发明名称
可悬垂的贴身卫生巾

摘要
一种贴身的吸收制品，包括一覆盖层、一屏蔽层以及一覆盖着覆盖层和屏蔽层之间的吸收层，所述吸收制品是可悬垂的并具有卫生巾所需的吸收特性。
1. 一种贴身的吸收制品，包括：

 - 覆盖层；
 - 屏蔽层；
 - 位于所述覆盖层和所述屏蔽层之间的吸收层；
 - 一施加于所述吸收制品朝向身体的表面以确保所述吸收制品贴附于身体的粘合剂；

 其中，所述吸收制品厚度小于 2.5 毫米，

 其中，所述吸收制品至少有一部分满足下列等式之一:
 \[AI > 3.3 - 1.2 \ln(BW/MCB) \], 其中 \(BW/MBF \leq 6.8 \); 和
 \[AI > 1 \], 其中 \(BW/MBF > 6.8 \)。

2. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品的厚度小于 2.0 毫米。

3. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品的厚度小于 1.5 毫米。

4. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收系统包含超吸收物质。

5. 如权利要求 4 所述的吸收制品，其特征在于，所述吸收系统包括含有纤维素纤维和超吸收物质的混合物的材料。

6. 如权利要求 5 所述的吸收制品，其特征在于，所述材料含有约 90%~40% 纤维素纤维和约 10%~40% SAP。

7. 如权利要求 6 所述的吸收制品，其特征在于，所述材料被压花而至少具有第一区域和第二区域。

8. 如权利要求 7 所述的吸收制品，其特征在于，所述第一区域的密度大于所述第二区域。

9. 如权利要求 8 所述的吸收制品，其特征在于，所述第一区域覆盖所述材料表面区域的约 20%~60%，且所述第二区域覆盖所述材料的约 40%~80%。

10. 如权利要求 9 所述的吸收制品，其特征在于，所述第一区域的密度大于 0.3 g/cc，所述第二区域的密度为约 0.07~0.25 g/cc。

11. 如权利要求 10 所述的吸收制品，其特征在于，所述材料的基本重量为约
50-600 gsm.

12. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收系统是通过气流成网法制造的。

13. 如权利要求 12 所述的吸收制品，其特征在于，所述材料包括纤维素纤维、粘合剂材料和非粘合材料。

14. 如权利要求 13 所述的吸收制品，其特征在于，所述材料包括小于 50%的纤维素纤维、小于 20%的粘合剂材料和大于 30%的非粘合材料。

15. 如权利要求 14 所述的吸收制品，其特征在于，所述材料的基本重量约为 50gsm-600gsm。

16. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收系统几乎全部是 SAP。

17. 如权利要求 16 所述的吸收制品，其特征在于，所述 SAP 的存在量至少为 50 gsm。

18. 如权利要求 16 所述的吸收制品，其特征在于，所述 SAP 的存在量在约 100 gsm 和 150 gsm 之间。

19. 如权利要求 16 所述的吸收制品，其特征在于，所述 SAP 的吸收容量在 1 分钟后至少为 20 g/g。

20. 如权利要求 16 所述的吸收制品，其特征在于，所述 SAP 的总容量至少为 40 g/g。

21. 如权利要求 16 所述的吸收制品，其特征在于，所述 SAP 在所述屏障的内表面。

22. 如权利要求 21 所述的吸收制品，其特征在于，所述 SAP 被粘合到所述屏障的内表面。

23. 如权利要求 1 所述的吸收制品，其特征在于，所述覆盖层是一种含有约 10-65 wt%人造丝和约 35-90 wt%聚酯的水刺材料。

24. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品至少一部分的 BW/MCB 比值至少为 2.5。

25. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品至少一部分的 BW/MCB 比值至少为 10.0。

26. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品至少一部分的 BW/MCB 比值至少为 20.0。
27. 如权利要求 24 所述的吸收制品，其特征在于，所述吸收制品的 AI 至少为 1.71。
28. 如权利要求 25 所述的吸收制品，其特征在于，所述吸收制品的 AI 至少为 1.74。
29. 如权利要求 26 所述的吸收制品，其特征在于，所述吸收制品的 AI 至少为 1.5。
30. 如权利要求 26 所述的吸收制品，其特征在于，所述吸收制品的 AI 至少为 1.78。
31. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品是卫生巾。
32. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品是护垫。
33. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品是失禁用品。
34. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品具有第一部分和第二部分，所述第二部分的 MCB 大于所述第一部分的 MCB。
35. 如权利要求 34 所述的吸收制品，其特征在于，所述第二部分的 MCB 至少为 400 克。
36. 如权利要求 34 所述的吸收制品，其特征在于，所述第二部分由所述覆盖层和所述屏蔽层之间的材料层限定。
37. 如权利要求 36 所述的吸收制品，其特征在于，所述限定所述第二部分的材料的长度小于所述吸收系统的长度。
38. 如权利要求 37 所述的吸收制品，其特征在于，所述限定所述第二部分的材料的宽度等于所述吸收系统的宽度。
39. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品至少一部分的 BW/MCB 比值至少为 2.5。
40. 如权利要求 16 所述的吸收制品，其特征在于，所述 SAP 的凝胶阻塞比至少为 0.50。

41. 贴身的吸收制品，包括：
 一朝向身体的表面；
 一朝向衣服的表面；
其中，所述吸收制品厚度小于 2.5 毫米，
一施加于所述吸收制品朝向身体的表面以确保所述吸收制品贴附于身体的粘合剂；
其中，所述吸收制品至少有一部分满足下列等式之一：
$$AI > 3.3 - 1.2 \ln(BW/MCB)$$，其中 $BW/MCB \leq 6.8$；和
AI > 1，其中 BW/MCB > 6.8。

42. 如权利要求 41 所述的吸收制品，其特征在于，所述吸收制品具有第一部分和第二部分，所述第二部分的 MCB 大于所述第一部分的 MCB。

43. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品的吸收容量 (AC) 至少为 4.0 克。

44. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品的吸收容量 (AC) 至少为 8.0 克。

45. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品的吸收容量 (AC) 至少为 10.0 克。

46. 如权利要求 1 所述的吸收制品，其特征在于，所述吸收制品的吸收容量 (AC) 至少为 12.0 克。
说明书

可悬垂的贴身卫生巾

发明领域

本发明一般涉及卫生吸收制品，具体涉及薄的、高吸收并可悬垂的妇女用卫生巾。

发明领域

外戴的卫生巾是目前使用的众多妇女防护产品之一。由于单位体积上液体吸收容量高的材料的发展，使得卫生巾的整体厚度能够降低，从而可制出更加舒适且使用起来不会觉得难受的产品。例如，在T.W.Osborne III 的美国专利 No. 4,950,264 (以下称为 “‘264 专利”) 中已经介绍了这种薄的、弹性卫生巾。

术语“弹性”在现有技术中通常用来描述物品对因对其施加外力而造成的形变的抗性。例如，‘264专利声称揭示了一种卫生巾，当通过活塞机构对这种卫生巾施加外力时，它具有“低抗弯性”。

然而，‘264专利提供的那种“弹性”定义无法衡量吸收制品制品的整体“可悬垂”(drapeable)”特性。也就是说，该产品可能具有“低抗弯性”，但并不是如这里所定义的“可悬垂”。术语“可悬垂”或“可悬垂性(drapeability)”在这里是指当以悬臂方式从所述物品一端将其提起时，该物品由于重力作用而垂直悬吊的趋势。可悬垂的物品也趋向于与相邻的表面相一致，例如可悬垂的卫生巾在使用过程中将趋向于与身体相贴合，从而提高了舒适性。

织物以及用于衣服的其它布类材料倾向于具有这种“可悬垂”特性。具有这种“可悬垂”特性的织物制成的衣服能使穿着者觉得更加柔顺，并能随穿着者移动，从而提高了使用者的舒适感。

具有这些“可悬垂”特性的吸收制品可提高穿着者的舒适感。这就是说，如果制品具有充分的可悬垂性，能够与使用者的大腿和使用者的内衣之间的空间相吻合，则可提高使用者的舒适感。相反，如果吸收制品不是充分可悬垂的，使用者将觉得不舒服并且会感觉到吸收制品的存在。此外，如果这种吸收制品聚在一起或变形，它将保持这种形状，这就不能提供充分的保护。

因此，尽管现有技术介绍了“弹性”吸收制品制品，但仍旧需要可悬垂并具有这种吸收制品所需的吸收容量的吸收制品，特别是卫生巾。
发明概述

根据本发明的第一个方面，本发明提供了一种贴身的吸收制品，它包括一覆盖层、
一屏蔽层、一位于所述覆盖层和所述屏蔽层之间的吸收层、施加于所述吸收制品朝
向身体的表面以确保所述吸收制品贴附于身体的粘合剂，其中，所述吸收制品厚度
小于2.5毫米，并且所述吸收制品至少有一部分满足下列等式之一：

$$ AI > 3.3 - 1.2 \ln(BW/MCB) $$
其
$$ BW/MCB \leq 6.8; \quad \text{和} $$
$$ AI > 1, \quad \text{其中 } BW/MCB > 6.8. $$

根据本发明的第二个方面，本发明提供了一种贴身的吸收制品，它包括一朝向身
体的表面，一朝向衣服的表面，其中，所述吸收制品厚度小于2.5毫米，施加于所
述吸收制品朝向身体的表面以确保所述吸收制品附于身体的粘合剂，其中，所述吸
收制品至少有一部分满足下列等式之一：

$$ AI > 3.3 - 1.2 \ln(BW/MCB) $$
其
$$ BW/MCB \leq 6.8; \quad \text{和} $$
$$ AI > 1, \quad \text{其中 } BW/MCB > 6.8. $$

附图简述

现在将参考附图描述本发明实施方案的例子，其中：

图1是如本发明实施方案所述的卫生巾的顶视图，卫生巾的覆盖层被部分除去以
显示吸收系统；

图2是图1的卫生巾的透视图，描绘了当以悬臂方式从所述卫生巾一端提起卫生
巾时得到的位置；

图3是图1所示卫生巾的底视图；

图4是沿图3所示卫生巾的纵向中心线看去的截面图；

图5是如本发明另一个实施方案所述的卫生巾的顶视图，卫生巾的覆盖层被部分
去除以显示吸收系统；

图6是沿图5所示卫生巾的纵向中心线看去的截面图；

图7是如本发明一个实施方案所述贴身的卫生巾的截面图，其隔离部件(release
member)被部分破坏以显示覆盖层；

图8是图7所述卫生巾的分解透视图；

图9是如本发明另一个实施方案所述贴身的卫生巾的截面图，其隔离部件
(release member)被部分破坏以显示覆盖层；

图10是图9所述卫生巾的分解图；和
发明详细

本发明的优选实施方案包括吸收制品，特别是卫生巾，它又是薄又有弹性，且可
悬垂，具有卫生巾所需的吸收容量。

根据本发明，发现这种可悬垂的并具有卫生巾所需吸收容量的卫生巾将满足下列
等式之一：

\[AI > 3.3 - 1.2 \ln(BW/MCB) \text{，其中 BW/MCB} \leq 6.8; \] 和

\[AI > 1, \text{其中 BW/MCB} > 6.8. \]

在上述等式中，所定义的变量具有以下含义：

- \(MCB \) = 改进的圆形弯曲劲度 (Modified Circular Bend Stiffness);
- \(BW \) = 物体的基本重量；和
- \(AI \) = 吸收指数 (如下文所定义)。

下面将更加详细地描述对所给吸收制品的上述变量进行计算的方法。

试验过程

为按照这里所述的试验方法测试吸收制品，至少需要六个样品。对于这里进行的
每个试验，吸收制品被测试的部分应该是相同的，即试验样品必须取自每个产品样
品的相应部位。如果产品的任何吸收部分都能满足该测试，则该吸收制品满足这里
所述的测试方法。

测量改进的圆形弯曲劲度 (MCB) 和基本重量 (BW) 的过程

改进的圆形弯曲劲度 (MCB) 是通过根据 ASTM D 4032-82 CIRCULAR BEND PROCEDURE
之后建立的测试方法确定的，所述过程经过重大改进并按上述过程进行。CIRCULAR
BEND PROCEDURE 是一种同时在多个方向上使物体变形的过程，其中，样品的一个表
面凹下而另一个表面凸起。CIRCULAR BEND PROCEDURE 给出了一个与抗弯性有关，同
时平均所有方向上的劲度的力值。

CIRCULAR BEND PROCEDURE 所需的装置是一个改进的圆形弯曲劲度测试仪
(Circular Bend Tester)，它包括一下部分：

1. 一抛光钢板平台，其尺寸为 102.0 毫米 × 102.0 毫米 × 6.35 毫米，具有一个直
径为 18.75 毫米的孔。该孔的连接边缘应呈 45 度角，深度为 4.75 毫米;
2. 一全长 72.2 毫米、直径 6.25 毫米的活塞，活塞有一半径为 2.97 毫米的球鼻（ball nose）以及从其中伸出 0.88 毫米、根部直径为 0.33 毫米的针尖，针尖上有一半径小于 0.5 毫米的点，所述活塞以孔为中心固定且在所有侧都具有相等的间隙。注意，所述针尖仅仅是为防止测试样品在试验过程中发生侧移。因此，如果针尖对测试样品有显著的不良影响（例如刺破可膨胀的结构），则不能使用针尖。活塞的底部应该很好地安置在孔板的顶端之上。从这个位置，球鼻向下运动可准确到达平板上孔的底部；

3. 一测力计，更具体说是 Instron 反向压缩称重传感器（inverted compression load cell）。该称重传感器的负荷范围约为 0.0~2000.0 克；

4. 一促动器，更具体说是具有反向压缩测力传感器的 Instron 1122 型调节器。Instron 1122 由 Instron Engineering Corporation，Canton，Mass 制造。

如上所述，为进行该测试，每个被测制品需要三个代表性的产品样品。要被测试的卫生巾，或其它吸收制品的位置由操作者选区。从三个产品样品中每一个相应的部位切下 37.5 毫米×37.5 毫米的测试样品。在切割测试样品之前需，从产品样品上去除所有隔离纸或包装材料，并用非粘性粉末如滑石等覆盖所有暴露的粘合剂，如定位于外衣的粘合剂。滑石不可影响 BW 和 MCB 的测量。

测试样品不应被试验者折叠或弯曲，对样品的搬动必须尽可能少，而且只能搬动边缘，以避免影响抗弯性。

CIRCULAR BEND PROCEDURE 按如下方式进行。将样品放在温度为 21°C ±1°C 和相对湿度为 50%±2.0% 的条件下调理 2 小时。

每块切割的测试样品的重量以克计并除以因子 0.0014。这是以克为单位的每平方米（gsm）的基本重量。将每个测试样品的 BW 值平均以得到平均基本重量 (BW)。这种平均基本重量 (BW) 可用于上面列出的公式。

测试样品被集中在活塞下的孔板上，这样测试样品朝向身体的一层便面对活塞而样品的屏蔽层就朝向平板。活塞速度被设定为 50.0 厘米/分钟/全冲程。如果需要的话检查并调节指示器零点。启动活塞。在测试过程中应避免接触测试样品。用最接近的克数记录最大的力。重复上述步骤直到所有三个测试样品都被测试。然后将所记录的三个测试值平均，以得到平均 MCB 劲度。平均 MCB 值可用于上面列出的公式。

其余未经测试的样品用于下面的吸收指数测试。

确定吸收指数 (AI) 的过程
为使吸收制品发挥适当的作用，它必需具有良好的吸收特性，以便为使用者提供防止污染衣物和滲漏的保护。吸收制品的“吸收指数”（AI）（如本文所定义的）是物体的液体处理性能的量度。吸收制品的吸收指数（AI）是由两种液体处理性能：再润湿（R）和液体渗透时间（FPT，Fluid Penetration Time）确定的。用于本文的吸收指数（AI）定义如下:

\[
\text{吸收指数 } AI = \left(\frac{6.32 - R}{6.12} \right) + \left(\frac{499 - FPT}{485} \right);
\]

其中

\[
R = \text{再润湿值}
\]

\[
FPT = \text{液体渗透时间}
\]

确定吸收制品再润湿值（R）和液体渗透时间（FPT）的方法如下。需要三个新的产品样品来测试下面所述的再润湿值（R）和液体渗透时间（FPT）。

测量液体渗透时间的方法

液体渗透时间是将被测样品置于液体渗透测试（Fluid Penetration Test）孔板内测量的。孔板由面积为 7.6 厘米×25.4 厘米、厚度为 1.3 厘米厚的聚碳酸酯板构成，板当中有一个椭圆形孔。椭圆形孔的长轴为 3.8 厘米，短轴为 1.9 厘米。孔板被排列在吸收制品相应部位的被测产品样品上，从上述 MCB 测试检测的产品样品中取出 37 毫米×37 毫米的测试样品。椭圆形孔的长轴与被测产品的长轴平行。

测试液体是用下列混合物制造的，用来模拟体液：

- 用 0.9%氯化钠溶液（VWR，编号# VW 3257-7）配制的 49.5%溶液、49.05%甘油（Emery 917）、1%苯氧乙醇（Clariant Corporation Phenoxetol™）和 0.45% 氯化钠（Baker 氯化钠晶体，# 9624-05）。

将含有 7 毫升测试液体的有刻度的 10 cc 注射器放在孔板之上，注射器的出口在孔之间大约 3 英寸。将注射器水平放置，与测试平板表面平行。然后从注射器中推出液体，其速度为使液体以与测试平板垂直的水流流入孔中，当液体第一次接触被测样品时启动秒表。当孔内的液体上面第一次看到样本部分表面时停止秒表。秒表上所计时间就是液体渗透时间。将三个产品样品平均来计算平均液体渗透时间（FPT）。以秒表示的平均 FPT 可用于上面列出的等式。

测量再润湿潜能的过程

用于上述液体渗透时间（FPT）测试的三个产品样品被用于下述再润湿潜能测试。再润湿潜能是当卫生巾含有相对大量的液体并受到外部机械压力时，卫生巾或其
它吸收制品在其结构内保持液体的能力的度量。再润湿潜能是用下述过程确定和定义的。

用于再润湿潜能测试的装置与上述 FPT 测试装置相同，且还包括大量 3 英寸×4 英寸的矩形 Whatman #1 滤纸（购自 Whatman Inc.，Clifton，NJ）以及能够以±0.001 克的精度进行称重的称重器具或天平，Whatman 滤纸和 2.22 千克（4.8 磅）的标准砝码，尺寸为 5.1 厘米（2 英寸）×10.2 厘米（4.0 英寸）×约 5.4 厘米（2.13 英寸），可对 5.1×10.2 厘米（2 英寸×4 英寸）的表面施加 4.14 千帕（0.6psi）压力。

出于这里所述的测试过程的目的，与液体渗透测试所用相同的三个产品样品被用于再润湿潜能测试。当测试液体被施加到上述 FPT 测试的孔板内之后，一旦通过液体的上表面第一次看到卫生巾的覆盖层就启动秒表，测量 5 分钟。

5 分钟后移去孔板并将卫生巾置于一硬水平表面，覆盖层朝上。

在湿的区域放上一叠 15 层的预先称重的滤纸并使其居中，并在滤纸顶端放置 2.22 千克的标准砝码。将滤纸和砝码排列在吸收制品上，这样它们就会集中在施加液体的区域。滤纸和砝码这样排列，使其长轴与产品的纵向相一致。将滤纸和砝码放在产品上之后立即启动秒表，3 分钟后迅速移去标准砝码和滤纸。测量滤纸的湿重并精确到 0.001 克。然后以湿的 15 层滤纸和干的 15 层滤纸的重量差（以克表示）来计算再润湿值。

该测量应至少重复三次，如果需要的话，在每次测量之前应将砝码擦拭干净。然后用三次测量值计算平均再润湿值（R），这种以克表示的再润湿值（R）被用于上面列出的等式。

测量卫生制品厚度的过程

可在此已去除产品样品的所有包装、去除所有隔离纸并用滑石等粉饰产品之后，在上述 MCB 测试之前对三个产品样品进行下面所述的厚度测量过程。对应将进行 MCB 测试的部位进行产品的厚度测量。

本发明所述的吸收制品优选具有小于 2.5 毫米的厚度。测量吸收制品厚度的方法如下所述。

测量卫生巾厚度所需的装置是购自 Ames 的四足刻度（厚度）测规，它在 0.07psig 压力处有一直径 2" 的足，读数精度为 0.001"。优选数字类型的装置。如果卫生巾样品是独立折叠包装的，则用手将样品打开并小心弄平。从产品样品上除去隔离纸并将其小心放回到定位粘胶层之上以免压到样品，确保隔离纸平整地放在样品上。读
取厚度时不考虑侧翼（如果有的话）。

升髙测勀的足并将产品样品置于基准面上，这样测勀的足就基本位于被测产品样品的中心位置。当降低足时必需小心，以防止足落入产品样品中或施加过度的力。对样品施加 0.07 p.s.i.g. 的力并使读数稳定约 5 秒钟。然后读取厚度计。该过程被重复至少三次，然后计算平均厚度。

优选实施方案的描述

参考图 1 和 2，其中展示了本发明的一个实施方案，即妇女用卫生巾 20。

卫生巾 20 具有一主体 22，主体的前部由第一横向侧 26 确定，其后部由第二横向侧 28 确定。主体还具有两个纵向侧，叫做纵向侧 30 和纵向侧 32。卫生巾 20 的厚度优选不超过 2.5 毫米，优选厚度小于 2.0 毫米，更优选小于 1.5 毫米。

卫生巾 20 的纵向中心线 34 是将卫生巾 20 等分成两个相同部分的假想的线。从每个纵向侧 30，32 侧向伸出的设计分别是侧翼 38 和 40。主体 22 还具有与纵向中心线 34 垂直并同时等分侧翼 38，40 的假想的横向中心线 36。

如图 4 所示，主体 22 是一种层状结构，优选包括液体可渗透的覆盖层 42、吸满系统 44 和液体不能通过的屏蔽层 50。吸满系统 44 可包括单层材料或可包括多层。例如，吸满系统可包括单层吸满芯或可包括转移层和吸满芯。

贴身的本发明的实施方案显示在图 7 和 8 中。在图 7 和 8 所示的本发明的实施方案中，仅能确保贴身的卫生巾 20b 附于使用者的身体的粘合剂 33 被施加到覆盖层 42 朝向身体的表面 45。

用于本发明所述吸制品的粘合剂 33 优选含有超过约 50%（重量）的液态增粘剂，更优选超过 65%重量的液态增粘剂，最优选超过 80%（重量）的液态增粘剂。合适的液态增粘剂包括白油、矿物油、石蜡油、聚乙二醇、甘油、聚丙二醇、环烷油和液态多萜。液态增粘剂的分子量优选小于 1000 克/摩尔，更优选小于 750 克/摩尔，最优选小于 500 克/摩尔。

根据本发明涂敷于吸制品的粘合剂 33 优选是嵌段共聚物，更优选包括具有公式 (A-B) x 的线性或星形的共聚物结构，其中，嵌段 A 是聚芳烃乙烯单元，嵌段 B 是聚一链烯基单元，x 表示聚合物臂的数量，其中，x 是大于或等于 1 的整数。合适的嵌段 A 聚芳烃乙烯包括但不限于：聚苯乙烯、聚甲基苯乙烯、聚甲基苯乙烯以及其组合物。合适的嵌段 B 聚一烯链基单元包括但不限于：共轭二烯弹性体，诸如聚丁二烯或聚异戊二烯或最优选氢化弹性体（诸如乙烯丙烯或乙烯丙烯或聚异丁烯）
或其组合物。具体地说，粘合剂包括苯乙烯-丁烯-乙烯-苯乙烯（SEBS）嵌段共聚物和矿物油、液状石蜡或环烷加工油、以及任何粘性树脂包括天然和改性树脂；天然和改性树脂的甘油和季戊四醇；多酚树脂；天然萜烯的共聚物和三聚物；酚改性萜烯树脂及其氢化衍生物；脂肪油树脂及其氢化衍生物；芳香油树脂及其氢化衍生物；和脂肪/芳香油树脂及其氢化衍生物，以及它们的组合物。

粘合剂 33 可以是如 Cinelli 等在专利 No. 6, 191, 189 中所述的类型，该专利被纳入本文作为参考。具体地说，所述粘合剂可包括：

0.5-20%，优选 5%-15%（重量）的在下述增塑剂中可溶或可膨胀的大分子聚合物或这种物质的混合物。这种大分子或聚合物的非限性性的例子可以是天然和/或合成的，如天然树胶和明胶，它们的衍生物和酸盐；聚丙烯酸酯；聚乙烯醇；聚环氧乙烷；聚乙烯吡咯烷酮（PVP）或聚乙烯醚，它们的共聚物和衍生物；纤维素衍生物；嵌段共聚物热塑性弹性体，优选苯乙烯的嵌段共聚物，更优选氢化等级的苯乙烯/乙烯-丁烯/苯乙烯（SEBS）、苯乙烯/异戊二烯/苯乙烯（SIS）和苯乙烯/乙烯-丙烯/苯乙烯（SEPS）；

45-99.5%（重量），优选 51-99.5%重量的增塑物质或增塑物质的混合物，它们在室温下是液体。增塑剂的非限性性例子可以是水、各种醇（尤其是甘油）、乙二醇以及它们的醚，聚乙二醇，液态聚丁烯，酯类如邻苯二甲酸酯、己二酸酯、硬脂酸酯、棕榈酸酯、癸二酸酯或肉豆蔻酸酯，天然或合成的油如植物油、矿物质及其组合；

0%-50%（重量）的组合物，优选 0-600%（重量）的大分子增粘树脂聚合物，其主要目的是设计 Tg，尤其是在基于合成聚合物的系统中；

0-10%，更优选 0-5%（重量）的有益于稳定凝胶和凝胶形成过程的亲水性或疏水性液体增塑剂。它们可用于油性系统，例如 C₈-C₂₂ 脂肪酸，它们的金属盐和它们的多氧（polyoxo）衍生物；羊毛脂衍生物；硅石；膨润土；蒙脱土以及它们的衍生物；聚酰胺、蜡或其衍生物。

所述粘合剂可以是如 Zacharias 等的美国专利 No. 6, 213, 993 中所描述的类型，该专利被纳入本文作为参考。具体地说，所述粘合剂可包括：

橡胶基粘合剂，如苯乙烯丁二烯、聚异丁烯、聚丁二烯和聚异戊二烯；水溶性粘合剂，如聚乙烯醇、聚乙酸乙烯酯和甲基纤维素；热熔性粘合剂，如苯乙烯-丁二烯-苯乙烯、苯乙烯-异戊二烯-苯乙烯、苯乙烯-乙烯-丙烯-苯乙烯、苯乙烯-乙烯丁烯-苯乙烯的嵌段共聚物，以及四嵌段共聚物，如苯乙烯-乙烯丙烯-苯乙烯-乙烯丙烯。可在增粘性树脂和合适的油类中加入粘合剂。
这里的其它粘合剂类型包括美国专利 No. 4, 303, 066 中所述的由 2-羟乙基甲基丙烯酰胺聚合物、聚乙烯醇和任选的水构成的无水凝胶，以及如美国专利 No. 4, 661, 099 所述的聚氨酯凝胶，或市售的含有硅胶的产品，如 Wacker Silicones (Adrian, MI) 的 Silgel 612 或 SSA-9700 Soft Skin Adhesives Dow-Corning (Midland, MI)。

粘合剂 33 在使用前被可除去的隔离部件 47 覆盖。所述隔离部件 47 可包括单层结构或双层结构。例如，隔离部件可由购自 Loparex Inc. (Willowbrook, IL) 的 POLY SLIK® 纸构成。隔离部件 47 的内表面由隔离涂层 53 提供以便于在使用前除去隔离部件 47。隔离部件 47 这样安置，在除去隔离部件 47 之前，使涂层 53 与粘合剂 33 相邻。隔离涂层 53 可以是基于聚二甲基硅氧烷（通常被称为“硅酮”）的物质。

在使用前，使用者从吸收制品 22 上除去可除去的隔离部件 47，以露出粘合剂 33。然后使用者将吸收制品置于身体的所需部位，优选吸收制品主要集中在阴道开口处，然后从屏障层 50 朝向衣服的表面挤压吸收制品 22，以确保吸收制品贴在身体上。

第二种贴身的本发明的实施方案显示在图 9-11 中。在图 9-11 所示的本发明的实施方案中，标出了卫生巾 20c 的屏障层 50 的尺寸，因此它的一个部分 61 延伸到覆盖层 42 的外边缘 63 之外。使吸收制品与身体接触的粘合剂 33 被施加到屏障部分 61 朝向身体的表面 65 上。卫生巾 20b 上有可除去的隔离部件 47，以在使用之前覆盖粘合剂 33。如图 5 所示，隔离部件 47 的形状可延伸到覆盖层 42 屏障部分 61 的整个表面上。或者，可除去的隔离部件 47 可以是椭圆形（未显示），这样隔离部件 47 的形状便与屏障部分 61 相一致，并具有一个与覆盖层 42 的形状相对应的中央开放区（即中间的椭圆形开口）。

主体一覆盖层

覆盖层 42 可以是密度较低、高度膨松的大块无纺网状材料。覆盖层 42 可以仅由一种纤维构成，如聚酯或聚丙烯，或者可包含一种以上纤维的混合物。覆盖层可由含有低熔点组分和高熔点组分的双组分或复合纤维构成。所述纤维可选自各种天然物质和合成物质，如尼龙、聚酯、人造丝（与其它纤维组合）、棉、丙烯酸纤维等以及它们的组合。优选地，覆盖层 42 的基本重量范围为约 10 gsm 至约 75 gsm。

双组分纤维可由聚酯层和聚乙烯外层制成。使用合适的双组分物质将得到可熔的无纺纤维。这种可熔纤维的例子见述于 Chicopee 于 1985 年 11 月 26 日提交的美国专利 No. 4, 555, 430 中。使用可熔纤维将便于将覆盖层固定到吸收层和/或屏障层上。

优选覆盖层 42 具有较高可润湿性，尽管组成覆盖层的各纤维可以不是特别亲水
的。覆盖层材料也应该含有许多较大的孔。这是因为覆盖层可以迅速吸收制品液并将体液从身体运送至浸渍点。因此，覆盖层有助于缩短卫生巾吸收所给液体的时间（渗透时间）。

有利的是，构成覆盖层 42 的纤维在被润湿时不会丧失其物理特性，换句话说，当它们接触水或体液时不会皱缩会使其回弹力。覆盖层 42 可经过处理，以使液体容易通过。覆盖层 42 还具有将液体迅速转移到吸收系统 44 中其它各层的作用。因此，覆盖层 42 最好是可润湿的、亲水的和多孔的。当由聚酯或双组分纤维等构成合成疏水纤维时，可用表面活性剂处理覆盖层 42，以得到所需程度的可湿性。

在本发明的一个优选实施方案中，覆盖层是用含有约 0-100%聚酯和约 0-100%人造丝的水刺无纺材料制成的。所述水刺无纺材料也可用约 10%-65%的人造丝和约 35%-90%的聚酯制成。也可用聚乙烯、聚丙烯或纤维素纤维代替聚酯和/或与其组合，与人造丝一起使用。任选地，用于覆盖层的材料包括热塑性粘合剂和乳胶粘合剂等粘合剂。

或者，覆盖层 42 也可用具有大孔的聚合物膜制成。由于孔隙率高，该膜具有将体液迅速转移到吸收系统内层的作用。如美国专利 No. 4,690,679 所述的有孔的共挤出膜以及由 Johnson & Johnson Inc. (Montreal, Canada) 出售的卫生巾可作本发明的覆盖层。

覆盖层 42 还可被压花到吸收系统 44 上，以将覆盖层融合到下面的层，从而提高亲水性。这种融合可以是局部的，在覆盖层 42 的吸收系统 44 的许多位点上或整个接触表面上。或者，可通过粘合等其它方法将覆盖层 42 附加到吸收系统 44 上。

主体—吸收系统

吸收系统 44 可包括单层材料或可包括多个层。在一个实施方案中，吸收层 44 是纤维素纤维和分布在纸浆纤维内和之间的超吸收制品（superabsorbent）的混合物。

可用于吸收系统 44 的纤维素纤维是此领域熟知的，包括木浆、棉、亚麻和木炭酸。优选木浆。纸浆可从机械的或化学-机械的、亚硫酸盐、牛皮浆、制浆废弃物、有机溶剂浆等获得。针叶木和阔叶木都是有用的。优选针叶木浆。不需要用现有技术中使用的化学脱胶剂、交联剂等来处理纤维素纤维。如 US 5,916,670 所述，可对部分纸浆进行化学处理以改善产品的柔性。可对材料进行机械处理或将材料软化来改善材料的柔性。吸收系统 44 可包含任何超吸收聚合物（SAP），SAP 是此领域熟知的。出于本发明的目的，术语“超吸收聚合物”（或“SAP”）是指在 0.5psi 的压力下能
够吸收并保留至少约为其 10 倍重量体液的物质。本发明的超吸收聚合物颗粒可以是无机或有机交联的亲水聚合物，如聚乙烯醇、聚环氧乙烷、交联淀粉、瓜尔胶、黄蓍胶等。所述颗粒可以粉末、颗粒、小颗粒或纤维形式存在。用于本发明的优选的超吸收聚合物颗粒是交联聚丙烯酸酯，如由日本大阪的 Sumitomo Seika Chemicals Co., Ltd. 提供的名为 SA70N 的产品和由 Stockhausen Inc. 提供的产品。

在具体的实施例中，吸收系统 44 是含有约 90%-40%纤维素纤维、约 10%-60% SAP 的物质，且基本上不含乳胶之类的粘合剂材料。优选这种物质是选择性压花的，这样它就具有密度相对较高和较低的区域。具体地，优选将该物质压花，以使其具有密度大于第二区域的第一区域，其中所述第一区域约占该物质表面积的 20%-60%，而所述第二区域约占该物质表面积的 40%-80%。优选地，所述第一区域的密度大于 0.3 g/cc，而第二区域的密度为约 0.07-0.25 g/cc。优选该物质的基重量约为 50gsm-600gsm。该物质还可在其任一表面包含一载体层。

吸收系统 44 可含有通过此领域熟知的气流成网法制造的材料。在一个具体的实施方案中，吸收系统 44 是用纤维素纤维、粘合剂材料以及无法连接其它组分的组分（非粘性材料）制造的气流成网材料。粘合剂材料可包括乳胶粘合剂、热塑性颗粒或纤维、粘胶或双组分纤维，非粘性材料可包括 SAP 和/或在处理温度下不会熔接或键合的合成纤维。优选地，该物质包含少于 50%的纤维素纤维，少于 20%的粘合剂材料以及大于 30%的非粘性材料。该物质的基本重量优选为约 50 gsm-600 gsm，且密度为约 0.03 g/cc-0.2 g/cc。

在另一个具体的实施方案中，吸收系统 44 仅由沉积在覆盖层和屏障之间的 SAP 粉末构成。通常可将压敏粘胶如获自 Fuller Corporation 的 Fuller 1491 涂布到屏障的内表面以将 SAP 粉末保持在原位。发现吸收速度非常快的 SAP，如 Sumitomo J550（Sumitomo Seika Chemical Companies Ltd., Osaka, Japan）特别适合。对于这种结构，SAP 层最好基本上是均匀的，其基本重量至少为 50 gsm，并优选在 100 和 150 gsm 之间。

在这种仅含 SAP 的实施方案中，合适类型的 SAP 的吸收性在 1 分钟后至少为 20 g/g（“吸收速度”），总容量至少为 40 g/g（“总容量”）。该值基于 0.01psi 的压力下在 GAT（重量吸收检测仪）装置内对 0.9%盐水溶液的吸收。对 GAT 设备的详细描述见 Mcconell 的美国专利 No. 4,357,827，该专利被纳入本文作为参考。GAT 系统获自 M/K Systems, Danners, Ma。用来确定 SAP 吸收值的上述测试方法的详细描述如下。

首先用 100 目的筛子来筛分 SAP，以分离留在 100 目筛上面的 SAP，通过这种方
法制备用于测试的 SAP。

调节 GAT 装置的测试池 (test cell) 使其比液体贮槽的平面高出 1 厘米。将 Whatman GF/A 滤纸置于 GAT 装置的测试池顶端，该测试池含有一多孔平板。滤纸的作用是确保测试液连续流入 SAP 中。

测试室由一个内径为 1 英寸的树脂玻璃试管构成，该试管有一个第一开口端和一个被 100 目金属筛覆盖的第二端。将 0.10 克 SAP 粉末从金属筛顶端装入测试室中，SAP 的这一重相当于 200 gsm。将一 4.4 克的被机械加工得刚好能放进玻璃管但不会和管壁粘在一起的树脂玻璃球 (plexiglass puck) 放在粉末顶端，以提供 0.01psi 的标称重量。

测试室被置于滤纸顶端以使筛子的外表面与放在 GAT 测试池中的滤纸邻接。该测试进行 60 分钟，每 15 秒钟通过计算获取被吸收的液体量的数据。通过将 g/g 容量对时间作图，可得到 SAP 样品的吸收曲线。“吸收速度”在这里表示每克基重在 1 分钟后吸收的液体的量，“总容量”在这里表示每克基重在 60 分钟后吸收的液体的量。

如上所述，对用于上述测试的相同类型的 SAP 进行了第二个实验。然而，在第二个试验中，将 0.50 克 SAP 粉末从金属筛顶端装入测试室中，SAP 的这一重相当于 1000 gsm。如上所述进行第二个测试，并将 g/g 容量对时间作图，得到第二个吸收曲线。

从 0.10 克 SAP 测试 (即第一个试验) 测得的总容量和从 0.50 克 SAP 测试 (即第二个试验) 测得的总容量是可比的。用每克基重上 0.50 克样品的总容量与每克基重上 0.10 克样品的总容量的比值确定了“凝胶阻塞比 (gel blocking ratio)”。用于本发明的 SAP 的“凝胶阻塞比”至少为 0.50。

吸收系统 44 可以与覆盖层和/或屏障整合在一起，这样实际上只有单层结构或双层结构，它们具有本文所述多个层的功能。

主体-屏蔽层

吸收层 44 下面是屏蔽层 50，它含有使液体不能透过膜材料以防止吸收系统 44 内的液体流出卫生巾并污染使用者的内衣。屏蔽层 50 优选由聚合膜制成，但它也可由液体无法透过但空气可透过材料制成，如经过防水处理的无纺布或微孔膜或泡沫。

定位粘合剂 58 可被施加到屏蔽层朝向衣服的一侧，以确保卫生巾 20 在使用过程中附在衣服上。定位粘合剂 58 可被可除去的隔离纸 60 覆盖，这样定位粘合剂在使
用前被可除去的隔离纸 60 覆盖。

屏蔽层可以是透气的，即可使蒸汽蒸发。用于这种目的的已知材料包括无纺材料和微孔膜，其中特别通过拉伸和定的膜产生了微孔。可通过弯曲通道和/或其表面具有排斥液体的特性的单层或多层可渗透的膜、纤维、熔喷材料（melt-blown material）及其组合也可用作可呼吸的背衬。覆盖层 42 和屏蔽层 50 可沿着它们的边缘部分结合在一起从而形成一种密封结构或法兰密封，它可将吸收层 44 包围在里面。可通过粘合、热粘合、超声粘合、高频密封、机械卷曲等方法或这些方法的组合来形成接缝。

主体-加固层（stabilizing layer）

如图 5 和 6 所示，卫生巾 20 还可任选具有放置在覆盖层 42 和屏蔽 50 之间的加固层 52。加固层 52 可安置在吸收系统 44 和覆盖层 42 之间，或者它可被安置在吸收系统 44 和屏蔽 50 之间。加固层 52 可以使卫生巾在该区域具有较高的抗弯性（MCB）。加固层 52 可以增强该区域卫生巾 20 的结构完整性，同时还可使卫生巾具有“可悬垂”性质。

加固层 52 的长度 L1 最好小于吸收系统 44 的长度 L2。这样，卫生巾通常就具有在加固层 52 之外的第一部分 54 和在加固层 52 之内的第二部分 56。加固层 52 的材料是经过精心选择的，这样卫生巾 20 在加固层 52 之内的部分（即在第二部分 56 内）的抗弯性（MCB）就大于加固层 52 之外的第二部分（即在第一部分 54 内）。

因此，卫生巾将至少具有加固层 52 范围之外的第一 MCB 值和加固层 52 范围之内的第二 MCB 值。优选第二 MCB 值至少为 400 g。可用上文“测量改进的弯曲曲线弯度（MCB）和基本重量（BW）的过程”中所述相同的方法来计算第一部分 54 和第二部分 56 的 MCB 值。

加固层 52 的宽度 W1 最好经过选择，以使其与吸收系统 44 的宽度 W2 相同。优选加固层的长度 L1 至少为 37.5 毫米，宽度 W1 至少为 37.5 毫米。

如果加固层 52 在覆盖层 42 和吸收系统 44 之间，则加固层 52 所含的材料应该经过选择，以使液体容易到达吸收系统 44。例如，加固层 52 可含有包含合成纤维和/或纤维素纤维的混合物的无纺材料。合适的具体物质是精通此领域的技术人员熟知的。

如果加固层 52 在吸收系统 44 和屏蔽 50 之间，则加固层所含的材料可以是让液
体无法通过的。此时，加固层 52 可帮助屏障 50 防止液体从吸收制品中逃离。

或者，如果加固层在吸收系统 44 和屏障 50 之间，则加固层所含的材料可以是作为第二核心的吸收制品。例如，加固层 52 可含有包括纤维素纤维和 SAP 的混合物的无纺材料。

最后，加固层 52 可被置于屏障的外表面。此时，加固层所含的材料最好是液体无法透过的，因此可作为第二屏障。

覆盖层、吸收层、转移层、骨衬层以及粘合剂层中任一层或所有的层都可被染色。这种颜色包括但不限于白色、黑色、红色、黄色、蓝色、橙色、绿色、紫色或它们的组合。根据本发明，可通过染色、着色和印刷来形成颜色。根据本发明，所用着色剂包括染料以及无机和有机颜料。所述染料包括但不限于蒽醌染料 (Solvent 红 11, Disperse 紫罗兰 1, Solvent 蓝 56 和 Solvent 绿 3)、占吨染料 (Solvent 绿 4，酸性红 52，基本红 1 和 Solvent 橙 63)、吖啶染料（烟黑）等。无机颜料包括但不限于二氧化钛（白色）、炭黑（黑色）、氧化铁（红、黄和褐色）、氧化铬（绿色）、铁氨亚铁氰化物（蓝色）等等。

有机颜料包括但不限于二芳基黄 AAOA （颜料黄 12）、二芳基黄 AAOT（颜料黄 14）、酞菁蓝（颜料蓝 15）、立索红（颜料红 49：1）、红色淀 C（颜料红）等等。

吸收制品可包括其它已知材料、薄层和添加剂，如泡沫、网状材料、香料、药物或药剂、润湿剂、气味控制剂等。吸收制品可任选经过压花形成装饰图案。

未包装的吸收制品可包装在纸箱、盒子或袋子内。消费者在需要时，取出来即可使用吸收制品。吸收制品也可独立包装（每个吸收制品都被包装在一个外包装内）。

这里还包括具有平行纵向边缘的不对称和对称的吸收制品、狗骨形或花生形的吸收制品，以及与 T 形内衣一起使用的锥形吸收制品。

通过上述描述，精通此领域的技术人员可确定本发明的必要技术特征，并在不背离本发明精神和范围的情况下，可作出变化和改进。实施方案仅是为了阐述而不是要限制在实践本发明时可能的各种变化。

本发明的样品

本发明的样品有一个双层底刺无纺覆盖层，它具有由 PET 纤维构成的朝向身体的顶层（56 gsm）和人造丝底层（19 gsm）。位于覆盖层正下方的吸收层由两面的湿法
成网(wetlaid)织物载体(每平方米基重为 17 克，由 Cellu Tissue Holdings Inc., East Hartford Ct. 制造)构成，各层之间放置木浆、聚酯纤维和放在各层之间的 Sumitomo SA70 SAP 的混合物。纸浆是用牛皮纸浆工艺制造的经过漂白的针叶木浆。大约 20%的纸浆被丝光处理。所有成分的基本重量为 250 gsm，并含有 40%超吸收制品(Sumitomo SA70)和 6%聚酯人造短纤维(3.0 DPF×1.5”英寸长, KOSA #611153, Salisbury, North Carolina)。制造这种材料的气流成网机(airlaid machine)由拆卷机、锤磨机、气成网成型头、SAP 分配器以及具有压花辊筒和平板支承辊的热砑光机(heated calendering station)组成。在气成网成型室中与 SAP 和 PET 纤维混合的短纤浆在强真空下被塑造到第一载体织物上。在该复合材料到达砑光机之前从顶端加入另一种织物。然后在平板支承辊和压花的砑光辊之间砑光。砑光机的花纹由钻石形矩阵构成，钻石花纹之间有高度为 0.075” 的线条。钻石花纹的长轴为 0.325” 短轴为 0.201”。钻石花纹之间有 0.046”的间隔。热压花砑光后，钻石花纹之间压花区域的密度约为 0.4 g/cc，而钻石形凸起区域的密度为 0.15 g/cc。吸收层之下的屏障膜是由 Pliant 公司制造的 0.9 密耳聚乙烯膜 Pliant #3492A。朝向吸收层的屏障表面施加有 5.9 毫克/平方英寸 Fuller 1023 粘合剂，以将产品组合在一起。朝向吸收制品的覆盖层表面施加有 2.6 毫克/平方英寸 Fuller 1023 粘合剂。朝向衣服的屏障表面涂布有 20 毫克/平方英寸将其贴到内裤上的压敏粘合剂 Fuller 1417。

本发明的样品 2 具有由 Pliant 公司制造的 0.9 密耳聚乙烯膜 Pliant #3492A 和施加到朝向覆盖层的隔离层表面的 5.9 毫克/平方英寸的 Fuller 1023 粘合剂。1.2 克 Sumitomo J550 超吸收聚合物粉末被均匀洒到位于屏障膜中央的 50 毫米×172 毫米的矩形区域，这样 SAP 粉末将通过粘合剂在原地发挥作用。30 gsm 热粘合聚丙烯覆盖层(#65130，获自 Polymer Group Inc. Charleston, SC)被置于 SAP 和屏障膜之上。在朝向 SAP 的覆盖层上有 2.6 毫克/平方英寸 Fuller 1023 粘合剂以将其连接到 SAP 和屏障膜上。屏障膜上的覆盖层延伸出含有 SAP 的区域约 10 毫米并相互闭合。朝向衣服的屏障表面涂布有 20 毫克/平方英寸将其贴到内裤上的压敏粘合剂 Fuller 1417。

对比样品#1 Carefree Perfect Fit Pantiliner
对比样品#2 Kotex Lightdays Pantiliner
对比样品#3 Always Ultrathin Sanitary Napkin
对比样品#4 Stayfree Ultrathin Overnight Sanitary Napkin
对比样品#5 Libra Invisible Sanitary Napkin (Australia)
对比样品#6 Carefree Ultra Dry Pantiliner

按照这里所述的测试方法来测试上述本发明的样品和对比样品，试验结果列在下表中。

<table>
<thead>
<tr>
<th></th>
<th>基本重量 (gsm)</th>
<th>MCB (g)</th>
<th>厚度 (mm)</th>
<th>BW/MCB (1/㎡)</th>
<th>再润湿 (g)</th>
<th>FPT (s)</th>
<th>AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>本发明的样品1</td>
<td>419</td>
<td>101</td>
<td>2.3</td>
<td>4.15</td>
<td>1.75</td>
<td>17.91</td>
<td>1.71</td>
</tr>
<tr>
<td>本发明的样品2</td>
<td>330</td>
<td>114</td>
<td>1.7</td>
<td>2.89</td>
<td>1.28</td>
<td>41.16</td>
<td>1.74</td>
</tr>
<tr>
<td>本发明的样品3</td>
<td>256</td>
<td>12.1</td>
<td>1.2</td>
<td>21.16</td>
<td>.41</td>
<td>93.44</td>
<td>1.78</td>
</tr>
<tr>
<td>本发明的样品4</td>
<td>260</td>
<td>62</td>
<td>1.43</td>
<td>4.19</td>
<td>4.38</td>
<td>24.35</td>
<td>1.27</td>
</tr>
<tr>
<td>对比样品1</td>
<td>116</td>
<td>20</td>
<td>.85</td>
<td>5.80</td>
<td>6.27</td>
<td>499.88</td>
<td>0</td>
</tr>
<tr>
<td>对比样品2</td>
<td>234.66</td>
<td>131.28</td>
<td>2.0</td>
<td>1.79</td>
<td>5.575</td>
<td>17.96</td>
<td>1.09</td>
</tr>
<tr>
<td>对比样品3</td>
<td>292</td>
<td>247</td>
<td>2.55</td>
<td>1.18</td>
<td>.05</td>
<td>5.8</td>
<td>2.0</td>
</tr>
<tr>
<td>对比样品4</td>
<td>306</td>
<td>433</td>
<td>2.69</td>
<td>.71</td>
<td>.15</td>
<td>4.96</td>
<td>2.0</td>
</tr>
<tr>
<td>对比样品5</td>
<td>569</td>
<td>475</td>
<td>3.01</td>
<td>1.2</td>
<td>.307</td>
<td>5.55</td>
<td>1.97</td>
</tr>
<tr>
<td>对比样品6</td>
<td>351</td>
<td>112</td>
<td>3.32</td>
<td>3.13</td>
<td>1.21</td>
<td>7.1</td>
<td>1.82</td>
</tr>
</tbody>
</table>

图12所示的上表列出的本发明的样品满足下列等式之一：

\[\text{AI} > 3.3 - 1.2 \ln (\text{BW/MCB}), \quad \text{其中} \quad \text{BW/MCB} \leq 6.8; \quad \text{和} \]

\[\text{AI} > 1, \quad \text{其中} \quad \text{BW/MCB} > 6.8. \]

图12还显示了对比样品以进行比较。
测量平均吸收容量（AC）的过程

还对本发明的样品产品1-4和对比样品产品1-6进行了测试以确定产品的平均吸收容量（AC）。确定平均吸收容量（AC）的测试方法如下。

至少需要三个新的产品样品来进行下面所述的平均吸收容量测试。

平均吸收容量测试是在切自产品样品的37.5×37.5平方毫米的测试样品上进行的。切下的37.5×37.5平方毫米的测试样品取自相应的样品部位。这些部位与取自用于上述MCB和AI测试的样品的那些样品相同。

测试之前，通过双组分纤维的气流粘合网从重量轻的无纺布（如每平方码0.7盎司）构建至少6个60×60平方毫米的包封。无纺材料的合适例子有PGI #4128。可将120×60平方毫米的切片折叠并热封边缘以形成包封，将样品包在里面。也可使用其它包封结构，只要它们在该测试的浸没部分中不会妨碍样品对试验液体的吸收，并且在滴漏部分中不会妨碍滴落即可。

不含测试样品的包封被浸入盐水溶液（0.9%）15分钟，然后挂起使盐水自由滴落12分钟。然后测定包封的湿重，精确到0.01克。对三个包封样品进行这一过程并确定包封的平均湿重。

开始测试之前，先测量三个干的37.5毫米×37.5毫米测试样品各自的重量。

将37.5毫米×37.5毫米测试样品插入干的包封并将包封浸入盐水溶液（0.9%）15分钟，然后挂起，使盐水自由滴落12分钟。然后测定包封和测试样品的湿重，精确到0.01克。然后将测试样品的干重和包封的平均湿重相减以得到测试样品的吸收容量。对三个37.5毫米×37.5毫米测试样品重复该过程，将吸收容量平均以得到以克表示的平均吸收容量（AC）。下表给出了本发明的样品产品1-4和对比样品产品1-6中每一个的平均吸收容量（AC）。
<table>
<thead>
<tr>
<th></th>
<th>吸收容量 (g) (AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>本发明的样品 1</td>
<td>12.24</td>
</tr>
<tr>
<td>本发明的样品 2</td>
<td>9.52</td>
</tr>
<tr>
<td>本发明的样品 3</td>
<td>10.61</td>
</tr>
<tr>
<td>本发明的样品 4</td>
<td>4.82</td>
</tr>
<tr>
<td>对比样品 1</td>
<td>.95</td>
</tr>
<tr>
<td>对比样品 2</td>
<td>2.67</td>
</tr>
<tr>
<td>对比样品 3</td>
<td>5.32</td>
</tr>
<tr>
<td>对比样品 4</td>
<td>9.63</td>
</tr>
<tr>
<td>对比样品 5</td>
<td>8.44</td>
</tr>
<tr>
<td>对比样品 6</td>
<td>11.32</td>
</tr>
</tbody>
</table>

如上所述并参考图 5 和 6，逐一制备上述不含加固层 52 的本发明的样品。然而，上述每个本发明样品也可含有这样的加固层 52。例如，下面详细描述的本发明的样品 3 含加固层 52。

本发明的样品 3

本发明的样品 3 具有与上述本发明的样品 1 相同的结构，但在屏障和吸收层之间还具有一加固层。加固层是由 102 gsm 水刺聚丙烯 (购自 BBA Fiberweb Filtration, 商品名为 Typar/Tekton Filtration Grade Sponbonded Polypropylene Style Number 3301N)。加固层的大小约为 40 毫米×40 毫米，且加固层被置于产品中央。

对本发明的样品 3 进行测试，以确定加固层区域和加固层之外的区域的 MCB 值。计算出加固层之外的区域的 MCB 值为 101 克，而加固层区域的 MCB 值为 400 克。

本发明的样品 4

通过在覆盖层朝向身体的表面施加合适的粘合剂，可从上述本发明的样品 3 构建一种可附于身体的本发明的实施方案。特别可将热熔性粘合剂 (Derma-tak 34-154B, 购自 National Starch and Chemical Co., Bridgewater, NJ) 施加到覆盖层朝向身
体的表面，整个覆盖层表面的施加量为 80 gsm。

本发明的样品 5
通过在覆盖层朝向身体的表面施加合适的粘合剂，可从上述本发明的样品 1 构建另一种可附于身体的本发明的实施方案。特别可将热融性粘合剂 (Derma-tak 34-154B, 购自 National Starch and Chemical Co., Bridgewater, NJ) 施加到覆盖层朝向身体的表面，整个覆盖层表面的施加量为 80 gsm。

尽管上面已经描述了贴身的本发明的实施方案的具体例子，但通过在上述本发明的实施例 1-4 的朝向身体的表面施加合适的粘合剂，可构建其它实施例。

就本发明所述的上述吸收制品而言，提供了具有极好的液体处理性能、高度可弯曲、可悬垂的吸收制品。

本发明所述用于卫生巾和其它卫生保健的吸收制品的申请可通过精通此领域的技术人员已知的或可预测的任何卫生保护、失禁、药物、吸收方法和技术来实现。因此，本申请包括本发明的改进和变化形式，只要这些改进和变化形式在附加的权利要求及其等价变化的范围之内。
图 12