
US 20210037112A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0037112 A1

ANKIREDDYPALLE et al . (43) Pub . Date : Feb. 4 , 2021

(54) DATA STORAGE SYSTEM WITH RAPID
RESTORE CAPABILITY

(52) U.S. CI .
CPC H04L 67/2857 (2013.01) ; H04L 67/1097

(2013.01) ; H04L 67/2823 (2013.01)
(71) Applicant : Commvault Systems , Inc. , Tinton

Falls , NJ (US) (57) ABSTRACT

(72) Inventors : Ramachandra Reddy
ANKIREDDYPALLE , Eatontown , NJ
(US) ; Manoj Kumar VIJAYAN ,
Marlboro , NJ (US) ; Pratima
Bapusaheb KUDALE , San Jose , CA
(US) ; Anuradha TALUR , Sunnyvale ,
CA (US) ; Manivannan
SUBRAMANIAM , Edison , NJ (US)

An improved information management system that imple
ments a staging area or cache to temporarily store primary
data in a native format before the primary data is converted
into secondary copies in a secondary format is described
herein . For example , the improved information management
system can include various media agents that each include
one or more high speed drives . When a client computing
device provides primary data for conversion into secondary
copies , the primary data can initially be stored in the native
format in the high speed drive (s) . If the client computing
device then submits a request for the primary data , the media
agent can simply retrieve the primary data from the high
speed drive (s) and transmit the primary data to the client
computing device . Because the primary data is already in the
native format , no conversion operations are performed by
the media agent , thereby reducing the restore delay .

(21) Appl . No .: 16 / 525,286

(22) Filed : Jul . 29 , 2019

Publication Classification

(51) Int . Ci .
H04L 29/08 (2006.01)

1200

1202 RECEIVE A REQUEST TO RESTORE A FIRST FILE
FROM A CLIENT COMPUTING DEVICE

1204 IDENTIFY ASTUB STORED IN A FIRST DRIVE
CORRESPONDING TO THE FIRST FILE

1206 RETRIEVE THE FIRST FILE FROM A SECOND DRIVE
BASED ON INFORMATION INCLUDED IN THE STUB

1208 TRANSMIT THE RETRIEVED FIRST FILE TO THE
CLIENT COMPUTING DEVICE

Patent Application Publication Feb. 4 , 2021 Sheet 1 of 20 US 2021/0037112 A1

100

104
102

CLIENT COMPUTING
DEVICE (S) 110

PRIMARY
STORAGE
DEVICE (S)

APPLICATION (S) 112
PRIMARY

DATA 117

114 PRIMARY
STORAGE

SUBSYSTEM

108 SECONDARY
STORAGE

SUBSYSTEM
106

118 SECONDARY
STORAGE COMPUTING

DEVICE (S)

SECONDARY
STORAGE
DEVICE (S)

116
SECONDARY

COPIES

FIG . 1A

Patent Application Publication Feb. 4 , 2021 Sheet 2 of 20 US 2021/0037112 A1

104

124 119A 120 122 130 119B 126

10 2222
222 o

128 Meta1 Meta2 Meta3
Meta6
Met az

Meta4 Meta5
132 Metag

Meta10
Meta11 Meta8

129A - 133C
133B

PRIMARY
STORAGE

SUBSYSTEM

133A 117
J

129B
129C

— -
SECONDARY
STORAGE

SUBSYSTEM 118

108

134A 134B 1340

133A
120 133C 119B

122 133B '
119A 129A

129C
Meta11
Meta3
Meta8

Meta2
Meta10
Meta1

Metag
Meta5
Meta

FIG . 1B

100

102

104

CLIENT COMPUTING DEVICE (S)

140

PRIMARY STORAGE DEVICE (S)

Patent Application Publication

APPLICATION (S)

DATA AGENT (S)

112

154

156

110

142

PRIMARY DATA

STORAGE MANAGER

114

MGMT . AGENT

JOBS AGENT

117

114

1 STORAGE PRIMARY STORAGE SUBSYSTEM

USER INTERFACE
158

| STORAGE

Feb. 4 , 2021 Sheet 3 of 20

106

SECONDARY STORAGE SUBSYSTEM
118

108

114

146

SECONDARY STORAGE
COMPUTING DEVICE (S)

MGMT . DB

148

SECONDARY STORAGE DEVICE (S)

POLICIES
150

MEDIA AGENT DB

116

INDEX

MEDIA AGENT (S)

SECONDARY COPIES

INDEX
152

144

153

US 2021/0037112 A1

FIG . 1C

Patent Application Publication Feb. 4 , 2021 Sheet 4 of 20 US 2021/0037112 A1

104 104
PRIMARY
STORAGE
DEVICE

PRIMARY
STORAGE
DEVICE

102 102 .

CLIENT COMPUTING
110 DEVICE (S) 142

DATA APPLICATION (S) AGENT (S)

CLIENT COMPUTING
110 DEVICE (S) 142

DATA APPLICATION (S) AGENT (S)

140 117
STORAGE
MANAGER

PRIMARY
STORAGE

SUBSYSTEM

SECONDARY
STORAGE

SUBSYSTEM
118

SECONDARY STORAGE
COMPUTING DEVICE

-152 144

-146

106
SECONDARY STORAGE
COMPUTING DEVICE

-152 -144
106 106

SECONDARY STORAGE
COMPUTING DEVICE

-152 -144
MEDIA
AGENT

MEDIA
AGENT

MEDIA
AGENT

108 108
SECONDARY

STORAGE DEVICE
SECONDARY

STORAGE DEVICE

FIG . 1D

Patent Application Publication Feb. 4 , 2021 Sheet 5 of 20 US 2021/0037112 A1

160
30 DAYS / HOURLY

148A -108A 144A
162 STORAGE

POLICY A 60 DAYS / DAILY

BACKUP COPY
FS EMAIL DISK

SUBCLIENT SUBCLIENTI LIBRARY MA1

-166 -168
DISASTER RECOVERY COPY

FS EMAIL TAPE
SUBCLIENT SUBCLIENT LIBRARY MA2

166 - 168 108B 144B
COMPLIANCE COPY
EMAIL TAPE

SUBCLIENT MA2 LIBRARY
-168

TARGET / SUB - CLIENTS DATA PATH

164
10 YEARS / QUARTERLY

-108B 144B
140

RETENTION / SCHEDULING
STORAGE
MANAGER
146

102 104

142A
CLIENT COMPUTING

DEVICE
FS DA

2 112A
FS SUBCLIENT

148A 148 142B 112B 117 2
EMAIL DA EMAIL SUBCLIENT POLICIES

STORAGE
POLICY A

PRIMARY
STORAGE

SUBSYSTEM

INDEX 3 3 SECONDARY
STORAGE
SUBSYSTEM 108A

144A MA 1 152 © 150 (116A 118

INDEX 15

DISK LIBRARY
BACKUP COPY

EMAIL
SUBCLIENT
FS

SUBCLIENT
8 153 6

108B
144B MA 2,152

7 0 116B
INDEX

TAPE LIBRARY
DISASTER

RECOVERY COPY
EMAIL

SUBCLIENT
FS

SUBCLIENT
153

9
116C

1
COMPLIANCE

COPY
EMAIL

SUBCLIENT OFF - SITE

FIG . 1E

170

stream header 172 stream data 174 stream header 172 stream data 174

Length :

63KB

Length :

63KB

Encrypted :

Encrypted :

Compressed

payload

Compressed

Archive File ID :

Archive File ID :

payload

Single - instanceable : Y

Single - instanceable : Y

Block start :

N

Block start :

N

stream header 172 stream data 174

Length :

63KB

Encrypted : Compressed Archive File ID :

payload

Single - instanceable : N
Block start :

N

Patent Application Publication

FIG . 1F

171

Feb. 4 , 2021 Sheet 6 of 20

identifier identifier header data
174 176 178

identifier identifier header data
174 176 178

172

174

172

172

174

172

172

174

L : 63KB

L : 1KB

L : 62KB

L : 2KB

L : 63KB

data (63KB)

data (1KB)

1 : Y

identifier data

data (62KB)

data (2KB)

1 : Y

identifier data

data

BS : Y

BS : N

BS : Y

BS : N

BS : N

US 2021/0037112 A1

FIG . 1G

Patent Application Publication Feb. 4 , 2021 Sheet 7 of 20 US 2021/0037112 A1

182

V_001
184

Chunk_001
180 Metadata file 186

Non - Sl data

Metadata index file 188

Index to metadata file

Container file 001 190

4 .
LO
L.

B1 B2 B3 Bn

Container file 002 191

B1 B2 B3 Bn

Container index file
001 B1 001 B2 002 B1
0 1 1

192
002 Bn

0

185

Chunk_002

Non - SI
data 4 .

LE
4

Metadata file 187
Link Link Non - SI

data
Metadata index file 189

Index to metadata file

Container file 001 193

B1 B2 B3 B4 B5 Bn

Container index file 194
001 B1 001 B2 001 Bn
1 0 1

FIG . 1H

200

205B

DESTINATION SUBSYSTEM (E.G. , FAILOVER / DISASTER RECOVERY SITE) 203

SOURCE SUBSYSTEM
205A

(E.G. , PRODUCTION
SITE)

VIRTUAL MACHINE

201

(VM) HOST (S)

204A

204B

VIRTUAL MACHINE (VM) HOST (S)

Patent Application Publication

PRIMARY STORAGE

PRIMARY STORAGE

VM CLIENT COMPUTING DEVICE (S)
202A

202B

VM CLIENT COMPUTING DEVICE (S)

DATA AGENT (S)

242A

DATA AGENT (S)

242B

1) PROTECT CLIENT (S) AT SOURCE

5) RESTORE TO

DESTINATION CLIENT (S)

TO COMPLETE SYNCHRONIZATION

244A

3) SEND BACKUP DATA (E.G. , INCREMENTAL AND / OR
DEDUPLICATED COPY)

Feb. 4 , 2021 Sheet 8 of 20

MEDIA AGENT (S)

MEDIA AGENT (S)

244B

1) PROTECT CLIENT (S) AT SOURCE

2) RETRIEVE
BACKUP DATA FOR SYNCHRONIZATION / REPLICATION (E.G. , ONLY CHANGED BLOCKS)

4) UPDATE BACKUP COPIES AT DESTINATION WITH DATA RECEIVED FROM SOURCE

5) RESTORE TO

DESTINATION CLIENT (S)

TO COMPLETE SYNCHRONIZATION
US 2021/0037112 A1

208A

208B

SECONDARY STORAGE DEVICE (S)

SECONDARY STORAGE DEVICE (S)

FIG . 2A

200

CLIENT COMPUTING
DEVICE (S)

202

Patent Application Publication

APPLICATION (S)
210

PRIMARY
STORAGE DEVICE (S)

204

NFS PATH DATA 215

PRIMARY STORAGE SUBSYSTEM 217

Feb. 4 , 2021 Sheet 9 of 20

STORAGE MANAGER 240

DATA AGENT (S)
242

PSEUDO - CLIENT MANAGER 217

MEDIA AGENT (S) 244

NFS PATH DATA 219

SECONDARY STORAGE DEVICE (S) 208
SECONDARY STORAGE SUBSYSTEM 218

I

206

US 2021/0037112 A1

FIG . 2B

200

PRODUCTION COMPUTING PLATFORM (E.G. , CLOUD) CLIENT COMPUTING DEVICE CLIENT COMPUTING DEVICE
202

202

1 1

CLIENT COMPUTING DEVICE 202

PRIMARY STORAGE SUBSYSTEM 217 SECONDARY STORAGE SUBSYSTEM 218
MEDIA AGENTS 244

CONTROL MEDIA

CONTROL MEDIA

AGENT CMA1

AGENT CMA2

CONTROL TIER 231

Patent Application Publication

245

CONTROL MEDIA AGENT CMA3

DEDUPLICATION DATABASE (S) 247

STORAGE TIER 233

STORAGE MEDIA AGENT SMA1

STORAGE MEDIA AGENT SMA2

STORAGE MEDIA AGENT SMA3

STORAGE MEDIA AGENT SMA4

STORAGE MEDIA AGENT SMA5

STORAGE MEDIA AGENT SMA6

Feb. 4 , 2021 Sheet 10 of 20

CMA1 CMA2 CM A3 SMA1 SMA2 SMA3 SMA4 SMA5 SMA6 PARTITION PARTITION PARTITION PARTITION PARTITION PARTITION PARTITION PARTITION PARTITION
251A 251B 251C 251D 251E 251F

251G 251H 2511

SMAN PARTITION 251N

253

CMA1 DATA

CMA2 DATA

???? DATA

SMA1 DATA

SMA2 DATA

SMA3 DATA

SMA4 DATA

SMA5 DATA

SMA6 DATA

SMAN DATA
SECONDARY STORAGE POOL 208

...

255

REPLICA REPLICA REPLICA REPLICA REPLICA REPLICA REPLICA REPLICA

| REPLICA

DATA DATA DATA DATA DATA DATA DATA DATA DATA FOR FOR FOR FOR FOR FOR FOR FOR FOR OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER MA (S) MA (S) MA (S) MA (S) MA (S) MA (S) MA (S) MA (S) MA (S)

REPLICA DATA FOR OTHER MA (S)

US 2021/0037112 A1

FIG . 2C

300

CLIENT COMPUTING DEVICE 110

Patent Application Publication

MEDIA AGENT 144A

MEDIA AGENT 144B

MEDIA AGENT 144C

HIGH SPEED DRIVE 310A

LOW SPEED DRIVE 320A

HIGH SPEED DRIVE 310B

LOW SPEED DRIVE 320B

HIGH SPEED DRIVE 310C

LOW SPEED DRIVE 320C

SNAPSHOT MANAGER 330A

FILE SCANNER 340A

SNAPSHOT MANAGER 330B

FILE SCANNER 340B

SNAPSHOT MANAGER 330C

FILE SCANNER 340C

Feb. 4 , 2021 Sheet 11 of 20

STUB CREATOR 350A

STUB CREATOR 350B

STUB CREATOR 350C

STORAGE 108

US 2021/0037112 A1

FIG . 3

FILE F1 IN NATIVE CLIENT COMPUTING
FORMAT

DEVICE

(1)

110

Patent Application Publication

FILE F1 IN NATIVE FORMAT (2)

HIGH SPEED DRIVE 310

FILE F1 IN SECONDARY COPY FORMAT (4)

Feb. 4 , 2021 Sheet 12 of 20

a

LOW SPEED DRIVE 320

FILE F1 IN NATIVE FORMAT (3)
US 2021/0037112 A1

FIG . 4

CREATE STUBS (7)

STUB CREATOR 350

STORE F?LES F1 AND F2
IN CACHE (1)

HIGH SPEED DRIVE 310

CLIENT COMPUTING DEVICE 110

Patent Application Publication

TRANSMIT STUBS (8)

INSTRUCT STUB CREATOR 350 TO BEGIN STUB CREATION (6)

DETERMINE CHANGED FILES (20)

FILE SCANNER 340

CREATE A SKELETON DIRECTORY WITH STUBS IN THE CACHE (9)

TRANSMIT INDICATION OF CHANGED FILES (3)

LOW SPEED DRIVE 320

INSTRUCT FILE SCANNER 340 TO DETERMINE CHANGED FILES SINCE A PREVIOUS SNAPSHOT OPERATION (2B)

Feb. 4 , 2021 Sheet 13 of 20

SNAPSHOT MANAGER 330

CREATE A DIRECTORY CORRESPONDING TO THE SNAPSHOT TIMESTAMP (4)

TAKE A SNAPSHOT OF THE HIGH SPEED DRIVE 310 CACHE (2A)

COPY CHANGED FILES TO THE DIRECTORY (5)

US 2021/0037112 A1

FIG . 5

MEDIA AGENT 144 HIGH SPEED DRIVE 310

Patent Application Publication

SHARD TRANSLATOR 612
DATA READER 614

LOW SPEED DRIVE 320

Feb. 4 , 2021 Sheet 14 of 20 US 2021/0037112 A1

FIG . 6

CLIENT COMPUTING DEVICE 110

READ < FILE F1 , OFFSET 8MB , 256 >
(1)

Patent Application Publication

SHARD TRANSLATOR 612
READ < FILE F1.3 , OFFSET 0 , 256 >
(2)

Feb. 4 , 2021 Sheet 15 of 20

READ STUB < FILE F1.3 , OFFSET 0 , 256
(3)

DATA READER 614

LOW SPEED DRIVE 320

US 2021/0037112 A1

FIG . 7

< F1 , E1 > < F1 , E2 > < F1 , E3 > < F2 , E1 > < F2 , E2 > < F2 , E3 >

< F1 , E1 > @TO

SNAPSHOT 810 AT TO

< F1 , E2 > @TO

Patent Application Publication

< F1 , E3 > @TO

< F1 , E1 > < F1 , E2 > < F1 , E3 > < F2 , E1 > < F2 , E2 > < F2 , E3 >

< F2 , E1 > @TO

SNAPSHOT 812 AT T1

< F2 , E2 > @TO < F2 , E3 > @TO

< F1 , E1 > < F1 , E2 > < F1 , E3 > < F2 , E1 > < F2 , E2 > < F2 , E3 >

< F1 , E3 > @ T1

SNAPSHOT 814 AT T2

< F2 , E1 > @ T2

Feb. 4 , 2021 Sheet 16 of 20

< F2 , E2 > @ T3

< F1 , E1 > < F1 , E2 > < F1 , E3 > < F2 , E1 > < F2 , E2 > < F2 , E3 >

SNAPSHOT 816 AT T3

LOW SPEED DRIVE 320

HIGH SPEED DRIVE 310

US 2021/0037112 A1

FIG . 8

SNAPSHOT 810 AT TO

SNAPSHOT 816 AT T3

< F1 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E1 > @TO > < F1 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E2 > @TO > < F1 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E3 > @TO > < F2 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E1 > @TO > < F2 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E2 > @TO > < F2 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E3 > @TO >

< F1 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E1 > @TO > < F1 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E2 > @TO > < F1 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E3 > @ T1 > < F2 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E1 > @ T2 > < F2 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E2 > @ T3 > < F2 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E3 > @TO >

Patent Application Publication

SNAPSHOT 812 AT T1

< F1 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E1 > @TO > < F1 , E2 > < product - id = " product1 " , store - id = " low_speed_pool ” , uuid = < F1 , E2 > @TO > < F1 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E3 > @ T1 > < F2 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E1 > @TO > < F2 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E2 > @TO > < F2 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E3 > @TO >

SNAPSHOT 814 AT T2

Feb. 4 , 2021 Sheet 17 of 20

< F1 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E1 > @TO > < F1 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E2 > @TO > < F1 , E3 > < product - id = “ product1 " , store - id = " low_speed_pool " , uuid = < F1 , E3 > @ T1 > < F2 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E1 > @ T2 > < F2 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E2 > @ T0 > < F2 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E3 > @TO >

US 2021/0037112 A1

FIG . 9

SNAPSHOT 1010 AT TO

< F1 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E1 > @TO > < F1 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E2 > @TO > < F1 , E3 > < product - id = " product1 " , store - id = " low_speed_pool ” , uuid = < F1 , E3 > @TO > < F2 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E1 > @TO > < F2 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E2 > @TO > < F2 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E3 > @TO >

Patent Application Publication

SNAPSHOT 1012 AT T1

< F1 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E1 > @TO > < F1 , E2 > < product - id = " product1 " , store - id = " low_speed_pool ” , uuid = < F1 , E2 > @TO > < F1 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E3 > @ T1 > < F2 , E1 > < product - id = " product1 " , store - id = " low_speed_pool ” , uuid = < F2 , E1 > @TO > < F2 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E2 > @TO > < F2 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E3 > @TO >

SNAPSHOT 1014 AT T2

< F1 , E1 > < product - id = " product1 " , store - id = " low_speed_pool ” , uuid = < F1 , E1 > @TO > < F1 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E2 > @TO > < F1 , E3 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F1 , E3 > @ T1 > < F2 , E1 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E1 > @TO > < F2 , E2 > < product - id = " product1 " , store - id = " low_speed_pool " , uuid = < F2 , E2 > @TO >

Feb. 4 , 2021 Sheet 18 of 20 US 2021/0037112 A1

FIG . 10

Patent Application Publication Feb. 4 , 2021 Sheet 19 of 20 US 2021/0037112 A1

1100

1102 RECEIVE A FIRST FILE FROM A CLIENT COMPUTING
DEVICE

STORE THE FIRST FILE IN A FIRST DRIVE
1104

1106 TAKE A SNAPSHOT OF AT LEAST A PORTION OF
THE FIRST DRIVE

1108 DETERMINE THAT THE FIRST FILE HAS CHANGED
SINCE A PREVIOUS SNAPSHOT OPERATION

1110 STORE THE FIRST FILE IN A NATIVE FORMAT IN A
SECOND DRIVE

1112 CREATE A STUB REFERENCING THE FIRST FILE

1114 STORE THE STUB IN THE FIRST DRIVE

FIG . 11

Patent Application Publication Feb. 4 , 2021 Sheet 20 of 20 US 2021/0037112 A1

1200

1202 RECEIVE A REQUEST TO RESTORE A FIRST FILE
FROM A CLIENT COMPUTING DEVICE

1204 IDENTIFY A STUB STORED IN A FIRST DRIVE
CORRESPONDING TO THE FIRST FILE

1206 RETRIEVE THE FIRST FILE FROM A SECOND DRIVE
BASED ON INFORMATION INCLUDED IN THE STUB

1208 TRANSMIT THE RETRIEVED FIRST FILE TO THE
CLIENT COMPUTING DEVICE

FIG . 12

US 2021/0037112 Al Feb. 4 , 2021
1

DATA STORAGE SYSTEM WITH RAPID
RESTORE CAPABILITY

INCORPORATION BY REFERENCE TO ANY
PRIORITY APPLICATIONS

[0001] Any and all applications , if any , for which a foreign
or domestic priority claim is identified in the Application
Data Sheet of the present application are hereby incorpo
rated by reference in their entireties under 37 CFR 1.57 .

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection .
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document and / or the
patent disclosure as it appears in the United States Patent and
Trademark Office patent file and / or records , but otherwise
reserves all copyrights whatsoever .

BACKGROUND

[0003] Businesses recognize the commercial value of their
data and seek reliable , cost - effective ways to protect the
information stored on their computer networks while mini
mizing impact on productivity . A company might back up
critical computing systems such as databases , file servers ,
web servers , virtual machines , and so on as part of a daily ,
weekly , or monthly maintenance schedule . The company
may similarly protect computing systems used by its
employees , such as those used by an accounting department ,
marketing department , engineering department , and so forth .
Given the rapidly expanding volume of data under manage
ment , companies also continue to seek innovative tech
niques for managing data growth , for example by migrating
data to lower - cost storage over time , reducing redundant
data , pruning lower priority data , etc. Enterprises also
increasingly view their stored data as a valuable asset and
look for solutions that leverage their data . For instance , data
analysis capabilities , information management , improved
data presentation and access features , and the like , are in
increasing demand .

[0006] As a result , the user may have a better experience
and the information management system may operate more
efficiently if the restore delay can be reduced . For example ,
a user may request primary data that the user had recently
requested be converted into secondary copies in a secondary
format . In a typical information management system , the
requested primary data may already have been converted
into the secondary copies in the secondary format and stored
in the secondary storage device by the time the request is
received . Thus , the user may experience a noticeable restore
delay . However , the restore delay could be reduced if , for
example , the primary data in the native format is stored in
a staging area or cache for a certain period of time before
being converted into the secondary copies in the secondary
format . Thus , the restore delay may be less noticeable or
unnoticeable to a user in certain situations , such as when the
user requests primary data that happens to still reside in the
staging area or cache .
[0007] Accordingly , described herein is an improved
information management system that implements a staging
area or cache to temporarily store primary data in a native
format before the primary data is converted into secondary
copies in a secondary format and stored in a secondary
storage device . For example , the improved information
management system can include various media agents that
each include one or more high speed drives (e.g. , flash
drives , solid state drives , etc.) and one or more low speed
drives (e.g. , electromechanical disks , tape drives , etc.) .
When a client computing device provides primary data for
conversion into secondary copies , the primary data can
initially be stored in the native format in one or more of the
high speed drives . If the client computing device then
submits a request for the primary data , the media agent can
simply retrieve the primary data from the high speed drive (s)
and transmit the primary data to the client computing device .
Because the primary data is already in the native format , no
conversion operations are performed by the media agent ,
thereby reducing the restore delay .
[0008] After a certain period of time , a media agent can
take a file level snapshot of the primary data stored on the
high speed drive (s) . Before , during , and / or after taking the
file level snapshot , the media agent can determine which
files that comprise the primary data have changed (if any) ,
store the changed files in the native format on one or more
of the low speed drives , and replace the primary data
originally stored on the high speed drive (s) with stubs that
reference the files stored on the low speed drive (s) . Thus , the
primary data in the native format may now be stored on the
low speed drive (s) . If the client computing device then
submits a request for the primary data , the media agent can
simply retrieve the primary data from the low speed drive (s)
and transmit the primary data to the client computing device .
Because the primary data is already in the native format , no
conversion operations are performed by the media agent ,
thereby reducing the restore delay . Because the read and / or
write operations of the low speed drives may be slower than
the read and / or write operations of the high speed drives ,
however , the restore delay may be higher than the restore
delay experienced when restoring the primary data from the
high speed drive (s) . However , the restore delay may still be
less than the restore delay produced by typical information
management systems .
[0009] After another period of time , a media agent can
convert the primary data in the native format stored on the

SUMMARY

[0004] Typically , primary data in a native format residing
on a client computing device can be backed up , archived , or
otherwise converted into secondary copies in a secondary
format by an information management system and stored in
a secondary storage device for later retrieval . When a user
requests that the secondary copies be restored , the informa
tion management system may identify the location at which
the secondary copies are stored in the secondary storage
device , retrieve the secondary copies from the identified
location , convert the secondary copies in the secondary
format into primary data in the native format , and transmit
the primary data to the client computing device .
[0005] In some cases , the process of retrieving the sec
ondary copies form the identified location and converting
the secondary copies in the secondary format into primary
data in the native format can introduce delay noticeable to a
user . For example , retrieval of the secondary copies can
introduce delay noticeable to a user if the drive on which the
secondary copies are stored has slow read and / or write
times . In addition , the delay may increase the higher the
amount of primary data that the user is requesting to restore .

US 2021/0037112 A1 Feb. 4 , 2021
2

low speed drive (s) into secondary copies in a secondary
format and store the secondary copies in a secondary storage
device . Thus , instead of immediately being converted into a
secondary format and stored , the primary data can move
between different storage tiers or levels , with the speed at
which such primary data can be restored increasing over
time . Accordingly , the improved information management
system may provide rapid restore capabilities that reduce the
restore delay experienced by a user .
[0010] One aspect of the disclosure provides a networked
information management system . The networked informa
tion management system comprises a client computing
device having one or more first hardware processors ,
wherein the client computing device executes an application
that generated a first file . The networked information man
agement system further comprises one or more computing
devices in communication with the client computing device ,
wherein the one or more computing devices comprise a first
drive and a second drive , wherein the one or more comput
ing devices each have one or more second hardware pro
cessors , wherein the one or more computing devices are
configured with computer - executable instructions that , when
executed , cause the one or more computing devices to :
process a request received from the client computing device
to restore a version of a first file that existed at a first time ;
identify a snapshot stored in the first drive that is associated
with the first time and that includes a stub corresponding to
the first file , wherein the stub references a storage location
of the first file in the second drive ; retrieve the first file from
the storage location in the second drive based on the
identified stub , wherein the first file is stored in the storage
location in the second drive in a native format ; transmit the
first file retrieved from the storage location to the client
computing device ; process a request received from the client
computing device to restore a version of the first file that
existed at a second time before the first time ; identify a
second snapshot stored in the first drive that is associated
with the second time and that includes a second stub
corresponding to the first file , wherein the second stub
references a second storage location of the first file in the
second drive ; retrieve the first file from the second storage
location in the second drive based on the identified second
stub , wherein the first file is stored in the second storage
location in the second drive in a secondary copy format ;
convert the first file retrieved from the second storage
location from the secondary copy format to the native
format ; and transmit the converted first file to the client
computing device .
[0011] The networked information management system of
the preceding paragraph can include any sub - combination of
the following features : where the computer - executable
instructions , when executed , further cause the one or more
computing devices to shard the version of the first file that
existed at the first time into a first file extent and a second
file extent ; where the computer - executable instructions ,
when executed , further cause the one or more computing
devices to : determine that the request received from the
client computing device corresponds to the second file
extent , identify the snapshot stored in the first drive that
includes the stub corresponding to the second file extent ,
retrieve the second file extent from the second drive based
on the identified stub , and transmit the retrieved second file
extent to the client computing device ; where the computer
executable instructions , when executed , further cause the

one or more computing devices to : receive an updated
version of the first file , store the updated version of the first
file in the first drive , determine that the first file has changed
since a previous snapshot operation , store the updated ver
sion of the first file in the second drive , create a second stub
corresponding to the updated version of the first file , and
create a skeleton directory in the first drive , wherein the
skeleton directory comprises the second stub ; where the
computer - executable instructions , when executed , further
cause the one or more computing devices to delete the
updated version of the first file from the first drive ; where the
computer - executable instructions , when executed , further
cause the one or more computing devices to transmit the first
file retrieved from the storage location to the client com
puting device without performing a conversion operation to
convert the first file into the native format ; where the
snapshot is stored in the first drive in association with the
client computing device and the application executed by the
client computing device ; where the stub comprises an indi
cation of the first file , a product ID identifying a name of a
computing system that stores the version of the first file that
existed at the first time , a store ID identifying that the second
drive stores the version of the first file that existed at the first
time , a universally unique identifier (UUID) identifying the
storage location of the version of the first file that existed at
the first time in the second drive , and an indication of a time
that the snapshot was taken ; where the first drive forms at
least a portion of a first type of file system , and wherein the
second drive forms at least a portion of a second type of file
system ; and where read times of the second drive are slower
than read times of the first drive .
[0012] Another aspect of the disclosure provides a com
puter - implemented method comprising : receiving , by one or
more computing devices comprising a first drive and a
second drive , a request from a client computing device to
restore a version of a first file that existed at a first time ,
wherein the first file is previously provided by the client
computing device to the one or more computing devices , and
wherein the first file is generated by an application executed
by the client computing device ; identifying a snapshot stored
in the first drive that is associated with the first time and that
includes a stub corresponding to the first file , wherein the
stub references a storage location of the first file in the
second drive ; retrieving the first file from the storage loca
tion in the second drive based on the identified stub , wherein
the first file is stored in the storage location in the second
drive in a native format ; transmitting the first file retrieved
from the storage location to the client computing device ;
processing a request received from the client computing
device to restore a version of the first file that existed at a
second time before the first time ; identifying a second
snapshot stored in the first drive that is associated with the
second time and that includes a second stub corresponding
to the first file , wherein the second stub references a second
storage location of the first file in the second drive ; retrieving
the first file from the second storage location in the second
drive based on the identified second stub , wherein the first
file is stored in the second storage location in the second
drive in a secondary copy format ; converting the first file
retrieved from the second storage location from the second
ary copy format to the native format ; and transmitting the
converted first file to the client computing device .
[0013] The computer - implemented method of the preced
ing paragraph can include any sub - combination of the

US 2021/0037112 A1 Feb. 4 , 2021
3

storage location of the first file in the second drive ; retrieving
the first file from the second storage location in the second
drive based on the identified second stub , wherein the first
file is stored in the second storage location in the second
drive in a secondary copy format ; converting the first file
retrieved from the second storage location from the second
ary copy format to the native format ; and transmitting the
converted first file to the client computing device .

BRIEF DESCRIPTION OF THE DRAWINGS

following features : where the computer - implemented
method further comprises sharding the version of the first
file that existed at the first time into a first file extent and a
second file extent ; where the computer - implemented method
further comprises : determining that the request received
from the client computing device corresponds to the second
file extent , identifying the snapshot stored in the first drive
that includes the stub corresponding to the second file extent ,
retrieving the second file extent from the second drive based
on the identified stub , and transmitting the retrieved second
file extent to the client computing device ; where the com
puter - implemented method further comprises : receiving an
updated version of the first file , storing the updated version
of the first file in the first drive , determining that the first file
has changed since a previous snapshot operation , storing the
updated version of the first file in the second drive , creating
a second stub corresponding to the updated version of the
first file , and creating a skeleton directory in the first drive ,
wherein the skeleton directory comprises the second stub ;
where transmitting the retrieved first file to the client com
puting device further comprises transmitting the first file
retrieved from the storage location to the client computing
device without performing a conversion operation to convert
the first file into the native format ; where the snapshot is
stored in the first drive in association with the client com
puting device and the application executed by the client
computing device ; where the stub comprises an indication of
the first file , a product ID identifying a name of a computing
system that stores the version of the first file that existed at
the first time , a store ID identifying that the second drive
stores the version of the first file that existed at the first time ,
a universally unique identifier (UUID) identifying the stor
age location of the version of the first file that existed at the
first time in the second drive , and an indication of a time that
the snapshot was taken ; where the first drive forms at least
a portion of a first type of file system , and wherein the
second drive forms at least a portion of a second type of file
system , and where read times of the second drive are slower
than read times of the first drive .

[0015] FIG . 1A is a block diagram illustrating an exem
plary information management system .
[0016] FIG . 1B is a detailed view of a primary storage
device , a secondary storage device , and some examples of
primary data and secondary copy data .
[0017] FIG . 1C is a block diagram of an exemplary
information management system including a storage man
ager , one or more data agents , and one or more media agents .
[0018] FIG . 1D is a block diagram illustrating a scalable
information management system .
[0019] FIG . 1E illustrates certain secondary copy opera
tions according to an exemplary storage policy .
[0020] FIGS . 1F - 1H are block diagrams illustrating suit
able data structures that may be employed by the informa
tion management system .
[0021] FIG . 2A illustrates a system and technique for
synchronizing primary data to a destination such as a
failover site using secondary copy data .
[0022] FIG . 2B illustrates an information management
system architecture incorporating use of a network file
system (NFS) protocol for communicating between the
primary and secondary storage subsystems .
[0023] FIG . 2C is a block diagram of an example of a
highly scalable managed data pool architecture .
[0024] FIG . 3 is a block diagram illustrating some portions
of a system for rapidly restoring primary data , according to
an embodiment .
[0025] FIG . 4 illustrates a block diagram showing the
operations performed to move primary data between the
different tiers .
[0026] FIG . 5 illustrates a block diagram showing the
operations performed to enable rapid restore of primary data
and / or secondary copies .
[0027] FIG . 6 is a block diagram illustrating additional
components of the high speed drives residing on the media
agents .
[0028] FIG . 7 illustrates a block diagram showing the
operations performed to read a file requested by a client
computing device .
[0029] FIG . 8 illustrates a block diagram depicting various
stubs and primary data in a native format stored in the high
speed drive (s) and the low speed drive (s) .
[0030] FIG . 9 illustrates the structure of various snapshots .
[0031] FIG . 10 illustrates the structure of various snap
shots after a file extent is deleted .
[0032] FIG . 11 depicts some operations of a method for
enabling rapid restore of primary data and / or secondary
copies , according to an embodiment .
[0033] FIG . 12 depicts some operations of a method for
rapidly restoring primary data and / or secondary copies ,
according to an embodiment .

[0014] Another aspect of the disclosure provides a non
transitory computer - readable medium storing instructions ,
which when executed by one or more computing devices
comprising a first drive and a second drive , cause the one or
more computing devices to perform a method comprising :
receiving a request from a client computing device to restore
a version of a first file that existed at a first time , wherein the
first file is previously provided by the client computing
device to the one or more computing devices , and wherein
the first file is generated by an application executed by the
client computing device ; identifying a snapshot stored in the
first drive that is associated with the first time and that
includes a stub corresponding to the first file , wherein the
stub references a storage location of the first file in the
second drive ; retrieving the first file from the storage loca
tion in the second drive based on the identified stub , wherein
the first file is stored in the storage location in the second
drive in a native format ; transmitting the first file retrieved
from the storage location to the client computing device ;
processing a request received from the client computing
device to restore a version of the first file that existed at a
second time before the first time ; identifying a second
snapshot stored in the first drive that is associated with the
second time and that includes a second stub corresponding
to the first file , wherein the second stub references a second

US 2021/0037112 A1 Feb. 4 , 2021
4

DETAILED DESCRIPTION

[0034] Typically , primary data in a native format residing
on a client computing device can be backed up , archived , or
otherwise converted into secondary copies in a secondary
format by an information management system and stored in
a secondary storage device for later retrieval . When a user
requests that the secondary copies be restored , the informa
tion management system may identify the location at which
the secondary copies are stored in the secondary storage
device , retrieve the secondary copies from the identified
location , convert the secondary copies in the secondary
format into primary data in the native format , and transmit
the primary data to the client computing device .
[0035] In some cases , the process of retrieving the sec
ondary copies form the identified location and converting
the secondary copies in the secondary format into primary
data in the native format can introduce delay noticeable to a
user . For example , retrieval of the secondary copies can
introduce delay noticeable to a user if the drive on which the
secondary copies are stored has slow read and / or write
times . In addition , the delay may increase the higher the
amount of primary data that the user is requesting to restore .
(0036] As a result , the user may have a better experience
and the information management system may operate more
efficiently if the restore delay can be reduced . For example ,
a user may request primary data that the user had recently
requested be converted into secondary copies in a secondary
format . In a typical information management system , the
requested primary data may already have been converted
into the secondary copies in the secondary format and stored
in the secondary storage device by the time the request is
received . Thus , the user may experience a noticeable restore
delay . However , the restore delay could be reduced if , for
example , the primary data in the native format is stored in
a staging area or cache for a certain period of time before
being converted into the secondary copies in the secondary
format . Thus , the restore delay may be less noticeable or
unnoticeable to a user in certain situations , such as when the
user requests primary data that happens to still reside in the
staging area or cache .
[0037] Accordingly , described herein is an improved
information management system that implements a staging
area or cache to temporarily store primary data in a native
format before the primary data is converted into secondary
copies in a secondary format and stored in a secondary
storage device . For example , the improved information
management system can include various media agents that
each include one or more high speed drives (e.g. , flash
drives , solid state drives , etc.) and one or more low speed
drives (e.g. , electromechanical disks , tape drives , etc.) .
When a client computing device provides primary data for
conversion into secondary copies , the primary data can
initially be stored in the native format in one or more of the
high speed drives . If the client computing device then
submits a request for the primary data , the media agent can
simply retrieve the primary data from the high speed drive (s)
and transmit the primary data to the client computing device .
Because the primary data is already in the native format , no
conversion operations are performed by the media agent ,
thereby reducing the restore delay .
[0038] After a certain period of time , a media agent can
take a file level snapshot of the primary data stored on the
high speed drive (s) . Before , during , and / or after taking the
file level snapshot , the media agent can determine which

files that comprise the primary data have changed (if any) ,
store the changed files in the native format on one or more
of the low speed drives , and replace the primary data
originally stored on the high speed drive (s) with stubs that
reference the files stored on the low speed drive (s) . Thus , the
primary data in the native format may now be stored on the
low speed drive (s) . If the client computing device then
submits a request for the primary data , the media agent can
simply retrieve the primary data from the low speed drive (s)
and transmit the primary data to the client computing device .
Because the primary data is already in the native format , no
conversion operations are performed by the media agent ,
thereby reducing the restore delay . Because the read and / or
write operations of the low speed drives may be slower than
the read and / or write operations of the high speed drives ,
however , the restore delay may be higher than the restore
delay experienced when restoring the primary data from the
high speed drive (s) . However , the restore delay may still be
less than the restore delay produced by typical information
management systems .
[0039] After another period of time , a media agent can
convert the primary data in the native format stored on the
low speed drive (s) into secondary copies in a secondary
format and store the secondary copies in a secondary storage
device . Thus , instead of immediately being converted into a
secondary format and stored , the primary data can move
between different storage tiers or levels , with the speed at
which such primary data can be restored increasing over
time . Accordingly , the improved information management
system may provide rapid restore capabilities that reduce the
restore delay experienced by a user .
[0040] Detailed descriptions and examples of systems and
methods according to one or more embodiments may be
found in the section entitled Rapid Restore , as well as in the
section entitled Example Embodiments , and also in FIGS . 3
through 12 herein . Furthermore , components and function
ality for the rapid restore capabilities may be configured
and / or incorporated into information management systems
such as those described herein in FIGS . 1A - 11 and 2A - 2C .
[0041] Various embodiments described herein are inti
mately tied to , enabled by , and would not exist except for ,
computer technology . For example , the rapid restore capa
bilities described herein in reference to various embodi
ments cannot reasonably be performed by humans alone ,
without the computer technology upon which they are
implemented .

Information Management System Overview
[0042] With the increasing importance of protecting and
leveraging data , organizations simply cannot risk losing
critical data . Moreover , runaway data growth and other
modern realities make protecting and managing data
increasingly difficult . There is therefore a need for efficient ,
powerful , and user - friendly solutions for protecting and
managing data and for smart and efficient management of
data storage . Depending on the size of the organization ,
there may be many data production sources which are under
the purview of tens , hundreds , or even thousands of indi
viduals . In the past , individuals were sometimes responsible
for managing and protecting their own data , and a patchwork
of hardware and software point solutions may have been
used in any given organization . These solutions were often
provided by different vendors and had limited or no interop
erability . Certain embodiments described herein address

US 2021/0037112 A1 Feb. 4 , 2021
5

[0060] U.S. Pat . No. 8,364,652 , entitled " Content
Aligned , Block - Based Deduplication " ;

[0061] U.S. Pat . No. 8,578,120 , entitled “ Block - Level
Single Instancing " ;

[0062] U.S. Pat . No. 8,954,446 , entitled “ Client - Side
Repository in a Networked Deduplicated Storage Sys
tem ” ;

these and other shortcomings of prior approaches by imple
menting scalable , unified , organization - wide information
management , including data storage management .
[0043] FIG . 1A shows one such information management
system 100 (or “ system 100 ”) , which generally includes
combinations of hardware and software configured to pro
tect and manage data and metadata that are generated and
used by computing devices in system 100. System 100 may
be referred to in some embodiments as a “ storage manage
ment system ” or a “ data storage management system . ”
System 100 performs information management operations ,
some of which may be referred to as “ storage operations ” or
" data storage operations , ” to protect and manage the data
residing in and / or managed by system 100. The organization
that employs system 100 may be a corporation or other
business entity , non - profit organization , educational institu
tion , household , governmental agency , or the like .
[0044] Generally , the systems and associated components
described herein may be compatible with and / or provide
some or all of the functionality of the systems and corre
sponding components described in one or more of the
following U.S. patents / publications and patent applications
assigned to Commvault Systems , Inc. , each of which is
hereby incorporated by reference in its entirety herein :

[0045] U.S. Pat . No. 7,035,880 , entitled “ Modular
Backup and Retrieval System Used in Conjunction
With a Storage Area Network ” ;

[0046] U.S. Pat . No. 7,107,298 , entitled “ System And
Method For Archiving Objects In An Information
Store ” ;

[0047] U.S. Pat . No. 7,246,207 , entitled “ System and
Method for Dynamically Performing Storage Opera
tions in a Computer Network ” ;

[0048] U.S. Pat . No. 7,315,923 , entitled “ System And
Method For Combining Data Streams In Pipelined
Storage Operations In A Storage Network " ;

[0049] U.S. Pat . No. 7,343,453 , entitled “ Hierarchical
Systems and Methods for Providing a Unified View of
Storage Information ” ;

[0050] U.S. Pat . No. 7,395,282 , entitled “ Hierarchical
Backup and Retrieval System ” ;

[0051] U.S. Pat . No. 7,529,782 , entitled “ System and
Methods for Performing a Snapshot and for Restoring
Data " ;

[0052] U.S. Pat . No. 7,617,262 , entitled “ System and
Methods for Monitoring Application Data in a Data
Replication System ” ;

[0053] U.S. Pat . No. 7,734,669 , entitled “ Managing
Copies Of Data " ;

[0054] U.S. Pat . No. 7,747,579 , entitled “ Metabase for
Facilitating Data Classification ” ;

[0055] U.S. Pat . No. 8,156,086 , entitled “ Systems And
Methods For Stored Data Verification " ;

[0056] U.S. Pat . No. 8,170,995 , entitled “ Method and
System for Offline Indexing of Content and Classifying
Stored Data " ;

[0057] U.S. Pat . No. 8,230,195 , entitled “ System And
Method For Performing Auxiliary Storage Operations ” ;

[0058] U.S. Pat . No. 8,285,681 , entitled “ Data Object
Store and Server for a Cloud Storage Environment ,
Including Data Deduplication and Data Management
Across Multiple Cloud Storage Sites ” ;

[0059] U.S. Pat . No. 8,307,177 , entitled “ Systems And
Methods For Management Of Virtualization Data ” ;

[0063] U.S. Pat . No. 9,020,900 , entitled “ Distributed
Deduplicated Storage System ” ;

[0064] U.S. Pat . No. 9,098,495 , entitled “ Application
Aware and Remote Single Instance Data Manage
ment ” ;

[0065] U.S. Pat . No. 9,239,687 , entitled “ Systems and
Methods for Retaining and Using Data Block Signa
tures in Data Protection Operations ” ;

[0066] U.S. Patent Application Pub . No. 2006/0224846 ,
entitled “ System and Method to Support Single
Instance Storage Operations " :

[0067] U.S. Patent Application Pub . No. 2014/0201170 ,
entitled " High Availability Distributed Deduplicated
Storage System ” ;

[0068] U.S. Patent Application Pub . No. 2016/0350391 ,
entitled " Replication Using Deduplicated Secondary
Copy Data " :

[0069] U.S. Patent Application Pub . No. 2017/0168903
entitled “ Live Synchronization and Management of
Virtual Machines across Computing and Virtualization
Platforms and Using Live Synchronization to Support
Disaster Recovery " ;

[0070] U.S. Patent Application Pub . No. 2017/0193003
entitled “ Redundant and Robust Distributed Dedupli
cation Data Storage System ” ;

[0071] U.S. Patent Application Pub . No. 2017/0235647
entitled “ Data Protection Operations Based on Network
Path Information " ;

[0072] U.S. Patent Application Pub . No. 2017/0242871 ,
entitled “ Data Restoration Operations Based on Net
work Path Information " ; and

[0073] U.S. Patent Application Pub . No. 2017/0185488 ,
entitled “ Application - Level Live Synchronization
Across Computing Platforms Including Synchronizing
Co - Resident Applications To Disparate Standby Des
tinations And Selectively Synchronizing Some Appli
cations And Not Others ” .

[0074] System 100 includes computing devices and com
puting technologies . For instance , system 100 can include
one or more client computing devices 102 and secondary
storage computing devices 106 , as well as storage manager
140 or a host computing device for it . Computing devices
can include , without limitation , one or more : workstations ,
personal computers , desktop computers , or other types of
generally fixed computing systems such as mainframe com
puters , servers , and minicomputers . Other computing
devices can include mobile or portable computing devices ,
such as one or more laptops , tablet computers , personal data
assistants , mobile phones (such as smartphones) , and other
mobile or portable computing devices such as embedded
computers , set top boxes , vehicle - mounted devices , wear
able computers , etc. Servers can include mail servers , file
servers , database servers , virtual machine servers , and web
servers . Any given computing device comprises one or more
processors (e.g. , CPU and / or single - core or multi - core pro
cessors) , as well as corresponding non - transitory computer
memory (e.g. , random - access memory (RAM)) for storing

US 2021/0037112 A1 Feb. 4 , 2021
6

computer programs which are to be executed by the one or
more processors . Other computer memory for mass storage
of data may be packaged / configured with the computing
device (e.g. , an internal hard disk) and / or may be external
and accessible by the computing device (e.g. , network
attached storage , a storage array , etc.) . In some cases , a
computing device includes cloud computing resources ,
which may be implemented as virtual machines . For
instance , one or more virtual machines may be provided to
the organization by a third - party cloud service vendor .
[0075] In some embodiments , computing devices can
include one or more virtual machine (s) running on a physi
cal host computing device (or " host machine ”) operated by
the organization . As one example , the organization may use
one virtual machine as a database server and another virtual
machine as a mail server , both virtual machines operating on
the same host machine . A Virtual machine (“ VM ”) is a
software implementation of a computer that does not physi
cally exist and is instead instantiated in an operating system
of a physical computer (or host machine) to enable appli
cations to execute within the VM's environment , i.e. , a VM
emulates a physical computer . A VM includes an operating
system and associated virtual resources , such as computer
memory and processor (s) . A hypervisor operates between
the VM and the hardware of the physical host machine and
is generally responsible for creating and running the VMs .
Hypervisors are also known in the art as virtual machine
monitors or a virtual machine managers or “ VMMs ” , and
may be implemented in software , firmware , and / or special
ized hardware installed on the host machine . Examples of
hypervisors include ESX Server , by VMware , Inc. of Palo
Alto , Calif . , Microsoft Virtual Server and Microsoft Win
dows Server Hyper - V , both by Microsoft Corporation of
Redmond , Wash .; Sun XVM by Oracle America Inc. of Santa
Clara , Calif .; and Xen by Citrix Systems , Santa Clara , Calif .
The hypervisor provides resources to each virtual operating
system such as a virtual processor , virtual memory , a virtual
network device , and a virtual disk . Each virtual machine has
one or more associated virtual disks . The hypervisor typi
cally stores the data of virtual disks in files on the file system
of the physical host machine , called virtual machine disk
files (“ VMDK ” in VMware lingo) or virtual hard disk image
files (in Microsoft lingo) . For example , VMware's ESX
Server provides the Virtual Machine File System (VMFS)
for the storage of virtual machine disk files . A virtual
machine reads data from and writes data to its virtual disk
much the way that a physical machine reads data from and
writes data to a physical disk . Examples of techniques for
implementing information management in a cloud comput
ing environment are described in U.S. Pat . No. 8,285,681 .
Examples of techniques for implementing information man
agement in a virtualized computing environment are
described in U.S. Pat . No. 8,307,177 .
[0076] Information management system 100 can also
include electronic data storage devices , generally used for
mass storage of data , including , e.g. , primary storage
devices 104 and secondary storage devices 108. Storage
devices can generally be of any suitable type including ,
without limitation , disk drives , storage arrays (e.g. , storage
area network (SAN) and / or network - attached storage (NAS)
technology) , semiconductor memory (e.g. , solid state stor
age devices) , network attached storage (NAS) devices , tape
libraries , or other magnetic , non - tape storage devices , opti
cal media storage devices , DNA / RNA - based memory tech

nology , combinations of the same , etc. In some embodi
ments , storage devices form part of a distributed file system .
In some cases , storage devices are provided in a cloud
storage environment (e.g. , a private cloud or one operated by
a third - party vendor) , whether for primary data or secondary
copies or both .
[0077] Depending on context , the term “ information man
agement system ” can refer to generally all of the illustrated
hardware and software components in FIG . 1C , or the term
may refer to only a subset of the illustrated components . For
instance , in some cases , system 100 generally refers to a
combination of specialized components used to protect ,
move , manage , manipulate , analyze , and / or process data and
metadata generated by client computing devices 102. How
ever , system 100 in some cases does not include the under
lying components that generate and / or store primary data
112 , such as the client computing devices 102 themselves ,
and the primary storage devices 104. Likewise secondary
storage devices 108 (e.g. , a third - party provided cloud
storage environment) may not be part of system 100. As an
example , “ information management system ” or “ storage
management system ” may sometimes refer to one or more of
the following components , which will be described in fur
ther detail below : storage manager , data agent , and media
agent .
[0078] One or more client computing devices 102 may be
part of system 100 , each client computing device 102 having
an operating system and at least one application 110 and one
or more accompanying data agents executing thereon ; and
associated with one or more primary storage devices 104
storing primary data 112. Client computing device (s) 102
and primary storage devices 104 may generally be referred
to in some cases as primary storage subsystem 117 .

Client Computing Devices , Clients , and Subclients
[0079] Typically , a variety of sources in an organization
produce data to be protected and managed . As just one
example , in a corporate environment such data sources can
be employee workstations and company servers such as a
mail server , a web server , a da pase server , a transaction
server , or the like . In system 100 , data generation sources
include one or more client computing devices 102. A com
puting device that has a data agent 142 installed and oper
ating on it is generally referred to as a “ client computing
device ” 102 , and may include any type of computing device ,
without limitation . A client computing device 102 may be
associated with one or more users and / or user accounts .
[0080] A “ client ” is a logical component of information
management system 100 , which may represent a logical
grouping of one or more data agents installed on a client
computing device 102. Storage manager 140 recognizes a
client as a component of system 100 , and in some embodi
ments , may automatically create a client component the first
time a data agent 142 is installed on a client computing
device 102. Because data generated by executable compo
nent (s) 110 is tracked by the associated data agent 142 so
that it may be properly protected in system 100 , a client may
be said to generate data and to store the generated data to
primary storage , such as primary storage device 104. How
ever , the terms “ client ” and “ client computing device ” as
used herein do not imply that a client computing device 102
is necessarily configured in the client / server sense relative to
another computing device such as a mail server , or that a
client computing device 102 cannot be a server in its own

US 2021/0037112 A1 Feb. 4 , 2021
7

[0083] A “ subclient ” is a logical grouping of all or part of
a client's primary data 112. In general , a subclient may be
defined according to how the subclient data is to be protected
as a unit in system 100. For example , a subclient may be
associated with a certain storage policy . A given client may
thus comprise several subclients , each subclient associated
with a different storage policy . For example , some files may
form a first subclient that requires compression and dedu
plication and is associated with a first storage policy . Other
files of the client may form a second subclient that requires
a different retention schedule as well as encryption , and may
be associated with a different , second storage policy . As a
result , though the primary data may be generated by the
same application 110 and may belong to one given client ,
portions of the data may be assigned to different subclients
for distinct treatment by system 100. More detail on sub
clients is given in regard to storage policies below .

right . As just a few examples , a client computing device 102
can be and / or include mail servers , file servers , database
servers , virtual machine servers , and / or web servers .
[0081] Each client computing device 102 may have appli
cation (s) 110 executing thereon which generate and manipu
late the data that is to be protected from loss and managed
in system 100. Applications 110 generally facilitate the
operations of an organization , and can include , without
limitation , mail server applications (e.g. , Microsoft
Exchange Server) , file system applications , mail client appli
cations (e.g. , Microsoft Exchange Client) , database applica
tions or database management systems (e.g. , SQL , Oracle ,
SAP , Lotus Notes Database) , word processing applications
(e.g. , Microsoft Word) , spreadsheet applications , financial
applications , presentation applications , graphics and / or
video applications , browser applications , mobile applica
tions , entertainment applications , and so on . Each applica
tion 110 may be accompanied by an application - specific data
agent 142 , though not all data agents 142 are application
specific or associated with only application . A file system ,
e.g. , Microsoft Windows Explorer , may be considered an
application 110 and may be accompanied by its own data
agent 142. Client computing devices 102 can have at least
one operating system (e.g. , Microsoft Windows , Mac OS X ,
iOS , IBM z / OS , Linux , other Unix - based operating systems ,
etc.) installed thereon , which may support or host one or
more file systems and other applications 110. In some
embodiments , a virtual machine that executes on a host
client computing device 102 may be considered an applica
tion 110 and may be accompanied by a specific data agent
142 (e.g. , virtual server data agent) .
[0082] Client computing devices 102 and other compo
nents in system 100 can be connected to one another via one
or more electronic communication pathways 114. For
example , a first communication pathway 114 may commu
nicatively couple client computing device 102 and second
ary storage computing device 106 ; a second communication
pathway 114 may communicatively couple storage manager
140 and client computing device 102 ; and a third commu
nication pathway 114 may communicatively couple storage
manager 140 and secondary storage computing device 106 ,
etc. (see , e.g. , FIG . 1A and FIG . 1C) . A communication
pathway 114 can include one or more networks or other
connection types including one or more of the following ,
without limitation : the Internet , a wide area network (WAN) ,
a local area network (LAN) , a Storage Area Network (SAN) ,
a Fibre Channel (FC) connection , a Small Computer System
Interface (SCSI) connection , a virtual private network
(VPN) , a token ring or TCP / IP based network , an intranet
network , a point - to - point link , a cellular network , a wireless
data transmission system , a two - way cable system , an inter
active kiosk network , a satellite network , a broadband
network , a baseband network , a neural network , a mesh
network , an ad hoc network , other appropriate computer or
telecommunications networks , combinations of the same or
the like . Communication pathways 114 in some cases may
also include application programming interfaces (APIS)
including , e.g. , cloud service provider APIs , virtual machine
management APIs , and hosted service provider APIs . The
underlying infrastructure of communication pathways 114
may be wired and / or wireless , analog and / or digital , or any
combination thereof ; and the facilities used may be private ,
public , third - party provided , or any combination thereof ,
without limitation .

Primary Data and Exemplary Primary Storage Devices
[0084] Primary data 112 is generally production data or
“ live ” data generated by the operating system and / or appli
cations 110 executing on client computing device 102 .
Primary data 112 is generally stored on primary storage
device (s) 104 and is organized via a file system operating on
the client computing device 102. Thus , client computing
device (s) 102 and corresponding applications 110 may cre
ate , access , modify , write , delete , and otherwise use primary
data 112. Primary data 112 is generally in the native format
of the source application 110. Primary data 112 is an initial
or first stored body of data generated by the source appli
cation 110. Primary data 112 in some cases is created
substantially directly from data generated by the correspond
ing source application 110. It can be useful in performing
certain tasks to organize primary data 112 into units of
different granularities . In general , primary data 112 can
include files , directories , file system volumes , data blocks ,
extents , or any other hierarchies or organizations of data
objects . As used herein , a " data object " can refer to (i) any
file that is currently addressable by a file system or that was
previously addressable by the file system (e.g. , an archive
file) , and / or to (ii) a subset of such a file (e.g. , a data block ,
an extent , etc.) . Primary data 112 may include structured
data (e.g. , database files) , unstructured data (e.g. , docu
ments) , and / or semi - structured data . See , e.g. , FIG . 1B .
[0085] It can also be useful in performing certain functions
of system 100 to access and modify metadata within primary
data 112. Metadata generally includes information about
data objects and / or characteristics associated with the data
objects . For simplicity herein , it is to be understood that ,
unless expressly stated otherwise , any reference to primary
data 112 generally also includes its associated metadata , but
references to metadata generally do not include the primary
data . Metadata can include , without limitation , one or more
of the following : the data owner (e.g. , the client or user that
generates the data) , the last modified time (e.g. , the time of
the most recent modification of the data object) , a data object
name (e.g. , a file name) , a data object size (e.g. , a number of
bytes of data) , information about the content (e.g. , an
indication as to the existence of a particular search term) ,
user - supplied tags , to / from information for email (e.g. , an
email sender , recipient , etc.) , creation date , file type (e.g. ,
format or application type) , last accessed time , application
type (e.g. , type of application that generated the data object) ,
location / network (e.g. , a current , past or future location of

US 2021/0037112 A1 Feb. 4 , 2021
8

may generate additional data and metadata , which may be
managed by system 100 , e.g. , as primary data 112. In some
cases , the hosted services may be accessed using one of the
applications 110. As an example , a hosted mail service may
be accessed via browser running on a client computing
device 102 .

Secondary Copies and Exemplary Secondary Storage
Devices

the data object and network pathways to / from the data
object) , geographic location (e.g. , GPS coordinates) , fre
quency of change (e.g. , a period in which the data object is
modified) , business unit (e.g. , a group or department that
generates , manages or is otherwise associated with the data
object) , aging information (e.g. , a schedule , such as a time
period , in which the data object is migrated to secondary or
long term storage) , boot sectors , partition layouts , file loca
tion within a file folder directory structure , user permissions ,
owners , groups , access control lists (ACLs) , system meta
data (e.g. , registry information) , combinations of the same or
other similar information related to the data object . In
addition to metadata generated by or related to file systems
and operating systems , some applications 110 and / or other
components of system 100 maintain indices of metadata for
data objects , e.g. , metadata associated with individual email
messages . The use of metadata to perform classification and
other functions is described in greater detail below .
[0086] Primary storage devices 104 storing primary data
112 may be relatively fast and / or expensive technology (e.g. ,
flash storage , a disk drive , a hard - disk storage array , solid
state memory , etc.) , typically to support high - performance
live production environments . Primary data 112 may be
highly changeable and / or may be intended for relatively
short term retention (e.g. , hours , days , or weeks) . According
to some embodiments , client computing device 102 can
access primary data 112 stored in primary storage device
104 by making conventional file system calls via the oper
ating system . Each client computing device 102 is generally
associated with and / or in communication with one or more
primary storage devices 104 storing corresponding primary
data 112. A client computing device 102 is said to be
associated with or in communication with a particular pri
mary storage device 104 if it is capable of one or more of :
routing and / or storing data (e.g. , primary data 112) to the
primary storage device 104 , coordinating the routing and / or
storing of data to the primary storage device 104 , retrieving
data from the primary storage device 104 , coordinating the
retrieval of data from the primary storage device 104 , and
modifying and / or deleting data in the primary storage device
104. Thus , a client computing device 102 may be said to
access data stored in an associated storage device 104 .
[0087] Primary storage device 104 may be dedicated or
shared . In some cases , each primary storage device 104 is
dedicated to an associated client computing device 102 , e.g. ,
a local disk drive . In other cases , one or more primary
storage devices 104 can be shared by multiple client com
puting devices 102 , e.g. , via a local network , in a cloud
storage implementation , etc. As one example , primary stor
age device 104 can be a storage array shared by a group of
client computing devices 102 , such as EMC Clariion , EMC
Symmetrix , EMC Celerra , Dell EqualLogic , IBM XIV ,
NetApp FAS , HP EVA , and HP 3PAR .
[0088] System 100 may also include hosted services (not
shown) , which may be hosted in some cases by an entity
other than the organization that employs the other compo
nents of system 100. For instance , the hosted services may
be provided by online service providers . Such service pro
viders can provide social networking services , hosted email
services , or hosted productivity applications or other hosted
applications such as software - as - a - service (SaaS) , platform
as - a - service (Paas) , application service providers (ASPs) ,
cloud services , or other mechanisms for delivering function
ality via a network . As it services users , each hosted service

[0089] Primary data 112 stored on primary storage devices
104 may be compromised in some cases , such as when an
employee deliberately or accidentally deletes or overwrites
primary data 112. Or primary storage devices 104 can be
damaged , lost , or otherwise corrupted . For recovery and / or
regulatory compliance purposes , it is therefore useful to
generate and maintain copies of primary data 112. Accord
ingly , system 100 includes one or more secondary storage
computing devices 106 and one or more secondary storage
devices 108 configured to create and store one or more
secondary copies 116 of primary data 112 including its
associated metadata . The secondary storage computing
devices 106 and the secondary storage devices 108 may be
referred to as secondary storage subsystem 118 .
[0090] Secondary copies 116 can help in search and analy
sis efforts and meet other information management goals as
well , such as : restoring data and / or metadata if an original
version is lost (e.g. , by deletion , corruption , or disaster) ;
allowing point - in - time recovery ; complying with regulatory
data retention and electronic discovery (e - discovery)
requirements ; reducing utilized storage capacity in the pro
duction system and / or in secondary storage ; facilitating
organization and search of data ; improving user access to
data files across multiple computing devices and / or hosted
services , and implementing data retention and pruning poli
cies .
[0091] A secondary copy 116 can comprise a separate
stored copy of data that is derived from one or more
earlier - created stored copies (e.g. , derived from primary data
112 or from another secondary copy 116) . Secondary copies
116 can include point - in - time data , and may be intended for
relatively long - term retention before some or all of the data
is moved to other storage or discarded . In some cases , a
secondary copy 116 may be in a different storage device than
other previously stored copies ; and / or may be remote from
other previously stored copies . Secondary copies 116 can be
stored in the same storage device as primary data 112. For
example , a disk array capable of performing hardware
snapshots stores primary data 112 and creates and stores
hardware snapshots of the primary data 112 as secondary
copies 116. Secondary copies 116 may be stored in relatively
slow and / or lower cost storage (e.g. , magnetic tape) . A
secondary copy 116 may be stored in a backup or archive
format , or in some other format different from the native
source application format or other format of primary data
112 .
[0092] Secondary storage computing devices 106 may
index secondary copies 116 (e.g. , using a media agent 144) ,
enabling users to browse and restore at a later time and
further enabling the lifecycle management of the indexed
data . After creation of a secondary copy 116 that represents
certain primary data 112 , a pointer or other location indicia
(e.g. , a stub) may be placed in primary data 112 , or be
otherwise associated with primary data 112 , to indicate the
current location of a particular secondary copy 116. Since an

US 2021/0037112 A1 Feb. 4 , 2021
9

instance of a data object or metadata in primary data 112
may change over time as it is modified by application 110 (or
hosted service or the operating system) , system 100 may
create and manage multiple secondary copies 116 of a
particular data object or metadata , each copy representing
the state of the data object in primary data 112 at a particular
point in time . Moreover , since an instance of a data object in
primary data 112 may eventually be deleted from primary
storage device 104 and the file system , system 100 may
continue to manage point - in - time representations of that
data object , even though the instance in primary data 112 no
longer exists . For virtual machines , the operating system and
other applications 110 of client computing device (s) 102
may execute within or under the management of virtualiza
tion software (e.g. , a VMM) , and the primary storage
device (s) 104 may comprise a virtual disk created on a
physical storage device . System 100 may create secondary
copies 116 of the files or other data objects in a virtual disk
file and / or secondary copies 116 of the entire virtual disk file
itself (e.g. , of an entire .vmdk file) .
[0093] Secondary copies 116 are distinguishable from
corresponding primary data 112. First , secondary copies 116
can be stored in a different format from primary data 112
(e.g. , backup , archive , or other non - native format) . For this
or other reasons , secondary copies 116 may not be directly
usable by applications 110 or client computing device 102
(e.g. , via standard system calls or otherwise) without modi
fication , processing , or other intervention by system 100
which may be referred to as “ restore ” operations . Secondary
copies 116 may have been processed by data agent 142
and / or media agent 144 in the course of being created (e.g. ,
compression , deduplication , encryption , integrity markers ,
indexing , formatting , application - aware metadata , etc.) , and
thus secondary copy 116 may represent source primary data
112 without necessarily being exactly identical to the source .
[0094] Second , secondary copies 116 may be stored on a
secondary storage device 108 that is inaccessible to appli
cation 110 running on client computing device 102 and / or
hosted service . Some secondary copies 116 may be " offline
copies , ” in that they are not readily available (e.g. , not
mounted to tape or disk) . Offline copies can include copies
of data that system 100 can access without human interven
tion (e.g. , tapes within an automated tape library , but not yet
mounted in a drive) , and copies that the system 100 can
access only with some human intervention (e.g. , tapes
located at an offsite storage site) .

[0096] Thus , system 100 may include one or more soft
ware and / or hardware components which generally act as
intermediaries between client computing devices 102 (that
generate primary data 112) and secondary storage devices
108 (that store secondary copies 116) . In addition to off
loading certain responsibilities from client computing
devices 102 , these intermediate components provide other
benefits . For instance , as discussed further below with
respect to FIG . 1D , distributing some of the work involved
in creating secondary copies 116 can enhance scalability and
improve system performance . For instance , using special
ized secondary storage computing devices 106 and media
agents 144 for interfacing with secondary storage devices
108 and / or for performing certain data processing operations
can greatly improve the speed with which system 100
performs information management operations and can also
improve the capacity of the system to handle large numbers
of such operations , while reducing the computational load
on the production environment of client computing devices
102. The intermediate components can include one or more
secondary storage computing devices 106 as shown in FIG .
1A and / or one or more media agents 144. Media agents are
discussed further below (e.g. , with respect to FIGS . 1C - 1E) .
These special - purpose components of system 100 comprise
specialized programmed intelligence and / or hardware capa
bility for writing to , reading from , instructing , communicat
ing with , or otherwise interacting with secondary storage
devices 108 .
[0097] Secondary storage computing device (s) 106 can
comprise any of the computing devices described above ,
without limitation . In some cases , secondary storage com
puting device (s) 106 also include specialized hardware
componentry and / or software intelligence (e.g. , specialized
interfaces) for interacting with certain secondary storage
device (s) 108 with which they may be specially associated .
[0098] To create a secondary copy 116 involving the
copying of data from primary storage subsystem 117 to
secondary storage subsystem 118 , client computing device
102 may communicate the primary data 112 to be copied (or
a processed version thereof generated by a data agent 142)
to the designated secondary storage computing device 106 ,
via a communication pathway 114. Secondary storage com
puting device 106 in turn may further process and convey
the data or a processed version thereof to secondary storage
device 108. One or more secondary copies 116 may be
created from existing secondary copies 116 , such as in the
case of an auxiliary copy operation , described further below .

Exemplary Primary Data and an Exemplary Secondary
Copy

Using Intermediate Devices for Creating Secondary
Copies — Secondary Storage Computing Devices
[0095] Creating secondary copies can be challenging
when hundreds or thousands of client computing devices
102 continually generate large volumes of primary data 112
to be protected . Also , there can be significant overhead
involved in the creation of secondary copies 116. Moreover ,
specialized programmed intelligence and / or hardware capa
bility is generally needed for accessing and interacting with
secondary storage devices 108. Client computing devices
102 may interact directly with a secondary storage device
108 to create secondary copies 116 , but in view of the factors
described above , this approach can negatively impact the
ability of client computing device 102 to serve / service
application 110 and produce primary data 112. Further , any
given client computing device 102 may not be optimized for
interaction with certain secondary storage devices 108 .

[0099] FIG . 1B is a detailed view of some specific
examples of primary data stored on primary storage device
(s) 104 and secondary copy data stored on secondary storage
device (s) 108 , with other components of the system
removed for the purposes of illustration . Stored on primary
storage device (s) 104 are primary data 112 objects including
word processing documents 119A - B , spreadsheets 120 , pre
sentation documents 122 , video files 124 , image files 126 ,
email mailboxes 128 (and corresponding email messages
129A - C) , HTML / XML or other types of markup language
files 130 , databases 132 and corresponding tables or other
data structures 133A - 133C . Some or all primary data 112
objects are associated with corresponding metadata (e.g. ,
“ Metal - 11 ”) , which may include file system metadata and /

US 2021/0037112 A1 Feb. 4 , 2021
10

or application - specific metadata . Stored on the secondary
storage device (s) 108 are secondary copy 116 data objects
134A - C which may include copies of or may otherwise
represent corresponding primary data 112 .
[0100] Secondary copy data objects 134A - C can individu
ally represent more than one primary data object . For
example , secondary copy data object 134A represents three
separate primary data objects 133C , 122 , and 129C (repre
sented as 133C ' , 122 ' , and 129C ' , respectively , and accom
panied by corresponding metadata Meta11 , Meta3 , and
Meta8 , respectively) . Moreover , as indicated by the prime
mark (') , secondary storage computing devices 106 or other
components in secondary storage subsystem 118 may pro
cess the data received from primary storage subsystem 117
and store a secondary copy including a transformed and / or
supplemented representation of a primary data object and / or
metadata that is different from the original format , e.g. , in a
compressed , encrypted , deduplicated , or other modified for
mat . For instance , secondary storage computing devices 106
can generate new metadata or other information based on
said processing , and store the newly generated information
along with the secondary copies . Secondary copy data object
1346 represents primary data objects 120 , 1336 , and 119A as
120 ' , 1336 ' , and 119A ' , respectively , accompanied by cor
responding metadata Meta2 , Meta10 , and Metal , respec
tively . Also , secondary copy data object 134C represents
primary data objects 133A , 1196 , and 129A as 133A ' , 1196 ' ,
and 129A ' , respectively , accompanied by corresponding
metadata Meta9 , Meta5 , and Meta6 , respectively .

Exemplary Information Management System Architecture
[0101] System 100 can incorporate a variety of different
hardware and software components , which can in turn be
organized with respect to one another in many different
configurations , depending on the embodiment . There are
critical design choices involved in specifying the functional
responsibilities of the components and the role of each
component in system 100. Such design choices can impact
how system 100 performs and adapts to data growth and
other changing circumstances . FIG . 1C shows a system 100
designed according to these considerations and includes :
storage manager 140 , one or more data agents 142 executing
on client computing device (s) 102 and configured to process
primary data 112 , and one or more media agents 144
executing on one or more secondary storage computing
devices 106 for performing tasks involving secondary stor
age devices 108 .
[0102] Storage Manager
[0103] Storage manager 140 is a centralized storage and / or
information manager that is configured to perform certain
control functions and also to store certain critical informa
tion about system 100 — hence storage manager 140 is said
to manage system 100. As noted , the number of components
in system 100 and the amount of data under management can
be large . Managing the components and data is therefore a
significant task , which can grow unpredictably as the num
ber of components and data scale to meet the needs of the
organization . For these and other reasons , according to
certain embodiments , responsibility for controlling system
100 , or at least a significant portion of that responsibility , is
allocated to storage manager 140. Storage manager 140 can
be adapted independently according to changing circum
stances , without having to replace or re - design the remainder
of the system . Moreover , a computing device for hosting

and / or operating as storage manager 140 can be selected to
best suit the functions and networking needs of storage
manager 140. These and other advantages are described in
further detail below and with respect to FIG . 1D .
[0104] Storage manager 140 may be a software module or
other application hosted by a suitable computing device . In
some embodiments , storage manager 140 is itself a com
puting device that performs the functions described herein .
Storage manager 140 comprises or operates in conjunction
with one or more associated data structures such as a
dedicated database (e.g. , management database 146) ,
depending on the configuration . The storage manager 140
generally initiates , performs , coordinates , and / or controls
storage and other information management operations per
formed by system 100 , e.g. , to protect and control primary
data 112 and secondary copies 116. In general , storage
manager 140 is said to manage system 100 , which includes
communicating with , instructing , and controlling in some
circumstances components such as data agents 142 and
media agents 144 , etc.
[0105] As shown by the dashed arrowed lines 114 in FIG .
1C , storage manager 140 may communicate with , instruct ,
and / or control some or all elements of system 100 , such as
data agents 142 and media agents 144. In this manner ,
storage manager 140 manages the operation of various
hardware and software components in system 100. In certain
embodiments , control information originates from storage
manager 140 and status as well as index reporting is trans
mitted to storage manager 140 by the managed components ,
whereas payload data and metadata are generally commu
nicated between data agents 142 and media agents 144 (or
otherwise between client computing device (s) 102 and sec
ondary storage computing device (s) 106) , e.g. , at the direc
tion of and under the management of storage manager 140 .
Control information can generally include parameters and
instructions for carrying out information management
operations , such as , without limitation , instructions to per
form a task associated with an operation , timing information
specifying when to initiate a task , data path information
specifying what components to communicate with or access
in carrying out an operation , and the like . In other embodi
ments , some information management operations are con
trolled or initiated by other components of system 100 (e.g. ,
by media agents 144 or data agents 142) , instead of or in
combination with storage manager 140 .
[0106] According to certain embodiments , storage man
ager 140 provides one or more of the following functions :

[0107] communicating with data agents 142 and media
agents 144 , including transmitting instructions , mes
sages , and / or queries , as well as receiving status
reports , index information , messages , and / or queries ,
and responding to same ;

[0108] initiating execution of information management
operations ;

[0109] initiating restore and recovery operations ;
[0110] managing secondary storage devices 108 and

inventory / capacity of the same ;
[0111] allocating secondary storage devices 108 for

secondary copy operations ;
[0112] reporting , searching , and / or classification of data

in system 100 ;
[0113] monitoring completion of and status reporting

related to information management operations and
jobs ;

US 2021/0037112 A1 Feb. 4 , 2021
11

[0114] tracking movement of data within system 100 ;
[0115] tracking age information relating to secondary

copies 116 , secondary storage devices 108 , comparing
the age information against retention guidelines , and
initiating data pruning when appropriate ;

[0116] tracking logical associations between compo
nents in system 100 ;

[0117] protecting metadata associated with system 100 ,
e.g. , in management database 146 ;

[0118] implementing job management , schedule man
agement , event management , alert management ,
reporting , job history maintenance , user security man
agement , disaster recovery management , and / or user
interfacing for system administrators and / or end users
of system 100 ;

[0119] sending , searching , and / or viewing of log files ;
and

[0120] implementing operations management function
ality .

[0121] Storage manager 140 may maintain an associated
database 146 (or “ storage manager database 146 ” or “ man
agement database 146 ”) of management - related data and
information management policies 148. Database 146 is
stored in computer memory accessible by storage manager
140. Database 146 may include a management index 150 (or
" index 150 ”) or other data structure (s) that may store :
logical associations between components of the system ; user
preferences and / or profiles (e.g. , preferences regarding
encryption , compression , or deduplication of primary data or
secondary copies ; preferences regarding the scheduling ,
type , or other aspects of secondary copy or other operations ;
mappings of particular information management users or
user accounts to certain computing devices or other com
ponents , etc .; management tasks ; media containerization ;
other useful data ; and / or any combination thereof . For
example , storage manager 140 may use index 150 to track
logical associations between media agents 144 and second
ary storage devices 108 and / or movement of data to / from
secondary storage devices 108. For instance , index 150 may
store data associating a client computing device 102 with a
particular media agent 144 and / or secondary storage device
108 , as specified in an information management policy 148 .
[0122] Administrators and others may configure and ini
tiate certain information management operations on an indi
vidual basis . But while this may be acceptable for some
recovery operations or other infrequent tasks , it is often not
workable for implementing on - going organization - wide data
protection and management . Thus , system 100 may utilize
information management policies 148 for specifying and
executing information management operations on an auto
mated basis . Generally , an information management policy
148 can include a stored data structure or other information
source that specifies parameters (e.g. , criteria and rules)
associated with storage management or other information
management operations . Storage manager 140 can process
an information management policy 148 and / or index 150
and , based on the results , identify an information manage
ment operation to perform , identify the appropriate compo
nents in system 100 to be involved in the operation (e.g. ,
client computing devices 102 and corresponding data agents
142 , secondary storage computing devices 106 and corre
sponding media agents 144 , etc.) , establish connections to
those components and / or between those components , and / or
instruct and control those components to carry out the

operation . In this manner , system 100 can translate stored
information into coordinated activity among the various
computing devices in system 100 .
[0123] Management database 146 may maintain informa
tion management policies 148 and associated data , although
information management policies 148 can be stored in
computer memory at any appropriate location outside man
agement database 146. For instance , an information man
agement policy 148 such as a storage policy may be stored
as metadata in a media agent database 152 or in a secondary
storage device 108 (e.g. , as an archive copy) for use in
restore or other information management operations ,
depending on the embodiment . Information management
policies 148 are described further below . According to
certain embodiments , management database 146 comprises
a relational database (e.g. , an SQL database) for tracking
metadata , such as metadata associated with secondary copy
operations (e.g. , what client computing devices 102 and
corresponding subclient data were protected and where the
secondary copies are stored and which media agent 144
performed the storage operation (s)) . This and other metadata
may additionally be stored in other locations , such as at
secondary storage computing device 106 or on the second
ary storage device 108 , allowing data recovery without the
use of storage manager 140 in some cases . Thus , manage
ment database 146 may comprise data needed to kick off secondary copy operations (e.g. , storage policies , schedule
policies , etc.) , status and reporting information about com
pleted jobs (e.g. , status and error reports on yesterday's
backup jobs) , and additional information sufficient to enable
restore and disaster recovery operations (e.g. , media agent
associations , location indexing , content indexing , etc.) .
[0124] Storage manager 140 may include a jobs agent 156 ,
a user interface 158 , and a management agent 154 , all of
which may be implemented as interconnected software
modules or application programs . These are described fur
ther below .
[0125] Jobs agent 156 in some embodiments initiates ,
controls , and / or monitors the status of some or all informa
tion management operations previously performed , cur
rently being performed , or scheduled to be performed by
system 100. A job is a logical grouping of information
management operations such as daily storage operations
scheduled for a certain set of subclients (e.g. , generating
incremental block - level backup copies 116 at a certain time
every day for database files in a certain geographical loca
tion) . Thus , jobs agent 156 may access information man
agement policies 148 (e.g. , in management database 146) to
determine when , where , and how to initiate / control jobs in
system 100 .
[0126] Storage Manager User Interfaces
[0127] User interface 158 may include information pro
cessing and display software , such as a graphical user
interface (GUI) , an application program interface (API) ,
and / or other interactive interface (s) through which users and
system processes can retrieve information about the status of
information management operations or issue instructions to
storage manager 140 and other components . Via user inter
face 158 , users may issue instructions to the components in
system 100 regarding performance of secondary copy and
recovery operations . For example , a user may modify a
schedule concerning the number of pending secondary copy
operations . As another example , a user may employ the GUI
to view the status of pending secondary copy jobs or to

US 2021/0037112 A1 Feb. 4 , 2021
12

monitor the status of certain components in system 100 (e.g. ,
the amount of capacity left in a storage device) . Storage
manager 140 may track information that permits it to select ,
designate , or otherwise identify content indices , deduplica
tion databases , or similar databases or resources or data sets
within its information management cell (or another cell) to
be searched in response to certain queries . Such queries may
be entered by the user by interacting with user interface 158 .
[0128] Various embodiments of information management
system 100 may be configured and / or designed to generate
user interface data usable for rendering the various interac
tive user interfaces described . The user interface data may be
used by system 100 and / or by another system , device , and / or
software program (for example , a browser program) , to
render the interactive user interfaces . The interactive user
interfaces may be displayed on , for example , electronic
displays (including , for example , touch - enabled displays) ,
consoles , etc. , whether direct - connected to storage manager
140 or communicatively coupled remotely , e.g. , via an
internet connection . The present disclosure describes vari
ous embodiments of interactive and dynamic user interfaces ,
some of which may be generated by user interface agent
158 , and which are the result of significant technological
development . The user interfaces described herein may
provide improved human - computer interactions , allowing
for significant cognitive and ergonomic efficiencies and
advantages over previous systems , including reduced mental
workloads , improved decision - making , and the like . User
interface 158 may operate in a single integrated view or
console (not shown) . The console may support a reporting
capability for generating a variety of reports , which may be
tailored to a particular aspect of information management .
[0129] User interfaces are not exclusive to storage man
ager 140 and in some embodiments a user may access
information locally from a computing device component of
system 100. For example , some information pertaining to
installed data agents 142 and associated data streams may be
available from client computing device 102. Likewise , some
information pertaining to media agents 144 and associated
data streams may be available from secondary storage
computing device 106 .
[0130] Storage Manager Management Agent
[0131] Management agent 154 can provide storage man
ager 140 with the ability to communicate with other com
ponents within system 100 and / or with other information
management cells via network protocols and application
programming interfaces (APIs) including , e.g. , HTTP ,
HTTPS , FTP , REST , virtualization software APIs , cloud
service provider APIs , and hosted service provider APIs ,
without limitation . anagement agent 154 also allows mul
tiple information management cells to communicate with
one another . For example , system 100 in some cases may be
one information management cell in a network of multiple
cells adjacent to one another or otherwise logically related ,
e.g. , in a WAN or LAN . With this arrangement , the cells may
communicate with one another through respective manage
ment agents 154. Inter - cell communications and hierarchy is
described in greater detail in e.g. , U.S. Pat . No. 7,343,453 .
[0132] Information Management Cell
[0133] An “ information management cell ” (or " storage
operation cell ” or “ cell ”) may generally include a logical
and / or physical grouping of a combination of hardware and
software components associated with performing informa
tion management operations on electronic data , typically

one storage manager 140 and at least one data agent 142
(executing on a client computing device 102) and at least
one media agent 144 (executing on a secondary storage
computing device 106) . For instance , the components shown
in FIG . 1C may together form an information management
cell . Thus , in some configurations , a system 100 may be
referred to as an information management cell or a storage
operation cell . A given cell may be identified by the identity
of its storage manager 140 , which is generally responsible
for managing the cell .
[0134] Multiple cells may be organized hierarchically , so
that cells may inherit properties from hierarchically superior
cells or be controlled by other cells in the hierarchy (auto
matically or otherwise) . Alternatively , in some embodi
ments , cells may inherit or otherwise be associated with
information management policies , preferences , information
management operational parameters , or other properties or
characteristics according to their relative position in a hier
archy of cells . Cells may also be organized hierarchically
according to function , geography , architectural consider
ations , or other factors useful or desirable in performing
information management operations . For example , first
cell may represent a geographic segment of an enterprise ,
such as a Chicago office , and a second cell may represent a
different geographic segment , such as a New York City
office . Other cells may represent departments within a
particular office , e.g. , human resources , finance , engineer
ing , etc. Where delineated by function , a first cell may
perform one or more first types of information management
operations (e.g. , one or more first types of secondary copies
at a certain frequency) , and a second cell may perform one
or more second types of information management operations
(e.g. , one or more second types of secondary copies at a
different frequency and under different retention rules) . In
general , the hierarchical information is maintained by one or
more storage managers 140 that manage the respective cells
(e.g. , in corresponding management database (s) 146) .
[0135] Data Agents
[0136] A variety of different applications 110 can operate
on a given client computing device 102 , including operating
systems , file systems , database applications , e - mail applica
tions , and virtual machines , just to name a few . And , as part
of the process of creating and restoring secondary copies
116 , the client computing device 102 may be tasked with
processing and preparing the primary data 112 generated by
these various applications 110. Moreover , the nature of the
processing / preparation can differ across application types ,
e.g. , due to inherent structural , state , and formatting differ
ences among applications 110 and / or the operating system of
client computing device 102. Each data agent 142 is there
fore advantageously configured in some embodiments to
assist in the performance of information management opera
tions based on the type of data that is being protected at a
client - specific and / or application - specific level .
[0137] Data agent 142 is a component of information
system 100 and is generally directed by storage manager 140
to participate in creating or restoring secondary copies 116 .
Data agent 142 may be a software program (e.g. , in the form
of a set of executable binary files) that executes on the same
client computing device 102 as the associated application
110 that data agent 142 is configured to protect . Data agent
142 is generally responsible for managing , initiating , or
otherwise assisting in the performance of information man
agement operations in reference to its associated application

US 2021/0037112 A1 Feb. 4 , 2021
13

(s) 110 and corresponding primary data 112 which is gen
erated / accessed by the particular application (s) 110. For
instance , data agent 142 may take part in copying , archiving ,
migrating , and / or replicating of certain primary data 112
stored in the primary storage device (s) 104. Data agent 142
may receive control information from storage manager 140 ,
such as commands to transfer copies of data objects and / or
metadata to one or more media agents 144. Data agent 142
also may compress , deduplicate , and encrypt certain primary
data 112 , as well as capture application - related metadata
before transmitting the processed data to media agent 144 .
Data agent 142 also may receive instructions from storage
manager 140 to restore (or assist in restoring) a secondary
copy 116 from secondary storage device 108 to primary
storage 104 , such that the restored data may be properly
accessed by application 110 in a suitable format as though it
were primary data 112 .
[0138] Each data agent 142 may be specialized for a
particular application 110. For instance , different individual
data agents 142 may be designed to handle Microsoft
Exchange data , Lotus Notes data , Microsoft Windows file
system data , Microsoft Active Directory Objects data , SQL
Server data , Share Point data , Oracle database data , SAP
database data , virtual machines and / or associated data , and
other types of data . A file system data agent , for example ,
may handle data files and / or other file system information .
If a client computing device 102 has two or more types of
data 112 , a specialized data agent 142 may be used for each
data type . For example , to backup , migrate , and / or restore all
of the data on a Microsoft Exchange server , the client
computing device 102 may use : (1) a Microsoft Exchange
Mailbox data agent 142 to back up the Exchange mailboxes ;
(2) a Microsoft Exchange Database data agent 142 to back
up the Exchange databases ; (3) a Microsoft Exchange Public
Folder data agent 142 to back up the Exchange Public
Folders ; and (4) a Microsoft Windows File System data
agent 142 to back up the file system of client computing
device 102. In this example , these specialized data agents
142 are treated as four separate data agents 142 even though
they operate on the same client computing device 102. Other
examples may include archive management data agents such
as a migration archiver or a compliance archiver , Quick
Recovery® agents , and continuous data replication agents .
Application - specific data agents 142 can provide improved
performance as compared to generic agents . For instance ,
because application - specific data agents 142 may only
handle data for a single software application , the design ,
operation , and performance of the data agent 142 can be
streamlined . The data agent 142 may therefore execute faster
and consume less persistent storage and / or operating
memory than data agents designed to generically accommo
date multiple different software applications 110 .
(0139] Each data agent 142 may be configured to access
data and / or metadata stored in the primary storage device (s)
104 associated with data agent 142 and its host client
computing device 102 , and process the data appropriately .
For example , during a secondary copy operation , data agent
142 may arrange or assemble the data and metadata into one
or more files having a certain format (e.g. , a particular
backup or archive format) before transferring the file (s) to a
media agent 144 or other component . The file (s) may
include a list of files or other metadata . In some embodi
ments , a data agent 142 may be distributed between client
computing device 102 and storage manager 140 (and any

other intermediate components) or may be deployed from a
remote location or its functions approximated by a remote
process that performs some or all of the functions of data
agent 142. In addition , a data agent 142 may perform some
functions provided by media agent 144. Other embodiments
may employ one or more generic data agents 142 that can
handle and process data from two or more different appli
cations 110 , or that can handle and process multiple data
types , instead of or in addition to using specialized data
agents 142. For example , one generic data agent 142 may be
used to back up , migrate and restore Microsoft Exchange
Mailbox data and Microsoft Exchange Database data , while
another generic data agent may handle Microsoft Exchange
Public Folder data and Microsoft Windows File System
data .
[0140] Media Agents
[0141] As noted , off - loading certain responsibilities from
client computing devices 102 to intermediate components
such as secondary storage computing device (s) 106 and
corresponding media agent (s) 144 can provide a number of
benefits including improved performance of client comput
ing device 102 , faster and more reliable information man
agement operations , and enhanced scalability . In one
example which will be discussed further below , media agent
144 can act as a local cache of recently - copied data and / or
metadata stored to secondary storage device (s) 108 , thus
improving restore capabilities and performance for the
cached data .
[0142] Media agent 144 is a component of system 100 and
is generally directed by storage manager 140 in creating and
restoring secondary copies 116. Whereas storage manager
140 generally manages system 100 as a whole , media agent
144 provides a portal to certain secondary storage devices
108 , such as by having specialized features for communi
cating with and accessing certain associated secondary stor
age device 108. Media agent 144 may be a software program
(e.g. , in the form of a set of executable binary files) that
executes on a secondary storage computing device 106 .
Media agent 144 generally manages , coordinates , and facili
tates the transmission of data between a data agent 142
(executing on client computing device 102) and secondary
storage device (s) 108 associated with media agent 144. For
instance , other components in the system may interact with
media agent 144 to gain access to data stored on associated
secondary storage device (s) 108 , (e.g. , to browse , read ,
write , modify , delete , or restore data) . Moreover , media
agents 144 can generate and store information relating to
characteristics of the stored data and / or metadata , or can
generate and store other types of information that generally
provides insight into the contents of the secondary storage
devices 108 generally referred to as indexing of the stored
secondary copies 116. Each media agent 144 may operate on
a dedicated secondary storage computing device 106 , while
in other embodiments a plurality of media agents 144 may
operate on the same secondary storage computing device
106 .
[0143] A media agent 144 may be associated with a
particular secondary storage device 108 if that media agent
144 is capable of one or more of : routing and / or storing data
to the particular secondary storage device 108 ; coordinating
the routing and / or storing of data to the particular secondary
storage device 108 ; retrieving data from the particular
secondary storage device 108 ; coordinating the retrieval of
data from the particular secondary storage device 108 ; and

US 2021/0037112 A1 Feb. 4 , 2021
14

modifying and / or deleting data retrieved from the particular
secondary storage device 108. Media agent 144 in certain
embodiments is physically separate from the associated
secondary storage device 108. For instance , a media agent
144 may operate on a secondary storage computing device
106 in a distinct housing , package , and / or location from the
associated secondary storage device 108. In one example , a
media agent 144 operates on a first server computer and is
in communication with a secondary storage device (s) 108
operating in a separate rack - mounted RAID - based system .
[0144] A media agent 144 associated with a particular
secondary storage device 108 may instruct secondary stor
age device 108 to perform an information management task .
For instance , a media agent 144 may instruct a tape library
to use a robotic arm or other retrieval means to load or eject
a certain storage media , and to subsequently archive ,
migrate , or retrieve data to or from that media , e.g. , for the
purpose of restoring data to a client computing device 102 .
As another example , a secondary storage device 108 may
include an array of hard disk drives or solid state drives
organized in a RAID configuration , and media agent 144
may forward a logical unit number (LUN) and other appro
priate information to the array , which uses the received
information to execute the desired secondary copy opera
tion . Media agent 144 may communicate with a secondary
storage device 108 via a suitable communications link , such
as a SCSI or Fibre Channel link .
[0145] Each media agent 144 may maintain an associated
media agent database 152. Media agent database 152 may be
stored to a disk or other storage device (not shown) that is
local to the secondary storage computing device 106 on
which media agent 144 executes . In other cases , media agent
database 152 is stored separately from the host secondary
storage computing device 106. Media agent database 152
can include , among other things , a media agent index 153
(see , e.g. , FIG . 1C) . In some cases , media agent index 153
does not form a part of and is instead separate from media
agent database 152 .
[0146] Media agent index 153 (or “ index 153 ”) may be a
data structure associated with the particular media agent 144
that includes information about the stored data associated
with the particular media agent and which may be generated
in the course of performing a secondary copy operation or a
restore . Index 153 provides a fast and efficient mechanism
for locating / browsing secondary copies 116 or other data
stored in secondary storage devices 108 without having to
access secondary storage device 108 to retrieve the infor
mation from there . For instance , for each secondary copy
116 , index 153 may include metadata such as a list of the
data objects (e.g. , files / subdirectories , database objects ,
mailbox objects , etc.) , a logical path to the secondary copy
116 on the corresponding secondary storage device 108 ,
location information (e.g. , offsets) indicating where the data
objects are stored in the secondary storage device 108 , when
the data objects were created or modified , etc. Thus , index
153 includes metadata associated with the secondary copies
116 that is readily available for use from media agent 144 .
In some embodiments , some or all of the information in
index 153 may instead or additionally be stored along with
secondary copies 116 in secondary storage device 108. In
some embodiments , a secondary storage device 108 can
include sufficient information to enable a " bare metal
restore , ” where the operating system and / or software appli
cations of a failed client computing device 102 or another

target may be automatically restored without manually rein
stalling individual software packages (including operating
systems) .
[0147] Because index 153 may operate as a cache , it can
also be referred to as an “ index cache . ” In such cases ,
information stored in index cache 153 typically comprises
data that reflects certain particulars about relatively recent
secondary copy operations . After some triggering event ,
such as after some time elapses or index cache 153 reaches
a particular size , certain portions of index cache 153 may be
copied or migrated to secondary storage device 108 , e.g. , on
a least - recently - used basis . This information may be
retrieved and uploaded back into index cache 153 or other
wise restored to media agent 144 to facilitate retrieval of
data from the secondary storage device (s) 108. In some
embodiments , the cached information may include format or
containerization information related to archives or other files
stored on storage device (s) 108 .
[0148] In some alternative embodiments media agent 144
generally acts as a coordinator or facilitator of secondary
copy operations between client computing devices 102 and
secondary storage devices 108 , but does not actually write
the data to secondary storage device 108. For instance ,
storage manager 140 (or media agent 144) may instruct a
client computing device 102 and secondary storage device
108 to communicate with one another directly . In such a
case , client computing device 102 transmits data directly or
via one or more intermediary components to secondary
storage device 108 according to the received instructions ,
and vice versa . Media agent 144 may still receive , process ,
and / or maintain metadata related to the secondary copy
operations , i.e. , may continue to build and maintain index
153. In these embodiments , payload data can flow through
media agent 144 for the purposes of populating index 153 ,
but not for writing to secondary storage device 108. Media
agent 144 and / or other components such as storage manager
140 may in some cases incorporate additional functionality ,
such as data classification , content indexing , deduplication ,
encryption , compression , and the like . Further details
regarding these and other functions are described below .
Distributed , Scalable Architecture
[0149] As described , certain functions of system 100 can
be distributed amongst various physical and / or logical com
ponents . For instance , one or more of storage manager 140 ,
data agents 142 , and media agents 144 may operate on
computing devices that are physically separate from one
another . This architecture can provide a number of benefits .
For instance , hardware and software design choices for each
distributed component can be targeted to suit its particular
function . The secondary computing devices 106 on which
media agents 144 operate can be tailored for interaction with
associated secondary storage devices 108 and provide fast
index cache operation , among other specific tasks . Similarly ,
client computing device (s) 102 can be selected to effectively
service applications 110 in order to efficiently produce and
store primary data 112 .
[0150] Moreover , in some cases , one or more of the
individual components of information management system
100 can be distributed to multiple separate computing
devices . As one example , for large file systems where the
amount of data stored in management database 146 is
relatively large , database 146 may be migrated to or may
otherwise reside on a specialized database server (e.g. , an

US 2021/0037112 A1 Feb. 4 , 2021
15

SQL server) separate from a server that implements the other
functions of storage manager 140. This distributed configu
ration can provide added protection because database 146
can be protected with standard database utilities (e.g. , SQL
log shipping or database replication) independent from other
functions of storage manager 140. Database 146 can be
efficiently replicated to a remote site for use in the event of
a disaster or other data loss at the primary site . Or database
146 can be replicated to another computing device within
the same site , such as to a higher performance machine in the
event that a storage manager host computing device can no
longer service the needs of a growing system 100 .
[0151] The distributed architecture also provides scalabil
ity and efficient component utilization . FIG . ID shows an
embodiment of information management system 100 includ
ing a plurality of client computing devices 102 and associ
ated data agents 142 as well as a plurality of secondary
storage computing devices 106 and associated media agents
144. Additional components can be added or subtracted
based on the evolving needs of system 100. For instance ,
depending on where bottlenecks are identified , administra
tors can add additional client computing devices 102 , sec
ondary storage computing devices 106 , and / or secondary
storage devices 108. Moreover , where multiple fungible
components are available , load balancing can be imple
mented to dynamically address identified bottlenecks . As an
example , storage manager 140 may dynamically select
which media agents 144 and / or secondary storage devices
108 to use for storage operations based on a processing load
analysis of media agents 144 and / or secondary storage
devices 108 , respectively .
[0152] Where system 100 includes multiple media agents
144 (see , e.g. , FIG . 1D) , a first media agent 144 may provide
failover functionality for a second failed media agent 144. In
addition , media agents 144 can be dynamically selected to
provide load balancing . Each client computing device 102
can communicate with , among other components , any of the
media agents 144 , e.g. , as directed by storage manager 140 .
And each media agent 144 may communicate with , among
other components , any of secondary storage devices 108 ,
e.g. , as directed by storage manager 140. Thus , operations
can be routed to secondary storage devices 108 in a dynamic
and highly flexible manner , to provide load balancing ,
failover , etc. Further examples of scalable systems capable
of dynamic storage operations , load balancing , and failover
are provided in U.S. Pat . No. 7,246,207 .
[0153] While distributing functionality amongst multiple
computing devices can have certain advantages , in other
contexts it can be beneficial to consolidate functionality on
the same computing device . In alternative configurations ,
certain components may reside and execute on the same
computing device . As such , in other embodiments , one or
more of the components shown in FIG . 1C may be imple
mented on the same computing device . In one configuration ,
a storage manager 140 , one or more data agents 142 , and / or
one or more media agents 144 are all implemented on the
same computing device . In other embodiments , one or more
data agents 142 and one or more media agents 144 are
implemented on the same computing device , while storage
manager 140 is implemented on a separate computing
device , etc. without limitation .

Exemplary Types of Information Management Operations ,
Including Storage Operations
[0154] In order to protect and leverage stored data , system
100 can be configured to perform a variety of information
management operations , which may also be referred to in
some cases as storage management operations or storage
operations . These operations can generally include (i) data
movement operations , (ii) processing and data manipulation
operations , and (iii) analysis , reporting , and management
operations .
[0155] Data Movement Operations , Including Secondary
Copy Operations
[0156] Data movement operations are generally storage
operations that involve the copying or migration of data
between different locations in system 100. For example , data
movement operations can include operations in which stored
data is copied , migrated , or otherwise transferred from one
or more first storage devices to one or more second storage
devices , such as from primary storage device (s) 104 to
secondary storage device (s) 108 , from secondary storage
device (s) 108 to different secondary storage device (s) 108 ,
from secondary storage devices 108 to primary storage
devices 104 , or from primary storage device (s) 104 to
different primary storage device (s) 104 , or in some cases
within the same primary storage device 104 such as within
a storage array .
[0157] Data movement operations can include by way of
example , backup operations , archive operations , informa
tion lifecycle management operations such as hierarchical
storage management operations , replication operations (e.g. ,
continuous data replication) , snapshot operations , dedupli
cation or single - instancing operations , auxiliary copy opera
tions , disaster - recovery copy operations , and the like . As
will be discussed , some of these operations do not neces
sarily create distinct copies . Nonetheless , some or all of
these operations are generally referred to as “ secondary copy
operations ” for simplicity , because they involve secondary
copies . Data movement also comprises restoring secondary
copies .
[0158] Backup Operations
[0159] A backup operation creates a copy of a version of
primary data 112 at a particular point in time (e.g. , one or
more files or other data units) . Each subsequent backup copy
116 (which is a form of secondary copy 116) may be
maintained independently of the first . A backup generally
involves maintaining a version of the copied primary data
112 as well as backup copies 116. Further , a backup copy in
some embodiments is generally stored in a form that is
different from the native format , e.g. , a backup format . This
contrasts to the version in primary data 112 which may
instead be stored in a format native to the source application
(s) 110. In various cases , backup copies can be stored in a
format in which the data is compressed , encrypted , dedu
plicated , and / or otherwise modified from the original native
application format . For example , a backup copy may be
stored in a compressed backup format that facilitates effi
cient long - term storage . Backup copies 116 can have rela
tively long retention periods as compared to primary data
112 , which is generally highly changeable . Backup copies
116 may be stored on media with slower retrieval times than
primary storage device 104. Some backup copies may have
shorter retention periods than some other types of secondary
copies 116 , such as archive copies (described below) . Back
ups may be stored at an offsite location .

US 2021/0037112 A1 Feb. 4 , 2021
16

(0160] Backup operations can include full backups , dif
ferential backups , incremental backups , " synthetic full ”
backups , and / or creating a “ reference copy . ” A full backup
(or “ standard full backup ”) in some embodiments is gener
ally a complete image of the data to be protected . However ,
because full backup copies can consume a relatively large
amount of storage , it can be useful to use a full backup copy
as a baseline and only store changes relative to the full
backup copy afterwards .
[0161] A differential backup operation (or cumulative
incremental backup operation) tracks and stores changes that
occurred since the last full backup . Differential backups can
grow quickly in size , but can restore relatively efficiently
because a restore can be completed in some cases using only
the full backup copy and the latest differential copy .
[0162] An incremental backup operation generally tracks
and stores changes since the most recent backup copy of any
type , which can greatly reduce storage utilization . In some
cases , however , restoring can be lengthy compared to full or
differential backups because completing a restore operation
may involve accessing a full backup in addition to multiple
incremental backups .
[0163] Synthetic full backups generally consolidate data
without directly backing up data from the client computing
device . A synthetic full backup is created from the most
recent full backup (i.e. , standard or synthetic) and subse
quent incremental and / or differential backups . The resulting
synthetic full backup is identical to what would have been
created had the last backup for the subclient been a standard
full backup . Unlike standard full , incremental , and differ
ential backups , however , a synthetic full backup does not
actually transfer data from primary storage to the backup
media , because it operates as a backup consolidator . A
synthetic full backup extracts the index data of each par
ticipating subclient . Using this index data and the previously
backed up user data images , it builds new full backup
images (e.g. , bitmaps) , one for each subclient . The new
backup images consolidate the index and user data stored in
the related incremental , differential , and previous full back
ups into a synthetic backup file that fully represents the
subclient (e.g. , via pointers) but does not comprise all its
constituent data .
[0164] Any of the above types of backup operations can be
at the volume level , file level , or block level . Volume level
backup operations generally involve copying of a data
volume (e.g. , a logical disk or partition) as a whole . In a
file - level backup , information management system 100 gen
erally tracks changes to individual files and includes copies
of files in the backup copy . For block - level backups , files are
broken into constituent blocks , and changes are tracked at
the block level . Upon restore , system 100 reassembles the
blocks into files in a transparent fashion . Far less data may
actually be transferred and copied to secondary storage
devices 108 during a file - level copy than a volume - level
copy . Likewise , a block - level copy may transfer less data
than a file - level copy , resulting in faster execution . However ,
restoring a relatively higher - granularity copy can result in
longer restore times . For instance , when restoring a block
level copy , the process of locating and retrieving constituent
blocks can sometimes take longer than restoring file - level
backups .
[0165] A reference copy may comprise copy (ies) of
selected objects from backed up data , typically to help
organize data by keeping contextual information from mul

tiple sources together , and / or help retain specific data for a
longer period of time , such as for legal hold needs . A
reference copy generally maintains data integrity , and when
the data is restored , it may be viewed in the same format as
the source data . In some embodiments , a reference copy is
based on a specialized client , individual subclient and asso
ciated information management policies (e.g. , storage
policy , retention policy , etc.) that are administered within
system 100 .
[0166] Archive Operations
[0167] Because backup operations generally involve
maintaining a version of the copied primary data 112 and also maintaining backup copies in secondary storage device
(s) 108 , they can consume significant storage capacity . To
reduce storage consumption , an archive operation according
to certain embodiments creates an archive copy 116 by both
copying and removing source data . Or , seen another way ,
archive operations can involve moving some or all of the
source data to the archive destination . Thus , data satisfying
criteria for removal (e.g. , data of a threshold age or size) may
be removed from source storage . The source data may be
primary data 112 or a secondary copy 116 , depending on the
situation . As with backup copies , archive copies can be
stored in a format in which the data is compressed ,
encrypted , deduplicated , and / or otherwise modified from the
format of the original application or source copy . In addition ,
archive copies may be retained for relatively long periods of
time (e.g. , years) and , in some cases are never deleted . In
certain embodiments , archive copies may be made and kept
for extended periods in order to meet compliance regula
tions .
[0168] Archiving can also serve the purpose of freeing up
space in primary storage device (s) 104 and easing the
demand on computational resources on client computing
device 102. Similarly , when a secondary copy 116 is
archived , the archive copy can therefore serve the purpose of
freeing up space in the source secondary storage device (s)
108. Examples of data archiving operations are provided in
U.S. Pat . No. 7,107,298 .
[0169] Snapshot Operations
[0170] Snapshot operations can provide a relatively light
weight , efficient mechanism for protecting data . From an
end - user viewpoint , a snapshot may be thought of as an
“ instant ” image of primary data 112 at a given point in time ,
and may include state and / or status information relative to
an application 110 that creates / manages primary data 112. In
one embodiment , a snapshot may generally capture the
directory structure of an object in primary data 112 such as
a file or volume or other data set at a particular moment in
time and may also preserve file attributes and contents . A
snapshot in some cases is created relatively quickly , e.g. ,
substantially instantly , using a minimum amount of file
space , but may still function as a conventional file system
backup .
[0171] A “ hardware snapshot ” (or “ hardware - based snap
shot) operation occurs where a target storage device (e.g. ,
a primary storage device 104 or a secondary storage device
108) performs the snapshot operation in a self - contained
fashion , substantially independently , using hardware , firm
ware and / or software operating on the storage device itself .
For instance , the storage device may perform snapshot
operations generally without intervention or oversight from
any of the other components of the system 100 , e.g. , a
storage array may generate an “ array - created ” hardware

US 2021/0037112 A1 Feb. 4 , 2021
17

snapshot and may also manage its storage , integrity , ver
sioning , etc. In this manner , hardware snapshots can off - load
other components of system 100 from snapshot processing .
An array may receive a request from another component to
take a snapshot and then proceed to execute the “ hardware
snapshot ” operations autonomously , preferably reporting
success to the requesting component .
[0172] A " software snapshot ” (or " software - based snap
shot ”) operation , on the other hand , occurs where a compo
nent in system 100 (e.g. , client computing device 102 , etc.)
implements a software layer that manages the snapshot
operation via interaction with the target storage device . For
instance , the component executing the snapshot manage
ment software layer may derive a set of pointers and / or data
that represents the snapshot . The snapshot management
software layer may then transmit the same to the target
storage device , along with appropriate instructions for writ
ing the snapshot . One example of a software snapshot
product is Microsoft Volume Snapshot Service (VSS) , which
is part of the Microsoft Windows operating system .
[0173] Some types of snapshots do not actually create
another physical copy of all the data as it existed at the
particular point in time , but may simply create pointers that
map files and directories to specific memory locations (e.g. ,
to specific disk blocks) where the data resides as it existed
at the particular point in time . For example , a snapshot copy
may include a set of pointers derived from the file system or
from an application . In some other cases , the snapshot may
be created at the block - level , such that creation of the
snapshot occurs without awareness of the file system . Each
pointer points to a respective stored data block , so that
collectively , the set of pointers reflect the storage location
and state of the data object (e.g. , file (s) or volume (s) or data
set (s)) at the point in time when the snapshot copy was
created .

[0174] An initial snapshot may use only a small amount of
disk space needed to record a mapping or other data struc
ture representing or otherwise tracking the blocks that
correspond to the current state of the file system . Additional
disk space is usually required only when files and directories
change later on . Furthermore , when files change , typically
only the pointers which map to blocks are copied , not the
blocks themselves . For example for “ copy - on - write ” snap
shots , when a block changes in primary storage , the block is
copied to secondary storage or cached in primary storage
before the block is overwritten in primary storage , and the
pointer to that block is changed to reflect the new location
of that block . The snapshot mapping of file system data may
also be updated to reflect the changed block (s) at that
particular point in time . In some other cases , a snapshot
includes a full physical copy of all or substantially all of the
data represented by the snapshot . Further examples of snap
shot operations are provided in U.S. Pat . No. 7,529,782 . A
snapshot copy in many cases can be made quickly and
without significantly impacting primary computing
resources because large amounts of data need not be copied
or moved . In some embodiments , a snapshot may exist as a
virtual file system , parallel to the actual file system . Users in
some cases gain read - only access to the record of files and
directories of the snapshot . By electing to restore primary
data 112 from a snapshot taken at a given point in time , users
may also return the current file system to the state of the file
system that existed when the snapshot was taken .

[0175] Replication Operations
[0176] Replication is another type of secondary copy
operation . Some types of secondary copies 116 periodically
capture images of primary data 112 at particular points in
time (e.g. , backups , archives , and snapshots) . However , it
can also be useful for recovery purposes to protect primary
data 112 in a more continuous fashion , by replicating
primary data 112 substantially as changes occur . In some
cases a replication copy can be a mirror copy , for instance ,
where changes made to primary data 112 are mirrored or
substantially immediately copied to another location (e.g. , to
secondary storage device (s) 108) . By copying each write
operation to the replication copy , two storage systems are
kept synchronized or substantially synchronized so that they
are virtually identical at approximately the same time .
Where entire disk volumes are mirrored , however , mirroring
can require significant amount of storage space and utilizes
a large amount of processing resources .
[0177] According to some embodiments , secondary copy
operations are performed on replicated data that represents
a recoverable state , or “ known good state ” of a particular
application running on the source system . For instance , in
certain embodiments , known good replication copies may be
viewed as copies of primary data 112. This feature allows the
system to directly access , copy , restore , back up , or other
wise manipulate the replication copies as if they were the
“ live ” primary data 112. This can reduce access time , storage
utilization , and impact on source applications 110 , among
other benefits . Based on known good state information ,
system 100 can replicate sections of application data that
represent a recoverable state rather than rote copying of
blocks of data . Examples of replication operations (e.g. ,
continuous data replication) are provided in U.S. Pat . No.
7,617,262 .
[0178] Deduplication / Single - Instancing Operations
[0179] Deduplication or single - instance storage is useful
to reduce the amount of non - primary data . For instance ,
some or all of the above - described secondary copy opera
tions can involve deduplication in some fashion . New data
is read , broken down into data portions of a selected
granularity (e.g. , sub - file level blocks , files , etc.) , compared
with corresponding portions that are already in secondary
storage , and only new / changed portions are stored . Portions
that already exist are represented as pointers to the already
stored data . Thus , a deduplicated secondary copy 116 may
comprise actual data portions copied from primary data 112
and may further comprise pointers to already - stored data ,
which is generally more storage - efficient than a full copy .
[0180] In order to streamline the comparison process ,
system 100 may calculate and / or store signatures (e.g. ,
hashes or cryptographically unique IDs) corresponding to
the individual source data portions and compare the signa
tures to already - stored data signatures , instead of comparing
entire data portions . In some cases , only a single instance of
each data portion is stored , and deduplication operations
may therefore be referred to interchangeably as “ single
instancing ” operations . Depending on the implementation ,
however , deduplication operations can store more than one
instance of certain data portions , yet still significantly reduce
stored - data redundancy . Depending on the embodiment ,
deduplication portions such as data blocks can be of fixed or
variable length . Using variable length blocks can enhance
deduplication by responding to changes in the data stream ,
but can involve more complex processing . In some cases ,

US 2021/0037112 A1 Feb. 4 , 2021
18

system 100 utilizes a technique for dynamically aligning
deduplication blocks based on changing content in the data
stream , as described in U.S. Pat . No. 8,364,652 .
[0181] System 100 can deduplicate in a variety of manners
at a variety of locations . For instance , in some embodiments ,
system 100 implements “ target - side ” deduplication by dedu
plicating data at the media agent 144 after being received
from data agent 142. In some such cases , media agents 144
are generally configured to manage the deduplication pro
cess . For instance , one or more of the media agents 144
maintain a corresponding deduplication database that stores
deduplication information (e.g. , datablock signatures) .
Examples of such a configuration are provided in U.S. Pat .
No. 9,020,900 . Instead of or in combination with “ target
side ” deduplication , " source - side ” (or " client - side ”) dedu
plication can also be performed , e.g. , to reduce the amount
of data to be transmitted by data agent 142 to media agent
144. Storage manager 140 may communicate with other
components within system 100 via network protocols and
cloud service provider APIs to facilitate cloud - based dedu
plication / single instancing , as exemplified in U.S. Pat . No.
8,954,446 . Some other deduplication / single instancing tech
niques are described in U.S. Pat . Pub . No. 2006/0224846
and in U.S. Pat . No. 9,098,495 .
[0182] Information Lifecycle Management and Hierarchi
cal Storage Management
[0183] In some embodiments , files and other data over
their lifetime move from more expensive quick - access stor
age to less expensive slower - access storage . Operations
associated with moving data through various tiers of storage
are sometimes referred to as information lifecycle manage
ment (ILM) operations .
[0184] One type of ILM operation is a hierarchical storage
management (HSM) operation , which generally automati
cally moves data between classes of storage devices , such as
from high - cost to low - cost storage devices . For instance , an
HSM operation may involve movement of data from pri
mary storage devices 104 to secondary storage devices 108 ,
or between tiers of secondary storage devices 108. With each
tier , the storage devices may be progressively cheaper , have
relatively slower access / restore times , etc. For example ,
movement of data between tiers may occur as data becomes
less important over time . In some embodiments , an HSM
operation is similar to archiving in that creating an HSM
copy may (though not always) involve deleting some of the
source data , e.g. , according to one or more criteria related to
the source data . For example , an HSM copy may include
primary data 112 or a secondary copy 116 that exceeds a
given size threshold or a given age threshold . Often , and
unlike some types of archive copies , HSM data that is
removed or aged from the source is replaced by a logical
reference pointer or stub . The reference pointer or stub can
be stored in the primary storage device 104 or other source
storage device , such as a secondary storage device 108 to
replace the deleted source data and to point to or otherwise
indicate the new location in (another) secondary storage
device 108 .
[0185] For example , files are generally moved between
higher and lower cost storage depending on how often the
files are accessed . When a user requests access to HSM data
that has been removed or migrated , system 100 uses the stub
to locate the data and may make recovery of the data appear
transparent , even though the HSM data may be stored at a
location different from other source data . In this manner , the

data appears to the user (e.g. , in file system browsing
windows and the like) as if it still resides in the source
location (e.g. , in a primary storage device 104) . The stub
may include metadata associated with the corresponding
data , so that a file system and / or application can provide
some information about the data object and / or a limited
functionality version (e.g. , a preview) of the data object .
[0186] An HSM copy may be stored in a format other than
the native application format (e.g. , compressed , encrypted ,
deduplicated , and / or otherwise modified) . In some cases ,
copies which involve the removal of data from source
storage and the maintenance of stub or other logical refer
ence information on source storage may be referred to
generally as " online archive copies . ” On the other hand ,
copies which involve the removal of data from source
storage without the maintenance of stub or other logical
reference information on source storage may be referred to
as “ off - line archive copies . ” Examples of HSM and ILM
techniques are provided in U.S. Pat . No. 7,343,453 .
[0187] Auxiliary Copy Operations
[0188] An auxiliary copy is generally a copy of an existing
secondary copy 116. For instance , an initial secondary copy
116 may be derived from primary data 112 or from data
residing in secondary storage subsystem 118 , whereas an
auxiliary copy is generated from the initial secondary copy
116. Auxiliary copies provide additional standby copies of
data and may reside on different secondary storage devices
108 than the initial secondary copies 116. Thus , auxiliary
copies can be used for recovery purposes if initial secondary
copies 116 become unavailable . Exemplary auxiliary copy
techniques are described in further detail in U.S. Pat . No.
8,230,195 .
[0189] Disaster - Recovery Copy Operations
[0190] System 100 may also make and retain disaster
recovery copies , often as secondary , high - availability disk
copies . System 100 may create secondary copies and store
them at disaster recovery locations using auxiliary copy or
replication operations , such as continuous data replication
technologies . Depending on the particular data protection
goals , disaster recovery locations can be remote from the
client computing devices 102 and primary storage devices
104 , remote from some or all of the secondary storage
devices 108 , or both .
[0191] Data Manipulation , Including Encryption and
Compression
[0192] Data manipulation and processing may include
encryption and compression as well as integrity marking and
checking , formatting for transmission , formatting for stor
age , etc. Data may be manipulated “ client - side ” by data
agent 142 as well as “ target - side ” by media agent 144 in the
course of creating secondary copy 116 , or conversely in the
course of restoring data from secondary to primary .
[0193] Encryption Operations
[0194] System 100 in some cases is configured to process
data (e.g. , files or other data objects , primary data 112 ,
secondary copies 116 , etc.) , according to an appropriate
encryption algorithm (e.g. , Blowfish , Advanced Encryption
Standard (AES) , Triple Data Encryption Standard (3 - DES) ,
etc.) to limit access and provide data security . System 100 in
some cases encrypts the data at the client level , such that
client computing devices 102 (e.g. , data agents 142) encrypt
the data prior to transferring it to other components , e.g. ,
before sending the data to media agents 144 during a
secondary copy operation . In such cases , client computing

US 2021/0037112 A1 Feb. 4 , 2021
19

device 102 may maintain or have access to an encryption
key or passphrase for decrypting the data upon restore .
Encryption can also occur when media agent 144 creates
auxiliary copies or archive copies . Encryption may be
applied in creating a secondary copy 116 of a previously
unencrypted secondary copy 116 , without limitation . In
further embodiments , secondary storage devices 108 can
implement built - in , high performance hardware - based
encryption .
[0195) Compression Operations
[0196] Similar to encryption , system 100 may also or
alternatively compress data in the course of generating a
secondary copy 116. Compression encodes information such
that fewer bits are needed to represent the information as
compared to the original representation . Compression tech
niques are well known in the art . Compression operations
may apply one or more data compression algorithms . Com
pression may be applied in creating a secondary copy 116 of
a previously uncompressed secondary copy , e.g. , when
making archive copies or disaster recovery copies . The use
of compression may result in metadata that specifies the
nature of the compression , so that data may be uncom
pressed on restore if appropriate .
[0197] Data Analysis , Reporting , and Management Opera
tions
[0198] Data analysis , reporting , and management opera
tions can differ from data movement operations in that they
do not necessarily involve copying , migration or other
transfer of data between different locations in the system .
For instance , data analysis operations may involve process
ing (e.g. , offline processing) or modification of already
stored primary data 112 and / or secondary copies 116. How
ever , in some embodiments data analysis operations are
performed in conjunction with data movement operations .
Some data analysis operations include content indexing
operations and classification operations which can be useful
in leveraging data under management to enhance search and
other features .
[0199] Classification Operations / Content Indexing
[0200] In some embodir nts , information management
system 100 analyzes and indexes characteristics , content ,
and metadata associated with primary data 112 (“ online
content indexing ”) and / or secondary copies 116 (“ off - line
content indexing ”) . Content indexing can identify files or
other data objects based on content (e.g. , user - defined key
words or phrases , other keywords / phrases that are not
defined by a user , etc.) , and / or metadata (e.g. , email meta
data such as “ to , ” “ from , " " cc , ” “ bcc , " attachment name ,
received time , etc.) . Content indexes may be searched and
search results may be restored .
[0201] System 100 generally organizes and catalogues the
results into a content index , which may be stored within
media agent database 152 , for example . The content index
can also include the storage locations of or pointer refer
ences to indexed data in primary data 112 and / or secondary
copies 116. Results may also be stored elsewhere in system
100 (e.g. , in primary storage device 104 or in secondary
storage device 108) . Such content index data provides
storage manager 140 or other components with an efficient
mechanism for locating primary data 112 and / or secondary
copies 116 of data objects that match particular criteria , thus
greatly increasing the search speed capability of system 100 .
For instance , search criteria can be specified by a user
through user interface 158 of storage manager 140. More

over , when system 100 analyzes data and / or metadata in
secondary copies 116 to create an “ off - line content index , ”
this operation has no significant impact on the performance
of client computing devices 102 and thus does not take a toll
on the production environment . Examples of content index
ing techniques are provided in U.S. Pat . No. 8,170,995 .
[0202] One or more components , such as a content index
engine , can be configured to scan data and / or associated
metadata for classification purposes to populate a database
(or other data structure) of information , which can be
referred to as a " data classification database ” or a “ meta
base . ” Depending on the embodiment , the data classification
database (s) can be organized in a variety of different ways ,
including centralization , logical sub - divisions , and / or physi
cal sub - divisions . For instance , one or more data classifica
tion databases may be associated with different subsystems
or tiers within system 100. As an example , there may be a
first metabase associated with primary storage subsystem
117 and a second metabase associated with secondary stor
age subsystem 118. In other cases , metabase (s) may be
associated with individual components , e.g. , client comput
ing devices 102 and / or media agents 144. In some embodi
ments , a data classification database may reside as one or
more data structures within management database 146 , may
be otherwise associated with storage manager 140 , and / or
may reside as a separate component . In some cases , meta
base (s) may be included in separate database (s) and / or on
separate storage device (s) from primary data 112 and / or
secondary copies 116 , such that operations related to the
metabase (s) do not significantly impact performance on
other components of system 100. In other cases , metabase (s)
may be stored along with primary data 112 and / or secondary
copies 116. Files or other data objects can be associated with
identifiers (e.g. , tag entries , etc.) to facilitate searches of
stored data objects . Among a number of other benefits , the
metabase can also allow efficient , automatic identification of
files or other data objects to associate with secondary copy
or other information management operations . For instance ,
a metabase can dramatically improve the speed with which
system 100 can search through and identify data as com
pared to other approaches that involve scanning an entire file
system . Examples of metabases and data classification
operations are provided in U.S. Pat . Nos . 7,734,669 and
7,747,579 .
[0203] Management and Reporting Operations
[0204] Certain embodiments leverage the integrated ubiq
uitous nature of system 100 to provide useful system - wide
management and reporting . Operations management can
generally include monitoring and managing the health and
performance of system 100 by , without limitation , perform
ing error tracking , generating granular storage / performance
metrics (e.g. , job success / failure information , deduplication
efficiency , etc.) , generating storage modeling and costing
information , and the like . As an example , storage manager
140 or another component in system 100 may analyze traffic
patterns and suggest and / or automatically route data to
minimize congestion . In some embodiments , the system can
generate predictions relating to storage operations or storage
operation information . Such predictions , which may be
based on a trending analysis , may predict various network
operations or resource usage , such as network traffic levels ,
storage media use , use of bandwidth of communication
links , use of media agent components , etc. Further examples

US 2021/0037112 A1 Feb. 4 , 2021
20

of traffic analysis , trend analysis , prediction generation , and
the like are described in U.S. Pat . No. 7,343,453 .
[0205) In some configurations having a hierarchy of stor
age operation cells , a master storage manager 140 may track
the status of subordinate cells , such as the status of jobs ,
system components , system resources , and other items , by
communicating with storage managers 140 (or other com
ponents) in the respective storage operation cells . Moreover ,
the master storage manager 140 may also track status by
receiving periodic status updates from the storage managers
140 (or other components) in the respective cells regarding
jobs , system components , system resources , and other items .
In some embodiments , a master storage manager 140 may
store status information and other information regarding its
associated storage operation cells and other system infor
mation in its management database 146 and / or index 150 (or
in another location) . The master storage manager 140 or
other component may also determine whether certain stor
age - related or other criteria are satisfied , and may perform
an action or trigger event (e.g. , data migration) in response
to the criteria being satisfied , such as where a storage
threshold is met for a particular volume , or where inadequate
protection exists for certain data . For instance , data from one
or more storage operation cells is used to dynamically and
automatically mitigate recognized risks , and / or to advise
users of risks or suggest actions to mitigate these risks . For
example , an information management policy may specify
certain requirements (e.g. , that a storage device should
maintain a certain amount of free space , that secondary
copies should occur at a particular interval , that data should
be aged and migrated to other storage after a particular
period , that data on a secondary volume should always have
a certain level of availability and be restorable within a given
time period , that data on a secondary volume may be
mirrored or otherwise migrated to a specified number of
other volumes , etc.) . If a risk condition or other criterion is
triggered , the system may notify the user of these conditions
and may suggest (or automatically implement) a mitigation
action to address the risk . For example , the system may
indicate that data from a primary copy 112 should be
migrated to a secondary storage device 108 to free up space
on primary storage device 104. Examples of the use of risk
factors and other triggering criteria are described in U.S. Pat .
No. 7,343,453 .
[0206] In some embodiments , system 100 may also deter
mine whether a metric or other indication satisfies particular
storage criteria sufficient to perform an action . For example ,
a storage policy or other definition might indicate that a
storage manager 140 should initiate a particular action if a
storage metric or other indication drops below or otherwise
fails to satisfy specified criteria such as a threshold of data
protection . In some embodiments , risk factors may be quan
tified into certain measurable service or risk levels . For
example , certain applications and associated data may be
considered to be more important relative to other data and
services . Financial compliance data , for example , may be of
greater importance than marketing materials , etc. Network
administrators may assign priority values or “ weights ” to
certain data and / or applications corresponding to the relative
importance . The level of compliance of secondary copy
operations specified for these applications may also be
assigned a certain value . Thus , the health , impact , and
overall importance of a service may be determined , such as
by measuring the compliance value and calculating the

product of the priority value and the compliance value to
determine the " service level ” and comparing it to certain
operational thresholds to determine whether it is acceptable .
Further examples of the service level determination are
provided in U.S. Pat . No. 7,343,453 .
[0207] System 100 may additionally calculate data costing
and data availability associated with information manage
ment operation cells . For instance , data received from a cell
may be used in conjunction with hardware - related informa
tion and other information about system elements to deter
mine the cost of storage and / or the availability of particular
data . Exemplary information generated could include how
fast a particular department is using up available storage
space , how long data would take to recover over a particular
pathway from a particular secondary storage device , costs
over time , etc. Moreover , in some embodiments , such infor
mation may be used to determine or predict the overall cost
associated with the storage of certain information . The cost
associated with hosting a certain application may be based ,
at least in part , on the type of media on which the data
resides , for example . Storage devices may be assigned to a
particular cost categories , for example . Further examples of
costing techniques are described in U.S. Pat . No. 7,343,453 .
[0208] Any of the above types of information (e.g. , infor
mation related to trending , predictions , job , cell or compo
nent status , risk , service level , costing , etc.) can generally be
provided to users via user interface 158 in a single integrated
view or console (not shown) . Report types may include :
scheduling , event management , media management and data
aging . Available reports may also include backup history ,
data aging history , auxiliary copy history , job history , library
and drive , media in library , restore history , and storage
policy , etc. , without limitation . Such reports may be speci
fied and created at a certain point in time as a system
analysis , forecasting , or provisioning tool . Integrated reports
may also be generated that illustrate storage and perfor
mance metrics , risks and storage costing information . More
over , users may create their own reports based on specific
needs . User interface 158 can include an option to graphi
cally depict the various components in the system using
appropriate icons . As one example , user interface 158 may
provide a graphical depiction of primary storage devices
104 , secondary storage devices 108 , data agents 142 and / or
media agents 144 , and their relationship to one another in
system 100 .
[0209] In general , the operations management functional
ity of system 100 can facilitate planning and decision
making . For example , in some embodiments , a user may
view the status of some or all jobs as well as the status of
each component of information management system 100 .
Users may then plan and make decisions based on this data .
For instance , a user may view high - level information regard
ing secondary copy operations for system 100 , such as job
status , component status , resource status (e.g. , communica
tion pathways , etc.) , and other information . The user may
also drill down or use other means to obtain more detailed
information regarding a particular component , job , or the
like . Further examples are provided in U.S. Pat . No. 7,343 ,
453 .
[0210] System 100 can also be configured to perform
system - wide e - discovery operations in some embodiments .
In general , e - discovery operations provide a unified collec
tion and search capability for data in the system , such as data
stored in secondary storage devices 108 (e.g. , backups ,

US 2021/0037112 A1 Feb. 4 , 2021
21

archives , or other secondary copies 116) . For example ,
system 100 may construct and maintain a virtual repository
for data stored in system 100 that is integrated across source
applications 110 , different storage device types , etc. Accord
ing to some embodiments , e - discovery utilizes other tech
niques described herein , such as data classification and / or
content indexing .

Information Management Policies
[0211] An information management policy 148 can
include a data structure or other information source that
specifies a set of parameters (e.g. , criteria and rules) asso
ciated with secondary copy and / or other information man
agement operations .
[0212] One type of information management policy 148 is
a “ storage policy . ” According to certain embodiments , a
storage policy generally comprises a data structure or other
information source that defines (or includes information
sufficient to determine) a set of preferences or other criteria
for performing information management operations . Storage
policies can include one or more of the following : (1) what
data will be associated with the storage policy , e.g. , subcli
ent ; (2) a destination to which the data will be stored ; (3)
datapath information specifying how the data will be com
municated to the destination ; (4) the type of secondary copy
operation to be performed ; and (5) retention information
specifying how long the data will be retained at the desti
nation (see , e.g. , FIG . 1E) . Data associated with a storage
policy can be logically organized into subclients , which may
represent primary data 112 and / or secondary copies 116. A
subclient may represent static or dynamic associations of
portions of a data volume . Subclients may represent mutu
ally exclusive portions . Thus , in certain embodiments , a
portion of data may be given a label and the association is
stored as a static entity in an index , database or other storage
location . Subclients may also be used as an effective admin
istrative scheme of organizing data according to data type ,
department within the enterprise , storage preferences , or the
like . Depending on the configuration , subclients can corre
spond to files , folders , virtual machines , databases , etc. In
one exemplary scenario , an administrator may find it pref
erable to separate e - mail data from financial data using two
different subclients .
[0213] A storage policy can define where data is stored by
specifying a target or destination storage device (or group of
storage devices) . For instance , where the secondary storage
device 108 includes a group of disk libraries , the storage
policy may specify a particular disk library for storing the
subclients associated with the policy . As another example ,
where the secondary storage devices 108 include one or
more tape libraries , the storage policy may specify a par
ticular tape library for storing the subclients associated with
the storage policy , and may also specify a drive pool and a
tape pool defining a group of tape drives and a group of
tapes , respectively , for use in storing the subclient data .
While information in the storage policy can be statically
assigned in some cases , some or all of the information in the
storage policy can also be dynamically determined based on
criteria set forth in the storage policy . For instance , based on
such criteria , a particular destination storage device (s) or
other parameter of the storage policy may be determined
based on characteristics associated with the data involved in
a particular secondary copy operation , device availability
(e.g. , availability of a secondary storage device 108 or a

media agent 144) , network status and conditions (e.g. ,
identified bottlenecks) , user credentials , and the like .
[0214] Datapath information can also be included in the
storage policy . For instance , the storage policy may specify
network pathways and components to utilize when moving
the data to the destination storage device (s) . In some
embodiments , the storage policy specifies one or more
media agents 144 for conveying data associated with the
storage policy between the source and destination . A storage
policy can also specify the type (s) of associated operations ,
such as backup , archive , snapshot , auxiliary copy , or the
like . Furthermore , retention parameters can specify how
long the resulting secondary copies 116 will be kept (e.g. , a
number of days , months , years , etc.) , perhaps depending on
organizational needs and / or compliance criteria .
[0215] When adding a new client computing device 102 ,
administrators can manually configure information manage
ment policies 148 and / or other settings , e.g. , via user inter
face 158. However , this can be an involved process resulting
in delays , and it may be desirable to begin data protection
operations quickly , without awaiting human intervention .
Thus , in some embodiments , system 100 automatically
applies a default configuration to client computing device
102. As one example , when one or more data agent (s) 142
are installed on a client computing device 102 , the installa
tion script may register the client computing device 102 with
storage manager 140 , which in turn applies the default
configuration to the new client computing device 102. In this
manner , data protection operations can begin substantially
immediately . The default configuration can include a default
storage policy , for example , and can specify any appropriate
information sufficient to begin data protection operations .
This can include a type of data protection operation , sched
uling information , a target secondary storage device 108 ,
data path information (e.g. , a particular media agent 144) ,
and the like .
[0216] Another type of information management policy
148 is a “ scheduling policy , ” which specifies when and how
often to perform operations . Scheduling parameters may
specify with what frequency (e.g. , hourly , weekly , daily ,
event - based , etc.) or under what triggering conditions sec
ondary copy or other information management operations
are to take place . Scheduling policies in some cases are
associated with particular components , such as a subclient ,
client computing device 102 , and the like .
[0217] Another type of information management policy
148 is an “ audit policy ” (or “ security policy ”) , which
comprises preferences , rules and / or criteria that protect
sensitive data in system 100. For example , an audit policy
may define “ sensitive objects ” which are files or data objects
that contain particular keywords (e.g. , " confidential , ” or
" privileged ”) and / or are associated with particular keywords
(e.g. , in metadata) or particular flags (e.g. , in metadata
identifying a document or email as personal , confidential ,
etc.) . An audit policy may further specify rules for handling
sensitive objects . As an example , an audit policy may
require that a reviewer approve the transfer of any sensitive
objects to a cloud storage site , and that if approval is denied
for a particular sensitive object , the sensitive object should
be transferred to a local primary storage device 104 instead .
To facilitate this approval , the audit policy may further
specify how a secondary storage computing device 106 or
other system component should notify a reviewer that a
sensitive object is slated for transfer .

US 2021/0037112 A1 Feb. 4 , 2021
22

[0218] Another type of information management policy
148 is a “ provisioning policy , ” which can include prefer
ences , priorities , rules , and / or criteria that specify how client
computing devices 102 or groups thereof) may utilize
system resources , such as available storage on cloud storage
and / or network bandwidth . A provisioning policy specifies ,
for example , data quotas for particular client computing
devices 102 (e.g. , a number of gigabytes that can be stored
monthly , quarterly or annually) . Storage manager 140 or
other components may enforce the provisioning policy . For
instance , media agents 144 may enforce the policy when
transferring data to secondary storage devices 108. If a client
computing device 102 exceeds a quota , a budget for the
client computing device 102 (or associated department) may
be adjusted accordingly or an alert may trigger .
[0219] While the above types of information management
policies 148 are described as separate policies , one or more
of these can be generally combined into a single information
management policy 148. For instance , a storage policy may
also include or otherwise be associated with one or more
scheduling , audit , or provisioning policies or operational
parameters thereof . Moreover , while storage policies are
typically associated with moving and storing data , other
policies may be associated with other types of information
management operations . The following is a non - exhaustive
list of items that information management policies 148 may
specify :

[0220] schedules or other timing information , e.g. ,
specifying when and / or how often to perform informa
tion management operations ;

[0221] the type of secondary copy 116 and / or copy
format (e.g. , snapshot , backup , archive , HSM , etc.) ;

[0222] a location or a class or quality of storage for
storing secondary copies 116 (e.g. , one or more par
ticular secondary storage devices 108) ;

[0223] preferences regarding whether and how to
encrypt , compress , deduplicate , or otherwise modify or
transform secondary copies 116 ;

[0224] which system components and / or network path
ways (e.g. , preferred media agents 144) should be used
to perform secondary storage operations ;

[0225] resource allocation among different computing
devices or other system components used in performing
information management operations (e.g. , bandwidth
allocation , available storage capacity , etc.) ;

[0226] whether and how to synchronize or otherwise
distribute files or other data objects across multiple
computing devices or hosted services ; and

[0227] retention information specifying the length of
time primary data 112 and / or secondary copies 116
should be retained , e.g. , in a particular class or tier of
storage devices , or within the system 100 .

[0228] Information management policies 148 can addi
tionally specify or depend on historical or current criteria
that may be used to determine which rules to apply to a
particular data object , system component , or information
management operation , such as :

[0229] frequency with which primary data 112 or a
secondary copy 116 of a data object or metadata has
been or is predicted to be used , accessed , or modified ;

[0230] time - related factors (e.g. , aging information
such as time since the creation or modification of a data
object) ;

[0231] deduplication information (e.g. , hashes , data
blocks , deduplication block size , deduplication effi
ciency or other metrics) ;

[0232] an estimated or historic usage or cost associated
with different components (e.g. , with secondary storage
devices 108) ;

[0233] the identity of users , applications 110 , client
computing devices 102 and / or other computing devices
that created , accessed , modified , or otherwise utilized
primary data 112 or secondary copies 116 ;

[0234] a relative sensitivity (e.g. , confidentiality , impor
tance) of a data object , e.g. , as determined by its content
and / or metadata ;

[0235] the current or historical storage capacity of vari
ous storage devices ;

[0236] the current or historical network capacity of
network pathways connecting various components
within the storage operation cell ;

[0237] access control lists or other security information ;
and

[0238] the content of a particular data object (e.g. , its
textual content) or of metadata associated with the data
object .

[0239] Exemplary Storage Policy and Secondary Copy
Operations
[0240] FIG . 1E includes a data flow diagram depicting
performance of secondary copy operations by an embodi
ment of information management system 100 , according to
an exemplary storage policy 148A . System 100 includes a
storage manager 140 , a client computing device 102 having
a file system data agent 142A and an email data agent 142B
operating thereon , a primary storage device 104 , two media
agents 144A , 144B , and two secondary storage devices 108 :
a disk library 108A and a tape library 108B . As shown ,
primary storage device 104 includes primary data 112A ,
which is associated with a logical grouping of data associ
ated with a file system (“ file system subclient ”) , and primary
data 1128 , which is a logical grouping of data associated
with email (" email subclient ”) . The techniques described
with respect to FIG . 1E can be utilized in conjunction with
data that is otherwise organized as well .
[0241] As indicated by the dashed box , the second media
agent 144B and tape library 1088 are “ off - site , ” and may be
remotely located from the other components in system 100
(e.g. , in a different city , office building , etc.) . Indeed , “ off
site ” may refer to a magnetic tape located in remote storage ,
which must be manually retrieved and loaded into a tape
drive to be read . In this manner , information stored on the
tape library 108B may provide protection in the event of a
disaster or other failure at the main site (s) where data is
stored .
[0242] The file system subclient 112A in certain embodi
ments generally comprises information generated by the file
system and / or operating system of client computing device
102 , and can include , for example , file system data (e.g. ,
regular files , file tables , mount points , etc.) , operating sys
tem data (e.g. , registries , event logs , etc.) , and the like . The
e - mail subclient 1128 can include data generated by an
e - mail application operating on client computing device
102 , e.g. , mailbox information , folder information , emails ,
attachments , associated database information , and the like .
As described above , the subclients can be logical containers ,
and the data included in the corresponding primary data
112A and 1128 may or may not be stored contiguously .

US 2021/0037112 A1 Feb. 4 , 2021
23

[0243] The exemplary storage policy 148A includes
backup copy preferences or rule set 160 , disaster recovery
copy preferences or rule set 162 , and compliance copy
preferences or rule set 164. Backup copy rule set 160
specifies that it is associated with file system subclient 166
and email subclient 168. Each of subclients 166 and 168 are
associated with the particular client computing device 102 .
Backup copy rule set 160 further specifies that the backup
operation will be written to disk library 108A and designates
a particular media agent 144A to convey the data to disk
library 108A . Finally , backup copy rule set 160 specifies that
backup copies created according to rule set 160 are sched
uled to be generated hourly and are to be retained for 30
days . In some other embodiments , scheduling information is
not included in storage policy 148A and is instead specified
by a separate scheduling policy .
[0244] Disaster recovery copy rule set 162 is associated
with the same two subclients 166 and 168. However , disaster
recovery copy rule set 162 is associated with tape library
108B , unlike backup copy rule set 160. Moreover , disaster
recovery copy rule set 162 specifies that a different media
agent , namely 144B , will convey data to tape library 108B .
Disaster recovery copies created according to rule set 162
will be retained for 60 days and will be generated daily .
Disaster recovery copies generated according to disaster
recovery copy rule set 162 can provide protection in the
event of a disaster or other catastrophic data loss that would
affect the backup copy 116A maintained on disk library
108A .
[0245] Compliance copy rule set 164 is only associated
with the email subclient 168 , and not the file system sub
client 166. Compliance copies generated according to com
pliance copy rule set 164 will therefore not include primary
data 112A from the file system subclient 166. For instance ,
the organization may be under an obligation to store and
maintain copies of email data for a particular period of time
(e.g. , 10 years) to comply with state or federal regulations ,
while similar regulations do not apply to file system data .
Compliance copy rule set 164 is associated with the same
tape library 108B and media agent 144B as disaster recovery
copy rule set 162 , although a different storage device or
media agent could be used in other embodiments . Finally ,
compliance copy rule set 164 specifies that the copies it
governs will be generated quarterly and retained for 10
years .
[0246] Secondary Copy Jobs
[0247] A logical grouping of secondary copy operations
governed by a rule set and being initiated at a point in time
may be referred to as a “ secondary copy job ” (and some
times may be called a “ backup job , ” even though it is not
necessarily limited to creating only backup copies) . Second
ary copy jobs may be initiated on demand as well . Steps 1-9
below illustrate three secondary copy jobs based on storage
policy 148A .
[0248] Referring to FIG . 1E , at step 1 , storage manager
140 initiates a backup job according to the backup copy rule
set 160 , which logically comprises all the secondary copy
operations necessary to effectuate rules 160 in storage policy
148A every hour , including steps 1-4 occurring hourly . For
instance , a scheduling service running on storage manager
140 accesses backup copy rule set 160 or a separate sched
uling policy associated with client computing device 102
and initiates a backup job on an hourly basis . Thus , at the
scheduled time , storage manager 140 sends instructions to

client computing device 102 (i.e. , to both data agent 142A
and data agent 142B) to begin the backup job .
[0249] At step 2 , file system data agent 142A and email
data agent 142B on client computing device 102 respond to
instructions from storage manager 140 by accessing and
processing the respective subclient primary data 112A and
112B involved in the backup copy operation , which can be
found in primary storage device 104. Because the secondary
copy operation is a backup copy operation , the data agent (s)
142A , 142B may format the data into a backup format or
otherwise process the data suitable for a backup copy .
[0250] At step 3 , client computing device 102 communi
cates the processed file system data (e.g. , using file system
data agent 142A) and the processed email data (e.g. , using
email data agent 142B) to the first media agent 144A
according to backup copy rule set 160 , as directed by storage
manager 140. Storage manager 140 may further keep a
record in management database 146 of the association
between media agent 144A and one or more of : client
computing device 102 , file system subclient 112A , file
system data agent 142A , email subclient 112B , email data
agent 142B , and / or backup copy 116A .
[0251] The target media agent 144A receives the data
agent - processed data from client computing device 102 , and
at step 4 generates and conveys backup copy 116A to disk
library 108A to be stored as backup copy 116A , again at the
direction of storage manager 140 and according to backup
copy rule set 160. Media agent 144A can also update its
index 153 to include data and / or metadata related to backup
copy 116A , such as information indicating where the backup
copy 116A resides on disk library 108A , where the email
copy resides , where the file system copy resides , data and
metadata for cache retrieval , etc. Storage manager 140 may
similarly update its index 150 to include information relating
to the secondary copy operation , such as information relat
ing to the type of operation , a physical location associated
with one or more copies created by the operation , the time
the operation was performed , status information relating to
the operation , the components involved in the operation , and
the like . In some cases , storage manager 140 may update its
index 150 to include some or all of the information stored in
index 153 of media agent 144A . At this point , the backup job
may be considered complete . After the 30 - day retention
period expires , storage manager 140 instructs media agent
144A to delete backup copy 116A from disk library 108A
and indexes 150 and / or 153 are updated accordingly .
[0252] At step 5 , storage manager 140 initiates another
backup job for a disaster recovery copy according to the
disaster recovery rule set 162. This includes steps 5-7
occurring daily for creating disaster recovery copy 116B . By
way of illustrating the scalable aspects and off - loading
principles embedded in system 100 , disaster recovery copy
116B is based on backup copy 116A and not on primary data
112A and 112B .
[0253] At step 6 , based on instructions received from
storage manager 140 at step 5 , the specified media agent
144B retrieves the most recent backup copy 116A from disk
library 108A .
[0254] At step 7 , again at the direction of storage manager
140 and as specified in disaster recovery copy rule set 162 ,
media agent 144B uses the retrieved data to create a disaster
recovery copy 116B and store it to tape library 108B . In
some cases , disaster recovery copy 116B is a direct , mirror
copy of backup copy 116A , and remains in the backup

US 2021/0037112 A1 Feb. 4 , 2021
24

format . In other embodiments , disaster recovery copy 116B
may be further compressed or encrypted , or may be gener
ated in some other manner , such as by using primary data
112A and 112B from primary storage device 104 as sources .
The disaster recovery copy operation is initiated once a day
and disaster recovery copies 116B are deleted after 60 days ;
indexes 153 and / or 150 are updated accordingly when / after
each information management operation is executed and / or
completed . The present backup job may be considered
completed .
[0255] At step 8 , storage manager 140 initiates another
backup job according to compliance rule set 164 , which
performs steps 8-9 quarterly to create compliance copy
116C . For instance , storage manager 140 instructs media
agent 144B to create compliance copy 116C on tape library
108B , as specified in the compliance copy rule set 164 .
[0256] At step 9 in the example , compliance copy 116C is
generated using disaster recovery copy 1168 as the source .
This is efficient , because disaster recovery copy resides on
the same secondary storage device and thus no network
resources are required to move the data . In other embodi
ments , compliance copy 116C is instead generated using
primary data 1128 corresponding to the email subclient or
using backup copy 116A from disk library 108A as source
data . As specified in the illustrated example , compliance
copies 116C are created quarterly , and are deleted after ten
years , and indexes 153 and / or 150 are kept up - to - date
accordingly .
[0257] Exemplary Applications of Storage Policies - In
formation Governance Policies and Classification
[0258] Again referring to FIG . 1E , storage manager 140
may permit a user to specify aspects of storage policy 148A .
For example , the storage policy can be modified to include
information governance policies to define how data should
be managed in order to comply with a certain regulation or
business objective . The various policies may be stored , for
example , in management database 146. An information
governance policy may align with one or more compliance
tasks that are imposed by regulations or business require
ments . Examples of information governance policies might
include a Sarbanes - Oxley policy , a HIPAA policy , an elec
tronic discovery (e - discovery) policy , and so on .
[0259] Information governance policies allow administra
tors to obtain different perspectives on an organization's
online and offline data , without the need for a dedicated data
silo created solely for each different viewpoint . As described
previously , the data storage systems herein build an index
that reflects the contents of a distributed data set that spans
numerous clients and storage devices , including both pri
mary data and secondary copies , and online and offline
copies . An organization may apply multiple information
governance policies in a top - down manner over that unified
data set and indexing schema in order to view and manipu
late the data set through different lenses , each of which is
adapted to a particular compliance or business goal . Thus ,
for example , by applying an e - discovery policy and a
Sarbanes - Oxley policy , two different groups of users in an
organization can conduct two very different analyses of the
same underlying physical set of data / copies , which may be
distributed throughout the information management system .
[0260] An information governance policy may comprise a
classification policy , which defines a taxonomy of classifi
cation terms or tags relevant to a compliance task and / or
business objective . A classification policy may also associate

a defined tag with a classification rule . A classification rule
defines a particular combination of criteria , such as users
who have created , accessed or modified a document or data
object ; file or application types ; content or metadata key
words ; clients or storage locations ; dates of data creation
and / or access ; review status or other status within a work
flow (e.g. , reviewed or un - r 1 - reviewed) ; modification times or
types of modifications ; and / or any other data attributes in
any combination , without limitation . A classification rule
may also be defined using other classification tags in the
taxonomy . The various criteria used to define a classification
rule may be combined in any suitable fashion , for example ,
via Boolean operators , to define a complex classification
rule . As an example , an e - discovery classification policy
might define a classification tag “ privileged ” that is associ
ated with documents or data objects that (1) were created or
modified by legal department staff , or (2) were sent to or
received from outside counsel via email , or (3) contain one
of the following keywords : " privileged " or " attorney " or
" counsel , ” or other like terms . Accordingly , all these docu
ments or data objects will be classified as “ privileged . ”
[0261] One specific type of classification tag , which may
be added to an index at the time of indexing , is an “ entity
tag . ” An entity tag may be , for example , any content that
matches a defined data mask format . Examples of entity tags
might include , e.g. , social security numbers (e.g. , any
numerical content matching the formatting mask XXX - XX
XXXX) , credit card numbers (e.g. , content having a 13-16
digit string of numbers) , SKU numbers , product numbers ,
etc. A user may define a classification policy by indicating
criteria , parameters or descriptors of the policy via a graphi
cal user interface , such as a form or page with fields to be
filled in , pull - down menus or entries allowing one or more
of several options to be selected , buttons , sliders , hypertext
links or other known user interface tools for receiving user
input , etc. For example , a user may define certain entity tags ,
such as a particular product number or project ID . In some
implementations , the classification policy can be imple
mented using cloud - based techniques . For example , the
storage devices may be cloud storage devices , and the
storage manager 140 may execute cloud service provider
API over a network to classify data stored on cloud storage
devices .
Restore Operations from Secondary Copies
[0262] While not shown in FIG . 1E , at some later point in
time , a restore operation can be initiated involving one or
more of secondary copies 116A , 1168 , and 116C . A restore
operation logically takes a selected secondary copy 116 ,
reverses the effects of the secondary copy operation that
created it , and stores the restored data to primary storage
where a client computing device 102 may properly access it
as primary data . A media agent 144 and an appropriate data
agent 142 (e.g. , executing on the client computing device
102) perform the tasks needed to complete a restore opera
tion . For example , data that was encrypted , compressed ,
and / or deduplicated in the creation of secondary copy 116
will be correspondingly rehydrated (reversing deduplica
tion) , uncompressed , and unencrypted into a format appro
priate to primary data . Metadata stored within or associated
with the secondary copy 116 may be used during the restore
operation . In general , restored data should be indistinguish
able from other primary data 112. Preferably , the restored
data has fully regained the native format that may make it
immediately usable by application 110 .

US 2021/0037112 A1 Feb. 4 , 2021
25

[0263] As one example , a user may manually initiate a
restore of backup copy 116A , e.g. , by interacting with user
interface 158 of storage manager 140 or with a web - based
console with access to system 100. Storage manager 140
may accesses data in its index 150 and / or management
database 146 (and / or the respective storage policy 148A)
associated with the selected backup copy 116A to identify
the appropriate media agent 144A and / or secondary storage
device 108A where the secondary copy resides . The user
may be presented with a representation (e.g. , stub , thumb
nail , listing , etc.) and metadata about the selected secondary
copy , in order to determine whether this is the appropriate
copy to be restored , e.g. , date that the original primary data
was created . Storage manager 140 will then instruct media
agent 144A and an appropriate data agent 142 on the target
client computing device 102 to restore secondary copy 116A
to primary storage device 104. A media agent may be
selected for use in the restore operation based on a load balancing algorithm , an availability based algorithm , or
other criteria . The selected media agent , e.g. , 144A , retrieves
secondary copy 116A from disk library 108A . For instance ,
media agent 144A may access its index 153 to identify a
location of backup copy 116A on disk library 108A , or may
access location information residing on disk library 108A
itself .
[0264] In some cases a backup copy 116A that was
recently created or accessed , may be cached to speed up the
restore operation . In such a case , media agent 144A accesses
a cached version of backup copy 116A residing in index 153 ,
without having to access disk library 108A for some or all
of the data . Once it has retrieved backup copy 116A , the
media agent 144A communicates the data to the requesting
client computing device 102. Upon receipt , file system data
agent 142A and email data agent 142B may unpack (e.g. ,
restore from a backup format to the native application
format) the data in backup copy 116A and restore the
unpackaged data to primary storage device 104. In general ,
secondary copies 116 may be restored to the same volume or
folder in primary storage device 104 from which the sec
ondary copy was derived ; to another storage location or
client computing device 102 ; to shared storage , etc. In some
cases , the data may be restored so that it may be used by an
application 110 of a different version / vintage from the
application that created the original primary data 112 .

chunk by processing the files . Headers can include a variety
of information such as file and / or volume identifier (s) ,
offset (s) , and / or other information associated with the pay
load data items , a chunk sequence number , etc. Importantly ,
in addition to being stored with secondary copy 116 on
secondary storage device 108 , chunk headers can also be
stored to index 153 of the associated media agent (s) 144
and / or to index 150 associated with storage manager 140 .
This can be useful for providing faster processing of sec
ondary copies 116 during browsing , restores , or other opera
tions . In some cases , once a chunk is successfully transferred
to a secondary storage device 108 , the secondary storage
device 108 returns an indication of receipt , e.g. , to media
agent 144 and / or storage manager 140 , which may update
their respective indexes 153 , 150 accordingly . During
restore , chunks may be processed (e.g. , by media agent 144)
according to the information in the chunk header to reas
semble the files .
[0266] Data can also be communicated within system 100
in data channels that connect client computing devices 102
to secondary storage devices 108. These data channels can
be referred to as " data streams , ” and multiple data streams
can be employed to parallelize an information management
operation , improving data transfer rate , among other advan
tages . Example data formatting techniques including tech
niques involving data streaming , chunking , and the use of
other data structures in creating secondary copies are
described in U.S. Pat . Nos . 7,315,923 , 8,156,086 , and 8,578 ,
120 .
[0267] FIGS . IF and 16 are diagrams of example data
streams 170 and 171 , respectively , which may be employed
for performing information management operations . Refer
ring to FIG . 1F , data agent 142 forms data stream 170 from
source data associated with a client computing device 102
(e.g. , primary data 112) . Data stream 170 is composed of
multiple pairs of stream header 172 and stream data (or
stream payload) 174. Data streams 170 and 171 shown in the
illustrated example are for a single - instanced storage opera
tion , and a stream payload 174 therefore may include both
single - instance (SI) data and / or non - SI data . A stream header
172 includes metadata about the stream payload 174. This
metadata may include , for example , a length of the stream
payload 174 , an indication of whether the stream payload
174 is encrypted , an indication of whether the stream
payload 174 is compressed , an archive file identifier (ID) , an
indication of whether the stream payload 174 is single
instanceable , and an indication of whether the stream pay
load 174 is a start of a block of data .
[0268] Referring to FIG . 16 , data stream 171 has the
stream header 172 and stream payload 174 aligned into
multiple data blocks . In this example , the data blocks are of
size 64 KB . The first two stream header 172 and stream
payload 174 pairs comprise a first data block of size 64 KB .
The first stream header 172 indicates that the length of the
succeeding stream payload 174 is 63 KB and that it is the
start of a data block . The next stream header 172 indicates
that the succeeding stream payload 174 has a length of 1 KB
and that it is not the start of a new data block . Immediately
following stream payload 174 is a pair comprising an
identifier header 176 and identifier data 178. The identifier
header 176 includes an indication that the succeeding iden
tifier data 178 includes the identifier for the immediately
previous data block . The identifier data 178 includes the
identifier that the data agent 142 generated for the data

Exemplary Secondary Copy Formatting
[0265] The formatting and structure of secondary copies
116 can vary depending on the embodiment . In some cases ,
secondary copies 116 are formatted as a series of logical data
units or " chunks ” (e.g. , 512 MB , 1 GB , 2 GB , 4 GB , or 8 GB
chunks) . This can facilitate efficient communication and
writing to secondary storage devices 108 , e.g. , according to
resource availability . For example , a single secondary copy
116 may be written on a chunk - by - chunk basis to one or
more secondary storage devices 108. In some cases , users
can select different chunk sizes , e.g. , to improve throughput
to tape storage devices . Generally , each chunk can include a
header and a payload . The payload can include files (or other
data units) or subsets thereof included in the chunk , whereas
the chunk header generally includes metadata relating to the
chunk , some or all of which may be derived from the
payload . For example , during a secondary copy operation ,
media agent 144 , storage manager 140 , or other component
may divide files into chunks and generate headers for each

US 2021/0037112 A1 Feb. 4 , 2021
26

190/191/193 when blocks of data in container files 190 / 191 /
193 no longer need to be stored on the storage devices . In
some examples , media agent 144 creates a new container file
190/191/193 when a container file 190/191/193 either
includes 100 blocks of data or when the size of the container
file 190 exceeds 50 MB . In other examples , media agent 144
creates a new container file 190/191/193 when a container
file 190/191/193 satisfies other criteria (e.g. , it contains from
approx . 100 to approx . 1000 blocks or when its size exceeds
approximately 50 MB to 1 GB) . In some cases , a file on
which a secondary copy operation is performed may com
prise a large number of data blocks . For example , a 100 MB
file may comprise 400 data blocks of size 256 KB . If such
a file is to be stored , its data blocks may span more than one
container file , or even more than one chunk folder . As
another example , a database file of 20 GB may comprise
over 40,000 data blocks of size 512 KB . If such a database
file is to be stored , its data blocks will likely span multiple
container files , multiple chunk folders , and potentially mul
tiple volume folders . Restoring such files may require
accessing multiple container files , chunk folders , and / or
volume folders to obtain the requisite data blocks .

Using Backup Data for Replication and Disaster Recovery
(" Live Synchronization ")

block . The data stream 171 also includes other stream header
172 and stream payload 174 pairs , which may be for SI data
and / or non - SI data .
[0269] FIG . 1H is a diagram illustrating data structures
180 that may be used to store blocks of SI data and non - SI
data on a storage device (e.g. , secondary storage device
108) . According to certain embodiments , data structures 180
do not form part of a native file system of the storage device .
Data structures 180 include one or more volume folders 182 ,
one or more chunk folders 184/185 within the volume folder
182 , and multiple files within chunk folder 184. Each chunk
folder 184/185 includes a metadata file 186/187 , a metadata
index file 188/189 , one or more container files 190/191/193 ,
and a container index file 192/194 . Metadata file 186/187
stores non - SI data blocks as well as links to SI data blocks
stored in container files . Metadata index file 188/189 stores
an index to the data in the metadata file 186/187 . Container
files 190/191/193 store SI data blocks . Container index file
192/194 stores an index to container files 190/191/193 .
Among other things , container index file 192/194 stores an
indication of whether a corresponding block in a container
file 190/191/193 is referred to by a link in a metadata file
186/187 . For example , data block B2 in the container file
190 is referred to by a link in metadata file 187 in chunk
folder 185. Accordingly , the corresponding index entry in
container index file 192 indicates that data block B2 in
container file 190 is referred to . As another example , data
block B1 in container file 191 is referred to by a link in
metadata file 187 , and so the corresponding index entry in
container index file 192 indicates that this data block is
referred to .
[0270] As an example , data structures 180 illustrated in
FIG . 1H may have been created as a result of separate
secondary copy operations involving two client computing
devices 102. For example , a first secondary copy operation
on a first client computing device 102 could result in the
creation of the first chunk folder 184 , and a second second
ary copy operation on a second client computing device 102
could result in the creation of the second chunk folder 185 .
Container files 190/191 in the first chunk folder 184 would
contain the blocks of SI data of the first client computing
device 102. If the two client computing devices 102 have
substantially similar data , the second secondary copy opera
tion on the data of the second client computing device 102
would result in media agent 144 storing primarily links to
the data blocks of the first client computing device 102 that
are already stored in the container files 190/191 . Accord
ingly , while a first secondary copy operation may result in
storing nearly all of the data subject to the operation ,
subsequent secondary storage operations involving similar
data may result in substantial data storage space savings ,
because links to already stored data blocks can be stored
instead of additional instances of data blocks .
[0271] If the operating system of the secondary storage
computing device 106 on which media agent 144 operates
supports sparse files , then when media agent 144 creates
container files 190/191/193 , it can create them as sparse
files . A sparse file is a type of file that may include empty
space (e.g. , a sparse file may have real data within it , such
as at the beginning of the file and / or at the end of the file , but
may also have empty space in it that is not storing actual
data , such as a contiguous range of bytes all having a value
of zero) . Having container files 190/191/193 be sparse files
allows media agent 144 to free up space in container files

[0272] There is an increased demand to off - load resource
intensive information management tasks (e.g. , data replica
tion tasks) away from production devices (e.g. , physical or
virtual client computing devices) in order to maximize
production efficiency . At the same time , enterprises expect
access to readily - available up - to - date recovery copies in the
event of failure , with little or no production downtime .
[0273] FIG . 2A illustrates a system 200 configured to
address these and other issues by using backup or other
secondary copy data to synchronize a source subsystem 201
(e.g. , a production site) with a destination subsystem 203
(e.g. , a failover site) . Such a technique can be referred to as
" live synchronization " and / or " live synchronization replica
tion . ” In the illustrated embodiment , the source client com
puting devices 202a include one or more virtual machines
(or “ VMs ”) executing on one or more corresponding VM
host computers 205a , though the source need not be virtu
alized . The destination site 203 may be at a location that is
remote from the production site 201 , or may be located in the
same data center , without limitation . One or more of the
production site 201 and destination site 203 may reside at
data centers at known geographic locations , or alternatively
may operate “ in the cloud . ”
[0274] The synchronization can be achieved by generally
applying an ongoing stream of incremental backups from the
source subsystem 201 to the destination subsystem 203 ,
such as according to what can be referred to as an “ incre
mental forever " approach . FIG . 2A illustrates an embodi
ment of a data flow which may be orchestrated at the
direction of one or more storage managers (not shown) . At
step 1 , the source data agent (s) 242a and source media
agent (s) 244a work together to write backup or other sec
ondary copies of the primary data generated by the source
client computing devices 202a into the source secondary
storage device (s) 208a . At step 2 , the backup / secondary
copies are retrieved by the source media agent (s) 244a from
secondary storage . At step 3 , source media agent (s) 244a

US 2021/0037112 A1 Feb. 4 , 2021
27

communicate the backup / secondary copies across a network
to the destination media agent (s) 244b in destination sub
system 203 .
[0275] As shown , the data can be copied from source to
destination in an incremental fashion , such that only
changed blocks are transmitted , and in some cases multiple
incremental backups are consolidated at the source so that
only the most current changed blocks are transmitted to and
applied at the destination . An example of live synchroniza
tion of virtual machines using the “ incremental forever ”
approach is found in U.S. Patent Application No. 62 / 265,339
entitled “ Live Synchronization and Management of Virtual
Machines across Computing and Virtualization Platforms
and Using Live Synchronization to Support Disaster Recov
ery . ” Moreover , a deduplicated copy can be employed to
further reduce network traffic from source to destination . For
instance , the system can utilize the deduplicated copy tech
niques described in U.S. Pat . No. 9,239,687 , entitled “ Sys
tems and Methods for Retaining and Using Data Block
Signatures in Data Protection Operations . ”
[0276] At step 4 , destination media agent (s) 244b write the
received backup / secondary copy data to the destination
secondary storage device (s) 2086. At step 5 , the synchroni
zation is completed when the destination media agent (s) and
destination data agent (s) 242b restore the backup / secondary
copy data to the destination client computing device (s)
202b . The destination client computing device (s) 202b may
be kept " warm " awaiting activation in case failure is
detected at the source . This synchronization / replication pro
cess can incorporate the techniques described in U.S. patent
application Ser . No. 14 / 721,971 , entitled “ Replication Using
Deduplicated Secondary Copy Data . ”
[0277] Where the incremental backups are applied on a
frequent , on - going basis , the synchronized copies can be
viewed as mirror or replication copies . Moreover , by apply
ing the incremental backups to the destination site 203 using
backup or other secondary copy data , the production site 201
is not burdened with the synchronization operations .
Because the destination site 203 can be maintained in a
synchronized “ warm ” state , the downtime for switching
over from the production site 201 to the destination site 203
is substantially less than with a typical restore from second
ary storage . Thus , the production site 201 may flexibly and
efficiently fail over , with minimal downtime and with rela
tively up - to - date data , to a destination site 203 , such as a
cloud - based failover site . The destination site 203 can later
be reverse synchronized back to the production site 201 ,
such as after repairs have been implemented or after the
failure has passed .
Integrating with the Cloud Using File System Protocols
[0278] Given the ubiquity of cloud computing , it can be
increasingly useful to provide data protection and other
information management services in a scalable , transparent ,
and highly plug - able fashion . FIG . 2B illustrates an infor
mation management system 200 having an architecture that
provides such advantages , and incorporates use of a standard
file system protocol between primary and secondary storage
subsystems 217 , 218. As shown , the use of the network file
system (NFS) protocol (or any another appropriate file
system protocol such as that of the Common Internet File
System (CIFS)) allows data agent 242 to be moved from the
primary storage subsystem 217 to the secondary storage
subsystem 218. For instance , as indicated by the dashed box
206 around data agent 242 and media agent 244 , data agent

242 can co - reside with media agent 244 on the same server
(e.g. , a secondary storage computing device such as com
ponent 106) , or in some other location in secondary storage
subsystem 218 .

[0279] Where NFS is used , for example , secondary stor
age subsystem 218 allocates an NFS network path to the
client computing device 202 or to one or more target
applications 210 running on client computing device 202 .
During a backup or other secondary copy operation , the
client computing device 202 mounts the designated NFS
path and writes data to that NFS path . The NFS path may be
obtained from NFS path data 215 stored locally at the client
computing device 202 , and which may be a copy of or
otherwise derived from NFS path data 219 stored in the
secondary storage subsystem 218 .
[0280) Write requests issued by client computing device
(s) 202 are received by data agent 242 in secondary storage
subsystem 218 , which translates the requests and works in
conjunction with media agent 244 to process and write data
to a secondary storage device (s) 208 , thereby creating a
backup or other secondary copy . Storage manager 240 can
include a pseudo - client manager 217 , which coordinates the
process by , among other things , communicating information
relating to client computing device 202 and application 210
(e.g. , application type , client computing device identifier ,
etc.) to data agent 242 , obtaining appropriate NFS path data
from the data agent 242 (e.g. , NFS path information) , and
delivering such data to client computing device 202 .
[0281] Conversely , during a restore or recovery operation
client computing device 202 reads from the designated NFS
network path , and the read request is translated by data agent
242. The data agent 242 then works with media agent 244 to
retrieve , re - process (e.g. , re - hydrate , decompress , decrypt) ,
and forward the requested data to client computing device
202 using NFS .
[0282] By moving specialized software associated with
system 200 such as data agent 242 off the client computing
devices 202 , the architecture effectively decouples the client
computing devices 202 from the installed components of
system 200 , improving both scalability and plug - ability of
system 200. Indeed , the secondary storage subsystem 218 in
such environments can be treated simply as a read / write
NFS target for primary storage subsystem 217 , without the
need for information management software to be installed
on client computing devices 202. As one example , an
enterprise implementing a cloud production computing
environment can add VM client computing devices 202
without installing and configuring specialized information
management software on these VMs . Rather , backups and
restores are achieved transparently , where the new VMs
simply write to and read from the designated NFS path . An
example of integrating with the cloud using file system
protocols or so - called “ infinite backup " using NFS share is
found in U.S. Patent Application No. 62 / 294,920 , entitled
“ Data Protection Operations Based on Network Path Infor
mation . ” Examples of improved data restoration scenarios
based on network - path information , including using stored
backups effectively as primary data sources , may be found
in U.S. Patent Application No. 62 / 297,057 , entitled “ Data
Restoration Operations Based on Network Path Informa
tion . "

US 2021/0037112 A1 Feb. 4 , 2021
28

to as

figured as or hosting a media agent in control tier 231 ; (ii)
confirm that a sufficient amount of the appropriate type of
storage exists to support an additional node in control tier
231 (e.g. , enough disk drive capacity exists in storage pool
208 to support an additional deduplication database 247) ;
(iii) install appropriate media agent software on the com
puting device and configure the computing device according
to a pre - determined template ; (iv) establish a partition 251 in
the storage pool 208 dedicated to the newly established
media agent 244 ; and (v) build any appropriate data struc
tures (e.g. , an instance of deduplication database 247) . An
example of highly scalable managed data pool architecture
or so - called web - scale architecture for storage and data
management is found in U.S. Patent Application No. 62/273 ,
286 entitled “ Redundant and Robust Distributed Dedupli
cation Data Storage System . ”
[0288] The embodiments and components thereof dis
closed in FIGS . 2A , 2B , and 2C , as well as those in FIGS .
1A - 1H , may be implemented in any combination and per
mutation to satisfy data storage management and informa
tion management needs at one or more locations and / or data
centers .

Highly Scalable Managed Data Pool Architecture
[0283] Enterprises are seeing explosive data growth in
recent years , often from various applications running in
geographically distributed locations . FIG . 2C shows a block
diagram of an example of a highly scalable , managed data
pool architecture useful in accommodating such data
growth . The illustrated system 200 , which may be referred

a " web - scale ” architecture according to certain
embodiments , can be readily incorporated into both open
compute / storage and common - cloud architectures .
[0284] The illustrated system 200 includes a grid 245 of
media agents 244 logically organized into a control tier 231
and a secondary or storage tier 233. Media agents assigned
to the storage tier 233 can be configured to manage a
secondary storage pool 208 as a deduplication store , and be
configured to receive client write and read requests from the
primary storage subsystem 217 , and direct those requests to
the secondary tier 233 for servicing . For instance , media
agents CMA1 - CMA3 in the control tier 231 maintain and
consult one or more deduplication databases 247 , which can
include deduplication information (e.g. , data block hashes ,
data block links , file containers for deduplicated files , etc.)
sufficient to read deduplicated files from secondary storage
pool 208 and write deduplicated files to secondary storage
pool 208. For instance , system 200 can incorporate any of
the deduplication systems and methods shown and described
in U.S. Pat . No. 9,020,900 , entitled “ Distributed Dedupli
cated Storage System , ” and U.S. Pat . Pub . No. 2014 /
0201170 , entitled “ High Availability Distributed Dedupli
cated Storage System . ”
[0285] Media agents SMA1 - SMA6 assigned to the sec
ondary tier 233 receive write and read requests from media
agents CMA1 - CMA3 in control tier 231 , and access sec
ondary storage pool 208 to service those requests . Media
agents CMA1 - CMA3 in control tier 231 can also commu
nicate with secondary storage pool 208 , and may execute
read and write requests themselves (e.g. , in response to
requests from other control media agents CMA1 - CMA3) in
addition to issuing requests to media agents in secondary tier
233. Moreover , while shown as separate from the secondary
storage pool 208 , deduplication database (s) 247 can in some
cases reside in storage devices in secondary storage pool
208 .
[0286] As shown , each of the media agents 244 (e.g. ,
CMA1 - CMA3 , SMA1 - SMA6 , etc.) in grid 245 can be
allocated a corresponding dedicated partition 251A - 2511 ,
respectively , in secondary storage pool 208. Each partition
251 can include a first portion 253 containing data associ
ated with (e.g. , stored by) media agent 244 corresponding to
the respective partition 251. System 200 can also implement
a desired level of replication , thereby providing redundancy
in the event of a failure of a media agent 244 in grid 245 .
Along these lines , each partition 251 can further include a
second portion 255 storing one or more replication copies of
the data associated with one or more other media agents 244
in the grid .
[0287] System 200 can also be configured to allow for
seamless addition of media agents 244 to grid 245 via
automatic configuration . As one example , a storage manager
(not shown) or other appropriate component may determine
that it is appropriate to add an additional node to control tier
231 , and perform some or all of the following : (i) assess the
capabilities of a newly added or otherwise available com
puting device as satisfying a minimum criteria to be con

Rapid Restore
[0289] As described above , reducing the delay associated
with restoring primary data can improve the efficiency of the
information management system 100 and improve the user
experience . For example , the delay can be reduced by
implementing a staging area or cache to temporarily store
primary data in a native format before the primary data is
converted into secondary copies in a secondary format and
stored in a secondary storage device . If a request to restore
primary data is received while the primary data is stored in
the staging area or cache , the primary data can simply be
transmitted to the requesting device without any need to
convert the primary data from one format to another (e.g. ,
from a secondary format to a native format) .
[0290] FIG . 3 is a block diagram illustrating some portions
of a system 300 for rapidly restoring primary data , according
to an embodiment . As illustrated in FIG . 3 , the system 300
may include one or more client computing devices 110 ,
media agents 144A - C , and one or more secondary storage
devices 108 .
[0291] The media agents 144A - C may each include one or
more high speed drives 310A - C , one or more low speed
drives 320A - C , a snapshot manager 330A - C , a file scanner
340A - C , and a stub creator 350A - C . The high speed drive (s)
310A - C may be storage devices that have faster read and / or
write times than the low speed drive (s) 320A - C . For
example , the high speed drive (s) 310A - C can be flash drives ,
solid state drives , and / or the like . The low speed drive (s)
320A - C can be electromechanical drives (serial attached
small computer system interface (SCSI) (SAS) drives , serial
AT attachment (SATA) drives , etc.) , tape drives , cloud
computing drives (e.g. , drives accessible via a network) ,
and / or the like .
[0292] The high speed drive (s) 310A - C may provide com
puting resources for running a first type of file system . The
first type of file system may be a clustered file system
formed by the high speed drive (s) 310A - C of one or more of
the media agents 144A - C . As an example , the first type of
file system may be configured as an erasure code cluster that
can withstand the loss of 1 of the media agents 144A - C .
Client computing devices 110 can interact with the first type

US 2021/0037112 A1 Feb. 4 , 2021
29

of file system via the network file system (NFS) protocol , via
the common Internet file system (CIFS) protocol , via the
representational state transfer (REST) protocol , and / or the
like .
[0293] The low speed drive (s) 320A - C may provide com
puting resources for running a second type of file system .
The second type of file system may be a clustered file system
formed by the low speed drive (s) 320A - C of one or more of
the media agents 144A - C . The first type of file system and
the second type of file system can interact with each other to
allow primary data (e.g. , files , data objects , etc.) in a native
format and / or secondary copies in a secondary format to be
transferred between the file systems . The two types of file
systems may be logically organized in a hierarchical manner ,
where the first type of file system is considered the highest
tier , the portion of the second type of file system at which
primary data in a native format is stored is considered the
second highest tier , and the portion of the second type of file
system at which secondary copies in a secondary format are
stored is considered the third highest tier .
[0294] In an embodiment , the higher the tier , the lower the
amount of time required by the client computing devices 110
to access the data stored therein . For example , primary data
in the native format stored in the highest tier may be
accessed by a client computing device 110 with extremely
good read speeds (e.g. , less than a microsecond per byte , less
than a millisecond per byte , etc.) . Primary data in the native
format stored in the second highest tier may be accessed by
a client computing device 110 with very good read speeds
(e.g. , less than a millisecond per byte , less than half a second
per byte , etc.) . Secondary copies in the secondary format
stored in the third highest tier may be accessed by a client
computing device 110 with good read speeds (e.g. , less than
half a second per byte , less than a second per byte , etc.) . As
described in greater detail , the difference in read speeds
between the different tiers may be due to the type of format
in which the data resides , the speed of the storage device on
which the data is stored , the manner in which the requested
data is identified and accessed , and / or the like .
[0295] The staging area or cache described herein may
reside on one or more of the high speed drives 310A - C
and / or one or more of the low speed drives 320A - C . For
example , the high speed drive (s) 310A - C may provide
computing resources for a first type of cache that is config
ured to store primary data in a native format and / or stubs
referencing primary data and / or secondary copies stored in
the low speed drive (s) 320A - C . Thus , the first type of cache
may be implemented in the first type of file system . The low
speed drive (s) 320A - C may provide computing resources for
a second type of cache that is configured to store primary
data in a native format and secondary copies in a secondary
format . Thus , the second type of cache may be implemented
in the second type of file system .
[0296] In general , primary data (or secondary copies gen
erated therefrom) received from a client computing device
110 can transition between the different caches over time .
For example , a client computing device 110 can provide
primary data in a native format to a media agent 144A - C ,
which stores the primary data in the native format in one or
more high speed drives 310A - C . After a certain amount of
time has passed (e.g. , as defined by a storage policy man
aged by the storage manager 140) , the media agent 144A - C
can move the primary data in the native format from the high
speed drive (s) 310A - C to one or more low speed drives

320A - C . The operations performed to move the primary data
are described in greater detail below . After another amount
of time has passed (e.g. , as defined by the storage policy) ,
the media agent 144A - C can convert the primary data in the
native format into secondary copies in a secondary format ,
storing the secondary copies in one or more low speed drives
320A - C . After another amount of time has passed (e.g. , as
defined by the storage policy) , the media agent 144A - C can
move the secondary copies in the secondary format to one or
more secondary storage devices 108 for storage .
[0297] When primary data (or a portion thereof) is moved
from the high speed drive (s) 310A - C to the low speed
drive (s) 320A - C , a snapshot of the primary data originally
stored on the high speed drive (s) 310A - C can be taken and
the primary data can be replaced with stubs that reference
the new storage location of the primary data or a portion
thereof . In particular , one or more of the snapshot managers
330A - C can capture a snapshot of the primary data in the
native format . Before , during , and / or after the snapshot
manager 330A - C captures the snapshot , the snapshot man
ager 330A - C can instruct one or more of the file scanners
340A - C to determine which files , if any , that comprise the
primary data have changed since a previous snapshot was
captured . The snapshot manager 330A - C can use the infor
mation provided by the file scanner 340A - C to move the
changed files from the high speed drive (s) 310A - C to the
low speed drive (s) 320A - C . The snapshot manager 330A - C
can also instruct one or more of the stub creators 350A - C to
create stubs for some or all of the files that comprise the
primary data , where the stub of a file will reference a storage
location of a most recent version of the file . Once created ,
the snapshot manager 330A - C can store the stubs in the high
speed drive (s) 310A - C . Thus , when a client computing
device 110 requests one or more files that have been moved
to the low speed drive (s) 320A - C , the media agent 144A - C
can access the stub (s) corresponding to the requested file (s)
stored in the high speed drive (s) 310A - C to determine the
location of the requested file (s) . Once the location is deter
mined , the media agent 144 can retrieve the requested file (s)
from the low speed drive (s) 320A - C and transmit the files to
the client computing device 110. Because the files stored in
the low speed drive (s) 320A - C are still in the native format
at this stage , the media agent 144 may not need to perform
any format conversions , thereby speeding up the file
retrieval process .
[0298] While FIG . 3 depicts the system 300 as including
three media agents 144A - C , this is not meant to be limiting .
The system 300 can include any number of media agents 144
in communication with the client computing devices 110 and
the secondary storage device (s) 108 .
[0299] FIG . 4 illustrates a block diagram showing the
operations performed to move primary data between the
different tiers . As illustrated in FIG . 4 , the client computing
device 110 may store primary data (e.g. , a file F1) in a native
format at (1) . At a specific time (e.g. , when a user request is
received , as defined by a storage policy , etc.) , the client
computing device 110 can request that a secondary copy
operation be performed on the file F1 . As a result , the client
computing device 110 may transmit the file F1 to the media
agent 144 or the media agent 144 may retrieve the file F1
from the client computing device 110 .
[0300] The media agent 144 may initially store the file F1
in one or more high speed drives 310 (e.g. , in the first type
of file system) . Thus , the file F1 may be stored in a native

US 2021/0037112 A1 Feb. 4 , 2021
30

format on the high speed drive (s) 310 at (2) . After another
period of time (e.g. , as defined by the storage policy) , the
media agent 144 can move the file F1 from the first type of
file system to the second type of file system (e.g. , from the
high speed drive (s) 310 to one or more of the low speed
drive (s) 320) . Thus , the file F1 can be stored in a native
format on the low speed drive (s) 320 at (3) .
[0301] After another period of time (e.g. , as defined by the
storage policy) , the media agent 144 can convert the file F1
from the native format into a secondary copy format . The
media agent 144 may stored the converted file F1 in the
same location on the low speed drive (s) 320 or on a different
location on the low speed drive (s) 320. Thus , the file F1 can
be stored in a secondary copy format on the low speed
drive (s) 320 at (4) . At some later time (e.g. , as defined by the
storage policy) , the media agent 144 can move the file F1 in
the secondary copy format to one or more of the secondary
storage devices 108 , which can be local to the system 300 or
located remotely from the system 300 and accessible via a
network .
[0302] Alternatively , the file F1 can be directly moved
from the highest tier to the third highest tier . For example ,
the media agent 144 can convert the file F1 from the native
format to a secondary copy format , and move the file F1
from the high speed drive (s) 310 to the low speed drive (s)
320 .
[0303] FIG . 5 illustrates a block diagram showing the
operations performed to enable rapid restore of primary data
and / or secondary copies . As illustrated in FIG . 5 , a client
computing device 110 can store files F1 and F2 , which may
be primary data in a native format . The files F1 and F2 may
be generated by a single application running on the client
computing device 110. Alternatively , the files F1 and F2 may
be generated by multiple applications running on the client
computing device 110. While FIG . 5 is described with
respect to files F1 and F2 , this is not meant to be limiting .
The same operations can be performed for any number of
files .
[0304] In response to a user request or a storage policy , the
client computing device 110 can store files F1 and F2 in
cache at (1) . For example , the client computing device 110
can store files F1 and F2 in the native format in one or more
high speed drives 310. The media agent 144 may create a
staging directory in the cache (e.g. , in the high speed drive (s)
310) that is specific to the client computing device 110 and
in which the files F1 and F2 can be stored . Thus , the high
speed drive (s) 310 may include multiple staging directories ,
with each staging directory being associated with a particu
lar client computing device 110. Within the staging directory
associated with a particular client computing device 110 , the
media agent 144 can create multiple sub - directories , with
each sub - directory being specific to a particular application
running on the client computing device 110 associated with
the staging directory . Alternatively , each staging directory
can be specific to a particular application running on a
particular client computing device 110. Thus , the media
agent 144 can create multiple staging directories associated
with a particular client computing device 110 , where each
staging directory associated with a particular client comput
ing device 110 is associated with a different application
running on the particular client computing device 110 .
Accordingly , if the media agent 144 receives a particular file
associated with a first application running on a first client
computing device 110 , the media agent 144 can store the file

in the staging directory associated with the first client
computing device 110 and the first application or in the
staging directory associated with the first client computing
device 110 and in the sub - directory of the staging directory
associated with the first application . Here , files F1 and F2
may be stored in the same staging directory and / or sub
directory if the files F1 and F2 are generated by the same
application . Otherwise , the files F1 and F2 may be stored in
different staging directories and / or sub - directories if the files
F1 and F2 are generated by different applications .
[0305] As part of the storage , the client computing device
110 may optionally delete files F1 and F2 from local
memory . If the client computing device 110 later requests a
restore of files F1 and F2 , the media agent 144 can simply
retrieve files F1 and F2 from the high speed drive (s) 310 and
transmit the files F1 and F2 to the client computing device
110. No conversion of the files F1 and F2 from one format
to another may be required .
[0306] The storage policy may define that snapshots
should be taken of the high speed drive (s) 310 at periodic
intervals , with primary data stored in the high speed drive (s)
310 being replaced with stubs . Thus , after some time (e.g. ,
as defined and scheduled by a storage policy) , the snapshot
manager 330 can take a snapshot of the high speed drive (s)
310 cache at (2A) . The snapshot may be a file level snapshot
as opposed to a volume level snapshot . The snapshot may
also be specific to a particular client computing device 110
and / or an application running on the client computing device
110. Thus , the snapshot manager 330 can take multiple
snapshots at a particular time , with each snapshot being
associated with a client computing device 110 and applica
tion . Additional details of the structure of the snapshot are
described below .
[0307] Before , during , and / or after taking a snapshot of the
high speed drive (s) 310 cache , the snapshot manager 330
can instruct the file scanner 340 to determine which files
have changed since a previous snapshot operation at (2B) ,
and the file scanner 340 can determine the changed files at
(2C) . The previous snapshot operation can be the last
snapshot operation or any other previous snapshot operation .
In some embodiments , files are divided or sharded into
various file extents , as described in greater detail below .
Thus , the file scanner 340 may determine the changed file
extents in these embodiments . Because files (and / or file
extents) previously stored in the high speed drive (s) 310
cache may have been replaced with stubs during a previous
snapshot operation , the file scanner 340 can determine
whether files (and / or file extents) currently stored in the high
speed drive (s) 310 cache have changed by accessing the
stubs corresponding to the previous snapshot operation ,
retrieving the files (and / or file extents) referenced by the
stubs , and comparing the retrieved files (and / or file extents)
with the files (and / or file extents) currently stored in the high
speed drive (s) 310 cache . In particular , files (and / or file
extents) may be labeled with a particular file name and / or
number and / or a particular file extent name and / or number .
The file scanner 340 can compare files (and / or file extents)
that have the same file name and / or number and / or the same
file extent name and / or number . If the comparison between
two like files and / or file extents yields a match , then the file
scanner 340 determines that the file and / or file extent has not
changed since a previous snapshot operation . Similarly , if
the comparison between two like files and / or file extents
does not yield a match , then the file scanner 340 determines

US 2021/0037112 A1 Feb. 4 , 2021
31

that the file and / or file extent has changed since a previous
snapshot operation . Once the changed files (and / or file
extents) is determined , the file scanner 340 transmits an
indication of the changed files (and / or file extents) to the
snapshot manager 330 at (3) .
[0308] The snapshot manager 330 can create , at (4) , a
directory in one or more of the low speed drives 320
corresponding to a timestamp of the snapshot that was just
taken . The snapshot manager 330 can then use the informa
tion provided by the file scanner 340 to identify the changed
files (and / of file extents) , and copy the changed files (and / or
file extents) to the directory in the low speed drive (s) 320 at
(5) . Thus , a portion of or the entire file F1 and / or a portion
of or the entire file F2 may be copied to the directory in the
low speed drive (s) 320 .
[0309] The snapshot manager 330 can also instruct the
stub creator 350 to begin stub creation at (6) . As a result , the
stub creator 350 can create stubs at (7) . For example , a stub
can be associated with a particular file and / or file extent ,
with the stub identifying a name and / or number of the file
and / or file extent , extended attributes , and an identification
of a snapshot . The extended attributes can include a product
ID (e.g. , the name of a product or computing system to
which the file and / or file extent is being moved) , a store ID
(e.g. , a data store or other data repository within the product
or computing system to which the file and / or file extent is
being moved) , and a universally unique identifier (UUID)
(e.g. , a UUID or path for identifying the storage location of
the file and / or file extent in the data store or other data
repository) . The identification of the snapshot can be a
timestamp at which a particular snapshot was taken , a name
of the snapshot , etc. Here , the stub creator 350 may create
one or more stubs for file F1 and one or more stubs for file
F2 . Once created , the stub creator 350 can transmit the stubs
to the snapshot manager 330 at (8) .
[0310] The snapshot manager 330 can then create a skel
eton directory with the stubs in the high speed drive (s) 310
cache at (9) . For example , the skeleton directory may be
created in the staging directory and / or the sub - directory in
which the files F1 and F2 were originally stored , and the
skeleton directory may include the stubs created by the stub
creator 350. The skeleton directory may be associated with
a particular client computing device 110 and / or a particular
application running on the client computing device 110 and
may represent a particular snapshot of the application , and
the structure of the skeleton directory may be created
differently or the same for each combination of client
computing device 110 and application . In general , the stubs
may be organized by snapshots in the high speed drive (s)
310 cache . Thus , the high speed drive (s) 310 cach may
include multiple skeleton directories , where each skeleton
directory includes a set of stubs corresponding to a particular
snapshot , a particular client computing device 110 , and / or a
particular application running on the client computing
device 110 .
[0311] While FIG . 5 is described with respect to high
speed drive (s) 310 , low speed drive (s) 320 , snapshot man
ager 330 , file scanner 340 , and stub creator 350 , this is not
meant to imply that the operations are performed by a single
media agent 144. Rather , a single media agent 144A - C can
perform the operations described herein , or one or more of
the media agents 144A - C can work collectively to perform
the operations described herein . For example , the operations
described herein as being performed by the snapshot man

ager 330 can be performed by one or more of the snapshot
managers 330A - C , the operations described herein as being
performed by the file scanner 340 can be performed by one
or more of the file scanners 340A - C , and / or the operations
described herein as being performed by the stub creator 350
can be performed by one or more of the stub creators
350 A - C .
[0312] In an embodiment , the created stubs can change
over time . For example , each stub may include extended
attributes that reference a location of the stored file and / or
file extent . However , when a file or file extent is converted
from a native format to a secondary copy format and / or
moved from the low speed drive (s) 320 to one or more
secondary storage devices 108 , then the extended attributes
of the stub corresponding to the file or file extent can be
updated to reference the new storage location of the file or
file extent .
[0313] In further embodiments , the file scanner 340A - C of
one media agent 144A - C can identify the changed files
and / or file extents from multiple staged directories and / or
sub - directories , and split the changed files and / or file extents
into different work items . The file scanner 340A - C can
determine how to split the changed files and / or file extents
based on the application that generated the files and / or file
extents and / or the size of the changed files and / or file
extents . For example , the file scanner 340A - C can group
changed files and / or file extents corresponding to the same
application into a single work item . The file scanner 340A - C
can further split changed files and / or file extents correspond
ing to the same application into different work items if
combining these changed files and / or file extents into one
work item would result in the size of the combined files
and / or file extents exceeding a threshold size . Thus , the file
scanner 340A - C may form multiple work items of changed
files and / or file extents , where each work item includes
changed files and / or file extents generated by the same
application . The file scanner 340A - C can then append or
assign a number to each work item . Each stub creator
350A - C may then select a work item based on the number
appended or assigned to each work item . For example , the
stub creators 350A - C can perform a modulo operation to
determine which work item to select . As an illustrative
example , the stub creators 350A - C can each perform a
modulo operation on each work item number . If the modulo
operation results in a 0 , then the stub creator 350A may
process the corresponding work item (e.g. , generate stubs
for the files and / or file extents associated with the work
item) . If the modulo operation results in a 1 , then the stub
creator 350B may process the corresponding work item
(e.g. , generate stubs for the files and / or file extents associ
ated with the work item) . If the modulo operation results in
a 2 , then the stub creator 350C may process the correspond
ing work item (e.g. , generate stubs for the files and / or file
extents associated with the work item) . In this way , the stub
creation load can be distributed across the stub creators
350A - C .
[0314] FIG . 6 is a block diagram illustrating additional
components of the high speed drives 310 residing on the
media agents 144. As illustrated in FIG . 6 , a high speed drive
310 can include a shard translator 612 and a data reader 614 .
For example , the high speed drive (s) 310 cache may have a
finite size . In some cases , the amount of primary data that the
client computing device 110 attempts to dump into the high
speed drive (s) 310 cache can exceed the size of the cache .

US 2021/0037112 A1 Feb. 4 , 2021
32

Thus , the shard translator 612 can divide or shard a file
provided by a client computing device 110 into one or more
file extents that each have a smaller size than the file itself .
As an illustrative example , the shard translator 612 can
divide or shard a file into individual file extents having a size
of 4 MB each .
[0315] When a request to restore a file is received from a
client computing device 110 , the shard translator 612 can
modify the request to reference a particular file extent and
pass the modified request to the data reader 614. The data
reader 614 can then retrieve the file extent referenced by the
modified request from the high speed drive (s) 310 and / or the
low speed drive (s) 320. For example , the data reader 614 can
retrieve the referenced file extent from the high speed
drive (s) 310 if a snapshot operation has not yet been
performed . The data reader 614 can retrieve the referenced
file extent from the low speed drive (s) 320 using one or more
stubs stored in the high speed drive (s) 310 if a snapshot
operation has already been performed .
[0316] FIG . 7 illustrates a block diagram showing the
operations performed to read a file requested by a client
computing device 110. As illustrated in FIG . 7 , the client
computing device 110 can submit a read request to the media
agent 144 (e.g. , the shard translator 612) requesting file F1
at (1) . The read request can include an indication of the file
being requested (e.g. , file F1) , an offset that indicates a
portion of the file that is being requested (e.g. , starting 8 MB
into the file F1) , and a size of the file being requested (e.g. ,
256 MB)
[0317] The shard translator 612 can receive the read
request and modify the read request based on the informa
tion included in the read request . For example , if the size of
file F1 is 256 MB , the shard translator 612 may have
previously sharded the file F1 into 64 file extents each
having a size of 4 MB . An offset of O may then refer to the
first extent of file F1 (e.g. , file extent F1.1) , an offset of 4 MB
may then refer to the second extent of file F1 (e.g. , file extent
F1.2) , an offset of 8 MB may then refer to the third extent
of file F1 (e.g. , file extent F1.3) , and so on . Here , because the
offset included in the read request is 8 MB , the shard
translator 612 may determine that the third extent of file F1
is being requested . Thus , the shard translator 612 can modify
the read request to form a modified read request , where the
modified read request includes an indication of the file
extent being requested (e.g. , file extent F1.3) , an offset that
indicates a portion of the file extent that is being requested
(e.g. , O MB in this case) , and a size of the file being
requested (e.g. , 256 MB) . The shard translator can submit
the modified read request to the data reader 614 at (2) .
[0318] The data reader 614 may identify a stub stored in
the high speed drive (s) 310 corresponding to the requested
file extent , and thereby determine that the file extent is not
present on the high speed drive (s) 310. Here , the stub may
indicate that the file extent is stored on the low speed
drive (s) 320. Thus , the data reader 614 can form a stub read
request and submit the stub read request to the low speed
drive (s) 320 at (3) . The stub read request may include the
same information as the modified read request , optionally
including some or all of the information included in the
identified stub .
[0319] Upon receiving the stub read request , the low speed
drive (s) 320 can retrieve the requested file extent and
transmit the file extent to the data reader 614. The data
reader 614 and / or the shard translator 612 can then provide

the file extent to the client computing device 110. Alterna
tively , the low speed drive (s) 320 can directly provide the
requested file extent to the client computing device 110 .
[0320] FIG . 8 illustrates a block diagram depicting various
stubs and primary data in a native format stored in the high
speed drive (s) 310 and the low speed drive (s) 320. As
illustrated in FIG . 8 , the high speed drive (s) 310 may include
stubs created as a result of four different snapshots being
taken . For example , a first staging directory and / or sub
directory in the high speed drive (s) 310 may include the
following stubs created as a result of a snapshot 810 taken
at time TO : < F1 , E1 > , < F1 , E2 > , < F1 , E3 > , < F2 , E1 > , < F2 ,
E2 > , and < F2 , E3 > . Thus , a file F1 and a file F2 were both
generated by a specific application running on a specific
client computing device 110. The file F1 has been sharded
into three extents E1 , E2 , and E3 , and the file F2 has been
sharded into three extents E1 , E2 , and E3 .
[0321] The files F1 and F2 may have first been stored on
the high speed drive (s) 310 prior to the snapshot 810 being
taken . Thus , the file scanner 340 may determine that each of
the file F1 and F2 extents have changed . Accordingly , the
snapshot 810 includes stubs for each of the file F1 and F2
extents , and the low speed drive (s) 320 include the file F1
and F2 extents , where the file F1 and F2 extents are in a
native format . The file F1 and F2 extents stored in the low
speed drive (s) 320 may be represented by the following
files : < F1 , E1 > @TO , < F1 , E2 > @TO , < F1 , E3 > @TO , < F2 ,
E1 > @TO , < F2 , E2 > @TO , and < F2 , E3 > @TO , where the
stored file F1 and F2 extents are associated with a timestamp
corresponding to the time that the snapshot 810 was taken .
[0322] Some time after the snapshot 810 was taken , a
snapshot 812 is taken at time T1 . After the snapshot 810 was
taken , the client computing device 110 may have once again
stored files F1 and F2 in the high speed drive (s) 310. All of
the file F1 and F2 extents may be the same as were
previously stored in the high speed drive (s) 310 except file
extent F1 , E3 . Thus , the file scanner 340 may determine that
the file extent F1 , E3 has changed , and thus the new version
of file extent F1 , E3 is stored in the low speed drive (s) 320 ,
repr ed by < F1 , E3 > @ T1 , which indicates the time
stamp corresponding to the time that the snapshot 812 was
taken . Even though only the file extent F1 , E3 has changed ,
the snapshot 812 may nonetheless include stubs for each of
the file F1 and F2 extents . As described in greater detail
below , however , the stubs corresponding to the unchanged
file F1 and F2 extents may reference the original file F1 and
F2 extents stored in the low speed drive (s) 320 (e.g. , < F1 ,
E1 > @TO , < F1 , E2 > @TO , < F2 , E1 > @TO , < F2 , E2 > @TO ,
and < F2 , E3 > @TO) , whereas the stub corresponding to the
changed file F1 , E3 extent may reference the new file F1 , E3
extent stored in the low speed drive (s) 320 (e.g. , < F1 ,
E3 > @ T1) .
[0323] Some time after the snapshot 812 was taken , a
snapshot 814 is taken at time T2 . After the snapshot 812 was
taken , the client computing device 110 may have once again
stored files F1 and F2 in the high speed drive (s) 310. All of
the file F1 and F2 extents may be the same as were
previously stored in the high speed drive (s) 310 prior to the
snapshot 812 being taken except file extent F2 , E1 . Thus , the
file scanner 340 may determine that the file extent F2 , E1 has
changed , and thus the new version of file extent F2 , E1 is
stored in the low speed drive (s) 320 , represented by < F2 ,
E1 > @ T2 , which indicates the timestamp corresponding to
the time that the snapshot 814 was taken . Even though only

US 2021/0037112 A1 Feb. 4 , 2021
33

the file extent F2 , E1 has changed , the snapshot 814 may
nonetheless include stubs for each of the file F1 and F2
extents . However , the stubs corresponding to the unchanged
file F1 and F2 extents may reference the file F1 and F2
extents previously stored in the low speed drive (s) 320 (e.g. ,
< F1 , E1 > @TO , < F1 , E2 > @TO , < F1 , E3 > @ T1 , < F2 ,
E2 > @TO , and < F2 , E3 > @ T0) , whereas the stub correspond
ing to the changed file F2 , E1 extent may reference the new
file F2 , E1 extent stored in the low speed drive (s) 320 (e.g. ,
< F2 , E1 > @ T2) .
[0324] Some time after the snapshot 814 was taken , a
snapshot 816 is taken at time T3 . After the snapshot 814 was
taken , the client computing device 110 may have once again
stored files F1 and F2 in the high speed drive (s) 310. All of
the file F1 and F2 extents may be the same as were
previously stored in the high speed drive (s) 310 prior to the
snapshot 814 being taken except file extent F2 , E2 . Thus , the
file scanner 340 may determine that the file extent F2 , E2 has
changed , and thus the new version of file extent F2 , E2 is
stored in the low speed drive (s) 320 , represented by < F2 ,
E2 > @ T3 , which indicates the timestamp corresponding to
the time that the snapshot 816 was taken . Even though only
the file extent F2 , E2 has changed , the snapshot 816 may
nonetheless include stubs for each of the file F1 and F2
extents . However , the stubs corresponding to the unchanged
file F1 and F2 extents may reference the file F1 and F2
extents previously stored in the low speed drive (s) 320 (e.g. ,
< F1 , E1 > @TO , < F1 , E2 > @TO , < F1 , E3 > @ T1 , < F2 ,
E1 > @ T2 , and < F2 , E3 > @TO) , whereas the stub correspond
ing to the changed file F2 , E2 ext may reference the new
file F2 , E2 extent stored in the low speed drive (s) 320 (e.g. ,
< F2 , E2 > @ T3) .
[0325] The snapshots 810 , 812 , 814 , and 816 may be
stored in different staging directories and / or sub - directories .
Each of the staging directories and / or sub - directories , how
ever , may be associated with the same client computing
device 110 and application running on the client computing
device 110 .

F2 into the native format if the file F1 and F2 extents are
stored in the low speed drive (s) 320 in the secondary copy
format .
[0327] Similarly , the snapshot 812 includes six stubs cor
responding to file extents < F1 , E1 > @ T0 , < F1 , E2 > @TO ,
< F1 , E3 > @ T1 , < F2 , E1 > @TO , < F2 , E2 > @TO , and < F2 ,
E3 > @TO . The stub for file extent F1 , E3 may reference the
T1 version of the file extent F1 , E3 rather than the TO version
of the file extent F1 , E3 because the file extent F1 , E3 may
have changed after the snapshot 810 was taken and before
the snapshot 812 was taken . The stubs may include an
identification of the file extent , an indication of a product ID ,
an indication of a store ID , an indication of a UUID , and an
indication of a snapshot corresponding to the file extent
(e.g. , a timestamp of the corresponding snapshot) . Thus , if a
client computing device 110 requests a restoration of the
files F1 and F2 as the files existed at time T1 , the media
agent 144 can use the stubs that comprise the snapshot 812
to identify the location of the corresponding file F1 and F2
extents , retrieve the corresponding file F1 and F2 extents
from the identified location , and provide the file F1 and F2
extents to the client computing device 110. In some embodi
ments , the shard translator 612 can merge the file F1 extents
to re - form the file F1 and / or can merge the file F2 extents to
re - form the file F2 before the files F1 and F2 are provided
to the client computing device 110 to satisfy the request . As
described herein , the media agent 144 may not need to
perform any conversion of the files F1 and F2 given that the
files F1 and F2 may be stored in the low speed drive (s) 320
in the native format instead of the secondary copy format .
However , the media agent 144 may convert the files F1 and
F2 into the native format if the file F1 and F2 extents are
stored in the low speed drive (s) 320 in the secondary copy
format .
[0328] The snapshot 814 includes six stubs corresponding
to file extents < F1 , E1 > @TO , < F1 , E2 > @TO , < F1 , E3 > @ T1 ,
< F2 , E1 > @ T2 , < F2 , E2 > @TO , and < F2 , E3 > @TO . The stub
for file extent F1 , E3 may reference the T1 version of the file
extent F1 , E3 rather than the TO version of the file extent F1 ,
E3 because the file extent F1 , E3 may have changed after the
snapshot 810 was taken and before the snapshot 812 was
taken . Similarly , the stub for file extent F2 , E1 may reference
the T2 version of the file extent F2 , E1 rather than the TO
version of the file extent F2 , E1 because the file extent F2 ,
E1 may have changed after the snapshots 810 and 812 were
taken and before the snapshot 814 was taken . The stubs may
include an identification of the file extent , an indication of a
product ID , an indication of a store ID , an indication of a
UUID , and an indication of a snapshot corresponding to the
file extent (e.g. , a timestamp of the corresponding snapshot) .
Thus , if a client computing device 110 requests a restoration
of the files F1 and F2 as the files existed at time T2 , the
media agent 144 can use the stubs that comprise the snapshot
814 to identify the location of the corresponding file F1 and
F2 extents , retrieve the corresponding file F1 and F2 extents
from the identified location , and provide the file F1 and F2
extents to the client computing device 110. In some embodi
ments , the shard translator 612 can merge the file F1 extents
to re - form the file F1 and / or can merge the file F2 extents to
re - form the file F2 before the files F1 and F2 are provided
to the client computing device 110 to satisfy the request . As
described herein , the media agent 144 may not need to
perform any conversion of the files F1 and F2 given that the
files F1 and F2 may be stored in the low speed drive (s) 320

[0326] FIG . 9 illustrates the structure of various snapshots
810 , 812 , 814 , and 816. As illustrated in FIG.9 , the snapshot
810 includes six stubs corresponding to file extents < F1 ,
E1 > @TO , < F1 , E2 > @TO , < F1 , E3 > @TO , < F2 , E1 > @TO ,
< F2 , E2 > @TO , and < F2 , E3 > @TO . The stubs may include
an identification of the file extent , an indication of a product
ID , an indication of a store ID , an indication of a UUID , and
an indication of a snapshot corresponding to the file extent
(e.g. , a timestamp of the corresponding snapshot) . Thus , if a
client computing device 110 requests a restoration of the
files F1 and F2 as the files existed at time TO , the media
agent 144 can use the stubs that comprise the snapshot 810
to identify the location of the corresponding file F1 and F2
extents , retrieve the corresponding file F1 and F2 extents
from the identified location , and provide the file F1 and F2
extents to the client computing device 110. In some embodi
ments , the shard translator 612 can merge the file F1 extents
to re - form the file F1 and / or can merge the file F2 extents to
re - form the file F2 before the files F1 and F2 are provided
to the client computing device 110 to satisfy the request . As
described herein , the media agent 144 may not need to
perform any conversion of the files F1 and F2 given that the
files F1 and F2 may be stored in the low speed drive (s) 320
in the native format instead of the secondary copy format .
However , the media agent 144 may convert the files F1 and

US 2021/0037112 A1 Feb. 4 , 2021
34

in the native format instead of the secondary copy format .
However , the media agent 144 may convert the files F1 and
F2 into the native format if the file F1 and F2 extents are
stored in the low speed drive (s) 320 in the secondary copy
format .
[0329] The snapshot 816 includes six stubs corresponding
to file extents < F1 , E1 > @TO , < F1 , E2 > @TO , < F1 , E3 > @ T1 ,
< F2 , E1 > @ T2 , < F2 , E2 > @ T3 , and < F2 , E3 > @TO . The stub
for file extent F1 , E3 may reference the T1 version of the file
extent F1 , E3 rather than the TO version of the file extent F1 ,
E3 because the file extent F1 , E3 may have changed after the
snapshot 810 was taken and before the snapshot 812 was
taken . Similarly , the stub for file extent F2 , E1 may reference
the T2 version of the file extent F2 , E1 rather than the TO
version of the file extent F2 , E1 because the file extent F2 ,
E1 may have changed after the snapshots 810 and 812 were
taken and before the snapshot 814 was taken . In addition , the
stub for file extent F2 , E2 may reference the T3 version of
the file extent F2 , E2 rather than the TO version of the file
extent F2 , E2 because the file extent F2 , E2 may have
changed after the snapshots 810 , 812 , and 814 were taken
and before the snapshot 816 was taken . The stubs may
include an identification of the file extent , an indication of a
product ID , an indication of a store ID , an indication of a
UUID , and an indication of a snapshot corresponding to the
file extent (e.g. , a timestamp of the corresponding snapshot) .
Thus , if a client computing device 110 requests a restoration
of the files F1 and F2 as the files existed at time T3 , the
media agent 144 can use the stubs that comprise the snapshot
816 to identify the location of the corresponding file F1 and
F2 extents , retrieve the corresponding file F1 and F2 extents
from the identified location , and provide the file F1 and F2
extents to the client computing device 110. In some embodi
ments , the shard translator 612 can merge the file F1 extents
to re - form the file F1 and / or can merge the file F2 extents to
re - form the file F2 before the files F1 and F2 are provided
to the client computing device 110 to satisfy the request . As
described herein , the media agent 144 may not need to
perform any conversion of the files F1 and F2 given that the
files F1 and F2 may be stored in the low speed drive (s) 320
in the native format instead of the secondary copy format .
However , the media agent 144 may convert the files F1 and
F2 into the native format if the file F1 and F2 extents are
stored in the low speed drive (s) 320 in the secondary copy
format .
[0330] FIG . 10 illustrates the structure of various snap
shots 1010 , 1012 , and 1014 after a file extent is deleted . In
an embodiment , file extents may be stored in the low speed
drive (s) 320 as separate files in a native format . A file extent
can be referenced by multiple ubs , such as stubs that
comprise different snapshots . When all the snapshots that
include stubs referencing a particular file extent are deleted ,
the file extent can also be deleted from the low speed
drive (s) 320. For example , snapshots may be deleted from
the high speed drive (s) 310 on a periodic basis according to
a storage policy .
[0331] As illustrated in FIG . 10 , the snapshot 1010
includes six stubs corresponding to file extents < F1 ,
E1 > @TO , < F1 , E2 > @TO , < F1 , E3 > @TO , < F2 , E1 > @TO ,
< F2 , E2 > @TO , and < F2 , E3 > @TO . The stubs may include
an identification of the file extent , an indication of a product
ID , an indication of a store ID , an indication of a UUID , and
an indication of a snapshot corresponding to the file extent
(e.g. , a timestamp of the corresponding snapshot) . Thus , if a

client computing device 110 requests a restoration of the
files F1 and F2 as the files existed at time TO , the media
agent 144 can use the stubs that comprise the snapshot 1010
to identify the location of the corresponding file F1 and F2
extents , retrieve the corresponding file F1 and F2 extents
from the identified location , and provide the file F1 and F2
extents to the client computing device 110. In some embodi
ments , the shard translator 612 can merge the file F1 extents
to re - form the file F1 and / or can merge the file F2 extents to
re - form the file F2 before the files F1 and F2 are provided
to the client computing device 110 to satisfy the request . As
described herein , the media agent 144 may not need to
perform any conversion of the files F1 and F2 given that the
files F1 and F2 may be stored in the low speed drive (s) 320
in the native format instead of the secondary copy format .
However , the media agent 144 may convert the files F1 and
F2 into the native format if the file F1 and F2 extents are
stored in the low speed drive (s) 320 in the secondary copy
format .

[0332] Similarly , the snapshot 1012 includes six stubs
corresponding to file extents < F1 , E1 > @TO , < F1 , E2 > @TO ,
< F1 , E3 > @ T1 , < F2 , E1 > @TO , < F2 , E2 > @TO , and < F2 ,
E3 > @TO . The stub for file extent F1 , E3 may reference the
T1 version of the file extent F1 , E3 rather than the TO version
of the file extent F1 , E3 because the file extent F1 , E3 may
have changed after the snapshot 1010 was taken and before
the snapshot 1012 was taken . The stubs may include an
identification of the file extent , an indication of a product ID ,
an indication of a store ID , an indication of a UUID , and an
indication of a snapshot corresponding to the file extent
(e.g. , a timestamp of the corresponding snapshot) . Thus , if a
client computing device 110 requests a restoration of the
files F1 and F2 as the files existed at time T1 , the media
agent 144 can use the stubs that comprise the snapshot 1012
to identify the location of the corresponding file F1 and F2
extents , retrieve the corresponding file F1 and F2 extents
from the identified location , and provide the file F1 and F2
extents to the client computing device 110. In some embodi
ments , the shard translator 612 can merge the file F1 extents
to re - form the file F1 and / or can merge the file F2 extents to
re - form the file F2 before the files F1 and F2 are provided
to the client computing device 110 to satisfy the request . As
described herein , the media agent 144 may not need to
perform any conversion of the files F1 and F2 given that the
files F1 and F2 may be stored in the low speed drive (s) 320
in the native format instead of the secondary copy format .
However , the media agent 144 may convert the files F1 and
F2 into the native format if the file F1 and F2 extents are
stored in the low speed drive (s) 320 in the secondary copy
format .
[0333] The snapshot 1014 includes five stubs correspond
ing to file extents < F1 , E1 > @TO , < F1 , E2 > @TO , < F1 ,
E3 > @ T1 , < F2 , E1 > @TO , and < F2 , E2 > @TO . The stub for
file extent F1 , E3 may reference the T1 version of the file
extent F1 , E3 rather than the TO version of the file extent F1 ,
E3 because the file extent F1 , E3 may have changed after the
snapshot 1010 was taken and before the snapshot 1012 was
taken . A stub for file extent F2 , E3 may no longer be present
because the file extent F2 , E3 may have been deleted from
the low speed drive (s) 320 after the snapshots 1010 and 1012
were taken and before the snapshot 1014 was taken . The
stubs may include an identification of the file extent , an
indication of a product ID , an indication of a store ID , an
indication of a UUID , and an indication of a snapshot

US 2021/0037112 A1 Feb. 4 , 2021
35

corresponding to the file extent (e.g. , a timestamp of the
corresponding snapshot) . Thus , if a client computing device
110 requests a restoration of the files F1 and F2 as the files
existed at time T2 , the media agent 144 can use the stubs that
comprise the snapshot 1014 to identify the location of the
corresponding file F1 and F2 extents , retrieve the corre
sponding file F1 and F2 extents from the identified location ,
and provide the file F1 and F2 extents to the client comput
ing device 110. In some embodiments , the shard translator
612 can merge the file F1 extents to re - form the file F1
and / or can merge the file F2 extents to re - form the file F2
before the files F1 and F2 are provided to the client com
puting device 110 to satisfy the request . As described herein ,
the media agent 144 may not need to perform any conver
sion of the files F1 and F2 given that the files F1 and F2 may
be stored in the low speed drive (s) 320 in the native format
instead of the secondary copy format . However , the media
agent 144 may convert the files F1 and F2 into the native
format if the file F1 and F2 extents are stored in the low
speed drive (s) 320 in the secondary copy format
[0334] In an embodiment , the snapshot manager 330 may
create one or more delete files in association with a previous
snapshot when the file scanner 340 determines that one or
more files and / or file extents have changed during a snapshot
operation , where each delete file corresponds to a changed
file and / or file extent . As an illustrative example , the snap
shot manager 330 may create a delete file for file extent F1 ,
E3 in association with the snapshot 1010 when the snapshot
1012 is being created given that the file extent F1 , E3 has
changed after the snapshot 1010 was taken , and may create
a delete file for file extent F2 , E3 in association with the
snapshot 1012 when the snapshot 1014 is being created
given that the file extent F2 , E3 is deleted after the snapshot
1012 was taken . The delete file may reference the previous
version of the file extent (e.g. , the delete files may reference
file extent < F1 , E3 > @TO and < F2 , E3 > @TO in this case) .
[0335] If the media agent 144 deletes a snapshot , then the
media agent 144 may delete any file extents referenced by
delete files associated with the deleted snapshot given that
the file extent is no longer referenced by any active snapshot .
As an illustrative example , if the media agent 144 deletes the
snapshot 1010 from the high speed drive (s) 310 , then the
media agent 144 may also delete the file extent < F1 ,
E3 > @TO stored in the low speed drive (s) 320 given that the
file extent < F1 , E3 > @TO is no longer referenced by any
active snapshot . If the media agent 144 then deletes the
snapshot 1012 from the high speed drive (s) 310 , then the
media agent 144 may also delete the file extent < F2 ,
E3 > @TO stored in the low speed drive (s) 320 given that the
file extent < F2 , E3 > @TO is no longer referenced by any
active snapshot .
[0336] If the media agent 144 deletes one snapshot before
deleting another snapshot that was taken before the deleted
snapshot , then the media agent 144 may move the delete
files associated with the deleted snapshot to be associated
with the previous and still active snapshot given that the file
extents referenced by the delete files associated with the
deleted snapshot are still referenced by an active snapshot .
As an illustrative example , if the media agent 144 deletes the
snapshot 1012 from the high speed drive (s) 310 before
deleting the snapshot 1010 , then the media agent 144 may
move the delete file corresponding to the file extent < F2 ,
E3 > @ T0 to be associated with the snapshot 1010 given that
the file extent < F2 , E3 > @TO is still referenced by snapshot

1010. If the media agent 144 then deletes the snapshot 1010
from the high speed drive (s) 310 , then the media agent 144
may also delete the file extents < F1 , E3 > @TO and < F2 ,
E3 > @TO stored in the low speed drive (s) 320 given that
these file extents < F1 , E3 > @TO and < F2 , E3 > @TO are no
longer referenced by any active snapshot .
[0337] FIG . 11 depicts some operations of a method 1100
for enabling rapid restore of primary data and / or secondary
copies , according to an embodiment . The method 1100 may
be implemented , for example , by a media agent , such as one
or more of the media agents 144A - C . The method 1100 may
start at block 1102 .
[0338] At block 1102 , a first file is received from a client
computing device . The first file may be primary data in a
native format . For example , the first file can be part of data
dumped by the client computing device 110 onto high speed
drive (s) 310. The first file may be generated by a specific
application running on the client computing device 110 .
[0339] At block 1104 , the first file is stored in a first drive .
For example , the first drive may be one or more of the high
speed drive (s) 310. The first file may be stored in the first
drive in a native format .
[0340] In an embodiment , if the client computing device
110 then requests a restore of the first file , the media agent
144 can simply retrieve the first file from the high speed
drive (s) 310 and transmit the first file to the client computing
device 110. The media agent 144 may not need to perform
any conversion of the first file because the first file is already
stored in the native format . Thus , the high speed drive (s) 310
may act as a staging area or cache for rapid restore of the first
file .
[0341] In some embodiments , the first file may be sharded
and stored as file extents in the first drive . Thus , the media
agent 144 may combine the file extents to re - form the first
file before transmitting the first file back to the client
computing device 110 in response to a request to restore the
first file .
[0342] At block 1106 , a snapshot is taken of at least a
portion of the first drive . For example , the first file may be
stored in a particular staging directory and / or sub - directory
in the first drive . The snapshot may be taken of the staging
directory and / or sub - directory at which the first file is stored .
[0343] At block 1108 , a determination is made that the first
file has changed since a previous snapshot operation . For
example , the determination may be made that the first file
has changed because the first file did not exist in the first
drive prior to the snapshot being taken .
[0344] In an embodiment , the determination can be per
formed simultaneously with the snapshot being taken . In
another embodiment , the determination can be performed
before or after the snapshot is taken .
[0345] At block 1110 , the first file is stored in a native
format in a second drive . For example , the second drive may
have slower read and / or write times than the first drive . The
first file may be stored in the second drive because the
determination was made that the first file changed . If a
determination was made that the first file has not changed
since a previous snapshot operation , then the first file may
not be stored in the second drive because the same version
of the first file may already exist on the second drive .
[0346] In an embodiment , storing the first file in the native
format in the second drive may result in a deletion of the first
file from the first drive . In another embodiment , storing the
first file in the native format in the second drive may not

US 2021/0037112 A1 Feb. 4 , 2021
36

immediately result in a deletion of the first file from the first
drive . For example , the first file may remain on the first drive
until overwritten by the client computing device via another
data dump .
[0347] At block 1112 , a stub is created referencing the first
file . For example , the stub may reference the first file , a
product ID , a store ID , a UUID , and a time at which the
snapshot was taken . In general , the stub may reference a
location at which the first file is stored in the native format
on the second drive .
[0348] In an embodiment , the contents of the stub can
change over time . For example , if the first file is later
converted into a secondary copy in a secondary copy format ,
the extended attributes of the stub may be updated accord
ingly (e.g. , to reference the new storage location of the first
file in the secondary copy format) . Similarly , if the first file
is later stored in one or more secondary storage devices 108
in a secondary copy format , the extended attributes of the
stub may be updated accordingly (e.g. , to reference the new
storage location of the first file in the secondary copy
format) .
[0349] At block 1114 , the stub is stored in the first drive .
For example , the stub is included as part of the snapshot , and
the snapshot is stored on the first drive . The first drive may
include multiple stored snapshots , and the snapshots can
include the same or different stubs .
[0350] In an embodiment , if the client computing device
110 then requests a restore of the first file , the media agent
144 can simply identify the stub in the first drive referencing
the first file , retrieve the first file from the low speed drive (s)
320 based on information included in the identified stub , and
transmit the first file to the client computing device 110. The
media agent 144 may not need to perform any conversion of
the first file because the first file is already stored in the
native format . Thus , the low speed drive (s) 320 may act as
a staging area or cache for rapid restore of the first file .
[0351] While FIG . 11 is described with respect to a first
file , this is not meant to be limiting . As described herein , the
media agent 144 can shard a file into multiple file extents .
The operations described herein as being performed by
method 1100 on the first file can also be performed on a file
extent as well . After the stub is stored in the first drive , the
method 1100 is complete .
[0352] FIG . 12 depicts some operations of a method 1200
for rapidly restoring primary data and / or secondary copies ,
according to an embodiment . The method 1200 may be
implemented , for example , by a media agent , such as one or
more of the media agents 144A - C . The method 1200 may
start at block 1202 .
[0353] At block 1202 , a request is received from a client
computing device to restore a first file . The first file may
stored on in the high speed drive (s) 310 , in the low speed
drive (s) 320 , or in the secondary storage device (s) 108. The
first file may have previously been provided to the media
agent 144 by the client computing device 110 .
[0354] At block 1204 , a stub stored in a first drive is
identified as corresponding to the first file . For example , the
stub may identify a particular file (e.g. , the first file) , a
version of the first file (e.g. , based on a timestamp at which
a snapshot of the first file was taken) , and extended attributes
associated with the first file . The first drive may be one or
more of the high speed drive (s) 310 .
[0355) Alternatively , a stub corresponding to the first file
may not be present in the first drive . Rather , the first file

itself may be present in the first drive . In this situation , the
media agent 144 can simply retrieve the first file from the
first drive and transmit the first file to the client computing
device 110. The media agent 144 may not need to perform
any conversion of the first file because the first file is already
stored in the native format . Thus , the high speed drive (s) 310
may act as a staging area or cache for rapid restore of the first
file .
[0356] At block 1206 , the first file is retrieved from a
second drive based on information included in the stub . For
example , the second drive may have slower read and / or
write times than the first drive . The first file may be stored
in the second drive after a snapshot operation is performed .
The information included in the stub may include extended
attributes that reference a storage location of the first file .
[0357] In an embodiment , the first file is stored in the
second drive in a native format . Thus , the media agent 144
may not need to perform any conversion of the first file . In
another embodiment , the first file is stored in the second
drive in a secondary copy format . Thus , the media agent 144
may need to perform a conversion of the first file from the
secondary copy format into a native format .
[0358] At block 1208 , the retrieved first file is transmitted
to the client computing device . The first file can be trans
mitted to the client computing device directly from the
second type of file system running on the second drive or via
the first type of file system running on the first drive .
[0359] While FIG . 12 is described with respect to a first
file , this is not meant to be limiting . As described herein , the
media agent 144 can shard a file into multiple file extents .
The operations described herein as being performed by
method 1200 on the first file can also be performed on a file
extent as well . After the first file is transmitted to the client
computing device 110 , the method 1200 is complete .
[0360] In regard to the figures described herein , other
embodiments are possible , such that the above - recited com
ponents , steps , blocks , operations , and / or messages / re
quests / queries / instructions differently arranged ,
sequenced , sub - divided , organized , and / or combined . In
some embodiments , a different component may initiate or
execute a given operation . For example , in some embodi
ments , a data agent 142 can perform some or all of the
operations described herein as being performed by the media
agent 144. For example , the data agent 142 may maintain a
staging area or cache , such as the cache formed by the high
speed drive (s) 310 , and the media agent 144 may maintain
a cache formed by the low speed drive (s) 320 .

are

EXAMPLE EMBODIMENTS

be
[0361] Some example enumerated embodiments are
recited in this section in the form of methods , systems , and
non - transitory computer - readable media , without limitation .
[0362] One aspect of the disclosure provides a networked
information management system . The networked informa
tion management system comprises a client computing
device having one or more first hardware processors ,
wherein the client computing device executes an application
that generated a first file . The networked information man
agement system further comprises one or more computing
devices in communication with the client computing device ,
wherein the one or more computing devices comprise a first
drive and a second drive , wherein the one or more comput
ing devices each have one or more second hardware pro
cessors , wherein the one or more computing devices are

US 2021/0037112 A1 Feb. 4 , 2021
37

configured with computer - executable instructions that , when
executed , cause the one or more computing devices to :
process a request received from the client computing device
to restore a version of a first file that existed at a first time ;
identify a snapshot stored in the first drive that is associated
with the first time and that includes a stub corresponding to
the first file , wherein the stub references a storage location
of the first file in the second drive ; retrieve the first file from
the storage location in the second drive based on the
identified stub , wherein the first file is stored in the storage
location in the second drive in a native format ; transmit the
first file retrieved from the storage location to the client
computing device ; process a request received from the client
computing device to restore a version of the first file that
existed at a second time before the first time ; identify a
second snapshot stored in the first drive that is associated
with the second time and that includes a second stub
corresponding to the first file , wherein the second stub
references a second storage location of the first file in the
second drive ; retrieve the first file from the second storage
location in the second drive based on the identified second
stub , wherein the first file is stored in the second storage
location in the second drive in a secondary copy format ;
convert the first file retrieved from the second storage
location from the secondary copy format to the native
format ; and transmit the converted first file to the client
computing device .
[0363] The networked information management system of
the preceding paragraph can include any sub - combination of
the following features : where the computer - executable
instructions , when executed , further cause the one or more
computing devices to shard the version of the first file that
existed at the first time into a first file extent and a second
file extent ; where the computer - executable instructions ,
when executed , further cause the one or more computing
devices to : determine that the request received from the
client computing device corresponds to the second file
extent , identify the snapshot stored in the first drive that
includes the stub corresponding to the second file extent ,
retrieve the second file extent from the second drive based
on the identified stub , and transmit the retrieved second file
extent to the client computing device ; where the computer
executable instructions , when executed , further cause the
one or more computing devices to : receive an updated
version of the first file , store the updated version of the first
file in the first drive , determine that the first file has changed
since a previous snapshot operation , store the updated ver
sion of the first file in the second drive , create a second stub
corresponding to the updated version of the first file , and
create a skeleton directory in the first drive , wherein the
skeleton directory comprises the second stub ; where the
computer - executable instructions , when executed , further
cause the one or more computing devices to delete the
updated version of the first file from the first drive ; where the
computer - executable instructions , when executed , further
cause the one or more computing devices to transmit the first
file retrieved from the storage location to the client com
puting device without performing a conversion operation to
convert the first file into the native format ; where the
snapshot is stored in the first drive in association with the
client computing device and the application executed by the
client computing device ; where the stub comprises an indi
cation of the first file , a product ID identifying a name of a
computing system that stores the version of the first file that

existed at the first time , a store ID identifying that the second
drive stores the version of the first file that existed at the first
time , a universally unique identifier (UUID) identifying the
storage location of the version of the first file that existed at
the first time in the second drive , and an indication of a time
that the snapshot was taken ; where the first drive forms at
least a portion of a first type of file system , and wherein the
second drive forms at least a portion of a second type of file
system ; and where read times of the second drive are slower
than read times of the first drive .

[0364] Another aspect of the disclosure provides a com
puter - implemented method comprising : receiving , by one or
more computing devices comprising a first drive and a
second drive , a request from a client computing device to
restore a version of a first file that existed at a first time ,
wherein the first file is previously provided by the client
computing device to the one or more computing devices , and
wherein the first file is generated by an application executed
by the client computing device ; identifying a snapshot stored
in the first drive that is associated with the first time and that
includes a stub corresponding to the first file , wherein the
stub references a storage location of the first file in the
second drive ; retrieving the first file from the storage loca
tion in the second drive based on the identified stub , wherein
the first file is stored in the storage location in the second
drive in a native format ; transmitting the first file retrieved
from the storage location to the client computing device ;
processing a request received from the client computing
device to restore a version of the first file that existed at a
second time before the first time ; identifying a second
snapshot stored in the first drive that is associated with the
second time and that includes a second stub corresponding
to the first file , wherein the second stub references a second
storage location of the first file in the second drive ; retrieving
the first file from the second storage location in the second
drive based on the identified second stub , wherein the first
file is stored in the second storage location in the second
drive in a secondary copy format ; converting the first file
retrieved from the second storage location from the second
ary copy format to the native format ; and transmitting the
converted first file to the client computing device .
[0365] The computer - implemented method of the preced
ing paragraph can include any sub - combination of the
following features : where the computer - implemented
method further comprises sharding the version of the first
file that existed at the first time into a first file extent and a
second file extent ; where the computer - implemented method
further comprises : determining that the request received
from the client computing device corresponds to the second
file extent , identifying the snapshot stored in the first drive
that includes the stub corresponding to the second file extent ,
retrieving the second file extent from the second drive based
on the identified stub , and transmitting the retrieved second
file extent to the client computing device ; where the com
puter - implemented method further comprises : receiving an
updated version of the first file , storing the updated version
of the first file in the first drive , determining that the first file has changed since a previous snapshot operation , storing the
updated version of the first file in the second drive , creating
a second stub corresponding to the updated version of the
first file , and creating a skeleton directory in the first drive ,
wherein the skeleton directory comprises the second stub ;
where transmitting the retrieved first file to the client com
puting device further comprises transmitting the first file

US 2021/0037112 A1 Feb. 4 , 2021
38

retrieved from the storage location to the client computing
device without performing a conversion operation to convert
the first file into the native format ; where the snapshot is
stored in the first drive in association with the client com
puting device and the application executed by the client
computing device ; where the stub comprises an indication of
the first file , a product ID identifying a name of a computing
system that stores the version of the first file that existed at
the first time , a store ID identifying that the second drive
stores the version of the first file that existed at the first time ,
a universally unique identifier (UUID) identifying the stor
age location of the version of the first file that existed at the
first time in the second drive , and an indication of a time that
the snapshot was taken ; where the first drive forms at least
a portion of a first type of file system , and wherein the
second drive forms at least a portion of a second type of file
system ; and where read times of the second drive are slower
than read times of the first drive .

[0366] Another aspect of the disclosure provides a non
transitory computer - readable medium storing instructions ,
which when executed by one or more computing devices
comprising a first drive and a second drive , cause the one or
more computing devices to perform a method comprising :
receiving a request from a client computing device to restore
a version of a first file that existed at a first time , wherein the
first file is previously provided by the client computing
device to the one or more computing devices , and wherein
the first file is generated by an application executed by the
client computing device ; identifying a snapshot stored in the
first drive that is associated with the first time and that
includes a stub corresponding to the first file , wherein the
stub references a storage location of the first file in the
second drive ; retrieving the first file from the storage loca
tion in the second drive based on the identified stub , wherein
the first file is stored in the storage location in the second
drive in a native format ; transmitting the first file retrieved
from the storage location to the client computing device ;
processing a request received from the client computing
device to restore a version of the first file that existed at a
second time before the first time ; identifying a second
snapshot stored in the first drive that is associated with the
second time and that includes a second stub corresponding
to the first file , wherein the second stub references a second
storage location of the first file in the second drive ; retrieving
the first file from the second storage location in the second
drive based on the identified second stub , wherein the first
file is stored in the second storage location in the second
drive in a secondary copy format ; converting the first file
retrieved from the second storage location from the second
ary copy format to the native format ; and transmitting the
converted first file to the client computing device .
[0367] In other embodiments , a system or systems may
operate according to one or more of the methods and / or
computer - readable media recited in the preceding para
graphs . In yet other embodiments , a method or methods may
operate according to one or more of the systems and / or
computer - readable media recited in the preceding para
graphs . In yet more embodiments , a computer - readable
medium or media , excluding transitory propagating signals ,
may cause one or more computing devices having one or
more processors and non - transitory computer - readable
memory to operate according to one or more of the systems
and / or methods recited in the preceding paragraphs .

Terminology
[0368] Conditional language , such as , among others ,
" can , ” “ could , ” “ might , ” or “ may , ” unless specifically stated
otherwise , or otherwise understood within the context as
used , is generally intended to convey that certain embodi
ments include , while other embodiments do not include ,
certain features , elements and / or steps . Thus , such condi
tional language is not generally intended to imply that
features , elements and / or steps are in any way required for
one or more embodiments or that one or more embodiments
necessarily include logic for deciding , with or without user
input or prompting , whether these features , elements and / or
steps are included or are to be performed in any particular
embodiment .
[0369] Unless the context clearly requires otherwise ,
throughout the description and the claims , the words " com
prise , " " comprising , " and the like are to be construed in an
inclusive sense , as opposed to an exclusive or exhaustive
sense , i.e. , in the sense of “ including , but not limited to . ” As
used herein , the terms “ connected , ” “ coupled , ” or any vari
ant thereof means any connection or coupling , either direct
or indirect , between two or more elements ; the coupling or
connection between the elements can be physical , logical , or
a combination thereof . Additionally , the words “ herein , ”
" above , " " below , " and words of similar import , when used
in this application , refer to this application as a whole and
not to any particular portions of this application . Where the
context permits , words using the singular or plural number
may also include the plural or singular number respectively .
The word “ or ” in reference to a list of two or more items ,
covers all of the following interpretations of the word : any
one of the items in the list , all of the items in the list , and any
combination of the items in the list . Likewise the term
" and / or ” in reference to a list of two or more items , covers
all of the following interpretations of the word : any one of
the items in the list , all of the items in the list , and any
combination of the items in the list .
[0370] In some embodiments , certain operations , acts ,
events , or functions of any of the algorithms described

ein can be performed in a different sequence , can be
added , merged , or left out altogether (e.g. , not all are
necessary for the practice of the algorithms) . In certain
embodiments , operations , acts , functions , or events can be
performed concurrently , e.g. , through multi - threaded pro
cessing , interrupt processing , or multiple processors or pro
cessor cores or on other parallel architectures , rather than
sequentially
[0371] Systems and modules described herein may com
prise software , firmware , hardware , or any combination (s)
of software , firmware , or hardware suitable for the purposes
described . Software and other modules may reside and
execute on servers , workstations , personal computers , com
puterized tablets , PDAs , and other computing devices suit
able for the purposes described herein . Software and other
modules may be accessible via local computer memory , via
a network , via a browser , or via other means suitable for the
purposes described herein . Data structures described herein
may comprise computer files , variables , programming
arrays , programming structures , or any electronic informa
tion storage schemes or methods , or any combinations
thereof , suitable for the purposes described herein . User
interface elements described herein may comprise elements
from graphical user interfaces , interactive voice response ,
command line interfaces , and other suitable interfaces .

US 2021/0037112 A1 Feb. 4 , 2021
39

[0372] Further , processing of the various components of
the illustrated systems can be distributed across multiple
machines , networks , and other computing resources . Two or
more components of a system can be combined into fewer
components . Various components of the illustrated systems
can be implemented in one or more virtual machines , rather
than in dedicated computer hardware systems and / or com
puting devices . Likewise , the data repositories shown can
represent physical and / or logical data storage , including ,
e.g. , storage area networks or other distributed storage
systems . Moreover , in some embodiments the connections
between the components shown represent possible paths of
data flow , rather than actual connections between hardware .
While some examples of possible connections are shown ,
any of the subset of the components shown can communi
cate with any other subset of components in various imple
mentations .

[0373] Embodiments are also described above with refer
ence to flow chart illustrations and / or block diagrams of
methods , apparatus (systems) and computer program prod
ucts . Each block of the flow chart illustrations and / or block
diagrams , and combinations of blocks in the flow chart
illustrations and / or block diagrams , may be implemented by
computer program instructions . Such instructions may be
provided to a processor of a general purpose computer ,
special purpose computer , specially - equipped computer
(e.g. , comprising a high - performance database server , a
graphics subsystem , etc.) or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor (s) of the com puter or other programmable data processing apparatus ,
create means for implementing the acts specified in the flow
chart and / or block diagram block or blocks . These computer
program instructions may also be stored in a non - transitory
computer - readable memory that can direct a computer or
other programmable data processing apparatus to operate in
a particular manner , such that the instructions stored in the
computer - readable memory produce an article of manufac
ture including instruction means which implement the acts
specified in the flow chart and / or block diagram block or
blocks . The computer program instructions may also be
loaded to a computing device or other programmable data processing apparatus to cause operations to be performed on
the computing device or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computing device or other
programmable apparatus provide steps for implementing the
acts specified in the flow chart and / or block diagram block
or blocks .
[0374] Any patents and applications and other references
noted above , including any that may be listed in accompa
nying filing papers , are incorporated herein by reference .
Aspects of one or more embodiments can be modified , if
necessary , to employ the systems , functions , and concepts of
the various references described above . These and other
changes can be made in light of the above Detailed Descrip
tion . While the above description describes certain
examples , and describes the best mode contemplated , no
matter how detailed the above appears in text , different
embodiments can be practiced in many ways . Details of the
system may vary considerably in its specific implementa
tion . As noted above , particular terminology used when
describing certain features should not be taken to imply that
the terminology is being redefined herein to be restricted to

any specific characteristics , features with which that termi
nology is associated . In general , the terms used in the
following claims should not be construed to limit the scope
the specific examples disclosed in the specification , unless
the above Detailed Description section explicitly defines
such terms . Accordingly , the actual scope encompasses not
only the disclosed examples , but also all equivalent ways of
practicing or implementing the claims .
[0375] To reduce the number of claims , certain aspects are
presented below in certain claim forms , but the applicant
contemplates other aspects in any number of claim forms .
For example , while only one aspect may be recited as a
means - plus - function claim under 35 U.S.C sec . 112 (f)
(AIA) , other aspects may likewise be embodied as a means
plus - function claim , or in other forms , such as being embod
ied in a computer - readable medium . Any claims intended to
be treated under 35 U.S.C. § 112 (f) will begin with the
words " means for , " but use of the term " for ” in any other
context is not intended to invoke treatment under 35 U.S.C.
§ 112 (f) . Accordingly , the applicant reserves the right to
pursue additional claims after filing this application , in
either this application or in a continuing application .
What is claimed is :
1. A networked information management system com

prising :
a client computing device having one or more first hard

ware processors , wherein the client computing device
executes an application that generated a first file ; and

one or more computing devices in communication with
the client computing device , wherein the one or more
computing devices comprise a first drive and a second
drive , wherein the one or more computing devices each
have one or more second hardware processors , wherein
the one or more computing devices are configured with
computer - executable instructions that , when executed ,
cause the one or more computing devices to :
process a request received from the client computing

device to restore a version of a first file that existed
at a first time ;

identify a snapshot stored in the first drive that is
associated with the first time and that includes a stub
corresponding to the first file , wherein the stub
references a storage location of the first file in the
second drive ;

retrieve the first file from the storage location in the
second drive based on the identified stub , wherein
the first file is stored in the storage location in the
second drive in a native format ;

transmit the first file retrieved from the storage location
to the client computing device ;

process a request received from the client computing
device to restore a version of the first file that existed
at a second time before the first time ;

identify a second snapshot stored in the first drive that
is associated with the second time and that includes
a second stub corresponding to the first file , wherein
the second stub references a second storage location
of the first file in the second drive ;

retrieve the first file from the second storage location in
the second drive based on the identified second stub ,
wherein the first file is stored in the second storage
location in the second drive in a secondary copy
format ;

US 2021/0037112 A1 Feb. 4 , 2021
40

convert the first file retrieved from the second storage
location from the secondary copy format to the
native format ; and

transmit the converted first file to the client computing
device .

2. The networked information management system of
claim 1 , wherein the computer - executable instructions ,
when executed , further cause the one or more computing
devices to shard the version of the first file that existed at the
first time into a first file extent and a second file extent .

3. The networked information management system of
claim 2 , wherein the computer - executable instructions ,
when executed , further cause the one or more computing
devices to :

determine that the request received from the client com
puting device corresponds to the second file extent ;

identify the snapshot stored in the first drive that includes
the stub corresponding to the second file extent ;

retrieve the second file extent from the second drive based
on the identified stub ; and

transmit the retrieved second file extent to the client
computing device .

4. The networked information management system of
claim 1 , wherein the computer - executable instructions ,
when executed , further cause the one or more computing
devices to :

receive an updated version of the first file ;
store the updated version of the first file in the first drive ;
determine that the first file has changed since a previous

snapshot operation ;
store the updated version of the first file in the second

drive ;
create a second stub corresponding to the updated version

of the first file ; and
create a skeleton directory in the first drive , wherein the

skeleton directory comprises the second stub .
5. The networked information management system of

claim 4 , wherein the computer - executable instructions ,
when executed , further cause the one or more computing
devices to delete the updated version of the first file from the
first drive .

6. The networked information management system of
claim 1 , wherein the computer - executable instructions ,
when executed , further cause the one or more computing
devices to transmit the first file retrieved from the storage
location to the client computing device without performing
a conversion operation to convert the first file into the native
format .

7. The networked information management system of
claim 1 , wherein the snapshot is stored in the first drive in
association with the client computing device and the appli
cation executed by the client computing device .

8. The networked information management system of
claim 1 , wherein the stub comprises an indication of the first
file , a product ID identifying a name of a computing system
that stores the version of the first file that existed at the first
time , a store ID identifying that the second drive stores the
version of the first file that existed at the first time , a
universally unique identifier (UUID) identifying the storage
location of the version of the first file that existed at the first
time in the second drive , and an indication of a time that the
snapshot was taken .

9. The networked information management system of
claim 1 , wherein the first drive forms at least a portion of a

first type of file system , and wherein the second drive forms
at least a portion of a second type of file system .

10. The networked information management system of
claim 1 , wherein read times of the second drive are slower
than read times of the first drive .

11. A computer - implemented method comprising :
receiving , by one or more computing devices comprising

a first drive and a second drive , a request from a client
computing device to restore a version of a first file that
existed at a first time , wherein the first file is previously
provided by the client computing device to the one or
more computing devices , and wherein the first file is
generated by an application executed by the client
computing device ;

identifying a snapshot stored in the first drive that is
associated with the first time and that includes a stub
corresponding to the first file , wherein the stub refer
ences a storage location of the first file in the second
drive ;

retrieving the first file from the storage location in the
second drive based on the identified stub , wherein the
first file is stored in the storage location in the second
drive in a native format ;

transmitting the first file retrieved from the storage loca
tion to the client computing device ;

processing a request received from the client computing
device to restore a version of the first file that existed
at a second time before the first time ;

identifying a second snapshot stored in the first drive that
is associated with the second time and that includes a
second stub corresponding to the first file , wherein the
second stub references a second storage location of the
first file in the second drive ;

retrieving the first file from the second storage location in
the second drive based on the identified second stub ,
wherein the first file is stored in the second storage
location in the second drive in a secondary copy
format ;

converting the first file retrieved from the second storage
location from the secondary copy format to the native
format ; and

transmitting the converted first file to the client computing
device .

12. The computer - implemented method of claim 11 , fur
ther comprising sharding the version of the first file that
existed at the first time into a first file extent and a second
file extent .

13. The computer - implemented method of claim 12 , fur
ther comprising :

determining that the request received from the client
computing device corresponds to the second file extent ;

identifying the snapshot stored in the first drive that
includes the stub corresponding to the second file
extent ;

retrieving the second file extent from the second drive
based on the identified stub ; and

transmitting the retrieved second file extent to the client
computing device .

14. The computer - implemented method of claim 11 , fur
ther comprising :

receiving an updated version of the first file ;
storing the updated version of the first file in the first

drive ;

US 2021/0037112 A1 Feb. 4 , 2021
41

determining that the first file has changed since a previous
snapshot operation ;

storing the updated version of the first file in the second
drive ;

creating a second stub corresponding to the updated
version of the first file ; and

creating a skeleton directory in the first drive , wherein the
skeleton directory comprises the second stub .

15. The computer - implemented method of claim 11 ,
wherein transmitting the retrieved first file to the client
computing device further comprises transmitting the first file
retrieved from the storage location to the client computing
device without performing a conversion operation to convert
the first file into the native format .

16. The computer - implemented method of claim 11 ,
wherein the snapshot is stored in the first drive in association
with the client computing device and the application
executed by the client computing device .

17. The computer - implemented method of claim 11 ,
wherein the stub comprises an indication of the first file , a
product ID identifying a name of a computing system that
stores the version of the first file that existed at the first time ,
a store ID identifying that the second drive stores the version
of the first file that existed at the first time , a universally
unique identifier (UUID) identifying the storage location of
the version of the first file that existed at the first time in the
second drive , and an indication of a time that the snapshot
was taken .

18. The computer - implemented method of claim 11 ,
wherein the first drive forms at least a portion of a first type
of file system , and wherein the second drive forms at least
a portion of a second type of file system .

19. The computer - implemented method of claim 11 ,
wherein read times of the second drive are slower than read
times of the first drive .

20. A non - transitory computer - readable medium storing
instructions , which when executed by one or more comput

ing devices comprising a first drive and a second drive ,
cause the one or more computing devices to perform a
method comprising :

receiving a request from a client computing device to
restore a version of a first file that existed at a first time ,
wherein the first file is previously provided by the client
computing device to the one or more computing
devices , and wherein the first file is generated by an
application executed by the client computing device ;

identifying a snapshot stored in the first drive that is
associated with the first time and that includes stub
corresponding to the first file , wherein the stub refer
ences a storage location of the first file in the second
drive ;

retrieving the first file from the storage location in the
second drive based on the identified stub , wherein the
first file is stored in the storage location in the second
drive in a native format ;

transmitting the first file retrieved from the storage loca
tion to the client computing device ;

processing a request received from the client computing
device to restore a version of the first file that existed
at a second time before the first time ;

identifying a second snapshot stored in the first drive that
is associated with the second time and that includes a
second stub corresponding to the first file , wherein the
second stub references a second storage location of the
first file in the second drive ;

retrieving the first file from the second storage location in
the second drive based on the identified second stub ,
wherein the first file is stored in the second storage
location in the second drive in a secondary copy
format ;

converting the first file retrieved from the second storage
location from the secondary copy format to the native
format ; and

transmitting the converted first file to the client computing
device .

