(54) 发明名称
显示设备和显示控制方法

(57) 摘要
一种设备，包括显示控制器，所述显示控制器被配置成根据传感器输出，控制透明显示器的显示状态，所述传感器输出包含关于与设备分离的对象的信息。
1. 一种设备，包括：
显示控制器，所述显示控制器被配置成基于传感器输出，控制透明显示器的显示状态，
所述传感器输出包含关于与设备分离的对象的信息。
2. 按照权利要求1所述的设备，其中
所述信息包括图像信息。
3. 按照权利要求1所述的设备，其中
所述信息包括关于外来物体区域的信息。
4. 按照权利要求3所述的设备，其中
人手的至少一部分是遮挡显示在透明显示器上的图像的外来物体区域的外来物体。
5. 按照权利要求4所述的设备，还包括：
插值图像创建单元，所述插值图像创建单元生成并替换被人手的所述至少一部分遮挡
的景物的插值图像部分。
6. 按照权利要求3所述的设备，还包括：
区域估计单元，所述区域估计单元识别被对象遮挡的景物的区域，和
插值图像创建单元，所述插值图像创建单元生成并替换被对象遮挡的景物的区域的插
值图像部分。
7. 按照权利要求6所述的设备，其中
插值图像创建单元通过观察对象在帧和以前的帧之间的移动，识别被对象遮挡的景
物的区域。
8. 按照权利要求6所述的设备，其中
插值图像创建单元通过观察对象的周边像素，识别被对象遮挡的景物的区域。
9. 按照权利要求1所述的设备，还包括：
叠加信息生成单元，所述叠加信息生成单元生成供在透明显示器上显示的叠加信息；
叠加信息处理单元，所述叠加信息处理单元相对于沿着非设备使用者的视线方向的图
像中的区域的颜色，有选择地设定叠加信息的颜色。
10. 按照权利要求1所述的设备，其中
当设备处于隐私保护模式时，叠加信息处理单元把叠加信息的颜色设定成和沿着非使
用者的视线的图像中的区域相同的颜色。
11. 按照权利要求10所述的设备，其中
当设备未处于隐私保护模式时，叠加信息处理单元把叠加信息的颜色设定成和沿着非
使用者的视线的图像中的区域不同的颜色。
12. 按照权利要求1所述的设备，还包括：
透明显示器，所述透明显示器具有用户可见的内部显示器，和面向与内部显示器相反
的方向的外部显示器，其中
显示控制器被配置成响应隐私保护模式的启动，把外部显示器从透明状态改变成不透
明状态。
13. 按照权利要求12所述的设备，其中
响应于检测到视线朝向外部显示器的人，启动隐私保护模式。
14. 按照权利要求13所述的设备，还包括：
权利要求书

检测人的人检测单元；和
估计所述人的视线的视线估计单元。
15. 按照权利要求1所述的设备，还包括：
叠加信息生成单元，所述叠加信息生成单元生成供在透明显示器上显示的叠加信息，
其中
显示控制器判定在透明显示器的表面和图像之间是否存在用户的焦点失配，并且当不存在
失配时，显示控制器使叠加信息被显示在透明显示器上。
16. 按照权利要求15所述的设备，其中
当存在焦点失配，并且透明显示器的表面未被注视时，显示控制器使叠加信息被不引
人注意地显示在透明显示器上，并且
当存在焦点失配，并且透明显示器的表面被注视时，显示控制器把图像和叠加信息一
起显示在透明显示器上。
17. 按照权利要求1所述的设备，还包括：
叠加信息生成单元，所述叠加信息生成单元生成供在透明显示器上显示的叠加信息；
和
叠加判定单元，所述叠加判定单元判定对于用户的左眼和右眼的显示位置；其中
显示控制器把叠加信息显示在与显示在透明显示器上的图像大体相同的感知深度处。
18. 按照权利要求1所述的设备，还包括：
为透明显示器的前侧和透明显示器的后侧提供图像的单个图像传感器。
19. 一种控制透明显示器的方法，包括：
接收传感器输出，所述传感器输出包含关于与透明显示器分离的对象的信息；和
利用处理电路，基于传感器输出，控制透明显示器的显示状态。
20. 一种保存有计算机可读指令的非临时性计算机可读存储介质，当被处理器执行时，
所述计算机可读指令执行控制透明显示器的方法，所述方法包括：
接收传感器输出，所述传感器输出包含关于与透明显示器分离的对象的信息；和
利用处理电路，根据传感器输出，控制透明显示器的显示状态。
显示设备和显示控制方法

技术领域
[0001] 本技术涉及显示设备和显示控制方法，以及非临时性计算机可读介质，尤其涉及利用透明显示器构成的显示设备等。

背景技术
[0002] 在现有技术中，提出了利用透明显示器构成的显示设备（例如，参见PTL.1）。就显示设备来说，用户可通过透明显示器，观察在前侧的图像，如与观察的图像相关的文字或图像相关的信息（叠加信息）可被显示在透明显示器上。

[0003] 引文列表
[0004] 专利文献
[0005] PTL.1：未经审查的日本专利申请公开No.2010-108647

发明内容
[0006] 本技术的目的是改善利用透明显示器构成的显示设备的便利性。
[0007] 按照一个实施例，设备包括
[0008] 显示控制器，所述显示控制器被配置成根据传感器输出，控制透明显示器的显示状态，所述传感器输出包含关于与设备分离的对象的信息。
[0009] 按照本技术，能够改善利用透明显示器构成的显示设备的便利性。

附图说明
[0010] 图1是示意图解说明按照第一实施例的显示设备的外观的示图。
[0011] 图2是图解说明用户通过透明显示器观察的图像Ia的例子，并且图解说明包含在图像Ia中的用户的手被删除的示图。
[0012] 图3是图解说明按照第一实施例的显示设备的电路结构例子的示图。
[0013] 图4是图解说明显示设备在外来物体去除模式下的处理过程的例子的流程图。
[0014] 图5是示意图解说明按照第二实施例的显示设备的外观的示图。
[0015] 图6是图解说明用户通过透明显示器观察的图像Ia的例子，并且图解说明包含在图像Ia中的预定对象被删除的示图。
[0016] 图7是图解说明按照第二实施例的显示设备的电路结构例子的示图。
[0017] 图8是图解说明显示设备在外来物体去除模式下的处理过程的例子的流程图。
[0018] 图9是示意图解说明按照第三实施例的显示设备的外观的示图。
[0019] 图10是图解说明位于透明显示器的后侧的用户Ma观察的视野（用户视野）的例子，和位于透明显示器的前侧的另一人Mb观察的视野（他人视野）的例子的示图。
[0020] 图11是图解说明按照第三实施例的显示设备的电路结构例子的示图。
[0021] 图12是图解说明显示设备在隐私保护模式下的处理过程的例子的流程图。
[0022] 图13是示意图解说明按照第四实施例的显示设备的外观的示图。
图 14 是图解说明位于透明显示器的后侧的用户 Ma 能够观察在前侧的图像 Ia，位于透明显示器的前侧的另一人 Mb 能够观察位于后侧的用户 Ma 等的示图。

图 15 是图解说明按照第四实施例的显示设备的电路结构例子的示图。

图 16 是图解说明显示设备在隐私保护模式下的处理过程的例子的流程图。

图 17 是示意图解说明按照第五实施例的显示设备的外观的示图。

图 18 是图解说明位于透明显示器的后侧的用户 Ma 通过透明显示器，观察图像 Ia 的状态的例子的示图。

图 19 是图解说明在用户注视透明显示器的显示面的情况下的透明显示器的显示的示图。

图 20 是图解说明按照第五实施例的显示设备的电路结构例子的示图。

图 21 是图解说明显示设备在焦点失配改善模式下的处理过程的例子的流程图。

图 22 是示意图解说明按照第六实施例的显示设备的外观的示图。

图 23 是图解说明位于透明显示器的后侧的用户 Ma 通过透明显示器，观察图像 Ia 的状态的例子的示图。

图 24 是图解说明用户 Ma 在几乎和图像 Ia 相同的位置，感知显示在透明显示器的显示面的叠加信息的示图。

图 25 是图解说明按照第六实施例的显示设备的电路结构例子的示图。

图 26 是图解说明左眼和右眼的叠加信息区域，即，光控制显示部分，和显示在其中的叠加信息，或者各个视点图像到左眼和右眼的照射之间的关系的示图。

图 27 是图解说明显示设备在显示位置调整模式下的处理过程的例子的流程图。

具体实施方式

下面，说明本发明的实施例。另外，将按照以下顺序进行说明。

1. 第一实施例
2. 第二实施例
3. 第三实施例
4. 第四实施例
5. 第五实施例
6. 第六实施例
7. 变形例

＜1. 第一实施例＞

“显示设备的结构例子”

图 1 示意表示按照第一实施例的显示设备 100 的外观。显示设备 100 构成移动设备。显示设备 100 包括透明显示器 101。在透明显示器 101 的上端，彼此相邻地布置后摄像头（后图像传感器）102 和前摄像头（前图像传感器）103。后摄像头 102 拍摄在透明显示器 101 的前侧的图像。前摄像头 103 拍摄在透明显示器 101 的后侧的图像。另外，在透明显示器 101 的前侧的表面上，布置触摸面板 104。

图 2(a) 表示用户通过透明显示器 101 观察的图像 Ia 的例子。这种情况下，用户的手（手的一部分）105 位于透明显示器 101 的前侧，手 105 的一部分遮盖透明显示器 101，
作为外来物体包含在图像 1a 中。在显示设备 100 中，如图 2(b) 中所示，能够删除包含在图像 1a 中的用户的手 105。

[0049] 图 3 表示按照第一实施例的显示设备 100 的电路结构例子。显示设备 100 包括透明显示器 101、前摄像头 102、前摄像头 103 和触摸面板 104。另外，显示设备 100 包括视点估计单元 121、区域估计单元 122、拍摄图像存储单元 123、插值图像创建单元 124、显示控制单元 125 和叠加信息生成单元 126。

[0050] 视点估计单元 121 根据利用前摄像头 103 获得的拍摄图像，估计用户的视点（眼睛的位置）。区域估计单元 122 从触摸面板 104 的输出中，检测作为外来物体区域的用户的手 105 的区域。另外，区域估计单元 122 根据关于用户的手 104 的区域的信息，和利用视点估计单元 121 获得的视点信息，从利用后摄像头 102 获得的拍摄图像中，估计与用户的手 105 的区域对应的图像区域。

[0051] 拍摄图像存储单元 123 保存对应于预定帧周期，利用后摄像头 102 获得的拍摄图像。插值图像创建单元 124 从保存在拍摄图像存储单元 123 中的拍摄图像中，切割与用户的手 105 的区域对应的那部分的图像，以便根据区域估计单元 122 的区域估计结果，创建插值图像。叠加信息生成单元 126 生成显示在透明显示器 101 上的诸如字母或图像之类的叠加信息。

[0052] 叠加信息例如是与包含在用户通过透明显示器 101 观察的在前侧的图像中的预定对象相关的信息。可通过从作为图像，利用后摄像头 102 获得的拍摄图像中，识别预定对象，并通过利用识别结果，使用通信功能（未图示）从因特网上的服务器设备自动获得叠加信息。这种情况下，存在其中使用通信功能，把利用后摄像头 102 获得的拍摄图像传送给云上（因特网上）的服务器设备，服务器设备进行图像识别，并从服务器设备接收叠加信息的结构。对以下的其它实施例来说，关于以上叠加信息的内容也相同。

[0053] 当叠加信息生成单元 126 生成叠加信息时，显示控制单元 125（例如，可编程处理器或其它处理电路）把叠加信息显示在透明显示器 101 上。另外，在外来物体去除模式下，显示控制单元 125 把利用插值图像创建单元 124 创建的插值图像只显示在透明显示器 101 的用户的手 105 的区域中。

[0054] 下面简要说明图 3 中所示的显示设备 100 的操作。利用拍摄在透明显示器 101 的前侧的图像的后摄像头 102 获得的拍摄图像被临时保存在拍摄图像存储单元 123 中。另外，利用拍摄在透明显示器 101 的前侧的图像的前摄像头 103 获得的拍摄图像被提供给视点估计单元 121。视点估计单元 121 根据利用前摄像头 103 获得的拍摄图像，估计用户的视角。视点估计结果被提供给区域估计单元 122。

[0055] 触摸面板 104 的输出被提供给区域估计单元 122。区域估计单元 122 从触摸面板 104 的输出中，检测用户的手 105 的区域，作为外来物体区域。另外，在区域估计单元 122 中，根据用户的手 105 的区域的有关信息，和利用视点估计单元 121 获得的视点信息，从利用后摄像头 102 获得的拍摄图像中，估计与用户的手 105 的区域对应的图像区域。区域估计结果被提供给插值图像创建单元 124。

[0056] 在插值图像创建单元 124 中，从保存在拍摄图像存储单元 123 中的拍摄图像中，切割与用户的手 105 的区域对应的那部分的图像，根据来自区域估计单元 122 的区域估计结果，创建插值图像（替换图象）。在外来物体去除模式下，显示控制单元 125 把利用插值图
像创建单元 124 创建的插值图像只显示在透明显示器 101 的用户的手 105 的区域中。从而，包含在用户通过透明显示器 101 观察的图像 1a 中的用户的手 105 被删除（参见图 2(b)）。此外，当叠加信息生成单元 126 生成叠加信息时，显示控制单元 125 把叠加信息显示在透明显示器 101 上。

[0057] 图 4 的流程图表示在图 1 和图 3 中所示的显示设备 100 在外来物体去除模式下的处理过程的例子。显示设备 100 在步骤 ST1，开始所述处理，随后在步骤 ST2，开始利用后摄像头 102 和前摄像头 103 成像，并启动触摸面板 104。

[0058] 之后，在步骤 ST3，显示设备 100 检测触摸面板 104 中被手 105 遮盖的区域。之后，在步骤 ST4，显示设备 100 估计并从利用后摄像头 102 获得的拍摄图像中切割被手遮盖的区域的景象（图像）。接下来，在步骤 ST5，显示设备 100 只在被手遮盖的区域中，显示在步骤 ST4 中切割的图像。

[0059] 之后，显示设备 100 在步骤 ST6，判定外来物体去除模式是否结束。例如根据用户的明确指令操作，判定外来物体去除模式是否结束，不过图 3 中未表示用户操作单元。如果判定所述模式未结束，显示设备 100 返回步骤 ST3 的处理，重复进行上述处理。另一方面，如果判定所述模式结束，那么显示设备 100 在步骤 ST7，终止该处理。

[0060] 如上所述，在图 1 中所示的显示设备 100 中，在外来物体去除模式下，利用后摄像头 102 获得的拍摄图像的与用户的手 105 的区域对应的那部分的图像只被显示在包含在用户通过透明显示器 101 观察的图像 1a 中的用户的手 105 的区域中。因此，从用户通过透明显示器 101 观察的图像 1a 中，除去用户的手 105，从而改善环境特性。

[0061] 2. 第二实施例＞

[0062] “显示设备的结构例子”

[0063] 图 5 示意表示按照第二实施例的显示设备 200 的外观。显示设备 200 构成移动设备。显示设备 200 包括透明显示器 201。在透明显示器 201 的上端，彼此相邻地布置后摄像头（后图像传感器）202 和前摄像头（前图像传感器）203。后摄像头 202 拍摄在透明显示器 201 的前侧的图像。前摄像头 203 拍摄在透明显示器 201 的后侧的图像。另外，在透明显示器 201 的前侧的表面上，布置触摸面板 204。

[0064] 图 6(a) 表示用户通过透明显示器 201 观察的图像 1a 的例子。这种情况下，对象 205 作为外来物体包含在图像 1a 中。在显示设备 100 中，如图 6(b) 中所示，能够删除包含在图像 1a 中的对象 205。

[0065] 图 7 表示按照第二实施例的显示设备 200 的电路结构例子。显示设备 200 包括透明显示器 201，后摄像头 202，前摄像头 203 和触摸面板 204。另外，显示设备 200 包括视点估计单元 221，区域估计单元 222，拍摄图像存储单元 223，插值图像创建单元 224，显示控制单元 225 和叠加信息生成单元 226。

[0066] 触摸面板 204 用于从用户通过透明显示器 201 观察的图像 1a 中，指定预定对象 205。在这方面，触摸面板 201 构成对象指定单元。视点估计单元 221 根据利用前摄像头 103 获得的拍摄图像，估计用户的视点。区域估计单元 222 检测包括在触摸面板 204 中指定的对象 205 的对象区域，作为外来物体区域。另外，区域估计单元 222 根据关于对象区域的信息，和利用视点估计单元 221 获得的视点信息，估计利用后摄像头 202 获得的拍摄图像中的与对象区域对应的图像区域。
[0067] 拍摄图像存储单元 223 保存对应于预定帧周期, 利用后摄像头 202 获得的拍摄图像。插值图像创建单元 224 根据来自区域估计单元 222 的区域估计结果, 创建插值图像。这种情况下, 当对象 205 移动时, 插值图像创建单元 224 从保存在拍摄图像存储单元 223 中的拍摄图像之中其中不存在对象 205 的过去一帧的拍摄图像中, 切割与对象区域对应的那部分的图像, 以便创建插值图像 (替换图像)。另外, 当对象 205 不移动时, 插值图像创建单元 224 通过利用对象区域的周边像素, 创建插值图像 (替换图像)。

[0068] 当叠加信息生成单元 226 生成叠加信息时, 显示控制单元 225 把叠加信息显示在透明显示器 201 上。另外, 在关闭物体解除模式下, 显示控制单元 225 把利用插值图像创建单元 224 创建的插值图像只显示在透明显示器 201 的对象区域中。

[0069] 下面简要说明图 7 中所示的显示设备 200 的操作。利用拍摄在透明显示器 201 的前侧的图像的后摄像头 202 获得的拍摄图像被临时保存在拍摄图像存储单元 223 中。另外, 利用拍摄在透明显示器 101 的前侧的图像的前摄像头 203 获得的拍摄图像被提供给视点估计单元 221。视点估计单元 221 根据利用前摄像头 203 获得的拍摄图像, 估计用户的视点。视点估计结果被提供给区域估计单元 222。

[0070] 通过利用触摸面板 204, 用户指定希望从用户通过透明显示器 201 观察到的图像 1a 中除去的对象 205。区域估计单元 222 检测包括在触摸面板 204 中指定的对象的区域区域, 作为来物体区域。另外, 区域估计单元 222 根据对象区域的有关信息, 和利用视点估计单元 221 获得的视点信息, 从利用后摄像头 202 获得的拍摄图像中, 估计与对象区域对应的图像区域。区域估计结果被提供给插值图像创建单元 224。

[0071] 插值图像创建单元 224 根据来自区域估计单元 222 的区域估计结果, 创建插值图像 (替换图像)。这种情况下, 当对象 205 移动时, 插值图像创建单元 224 从保存在拍摄图像存储单元 223 中的拍摄图像之中其中不存在对象 205 的过去一帧的拍摄图像中, 切割与对象区域对应的那部分的图像, 以便创建插值图像 (替换图像)。另一方面, 当对象 205 不移动时, 插值图像创建单元 224 通过利用对象区域的周边像素, 创建插值图像 (替换图像)。

[0072] 在关闭物体解除模式下, 显示控制单元 225 把利用插值图像创建单元 224 创建的插值图像只显示在透明显示器 201 的对象区域中。从而, 包含在用户通过透明显示器 201 观察的图像 1a 中的对象 205 被删除 (参见图 6 (b))。另外, 当叠加信息生成单元 226 生成叠加信息时, 显示控制单元 225 把叠加信息显示在透明显示器 201 上。

[0073] 图 8 的流程图表示在图 5 和图 7 中所示的显示设备 200 在关闭物体解除模式下的处理过程的例子。显示设备 200 在步骤 ST11, 开始所述处理, 随后进入步骤 ST12 的处理。在步骤 ST12, 显示设备 200 开始利用后摄像头 202 和前摄像头 203 成像, 并启动触摸面板 204。

[0074] 之后, 在步骤 ST13, 显示设备 200 指定操作触摸面板 204 的用户希望从通过透明显示器 201 观察的图像中除去的对象 205。另外, 在步骤 ST14, 显示设备 200 判定指定的对象是否移动。例如, 根据利用后摄像头 202 获得的拍摄图像, 检测对象 205 的运动方向, 从而判定对象 205 是否移动。

[0075] 如果判定对象 205 移动, 那么在步骤 ST15, 显示设备 200 通过使用利用后摄像头 202 获得的拍摄图像中的其中不存在对象 205 的过去一帧, 创建与对象区域对应的插值图像 (替换图像)。另一方面, 如果判定对象 205 不移动, 那么在步骤 ST16, 显示设备 200 通
过使用利用后摄像头 202 获得的拍摄图像的对象区域 205 的周围像素，创建与对象区域对应的插值图像（替换图像）。

[0076] 显示设备 200 进行步骤 ST15 或 ST16 中的处理，随后进入步骤 ST17 中的处理。在步骤 ST17，显示设备 200 把在步骤 ST15 或 ST16 中创建的插值图像只显示在对象区域中。

[0077] 之后，显示设备 200 在步骤 ST18，判定外来物体去除模式是否结束。例如根据用户的明确指令操作，判定外来物体去除模式是否结束，不过图 7 中未表示用户操作单元。如果判定所述模式未结束，那么显示设备 200 返回步骤 ST13 的处理，重复进行上述处理。另一方面，如果判定所述模式结束，那么显示设备 200 在步骤 ST19，终止该处理。

[0078] 如上所述，在图 5 中所示的显示设备 200 中，在外来物体去除模式下，根据利用后摄像头 202 获得的拍摄图像创建的插值图像（替换图像）只被显示在包含在用户通过透明显示器 101 观察的图像 1a 中的用户指定的对象 105 的区域中。因此，从用户通过透明显示器 201 观察的图 1a 中，除去指定的对象 105，从而改善环境特性。

[0079] (3. 第三实施例)

[0080] “显示设备的结构例子”

[0081] 图 9 显示表示按照第三实施例的显示设备 300 的外观。显示设备 300 构成移动设备。显示设备 300 包括透明显示器 301。在透明显示器 301 的上端，彼此相邻地布置后摄像头 1（后图像传感器）302 和前摄像头（前图像传感器）303。后摄像头 302 拍摄在透明显示器 301 的前侧的图像。前摄像头 303 拍摄在透明显示器 301 的后侧的图像。

[0082] 图 10 表示在位于透明显示器 301 的后侧的用户 Ma 观察在透明显示器 301 的前侧的图像 1a 的情况下的视野（用户视野）的例子。在该视野（下面称为“用户视野”）中，除了图像 1a 之外，包括另一人 Mb，还有显示在透明显示器 301 上的诸如字母或图像之类的叠加信息（所示例子中的字符信息）。

[0083] 另外，图 10 表示在位于透明显示器 301 的前侧的另一人 Mb 观察在透明显示器 301 的后侧的图像 1b 的情况下的视野（他人视野）的例子。在该视野（下面称为“他人视野”）中，除了图像 1b 之外，包括用户 Ma，还包括显示在透明显示器 301 上的诸如字母或图像之类的叠加信息（所示例子中的字符信息）。

[0084] 在显示设备 300 中，当另一人 Mb 的视线对着显示在透明显示器 301 上的叠加信息时，能够把叠加信息的显示颜色设定成与图像 1b 的沿视线方向的区域的颜色信息对应的颜色。

[0085] 图 11 表示按照第三实施例的显示设备 300 的电路结构例子。显示设备 300 包括透明显示器 301、后摄像头 302 和前摄像头 303。另外，显示设备 300 包括视线估计单元 321，颜色信息获取单元 322，叠加信息生成单元 323，叠加信息处理单元 324 和显示控制单元 325。


[0087] 当利用视线估计单元 321 估计的另一人 Mb 的视线方向是朝向显示在透明显示器 301 上的叠加信息（字母、图像等）的视线时，颜色信息获取单元 322 从利用前摄像头 303
获得的拍摄图像中，获得沿视线方向的区域的颜色信息。沿视线方向的区域是当另一人 Mb
的视线对着显示在透明显示器 301 上的叠加信息时，通过透明显示器 301 观察的，并且位于
叠加信息的背景中的图像区域。
[0088] 叠加信息生成单元 323 生成显示在透明显示器 301 上的叠加信息（字母、图像等）。
在隐私保护模式下，叠加信息处理单元 324 进行颜色变更处理，以致利用叠加信息生成
单元 323 的显示颜色生成的叠加信息生成与利用颜色信息获取单元 322 获得的颜色信息
对应的颜色。另外，当未处于隐私保护模式时，叠加信息处理单元 324 原样输出利用叠加信
息生成单元 323 生成的叠加信息，而不进行颜色变更处理。当叠加信息生成单元 323 生成
叠加信息时，显示控制单元 325 把已经过叠加信息处理单元 324 的叠加信息显示在透明显
示器 301 上。
[0089] 下面简要说明图 11 中所示的显示设备 300 的操作。利用拍摄在透明显示器 301
的前侧的图像的后摄像头 302 获得的拍摄图像被提供给视线估计单元 321。视线估计单元
321 处理拍摄的图像，如果在拍摄图像中，存在另一人 Mb，那么估计视线。视线方向的估计
结果被提供给颜色信息获取单元 322。
[0090] 另外，利用拍摄在透明显示器 301 的后侧的图像的前摄像头 303 获得的拍摄图像
被提供给颜色信息获取单元 322。当利用视线估计单元 321 估计的另一人 Mb 的视线方向
是朝向显示在透明显示器 301 上的叠加信息（字母、图像等）的视线时，颜色信息获取单元
322 从利用前摄像头 303 获得的拍摄图像中，获得沿视线方向的区域的颜色信息。所述颜色
信息被提供给叠加信息处理单元 324。
[0091] 在隐私保护模式下，当另一人 Mb 的视线对着显示在透明显示器 301 上的叠加信息
时，叠加信息处理单元 324 进行颜色变更处理，以致利用叠加信息生成单元 323 的显示颜色
生成的叠加信息生成与利用颜色信息获取单元 322 获得的颜色信息对应的颜色。另一方面，当未处于隐私保护模式时，叠加信息处理单元 324 原样输出利用叠加信息生成单元 323
生成的叠加信息。
[0092] 在隐私保护模式下，当另一人 Mb 的视线对着显示在透明显示器 301 上的叠加信息
时，显示控制单元 325 把已在叠加信息处理单元 324 中经历颜色变更处理的叠加信息显示
在透明显示器 301 上。因此，另一人 Mb 难以得知显示在透明显示器 301 上的叠加信息。另
外，当未处于隐私保护模式时，或者当另一人 Mb 的视线未对着显示在透明显示器 301 上的
叠加信息时，利用叠加信息生成单元 323 生成的叠加信息被原样显示在透明显示器 301 上。
[0093] 图 12 的流程图表示在图 9 和图 11 中所示的显示设备 300 在隐私保护模式下的处
理过程的例子。显示设备 300 在步骤 ST21，开始所述处理，随后进入步骤 ST22 的处理。在
步骤 ST22，显示设备 200 开始利用后摄像头 302 和前摄像头 303 成像。此外，在步骤 ST23，
从利用后摄像头 302 拍摄的图像中，估计另一人 Mb 的视线方向。
[0094] 在步骤 ST24，显示设备 300 判定所述视线方向是否对着显示在透明显示器 301 上
的叠加信息。当所述视线方向对着叠加信息时，在步骤 ST25，显示设备 300 从利用前摄像头
头 303 获得的拍摄图像中，获得沿所述视线方向的区域的颜色信息。另外，在步骤 ST26，显
示设备 300 对叠加信息进行颜色变更处理，以致叠加信息的显示颜色变成与所述颜色信息
对应的颜色，以便被显示。另一方面，当视线方向未对着叠加信息时，在步骤 ST27，显示设备
300 原样显示利用叠加信息生成单元 323 生成的叠加信息，而不进行颜色变更处理。
之后在步骤 ST28，显示设备 300 判定隐私保护模式是否结束。例如根据用户的明确指令操作，判定隐私保护模式是否结束，不过图 11 中未表示用户操作单元。如果判定所述模式未结束，那么显示设备 300 返回步骤 ST23 的处理，重复进行上述处理。另一方面，如果判定所述模式结束，那么显示设备 300 在步骤 ST29，终止该处理。

如上所述，在图 9 中所示的显示设备 300 中，在隐私保护模式下，当另一人 Mb 的视线对着显示在透明显示器 301 上的叠加信息时，在透明显示器 301 上显示经过颜色变更处理的叠加信息。因此，另一人 Mb 难以得知显示在透明显示器 301 上的叠加信息，从而改善隐私保护。

＜4. 第四实施例＞

“显示设备的结构例子”

图 13 显示表示按照第四实施例的显示设备 400 的外观。显示设备 400 构成移动设备。显示设备 400 包括透明显示器 401。透明显示器 401 由前侧透明显示器 401R 和后侧透明显示器 401F 构成。在透明显示器 401 的上端，彼此相邻地布置后摄像头（后图像传感器）402 和人物检测传感器 403。后摄像头 402 拍摄在透明显示器 401 的前侧的图像。人物检测传感器 403 检测存在于透明显示器 401 的前侧的预定范围中的人物。

图 14(a) 表示位于透明显示器 401 的后侧的用户 Ma 能够通过透明显示器 401，观察在前侧的图像 1a。另外，图 14(b) 表示位于透明显示器 401 的前侧的另一人 Mb 能够通过透明显示器 401，观察位于后侧的用户 Ma 等。

在显示设备 400 中，当检测到另一人 Mb 的存在时，存在存在对透明显示器 401 的视线时，图 14(c) 中所示，利用后摄像头 402 拍摄的拍摄图像可被显示在后侧透明显示器 401F 上，并且前侧透明显示器 401R 可被设定成不透明状态，如图 14(d) 中所示。

图 15 表示按照第四实施例的显示设备 400 的电路结构例子。显示设备 400 包括前侧透明显示器 401R、后侧透明显示器 401F、后摄像头 402 和人物检测传感器 403。另外，显示设备 400 包括视线估计单元 421、人物检测单元 422、叠加信息生成单元 423 和显示控制单元 424。

视线估计单元 421 根据利用后摄像头 402 拍摄的拍摄图像，估计另一人 Mb 的视线方向。视线估计单元 421 具有和上述显示设备 300 的视线估计单元 321 相同的结构。人物检测单元 422 根据人物检测传感器 403 的输出，检测存在于透明显示器 401 的前侧的预定范围中的另一人 Mb。

叠加信息生成单元 423 生成显示在透明显示器 401 上的如字符或图像之类的叠加信息。当叠加信息生成单元 423 生成叠加信息时，显示控制单元 424 把叠加信息显示在透明显示器 401，例如，后侧透明显示器 401F 上。

另外，在隐私保护模式下，显示控制单元 424 根据来自视线估计单元 421 的视线估计结果，和来自人物检测单元 422 的人物检测结果，判定是否满足存在另一人 Mb，并且其视线对着透明显示器 401 的条件。如果判定该条件被满足，那么显示控制单元 424 把利用后摄像头 402 拍摄的拍摄图像显示在后侧透明显示器 401F 上，并把前侧透明显示器 401R 设定成不透明状态。

下面简要说明图 15 中所示的显示设备 400 的操作。人物检测传感器 403 的输出被提供给人物检测单元 422。另外，人物检测单元 422 根据人物检测传感器 403 的输出，检测
存在于透明显示器 401 的前侧的预定范围中的人物。检测结果被提供给显示控制单元 424。
[0107] 此外，利用拍摄在透明显示器 401 的前侧的图像的后摄像头 402 获得的拍摄图像被提供给视线估计单元 421。视线估计单元 421 处理拍摄图像，如果在拍摄图像中存在另一人 Mb，则估计视线方向。视线方向的估计结果被提供给显示控制单元 424。
[0108] 叠加信息生成单元 423 生成显示在透明显示器 401 上的叠加信息（字母、图像等）。叠加信息被提供给显示控制单元 424。显示控制单元 424 把叠加信息显示在后侧透明显示器 401F 上。
[0109] 另外，在隐私保护模式下，显示控制单元 424 根据来自视线估计单元 421 的视线估计结果，和来自人物检测单元 422 的人物检测结果，判断是否满足存在另一人 Mb，并且其视线对着透明显示器 401 的条件。如果判定该条件被满足，则利用后摄像头 402 获得的拍摄图像被显示在后侧透明显示器 401F 上，前侧透明显示器 401R 被设定成不透明状态。因此，另一人 Mb 无法通过透明显示器 401，观察位于后侧的用户 Ma 等。
[0110] 图 16 的流程图表示图 13 和图 15 中所示的显示设备 400 在隐私保护模式下的处理过程的例子。显示设备 400 在步骤 ST31 中开始处理，随后进入步骤 ST32 中的处理。在步骤 ST32，显示设备 400 开始利用后摄像头 402 成像，并启动人物检测传感器 403。
[0111] 之后在步骤 ST33，显示设备 400 判定在透明显示器 401 的前侧的预定范围中，是否存在另一人 Mb。当存在另一人 Mb 时，显示设备 400 进入步骤 ST34 中的处理。在步骤 ST34，显示设备 400 判定另一人 Mb 的视线是否对着透明显示器 401。
[0112] 当另一人 Mb 的视线对着透明显示器 401 时，在步骤 ST35，显示设备 400 把前侧透明显示器（外部显示器）401R 设定成不透明状态。另外在此时，显示设备 400 把利用后摄像头 402 获得的拍摄图像显示在后侧透明显示器（内部显示器）401F 上。另一方面，当在步骤 ST33，不存在另一人 Mb 时，或者在步骤 ST34，另一人 Mb 的视线未对着透明显示器 401 时，在步骤 ST36，显示设备 400 使前侧透明显示器 401R 和后侧透明显示器 401F 都维持透明状态。
[0113] 之后，在步骤 ST37，显示设备 400 判定隐私保护模式是否结束。例如根据用户的明确指令操作，判定隐私保护模式是否结束。不过图 15 中也表示用户操作单元。如果判定所述模式未结束，那么显示设备 400 返回步骤 ST33 的处理，重复进行上述处理。另一方面，如果判定所述模式结束，那么显示设备 400 在步骤 ST38，终止该处理。
[0114] 如上所述，在图 13 中所示的显示设备 400 中，在隐私保护模式下，当存在另一人 Mb，并且他/她的视线对着透明显示器 401 时，利用后摄像头 402 获得的拍摄图像被显示在后侧透明显示器 401F 上，并且前侧透明显示器 401R 被设定成不透明状态。因此，另一人 Mb 无法通过透明显示器 401，观察位于透明显示器 401 的后侧的用户 Ma 等，从而改善隐私保护。这种情况下，能够减轻用户 Ma 被另一人 Mb 观察的感觉。
[0115] 在上述的说明中，在隐私保护模式下，当存在另一人 Mb，并且他/她的视线对着透明显示器 401 时，利用后摄像头 402 获得的拍摄图像被显示在后侧透明显示器 401F 上，并且前侧透明显示器 401R 被设定成不透明状态。不过，当存在另一人 Mb 时，利用后摄像头 402 获得的拍摄图像被显示在后侧透明显示器 401F 上，并且前侧透明显示器 401R 被设定成不透明状态。这种情况下，不施加另一人 Mb 的视线对着透明显示器 401 的条件。这种情况下，图 15 中的显示设备 400 的视线估计单元 421 不是必需的。
[0116] 此外，在上面的说明中，人物检测单元 422 根据人物检测传感器 403 的输出，检测存在于在透明显示器 401 的对侧的预定范围中的另一人 Mb。不过，人物检测单元 403 可通过处理利用后摄像头 402 获得的拍摄图像，识别（检测）存在于在透明显示器 401 对侧的预定范围中的另一人 Mb。这种情况下，人物检测传感器 403 不是必需的。

[0117] 此外，在上述的说明中，当存在另一人 Mb，并且他/她的视线对着透明显示器 401 时，利用后摄像头 402 获得的拍摄图像被显示在后侧透明显示器 401F 上，并且前侧透明显示器 401R 被设定成不透明状态。不过，透明显示器 401 可以分成多个块，利用后摄像头 402 获得的拍摄图像可被显示在后侧透明显示器 401F 上的所述视点对着的分割区域中，前侧透明显示器 401R 可以设定成不透明状态。另外，可以进行控制，以使视点对着的分割区域的透明度最小，并且离该分割区域越远，透明度越高。

[0118] <5. 第五实施例>

[0119] “显示设备的结构例子”

[0120] 图 17 意示表示按照第五实施例的显示设备 500 的外观。显示设备 500 构成移动设备。显示设备 500 包括透明显示器 501。在透明显示器 501 的上端，彼此相邻地布置后摄像头（后图像传感器）502 和前摄像头（前图像传感器）503。后摄像头 502 拍摄在透明显示器 501 的对侧的图像。前摄像头 503 拍摄在透明显示器 501 的后侧的图像。

[0121] 图 18(a) 表示位于透明显示器 501 的后侧的用户 Ma 通过透明显示器 501，观察图像 1a 的状态的例子。此例子表示，透明显示器 501 的显示面和图像 1a 之间的距离 rb 远远大于用户 Ma 的眼睛和透明显示器 501 的显示面之间的距离 ra（ra≪rb），从而发生透明显示器 501 的显示面和图像 1a 的焦点失配的状态。图 18(b) 表示当在这种情况下，用户 Ma 注视透明显示器 501 的显示面，并且图像 1a 处于模糊状态时观察到的视野的例子。另外，尽管未图示，不过相反地，在当用户 Ma 注视图像 1a 时观察到的视野中，透明显示器 501 的显示面的信息处于模糊状态。

[0122] 图 18(c) 表示位于透明显示器 501 的后侧的用户 Ma 通过透明显示器 501，观察图像 1a 的状态的例子。此例子表示，透明显示器 501 的显示面和图像 1a 之间的距离 rb 远远小于用户 Ma 的眼睛和透明显示器 501 的显示面之间的距离 ra（ra≫rb），从而不发生透明显示器 501 的显示面和图像 1a 的焦点失配的状态。图 18(d) 表示当在这种情况下，用户 Ma 注视透明显示器 501 的显示面或者图像 1a，并且透明显示器 501 的显示面和图像 1a 间的信息都处于清晰状态时观察到的视野的例子。

[0123] 在显示设备 500 中，在检测到透明显示器 501 的显示面和图像 1a 的焦点失配的情况下，如图 19(a) 中所示，当用户 Ma 注视透明显示器 501 的显示面时，利用后摄像头 502 获得的拍摄图像可被显示在透明显示器 501 上，叠加信息（字母、图像等）可叠加地显示在拍摄图像上。这种情况下，如图 19(b) 中所示，在用户 Ma 观察的视野中，叠加信息和图像 1a 都处于清楚状态。

[0124] 在显示设备 500 中，在检测到透明显示器 501 的显示面和图像 1a 的焦点失配的情况下，如图 19(c) 中所示，当用户 Ma 注视透明显示器 501 的显示面时，叠加信息可能不被显示在透明显示器 501 上，或者透明显示器 501 上的叠加信息的显示可能不太显眼。这种情况下，如图 19(d) 中所示，在用户 Ma 观察到的视野中，图像 1a 处于被清晰显示，而不被显示在透明显示器 501 上的叠加信息妨碍的状态。
图20表示按照第五实施例的显示设备500的电路结构例子。显示设备500包括透明显示器501,前摄像头502和后摄像头503。另外，显示设备500包括视线估计单元521,距离估计单元522,距离估计单元523,叠加信息生成单元524和显示控制单元525。

视线估计单元521根据利用前摄像头503获得的拍摄图像，估计用户Ma的左眼和右眼的视线方向。视线估计单元521具有和上述显示设备300的视线估计单元321相同的结构。距离估计单元522根据利用前摄像头503获得的拍摄图像，估计用户Ma的眼睛和透明显示器501的显示面之间的距离ra。距离估计单元523根据利用后摄像头502获得的拍摄图像，估计透明显示器501的显示面和用户Ma通过透明显示器501观察的图像1a的距离rb。

叠加信息生成单元524生成显示在透明显示器501上的叠加信息（字母、图像等）。在焦点失控改善模式下，显示控制单元525根据来自距离估计单元522和523的距离估计结果，判定是否发生透明显示器501的显示面和图像1a的焦点失控。例如，如果ra<<rb,那么显示控制单元525判定存在焦点失控。

另外，显示控制单元525根据利用视线估计单元521估计的用户Ma的左眼和右眼的视线方向，判定显示Ma是否在注视透明显示器501的显示面，还是在注视图像1a。如果左眼和右眼的视线对着透明显示器501的显示面的几乎相同的位置（叠加信息的显示位置），那么显示控制单元525判定用户Ma注视透明显示器501的显示面。另一方面，如果左眼和右眼的视线对着图像1a的几乎相同的位置，那么显示控制单元525判定用户Ma注视图像1a。

另外，当判定存在焦点失控，并且判定用户Ma注视透明显示器501的显示面时，显示控制单元525把利用后摄像头502获得的拍摄图像显示在透明显示器501上，并把叠加信息（字母、图像等）叠加显示在拍摄图像上。此外，如果判定存在焦点失控，并且判定用户Ma注视图像1a，那么显示控制单元525不把叠加信息显示在透明显示器501上，通过降低叠加信息的对比度，不太明显地显示叠加信息，等等。另外，如果判定不存在焦点失控，那么显示控制单元525只把叠加信息显示在透明显示器501上。

下面简单说明图20中所示的显示设备500的操作。利用前摄像头503获得的拍摄图像被提供给视线估计单元521。视线估计单元521根据拍摄图像，估计用户Ma的左眼和右眼的视线方向。视线估计结果被提供给显示控制单元525。

另外，利用前摄像头503获得的拍摄图像被提供给距离估计单元522。距离估计单元522根据该拍摄图像，估计用户Ma的眼睛和透明显示器501的显示面之间的距离ra。此外，利用后摄像头502获得的拍摄图像被提供给距离估计单元523。距离估计单元523根据该拍摄图像，估计透明显示器501的显示面和用户Ma通过透明显示器501观察的图像1a之间的距离rb。

叠加信息生成单元524生成显示在透明显示器501上的叠加信息（字母、图像等）。当未在焦点失控改善模式下时，显示控制单元525只把叠加信息显示在透明显示器501上。另外，在焦点失控改善模式下，显示控制单元525进行以下控制。

即，根据来自距离估计单元522和523的距离估计结果，判定是否发生透明显示器501的显示面和图像1a的焦点失控。另外，根据利用视线估计单元521估计的用户Ma的左眼和右眼的视线方向，判定用户Ma是注视透明显示器501的显示面，还是注视图像1a。
[0134] 另外，当判定存在焦点失配，并且判定用户Ma注视透明显示器501的显示面时，显示控制单元525把利用后摄像头502获得的拍摄图像显示在透明显示器501上，并把叠加信息（字母、图像等）叠加地显示在拍摄图像上（参见图19(a)和(b))。

[0135] 此外，如果判定存在焦点失配，并且判定用户Ma注视图像1a，那么显示控制单元525不把叠加信息显示在透明显示器501上，通过降低叠加信息的对比度，不太明显地显示叠加信息，等等（参见图19(c)和(d))。另外，如果判定不存在焦点失配，那么按照和上述说明的未处于焦点失配改善模式时相同的方式，显示控制单元525只把叠加信息显示在透明显示器501上。

[0136] 图21的流程图表示图13和图15中所示的显示设备500在焦点失配改善模式下的处理过程的例子。显示设备500在步骤ST41，开始处理，随后进入步骤ST42的处理。在步骤ST42，显示设备500开始利用后摄像头502和前摄像头503成像。

[0137] 之后，在步骤ST43，显示设备500根据利用前摄像头503拍摄的图像，估计用户Ma的眼睛和透明显示器501的显示面之间的距离ra。之后，在步骤ST44，显示设备500估计透明显示器501的显示面和用户Ma通过透明显示器501的显示面观察的图像1a之间的距离rb。另外，在步骤ST45，显示设备500比较距离ra和距离rb。

[0138] 之后，在步骤ST46，显示设备500根据比较结果，判定是否发生了透明显示器501的显示面和图像1a的焦点失配。如果判定发生了焦点失配，那么在步骤ST47，显示设备500根据利用前摄像头503拍摄的图像，估计用户Ma的左眼和右眼的视线方向。

[0139] 之后在步骤ST48，显示设备500根据视线方向的估计结果，判定用户Ma是否注视透明显示器501的显示面。如果判定透明显示器501的显示面被注视，那么在步骤S49，显示设备500把利用后摄像头502拍摄的图像，和利用叠加信息生成单元524生成的叠加信息显示在透明显示器501上（参见图19(a)和(b))。

[0140] 另外，如果在步骤ST48，判定透明显示器501的显示面未被注视，那么在步骤ST50，显示设备500在透明显示器501上什么也不显示，或者通过降低叠加信息生成单元524生成的叠加信息的对比度等，不太明显地把所述叠加信息显示在透明显示器501上（参见图19(c)和(d))。此外，如果在步骤ST46，判定未发生焦点失配，那么在步骤ST51，在正常状态下，显示设备500只把叠加信息生成单元524生成的叠加信息显示在透明显示器501上。

[0141] 在进行步骤ST49、ST50和ST51中的处理之后，在步骤ST52，显示设备500判定焦点失配改善模式是否结束。例如根据用户的明确指令操作，判定焦点失配改善模式是否结束，不过图20中未表示用户操作单元。如果判定所述模式未结束，那么显示设备500返回步骤ST43的处理，重复进行上述处理。另一方面，如果判定所述模式结束，那么显示设备500在步骤ST53，终止该处理。

[0142] 如上所述，在图17中所示的成像设备500中，在焦点失配改善模式下，如果判定发生焦点失配，那么取决于用户Ma是否注视透明显示器501的显示面，改变透明显示器501的显示状态。即，当用户Ma注视透明显示器501的显示面时，利用后摄像头502拍摄的图像，和利用叠加信息生成单元524生成的叠加信息被显示在透明显示器501上。

[0143] 另一方面，如果判定透明显示器501的显示面未被注视，即，通过透明显示器501观察在前侧的图像1a，那么在透明显示器501上什么也不显示，或者不太明显地显示利用叠加信息生成单元524生成的叠加信息。因此，能够改善由焦点失配引起的用户Ma的不适。
另外，在上面说明的图20中所示的显示设备500中，从利用后摄像头502拍摄的图像中估计距离rb，从利用前摄像头503拍摄的图像中估计距离ra，然后在显示控制单元525中，通过所述距离的比较，自动判定是否发生焦点失配。不过，例如，可通过用户的手动操作，给出关于是否发生焦点失配的信息。这种情况下，在图20中所示的显示设备500中，距离估计单元522和523不是必需的。另外，显示控制单元525不必根据距离信息，判定是否发生焦点失配。

“显示设备的结构例子”

图22示表示按照第六实施例的显示设备600的外观。显示设备600构成移动设备。显示设备600包括透明显示器601。在透明显示器601的上端，彼此相邻地布置后摄像头（后图像传感器）602和前摄像头（前图像传感器）603。后摄像头602拍摄在透明显示器 601的前侧的图像。前摄像头603拍摄在透明显示器601的后侧的图像。另外，在透明显示器601的后侧，附着由液晶透镜或视差栅格构成的光控制单元604。

图23表示位于透明显示器601的前侧的用户Ma通过透明显示器601，观察图像Ia的状态的例子。该例子表示透明显示器601的显示面和图像Ia之间的距离rb远远大于用户Ma的眼睛和透明显示器601的显示面之间的距离ra(ra<<rb)的状态。这种情况下，由于透明显示器601的显示面和图像Ia的视差较大，因此左图像和右图像彼此不统一，从而观看困难。

这种情况下，在用户Ma注视透明显示器601的显示面时观察的视野中，图像Ia处于未被统一的状态。另外，这种情况下，在用户Ma注视图像Ia时观察的视野中，透明显示器601的显示面处于未被统一的状态。

在显示设备600中，如图24(a)中所示，显示在透明显示器601的显示面上的叠加信息，比如字母或图像（所示例子中的字母）可被用户Ma在几乎和图像Ia相同的位置感知，如图24(b)中所示。因此，生成左眼叠加信息和右眼叠加信息，作为叠加信息，并且这两个叠加信息被赋予适当的视差，并被显示在透明显示器601上。

图25表示按照第六实施例的显示设备600的电路结构例子。显示设备600包括透明显示器601，后摄像头602，前摄像头603和光控制单元604。另外，显示设备600包括深度图获取单元621，叠加位置判定单元622，用户视点位置判定单元624，用户视点图像生成单元624，叠加信息生成单元625和显示控制单元626。

深度图获取单元621 通过根据利用后摄像头602获得的拍摄图像，检测各个像素的深度，获得深度图。作为检测深度的方法，存在根据立体输入的计算方法，利用2D/3D变换的预测，单透镜摄像头和距离传感器的组合，等等。叠加位置判定单元622参考深度图，判定显示在透明显示器601的显示面上的叠加信息对左眼和右眼来说的显示位置。在这种情况下，叠加位置判定单元622判定对左眼和右眼说的显示位置，以及用户能够在几乎与通过透明显示器601观察的前侧的图像Ia的位置相同的位置，感知叠加信息。

用户视点位置检测单元623根据利用前摄像头603获得的拍摄图像，检测用户的左眼和右眼的视点位置（眼睛的位置）。视点位置的检测可以采用在T.Ishikawa, S. Baker, I. Matthews 和 T. Kanade 的“Passive Driver Gaze Tracking with Active Appearance Models” (Proceedings of the 11th World Congress on Intelligent
用户视点图像生成单元 624 参照检测的用户的左眼和右眼的视点位置，和获得的
深度图，从利用后摄像头 602 获得的拍摄图像，生成左眼和右眼的各个视点图像。
例如，在未经审查的日本专利申请公开 No. 2011-176822 中，记载了获得图
像的深度，并根据图像的深度，生成任意视点图像的技术。叠加信息生成单元 625 生成显示在透明显示器 501 上的
叠加信息，比如字母或图像。当未处于显示位置调整模式时，显示控制单元 626 把利用叠加信息生成单元 625
生成的叠加信息原样显示在透明显示器 601 上。这种情况下，为左眼和右眼共用的单
叠加信息被显示在透明显示器 601 上，用户在透明显示器 601 的显示面上感知叠加信息。另
一方面，在显示位置调整模式下，显示控制单元 626 在显示在利用叠加位置判定单元 622 判
定的对左眼和右眼来说的显示位置的叠加信息区域中，进行以下显示。
这种情况下，显示控制单元 626 把叠加信息显示在左眼的叠加信息区域中，并控
制光控制单元 604，以达到显示信息照射左眼。另外，显示控制单元 626 从右眼的视点图像
中切割区域中的，以达到显示区域部分被显示在左眼的叠加信息区域中，并控制光控制单元
604，以达到显示信息照射左眼。此外，显示控制单元 626 把叠加信息显示在右眼的叠加信息区域中，并控
制光控制单元 604，以达到显示信息照射左眼。另外，显示控制单元 626 从左眼的视点图像
中切割区域中的，以达到显示区域部分被显示在右眼的叠加信息区域中，并控制光控制单元
604，以达到显示信息照射左眼。下面简单说明图 25 中所示的显示设备 600 的操作。利用拍摄在透明显示器 601
的前侧的图像的后摄像头 602 获得的拍摄图像被提供给深度图获取单元 621。深度图获取
单元 621 根据利用后摄像头 602 获得的拍摄图像，检测各个像素的深度，以便获得深度图。
深度图被提供给叠加位置判定单元 622，叠加位置判定单元 622 判定对左眼和右眼来说的
显示位置，以达到能够通过透明显示器 601 观察的在前侧的图像 1a 的位置几乎相同
的位置，感知叠加信息。显示位置信息被提供给显示控制单元 626。另外，利用拍摄在透明显示器 601 的后侧的图像的前摄像头 603 获得的拍摄图像
被提供给用户视点位置检测单元 623。用户视点位置检测单元 623 根据利用前摄像头 603
获得的拍摄图像，检测用户的左眼和右眼的视点位置（眼睛的位置）。视点位置信息被提供
给显示控制单元 626。当未处于显示位置调整模式时，显示控制单元 626 把利用叠加信息生成单元 625
生成的叠加信息原样显示在透明显示器 601 上。这种情况下，用户在透明显示器 601 的显
示面上感知叠加信息。另外，在显示位置调整模式下，显示控制单元 626 在显示在透明显示
器 601 的显示面上的，利用叠加位置判定单元 622 判定的对左眼和右眼来说的显示位置处的
叠加信息区域中，进行以下显示。
这种情况下，显示控制单元 626 把叠加信息显示在左眼的叠加信息区域中，并控
制光控制单元 604，以达到显示信息照射左眼。另外，显示控制单元 626 从右眼的视点图像

中切割区域部分，以致所述区域部分被显示在左眼的叠加信息区域中，并控制光控制单元 604，以致用显示信息照射右眼。

[0162] 此外，显示控制单元 626 把叠加显示信息在右眼的叠加信息区域中，并控制光控制单元 604，以致用显示信息照射右眼。另外，显示控制单元 626 从左眼的视点图像中切割区域部分，以致所述区域部分被显示在右眼的叠加信息区域中，并控制光控制单元 604，以致用显示信息照射左眼。这种情况下，用户在与通过透明显示器 601 观察的在前侧的图像 1a 的位置几乎相同的位置，感知叠加信息。

[0163] 图 27 的流程图表示图 22 和图 25 中所示的显示设备 600 在显示位置调整模式下的处理过程的例子。显示设备 600 在步骤 ST61，开启所述处理，随后进入步骤 ST62 的处理。在步骤 ST62，显示设备 600 开始利用后摄像头 602 和前摄像头 603 成像。此外，在步骤 ST63，从利用后摄像头 602 拍摄的图像中，检测用户通过透明显示器 601 观察的目标主题（图像 1a）的各个像素的深度，以便生成深度图。

[0164] 之后，在步骤 ST64，显示设备 600 从利用前摄像头 603 拍摄的图像中，检测用户的位置和右眼的视点位置。另外，在步骤 ST65，显示设备 600 检测透明显示器 601 的显示面中的叠加信息对左眼和右眼来说的叠加位置。此外，在步骤 ST66，显示设备 600 通过参照用户的左眼和右眼的视点位置，以及深度图，根据利用后摄像头 602 拍摄的图像，生成用户的左眼和右眼的视点图像。

[0165] 之后，在步骤 ST67，显示设备 600 把叠加信息和视点图像只显示在显示于左眼和右眼的叠加位置处的图像叠加区域中，并进行光控制。从而，用户能够在与通过透明显示器 601 观察的在前侧的图像 1a 的位置几乎相同的位置，感知叠加信息。

[0166] 之后，显示设备 600 在步骤 ST68，判断显示位置调整模式是否结束。例如根据用户的明确指令操作，判断显示位置调整模式是否结束，不过图 25 中未表示用户操作单元。如果判定所述模式未结束，那么显示设备 600 返回步骤 ST63 的处理，重复进行上述处理。另一方面，如果判定所述模式结束，那么显示设备 600 在步骤 ST69，终止该处理。

[0167] 如上所述，在图 22 中所示的显示设备 600 中，在显示位置调整模式下，施加以视差的左眼和右眼的叠加信息被显示在透明显示器 601 上，并进行光控制，从而用户能够在与通过透明显示器 601 观察的在前侧的图像 1a 的位置几乎相同的位置，感知叠加信息。因此，能够实现图像 1a 和叠加信息的无缝结合，从而减轻由焦点失配的产生引起的用户的不适。

[0168] <7. 变形例>

[0169] 另外，在上面的说明中，表示了把本技术应用于移动设备的情况。不过，本技术可适用于其它设备、建筑物等。

[0170] 例如，橱窗可具有和按照第四实施例的上述显示设备 400 相同的结构。这种情况下，通常通过透明显示器，观察橱窗内部。在工作人员进入橱窗中，更换显示物品等的情况下，内部透明显示器变得不透明，在外部透明显示器上显示摄像头图像、电视图像或再现图像。

[0171] 另外，例如，房屋的墙壁的一部分可具有和按照第四实施例的上述显示设备 400 相同的结构。这种情况下，由于是透明的，因此通常改善环境特性，并且当检测到人时，外部透明显示器变得不透明，在内部透明显示器上显示摄像头图像、电视图像或再现图像。

[0172] 另外，在第一实施例（参见图 1），第二实施例（参见图 5），第三实施例（参见图
9) 第五实施例（参见图17）和第六实施例（参见图22）中，表示了其中设置两个摄像头，
后摄像头（图像传感器）502 和前摄像头503 的结构。不过，代替配置两个摄像头，例如如
在日本专利No. 4000449 中公开的那样，可以配置单个摄像头（图像传感器），并利用所述单
个摄像头，拍摄在透明显示器的前侧和后侧的图像。
[0173] 此外，本技术可具有以下结构。
[0174] 按照一个实施例，设备包括
[0175] 显示控制器，所述显示控制器被配置成根据传感器输出，控制透明显示器的显示
状态，所述传感器输出包含关于与设备分离的对象的信息。
[0176] 按照一个方面，
[0177] 所述信息包括图像信息。
[0178] 按照另一个方面，
[0179] 所述信息包括关于外来物体区域的信息。
[0180] 按照一个方面，
[0181] 人手的一部分是遮挡显示在透明显示器上的图像的外来物体区域的外来物体。
[0182] 按照一个方面，所述实施例还包括
[0183] 插值图像创建单元，所述插值图像创建单元生成并替换被人手的所述至少一部分
遮挡的景物的插值图像部分。
[0184] 按照一个方面，所述设备还包括
[0185] 区域估计单元，所述区域估计单元识别被对象遮挡的景物的区域；和
[0186] 插值图像创建单元，所述插值图像创建单元生成并替换被对象遮挡的景物的区域
的插值图像部分。
[0187] 按照一个方面，
[0188] 插值图像创建单元通过观察对象在一帧和前一帧之间的移动，识别被对象遮挡的
景物的区域。
[0189] 按照一个方面，
[0190] 插值图像创建单元通过观察对象的周边像素，识别被对象遮挡的景物的区域。
[0191] 按照一个方面，所述设备还包括
[0192] 叠加信息生成单元，所述叠加信息生成单元生成供在透明显示器上显示的叠加信
息；
[0193] 叠加信息处理单元，所述叠加信息处理单元相对于沿着非设备使用者的视线方向
的图像中的区域的颜色，有选择地设定叠加信息的颜色。
[0194] 按照一个方面，
[0195] 当设备处于隐私保护模式时，叠加信息处理单元把叠加信息的颜色设定成和沿着
非使用者的视线的图像中的区域相同的颜色。
[0196] 按照一个方面，
[0197] 当设备未处于隐私保护模式时，叠加信息处理单元把叠加信息的颜色设定成和沿
着非使用者的视线的图像中的区域不同的颜色。
[0198] 按照一个方面，所述设备还包括
[0199] 透明显示器，所述透明显示器具有用户可见的内部显示器，和面向与内部显示器
相反的方向的外部显示器，其中
【0200】显示控制器被配置成响应隐私保护模式的启动，把外部显示器从透明状态改变成不透明状态。
【0201】按照另一个方面，
【0202】响应检测到视线朝向外部显示器的人物，启动隐私保护模式。
【0203】按照另一个方面，所述设备还包括
【0204】检测人物的人物检测单元；和
【0205】估计所述人物的视线的视线估计单元。
【0206】按照另一个方面，所述设备还包括
【0207】叠加信息生成单元，所述叠加信息生成单元生成供在透明显示器上显示的叠加信息，其中
【0208】显示控制器判定在透明显示的表面和图像之间，是否存在焦点失配，当不存在失配时，显示控制器使叠加信息被显示在透明显示器上。
【0209】按照另一个方面，
【0210】当存在焦点失配，并且透明显示器的表面未被注视时，显示控制器使叠加信息被不引人注意地显示在透明显示器上，和
【0211】当存在焦点失配，并且透明显示器的表面被注视时，显示控制器把图像和叠加信息一起显示在透明显示器上。
【0212】按照另一个方面，所述设备还包括
【0213】叠加信息生成单元，所述叠加信息生成单元生成供在透明显示器上显示的叠加信息；和
【0214】叠加判定单元，所述叠加判定单元判定对于用户左眼和右眼的显示位置；其中
【0215】显示控制器把叠加信息显示在与显示在透明显示器上的图像大体相同的感知深度。
【0216】按照另一个方面，所述设备还包括
【0217】为透明显示器的前侧和透明显示器的后侧提供图像的单一图像传感器。
【0218】按照方法实施例，控制透明显示器的方法包括
【0219】接收传感器输出，所述传感器输出包含关于与透明显示器分离的对象的信息；和
【0220】利用处理电路，根据传感器输出，控制透明显示器的显示状态。
【0221】按照非临时性计算机可读存储介质实施例，所述介质包括保存于其中的计算机可读指令，当被处理器执行时，所述计算机可读指令进行控制透明显示器的方法，所述方法包括
【0222】接收传感器输出，所述传感器输出包含关于与透明显示器分离的对象的信息；和
【0223】利用处理电路，根据传感器输出，控制透明显示器的显示状态。
【0224】按照一个实施例，显示设备包括
【0225】透明显示器；获得关于透明显示器的周边的信息的传感器单元；和根据传感器单元的输出，控制透明显示器的显示状态的控制单元。
【0226】按照一个方面，
【0227】传感器单元通过拍摄透明显示器的周边的图像，获得拍摄图像，其中控制单元通
过利用拍摄的透明显示器的周边图像，进行图像处理，控制透明显示器的显示状态。

【0228】按照另一个方面，
【0229】传感器单元包括拍摄在透明显示器的前侧的图像的后图像传感器，和拍摄在透明显示器的后侧的图像的前图像传感器。

【0230】按照另一个方面，
【0231】传感器单元包括能够拍摄在透明显示器的前侧和后侧的图像的单个图像传感器。

【0232】按照另一个方面，
【0233】传感器单元包括拍摄在透明显示器的前侧的图像的后图像传感器，其中控制单元只把以与利用后图像传感器获得的拍摄图像的外来物体的区域对应的那部分的图像为基础的图像，显示在包含在用户通过透明显示器观察的图像中的外来物体的区域中，并从用户通过透明显示器观察的图像中删除外来物体。

【0234】按照另一个方面，
【0235】传感器单元还包括布置在透明显示器的前侧的表面上的触摸面板，其中控制单元从触摸面板的输出中，检测用户的手的区域，作为外来物体的区域，只把利用后图像传感器获得的拍摄图像的与用户的手的区域对应的那部分的图像，显示在用户的手的区域中，并从用户通过透明显示器观察的图像中删除用户的手。

【0236】按照另一个方面，示例还包括
【0237】对象指定单元，所述对象指定单元从用户通过透明显示器观察的图像中，指定预定对象，其中控制单元把包括指定的预定对象的对象区域设定为外来物体的区域，只把以与利用后图像传感器获得的拍摄图像的对象区域对应的那部分的图像为基础的图像显示在对象区域中，并从用户通过透明显示器观察的图像中删除所述预定对象。

【0238】按照另一个方面，
【0239】当指定的对象移动时，控制单元只把与利用后图像传感器获得的，其中不存在预定对象的过去一段时间的拍摄图像的对象区域对应的那部分的图像显示在对象区域中，并从用户通过透明显示器观察的图像中删除所述预定对象。

【0240】按照另一个方面，
【0241】对象指定单元包括布置在透明显示器的后侧的触摸面板。

【0242】按照另一个方面，
【0243】传感器单元包括拍摄在透明显示器的前侧的图像的后图像传感器，和拍摄在透明显示器的后侧的图像的前图像传感器，其中显示设备还包括生成显示在透明显示器上的叠加信息的叠加信息生成单元，其中控制单元把生成的叠加信息显示在透明显示器上，并且其中当利用后图像传感器获得的拍摄图像，检测到对着显示在透明显示器上的叠加信息的视域时，控制单元从利用前图像传感器获得的拍摄图像中，获得与通过透明显示器观察的所所述视域方向的区域有关的颜色信息，并把显示在透明显示器上的叠加信息的颜色设定成与获得的颜色信息对应的颜色。

【0244】按照另一个方面，
【0245】透明显示器包括在其前侧的第一透明显示器，和在其后侧的第二透明显示器，其中传感器单元包括检测在透明显示器的前侧的人物的人物检测传感器，和拍摄在透明显示器的前侧的图像的后图像传感器，其中当检测到人物的人物检测到人物的存在时，控制单元
把第一透明显示器设定成不透明状态，并把利用后图像传感器获得的拍摄图像显示在第二
透明显示器上。

[0246] 按照另一个方面，

[0247] 控制单元根据利用后图像传感器获得的拍摄图像，判定是否存在对着透明显示器
的视线，其中当人物检测传感器检测到人物的存在，并且存在对着透明显示器的视线时，控
制单元把第一透明显示器设定成不透明状态，并把利用后图像传感器获得的拍摄图像显示
在第二透明显示器上。

[0248] 按照另一个方面，

[0249] 当对着透明显示器的视线是对着透明显示器的预定分割区域的视线时，控制单元
把第一透明显示器的所述预定分割区域设定成不透明状态，并把利用后图像传感器获得的
拍摄图像的对应于所述预定分割区域的那部分的图像显示在第二透明显示器的所述预定
分割区域中。

[0250] 按照另一个方面，

[0251] 传感器单元包括检测在透明显示器的前侧的人物的人体检测传感器，和拍摄在透
明显示器的前侧的图像的图像传感器，其中显示设备还包括生成显示在透明显示器上的
叠加信息的叠加信息生成单元，其中当发生用户对于透明显示器的显示面和透过透明显示
器观察的图像的焦点失配时，控制单元根据利用前图像传感器获得的拍摄图像，判定用户
是否注视透明显示器的显示面，当判定透明显示器的显示面被注视时，把利用后图像传感
器获得的拍摄图像显示在透明显示器上，并把生成的叠加信息叠加地显示在所述拍摄图像
上。

[0252] 按照另一个方面，

[0253] 控制单元不把生成的叠加信息显示在透明显示器上，或者不太明显地把叠加信息
显示在透明显示器上。

[0254] 按照另一个方面，

[0255] 控制单元根据从利用前图像传感器获得的拍摄图像估计的用户的眼睛和透明显
示器的显示面之间的距离，以及从利用后图像传感器获得的拍摄图像估计的透明显示器的
显示面和透过透明显示器观察的图像之间的距离，判定用户对于透明显示器的显示面和通
过透明显示器观察的图像的焦点失配。

[0256] 按照另一个方面，实施例还包括

[0257] 生成显示在透明显示器上的叠加信息的叠加信息生成单元；和设置在透明显示器
的后侧的表面上的光控制单元，其中传感器单元包括拍摄在透明显示器的前侧的图像的后
图像传感器，和拍摄在透明显示器的后侧的图像的前图像传感器，其中控制单元根据从利
用前图像传感器获得的拍摄图像得到的用户的左右眼相对于透明显示器的位置，和从利用
后图像传感器获得的拍摄图像得到的通过透明显示器观察的图像的深度信息，生成被施加
使用户能够在通过透明显示器观察的图像的位置，感知叠加信息的视差的左眼叠加信息和
右眼叠加信息，以便被显示在透明显示器上，其中控制单元控制光控制单元，以致来自显示
在透明显示器上的左眼叠加信息的光到达用户的左眼，来自显示在透明显示器上的右眼叠
加信息的光到达用户的右眼。

[0258] 按照方法实施例，控制显示器的方法包括检测透明显示器的周边环境；和根据周
围环境，控制透明显示器的显示状态。

[0259] 附图表列列表

[0260] [0125] 100, 200, 300, 400, 500, 600 显示设备

[0261] 101, 201, 301, 401, 501, 601 透明显示器

[0262] 102, 202, 302, 402, 502, 602 后摄像头

[0263] 103, 203, 303, 503, 603 前摄像头

[0264] 104, 204 触摸面板

[0265] 121, 221 视点估计单元

[0266] 122, 222 区域估计单元

[0267] 123, 223 拍摄图像存储单元

[0268] 124, 224 插值图像创建单元

[0269] 125, 225, 325, 424, 525, 626 显示控制单元

[0270] 126, 226, 323, 423, 524, 625 叠加信息生成单元

[0271] 321, 421, 521 视线估计单元

[0272] 322 颜色信息获取单元

[0273] 324 叠加信息处理单元

[0274] 401R 前侧显示器

[0275] 401F 后侧显示器

[0276] 403 人物检测传感器

[0277] 422 人物检测单元

[0278] 522, 523 距离估计单元

[0279] 604 光控制单元

[0280] 621 深度图获取单元

[0281] 622 叠加位置判定单元

[0282] 623 用户视点位置检测单元

[0283] 624 用户视点图像生成单元
图 1
图 2
图 3
图4

开始

ST1

开始利用摄像头成像，并启动触摸面板

ST2

检测触摸面板中被手遮盖的区域

ST3

估计并切割摄像头图像上被手遮盖的区域的景象

ST4

只把摄像头图像显示在被手遮盖的区域中

ST5

否

ST6

结束?

ST7

是

终止

ST7
图 6
开始
ST11

开始利用摄像头成像，并启动触摸面板
ST12

指定希望删除的对象
ST13

指定的对象移动？
ST14

是
利用过去的帧，生成指定对象区域的插值图像
ST15

否
利用周边像素，生成指定对象区域的插值图像
ST16

只把创建的图像显示在指定对象区域中
ST17

否
结束
ST18

是
终止
ST19

图8
图 9
图 12
开始

ST31

开始利用摄像头成像，并启动人物检测传感器

ST32

检测到人物？

ST33

是

ST34

检测到视线？

否

ST36

使外部显示器和内部显示器都维持透明状态

否

ST37

结束？

是

ST38

把外部显示器设定成不透明状态，并把摄像头图像显示在内部显示器上
图 17
图 20
开始

开始利用前摄像头和后摄像头成像

获得目标主题（图像 Ia）的深度图

检测用户的左右视点位置

确定透明显示器的显示面上，对左眼和右眼来说的叠加信息的叠加位置

创建用户的左右视点图像

把叠加信息或视点图像显示在示于左眼和右眼的叠加位置处的叠加信息区域中，并控制光

否

结束？

是

终止