(19)

US 20070297327A1

a2y Patent Application Publication o) Pub. No.: US 2007/0297327 A1l

United States

Strom

43) Pub. Date: Dec. 27, 2007

(54)

(735)

METHOD FOR APPLYING STOCHASTIC
CONTROL OPTIMIZATION FOR
MESSAGING SYSTEMS

Robert Evan Strom, Ridgefield,
CT (US)

Inventor:

Correspondence Address:

DUKE W. YEE

YEE & ASSOCIATES, P.C., P.O. BOX 802333
DALLAS, TX 75380

Publication Classification

(51) Int. CL

HO4L 12/26 (2006.01)
(G N VST o) K 370/230
(57) ABSTRACT

A computer implemented method, apparatus, and computer
usable program code for controlling when to send messages
in a stream processing system. A policy is determined by
utilizing probability statistics and a cost function prior to
stream processing. The policy specifies under which condi-
tions a message is sent eagerly and under which other
conditions the message is delayed. A filter is operated during

(73) Assignee: ICn(:::H(::;it(i)gzl miolﬁkssg[; E{}lg)e s stream processing that selects which of the messages to send
P ’ ’ from a sending transform based upon a threshold. A con-
troller is operated during stream processing that observes a
(21) Appl. No.: 11/475,708 current state of a receiving transform and that applies the
policy based on the current state to determine whether to
(22) Filed: Jun. 27, 2006 change the threshold.
'1/400
ALGORITHM
1414 1404
PROBABILITIES A 4
1410 1408
/
P{P9:P3.Py STATE TRANSITION
Ppatch (T.T.b) PROBABILITIES Pij (u)
1402
CONVERT TO OPTIMUM
MARKQOV MODEL STATIONARY .
POLICY: JI(S
WITH COSTS POLICY ®)
FOR SOLVER SOLVER
Cmen'
msg COSTS g(i,u)
Cdelay
N
1412 1406

COST FUNCTION

Patent Application Publication Dec. 27,2007 Sheet 1 of 9 US 2007/0297327 A1

100
B FIG. I ¥ o
104\1
102 SR
= |_ CLIENT
;ERVER NETWORK 112
EREN
106~ CLIENT
— P14
SERVER STORAGE
CLIENT
108
FIG. 2
206~ PROCESSING
UNIT 200
et
210 202 208 216 236
\ N / / /
GRAPHICS MAIN AUDIO
PROCESSOR [<—>1 NBMCH K= \iEMoRy aDAPTER | | SO
204
240 \ 238
BUS BUS ~
W T ﬂ ﬂ / ﬂ ﬂ lf
KEYBOARD
USB AND
NETWORK PCI/PCle AND
DISK | |CO-ROM | A paPTER gg:?g pevices | | mouse | | MODEM | | ROM
ADAPTER
/ / / / \ N \

226 230 212 232 234 220 222 224

Patent Application Publication Dec. 27,2007 Sheet 2 of 9

300
N \V
3

310

US 2007/0297327 Al

0 312 '

322 324
| !
326 328
A A 318 320
FIG. 3 |
;00
402~ NEW TROUBLE REPORTS SOLVED REPORTS |~ 404
<id, device, severity> <id>
- ' t
406~ UNSOLVED TROUBLE REPORTS

<id, device, severity>

!

TOTAL SEVERITY GROUPED BY DEVICE
408 -1 <device, totalSeverity >

!

~ TOP 10 DEVICES
410 <device, totalSeverity >

FIG.4

US 2007/0297327 Al

Dec. 27,2007 Sheet 3 of 9

Patent Application Publication

S DIH
174
\ 905
< A)119A3SR10] ‘321N >
S30IA3Q 01 dOL
[§ A
< A}119Aag R0} '92IASD > < A11aA3S|R)0] ‘B01ABp >
¢2S 7| 301A30 A8 3dNOYD ALIMIAIS V101 30IAIA A9 03dNOYD ALIYIATS V1oL [VIS
A A
< A11J3ASS ‘901A3D ‘pI> < A)113A3S ‘32IA8p ‘pI>
0251 s140d34 319N0YL QIATOSNN S140d3Y 319N04L INTOSNN [21§
[[§ A f
<pi> <A)11aAas ‘301A3p ‘pI> <pi> <A)1aA3s ‘801A9D ‘PI>
S1H0d34 03A10S S140d34 318N0HL M3IN S1HOd3Y GIN10S S140d3d 319N0YHL MIN
4 ’ N N
816G 705 916 0LS 205 806

v/

00G

Patent Application Publication

602

Dec. 27,2007 Sheet 4 of 9

US 2007/0297327 Al

600

{/

604
sl

612
N

614
V

TOTAL SEVERITY
GROUPED BY DEVICE
<device, totalSeverity >

TOTAL SEVERITY
GROUPED BY DEVICE
<device, totalSeverity >

!

PROPAGATE IF
totalSeverity >T

m—————"

616

[

PROPAGATE IF
totalSeverity >T

A N
/ / 618

L

608

TOP 5 DEVICES
<device, totalSeverity>

610

)
_d

FIG. 6

!

RECEIVE MESSAGES DESTINED FOR
THE DOWNSTREAM TRANSFORM
FROM THE UPSTREAM TRANSFORM

702 ~

704

DOES
THE NEW
VALUE OR THE OLD VALUE
EXCEED THE STORED
THRESHOLD

PROPAGATE UPDATE MESSAGE
TO DOWNSTREAM TRANSFORM

706"

[

MESSAGE
SUPPRESSED

N
708

FIG. 7

Patent Application Publication

(START)

"

02 RECEIVE NEW THRESHOLD MESSAGE
802~ FROM CONTROLLER TO CHANGE THE
THRESHOLD FROMTTO T

804
FALSE

TRUE

PROPAGATE ALL TUPLES
REQUIRED TO BE PROPAGATED
UNDER THE NEW THRESHOLD

806

-

Y
REPLACETWITHT'
I

FIG. 8

808

STATE DIAGRAM
900

QUADRANT A
902

<M,T>(M=K)

0000

MMo000---0

Dec. 27,2007 Sheet 5 of 9

US 2007/0297327 Al

QUADRANT B
904

<M, Tt>(M<K)

o000
O00-°°-0

0000
00020

<MTTw>(M=K)

QUADRANT C
906

OO0O00O
O00-°°-0

<M,T.Tw,it>(M<K)

QUADRANT D
908

Patent Application Publication Dec. 27, 2007 Sheet 6 of 9 US 2007/0297327 A1

(_ START)

Y

1002~ PERFORM ALL ONCE
PER TICK UPDATES
A
1004 PERFORM STATE UPDATES
| ASSOCIATED WITH ANY MESSAGES
RECEIVED DURING THE TICK

Y

COMPUTE AN ACTION BASED
1006-"] ON THE STATE AND POLICY

Y

EXECUTE THE
10081 THRESHOLD IF REQUIRED
BY THE ACTION TO DO SO
v
(END)
FIG. 10
(BEGIN)
) 4
1104~ INCREMENT t AND w IF PRESENT
1106
NO
YES
TRANSITION FROM <M, T.T'w>
1108~ TO <M,T'>0R FROM
<M, TTwit>T0 <M,T t>

Y

END

FIG. 11

Patent Application Publication Dec. 27,2007 Sheet 7 of 9 US 2007/0297327 A1

FIG. 12

1202

MESSAGE
RECEIVED?

1204 COMPARE OLD AND NEW
™N VALUES OF totalSeverity
TO THRESHOLD T

]

1206 ~ TAKE THE ACTION BASED
ON THE COMPARISON

WAS

M<K BUT NOW M=K 1214
? y /
1216 SET THE STATE SET THE STATE
YES 121271 10 <M,T,0> T0 <M,T,T'\w,0>

I »

YES

BLOCKED STATE
?

Y

SET THE STATE SET THE STATE
1220 TO <M,T> T0 <MTTw> [1222

Patent Application Publication Dec. 27,2007 Sheet 8 of 9 US 2007/0297327 A1

1302

DETERMINE
WHETHER THE ACTION
CALLS FOR A CHANGE TO
THE THRESHOLD

1304 COMPUTE AND SAVE T' BY
™ INCREMENTING OR DECREMENTING
THE CURRENT THRESHOLD T-

Y

1306~ SEND T' TO EACH
THRESHOLD-BASED FILTER

ENTER THE BLOCKING STATE
13081 <MTT.0>O0R<MTT0t>

IS THE
THRESHOLD
BEING INCREMENTED
FROMTTOT

NO

REMOVE TUPLES FROM THE
1312 TRANSFORM WHOSE VALUES
ARE BETWEEN T AND T'-1

et
Y

(CEenD)
FIG. 13

US 2007/0297327 Al

Dec. 27,2007 Sheet 9 of 9

Patent Application Publication

Pl DIH
NOILONN4 1500
210)741 /A8 4!
\ /
Aejapr
(N6 S1S09 su,
H3IAT0S H3AT0S HO4
. AJ10d S1S09 HLIM
(Shr:AoM0d | JuynowLvLS T30 AOYHYI
y WAINILO 0L 1HIANOD
covl
(m "'d S311118va0Hd CERRRAL
NOILISNYYHL 31VIS Y3€q:Cq bg
/ N
80t |]84}
> N S3ILMIEVE0Hd
1014l vivl
WHLIH0D TV
g
110)74]

US 2007/0297327 Al

METHOD FOR APPLYING STOCHASTIC
CONTROL OPTIMIZATION FOR
MESSAGING SYSTEMS

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates generally to stream
processing and in particular, to a computer implemented
method for processing data streams. Still more particularly,
the present invention relates to a computer implemented
method, apparatus, and computer usable program code for
applying stochastic control optimization to determine lazy
versus eager message propagation in distributed stateful
messaging systems.

[0003] 2. Description of the Related Art

[0004] Stream processing computing applications are
applications in which the data comes into the system in the
form of an unbounded sequence or stream of messages,
sometimes called “events.” Note that the volume of data
being processed may be too large to be stored, and inter-
mediate results are typically required before all input mes-
sages have arrived. Therefore, the information stream must
be processed on the fly. Examples of stream processing
computing applications include video processing, audio
processing, streaming databases, and sensor networks.
[0005] In stream processing systems, producers, also
called publishers, deliver streams of events. Consumers, also
called subscribers, request continuous updates to results of
computations on data from one or more streams. Results are
expressions, such as “average trading price of the stocks
having the top ten total volume traded.” Subscribers define
the desired results via a specification, sometimes called a
“query.” For example, the specification may consist of a
continuous query using relational operators, such as join,
select, project, aggregation, and top-K and may be expressed
in a language, such as structured query language (SQL).
Computations on event streams that require data to be
retained between messages, such as to compute a running
average or sum, are called “stateful computations”, and
queries requiring stateful computations are called stateful
queries.

[0006] The stream processing system implements the
function of receiving events and computing and propagating
changes to the subscribed state by means of a delivery plan,
also called a “query execution plan.” The delivery plan is
implemented as a data flow network of transforms. For
example, the network of transforms may be a collection of
Java® objects. Each transform accepts messages represent-
ing changes to an input to the transform operator, updates a
local state, and produces messages representing changes to
the result of the transform operator. The changes are then
propagated “downstream” towards other transforms in the
flow or towards the ultimate consumers. The transforms are
deployed on a distributed network of machines called serv-
ers or message brokers. When the data flow is distributed
over multiple servers, some of the message traffic between
one transform and another will flow over a physical con-
nection, such as a TCP-IP connection.

[0007] In many stream processing systems, unnecessary
messages may be delivered from one transform to the next.
Unnecessary is best explained in the context of an exem-
plary transform in a server A that sends a message to a
downstream transform in a server B, only to have that
message discarded or ignored. For example, a change to the

Dec. 27, 2007

stock price of issue one may be sent from A to B, but B then
ignores it because issue one is not one of the top ten trading
stocks. Sending the ignored messages is useless, even result-
ing in wasted bandwidth, processing power, and memory. If
messages are suppressed that turn out later to be needed, the
downstream server may have to request additional messages
by sending explicit requests to the upstream servers, result-
ing in delays.

SUMMARY OF THE INVENTION

[0008] The illustrative embodiments provide a computer
implemented method, apparatus, and computer usable pro-
gram code for controlling when to send messages in a stream
processing system. A policy is determined by utilizing
probability statistics and a cost function prior to stream
processing. The policy specifies under which conditions a
message is sent eagerly and under which other conditions
the message is delayed. A filter is operated during stream
processing that selects which of the messages to send from
a sending transform based upon a threshold. A controller is
operated during stream processing that observes a current
state of a receiving transform and that applies the policy
based on the current state to determine whether to change the
threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The novel features believed characteristic of the
illustrative embodiments are set forth in the appended
claims. The illustrative embodiments, themselves, however,
as well as a preferred mode of use, further objectives, and
advantages thereof, will best be understood by reference to
the following detailed description of an illustrative embodi-
ment when read in conjunction with the accompanying
drawings, wherein:

[0010] FIG. 1 is a pictorial representation of a network of
data processing systems in which the illustrative embodi-
ments may be implemented;

[0011] FIG. 2 is a block diagram of a data processing
system in which the illustrative embodiments may be imple-
mented;

[0012] FIG. 3 is an overlay network of servers in accor-
dance with an illustrative embodiment;

[0013] FIG. 4 is an exemplary query execution plan for the
stream processing query of the running example in accor-
dance with an illustrative embodiment;

[0014] FIG. 5 is an exemplary deployment of a query
execution plan onto multiple servers in accordance with an
illustrative embodiment;

[0015] FIG. 6 is the same exemplary deployment of the
query execution plan adding upstream threshold-based fil-
ters and a downstream controller in accordance with an
illustrative embodiment;

[0016] FIG. 7 is a flowchart for a process for defining the
behavior of a threshold-based filter in processing messages
from an upstream transformation toward a downstream
transformation in accordance with the illustrative embodi-
ments;

[0017] FIG. 8 is a flowchart for a process for defining the
behavior of a threshold-based filter in processing threshold
changes from a controller in accordance with the illustrative
embodiments;

US 2007/0297327 Al

[0018] FIG. 9 is a state diagram of the controller as
modeled by a Markov model in accordance with an illus-
trative embodiment;

[0019] FIG. 10 is a flowchart for a process defining the
behavior of a controller in accordance with an illustrative
embodiment;

[0020] FIG. 11 is a flowchart for a process defining the
behavior of the part of the controller in accordance with an
illustrative embodiment;

[0021] FIG. 12 is a flowchart for a process defining the
behavior of part of the controller in accordance with an
illustrative embodiment;

[0022] FIG. 13 is a flowchart for a process defining the
behavior of part of a controller in accordance with an
illustrative embodiment; and

[0023] FIG. 14 is a block diagram of the offline process of
computing a policy in accordance with an illustrative
embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0024] With reference now to the figures and in particular
with reference to FIGS. 1-2, exemplary diagrams of data
processing environments are provided in which illustrative
embodiments may be implemented. It should be appreciated
that FIGS. 1-2 are only exemplary and are not intended to
assert or imply any limitation with regard to the environ-
ments in which different embodiments may be implemented.
Many modifications to the depicted environments may be
made.

[0025] With reference now to the figures, FIG. 1 depicts a
pictorial representation of a network of data processing
systems in which illustrative embodiments may be imple-
mented. Network data processing system 100 is a network of
computers in which embodiments may be implemented.
Network data processing system 100 contains network 102,
which is the medium used to provide communications links
between various devices and computers connected together
within network data processing system 100. Network 102
may include connections, such as wire, wireless communi-
cation links, or fiber optic cables.

[0026] In the depicted example, server 104 and server 106
connect to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 connect to network 102.
These clients 110, 112, and 114 may be, for example,
personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files,
operating system images, and applications to clients 110,
112, and 114. Clients 110, 112, and 114 are clients to server
104 in this example. Network data processing system 100
may include additional servers, clients, and other devices not
shown.

[0027] In the depicted example, network data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Of course, network data processing system 100
also may be implemented as a number of different types of
networks, such as for example, an intranet, a local area

Dec. 27, 2007

network (LAN), or a wide area network (WAN). FIG. 1 is
intended as an example, and not as an architectural limita-
tion for different embodiments.

[0028] With reference now to FIG. 2, a block diagram of
a data processing system is shown which could serve as one
of the distributed servers in which illustrative embodiments
may be implemented. Data processing system 200 is an
example of a computer, such as server 104 or client 110 in
FIG. 1, in which computer usable code or instructions
implementing the processes may be located for the illustra-
tive embodiments.

[0029] In the depicted example, data processing system
200 employs a hub architecture including a north bridge and
memory controller hub (MCH) 202 and a south bridge and
input/output (I/O) controller hub (ICH) 204. Processor 206,
main memory 208, and graphics processor 210 are coupled
to north bridge and memory controller hub 202. Graphics
processor 210 may be coupled to the MCH through an
accelerated graphics port (AGP), for example.

[0030] In the depicted example, local area network (LAN)
adapter 212 is coupled to south bridge and I/O controller hub
204 and audio adapter 216, keyboard and mouse adapter
220, modem 222, read only memory (ROM) 224, universal
serial bus (USB) ports and other communications ports 232,
and PCI/PCle devices 234 are coupled to south bridge and
1/O controller hub 204 through bus 238, and hard disk drive
(HDD) 226 and CD-ROM drive 230 are coupled to south
bridge and I/O controller hub 204 through bus 240. PCl/
PCle devices may include, for example, Ethernet adapters,
add-in cards, and PC cards for notebook computers. PCI
uses a card bus controller, while PCle does not. ROM 224
may be, for example, a flash binary input/output system
(BIOS). Hard disk drive 226 and CD-ROM drive 230 may
use, for example, an integrated drive electronics (IDE) or
serial advanced technology attachment (SATA) interface. A
super 1/O (SIO) device 236 may be coupled to south bridge
and I/O controller hub 204.

[0031] An operating system runs on processor 206 and
coordinates and provides control of various components
within data processing system 200 in FIG. 2. The operating
system may be a commercially available operating system
such as Microsoft® Windows® XP (Microsoft and Win-
dows are trademarks of Microsoft Corporation in the United
States, other countries, or both). An object oriented pro-
gramming system, such as the Java™ programming system,
may run in conjunction with the operating system and
provides calls to the operating system from Java programs or
applications executing on data processing system 200 (Java
and all Java-based trademarks are trademarks of Sun Micro-
systems, Inc. in the United States, other countries, or both).
[0032] Instructions for the operating system, the object-
oriented programming system, and applications or programs
are located on storage devices, such as hard disk drive 226,
and may be loaded into main memory 208 for execution by
processor 206. The processes of the illustrative embodi-
ments may be performed by processor 206 using computer
implemented instructions, which may be located in a
memory such as, for example, main memory 208, read only
memory 224, or in one or more peripheral devices.

[0033] The hardware in FIGS. 1-2 may vary depending on
the implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.

US 2007/0297327 Al

Also, the processes of the illustrative embodiments may be
applied to a multiprocessor data processing system. The
depicted examples in FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations.
[0034] Illustrative embodiments provide a computer
implemented method, apparatus, and computer usable pro-
gram code for applying stochastic control optimization to
produce efficient and timely delivery of results of queries on
streams in distributed stateful messaging systems. The run-
ning example of FIG. 3 is used to explain the advantages and
an overview of the illustrative embodiments.

[0035] FIG. 3 is an overlay network of servers in accor-
dance with an illustrative embodiment. FIG. 3 shows over-
lay network 300 which may be part of a distributed stream
processing system. Overlay network 300 includes producers
302, 304, 306, and 308. Overlay network 300 is a computer
network which is built on top of another network. Nodes in
overlay network 300 may be thought of as being connected
by virtual or logical links, each of which corresponds to a
path, perhaps through many physical links, in the underlying
network. A producer is a program or device that from time
generates “events” or “data messages”, such as stock quotes
in a financial application or trouble reports in a systems
management application. Producers 302, 304, 306, and 308
deliver streams of events to servers 310 and 312. Servers
310 and 312 are frequently referred to as message brokers
because servers 310 and 312 transform and propagate mes-
sages from producers to subscribing clients 314, 316, 318,
and 320. In this example, servers 310 and 312 connect to
intermediate servers 322, 324, 326, and 328. For example,
the links between nodes in overlay network 300, indicated
by server 310 and intermediate server 322, in may be TCP/IP
connections over the Internet.

[0036] Producers 302, 304, 306, and 308, servers 310 and
312, intermediate servers 322, 324, 326, and 328, and
subscribing clients 314, 316, 318, and 320 are operably
interconnected by a network, such as network 102 of FIG. 1.
Overlay network 300 is used to host a streaming system
sometimes referred to as a stateful publish-subscribe system.
The streaming system hosts one or more stateful queries
from subscribing clients. Stateful queries are expressed in a
language, such as structured query language and are com-
piled down to a flow graph, such as a set of Java® objects
called a delivery plan.

[0037] The illustrative embodiments present a method for
reducing the amount of network traffic over physical con-
nections while maintaining timely delivery of state to sub-
scribers. Many times, unnecessary messages are delivered
from one transform to the next in overlay network 300.
“Unnecessary” indicates that a transform in a server A sends
a message to a downstream transform in a server B, only to
have that message discarded or ignored. The message is
unnecessary because it did not really need to be sent.
[0038] The following running example is used to illustrate
the benefits and novelty of a system management application
implementing the illustrative embodiments. Multiple
streams of messages are published into the system, each
containing a problem report that contains a problem identi-
fication, a device name, and a severity number. Additional
streams contain messages announcing that a particular prob-
lem identification has been solved. The continuous query
being subscribed to is seeking the device names of those
devices whose total severity counts for unsolved problems
that are in the top ten from among all devices. Suppose

Dec. 27, 2007

further that the input streams are arriving at multiple servers,
and the top-K transform evaluating the top ten device names
is located at a downstream server. A top-k transform is for
a top-K query. Top-K queries are useful because they
continuously report the k largest values that are obtained
from distributed data streams. The k largest values are
interesting because they tell the subscribing client which
devices have the most severe unsolved problems and there-
fore merit more immediate attention.

[0039] In a naive implementation, each new message
indicating a new problem or a solved problem is propagated
to the downstream server; however, that is potentially waste-
ful for many reasons. For example, suppose that there are
1000 devices. Most of them will not be in the highest ten of
total severity, so the message changing their severity count
will be ignored. It is desirable to suppress sending messages
unless they apply to the top ten set or change the top ten set.
However, the transforms computing the severity count do
not have complete information to decide whether to propa-
gate the message or not because the transforms do not know
the boundary between the top ten severities and the rest. If
any transform decides to propagate the message eagerly, the
transform may have sent a useless message. In contrast, if
the transform decides to ignore the message, the transform
may have suppressed a needed message, causing the down-
stream server’s state to contain fewer than ten device names.
The downstream server would then have to “pull” for more
messages by sending explicit requests to the upstream
servers, resulting in a delay. Since either choice may cause
a bad result, the sender needs to make an “educated guess”
based on incomplete information.

[0040] The method of the illustrative embodiments exploit
three different kinds of information supplied by the system’s
users: (1) statistical information about the expected fre-
quency of messages including new problems and solved
problems, (2) statistical information about the expected
distribution of values, such as message severity, and (3) a
utility metric or “penalty function” defined by the system
administrator that calibrates how undesirable it is to send
traffic over a network link versus how undesirable it is to
have an unnecessary delay in displaying the result. The
statistical information comes from either a mathematical
model of the system being monitored or from measurements
of prior experience with the system. The utility metric comes
from the user’s judgment of the relative importance of the
two potentially conflicting goals of minimizing delay and
minimizing network traffic.

[0041] Using the statistics and the utility metric, the sys-
tem solves offline an infinite horizon stochastic optimization
problem to define parameters for a controller that will be
executed at run-time. A stochastic control system is modeled
as follows: at any instant the system can be in one of a set
of possible observable states S. At each tick of time, a
controller observes the current state s,, and applies a policy
(6)(s,) to determine an action u from a set of possible actions
U. Given s, and u, there is a certain probability p,(u) that the
system will move into a next state s,. The system will also
incur an expected “cost” or “penalty” g(i,u) based on the
user-defined penalty function. This step is repeated at each
tick of time. An infinite horizon stochastic optimization
problem is: given p,(u) and g(i,u) as defined above, compute
a “best” policy (6),,,, mapping states to actions, such that the
expected average penalty per unit time incurred over the
long run is minimized.

US 2007/0297327 Al

[0042] The solution to this problem is a policy (6),,, for
the controller that minimizes the expected penalty over long
term, taking into account the expected use of the system and
the relative importance of avoiding wasted bandwidth versus
avoiding message delays.

[0043] In particular, at execution time, the controller
observes a state and adjusts a threshold based upon the
pre-computed policy @opt. For example, the state may be
how many tuples in a top-10 list of names exist, and if there
are fewer than ten device names, how long has this count
been less than ten. The threshold is used by filters inside the
senders as a criterion for whether to propagate messages
eagerly or whether to hold them. The illustrative embodi-
ments allow network traffic to be reduced over a physical
connection while still maintaining timely delivery of the
state to subscribers.

[0044] Making a good decision of whether to send a
message immediately using “eager” propagation or whether
to suppress the message and send it only if explicitly
requested using “lazy” propagation is the subject of the
illustrative embodiments. Because the propagation decision
is based upon incomplete information, the illustrative
embodiments use a combination of statistical analysis prior
to execution time and dynamic control at execution time to
make decisions with the least expected cost over the long
run

[0045] FIG. 4 is an exemplary query execution plan for the
stream processing query of the running example in accor-
dance with an illustrative embodiment. Query execution
plan 400 is a data flow network that executes on a stream
processing engine, such as the servers of overlay network
300 of FIG. 3. Query execution plan 400 shows a flow
network of transforms that are part of a delivery plan. As
used in the illustrative embodiments, a “transform” is a
computational module that computes a function by receiving
messages consisting of changes to the transform’s inputs and
delivers messages consisting of changes to the transform’s
outputs. Transforms 402 and 404 receive input streams. In
this example, transform 402 receives reports of new prob-
lems or trouble reports and transform 404 receives solved
reports.

[0046] Transform 406 joins the new trouble reports and
the solved reports, computing the “difference” between the
set of all trouble reports and the solved trouble reports. The
difference represents the unsolved trouble reports. Trans-
form 408 is an aggregation operator computing the total
severity grouped by device name. The output of transform
408 is a collection of tuples, pairing a device name with a
total severity, referred to as totalSeverity. The total severity
for a particular device name increases each time a new
problem for that device identification is encountered. The
total severity decreases each time a previous problem with
that device name is solved and hence removed.

[0047] Transform 410 is a “top-K” operator that takes as
input, all tuples produced by transform 408 and delivers only
the ten tuples with the highest total severity.

[0048] FIG. 5 is an exemplary deployment of a query
execution plan onto multiple servers in accordance with an
illustrative embodiment. Distributed deployment 500 shows
a possible deployment of a query execution plan, such as
query execution plan 400 of FIG. 4 in which some trans-
forms have been replicated and all transforms have been
assigned to a system of three servers.

Dec. 27, 2007

[0049] In this example, transforms 402, 404, 406 and 408
of FIG. 4 have been replicated and assigned to servers 502
and 504. Transform 410 of FIG. 4 has been assigned to
server 506. Servers 502, 504, and 506 are interconnected by
a network. Servers 502, 504, and 506 are message brokers,
such as servers 310 and 312 of FIG. 3. Distributed deploy-
ment 500 allows problem reports to be delivered to multiple
places, such as the East and West coast of the United States.
Transforms 508, 510, 512, and 514 have been assigned to
server 502. Transforms 516, 518, 520, and 522 have been
assigned to server 504.

[0050] Transform 524 has been assigned to server 506.
Transform 524 is an augmented transform that merges the
two input sources from server 502 and server 504 before
performing the top-K operator. Transforms 514 and 522 may
be referred to as sending transforms because messages are
sent from transforms 514 and 522 to transform 524 on server
506. Transform 524 may be referred to as a receiving
transform because transform 524 receives messages. Any
traffic between transforms 514, 522, and 524 uses bandwidth
on a physical network link, such as the link between server
310 to intermediate server 322 of FIG. 3.

[0051] The method applied to dealing with a query execu-
tion plan may be applied to other queries having similar
characteristics, namely: (a) messages travel over a physical
link to a downstream transform; (b) many of these messages
are ignored once they reach the downstream transform; (c)
the sending transform does not have complete information
enabling it to know whether or not the receiving transform
needs any particular message; (d) a wrong choice either to
send or not to send the message may potentially hurt
performance and therefore a solution that minimizes the
expected performance degradation over the long term is
desired.

[0052] FIG. 6 is the same exemplary deployment of the
query execution plan adding upstream threshold-based fil-
ters and a downstream controller in accordance with an
illustrative embodiment. Distributed deployment 600
includes servers 602, 604, and 606, such as servers 502, 504,
and 506 of FIG. 5. Downstream transform 608 is a trans-
form, such as transform 524 of FIG. 5 that is assumed to be
interconnected with other transforms in a configuration,
such as that shown in FIG. 5. According to the teaching of
the illustrative embodiments, downstream transform 608 is
augmented with controller 610. Upstream transforms 612
and 614 are augmented with threshold-based filters 616 and
618. For purposes of simplicity, FIG. 6 shows only the
sending transforms within servers 602 and 604 and the
associated filters.

[0053] Controller 610 observes a certain state, and based
on that state, adjusts a threshold T. The observed state
includes how many tuples are currently available at down-
stream transform 608, and if less than the required ten tuples,
how long that condition has persisted. Based on the current
state and a fixed policy computed offline, controller 610
makes a decision either to do nothing, to raise threshold T by
a designated amount, or to lower threshold T by a designated
amount. If controller 610 changes threshold T, controller 610
communicates the new value of threshold T to threshold-
based filters 616 and 618.

[0054] To simplify the mathematical model and to prevent
changes from occurring too rapidly for stability purposes,
controller 610 may not change threshold T again for a period
of one round trip over the link, that is, until downstream

US 2007/0297327 Al

transform 608 has had a chance to observe the effect of the
change. Threshold-based filters 616 and 618 suppress send-
ing messages whose values are below the threshold but may
retrieve and send them later if threshold T is later lowered.
[0055] FIG. 7 is a flowchart for a process for defining the
behavior of a threshold-based filter in processing messages
from an upstream transformation toward a downstream
transformation in accordance with the illustrative embodi-
ments. The process of FIG. 7 may be implemented in a
threshold-based filter, such as threshold-based filters 616
and 618 of FIG. 6. The threshold-based filter holds a
threshold T set by a controller, such as controller 610 of FI1G.
6. Threshold T may be set to an initial value.

[0056] The process executes each time the threshold-
based filter receives messages destined for the downstream
transform from the upstream transform (step 702). The
upstream transform and downstream transform may be
transforms, such as upstream transform 612 and downstream
transform 608 of FIG. 6. In this example query, each
message from the upstream transform represents a change or
update to a value of the computed column totalSeverity in a
tuple, which may be represented, for example, as a pair
consisting of a new and an old value of totalSeverity.
[0057] Next, the threshold-based filter determines whether
the new value or old value in the message exceeds the stored
threshold (step 704). The new and old values are the new and
old totalSeverity values received by the threshold-based
filter in step 702. If the message exceeds the threshold, the
update message is propagated to the downstream transform
(step 706) before returning again to step 702. If the message
does not exceed the threshold in step 704, the message is
suppressed (step 708) before returning to step 702.

[0058] For example, if either the old or new value of
totalSeverity exceeds the stored threshold T previously
communicated from the controller in step 702, then the
message will be propagated “eagerly” over the link in step
706. A message is sent eagerly by sending the message as
soon as possible.

[0059] FIG. 8 is a flowchart for a process for defining the
behavior of a threshold-based filter in processing threshold
changes from a controller in accordance with the illustrative
embodiments. The process of FIG. 8 may be implemented in
a threshold-based filter, such as threshold-based filters 616
and 618 of FIG. 6.

[0060] A threshold-based filter receives a message from
the controller to change the threshold from T to a new value
T' (step 802). The controller may be a controller, such as
controller 610 of FIG. 6. Next, the threshold-based filter
determines whether T' is less than T (step 804). If T" is less
than T, the process propagates all tuples required to be
propagated under the new threshold (step 806). In step 806,
the threshold-based filter queries the upstream transform to
obtain all tuples with totalSeverity less than T but still
greater or equal to T".

[0061] Next, the threshold-based filter replaces threshold
T with the new threshold T' (step 808) before returning to
step 802. If the threshold-based filter determines T' is greater
or equal to T in step 804, the threshold-based filter replaces
threshold T with new threshold T (step 808) before return-
ing to step 802.

[0062] FIG. 9 is a state diagram of the controller as
modeled by a Markov model in accordance with an illus-
trative embodiment. State diagram 900 of FIG. 9 is part of
a mathematical model of the behavior of a controller, such

Dec. 27, 2007

as controller 610 of FIG. 6. This model is used in the offline
process described in connection with FIG. 14, in which
probabilities p,{(u) will be associated with pairs of states in
state diagram 900 for each possible action, and penalty
expectations g(i,u) will be associated with these states for
each possible action, and in which an optimum policy @opt
will be computed.

[0063] State diagram 900 includes quadrant A 902, quad-
rant B 904, quadrant C 906, and quadrant D 908. Each
quadrant includes a finite number of states based upon
possible values of the specified parameters. For example,
quadrant A 902 includes states 910 that represent a large set
of values that fit the parameters of quadrant A 902.

[0064] Normally, the state is a pair <M, T>, such as in
quadrant A 902 where M is the number (K or more) of tuples
visible to the top-K transform, and T is the current value of
the threshold. K is the minimum number the top-K transform
needs to deliver the transforms result. When M<K, then the
state is optionally augmented by a time period t, representing
the number of “ticks” for which the top-K transform has
been unable to deliver the transform’s result. These states
are shown in quadrant B 904. A tick is a discrete slice of time
used by the model. For example, a tick may be a second,
micro-second, processor cycle, or other measurable occur-
rence.

[0065] The augmented state <M, T,t> is only needed if the
penalty function is not linear. If the penalty per tick for
having less than K values is the same regardless of how
many ticks have elapsed, then this additional value is not
needed. Only a few distinct states of t are needed to capture
the properties of the penalty function. When the controller
has just changed the threshold from T to T', the controller is
blocked from changing the threshold again for one round-
trip delay time which will be represented as some number of
ticks. During this blocked phase, the controller has a state
<M, T,T",w> in quadrant C 906 (if M>=K) or a state <M,T,
T',w,it> in quadrant D 908 (if M<K), where w simply
advances from 1 to w,,,, and the controller may not make
any decisions. The states in quadrants C and D are called
“blocked states.” States in quadrant A 902 indicate <M, T>
(M>=K), states in quadrant B 904 indicate <M, T,t>(M<K),
states in quadrant C 906 indicates <M, T, T",w>(M>=K), and
states in quadrant D 908 indicates <M, T,T",w,t>(M<K).
[0066] FIG. 10 is a flowchart for a process defining the
behavior of the controller in accordance with an illustrative
embodiment. The process of FIG. 10 may be implemented
in a controller, such as controller 610 of FIG. 6. The
controller is a device for regulating a system. The controller
observes a state, and based on the state, performs an action.
[0067] The controller has the ability to observe the current
state, which may be state within quadrant A 902 in which
<M, T> where M>=K), or a state in quadrant B 904,
quadrant C 906, and quadrant D 908 all of FIG. 9. The
controller additionally, has a policy which maps a state to an
action. The policy is computed off-line before deployment as
further described in FIG. 14.

[0068] At every tick of time, the process of FIG. 10 is
executed. First, the controller performs all once per tick
updates (step 1002). As a result of this step, the updated state
may include new values of t and w if present. The process
of step 1002 is further described in FIG. 11.

[0069] Next, the controller performs state updates associ-
ated with any messages received during the tick (step 1004).
The process of step 1004 is further described in FIG. 12.

US 2007/0297327 Al

[0070] Next, the controller computes an action based on
the state and policy (step 1006). A policy, as defined earlier,
is a mapping from state to action. For every possible state,
the policy says what action to perform. At each tick of time,
the controller observes the state and looks up in the con-
troller’s policy what action to take in that state. As described,
the policy will have been previously computed offline by
solving an optimization problem and deployed into the
controller before execution time. The controller computes
the action based on the state and the policy. The action may
be “No action”, “increment threshold by n”, or “decrement
threshold by n.” In the blocked state, the action is always “no
action”. No action is performed for states in quadrant C and
quadrant D. A policy is used to determine no action/+n/-n
for states in quadrant A and quadrant B.

[0071] The controller then executes the computed action
by updating and communicating the threshold, if required by
the action to do so (step 1008) with the process for that tick
terminating thereafter. The process of step 1008 is further
described in FIG. 13.

[0072] FIG. 11 is a flowchart for a process defining the
behavior of the part of the controller in accordance with an
illustrative embodiment. In particular, the process of FIG. 11
is a more detailed explanation of step 1002 of FIG. 10 and
is triggered once per tick. The process begins as the con-
troller increments t and w if present (step 1104). Next, the
controller determines whether w has reached MaxW (step
1106). w and MaxW are represented by ticks. If the con-
troller determines w has reached MaxW in step 1106, the
controller transitions states from the blocked state <M, T, T",
w> to the non-blocked state <M, T'> or from the blocked
state <M, T, T', w, t> to the non-blocked state <M, T", t> (step
1108) with the process terminating thereafter. If the control-
ler determines w has not reached MaxW in step 1106, the
process terminates.

[0073] FIG. 12 is a flowchart for a process defining the
behavior of part of the controller in accordance with an
illustrative embodiment. In particular, the process of FIG. 12
is a more detailed explanation of step 1004 of FIG. 10. The
controller determines whether a message is received (step
1202). If the controller determines a message is not received,
the process ends. If the controller determines a message or
batch of messages is received in step 1202, the old and the
new values of totalSeverity are compared to threshold T
(step 1204). Step 1204 is repeated for each message
received. During the blocked period, the future threshold T'
is compared. Next, the controller takes an action based on
the comparison (step 1206). The actions of step 1206 for
each comparison are:

[0074] 1. Both old and new values of totalSeverity are at
or above the threshold: process normally, count of M
remains the same.

[0075] 2. Old value is below threshold and new value is at
or above it. Create a new tuple, count of M increases by one.
[0076] 3. Old value is at or above threshold and new value
is below it: Discard existing tuple, count of M decreases by
one.

[0077] 4. Both old and new values are below threshold:
Message will be ignored. This case normally will not occur
but may happen if the threshold increased, but the message
was sent before the sender learned of the change.

[0078] Next, after the action is finished for each message,
the controller determines whether M<K (step 1208). If
M<K, the process determines whether the controller is in a

Dec. 27, 2007

blocked state (step 1210). If the controller is not in a blocked
state, the controller sets the state to <M, T, 0> (step 1212),
with the process terminating thereafter. If the controller is in
a blocked state, the controller sets the state to <M, T, T",w,0>
(step 1214), with the process terminating thereafter.

[0079] If M>=K in step 1208, the controller determines
whether previously M<K, but now M>=K (step 1216). If
previously M<K, but now M>=K, the controller determines
whether the controller is in a blocked state (step 1218). If the
controller is not in a blocked state, the controller sets the
state to <M, T>, (step 1220), with the process terminating
thereafter. If the controller is in the blocked state in step
1218, the controller sets the state to <M, T, T', w> (step
1222), with the process terminating thereafter. Returning to
step 1216, if previously M<K, but now M>=K is not true, the
process terminates.

[0080] FIG. 13 is a flowchart for a process defining the
behavior of part of the controller in accordance with an
illustrative embodiment. In particular, the process of FIG. 13
is a more detailed explanation of step 1008 of FIG. 10. The
process begins with the controller determining whether the
action calls for a change to the threshold (step 1302). If the
action calls for a change, the controller computes and saves
T' by incrementing or decrementing the current threshold T
(step 1304). Next, the controller sends T' to each threshold-
based filter (step 1306). The threshold-based filter of step
1306 may be filters, such as threshold-based filters 616 and
618 of FIG. 6. Next, the process enters the blocking state
<M, T,T",0> or <M, T, T",0,t> (step 1308). The state is selected
wherein the values of M that are less than K have the extra
parameter t.

[0081] Next, the controller determines if the threshold is
being incremented from T to T (step 1310). If the controller
is being incremented from T to T', the controller removes
tuples from the transform whose values are between T and
T'-1 (step 1312) with the process terminating thereafter.
Returning again to step 1302, if the controller determines the
threshold is not being incremented from T to T' in step 1310,
the process terminates. If the controller determines there is
no action to change the threshold in step 1302, the process
terminates.

[0082] FIG. 14 is a block diagram of the offline process of
computing a policy in accordance with an illustrative
embodiment. Offline process 1400 describes the creation of
the inputs to an infinite horizon stochastic optimization
problem, solving that problem and deploying the resulting
optimal policy. In one example, the infinite horizon stochas-
tic optimization problem is solved using well known control
theory solutions, such as Bellman’s recurrence equation.
Offline process 1400 illustrates the procedure that executes
offline prior to deployment to compute policy 1402 that is
used during execution by the controller, such as controller
610 of FIG. 6. Offline process 1400 may be implemented in
a server, such as server 104 of FIG. 1.

[0083] Policy 1402 is a function n(s) that maps a state s to
an action u. The blocked states always map to the action “No
action.” There are known algorithms, such as optimum
stationary policy solver 1404 for finding an optimum “sta-
tionary policy” provided that the set of states and actions
may be modeled as a Markov process and provided that each
transition may be associated with cost function 1406. The
controller is modeled as a finite-state Markov process. A
Markov process is one where for a given state s, and action
a, there is a set of probabilities p,(a) for each of the possible

US 2007/0297327 Al

next states s, An optimum stationary policy is one that
depends only on the state and not on the current time. The
stationary policy minimizes the expected cost per unit time
over an infinite run of the system. The inputs to such an

algorithm are the following:

[0084] State transition probabilities 1408—p,(u)—for any
action u that may be chosen in state s,, the probability that
in the next tick the system will be in state s,, where

Z pij) = 1.
J

[0085] Costs 1406 g(i,u)—the cost or penalty associated
with taking action u in state s,, where g(i,u) may be an
average of all the possible outcomes weighted by their
respective probabilities.

[0086] States may be states, such as the states within
quadrant A 902, quadrant B 904, quadrant C 906, and
quadrant D 908 of FIG. 9.

[0087] For each of the four categories of state, offline
process 1400 illustrates how probabilities 1410 and cost
function 1412, including statistics and cost information
respectively, are used by algorithm 1414 to produce state
transition probabilities 1408 and costs 1406 required by
optimum stationary policy solver 1404.

[0088] In state <M, K>, there is a certain probability p, of
receiving a new problem report and a certain probability p,
of receiving a solution to a problem. Typically, the creation
and solution of problem reports will be modeled as a
“birth-death” process. For example, there is a probability of
generating a problem that is independent of how many
problems exist. There is also a probability of solving a given
problem that is proportional to the number of problems
currently “alive” or unsolved. Various new problem reports
cause the totalSeverity to jump from below to above the
threshold. Probability p;, depending on T, is obtained by
looking at the distribution of totalSeverity and the distribu-
tion of individual severities of reports.

[0089] Similarly, various problem reports cause the total-
Severity to jump from above to below the threshold with
probability p, (which will also depend on T). For the action
“no Action”, the new state is <M+1,T> with state transition
probability p,p;, and state <M-1,T> with probability p,p.,
except if M-1<K, the new state will be <M-1,T,0>, other-
wise the state will remain <M, T>. For the action “increase
or decrease threshold by n”, the new state will be <M+1,T,
T=n,0>, <M-1,T,T+n,0>, or <M+1,T,T+n,0,0> if M-1<K or
<M+1,T,T+n,0>), with the same relative probabilities. To
compute the cost g(i,u), the assumption is made that the user
has supplied a penalty per message sent called C,,... The
cost for the state is C,,,, weighted by the probability that a
message will be sent: C,,__(p,ps+P,p.)- If the action taken is
to change the threshold, there is an additional cost xC,,,., to
send a control message to each of the x threshold-based
filters. For example, x=2 in the current example.

[0090] <M,T,t> where M<K: The formula for the prob-
abilities of the state transitions are the same. If the new state
still has M<K, then t increases by one; otherwise the state
will not have a t component. It is assumed that the user has
supplied a penalty representing the cost per tick of remain-
ing in this state: C,,,,(t) The total cost per tick of remaining

Dec. 27, 2007

in this state is C ,, (D+C,,.,(p, Pa+P2p.) if no action is taken
and C ., (D+C,,, 5, (01 P3+P2p)+XC,,,, i control messages
are sent.

[0091] <M, T, T, w>: This is a “blocked” state when the
controller is forbidden to make any decision other than “No
action.” Of course messages may be received, incrementing
or decrementing the value of M with the same probabilities
and costs as before. For w<w,, ., if M increases, the new
state is <M+1,T,T",w+1>. If M stays the same, the new state
is <M, T,T",w+1>, and if M decreases, the new state is
<M-1,T,T",w+1>, unless M-1<K, in which case the new
state is <M-1,T,T",w+1,0>. For w=w,, ., the blocking inter-
val will expire. For an increase of threshold, the next state
will be <M,T>. For a decrease of threshold, there is a
possibility that the controller will additionally receive a
batch of new messages from the filters that had values
between the old and new threshold. Messages may be
received according to step 1202 of FIG. 12. The new state
will increase its M by an additional value b and be distrib-
uted according to the probability p,,,.,(T,1".b) that a change
from T to T' will release b messages. This probability comes
from a probability distribution function of message values
and the birth-death model of problem reports. For each
possible value of b, the new state will be <M+b-1,T"> with
probability p,p.D;,..»(T,T,b) and the state becomes <M+b+
1, T'> with probability p;psPsaen(1:1,b), and the state
becomes <M+b,T'> with probability (1-p,ps—pP2P4) Porarcn
(T, T",b). The cost will be

CinsgP1P3 + P2P4) + D DCog Pocaen(T, T, b).
b>0

An exception provides that if b=0 and M-1<K, the state
becomes <M-1,T",0>.

[0092] <M,T,T'>: This is a blocked state handled identi-
cally to the above, except that M<K so there is an additional
t component added to the state, and there is an additional
C o1y (1) contribution to the cost.

[0093] Offline process 1400 models or measures param-
eters Py, Pas Pss Pas Poaren(L 1'sb) referred to as probabilities
1410. Probabilities 1410 are statistics showing the frequency
and distribution of the values of messages and are an input
into algorithm 1414. The relative penalties for message
transmission and delay C, . and C,,, . are inputs into
algorithm 1414 and are referred to as cost function 1412.
Algorithm 1414 executes the rules specified to create the
inputs, state transition probabilities 1408 p,(u), and costs
1406 g(i,u) to Optimum stationary policy solver 1404.
[0094] A stationary policy is defined as one where the
action depends only on the state, not on the current time. As
previously described, an optimum stationary policy is one
that minimizes the expected value of the penalty function,
and the policy is determined by applying one of several
known computational procedures for infinite horizon prob-
lems.

[0095] Optimum stationary policy solver 1404 generates
policy 1402. Policy 1402 is passed to a controller, such as
controller 610 of FIG. 6 for use at execution time.

[0096] It is understood that someone skilled in the art of
dynamic programming may reduce the state space and hence
the analysis time for the optimization problem by substitut-

US 2007/0297327 Al

ing discrete values of T, T' into ranges by replacing indi-
vidual ticks t of wait time by epochs and by other straight-
forward simplifications.

[0097] The illustrative embodiments differ from other
approaches to avoiding wasted messages in that: (a) the
illustrative embodiments apply to stateless, not stateful
transforms, such as publish-subscribe systems where the
subscriptions are all filters of published messages, (b) the
question of whether to propagate eagerly or not does not
depend upon the state of the downstream operation, (c) the
illustrative embodiments use stochastic control theory.
[0098] Thus, the illustrative embodiments provide a dis-
tinguishable method to: (a) gather information ahead of time
about the statistical behavior of the system, such as the rates
of messages and the distribution of the message values, (b)
supply a utility function that gives numerical weights to the
relative utility of wasted messages versus delay, and (c) use
the information from (a) and (b) to solve a stochastic
optimization problem, that provides parameters to a control-
ler which at execution time decides when to send messages
immediately and when to delay sending them.

[0099] The invention can take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software
elements. In a preferred embodiment, the invention is imple-
mented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

[0100] Furthermore, the invention can take the form of a
computer program product accessible from a computer-
usable or computer-readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer readable
medium can be any tangible apparatus that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution
system, apparatus, or device.

[0101] The medium can be an electronic, magnetic, opti-
cal, electromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk-read
only memory (CD-ROM), compact disk-read/write (CD-R/
W) and DVD.

[0102] A data processing system suitable for storing and/
or executing program code will include at least one proces-
sor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which
provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

[0103] Input/output or /O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
1/O controllers.

[0104] Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public

Dec. 27, 2007

networks. Modems, cable modem and Ethernet cards are just
a few of the currently available types of network adapters.
[0105] The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli-
cation, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with
various modifications as are suited to the particular use
contemplated.

What is claimed is:

1. A computer implemented method for controlling when
to send messages in a stream processing system, the com-
puter implemented method comprising:

determining a policy utilizing probability statistics and a

cost function prior to stream processing, wherein the
policy specifies under which conditions a message is
sent eagerly and under which other conditions the
message is delayed;

operating a filter during stream processing that selects

which of the messages to send from a sending trans-
form based upon a threshold; and

operating a controller during stream processing that

observes a current state of a receiving transform and
that applies a policy based on the current state to
determine whether to change the threshold.

2. The computer implemented method of claim 1, wherein
the probability statistics specify frequency values and dis-
tribution values of the messages.

3. The computer implemented method of claim 1, wherein
the messages are sent from the sending transform on a first
server to the receiving transform on a second server, wherein
the first server and the second server are part of a distributed
network of servers.

4. The computer implemented method of claim 1, com-
prising:

receiving user input specifying the cost function, wherein

the cost function indicates relative weights given to a
cost of sending messages weighed against a cost of
delaying delivering messages to clients.

5. The computer implemented method of claim 1, wherein
the determining a policy step further comprises:

solving an infinite horizon stochastic optimization prob-

lem to determine an optimum policy that minimizes
average cost per stage.

6. The computer implemented method of claim 5, wherein
the solving step comprises:

using Bellman’s recurrence equation.

7. The computer implemented method of claim 5, wherein
the optimum policy is chosen to minimize an expected cost
per time period based on a weighted sum of costs due to
message traffic and costs due to delays.

8. The computer implemented method of claim 1, wherein
the current state is one of a plurality of states, and wherein
the plurality of states include the threshold, a number of
tuples available for a top-K transform, a weighted sum of a
number of messages associated with the cost during a tick,
and a penalty for having fewer than K tuples available
during the tick.

9. The computer implemented method of claim 8, wherein
the plurality of states includes a number of time units during

US 2007/0297327 Al

which the stream processing system has fewer than K tuples,
wherein the penalty depends upon the number of time units.

10. The computer implemented method of claim 5,
wherein the cost function is supplied by a user, and wherein
the optimum policy maps the current state to a decision
whether and how much to change the threshold.

11. A system comprising:

a data processing system for receiving stream data from
input streams, wherein the data processing system
determines a policy utilizing probability statistics and a
cost function, wherein the policy specifies under which
conditions messages are sent eagerly and under which
other conditions messages are delayed, to minimize an
expected cost per time period for sending the messages,
and distributes segments onto hosts for correlation
processing; and

a plurality of hosts operably connected to the data pro-
cessing system, wherein the messages are sent between
each of the plurality of hosts;

wherein the data processing system sends the policy to the
plurality of hosts for controlling when the messages are
sent between the plurality of hosts,

wherein a sending host of the plurality of hosts operates
a filter that selects which of the messages to send from
a sending transform based upon a threshold, and

wherein a receiving host of the plurality of hosts includes
a controller that senses the threshold and a current state
of a receiving transform to implement the policy, and
determines whether to change the threshold.

12. The system of claim 11, wherein the policy is deter-
mined by the data processing system by solving offline an
infinite horizon stochastic optimization problem.

13. The system of claim 12, wherein an optimum policy
is determined from solving the infinite horizon stochastic
optimization problem specifies parameters for the controller
within the data processing system, wherein the parameters
are executed at run-time to determine how the messages are
sent.

14. The system of claim 11, wherein the cost function
calibrates how undesirable it is to send traffic over a network
link versus how undesirable it is to have an unnecessary
delay in displaying a result.

15. The system of claim 12, wherein at each tick of time,
the controller observes states and applies the policy to the
current state to compute an action from a set of possible
actions.

Dec. 27, 2007

16. A computer program product comprising a computer
usable medium including computer usable program code for
controlling messages in a stream processing system, the
computer program product comprising:

computer usable program code for determining a policy

utilizing probability statistics and a cost function prior
to stream processing, wherein the policy specifies
under which conditions a message is sent eagerly and
under which other conditions the message is delayed;

computer usable program code for operating a filter
during stream processing that selects which of the
messages to send from a sending transform based upon
a threshold; and

computer usable program code for operating a controller
during stream processing that observes a current state
of a receiving transform, and that applies a policy based
on the current state to determine whether to change the
threshold.

17. The computer program product of claim 16, wherein
the probability statistics includes statistical information
about an expected frequency of each input message.

18. The computer program product of claim 16, compris-
ing:

computer usable program code for receiving user input

specifying the cost function, wherein the cost function
indicates relative weights given to a cost of sending
messages weighed against a cost of delaying delivering
messages to clients.

19. The computer program product of claim 16, wherein
the computer usable program code for determining a policy
further comprises:

computer usable program code for solving an infinite

horizon stochastic optimization problem to determine
an optimum policy that minimizes average cost per
stage.

20. The computer program product of claim 16, further
comprising:

computer usable program code for determining a utility

metric in the policy specifying how undesirable it is to
send traffic over a network link versus how undesirable
it is to have an unnecessary delay in displaying a result

