

HU000029027T2

(19) **HU**

(11) Lajstromszám: **E 029 027**

3) **T2**

MAGYARORSZÁG Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

	EP 2641601 A1	2013. 09. 25.			
(97)	Az európai bejelentés közzét	ételi adatai:		A61P 35/00	(2006.01)
	EP 20070168383			A61K 45/06	(2006.01)
(96)	Az európai bejelentés bejeler	ntési száma:		A61K 393/95	(2006.01)
				A61K 31/69	(2006.01)
(22)	A bejelentés napja: 2007. 08.	. 07.		A61K 314/54	(2006.01)
(21)	Magyar ügyszám: E 13 168	383	(51) Int. Cl.:	A61K 315//3	(2006.01)

(97) Az európai szabadalom megadásának meghirdetési adatai:

EP 2641601 B1 2016, 07, 06

	EF 2041001 B1	2010. 07. 00.			
(30)	Elsőbbségi adatok:			(73)	Jogosult(ak):
	836185 P	2006. 08. 07.	US		AbbVie Biotherapeutics Inc., Redwood City,
	944262 P	2007. 06. 15.	us		CA 94063 (US)
					Dana-Farber Cancer Institute, Inc., Boston,
(72)	Feltaláló(k):				MA 02115 (US)
	AFAR, Daniel, Fremont	t, California 94555 (US)			
	Andersen, Kenneth C.,	Wellesley, Massachusett	s 02482		
	(US)			(74)	Képviselő:
	Tai, Yu-Tzu, Newton, M	lassachusetts 02459 (US)			SBGK Szabadalmi Ügyvivői Iroda, Budapest

(54) Eljárások myeloma multiplex kezelésére HuLuc63 és bortezomib alapú kombinációs terápiák alkalmazásával

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szabadalmi Egyezmény 99. cikk(1))

A fordítást a szabadalmas az 1995. évi XXXIII. törvény 84/H. §-a szerint nyújtotta be. A fordítás tartalmi helyességét a Szellemi Tulajdon Nemzeti Hivatala nem vizsgálta.

(11) EP 2 641 601 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:06.07.2016 Bulletin 2016/27

(21) Application number: 13168383.1

(22) Date of filing: 07.08.2007

(51) Int Cl.:

A61K 31/573 (2006.01)

A61K 31/69 (2006.01)

A61P 35/00 (2006.01)

A61K 31/454 (2006.01) A61K 39/395 (2006.01) A61K 45/06 (2006.01)

(54) Methods of treating multiple myeloma using combination therapies based on HuLuc63 with bortezomib

Verfahren zur Behandlung von Multiplem-Myelomen mit hilfe von Kombinationstherapien auf Basis von HuLuc63 und Bortezomib

Procédés de traitement du myélome multiple à l'aide de polythérapies à base de HuLuc63 et bortezomib

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Designated Extension States:

HR

(30) Priority: 07.08.2006 US 836185 P 15.06.2007 US 944262 P

(43) Date of publication of application: 25.09.2013 Bulletin 2013/39

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 07840746.7 / 2 068 874

(73) Proprietors:

 AbbVie Biotherapeutics Inc. Redwood City, CA 94063 (US)

 Dana-Farber Cancer Institute, Inc. Boston, MA 02115 (US) (72) Inventors:

 Afar, Daniel Fremont, California 94555 (US)

Andersen, Kenneth C.
 Wellesley, Massachusetts 02482 (US)

 Tai, Yu-Tzu Newton, Massachusetts 02459 (US)

 (74) Representative: Roques, Sarah Elizabeth et al J A Kemp
 14 South Square
 Gray's Inn
 London WC1R 5JJ (GB)

(56) References cited:

> 2 641 601 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

1. CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit under 35 U.S.C. § 119(e) to application Serial Nos. 60/836,185, filed August 7, 2006 and 60/944,262, filed June 15, 2007.

2. BACKGROUND

10

20

25

30

35

40

55

[0002] Multiple myeloma ("MM") represents a malignant proliferation of plasma cells derived from a single clone. The terms multiple myeloma and myeloma are used interchangeably to refer to the same condition. The myeloma tumor, its products, and the host response to it result in a number of organ dysfunctions and symptoms of bone pain or fracture, renal failure, susceptibility to infection, anemia, hypocalcemia, and occasionally clotting abnormalities, neurologic symptoms and vascular manifestations of hyperviscosity. See D. Longo, in Harrison's Principles of Internal Medicine 14th Edition, p. 713 (McGraw-Hill, New York, 1998). No effective long-term treatment currently exists for MM. It is a malignant disease of plasma cells, manifested as hyperproteinemia, anemia, renal dysfunction, bone lesions, and immunodeficiency. MM is difficult to diagnose early because there may be no symptoms in the early stage. The disease has a progressive course with a median duration of survival of six months when no treatment is given. Systemic chemotherapy is the main treatment, and the current median of survival with chemotherapy is about three years, however fewer than 5% live longer than 10 years (See Anderson, K. et al., Annual Meeting Report 1999. Recent Advances in the Biology and Treatment of Multiple Myeloma (1999)).

[0003] While multiple myeloma is considered to be a drug-sensitive disease, almost all patients with MM who initially respond to chemotherapy eventually relapse (See Anderson, K. et al., Annual Meeting Report 1999. Recent Advances in the Biology and Treatment of Multiple Myeloma (1999)). Since the introduction of melphalan and prednisone therapy for MM, numerous multi-drug chemotherapies including Vinca alkaloid, anthracycline, and nitrosourea-based treatment have been tested (See Case, D C et al., (1977) Am. J. Med 63:897 903), but there has been little improvement in outcome over the past three decades (See Case, D C et al., (1977) Am. J. Med 63:897 903; Otsuki, T. et al, (2000) Cancer Res. 60:1). New methods of treatment, such as combination therapies utilizing monoclonal antibodies and therapeutic agents, are needed.

3. SUMMARY

[0004] The present invention provides the use of HuLu63, said HuLu63 being a humanized IgG₁ antibody having a heavy chain variable region corresponding to SEQ ID NO:5 and a light chain variable region corresponding to SEQ ID NO:6, in the preparation of a first medicament, and the use of bortezimob in the preparation of a second medicament, said medicaments for use in the treatment of multiple myeloma of a human patient, wherein the HuLuc63 is administered as an intravenous infusion at a dosage from 2.5 mg/kg to 20 mg/kg and wherein the bortezimob is administered as an intravenous infusion at a dosage from 0.2 mg/m² to 2.0 mg/m².

The present invention also provides HuLuc63, said HuLuc63 being a humanized IgG₁ antibody having a heavy chain variable region corresponding to SEQ ID NO:5 and a light chain variable region corresponding to SEQ ID NO:6, and bortezimob for use in the treatment of multiple myeloma of a human patient, wherein the HuLuc63 is administered as an intravenous infusion at a dosage from 2.5 mg/kg to 20 mg/kg and wherein the bortezimob is administered as an intravenous infusion at a dosage from 0.2 mg/m² to 2.0 mg/m²

[0005] Described herein are compositions and methods useful for exploiting the anti-tumor properties of anti-CS1 antibodies. Anti-CS1 antibodies that can be used in the methods and compositions are described in U.S. Patent Publication Nos. 2005/0025763 and 2006/0024296. The anti-CS1 antibodies target CS1 (CD2-subset1), which is also known as SLAMF7, CRACC, 19A, APEX-1, and FOAP12 (Genbank Accession Number NM_021181.3). CS1, is a glycoprotein that is highly expressed in bone marrow samples from patients diagnosed with MM. In both *in vitro* and *in vivo* studies, anti-CS1 antibodies exhibit significant anti-myeloma activity (see, e.g., U.S. Patent Publication Nos. 2005/0025763 and 2006/0024296). By way of example, but not limitation, the anti-CS1 antibody, HuLuc63 effectively mediates lysis of myeloma cells via antibody dependent cellular cytotoxicity (ADCC) (see, e.g., U.S. Patent Publication No. 2005/0025763). In a myeloma mouse tumor model, treatment with HuLuc63 significantly reduced tumor mass by more than 50% (see, e.g., U.S. Patent Publication No. 2005/0025763).

[0006] The present disclosure relates to compositions and methods for treating patients diagnosed with Monoclonal Gammopathy of Undetermined Significance (MGUS), smoldering myeloma, asymptomatic MM, and symptomatic MM, ranging from newly diagnosed to late stage relapsed/refractory. In particular, the methods described herein relate to the administration of a pharmaceutical composition comprising an anti-CS1 antibody, such as HuLuc63, in combination with one or more therapeutic agents. The anti-CS1 antibody is typically administered in a first pharmaceutical composition

as an intravenous infusion at doses ranging from 0.5 to 20 mg/kg, from once a week to once a month.

[0007] A second pharmaceutical composition comprising one or more therapeutic agents, such as bortezomib, can be administered concurrently, prior to, or following administration of an anti-CS1 antibody. Depending on the agent, the composition can be administered orally, intravenously or subcutaneously. Therapeutic agents can be used at high dose rates, standard dose rates and at reduced dose rates.

[0008] In some instances, administration of the pharmaceutical compositions described herein increases the sensitivity of multiple myeloma cells to a therapeutic agent. By way of example, but not limitation, inclusion of an anti-CS1 antibody can enhance the activity of the therapeutic agent, such that lower doses can be used in the compositions and methods described herein.

[0009] In some instances, administration of the pharmaceutical compositions described herein elicits at least one of the beneficial responses as defined by the European Group for Blood and Marrow transplantation (EBMT). For example, administration of the pharmaceutical compositions described herein can result in a complete response, partial response, minimal response, no change, or plateau.

4. BRIEF DESCRIPTION OF THE FIGURES

[0010]

10

20

30

40

45

50

55

FIGS. 1A-1C depict autologous ADCC-mediated lysis of MM cells treated with HuLuc63;

FIGS. 2A-2B depict HuLuc63 induced ADCC against Hsp90 and bortezomib resistant patient tumor cells;

FIGS. 3A-3D depict the effect of bortezomib pre-treatment on HuLuc63-mediated ADCC in vitro. Examples are shown for 4 different donors; and.

FIGS. 4A-4B depict the effect of HuLuc63 and bortezomib in OPM2 tumor-bearing mice.

25 5. DETAILED DESCRIPTION

[0011] The present invention is defined in the appended claims. Subject matters which are not encompassed by the scope of the claims do not form part of the present invention.

[0012] The compositions described herein combine anti-CS1 antibodies with one or more therapeutic agents at specific doses to potentiate or complement the anti-myeloma activities of the other. Examples of suitable anti-CS1 antibodies include, but are not limited to, isolated antibodies that bind one or more of the three epitope clusters identified on CS1 and monoclonal antibodies produced by the hybridoma cell lines: Luc2, Luc3, Luc15, Luc22, Luc23, Luc29, Luc32, Luc34, Luc35, Luc37, Luc38, Luc39, Luc56, Luc60, Luc63, Luc69, LucX.1, LucX.2 or Luc90. These monoclonal antibodies are named as the antibodies: Luc2, Luc3, Luc15, Luc22, uc23, Luc29, Luc32, Luc34, Luc35, Luc37, Luc38, Luc39, Luc56, Luc60, Luc63,

Luc69, LucX and Luc90, respectively, hereafter. Humanized versions are denoted by the prefix "hu" (see, *e.g.,* U.S. Patent Publication Nos. 2005/0025763 and 2006/0024296).

[0013] In some instances, suitable anti-CS1 antibodies include isolated antibodies that bind one or more of the three epitope clusters identified on CS1 (SEQ ID NO: 1, Table 1 below; see, e.g., U.S. Patent Publication No. 2006/0024296). As disclosed in U.S. Patent Publication No. 2006/0024296 and shown below in Table 1, the CS1 antibody binding sites have been grouped into 3 epitope clusters:

- (1) the epitope defined by Luc90, which binds to hu50/mu50 (SEQ ID NO: 2). This epitope covers from about amino acid residue 23 to about amino acid residue 151 of human CS1. This epitope is resided within the domain 1 (V domain) of the extracellular domain. This epitope is also recognized by Luc34, LucX (including LucX.1 and LucX.2) and Luc69.
- (2) the epitope defined by Luc38, which binds to mu25/hu75 (SEQ ID NO: 3) and hu50/mu50 (SEQ ID NO: 81). This epitope likely covers from about amino acid residue 68 to about amino acid residue 151 of human CS1. This epitope is also recognized by Luc5.
- (3) the epitope defined by Luc 63, which binds to mu75/hu25 (SEQ ID NO: 4). This epitope covers from about amino acid residue 170 to about amino acid residue 227 of human CS1. This epitope is resided within domain 2 (C2 domain) of human CS1. This epitope is also recognized by Luc4, Luc12, Luc23, Luc29, Luc32 and Luc37.

[0014] The methods and pharmaceutical compositions are addressed in more detail below, but typically include at least one anti-CS1 antibody as described above. In some instances, the pharmaceutical compositions include the anti-CS1 antibody HuLuc63. HuLuc63 is a humanized recombinant monoclonal IgG1 antibody directed to human CS1. The amino acid sequence for the heavy chain variable region (SEQ ID NO: 5) and the light chain variable region (SEQ ID NO: 6) for HuLuc63 is disclosed in U.S. Patent Publication No. 2005/0025763 and in Table 1.

Table 1

	SEQ ID NO:	Amino Acid Sequence
5	SEQ ID NO: 1	Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp Gln Leu
		Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val Gly Ser Val Gly
10		Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val Lys Gln Val Asp Ser Ile
		Val Trp Thr Phe Asn Thr Thr Pro Leu Val Thr Ile Gln Pro Glu Gly Gly
		Thr Ile Ile Val Thr Gln Asn Arg Asn Arg Glu Arg Val Asp Phe Pro Asp
15		Gly Gly Tyr Ser Leu Lys Leu Ser Lys Leu Lys Lys Asn Asp Ser Gly Ile
		Tyr Tyr Val Gly Ile Tyr Ser Ser Ser Leu Gln Gln Pro Ser Thr Gln Glu Tyr
		Val Leu His Val Tyr Glu His Leu Ser Lys Pro Lys Val Thr Met Gly Leu
20		Gln Ser Asn Lys Asn Gly Thr Cys Val Thr Asn Leu Thr Cys Cys Met Glu
		His Gly Glu Glu Asp Val Ile Tyr Thr Trp Lys Ala Leu Gly Gln Ala Ala
		Asn Glu Ser His Asn Gly Ser Ile Leu Pro Ile Ser Trp Arg Trp Gly Glu Ser
25		Asp Met Thr Phe Ile Cys Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser
		Ser Pro Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp Asp Pro Asp
		Ser Ser Met Val Leu Leu Cys Leu Leu Leu Val Pro Leu Leu Leu Ser Leu
30		Phe Val Leu Gly Leu Phe Leu Trp Phe Leu Lys Arg Glu Arg Gln Glu Glu
		Tyr Ile Glu Glu Lys Lys Arg Val Asp Ile Cys Arg Glu Thr Pro Asn Ile
		Cys Pro His Ser Gly Glu Asn Thr Glu Tyr Asp Thr Ile Pro His Thr Asn
35		Arg Thr Ile Leu Lys Glu Asp Pro Ala Asn Thr Val Tyr Ser Thr Val Glu
		Ile Pro Lys Lys Met Glu Asn Pro His Ser Leu Leu Thr Met Pro Asp Thr
		Pro Arg Leu Phe Ala Tyr Glu Asn Val Ile
40	SEQ ID NO: 2	Met Ale Cly See Dee The Cyc Ley The Ley He Tye He Ley Two Cle Ley
		Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp Gln Leu Thr Chy Ser Ala Ala Ser Chy Bra Val Lya Chy Ley Val Chy Ser Val Chy
		Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val Gly Ser Val Gly
45		Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val Lys Gln Val Asp Ser Ile
		Val Trp Thr Phe Asn Thr Thr Pro Leu Val Thr Ile Gln Pro Glu Gly Gly
		Thr Ile Ile Val Thr Gln Asn Arg Asn Arg Glu Arg Val Asp Phe Pro Asp
50		Gly Gly Tyr Ser Leu Lys Leu Ser Lys Leu Lys Lys Asn Asp Ser Gly Ile
		Tyr Tyr Val Gly Ile Tyr Ser Ser Ser Leu Gln Gln Pro Ser Thr Gln Glu Tyr
		Val Leu His Val Tyr Glu His Leu Ser Lys Pro Lys Val Thr Ile Asp Arg
55		Gln Ser Asn Lys Asn Gly Thr Cys Val Ile Asn Leu Thr Cys Ser Thr Asp

(continued)

	SEQ ID NO:	Amino Acid Sequence
5		Gln Asp Gly Glu Asn Val Thr Tyr Ser Trp Lys Ala Val Gly Gln Gly Asp
		Asn Gln Phe His Asp Gly Ala Thr Leu Ser Ile Ala Trp Arg Ser Gly Glu
		Lys Asp Gln Ala Leu Thr Cys Met Ala Arg Asn Pro Val Ser Asn Ser Phe
10		Ser Thr Pro Val Phe Pro Gln Lys Leu Cys Glu Asp Ala Ala Thr Asp Leu
		Thr Ser Leu Arg Gly
	SEQ ID NO: 3	Met Ala Arg Phe Ser Thr Tyr Ile Ile Phe Thr Ser Val Leu Cys Gln Leu
15		Thr Val Thr Ala Ala Ser Gly Thr Leu Lys Lys Val Ala Gly Ala Leu Asp
		Gly Ser Val Thr Phe Thr Leu Asn Ile Thr Glu Ile Lys Val Asp Tyr Val
20		Val Trp Thr Phe Asn Thr Phe Phe Leu Ala Met Val Lys Lys Asp Gly Gly
20		Thr Ile Ile Val Thr Gln Asn Arg Asn Arg Glu Arg Val Asp Phe Pro Asp
		Gly Gly Tyr Ser Leu Lys Leu Ser Lys Leu Lys Lys Asn Asp Ser Gly Ile
25		Tyr Tyr Val Gly Ile Tyr Ser Ser Leu Gln Gln Pro Ser Thr Gln Glu Tyr
		Val Leu His Val Tyr Glu His Leu Ser Lys Pro Lys Val Thr Met Gly Leu
		Gln Ser Asn Lys Asn Gly Thr Cys Val Thr Asn Leu Thr Cys Cys Met Glu
30		His Gly Glu Glu Asp Val Ile Tyr Thr Trp Lys Ala Leu Gly Gln Ala Ala
		Asn Glu Ser His Asn Gly Ser Ile Leu Pro Ile Ser Trp Arg Trp Gly Glu Ser
		Asp Met Thr Phe Ile Cys Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser
35		Ser Pro Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp Asp Pro Asp
		Ser Ser Met Val
40	SEQ ID NO: 4	Met Ala Arg Phe Ser Thr Tyr Ile Ile Phe Thr Ser Val Leu Cys Gln Leu
.0		Thr Val Thr Ala Ala Ser Gly Thr Leu Lys Lys Val Ala Gly Ala Leu Asp
		Gly Ser Val Thr Phe Thr Leu Asn Ile Thr Glu Ile Lys Val Asp Tyr Val
45		Val Trp Thr Phe Asn Thr Phe Phe Leu Ala Met Val Lys Lys Asp Gly Val
		Thr Ser Gln Ser Ser Asn Lys Glu Arg Ile Val Phe Pro Asp Gly Leu Tyr
		Ser Met Lys Leu Ser Gln Leu Lys Lys Asn Asp Ser Gly Ala Tyr Arg Ala
50		Glu Ile Tyr Ser Thr Ser Ser Gln Ala Ser Leu Ile Gln Glu Tyr Val Leu His
		Val Tyr Lys His Leu Ser Arg Pro Lys Val Thr Ile Asp Arg Gln Ser Asn
		Lys Asn Gly Thr Cys Val Ile Asn Leu Thr Cys Ser Thr Asp Gln Asp Gly
55		Glu Asn Val Thr Tyr Ser Trp Lys Ala Val Gly Gln Ala Ala Asn Glu Ser
		His Asn Gly Ser Ile Leu Pro Ile Ser Trp Arg Trp Gly Glu Ser Asp Met

(continued)

	SEQ ID NO:	Amino Acid Sequence
5		Thr Phe Ile Cys Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser Pro
		Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp Asp Pro Asp Ser Ser
		Met Val
10	SEQ ID NO: 5	Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser
		Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asp Phe Ser Arg Tyr Trp Met
15		Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly Glu Ile
		Asn Pro Asp Ser Ser Thr Ile Asn Tyr Ala Pro Ser Leu Lys Asp Lys Phe
		Ile Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser
20		Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Pro Asp Gly Asn
		Tyr Trp Tyr Phe Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
	SEQ ID NO: 6	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
25		Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Val Gly Ile Ala Val Ala
		Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile Tyr Trp Ala
30		Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly
		Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Val Ala Thr
		Tyr Tyr Cys Gln Gln Tyr Ser Ser Tyr Pro Tyr Thr Phe Gly Gln Gly Thr
35		Lys Val Glu Ile Lys

[0015] At some doses, additive effects are seen; at other doses, synergistic effects are seen. In some embodiments, the synergistic effect permits one or more therapeutic agents to be administered in combination with the anti-CS1 antibody at a reduced dosage, while retaining efficacy. Given that the side effects associated with the use of these agents are dose-dependent, use of the compositions and methods described herein can reduce the deleterious side effects observed in conventional and novel treatment regimens used to treat MM when these agents are administered at their recommended dosages.

[0016] In other embodiments, the synergistic effect permits one or more therapeutic agents to be administered in combination with the anti-CS1 antibody at the approved dosage, but with greater than the expected efficacy.

[0017] The compositions can be administered for the treatment of Monoclonal Gammopathy of Undetermined Significance (MGUS), smoldering myeloma, asymptomatic MM, and symptomatic MM, ranging from newly diagnosed to late stage relapsed/refractory. Typically, administration of the compositions results in a reduction in M-protein in serum or urine such that a plateau, no change, minimal, partial or complete response is observed as defined by the European Group for Blood and Marrow transplantation (EBMT).

Pharmaceutical Compositions

40

50

55

[0018] Provided herein are pharmaceutical compositions that are beneficial in reducing tumor mass and/or regressing tumor growth, in patients diagnosed with multiple myeloma. The components of the pharmaceutical compositions are addressed in more detail below, but typically include the anti-CS1 antibody HuLuc63 with bortezimob and one or more therapeutic agents. In some embodiments, the various components of the compositions are provided separately. For example, the anti-CS1 antibody can be provided in a first pharmaceutical composition, and a therapeutic agent provided

in a second composition. When the composition comprises two or more therapeutic agents, the anti-CS1 antibody can be provided in a first pharmaceutical composition, one therapeutic agent can be provided in a second composition and the other therapeutic agent can be provided in a third composition. In other embodiments, the anti-CS1 antibody can be provided in one pharmaceutical composition and the therapeutic agents can be combined and provided in a second pharmaceutical composition. In still other embodiments, one composition, comprising the anti-CS1 antibody combined with one or more therapeutic agents can be provided.

[0019] An anti-CS1 antibody can be present in a pharmaceutical composition at a concentration sufficient to permit intravenous administration at 0.5 mg/kg to 20 mg/kg. In some instances, the concentration of HuLuc63 suitable for use in the compositions and methods described herein includes, but is not limited to, at least about 0.5 mg/kg, at least about 0.75 mg/kg, at least about 2 mg/kg, at least about 2.5 mg/kg, at least about 3 mg/kg, at least about 4 mg/kg, at least about 5 mg/kg, at least about 6 mg/kg, at least about 7 mg/kg, at least about 8 mg/kg, at least about 9 mg/kg, at least about 10 mg/kg, at least about 11 mg/kg, at least about 12 mg/kg, at least about 13 mg/kg, at least about 14 mg/kg, at least about 15 mg/kg, at least about 16 mg/kg, at least about 17 mg/kg, at least about 18 mg/kg, at least about 19 mg/kg, and at least about 20 mg/kg.

10

15

20

25

30

35

40

45

55

[0020] The anti-CS1 antibodies can be administered in single or multiple dose regimens. Generally, an anti-CS1 antibody is administered over a period of time from about 1 to about 24 hours, but is typically administered over a period of about 1 to 2 hours. Dosages can be repeated from about 1 to about 4 weeks or more, for a total of 4 or more doses. Typically, dosages are repeated once every week, once every other week, or once a month, for a minimum of 4 doses to a maximum of 52 doses.

[0021] Determination of the effective dosage, total number of doses, and length of treatment with the anti-CS1 antibody is well within the capabilities of those skilled in the art, and can be determined using a standard dose escalation study to identify the maximum tolerated dose (MTD) (see, e.g., Richardson et al., 2002, Blood, 100(9):3063-3067).

[0022] In some embodiments, one or more therapeutic agents are administered in combination with the anti-CS1 antibody. The agents can be administered concurrently, prior to, or following administration of the anti-CS1 antibody.

[0023] In some embodiments, the anti-CS1 antibody is administered prior to the administration of the therapeutic agents. For example, the anti-CS1 antibody can be administered approximately 0 to 60 days prior to the administration of the therapeutic agents. In some embodiments, the anti-CS1 antibody HuLuc63 is administered from about 30 minutes to about 1 hour prior to the administration of the therapeutic agents, or from about 2 hours prior to the administration of the therapeutic agents, or from about 2 hours prior to the administration of the therapeutic agents, or from about 6 hours prior to the administration of the therapeutic agents, or from about 8 hours prior to the administration of the therapeutic agents, or from about 16 hours prior to the administration of the therapeutic agents, or from about 16 hours to 1 day prior to the administration of the therapeutic agents, or from about 5 days prior to the administration of the therapeutic agents, or from about 5 days prior to the administration of the therapeutic agents, or from about 10 to 15 days prior to the administration of the therapeutic agents, or from about 20 to 30 days prior to the administration of the therapeutic agents, or from about 40 to 50 days prior to the administration of the therapeutic agents, or from about 50 to 60 days prior to the administration of the therapeutic agents, or from about 50 to 60 days prior to the administration of the therapeutic agents, or from about 50 to 60 days prior to the administration of the therapeutic agents, or from about 50 to 60 days prior to the administration of the therapeutic agents.

[0024] In some embodiments, the anti-CS1 antibody is administered concurrently with the administration of the therapeutic agents.

[0025] In some embodiments, the anti-CS1 antibody is administered following the administration of the therapeutic agents. For example, the anti-CS1 antibody HuLuc63 can be administered approximately 0 to 60 days after the administration of the therapeutic agents. In some embodiments, HuLuc63 is administered from about 30 minutes to about 1 hour following the administration of the therapeutic agents, or from about 1 hour to about 2 hours following the administration of the therapeutic agents, or from about 4 hours to about 4 hours following the administration of the therapeutic agents, or from about 8 hours following the administration of the therapeutic agents, or from about 16 hours following the administration of the therapeutic agents, or from about 10 hours to 1 day following the administration of the therapeutic agents, or from about 10 to 15 days following the administration of the therapeutic agents, or from about 10 to 15 days following the administration of the therapeutic agents, or from about 10 to 15 days following the administration of the therapeutic agents, or from about 20 to 30 days following the administration of the therapeutic agents, or from about 30 to 40 days following the administration of the therapeutic agents, or from about 50 to 60 days following the administration of the therapeutic agents, or from about 50 to 60 days following the administration of the therapeutic agents, or from about 50 to 60 days following the administration of the therapeutic agents, or from about 50 to 60 days following the administration of the therapeutic agents.

[0026] The therapeutic agents can be administered in any manner found appropriate by a clinician and are typically provided in generally accepted efficacious dose ranges, such as those described in the Physician Desk Reference, 56th Ed. (2002), Publisher Medical Economics, New Jersey. In other embodiments, a standard dose escalation can be performed to identify the maximum tolerated dose (MTD) (see, e.g., Richardson, et al. 2002, Blood, 100(9):3063-3067).

[0027] In some embodiments, doses less than the generally accepted efficacious dose of a therapeutic agent can be used. For example, in various embodiments, the composition comprises a dosage that is less than about 10% to 75% of the generally accepted efficacious dose range. In some embodiments, at least about 10% or less of the generally accepted efficacious dose range is used, at least about 15% or less, at least about 25%, at least about 30% or less, at least about 40% or less, at least about 50% or less, at least about 75% or less, and at least about 90%.

[0028] The therapeutic agents can be administered singly or sequentially, or in a cocktail with other therapeutic agents, as described below. The therapeutic agents can be administered orally, intravenously, systemically by injection intramuscularly, subcutaneously, intrathecally or intraperitoneally.

[0029] Examples of therapeutic agents that can be used in the compositions described herein include, but are not limited to, dexamethasone, thalidomide, melphalan, prednisone, doxorubicin, doxorubicin HCL liposome injection, bortezomib, and/or combinations thereof.

[0030] In some embodiments, two pharmaceutical compositions are provided: a first comprising a therapeutically effective amount of the anti-CS1 antibody HuLuc63 and a second comprising a therapeutically effective amount of bortezomib.

[0031] In some embodiments at least two pharmaceutical compositions are provided: a first comprising a therapeutically effective amount of the anti-CS1 antibody HuLuc63 and a second comprising a therapeutically effective amount of bortezomib and dexamethasone. In some embodiments, bortezomib and dexamethasone are provided separately, such that a total of three pharmaceutical compositions are provided: a first comprising the anti-CS1 antibody HuLuc63, a second comprising bortezomib, and a third comprising dexamethasone.

[0032] Provided that the agents retain their efficacy, compositions comprising other combinations can be prepared, depending in part, on dosage, route of administration, and whether the agents are provided in a solid, semi-solid or liquid form.

[0033] In some embodiments, at least two pharmaceutical compositions are provided: a first comprising a therapeutically effective amount of the anti-CS1 antibody HuLuc63 and a second comprising a therapeutically effective amount of bortezomib and optionally can comprise one or more of the following agents: thalidomide, dexamethasone, melphalan, doxorubicin, doxorubicin HCI liposome injection, and/or prednisone. Provided that the agents retain their efficacy, compositions comprising various combinations of thalidomide, dexamethasone, melphalan, doxorubicin, doxorubicin HCI liposome injection, and prednisone can be prepared depending in part, on dosage, route of administration, and whether the agents are provided in a solid, semi-solid or liquid form.

[0034] The pharmaceutical compositions can exist as a solid, semi-solid, or liquid (e.g., suspensions or aerosols) dosage form. Typically, the compositions are administered in unit dosage forms suitable for single administration of precise dosage amounts. For example, anti-CS1 antibodies can be packaged in dosages ranging from about 1 to 1000 mg. In some embodiments, anti-CS1 antibodies can be packaged in a dosage at least about 1 mg, at least about 10 mg, at least about 20 mg, at least about 50 mg, at least about 100 mg, at least about 400 mg, at least about 500 mg, at least about 750 mg, at least about 1000 mg.

[0035] The compositions can also include, depending on the formulation desired, pharmaceutically-acceptable, non-toxic carriers or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents are distilled water, physiological saline, Ringer's solution, dextrose solution, and Hank's solution.

[0036] In addition, the pharmaceutical composition or formulation can also include other carriers, adjuvants, or nontoxic, non-therapeutic, nonimmunogenic stabilizers and the like. Effective amounts of such diluent or carrier will be those amounts that are effective to obtain a pharmaceutically acceptable formulation in terms of solubility of components, or biological activity.

5.3 Methods

10

15

20

25

30

35

40

45

55

[0037] The pharmaceutical compositions described herein find use in treating MM. Typically, the compositions can be used to treat Monoclonal Gammopathy of Undetermined Significance (MGUS), smoldering myeloma, asymptomatic MM, and symptomatic MM, ranging from newly diagnosed to late stage relapsed/refractory.

[0038] The compositions can be combined with other treatment strategies, *i.e.*, autologous stem cell transplantation and allogeneic effector cell transplantation, to develop an effective treatment strategy based on the stage of myeloma being treated (see, *e.g.*, Multiple Myeloma Research Foundation, Multiple Myeloma: Stem Cell Transplantation 1-30 (2004); U.S. Patent Nos. 6,143,292, and 5,928,639, Igarashi, et al. Blood 2004, 104(1): 170-177, Maloney, et al. 2003, Blood, 102(9): 3447-3454, Badros, et al. 2002, J Clin Oncol., 20:1295-1303, Tricot, et al. 1996, Blood, 87(3):1196-1198). [0039] The staging system most widely used since 1975 has been the Durie-Salmon system, in which the clinical stage of disease (Stage I, II, or III) is based on four measurements (see, e.g., Durie and Salmon, 1975, Cancer,

36:842-854). These four measurements are: (1) levels of monoclonal (M) protein (also known as paraprotein) in the serum and/or the urine; (2) the number of lytic bone lesions; (3) hemoglobin values; and, (4) serum calcium levels. These three stages can be further divided according to renal function, classified as A (relatively normal renal function, serum creatinine value < 2.0 mg/dL) and B (abnormal renal function, creatinine value \geq 2.0 mg/dL). A new, simpler alternative is the International Staging System (ISS) (see, *e.g.*, Greipp et al., 2003, "Development of an international prognostic index (IPI) for myeloma: report of the international myeloma working group", The Hematology). The ISS is based on the assessment of two blood test results, beta₂-microglobulin (β_2 -M) and albumin, which separates patients into three prognostic groups irrespective of type of therapy.

[0040] Administration of the pharmaceutical compositions at selected dosage ranges and routes typically elicits a beneficial response as defined by the European Group for Blood and Marrow transplantation (EBMT). Table 2 lists the EBMT criteria for response.

10

35

40

55

15	Table 2 EBMT/IBMTR/ABMTR ¹ Criteria for Response												
15	Complete Response	No M-protein detected in serum or urine by immunofixation for a minimum of 6 weeks and fewer than 5% plasma cells in bone marrow											
20	Partial Response	> 50% reduction in serum M-protein level and/or 90% reduction in urine free light chain excretion or reduction to <200 mg/24 hrs for 6 weeks ²											
20	Minimal Response	25-49% reduction in serum M-protein level and/or 50-89% reduction in urine free light chain excretion which still exceeds 200 mg/24 hrs for 6 weeks ³											
	No Change	Not meeting the criteria or either minimal response or progressive disease											
25	Plateau	No evidence of continuing myeloma-related organ or tissue damage, < 25% change in M-protein levels and light chain excretion for 3 months											
30	Progressive Disease	Myeloma-related organ or tissue damage continuing despite therapy or its reappearance in plateau phase, > 25% increase in serum M-protein level (> 5g/L) and/or > 25% increase in urine M-protein level (> 200 mg/24 hrs) and/or >25% increase in bone marrow plasma cells (at least 10% in absolute terms) ²											
	Relapse	Reappearance of disease in patients previously in complete response, including detection of paraprotein by immunofixation											
	¹ EBMT: European Gro	¹ EBMT: European Group for Blood and Marrow transplantation; IBMTR: International Bone Marrow Transplant Reg-											

¹EBMT: European Group for Blood and Marrow transplantation; IBMTR: International Bone Marrow Transplant Registry; ABMTR: Autologous Blood and Marrow Transplant Registry.

²For patients with non-secretory myeloma only, reduction of plasma cells in the bone marrow by > 50% of initial number (partial response) or 25-49% of initial number (minimal response) is required.

³In non-secretory myeloma, bone marrow plasma cells should increase by > 25% and at least 10% in absolute terms; MRI examination may be helpful in selected patients.

[0041] Additional criteria that can be used to measure the outcome of a treatment include "near complete response" and "very good partial response". A "near complete response" is defined as the criteria for a "complete response" (CR), but with a positive immunofixation test. A "very good partial response" is defined as a greater than 90% decrease in M protein (see, e.g., Multiple Myeloma Research Foundation, Multiple Myeloma: Treatment Overview 9 (2005)).

[0042] The degree to which administration of the compositions elicits a response in an individual clinically manifesting at least one symptom associated with MM, depends in part, on the severity of disease, e.g., Stage I, II, or III, and in part, on whether the patient is newly diagnosed or has late stage refractory MM. Thus, in some embodiments, administration of the pharmaceutical composition elicits a complete response.

[0043] In other embodiments, administration of the pharmaceutical composition elicits a very good partial response or a partial response.

[0044] In other embodiments, administration of the pharmaceutical composition elicits a minimal response.

[0045] In other embodiments, administration of the pharmaceutical composition prevents the disease from progressing, resulting in a response classified as "no change" or "plateau" by the EBMT.

[0046] Routes of administration and dosage ranges for compositions comprising an anti-CS1 antibody and one or more therapeutic agents for treating individuals diagnosed with MM, can be determined using art-standard techniques, such as a standard dose escalation study to identify the MTD (see, e.g., Richardson, et al. 2002, Blood, 100(9):3063-3067). [0047] Typically, anti-CS1 antibodies are administered intravenously. Administration of the other therapeutic agents

described herein can be by any means known in the art. Such means include oral, rectal, nasal, topical (including buccal and sublingual) or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration and will depend in part, on the available dosage form. For example, therapeutic agents that are available in a pill or capsule format typically are administered orally. However, oral administration generally requires administration of a higher dose than does intravenous administration. Determination of the actual route of administration that is best in a particular case is well within the capabilities of those skilled in the art, and in part, will depend on the dose needed versus the number of times per month administration is required.

[0048] Factors affecting the selected dosage of an anti-CS1 antibody and the therapeutic agents used in the compositions and methods described herein, include, but are not limited to, the type of agent, the age, weight, and clinical condition of the recipient patient, and the experience and judgment of the clinician or practitioner administering the therapy. Generally, the selected dosage should be sufficient to result in no change, but preferably results in at least a minimal change. An effective amount of a pharmaceutical agent is that which provides an objectively identifiable response, e.g., minimal, partial, or complete, as noted by the clinician or other qualified observer, and as defined by the EBMT.

[0049] Generally, an anti-CS1 antibody, such as HuLuc63, is administered as a separate composition from the composition(s) comprising the therapeutic agents. As discussed above, the therapeutic agents can each be administered as a separate composition, or combined in a cocktail and administered as a single combined composition. In some embodiments, the compositions comprising the anti-CS1 antibody and one or more therapeutic agents are administered concurrently. In other embodiments, the anti-CS1 antibody can be administered prior to the administration of composition(s) comprising the therapeutic agent(s). In yet other embodiments, the anti-CS1 antibody is administered following the administration of composition(s) comprising the therapeutic agent(s).

[0050] In those embodiments in which the anti-CS1 antibody is administered prior to or following the administration of the therapeutic agents, determination of the duration between the administration of the anti-CS1 antibody and administration of the agents is well within the capabilities of those skilled in the art, and in part, will depend on the dose needed versus the number of times per month administration is required.

[0051] Doses of anti-CS1 antibodies used in the methods described herein typically range between 0.5 mg/kg to 20 mg/kg. Optimal doses for the therapeutic agents are the generally accepted efficacious doses, such as those described in the Physician Desk Reference, 56th Ed. (2002), Publisher Medical Economics, New Jersey. Optimal doses for agents not described in the Physician Desk Reference can be determined using a standard dose escalation study to identify the MTD (see, e.g., Richardson, et al. 2002, Blood, 100(9):3063-3067).

[0052] In some embodiments, an anti-CS1 antibody is present in a pharmaceutical composition at a concentration, or in a weight/volume percentage, or in a weight amount, suitable for intravenous administration at a dosage rate at least about 0.5 mg/kg, at least about 0.75 mg/kg, at least about 1 mg/kg, at least about 2 mg/kg, at least about 2.5 mg/kg, at least about 3 mg/kg, at least about 4 mg/kg, at least about 5 mg/kg, at least about 6 mg/kg, at least about 7 mg/kg, at least about 8 mg/kg, at least about 9 mg/kg, at least about 10 mg/kg, at least about 11 mg/kg, at least about 12 mg/kg, at least about 13 mg/kg, at least about 14 mg/kg, at least about 15 mg/kg, at least about 16 mg/kg, at least about 17 mg/kg, at least about 18 mg/kg, at least about 19 mg/kg, and at least about 20 mg/kg.

6. EXAMPLES

10

15

20

25

30

35

50

40 Example 1: In vitro ADCC Assay: Methods and Results

[0053] ADCC was measured by calcein-AM release assay, with sensitivity similar to traditional Cr^{51} assay, as described previously. After informed consent, peripheral blood mononuclear cells (PBMCs) including natural killer (NK) effector cells were isolated from leukopheresis products of normal donors or peripheral blood from MM patients. Increasing concentrations (0-10 μ g/ml) of either HuLuc63 or human isotype control IgG₁ MSL109 mAbs were added at effector: target (E: T) ratios of 20:1, in a final volume of 200 μ l per well. After 4h incubation, 100 μ l culture supernatants were transferred to a Black ViewPlate TM-96 plate and arbitrary fluorescent units (AFU) were read on a fluorometer (Wallac VICTOR2). This assay is valid only if (AFU mean maximum release - medium control release) > 7. Calculation of % specific lysis from triplicate experiments was done using the following equation:

¹Calcein-AM release by target cells in the absence of Ab or NK cells.

²Calcein-AM release by target cells upon lysis by detergent.

[0054] HuLuc63-mediated lysis of patient MM cells by effector cells from the same patient was measured using an ADCC assay. HuLuc63, but not iso IgG₁, induced significant autologous myeloma cell lysis in patients in patient samples (FIGS. 1A- 1C). HuLuc63-mediated autologous tumor cell lysis was also demonstrated in patients with MM resistant or refractory to novel anti-MM therapies including bortezomib and/or 17-AAG (targeting heat shock protein 90) (FIGS. 2A and 2B). These data suggest that HuLuc63 can target myeloma cells from patients that are newly diagnosed, or resistant to standard of care drugs and/or novel agents.

10 Example 2: HuLuc63 in combination with bortezomib

[0055] Bortezomib is a potent, specific, and reversible proteasome inhibitor. Proteasomes are present in all cells and function to help regulate cell growth. Inhibition of the proteasome results in apoptosis of cancer cells. Bortezomib has been shown to be particularly effective at killing myeloma cells and is currently approved for 2nd and 3rd line therapy in multiple myeloma. Recent data has shown that bortezomib treatment of myeloma cells results in down-modulation of cell-surface expression of MHC class I, an inhibitor of NK function (Shi et al., Blood (ASH Annual Meeting Abstracts), Nov 2006; 108:3498). The hypothesis is that bortezomib treatment of myeloma cells would make them more susceptible to NK-mediated killing and, thus, enhance HuLuc63-mediated ADCC. The purpose of this study was to examine whether using HuLuc63 in combination with bortezomib provided therapeutic benefit.

[0056] The effect of HuLuc63 and bortezomib treatment on expression of CS in MM cell lines and mouse xenograft tumors was examined by flow cytometry and immunohistochemistry respectively.

In vitro ADCC Assay: Methods and Results

[0057] OPM2 myeloma cells were harvested at mid-log phase, suspended at a density of 1.0×10^6 cells/mL in complete media (RPMI with 10% FBS) and treated overnight with or without Velcade (10 nM). Cells were collected, washed, resuspended at a density of 20×106 viable cells/mL, and labeled for one hour with $50 \text{ mCi Na}_2[^{51}\text{Cr}]O_4$ per 10^6 cells. ^{51}Cr -Labeled cells were washed then added to a 96-well V-bottomed polystyrene plate at a cell density of 15,000 cells per $75 \text{ }\mu\text{L}$ RPMI supplemented with 10 % heat-inactivated FBS. HuLuc63 and a human 100×100 isotype control antibody MSL-109 were added to target cells for a final antibody concentration ranging from 0.001×100 to 10×100 mg/mL. NK cells were enriched from the whole blood of healthy donors using the RosetteSep human NK cell enrichment cocktail (Stem Cell Technologies). The enriched NK cells were added to Velcade treated or untreated OPM2 cells at a ratio of 10.1×100 mg/ml Digitonin. Antibody independent cellular cytotoxicity (AICC) was determined from target cells lysed with 100×100 mg/ml Digitonin. Antibody independent cellular cytotoxicity (AICC) was determined using target cells, plus media, plus NK cells, while spontaneous lysis was determined using $100 \times 100 \times 100$ media without NK effectors.

[0058] % Cytotoxicity was calculated as ((sample -AICC)/(Maximum- AICC) * 100.

[0059] CS1 protein expression was examined on the OPM2 multiple myeloma cell line with no significant change in CS1 expression observed pre- or post-treatment with HuLuc63, bortezomib or with both agents. The combination of HuLuc63 with bortezomib was then tested for anti-myeloma activity in vitro using ADCC assays. The results showed that pre-treatment with bortezomib significantly enhanced HuLuc63-mediated ADCC towards OPM2 cells using NK effector cells from healthy donors. OPM2 cells were pretreated with vehicle control (square symbols) or bortezomib (10 nM; round symbols) for 18 hrs and were then subjected to HuLuc63 mediated ADCC using human NK cells from healthy donors. HuLuc63 (closed symbols) and isotype control antibody (open symbols) were used at doses ranging from 0.001-10 µg/ml. The results show that bortezomib pre-treatment significantly decreased the EC₅₀ for HuLuc63-mediated ADCC in vitro (FIGS. 4A-4D, Table 3).

	Table 2													
	Table 3													
	No Treatment	Bortezomib (10nM)	P value (t test)											
1	0.0758	0.0106	0.04											
2	0.149	0.057	0.05											
3	0.103	0.0459	0.004											
4	0.0302	0.0207	0.0004											

50

45

15

20

25

30

35

40

In vivo Xenograft Mouse Model: Methods and Results

10

20

25

30

40

55

[0060] Six- to eight-week old female IcrTac:ICR-Prkdc^{scid} mice obtained from Taconic Farms (Germantown, NY) were inoculated with 1x10⁷ OPM2 (American Type Culture Collection) cells into the lower right flank. Caliper measurements were performed twice weekly to calculate tumor volume using the following formula: LxWxH/2, where L (length) is the longest side of the tumor in the plane of the animal's back, W (width) is the longest measurement perpendicular to the length and in the same plane and H (height) is taken at the highest point perpendicular to the back of the animal. When tumors reached an average size of about 100 mm³, animals were randomized into 3 groups of 8-10 mice each and were treated with 1 mg/kg of antibody administered intraperitoneally twice a week for a total of 6 doses. Bortezomib was administered intraperitoneally at a dose of 0.75 mg/kg twice a week for a total of 6 doses. Tumor growth was monitored for a period of 1-2 months. Animal work was carried out under NIH guidelines ("Guide for the Care and Use of Laboratory Animals") using protocols approved by IACUC at PDL BioPharma.

[0061] To examine the effect of HuLuc63 combination therapy with bortezomib in vivo, OPM2 tumor-bearing mice were treated with sub-optimal doses of HuLuc63 (1 mg/kg), or isotype control antibody twice weekly for three weeks. Bortezomib was given twice a week at 0.75 mg/kg to mice receiving either isotype control antibody or HuLuc63. The results showed significant anti-tumor activity of HuLuc63 alone and in combination with bortezomib (FIG. 5A). Mice in the combination treatment group exhibited on average 40-50 % smaller tumors than in the HuLuc63 monotherapy group, and 60-70% smaller tumors than in the bortezomib group.

[0062] In a second experiment, HuLuc63 was combined with bortezomib in vivo, using a different dose and dosing schedule for bortezomib, while keeping the original HuLuc63 dose and dosing schedule. OPM2 cells were inoculated into the flanks of SCID mice. When tumors reached an average size of about 100 mm3, animals were randomized into 4 groups of 15 mice each and were treated with 1 mg/kg of antibody administered intraperitoneally twice a week for a total of 10 doses. Bortezomib was administered intraperitoneally at a dose of 1 mg/kg twice for weeks 1 and 2, no treatment for week 3, and 1 mg/kg twice for weeks 4 and 5 for a total of 8 doses. The intent for this dosing schedule was to more closely mimic the dosing schedule of bortezomib in the clinic, where each treatment cycle consists of 2 weeks of dosing, with one week off. Tumor growth was monitored for a period of 1-2 months.

[0063] The results showed significant anti-tumor activity of HuLuc63 alone, bortezomib alone and for HuLuc63 in combination with bortezomib (FIG. 5B). Mice in the combination treatment group exhibited significantly smaller tumors than mice treated with either drug alone. The data indicates that bortezomib synergizes with HuLuc63 in anti-myeloma tumor activity.

Example 3: Phase 1b, open-label, dose-escalation study of HuLuc63 and bortezomib in multiple myeloma patients following first or second relapse

[0064] The proposed Phase 1b, multi-center, open-label, multi-dose, dose escalation study will evaluate the combination of HuLuc63 and bortezomib in patients with multiple myeloma after 1st or 2nd relapse. HuLuc63 will be given by intravenous injection (IV) at up to five dose levels ranging from 2.5 mg/kg to 20 mg/kg in combination with a fixed dose of bortezomib IV at 1.0 mg/m2. Patients will receive HuLuc63 every 10 days and bortezomib will be given in 21-day cycles (twice weekly for two weeks (days 1, 4, 8, 11) followed by a 10-day rest period (days 12-21)).

[0065] After 9 weeks of therapy (6 doses of HuLuc63, 3 cycles of bortezomib), EBMT criteria will be assessed. If a patient has progressive disease, HuLuc63 will be discontinued and bortezomib may be withdrawn or continued at the discretion of the site investigator. If the patient has responded or has stable disease at Week 9, dosing with HuLuc63 and bortezomib will continue so that a total of 24 weeks of treatment (16 doses HuLuc63, 8 cycles bortezomib) are completed or disease progression occurs. Dosing with HuLuc63 and bortezomib will continue until the data from the Week 9 visit are available.

[0066] Patients will receive HuLuc63 IV once every 10 days, with each dose infused over 1 hour. Bortezomib will be given as IVP for 8 three-week cycles with each cycle consisting of bortezomib on days 1, 4, 8 and 11 followed by a tenday rest period (days 11 - 21). Dosing cohorts are as follows: 2.5 mg/kg HuLuc63/1.3 mg/m² bortezomib; 5 mg/kg HuLuc63/1.3 mg/m² bortezomib; 10 mg/kg HuLuc63/1.3 mg/m² bortezomib; and, 20 mg/kg HuLuc63/1.3 mg/m² bortezomib.

[0067] HuLuc63 will be provided at a concentration of 10 mg/mL in an intravenous formulation in vials. Bortezomib will be provided as a 3.5 mg lyophilized cake or powder in a 10 mL vial, to be reconstituted with 3.5 mL normal (0.9%) saline, sodium chloride injection to 3.5 mL of 1mg/mL of bortezomib, as per Velcade® package insert.

[0068] Approximately 15 to 30 patients in 5 cohorts will be enrolled in the trial. Each cohort will begin with 3 patients. If no dose-limiting toxicity (DLT) is noted within the first 6 weeks of treatment in any patient, enrollment will begin in the next higher cohort. If one patient has a DLT, 3 additional patients will be enrolled in the cohort. If no other patient in the cohort has a DLT, escalation to the next cohort may proceed. If a second patient in a cohort has a DLT, the maximum tolerated dose (MTD) has been reached.

[0069] A dose-limiting toxicity (DLT) is defined using the National Cancer Center Institute Common Toxicity Criteria Version 3.0 (NCI CTCAE v3.0) as a grade 4 hematologic toxicity or hyperbilirubinemia, or a grade 3 toxicity in any other system considered related to HuLuc63 or the combination of HuLuc63 and bortezomib. For dose escalation to the next cohort, 3 assessable patients must complete their first 6 weeks (4 doses HuLuc63, 2 cycles bortezomib). If a DLT occurs, an additional three assessable patients will be accrued. Patients will be monitored for safety by assessing adverse events categorized by NCI CTCAE v3.0 and patients will be monitored for clinical activity using EBMT. The maximally tolerated dose (MTD) is defined as the highest dose studied for which the incidence of DLTs is ≤ 33%. The highest tolerated dose will be HuLuc63 20 mg/kg + bortezomib 1.0 mg/m² if no dose limiting toxicities are observed.

10 PARAGRAPHS

[0070]

20

25

35

40

45

- 1. A pharmaceutical composition suitable for treating multiple myeloma in a subject, comprising a therapeutically effective amount of HuLuc63, a therapeutically effective amount of bortezomib, and a pharmaceutically acceptable carrier, wherein said composition is capable of being administered in a single or multiple dose regimen.
 - 2. The pharmaceutical composition according to Paragraph 1 comprising a therapeutically effective amount of bortezomib
 - 3. The pharmaceutical composition according to Paragraph 1, further comprising a therapeutically effective amount of dexamethasone.
 - 4. The pharmaceutical composition according to Paragraph 1, further comprising a therapeutically effective amount of thalidomide.
 - 5. The pharmaceutical composition according to Paragraph 4, further comprising a therapeutically effective amount of dexamethasone.
- 6. The pharmaceutical composition according to Paragraph 1, further comprising a therapeutically effective amount of melphalan.
 - 7. The pharmaceutical composition according to Paragraph 6, further comprising a therapeutically effective amount of prednisone.
 - 8. The pharmaceutical composition according to Paragraph 1, further comprising a therapeutically effective amount of doxorubicin.
 - 9. The pharmaceutical composition according to Paragraph 1 in which HuLuc63 is in an injectable form.
 - 10. The pharmaceutical composition according to Paragraph 1, containing from 0.5 mg/kg to 20 mg/kg of HuLuc63.
 - 11. The pharmaceutical composition according to Paragraph 1,, containing from 0.2 mg/m² to 2.0 mg/m² ofbortezomib.
 - 12. The pharmaceutical composition according to Paragraph 1, in which HuLuc63 is administered after the administration of bortezomib.
 - 13. The pharmaceutical composition according to Paragraph 1, in which HuLuc63 is administered concurrently with the administration of bortezomib.
 - 14. The pharmaceutical composition according to Paragraph 1, in which HuLuc63 is administered prior to the administration of bortezomib.
- 15. The pharmaceutical composition according to Paragraph 1, in which administration of said pharmaceutical composition elicits a complete response.
 - 16. The pharmaceutical composition according to Paragraph 1, in which administration of said pharmaceutical

composition elicits a very good partial response.

5

10

20

40

45

- 17. The pharmaceutical composition according to Paragraph 1, in which administration of said pharmaceutical composition elicits a partial response.
- 18. The pharmaceutical composition according to Paragraph 1, in which administration of said pharmaceutical composition elicits a minimal response.
- 19. A method for increasing sensitivity of a multiple myeloma cell to a therapeutic agent, comprising contacting the cell with a therapeutically effective amount of HuLuc63.
 - 20. The method according to Paragraph 19, further comprising contacting the cell with a therapeutically effective amount of bortezomib.
- 15 21. The method according to Paragraph 19, wherein the multiple myeloma cell is resistant to a therapeutic agent.
 - 22. The method according to Paragraph21, further comprising contacting said resistant cell with a therapeutic agent that the cell is sensitive to, said agent selected from the group consisting of thalidomide, dexamethasone, doxorubicin, melphalan, vincristine, carmustine, cyclophosphamide, prednisone, and/or combinations thereof.
 - 23. A method of treating multiple myeloma in a subject, comprising administering a therapeutically effective amount of HuLuc63, a therapeutically effective amount of bortezomib, and a pharmaceutically acceptable carrier, wherein said composition is capable of being administered in a single or multiple dose regimen.
- 25 24. The method according to Paragraph 23 comprising a therapeutically effective amount of bortezomib.
 - 25. The method according to Paragraph 23, further comprising a therapeutically effective amount of dexamethasone.
- 26. The pharmaceutical composition according to Paragraph 23, further comprising a therapeutically effective amount of thalidomide.
 - 27. The pharmaceutical composition according to Paragraph 26, further comprising a therapeutically effective amount of dexamethasone.
- 35 28. The pharmaceutical composition according to Paragraph 23, further comprising a therapeutically effective amount of melphalan.
 - 29. The pharmaceutical composition according to Paragraph 28, further comprising a therapeutically effective amount of prednisone.
 - 30. The pharmaceutical composition according to Paragraph 23, further comprising a therapeutically effective amount of doxorubicin.
 - 31. The method according to Paragraph 23, in which HuLuc63 is administered intravenously at a dosage from approximately 0.5 mg/kg to approximately 20 mg/kg.
 - 32. The method according to Paragraph 23, in which bortezomib is administered intravenously at a dosage from approximately 0.2 mg/m^2 to 2.0 mg/m^2 .
- 50 33. The method according to Paragraph 23, in which said treatment elicits a complete response.
 - 34. The method according to Paragraph 23, in which said treatment elicits a very good partial response.
 - 35. The method according to Paragraph 23, in which said treatment elicits a partial response.
 - 36. The method according to Paragraph 23, in which said treatment elicits a minimal response.
 - 37. A method of treating multiple myeloma in a subject, comprising administering a pharmaceutical composition

comprising a combination of a therapeutically effect amount of HuLuc63 and a therapeutically effective amount of bortezomib.

- 38. The method according to Paragraph 37 comprising a therapeutically effective amount of bortezomib.
- 39. The method according to Paragraph 37, further comprising a therapeutically effective amount of dexamethasone.
- 40. The pharmaceutical composition according to Paragraph 37, further comprising a therapeutically effective amount of thalidomide.
- 41. The pharmaceutical composition according to Paragraph 40, further comprising a therapeutically effective amount of dexamethasone.
- 42. The pharmaceutical composition according to Paragraph 37, further comprising a therapeutically effective amount of melphalan.
 - 43. The pharmaceutical composition according to Paragraph 42, further comprising a therapeutically effective amount of prednisone.
- 44. The pharmaceutical composition according to Paragraph 37, further comprising a therapeutically effective amount of doxorubicin.
 - 45. The method according to Paragraph 37, further comprising a pharmaceutically acceptable carrier.
- ²⁵ 46. The method according to Paragraph 37, in which HuLuc63 is administered intravenously at a dosage from approximately 0.5 mg/kg to approximately 20 mg/kg.
 - 47. The method according to Paragraph 37, in which bortezomib is administered intravenously at a dosage from approximately 0.2 mg/m^2 to 2.0 mg/m^2 .
 - 48. The method according to Paragraph 37, in which HuLuc63 is administered after the administration of bortezomib.
 - 49. The method according to Paragraph 37, in which HuLuc63 is administered concurrently with the administration of bortezomib.
 - 50. The method according to Paragraph 37, in which HuLuc63 is administered prior to the administration of bortezomib.
 - 51. The method according to Paragraph 37, in which the treatment elicits a complete response.
 - 52. The method according to Paragraph 37, in which the treatment elicits a very good partial response.
 - 53. The method according to Paragraph 37, in which the treatment elicits a partial response.
- 45 54. The method according to Paragraph 37, in which the treatment elicits a minimal response.

SEQUENCE LISTING

[0071]

5

10

15

30

35

40

- <110> AbbVie Biotherapeutics Inc. Dana-Farber Cancer Institute
- <120> Methods of Treating Multiple Myeloma Using Combination Therapies Based on Anti-CS1 Antibodies
- 55 <140> EP 13168383.1
 - <141> 2007-08-07
 - <150> US 60/836,185

	<151> 2006-08-07																
E	<150> L <151> 2			52													
5	<160> 6																
	<170> P	atentl	n vers	ion 3.2	2												
10	<210> 1 <211> 335 <212> PRT <213> Homo sapiens <400> 1																
15	<pre><400> 1 Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp Glr</pre>																
		Met 1	Ala	Gly	Ser	Pro 5	Thr	Cys	Leu	Thr	Leu 10	Ile	Tyr	Ile	Leu	Trp 15	Gln
20		Leu	Thr	Gly	Ser 20	Ala	Ala	Ser	Gly	Pro 25	Val	Lys	Glu	Leu	Val 30	Gly	Ser
25		Val	Gly	Gly 35	Ala	Val	Thr	Phe	Pro 40	Leu	Lys	Ser	Lys	Val 45	Lys	Gln	Val
30		Asp	Ser 50	Ile	Val	Trp	Thr	Phe 55	Asn	Thr	Thr	Pro	Leu 60	Val	Thr	Ile	Gln
		Pro 65	Glu	Gly	Gly	Thr	Ile 70	Ile	Val	Thr	Gln	Asn 75	Arg	Asn	Arg	Glu	Arg 80
35		Val	Asp	Phe	Pro	Asp 85	Gly	Gly	Tyr	Ser	Leu 90	Lys	Leu	Ser	Lys	Leu 95	Lys
40		Lys	Asn	Asp	Ser 100	Gly	Ile	Tyr	Tyr	Val 105	Gly	Ile	Tyr	Ser	Ser 110	Ser	Leu
45		Gln	Gln	Pro 115	Ser	Thr	Gln	Glu	Tyr 120	Val	Leu	His	Val	Tyr 125	Glu	His	Leu
		Ser	Lys 130	Pro	Lys	Val	Thr	Met 135	Gly	Leu	Gln	Ser	Asn 140	Lys	Asn	Gly	Thr
50																	

		ys 45	Val	Thr	Asn	Leu	Thr 150	Cys	Cys	Met	Glu	His 155	Gly	Glu	Glu	Asp	Val 160
5	I	le	Tyr	Thr	Trp	Lys 165	Ala	Leu	Gly	Gln	Ala 170	Ala	Asn	Glu	Ser	His 175	Asn
10	G	ly	Ser	Ile	Leu 180	Pro	Ile	Ser	Trp	Arg 185	Trp	Gly	Glu	Ser	Asp 190	Met	Thr
15	P	he	Ile	Cys 195	Val	Ala	Arg	Asn	Pro 200	Val	Ser	Arg	Asn	Phe 205	Ser	Ser	Pro
10	I		Leu 210	Ala	Arg	Lys	Leu	Cys 215	Glu	Gly	Ala	Ala	Asp 220	Asp	Pro	Asp	Ser
20		er : 25	Met	Val	Leu	Leu	Cys 230	Leu	Leu	Leu	Val	Pro 235	Leu	Leu	Leu	Ser	Leu 240
25	P	he '	Val	Leu	Gly	Leu 245	Phe	Leu	Trp	Phe	Leu 250	Lys	Arg	Glu	Arg	Gln 255	Glu
20	G	lu	Tyr	Ile	Glu 260	Glu	Lys	Lys	Arg	Val 265	Asp	Ile	Cys	Arg	Glu 270	Thr	Pro
30	A	sn	Ile	Cys 275	Pro	His	Ser	Gly	Glu 280	Asn	Thr	Glu	Tyr	Asp 285	Thr	Ile	Pro
35	Н		Thr 290	Asn	Arg	Thr	Ile	Leu 295	Lys	Glu	Asp	Pro	Ala 300	Asn	Thr	Val	Tyr
40		er 05	Thr	Val	Glu	Ile	Pro 310	Lys	Lys	Met	Glu	Asn 315	Pro	His	Ser	Leu	Leu 320
	T.	hr :	Met	Pro	Asp	Thr 325	Pro	Arg	Leu	Phe	Ala 330	Tyr	Glu	Asn	Val	Ile 335	
45	<210> 2 <211> 227 <212> PR7 <213> Artif	Γ															
50	<220> <223> hu5	0/mu	ս50։ a	ımino	acids '	1-151	of hun	nan C	S1 fus	ed to	amino	acids	149-2	24 of ı	mouse	CS1	
	<400> 2																
55	M 1		Ala	Gly	Ser	Pro 5	Thr	Cys	Leu	Thr	Leu 10	Ile	Tyr	Ile	Leu	Trp 15	Gln

		Leu	Thr	Gly	Ser 20	Ala	Ala	Ser	Gly	Pro 25	Val	Lys	Glu	Leu	Val 30	Gly	Ser
5		Val	Gly	Gly 35	Ala	Val	Thr	Phe	Pro 40	Leu	Lys	Ser	Lys	Val 45	Lys	Gln	Val
10		Asp	Ser 50	Ile	Val	Trp	Thr	Phe 55	Asn	Thr	Thr	Pro	Leu 60	Val	Thr	Ile	Gln
15		Pro 65	Glu	Gly	Gly	Thr	Ile 70	Ile	Val	Thr	Gln	Asn 75	Arg	Asn	Arg	Glu	Arg 80
		Val	Asp	Phe	Pro	Asp 85	Gly	Gly	Tyr	Ser	Leu 90	Lys	Leu	Ser	Lys	Leu 95	Lys
20		Lys	Asn	Asp	Ser 100	Gly	Ile	Tyr	Tyr	Val 105	Gly	Ile	Tyr	Ser	Ser 110	Ser	Leu
25		Gln	Gln	Pro 115	Ser	Thr	Gln	Glu	Tyr 120	Val	Leu	His	Val	Tyr 125	Glu	His	Leu
20		Ser	Lys 130	Pro	Lys	Val	Thr	Ile 135	Asp	Arg	Gln	Ser	Asn 140	Lys	Asn	Gly	Thr
30		Cys 145	Val	Ile	Asn	Leu	Thr 150	Cys	Ser	Thr	Asp	Gln 155	Asp	Gly	Glu	Asn	Val 160
35		Thr	Tyr	Ser	Trp	Lys 165	Ala	Val	Gly	Gln	Gly 170	Asp	Asn	Gln	Phe	His 175	Asp
40		Gly	Ala	Thr	Leu 180	Ser	Ile	Ala	Trp	Arg 185	Ser	Gly	Glu	Lys	Asp 190	Gln	Ala
45		Leu	Thr	Cys 195	Met	Ala	Arg	Asn	Pro 200	Val	Ser	Asn	Ser	Phe 205	Ser	Thr	Pro
45		Val	Phe 210	Pro	Gln	Lys	Leu	Cys 215	Glu	Asp	Ala	Ala	Thr 220	Asp	Leu	Thr	Ser
50	Leu Arg 225																
55	<210> 3 <211> 2 <212> P <213> A	27 RT	I														
	<220>	25/b	75: -	mine	acids	1 67 0	f mou	CS	1 fuco	d to o	mino s	oide e	:e 227	of hou	man C	·C1	

<400> 3

5	Met 1	Ala	Arg	Phe	Ser 5	Thr	Tyr	Ile	Ile	Phe 10	Thr	Ser	Val	Leu	Cys 15	Gln
	Leu	Thr	Val	Thr 20	Ala	Ala	Ser	Gly	Thr 25	Leu	Lys	Lys	Val	Ala 30	Gly	Ala
10	Leu	Asp	Gly 35	Ser	Val	Thr	Phe	Thr 40	Leu	Asn	Ile	Thr	Glu 45	Ile	Lys	Val
15	Asp	Tyr 50	Val	Val	Trp	Thr	Phe 55	Asn	Thr	Phe	Phe	Leu 60	Ala	Met	Val	Lys
20	Lys 65	Asp	Gly	Gly	Thr	Ile 70	Ile	Val	Thr	Gln	Asn 75	Arg	Asn	Arg	Glu	Arg 80
	Val	Asp	Phe	Pro	Asp 85	Gly	Gly	Tyr	Ser	Leu 90	Lys	Leu	Ser	Lys	Leu 95	Lys
25	Lys	Asn	Asp	Ser 100	Gly	Ile	Tyr	Tyr	Val 105	Gly	Ile	Tyr	Ser	Ser 110	Ser	Leu
30	Gln	Gln	Pro 115	Ser	Thr	Gln	Glu	Tyr 120	Val	Leu	His	Val	Tyr 125	Glu	His	Leu
35	Ser	Lys 130	Pro	Lys	Val	Thr	Met 135	Gly	Leu	Gln	Ser	Asn 140	Lys	Asn	Gly	Thr
	Cys 145	Val	Thr	Asn	Leu	Thr 150	Cys	Cys	Met	Glu	His 155	Gly	Glu	Glu	Asp	Val 160
40	Ile	Tyr	Thr	Trp	Lys 165			Gly						Ser	His 175	Asn
45	Gly	Ser	Ile	Leu 180	Pro	Ile	Ser	Trp	A rg 185	Trp	Gly	Glu	Ser	Asp 190	Met	Thr
50	Phe	Ile	Cys 195	Val	Ala	Arg	Asn	Pro 200	Val	Ser	Arg	Asn	Phe 205	Ser	Ser	Pro
	Ile	Leu 210	Ala	Arg	Lys	Leu	Cys 215	Glu	Gly	Ala	Ala	Asp 220	Asp	Pro	Asp	Ser
55	Ser 225	Met	Val													

	<210> 4 <211> 2 <212> F <213> 7	224 PRT	ıl														
5	<220> <223> r	mu75/h	nu25: a	amino	acids	1-166	of mo	use C	S1 fus	ed to a	amino	acids	170-2	27 of l	humar	ı CS1	
10	<400> 4			_				_			_,	_,	_		_		~ 1
		Met 1	Ala	Arg	Phe	Ser 5	Thr	Tyr	IIe	IIe	Phe 10	Thr	Ser	Val	Leu	Cys 15	GIn
15		Leu	Thr	Val	Thr 20	Ala	Ala	Ser	Gly	Thr 25	Leu	Lys	Lys	Val	Ala 30	Gly	Ala
20		Leu	Asp	Gly 35	Ser	Val	Thr	Phe	Thr 40	Leu	Asn	Ile	Thr	Glu 45	Ile	Lys	Val
25		Asp	Tyr 50	Val	Val	Trp	Thr	Phe 55	Asn	Thr	Phe	Phe	Leu 60	Ala	Met	Val	Lys
		Lys 65	Asp	Gly	Val	Thr	Ser 70	Gln	Ser	Ser	Asn	Lys 75	Glu	Arg	Ile	Val	Phe 80
30		Pro	Asp	Gly	Leu	Tyr 85	Ser	Met	Lys	Leu	Ser 90	Gln	Leu	Lys	Lys	Asn 95	Asp
35		Ser	Gly	Ala	Tyr 100	Arg	Ala	Glu	Ile	Tyr 105	Ser	Thr	Ser	Ser	Gln 110	Ala	Ser
40		Leu	Ile	Gln 115	Glu	Tyr	Val	Leu	His 120	Val	Tyr	Lys	His	Leu 125	Ser	Arg	Pro
		Lys	Val 130	Thr	Ile	Asp	Arg	Gln 135	Ser	Asn	Lys	Asn	Gly 140	Thr	Cys	Val	Ile
45		Asn 145	Leu	Thr	Cys	Ser	Thr 150	Asp	Gln	Asp	Gly	Glu 155	Asn	Val	Thr	Tyr	Ser 160
50		Trp	Lys	Ala	Val	Gly 165	Gln	Ala	Ala	Asn	Glu 170	Ser	His	Asn	Gly	Ser 175	Ile
		Leu	Pro	Ile	Ser 180	Trp	Arg	Trp	Gly	Glu 185	Ser	Asp	Met	Thr	Phe 190	Ile	Cys
55		Val	Ala	Arg 195	Asn	Pro	Val	Ser	Arg 200	Asn	Phe	Ser	Ser	Pro 205	Ile	Leu	Ala

	Arc	J Lys 210	Leu	Cys	Glu	Gly	Ala 215	Ala	Asp	Asp	Pro	Asp 220	Ser	Ser	Met	Val
5	<210> 5 <211> 119 <212> PRT <213> Homo	saiens	ı													
10	<400> 5															
	Gl: 1	ı Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
15	Se.	r Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Asp	Phe	Ser 30	Arg	Tyr
20	Tr	o Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Ile
25	Gl _:	y Glu 50	Ile	Asn	Pro	Asp	Ser 55	Ser	Thr	Ile	Asn	Tyr 60	Ala	Pro	Ser	Leu
20	Ly: 65	s Asp	Lys	Phe	Ile	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
30	Le	ı Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
35	Ala	a Arg	Pro	Asp 100	Gly	Asn	Tyr	Trp	Tyr 105	Phe	Asp	Val	Trp	Gly 110	Gln	Gly
	Th	r Leu	Val 115	Thr	Val	Ser	Ser									
40	<210> 6 <211> 107															
45	<212> PRT <213> Homo	sapier	ıs													
	<400> 6															
50																

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly

1 5 10 5 Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Val Gly Ile Ala 20 25 30 Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile 35 40 45 10 Tyr Trp Ala Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Ser Gly 15 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 20 Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Ser Tyr Pro Tyr 85 90 25 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 30 Claims 1. Use of HuLuc63 in the preparation of a medicament, said HuLuc63 being a humanized IgG₁ antibody having a heavy chain variable region corresponding to SEQ ID NO:5 and a light chain variable region corresponding to SEQ ID NO:6, for the treatment of multiple myeloma of a human patient, wherein the HuLuc63 is administered in com-35 bination with bortezomib and wherein HuLuc63 is administered as an intravenous infusion at a dosage from 2.5 mg/kg to 20 mg/kg and the bortezomib is to be administered as an intravenous infusion at a dosage from 0.2 mg/m² to 2.0 mg/m^2 . 2. The use according to claim 1, wherein the bortezomib is to be administered at an intravenous dose of from 1.0 40 mg/m^2 to 1.3 mg/m^2 . 3. The use according to claim 1, wherein the bortezomib is to be administered at an intravenous dose of 1.0 mg/m². **4.** The use according to claim 1, wherein the bortezomib is to be administered at an intravenous dose of 1.3 mg/m². 45 5. The use according to any one of claims 1-4, wherein the HuLuc63 is administered at an intravenous dose of 2.5 mg/kg.

22

6. The use according to any one of claims 1-4, wherein the HuLuc63 is to be administered at an intravenous dose of

7. The use according to any one of claims 1-4, wherein the HuLuc63 is to be administered at an intravenous dose of

9. The use according to any one of claims 1-8, wherein the patient receives the bortezomib four times in a three week

8. The use according to any one of claims 1-7, wherein the patient receives the HuLuc63 once every 10 days.

50

55

10 mg/kg.

cycle.

- 10. The use according to claim 9, wherein the bortezomib is given on days 1, 4, 8, and 11 followed by a 10 day rest period.
- **11.** The use according to any one of claims 1-10, wherein the HuLuc63 and the bortezomib are used with a third medicament comprising dexamethasone.
- **12.** HuLuc63, said HuLuc63 being a humanized IgG₁ antibody having a heavy chain variable region corresponding to SEQ ID NO:5 and a light chain variable region corresponding to SEQ ID NO:6, for use in the treatment of multiple myeloma of a human patient, wherein the HuLuc63 is administered in combination with bortezomib, and wherein HuLuc63 is administered as an intravenous infusion at a dosage from 2.5 mg/kg to 20 mg/kg and the bortezomib is administered as an intravenous infusion at a dosage from 0.2 mg/m² to 2.0 mg/m².
- **13.** The HuLuc63 for use according to claim 12, wherein HuLuc63 is provided in a first pharmaceutical composition and the bortezomib is provided in a second pharmaceutical composition.
- 15 **14.** The HuLuc63 for use according to claim 12 or 13, wherein the bortezomib is administered at an intravenous dose of from 1.0 mg/m² to 1.3 mg/m².
 - **15.** The HuLuc63 for use according to claim 12 or 13, wherein the bortezomib is administered at an intravenous dose of 1.0 mg/m².
 - **16.** The HuLuc63 for use according to claim 12 or 13, wherein the bortezomib is administered at an intravenous dose of 1.3 mg/m².
- **17.** The HuLuc63 for use according to any one of claims 12-16, wherein the HuLuc63 is administered at an intravenous dose of 2.5 mg/kg.
 - **18.** The HuLuc63 for use according to any one of claims 12-16, wherein the HuLuc63 is administered at an intravenous dose of 5 mg/kg.
- 30 19. The HuLuc63 for use according to any one of claims 12-16, wherein the HuLuc63 is administered at an intravenous dose of 10 mg/kg.
 - **20.** The HuLuc63 for use according to any one of claims 12-19, wherein the patient receives the HuLuc63 once every 10 days.
 - **21.** The HuLuc63 for use according to any one of claims 12-20, wherein the patient receives the bortezomib four times in a three week cycle.
- **22.** The HuLuc63 for use according to claim 21, wherein the bortezomib is given on days 1, 4, 8, and 11 followed by a 10 day rest period.
 - 23. The HuLuc63 for use according to any one of claims 12-22, wherein said HuLuc63 and bortezomib are used with a third medicament comprising dexamethasone.

Patentansprüche

5

10

20

35

45

- 1. Verwendung von HuLuc63 bei der Herstellung eines Medikaments, wobei besagtes HuLuc63 ein humanisierter $\lg G_1$ Antikörper ist, welcher eine variable Region in der schweren Kette entsprechend SEQ ID NO:5 und eine variable Region in der leichten Kette entsprechend SEQ ID NO:6 aufweist, zur Behandlung von multipler Myelome eines menschlichen Patienten, wobei das HuLuc63 in Kombination mit Bortezomib verabreicht wird, und wobei HuLuc63 als intravenöse Infusion in einer Dosierung von 2,5 mg / kg bis 20 mg / kg verabreicht wird und das Bortezomib als intravenöse Infusion in einer Dosierung von 0,2 mg / m² bis 2,0 mg / m² verabreicht wird.
- Die Verwendung nach Anspruch 1, wobei das Bortezomib als eine intravenöse Dosierung von 1,0 mg / m² bis 1,3 mg / m² zu verabreichen ist.
 - 3. Die Verwendung nach Anspruch 1, wobei das Bortezomib als eine intravenöse Dosierung von 1,0 mg / m² zu

verabreichen ist.

5

25

30

35

- **4.** Die Verwendung nach Anspruch 1, wobei das Bortezomib als eine intravenöse Dosierung von 1,3 mg / m² zu verabreichen ist.
- **5.** Die Verwendung nach einem der Ansprüche 1 4, wobei das HuLuc63 als eine intravenöse Dosierung von 2,5 mg / kg verabreicht wird.
- **6.** Die Verwendung nach einem der Ansprüche 1 4, wobei das HuLuc63 als eine intravenöse Dosierung von 5 mg / kg verabreicht wird.
 - 7. Die Verwendung nach einem der Ansprüche 1 4, wobei das HuLuc63 als eine intravenöse Dosierung von 10 mg / kg verabreicht wird.
- 15 8. Die Verwendung nach einem der Ansprüche 1 7, wobei der Patient das HuLuc63 einmal alle 10 Tage erhält.
 - 9. Die Verwendung nach einem der Ansprüche 1 8, wobei der Patient das Bortezomib viermal in einem Dreiwochenzyklus erhält.
- **10.** Die Verwendung nach Anspruch 9, wobei das Bortezomib an den Tagen 1, 4, 8 und 11 gegeben wird, gefolgt von einer 10 tägigen Pause der Therapie.
 - **11.** Verwendung nach einem der Ansprüche 1 10, wobei das HuLuc63 und Bortezomib mit einem dritten Medikament eingesetzt werden, umfassend Dexamethason.
 - 12. HuLuc63, wobei besagtes HuLuc63 ein humanisierter IgG₁ Antikörper ist, welcher eine variable Region in der schweren Kette entsprechend SEQ ID NO:5 und eine variable Region in der leichten Kette entsprechend SEQ ID NO:6 aufweist, zur Behandlung von multipler Myelome eines menschlichen Patienten, wobei das HuLuc63 in Kombination mit Bortezomib verabreicht wird, und wobei HuLuc63 als intravenöse Infusion in einer Dosierung von 2,5 mg / kg bis 20 mg / kg verabreicht wird und das Bortezomib als intravenöse Infusion in einer Dosierung von 0,2 mg / m² bis 2,0 mg / m² verabreicht wird.
 - **13.** Das HuLuc63 zur Verwendung nach Anspruch 12, wobei HuLuc63 in einer ersten pharmazeutischen Zusammensetzung und das Bortezomib in einer zweiten pharmazeutischen Zusammensetzung bereit gestellt werden.
 - **14.** Das HuLuc63 zur Verwendung nach Anspruch 12 oder 13, wobei das Bortezomib als eine intravenöse Dosierung von 1,0 mg / m² bis 1,3 mg / m² verabreicht wird.
- 15. Das HuLuc63 zur Verwendung nach Anspruch 12 oder 13, wobei das Bortezomib als eine intravenöse Dosierung von 1,0 mg / m² verabreicht wird.
 - **16.** Das HuLuc63 zur Verwendung nach Anspruch 12 oder 13, wobei das Bortezomib als eine intravenöse Dosierung von 1,3 mg / m² verabreicht wird.
- **17.** Das HuLuc63 zur Verwendung nach einem der Ansprüche 12 16, wobei das HuLuc63 als eine intravenöse Dosierung von 2.5 mg / kg verabreicht wird.
 - **18.** Das HuLuc63 zur Verwendung nach einem der Ansprüche 12 16, wobei das HuLuc63 als eine intravenöse Dosierung von 5 mg / kg verabreicht wird.
 - **19.** Das HuLuc63 zur Verwendung nach einem der Ansprüche 12 16, wobei das HuLuc63 als eine intravenöse Dosierung von 10 mg / kg verabreicht wird.
- 20. Das HuLuc63 zur Verwendung nach einem der Ansprüche 12 19, wobei der Patient das HuLuc63 einmal alle 10
 Tage erhält.
 - **21.** Das HuLuc63 zur Verwendung nach einem der Ansprüche 12-20, wobei der Patient das Bortezomib viermal in einem Dreiwochenzyklus erhält.

- 22. Das HuLuc63 zur Verwendung nach Anspruch 21, wobei das Bortezomib an den Tagen 1,4,8 und 11 gegeben wird, gefolgt von einer 10 tägigen Pause der Therapie.
- 23. Das HuLuc63 zur Verwendung nach einem der Ansprüche 12 22, wobei das HuLuc63 und Bortezomib mit einem dritten Medikament eingesetzt werden, umfassend Dexamethason.

Revendications

5

25

40

50

- 1. Utilisation de HuLuc63 dans la préparation d'un médicament, ledit HuLuc63 étant un anticorps IgG₁ humanisé possédant une région variable à chaîne lourde correspondant à la SEQ ID NO:5 et une région variable à chaîne légère correspondant à la SEQ ID NO:6 pour le traitement du myélome multiple d'un patient humain, dans laquelle le HuLuc63 est administré en combinaison avec du bortezomib et dans lequel le HuLuc63 est administré sous la forme d'une perfusion intraveineuse à dosage de 2,5 mg/kg à 20 mg/kg et le bortezomib doit être administré sous la forme d'une perfusion intraveineuse à dosage de 0,2 mg/m² à 2,0 mg/m².
 - 2. Utilisation selon la revendication 1, dans laquelle le bortezomib doit être administré à dose intraveineuse de 1,0 mg/m² à 1,3 mg/m².
- 20 3. Utilisation selon la revendication 1, dans laquelle le bortezomib doit être administré à dose intraveineuse de 1,0 mg/m².
 - **4.** Utilisation selon la revendication 1, dans laquelle le bortezomib doit être administré à dose intraveineuse de 1,3 mg/m².
 - **5.** Utilisation selon l'une quelconque des revendications 1 à 4, dans laquelle le HuLuc63 est administré à dose intraveineuse de 2,5 mg/kg.
- Utilisation selon l'une quelconque des revendications 1 à 4, dans laquelle le HuLuc63 doit être administré à dose intraveineuse de 5 mg/kg.
 - 7. Utilisation selon l'une quelconque des revendications 1 à 4, dans laquelle le HuLuc63 doit être administré à dose intraveineuse de 10 mg/kg.
- 35 **8.** Utilisation selon l'une quelconque des revendications 1 à 7, dans laquelle le patient reçoit le HuLuc63 une fois tous les 10 jours.
 - **9.** Utilisation selon l'une quelconque des revendications 1 à 8, dans laquelle le patient reçoit le bortezomib à raison de quatre fois dans un cycle de trois semaines.
 - **10.** Utilisation selon la revendication 9, dans lequel le bortezomib est administré aux jours 1, 4, 8 et 11 suivis d'une période de repos de 10 jours.
- **11.** Utilisation selon l'une quelconque des revendications 1 à 10, dans laquelle le HuLuc63 et le bortezomib sont utilisés avec un troisième médicament comprenant de la dexaméthasone.
 - 12. HuLuc63, ledit HuLuc63 étant un anticorps IgG₁ humanisé possédant une région variable à chaîne lourde correspondant à la SEQ ID NO:5 et une région variable à chaîne légère correspondant à la SEQ ID NO:6 pour le traitement du myélome multiple d'un patient humain, dans lequel le HuLuc63 est administré en combinaison avec du bortezomib et dans lequel le HuLuc63 est administré sous la forme d'une perfusion intraveineuse à dosage de 2,5 mg/kg à 20 mg/kg et le bortezomib est administré sous la forme d'une perfusion intraveineuse à dosage de 0,2 mg/m² à 2,0 mg/m².
 - **13.** HuLuc63 pour utilisation selon la revendication 12, dans lequel le HuLuc63 est fourni dans une première composition pharmaceutique et le bortezomib est fourni dans une seconde composition pharmaceutique.
 - **14.** Huluc63 pour utilisation selon la revendication 12 ou 13, dans lequel le bortezomib est administré à dose intraveineuse de 1,0 mg/m² à 1,3 mg/m².

- 15. HuLuc63 pour utilisation selon la revendication 12 ou 13, dans lequel le bortezomib est administré à dose intraveineuse de 1,0 mg/m².
- **16.** HuLuc63 pour utilisation selon la revendication 12 ou 13, dans lequel le bortezomib est administré à dose intraveineuse de 1,3 mg/m².

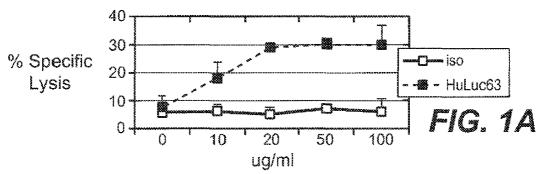
5

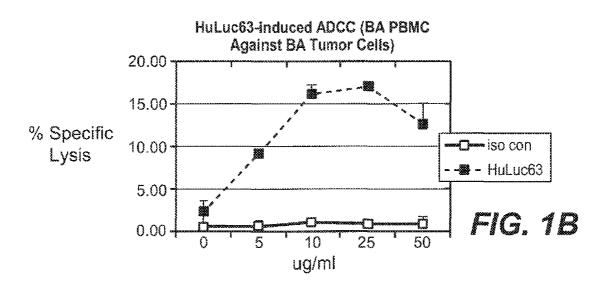
15

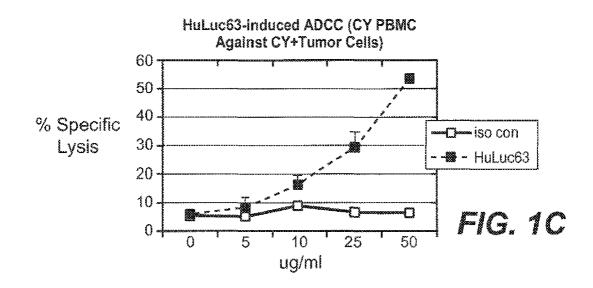
20

30

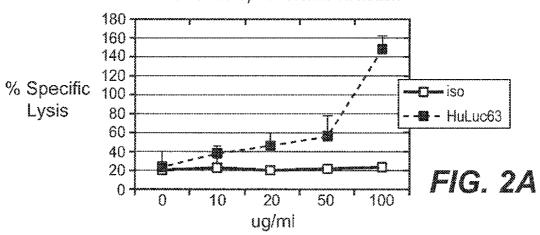
35

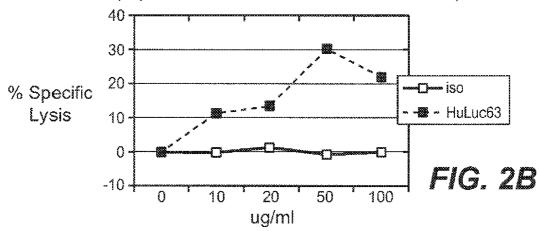

40

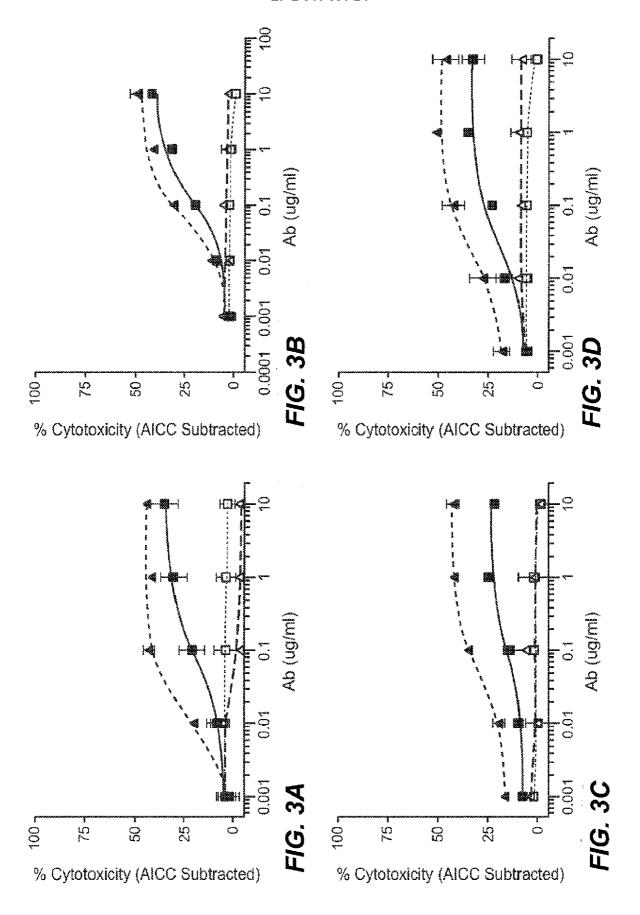

45

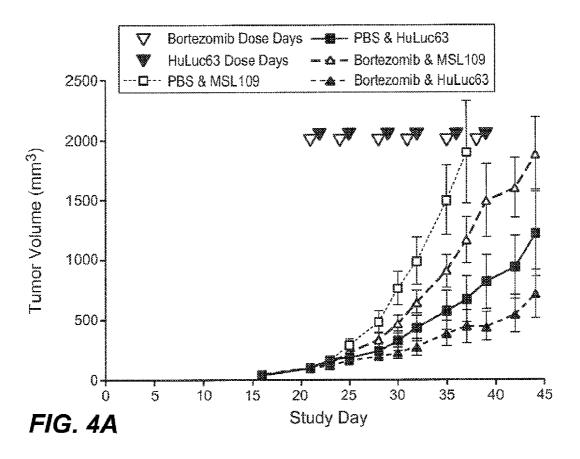

50

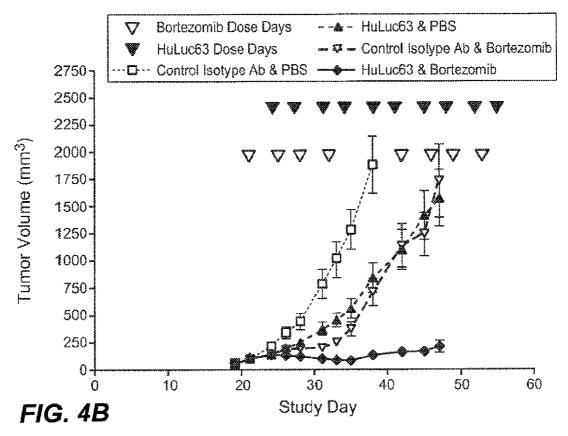
- **17.** HuLuc63 pour utilisation selon l'une quelconque des revendications 12 à 16, dans lequel le HuLuc63 est administré à dose intraveineuse de 2,5 mg/kg.
- 18. HuLuc63 pour utilisation selon l'une quelconque des revendications 12 à 16, dans lequel le HuLuc63 est administré à dose intraveineuse de 5 mg/kg.
 - **19.** HuLuc63 pour utilisation selon l'une quelconque des revendications 12 à 16, dans lequel le HuLuc63 est administré à dose intraveineuse de 10 mg/kg.
 - **20.** HuLuc63 pour utilisation selon l'une quelconque des revendications 12 à 19, dans lequel le patient reçoit le HuLuc63 une fois tous les 10 jours.
 - **21.** HuLuc63 pour utilisation selon l'une quelconque des revendications 12 à 20, dans lequel le patient reçoit le bortezomib à raison de quatre fois dans un cycle de trois semaines.
 - **22.** HuLuc63 pour utilisation selon la revendication 21, dans lequel le bortezomib est administré aux jours 1, 4, 8 et 11 suivis d'une période de repos de 10 jours.
- 25 **23.** HuLuc63 pour utilisation selon l'une quelconque des revendications 12 à 22, dans lequel le HuLuc63 et le bortezomib sont utilisés avec un troisième médicament comprenant de la dexaméthasone.


HuLuc63-induced ADCC (BH PBMC Against BH CD138 Tumor Cells, E/T=10, 50,000 Target Cells Per Well)






HuLuc63-induced ADCC (BD PBMC Against BD Tumor Cells) Bortezomib-Resistant



HuLuc63-induced ADCC Using BA PBMC Against BA Tumor Cells (Hsp90-, Bortezomib-Resistant Patient Tumor Cells)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 60836185 A [0001]
- WO 60944262 A [0001]
- US 20050025763 A [0005] [0012] [0014]
- US 20060024296 A [0005] [0012] [0013]
- US 6143292 A [0038]

- US 5928639 A [0038]
- EP 13168383 A [0071]
- US 60836185 B [0071]
- US 60944262 B **[0071]**

Non-patent literature cited in the description

- D. LONGO. Harrison's Principles of Internal Medicine. McGraw-Hill, 1998, 713 [0002]
- ANDERSON, K. et al. Recent Advances in the Biology and Treatment of Multiple Myeloma. Annual Meeting Report 1999, 1999 [0002]
- ANDERSON, K. et al. Recent Advances in the Biology and Treatment of Multiple Myeloma. Annual Meeting Report, 1999 [0003]
- CASE, D C et al. Am. J. Med, 1977, vol. 63, 897-903
 [0003]
- OTSUKI, T. et al. Cancer Res., 2000, vol. 60, 1 [0003]
- RICHARDSON et al. *Blood*, 2002, vol. 100 (9), 3063-3067 [0021] [0026] [0046] [0051]
- Multiple Myeloma Research Foundation, Multiple Myeloma: Stem Cell Transplantation, 2004, 1-30 [0038]

- IGARASHI et al. Blood, 2004, vol. 104 (1), 170-177
 [0038]
- MALONEY et al. Blood, 2003, vol. 102 (9), 3447-3454 [0038]
- BADROS et al. J Clin Oncol., 2002, vol. 20, 1295-1303 [0038]
- TRICOT et al. *Blood,* 1996, vol. 87 (3), 1196-1198 [0038]
- DURIE; SALMON. Cancer, 1975, vol. 36, 842-854
 [0039]
- Physician Desk Reference. Publisher Medical Economics, 2002 [0051]
- SHI et al. Blood, November 2006, vol. 108, 3498 [0055]
- Guide for the Care and Use of Laboratory Animals.
 NIH guidelines. IACUC at PDL BioPharma [0060]

715066/SZE EP2641601

Eljárások myeloma multíplex kezelésére HuLuc63 és bortezomib alapú kombinációs terápiák alkalmazásával

Szabadalmi igénypontok

- 1. HuLuc63 alkalmazása egy humán betegben myeloma multiplex kezelésére szolgáló gyógyszer előállításában, mely HuLuc63 egy humanizált IgG; antitest, melynek egy 5. számú szekvenciával rendelkező nehéz lánc variábilis régiója és egy 6. számú szekvenciával rendelkező könnyű lánc variábilis régiója van, ahol a HuLuc63-t bortezomibbal kombinációban adagoljuk és ahol a HuLuc63-t intravénás infűzióként adagoljuk 2.5 mg/kg 20 mg/kg dózisban és a bortezomibot intravénás infűzióként kell adagolni 0.2 mg/m² 2.0 mg/m² dózisban.
- 2. Az 1. igénypont szerinti alkalmazás, ahol a bortezomibot 1.0 mg/m² 1.3 mg/m² intravénás dózis-ban kell alkalmazni.
- 3. Az 1. igénypont szerinti alkalmazás, ahol a bortezomibot 1.0 mg/m² intravénás dózisban kell alkalmazni.
- Az 1. igénypont szerinti alkalmazás, ahol a bortezomibot 1.3 mg/m² intravénás dózisban kell alkalmazni.
- 5. Az 1-4. igénypontok bármelyike szerinti alkalmazás, ahol a HuLuc63-t 2.5 mg/kg intravénás dózisban adagoljuk.
- Az 1-4. igénypontok bármelyike szerinti alkalmazás, ahol a HuLuc63-t 5 mg/kg intravénás dózisban kell adagolni.
- Az 1-4. igénypontok bármelyike szerinti alkalmazás, ahol a HuLuc63-t 10 mg/kg intravénás dózisban kell adagolni.
- Az 1-7. igénypontok bármelyike szerinti alkalmazás, ahol a kezelt személy a HuLuc63-t minden 10 napban egyszer kapja.
- Az 1-8. igénypontok bármelyike szerinti alkalmazás, ahol a kezelt személy a bortezomibot négyszer, három hetes ciklusban kapja.

- 10. A 9. igénypont szerinti alkalmazás, ahol a bortezomibot az 1, 4, 8, és 11. napon adagoljuk, melyet 10 napos pihentetési periódus követ.
- Az 1-10. igénypontok bármelyike szerinti alkalmazás, ahol a HuLuc63-t és a bortezomibot egy harmadik, dexametazont tartalmazó gyógyszerrel egyűtt alkalmazzuk.
- 12. HuLuc63, mely HuLuc63 egy humanizált IgG1 antitest, melynek egy 5. számű szekvenciával rendelkező nehéz lánc variábilis régiója és egy 6. számű szekvenciával rendelkező könnyű lánc variábilis régiója van, humán beteg myeloma multiplexének kezelésében történő alkalmazásra, ahol a HuLuc63-t bortezomibbal kombinációban adagoljuk, és ahol a HuLuc63-t intravénás infűzióként adagoljuk 2.5 mg/kg 20 mg/kg dózisban és a bortezomibot intravénás infűzióként adagoljuk 0.2 mg/m² 2.0 mg/m² dózisban.
- 13. A HuLuc63 a 12. igénypont szerinti alkalmazásra, ahol a HuLuc63 egy első gyógyászati készítményben és a bortezomíb egy második gyógyászati készítményben van jelen.
- 14. A HuLuc63 a 12. vagy 13. igénypont szerinti alkalmazásra, ahol a bortezomibot 1.0 mg/m² 1.3 mg/m² intravénás dözisban adagoljuk
- 15. A HuLuc63 a 12. vagy 13. igénypont szerinti alkalmazásra, ahol a bortezomibot 1.0 mg/m² intravénás dózisban adagoljuk.
- 16. A HuLuc63 a 12. vagy 13. igénypont szerinti alkalmazásra, ahol a bortezomíbot 1.3 mg/m² intravénás dózisban adagoljuk.
- 17. A HuLuc63 a 12-16. igénypontok bármelyike szerinti alkalmazásra, ahol a HuLuc63-t 2,5 mg/kg intravénás dózisban adagoljuk
- 18. A HuLuc63 a 12-16. igénypontok bármelyike szerinti alkalmazásra, ahol a HuLuc63-t 5 mg/kg intravénás dózisban adagoljuk.
- 19. A HuLuc63 a 12-16. igénypontok bármelyike szerinti alkalmazásra, ahol a HuLuc63-t 10 mg/kg intravénás dózisban adagoljuk.
- 20. A HuLuc63 a 12-16. igénypontok bármelyike szerinti alkalmazásra, ahol a kezelt személy a HuLuc63-t minden 10 napban egyszer kapja.

- 21. A HuLuc63 a 12-16. igénypontok bármelyike szerinti alkalmazásra, ahol a kezelt személy a bortezomibot négyszer, három hetes ciklusban kapja.
- 22. A HuLuc63 a 21. igénypont szerinti alkalmazásra, ahol a bortezomíbot az 1, 4, 8, és 11. napon adagoljuk, melyet 10 napos pihentetési periódus követ.
- 23. A HuLue63 a 12-22. igénypontok bármelyike szerinti alkalmazásra, ahol a HuLue63-t és a bortezomibot egy harmadik, dexametazont tartalmazó gyógyszerrel együtt alkalmazzuk.

ii). Szentpátori kájm spove V

and the second second second