr	Leu	Gly	Thr	Thr	Cys	Cys	Ser	Phe	Asp	Asn	Leu	Leu	Glu	
	245					250			255						
Val	Gly	Pro	Ile	Cys	Asn	Lys	Glu	Asp	Ile	Trp	Leu	His	Val	Asp	Ala
	260					265			270						
Ala	Tyr	Ala	Gly	Ser	Ala	Phe	Ile	Cys	Pro	Glu	Phe	Arg	His	Leu	Leu
	275					280			285						
Asn	Gly	Val	Glu	Phe	Ala	Asp	Ser	Phe	Asn	Phe	Asn	Pro	His	Lys	Trp
	290				295			300							
Leu	Leu	Val	Asn	Phe	Asp	Cys	Ser	Ala	Met	Trp	Val	Lys	Lys	Arg	Thr
305					310			315			320				
Asp	Leu	Thr	Gly	Ala	Phe	Arg	Leu	Asp	Pro	Thr	Tyr	Leu	Lys	His	Ser
	325					330				335					
His	Gln	Asp	Ser	Gly	Leu	Ile	Thr	Asp	Tyr	Arg	His	Trp	Gln	Ile	Pro
	340				345			350							
Leu	Gly	Arg	Arg	Phe	Arg	Ser	Leu	Lys	Met	Trp	Phe	Val	Phe	Arg	Met
	355				360			365							

-continued

Tyr	Gly	Val	Lys	Gly	Leu	Gln	Ala	Tyr	Ile	Arg	Lys	His	Gln	Leu	
370					375						380				
Ser	His	Glu	Phe	Glu	Ser	Leu	Val	Arg	Gln	Asp	Pro	Arg	Phe	Glu	Ile
385					390					395				400	
Cys	Val	Glu	Val	Ile	Leu	Gly	Leu	Val	Cys	Phe	Arg	Leu	Lys	Gly	Ser
				405					410				415		
Asn	Lys	Val	Asn	Glu	Ala	Leu	Leu	Gln	Arg	Ile	Asn	Ser	Ala	Lys	Lys
					420			425				430			
Ile	His	Leu	Val	Pro	Cys	His	Leu	Arg	Asp	Lys	Phe	Val	Leu	Arg	Phe
					435			440				445			
Ala	Ile	Cys	Ser	Arg	Thr	Val	Glu	Ser	Ala	His	Val	Gln	Arg	Ala	Trp
						450		455				460			
Glu	His	Ile	Lys	Glu	Leu	Ala	Ala	Asp	Val	Leu	Arg	Ala	Glu	Arg	Glu
						465		470			475			480	

<210> SEQ ID NO 31
<211> LENGTH: 1443
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 31

atggacgcca gtgagttccg aaggcgccg aaggagatgg tggactacgt ggccaactac 60
atggaaggca tcgaggggccg ccaagtctac cccgacgtgg agccggcta cctgcggccg 120
ctgatccccg cccgctgcccc tcaggagccc gacacccctcg aggacatcat caacgacgtg 180
gagaagatca tcatgcctgg cgtgacgcac tggcacagcc cctacttctt cgcctacttc 240
cccaccgcca gtcgtaccc ggccatgctg gcggacatgc tgcgtggggc cattggctgc 300
atcggtctctt cctggggcgc gagcccgacg tgccacggc tggagaccgt gatgtggac 360
tggctcgaaa agatgctgga gctccaaag gcgttcttga acgagaaggc tggcgagggg 420
ggcgccgtga tccaggggcag cgccagcggag gcccacccctgg tggccctgct ggccgctcg 480
accaaagtga tccaccggct gcaggcagcg tccccagagc tcacccaggc cgctatcatg 540
gagaagctgg tggcttactc ctccgatcg gcacactctt ccgtggaaacg cgctgggctc 600
atgggtggag tgaagctcaa ggccatcccc agcgatggca acttcgccccat gcgtgcgagc 660
gcccctgcagg aagccctgga gagagacaag gcggctggcc tgattccctt cttcatggtg 720
gcccacccctgg ggaccacaaac atgctgctcc ttgcacaacc tcctcgaagt cggtccatc 780
tgcaacaagg aagacatctg gctgcacgtt gatgcagccct acgcaggcag cgccattcatc 840
tgccctgagttccggcacct tctgaacggg gtggagttcg cagatacgctt caacttcaat 900
ccccacaagaatggctattggtaatggcacttgcacggccatggaa gaagcgcacc 960
gacccacgg gggcttccg cctggacccc acttacccatgaa agcacagccca ccaggattca 1020
gggcttcatca ctgactacccg gcactggcag atcccaactgg gccgcagatcccgccatgg 1080
aagatgtggatcgatgtatggatgtggatggcgtcaaggatggcgttgcaggatggatccatgg 1140
catgtccacgg tggccatgtatggatgtggatggcgtcaaggatggcgttgcaggatggatccatgg 1200
tgtgtggaaatgttgcctggg gcttgcctgc tttccggatggatggatggcgttgcaggatgg 1260
gaagcttc tgcacaaaggatgcacatggcgtcaaggatggcgttgcaggatggatccatgg 1320
agggacaatgttgcctgc gcttgcctgc tggccatgtatggatggcgttgcaggatggatccatgg 1380
cagccggccatggatggcgtcaaggatggcgttgcaggatggatccatgg 1440

-continued

tag		1443													
<210> SEQ ID NO 32															
<211> LENGTH: 480															
<212> TYPE: PRT															
<213> ORGANISM: Homo Sapiens															
<400> SEQUENCE: 32															
Met	Asn	Ala	Ser	Glu	Phe	Arg	Arg	Gly	Lys	Glu	Met	Val	Asp	Tyr	
1				5				10			15				
Val	Ala	Asn	Tyr	Met	Glu	Gly	Ile	Glu	Gly	Arg	Gln	Val	Tyr	Pro	Asp
				20				25			30				
Val	Glu	Pro	Gly	Tyr	Leu	Arg	Pro	Leu	Ile	Pro	Ala	Ala	Ala	Pro	Gln
	35				40				45						
Glu	Pro	Asp	Thr	Phe	Glu	Asp	Ile	Ile	Asn	Asp	Val	Glu	Lys	Ile	Ile
	50				55				60						
Met	Pro	Gly	Val	Thr	His	Trp	His	Ser	Pro	Tyr	Phe	Phe	Ala	Tyr	Phe
65					70				75			80			
Pro	Thr	Ala	Ser	Ser	Tyr	Pro	Ala	Met	Leu	Ala	Asp	Met	Leu	Cys	Gly
	85					90				95					
Ala	Ile	Gly	Cys	Ile	Gly	Phe	Ser	Trp	Ala	Ala	Ser	Pro	Ala	Cys	Thr
	100				105				110						
Glu	Leu	Glu	Thr	Val	Met	Met	Asp	Trp	Leu	Gly	Lys	Met	Leu	Glu	Leu
	115				120				125						
Pro	Lys	Ala	Phe	Leu	Asn	Glu	Lys	Ala	Gly	Glu	Gly	Gly	Val	Ile	
	130				135				140						
Gln	Gly	Ser	Ala	Ser	Glu	Ala	Thr	Leu	Val	Ala	Leu	Leu	Ala	Arg	
145					150				155			160			
Thr	Lys	Val	Ile	His	Arg	Leu	Gln	Ala	Ala	Ser	Pro	Glu	Leu	Thr	Gln
	165					170				175					
Ala	Ala	Ile	Met	Glu	Lys	Leu	Val	Ala	Tyr	Ser	Ser	Asp	Gln	Ala	His
	180				185				190						
Ser	Ser	Val	Glu	Arg	Ala	Gly	Leu	Ile	Gly	Gly	Val	Lys	Leu	Lys	Ala
	195				200				205						
Ile	Pro	Ser	Asp	Gly	Asn	Phe	Ala	Met	Arg	Ala	Ser	Ala	Leu	Gln	Glu
210					215				220						
Ala	Leu	Glu	Arg	Asp	Lys	Ala	Ala	Gly	Leu	Ile	Pro	Phe	Phe	Met	Val
225					230				235			240			
Ala	Thr	Leu	Gly	Thr	Thr	Cys	Cys	Ser	Phe	Asp	Asn	Leu	Leu	Glu	
	245				250				255						
Val	Gly	Pro	Ile	Cys	Asn	Lys	Glu	Asp	Ile	Trp	Leu	His	Val	Asp	Ala
	260				265				270						
Ala	Tyr	Ala	Gly	Ser	Ala	Phe	Ile	Cys	Pro	Glu	Phe	Arg	His	Leu	Leu
	275				280				285						
Asn	Gly	Val	Glu	Phe	Ala	Asp	Ser	Phe	Asn	Phe	Asn	Pro	His	Lys	Trp
	290				295				300						
Leu	Leu	Val	Asn	Phe	Asp	Cys	Ser	Ala	Met	Trp	Val	Lys	Lys	Arg	Thr
305					310				315			320			
Asp	Leu	Thr	Gly	Ala	Phe	Arg	Leu	Asp	Pro	Thr	Tyr	Leu	Lys	His	Ser
	325				330				335						
His	Gln	Asp	Ser	Gly	Leu	Ile	Thr	Asp	Tyr	Arg	His	Trp	Gln	Ile	Pro
	340				345				350						

-continued

Leu Gly Arg Arg Phe Arg Ser Leu Lys Met Trp Phe Val Phe Arg Met
 355 360 365
 Tyr Gly Val Lys Gly Leu Gln Ala Tyr Ile Arg Lys His Val Gln Leu
 370 375 380
 Ser His Glu Phe Glu Ser Leu Val Arg Gln Asp Pro Arg Phe Glu Ile
 385 390 395 400
 Cys Val Glu Val Ile Leu Gly Leu Val Cys Phe Arg Leu Lys Gly Ser
 405 410 415
 Asn Lys Val Asn Glu Ala Leu Leu Gln Arg Ile Asn Ser Ala Lys Lys
 420 425 430
 Ile His Leu Val Pro Cys His Leu Arg Asp Lys Phe Val Leu Arg Phe
 435 440 445
 Ala Ile Cys Ser Arg Thr Val Glu Ser Ala His Val Gln Arg Ala Trp
 450 455 460
 Glu His Ile Lys Glu Leu Ala Ala Asp Val Leu Arg Ala Glu Arg Glu
 465 470 475 480

<210> SEQ_ID NO 33
 <211> LENGTH: 1443
 <212> TYPE: DNA
 <213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 33

atgaacgcaa	gtgaattccg	aaggagaggg	aaggagatgg	tggattacgt	ggccaactac	60
atgaaaggca	ttgaggggacg	ccaggtctac	cctgacgtgg	agcccggtta	cctgcggccg	120
ctgatccctg	ccgctgcccc	tcaggagcca	gacacgtttg	aggacatcat	caacgacgtt	180
gagaagataa	tcatgcctgg	ggtgacgcac	tggcacagcc	cctacttctt	cgcctacttc	240
cccaactgcca	gctcgtaccc	ggccatgttt	gcccacatgc	tgtgcggggc	cattggctgc	300
atcggcttct	cctgggcggc	aagcccagca	tgcacagagc	tggagactgt	gtatgtggac	360
tggctcggga	agatgctgga	actaccaaag	gcatttttga	atgagaaagc	tggagaaggg	420
ggaggagtga	tccagggaaag	tgccagtgaa	gccaccctgg	tggccctgct	ggccgcgtcg	480
accaaagtga	tccatcggt	gcaggcagcg	tccccagagc	tcacacaggc	cgctatcatg	540
gagaagctgg	tggcttactc	atccgatcg	gcacactcct	cagtggaaag	agctgggtta	600
attgggtggag	tgaaataaaa	agccatcccc	tcaaatggca	acttcgcac	gcgtgcgtct	660
gccctgcagg	aagccctgga	gagagacaaa	gcccgtggcc	tgattccctt	ctttatggtt	720
gccaccctgg	ggaccacaaac	atgctgtcc	tttgacaatc	tcttagaagt	cggtccatc	780
tgcaacaagg	aagacatatg	gctgcacgtt	gtgcacgtt	acgcaggcag	tgcattcatc	840
tgcctgttgt	tccggcacct	tctgaatgga	gtggagttt	cagattcatt	caactttaat	900
ccccacaaat	ggctatttgt	gaattttgac	tgttctgcca	tgtgggtgaa	aaagagaaca	960
gacttaacgg	gagcctttag	actggacccc	acttacactga	agcacagcca	tcaggattca	1020
gggcttatca	ctgacttacgg	gcattggcag	ataccactgg	gcagaagatt	tgcgttttg	1080
aaaatgtgg	ttgtatttag	gatgtatgga	gtcaaaggac	tgcaggctt	tatccgcaag	1140
catgtccagc	tgtcccatga	gtttgagtca	ctggtgcc	aggatcccc	ctttgaaatc	1200
tgtgtggaaag	tcattctggg	gcttgcgtgc	tttcggctaa	agggttccaa	caaagtgaat	1260
gaagctttc	tgcaaagaat	aaacagtgcc	aaaaaaatcc	acttggttcc	atgtcacctc	1320

-continued

agggacaagt ttgcctcg	cttgcac	tgttctcg	cggtgaaatc	tgcccatgt	1380		
cagcgggc	cct	ggaaacacat	caaagagct	gcggccgac	tgctgcg	agagagg	1440
tag							1443

<210> SEQ ID NO 34
 <211> LENGTH: 11622
 <212> TYPE: DNA
 <213> ORGANISM: Equine Infectious Anemia Virus

<400> SEQUENCE: 34														
ttttagattt ctgtcgcc	gata	gtcg	cgat	agtgg	gtttt atcg	ccgata	60							
gagatggc	ga	tattgg	aaaa	attgat	atggat	aaaatgg	catattg	aaaatg	atgtcg	ccg	120			
tgtgagttt	tc	tgtgta	actg	atatcg	ccat	ttttcc	aaaa	gtgat	tttttgc	ggcata	cg	180		
atatctgg	cg	atagc	gctta	tatcg	tttac	ggggat	ggc	gatagac	gac	tttgg	gact	240		
tggcgattc	tgtgtgc	gc	aaatatcg	ca	tttc	gtat	agg	tgac	acaga	cgat	atgagg	300		
ctatatcg	cc	gatagagg	cg	acatca	agct	ggcac	atgg	catatgg	ca	cgatctata	ac	360		
attgaatcaa	tattgg	ccat	ttatcg	at	tttc	atttgc	ttat	at	atcgat	aaatca	at	420		
tggctattgg	ccat	tg	cgat	cc	atatcg	taat	atgtac	at	tttgg	gtc	tc	480		
atgtccaaca	ttacc	ggat	tttgc	at	tttgc	atttgc	atttgc	at	tttgc	at	tttgc	540		
tacgggg	tca	ttag	tttcata	gccc	atata	ttat	ggat	ttccgc	gttac	ataac	ttac	600		
tggccgc	cct	ggctg	accgc	ccaa	ac	ccccat	tg	acgt	caataa	tgac	gtatgt	660		
tcccatagta	acg	ccaa	tag	ggact	tttcc	ca	tgg	gtgg	agg	at	tttac	ggta	720	
aactgccc	ac	ttgg	cagtac	atca	agtgt	gt	catat	gc	atgtcc	cccc	ctat	tgac	780	
caatgac	gg	aaatgg	cccg	cctgg	catta	tgccc	ag	tgat	ttacc	ggactt	cc	840		
tacttggc	cag	tacat	ctacg	tat	tagt	cat	cg	tatt	acc	atgg	tgat	gc	900	
gtacaccaat	gggcgt	ggat	agcgg	tttga	ctcac	gggg	tttcca	agg	tc	tccac	ccccat	960		
tgacgtcaat	ggg	aggtt	ttgt	tttgg	ccacca	aaatca	acgg	gactt	ccaa	aat	gtcg	ttaa	1020	
caactgc	cat	ggcc	cccc	gtt	gacg	caa	atgg	ccg	gt	gcgt	tgac	gttggagg	1080	
tataataagca	gag	ctcg	ttt	agt	gaac	ccgg	g	actc	agat	tct	cggt	tct	1140	
tctgctggc	tgaaaagg	cc	ttt	gt	taata	aa	ataatt	tct	actc	at	cgat	tct	1200	
gtttgtctgt	tcg	agat	ttgg	cc	ccgaa	ac	ggc	acagg	gg	act	tttgc	agg	1260	
cctac	ctgt	ttt	gac	ctgg	gt	cc	ccc	ggg	ac	tttgc	ggc	agg	1320	
agtcttctgg	agg	gtt	tc	cc	ggc	aga	aca	cag	gg	at	tttgc	gg	1380	
tgacatttgg	ga	caagg	cg	ctt	gac	aa	gaa	agg	tg	at	tttgc	gg	1440	
ttaactactg	gt	aaact	gt	aa	tttgc	gt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1500	
ctttgtaaaa	gaaa	agg	act	gg	cag	ctg	at	tttgc	tttgc	tttgc	tttgc	tttgc	1560	
actc	at	ca	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1620	
tgctgtaaag	at	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1680	
gctcctaaga	gc	gaaat	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1740	
aagaat	at	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1800	
caagatggat	tg	ca	aggc	gg	tttcc	gg	cc	gtt	gggt	gg	agg	gtt	gg	1860

-continued

-continued

ctgggtcacg	gtggagttcg	ggctgtgtaa	gcagaacggg	gaggtgaagg	cctatggtc	4200
cgggctgctg	tcctccctacg	gggagctcct	gcactgcctg	tctgaggagc	ctgagatccg	4260
ggccttcgac	cctgaggctg	cggccgtgca	gccctaccaa	gaccagacgt	accagtcagt	4320
ctacttcgtg	tctgagagct	tcagcgacgc	caaggacaag	ctcaggagct	atgccagccg	4380
catccagcgc	cccttctccg	tgaagttcg	cccgtacacc	ctggccatcg	acgtgtgga	4440
cagccccca	gccgtgcggc	gctccctgga	gggtgtccag	gatgagctgg	acacccttc	4500
ccatgcgctg	agcgccatcg	gctgagcagt	ggcggccgca	ctagaggaat	tcgcccctct	4560
ccctccccc	cccttaacgt	tactggccga	agccgcttgg	aataaggccg	gtgtgtt	4620
gtctatatgt	gattttccac	catattgccc	tcttttggca	atgtgagggc	ccggaaacct	4680
ggccctgtct	tcttgacgag	cattccttagg	ggtctttccc	ctctcgccaa	aggaatgcaa	4740
ggtctgttga	atgtcgtgaa	ggaagcagtt	cctcttggaa	cttcttgaag	acaaacaacg	4800
tctgtagcga	ccctttgcag	gcagcggaaac	cccccacctg	gcgcacaggtg	cctctgcggc	4860
caaaagccac	gtgtataaga	tacacctgca	aaggcggcac	aaccccaagt	ccacgttgc	4920
agttggatag	tttgggaaag	agtcaaatgg	ctctcctcaa	gcgtatgca	caaggggctg	4980
aaggatgccc	agaaggtacc	ccattgtatg	ggaatctgat	ctggggcctc	ggtgcacatg	5040
ctttacatgt	gttttagtgcg	ggtaaaaaaa	gctctaggcc	ccccgaacca	cggggacgtg	5100
gttttcctt	aaaaaacacg	atgataccat	ggacgcccagt	gagttccgaa	ggcgcggcaa	5160
ggagatggtg	gactacgtgg	ccaaactacat	ggaaggccatc	gagggccgccc	aagtctaccc	5220
cgacgtggag	cccggttacc	tgcgccccgt	gatccccggc	gctgcccctc	aggagccgaa	5280
cacccctcgag	gacatcatca	acgacgtgg	gaagatcatc	atgcctggcg	tgacgcactg	5340
gcacagcccc	tacttcttcg	cctacttccc	caccggccagc	tcgtaccgg	ccatgttgc	5400
ggacatgctg	tgcgccccca	ttggctgcat	cggcttctcc	tggcgccgca	gcccagcgtg	5460
cacccgagctg	gagaccgtga	tgtatggactg	gctcgaaaag	atgctggagc	tcccaaaggc	5520
gttcttgaac	gagaaggctg	gaggggggg	cgccgtgatc	caggcagcgc	ccagegaggc	5580
cacccctgg	gcccgtctgg	ccgctcgac	caaagtgc	cacccgctgc	aggcagcgtc	5640
cccagagctc	acccaggccg	ctatcatgga	gaagctggtg	gcttacttct	ccgatcaggc	5700
acactcctcc	gtggAACGCG	ctgggctcat	tggtgagg	aagctcaagg	ccatccccag	5760
cgtggcaac	ttcgccatgc	gtgcgagcgc	cctgcaggaa	gccctggaga	gagacaaggc	5820
ggctggcc	attccttct	tcatggtgc	caccctgggg	accacaacat	gctgtccctt	5880
cgacaacctc	ctcgaagtgc	gtcttatctc	caacaaggaa	gacatctggc	tgcaacgttga	5940
tgcagcctac	gcaggcagcg	cattcatctg	ccctgagttc	cggcaccttc	tgaacggagt	6000
ggagttcgca	gatagttca	acttcaatcc	ccacaagtgg	ctattggtga	atttcgactg	6060
cagcgccatg	tgggtgaaga	agcgcaccga	cctcacggg	gcctccgccc	tggacccac	6120
ttacctgaag	cacagccacc	aggattcagg	gcttatact	gactaccggc	actggcagat	6180
cccactggc	cgcagattcc	gcagcttgc	gatgtggg	gtattcagga	tgtatggagt	6240
caagggactg	caggcttata	tccgcaagca	tgtccagctg	tcccatgagt	ttgagtact	6300
ggtgcgccc	gatccccgt	ttgaaatctg	tgtggaaagtc	attctggggc	ttgtctgctt	6360
tcggctaaag	ggttccaaca	aagtgaatga	agcttctctg	caaaggatca	acagtgc	6420

-continued

aaaaatccac ttggttccat gtcacacctag ggacaagttt gtcctgcgt ttgcatctg 6480
ttctcgcacc gtggaatctg cccatgtca gcggggctgg gaacacatca aagagctggc 6540
ggccgacgtg ctgcgagcag agagggagta gctcgaaaac ccgctgtatca gcctcgactg 6600
tgccttctag ttgccagcca tctgttgtt gcccctcccc cgtgccttcc ttgagaattc 6660
ctcgacgtag atatctaaa acagctctgg gggtgtaccc accccagagg cccacgtggc 6720
ggcttagtact ccggatttgc ggtaccccttgc tacgcctgtt ttatactccc ttccccctgt 6780
acttagaagc acaatgtcca agttcaatacg gagggggtac aaaccagtagt caccacgaac 6840
aagcacttct gttccccccgg tgaggctgtta taggctgtt ccacggctaa aagcggctga 6900
tccgttatcc gctcatgtac ttgcagaagc ctagtatcac cttggaaatct tcgatgcgtt 6960
gctcaaca ctaaacccttca gagtgttagct taggtcgatg agtctggacg ttccctcaccg 7020
gcgacgggtgg tccaggctgc gttggcggcc tacctgtggc ccaaagccac aggacgctag 7080
ttgtgaacaa ggtgtgaaga gcctatttagtgc ctacctgaga gtcctccggc ccctgaatgc 7140
ggctaatctt aaccacggag caggcagtgg caatccagcg accagccctgt cgtaaaggcgc 7200
aagttcgtgg cggaaaccgc tacttttgggt gtccgtgtt cctttttttt ttacaatggc 7260
tgcttatggt gacaatcatt gattgttattc ataaagcaaa ttggattggc catccggtga 7320
gaatttgatt attaaattac tctcttggttt ggattgttcc tttgaatct tttgtcactca 7380
cacctattgg aattacctca ttgttaaacgc cgtctagcta gcgccaccat ggagaaggc 7440
cctgtgcgcg ccccgccgaa gaagccgcgc ggcgcggcgt gcagcaatgg gttccccgg 7500
cgcgacccgc cgccggccgg gcccagcagg cccggccgaga agcccccgcg ccccgaggcc 7560
aagagcgcgc accccgcgga cggctggaa ggcgagcgc cccgcagcga ggaggacaac 7620
gagctgaacc tccctaacct ggccgcgc tttttttttt cccttgcgtc gctggcgag 7680
aacccttgcgc ggcaggggct gctcaagacc ccctggaggg cggcgcgc catgcgttc 7740
ttcaccaagg gctaccagga gaccatctca gacgtcctga acgacgctat cttcgacgaa 7800
gatcacatgt agatgggtat cgtgaaggac atagacatgt tctccatgtt cgagcaccac 7860
ctgggtccat ttgtggaaa ggtccatatac ggctaccctgc ctaacaagca ggtcctggc 7920
ctcagcaagc tggcgaggat tttttttttt tttttttttt tttttttttt tttttttttt 7980
cttaccaaac aaattgtgtt ggcaatcagc gaagccttgc ggcctgtgg agtcggggc 8040
gtgggtggaaag caacacacat gtgtatggt atgcgaggatc tacagaaaaat gaacagcaaa 8100
accgtgacca gcacaatgtt ggggtgtttc cgggaggatc caaagactcg ggaagagttc 8160
ctgactctca tcaggagctg aagaattctt cggcgttgc cttttttttt tttttttttt 8220
tacaaaattt gtggaaagatt gactggatc tttttttttt tttttttttt tttttttttt 8280
ggatacgctg cttaatgcc tttgtatcat gctattgtt cccgtatggc tttttttttt 8340
tcccttctgt ataaatctgtt gttgtgttgc tttttttttt tttttttttt tttttttttt 8400
caacgtggcg tgggtgtgcac tttttttttt tttttttttt tttttttttt tttttttttt 8460
accacaccttc agtccttc cgggactttc gttttttttt tttttttttt tttttttttt 8520
ctcatcgccg cctgccttgc cggcgttgc acaggggctc ggctgttggg cactgacaaat 8580
tccgtgggtgt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 8640
tggattctgc gcgccggacgtc cttctgttgc tttttttttt tttttttttt tttttttttt 8700

-continued

ccttcccccg	gcctgctgcc	ggctctgcgg	cctcttccgc	gtcttcgcct	tcgcgcctcg	8760
acgagtcgga	tctccctttg	ggccgcctcc	ccgcacatcgat	accgtcgaaat	tggaagagct	8820
ttaaatccctg	gcacatctca	tgtatcaatg	cctcagatcgat	tttagaaaaaa	caagggggga	8880
actgtggggt	ttttatgagg	ggttttatac	aattgggcac	tcagattctg	cggtctgagt	8940
cccttctctg	ctgggctgaa	aaggcctttg	taataaaatat	aattctctac	tcagtcctcg	9000
tctctagttt	gtctgttcga	gatcctacag	agctcatgcc	ttggcgtaat	catggcata	9060
gctgtttcct	gtgtgaaatt	gttatccgct	cacaattcca	cacaacatac	gagccgggag	9120
cataaagtgt	aaagcctggg	gtgcctaaatg	agtgagctaa	ctcacatcaa	ttgcgttgcg	9180
ctcaactgccc	gctttccagt	cgggaaacct	gtcggtccag	ctgcattaaat	gaatcgcca	9240
acgcgcgggg	agaggcgggtt	tgcgtattgg	gctgtttcc	gcttcctcgc	tcactgactc	9300
gctgcgctcg	gtcggttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	cggtaaatcg	9360
gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	gccagcaaaa	9420
ggccaggaac	cgtaaaaaagg	cgcgttgcgt	ggcggttttc	cataggctcc	gccccctgaa	9480
cgagcatcac	aaaaatcgac	gtcaagtca	gagggtggca	aacccgcac	gactataaag	9540
ataccaggcg	tttccccctg	gaagctccct	cgtgcgtct	cctgttccga	ccctgcgcgt	9600
tacccggatac	ctgtccgcct	tttcccttc	gggaagcgtg	gctgtttctc	atagctcacg	9660
ctgttaggtat	ctcagttcgg	tgttaggtcg	tgcgttcaag	ctgggtgtg	tgcacgaacc	9720
ccccgttcag	cccgaccgct	gcccgttattc	cggttaactat	cgtcttgagt	ccaaacccgg	9780
aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	aggattagca	gagcggaggt	9840
tgttaggcgtt	gctacagagt	tcttgaatg	gtggcctaac	tacggctaca	ctagaaggac	9900
agtattttgt	atctgcgtc	tgcgtgaagcc	agttaccttc	ggaaaaagag	ttggtagctc	9960
ttgatccggc	aaacaaacca	ccgcgttgcgt	cggtggtttt	tttgggtgc	agcagcagat	10020
tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttgatc	ttttctacgg	ggtctgacgc	10080
tcagtggAAC	gaaaactcac	gttaaggat	tttgggtcatg	agattatcaa	aaaggatctt	10140
cacctagatc	ctttaaatt	aaaaatgaag	ttttaaatca	atctaaagta	tatatgagta	10200
aacttggtct	gacagttacc	aatgtttaat	cagtggagca	cctatctcg	cgatctgtct	10260
atttcggtca	tccatagttg	cctgactccc	cgtcggttag	ataactacga	tacgggaggg	10320
cttaccatct	ggccccagtg	ctgcaatgt	accgcgagac	ccacgctcac	cggtcccgaga	10380
tttatcagca	ataaacccagc	cagccggaaag	ggccgagcgc	agaagtggtc	ctgcaacttt	10440
atccgcctcc	atccagtcta	ttaattgttg	ccggaaagct	agagtaagta	gttcgcagat	10500
taatagtttgc	cgcaacgttg	ttgccattgc	tacaggcata	gtgggtgtc	acgtcgctgtt	10560
tggatggct	tcattcagct	ccgggttccca	acgtcaagg	cgagttacat	gatccccat	10620
gttgtgc	aaagcggta	gtcccttcgg	tcctccgatc	gttgtcgaa	gtaagttggc	10680
cgcgttgc	tcactcatgg	ttatggcagc	actgcataat	tctcttactg	tcatgcac	10740
cgtaagatgc	ttttctgtga	ctgggtgagta	ctcaaccaag	tcattctgag	aatagtgtat	10800
gcggcgaccg	agttgcgttt	gccccggcgc	aatacggat	aataccgcgc	cacatagcag	10860
aactttaaaa	gtgctcatca	ttggaaaaacg	ttcttcgggg	cgaaaaactct	caaggatctt	10920
accgcgttgc	agatccagtt	cgatgtaaacc	cactcggtca	cccaactgtat	cttcagcatc	10980

-continued

```

ttttactttc accagcgaaa ttgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa 11040
ggaataagg ggcacacgga aatgttgaat actcatactc ttcccttttc aatattattg 11100
aagcatttat cagggttatt gtctcatgag cgatatacata ttgtaatgtt tttagaaaaa 11160
taaacaata ggggttccgc gcacattcc ccgaaaatgt ccacctaataat tgtaagcggt 11220
aatattttgt taaaattcgc tttaaatttt tttttttttt taaccaatag 11280
gccgaaatcg gcaaaatccc ttataaatca aaagaataga ccgagatagg gttgagtgtt 11340
gttccagttt ggaacaagag tccactatta aagaacgtgg actccaaacgt caaaggcg 11400
aaaaccgtct atcaggggcga tggcccacta cgtgaaccat caccctaatac aagttttttg 11460
gggtcgaggt gccgtaaagc actaaatcg aaccctaaag ggagcccccg attttagagct 11520
tgacggggaa agccaacctg gtttatcgaa attaatacga ctcactatacg ggagaccggc 11580
agatcttcaa taataaaaatg ttttttttttgc cgaaatacgc gt 11622

```

1-71. (canceled)

72. A method for treating Parkinson's disease in a subject in need thereof, comprising administering into the brain of the subject a lentiviral vector comprising three nucleotides of interest (NOIs) operably linked by one or more Internal Ribosome Entry Site(s) (IRES), wherein the NOIs encode tyrosine hydroxylase (TH), GTP-cyclohydrolase I (GTP-CH1) and aromatic amino acid dopa decarboxylase (AADC), and wherein the three NOIs are expressed to stimulate dopamine synthesis in the brain, thereby treating the subject.

73. The method according to claim 72, wherein the lentiviral vector is an HIV lentiviral vector.

74. The method according to claim 72, wherein the lentiviral vector is a non-primate lentiviral vector.

75. The method according to claim 74, wherein the lentiviral vector is an EIAV lentiviral vector.

76. The method according to claim 72, wherein at least one of the NOIs is operably linked to a promoter or promoter elements.

77. The method according to claim 72, wherein the lentiviral vector further comprises a post-transcriptional regulatory element or a translational enhancer.

78. The method according to claim 72, wherein at least one of the NOIs is codon optimized.

79. The method according to claim 72, wherein the lentiviral vector is pseudotyped with at least part of a heterologous env protein.

80. The method according to claim 79, wherein the heterologous env protein is Rabies-G or VSV-G.

81. The method according to claim 72, wherein the IRES is a viral IRES.

82. The method according to claim 81, wherein the viral IRES is from a picornavirus.

83. The method according to claim 82, wherein the picornavirus is encephalomyocarditis virus (EMCV) or poliovirus (PV).

84. The method according to claim 72, wherein the lentiviral vector comprises a self-inactivating lentiviral vector genome.

85. A pharmaceutical composition comprising a lentiviral vector comprising three nucleotides of interest (NOIs) operably linked by one or more Internal Ribosome Entry Site(s) (IRES), wherein the NOIs encode tyrosine hydroxylase (TH), GTP-cyclohydrolase I (GTP-CH1) and aromatic amino acid dopa decarboxylase (AADC).

86. The pharmaceutical composition of claim 85, wherein the lentiviral vector is an HIV lentiviral vector.

87. The pharmaceutical composition of claim 85, wherein the lentiviral vector is a non-primate lentiviral vector.

88. The pharmaceutical composition of claim 87, wherein the lentiviral vector is an EIAV lentiviral vector.

89. The pharmaceutical composition of claim 85, wherein at least one of the NOIs is operably linked to a promoter or promoter elements.

90. The pharmaceutical composition of claim 85, wherein the lentiviral vector further comprises a post-transcriptional regulatory element or a translational enhancer.

91. The pharmaceutical composition of claim 85, wherein at least one of the NOIs is codon optimized.

92. The pharmaceutical composition of claim 85, wherein the lentiviral vector is pseudotyped with at least part of a heterologous env protein.

93. The pharmaceutical composition of claim 92, wherein the heterologous env protein is Rabies-G or VSV-G.

94. The pharmaceutical composition of claim 85, wherein the IRES is a viral IRES.

95. The pharmaceutical composition of claim 94, wherein the viral IRES is from a picornavirus.

96. The pharmaceutical composition of claim 95, wherein the picornavirus is encephalomyocarditis virus (EMCV) or poliovirus (PV).

97. The pharmaceutical composition of claim 85, wherein the lentiviral vector comprises a self-inactivating lentiviral vector genome.