007/094857 A1 |00 000 0 00O OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 August 2007 (23.08.2007)

lﬂ[ﬁ A0 0O

(10) International Publication Number

WO 2007/094857 Al

(51) International Patent Classification:
GOG6F 21/00 (2006.01) GOG6F 21/24 (2006.01)

(21) International Application Number:
PCT/US2006/048218

(22) International Filing Date:
18 December 2006 (18.12.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/771,692

(71) Applicant (for all designated States except US): THOM-
SON LICENSING [FR/FR]; 46, Quai A. Le Gallo,
F-92100 Boulogne-billancourt (FR).

9 February 2006 (09.02.2006) US

(72) Inventor; and

(75) Inventor/Applicant (for US only): DUFFIELD, David,
Jay [US/US]; 5459 Fall Creek Rd., Indianapolis, Indiana
46220 (US).

(74) Agents: LAKS, Joseph, J. et al.; Thomson Licensing Inc.,
Two Independence Way, Suite #200, Princeton, New Jersey
08540 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR SECURING DIGITAL CONTENT

/—40

30 25 100
~
SIGNAL INPUT
NON-VOLATILE
MEMORY
2 50
/[v [/
VOLATILE 4_1 > PROCESSOR [@— DECODER |——SONAL
MEMORY > R QUTPUT
e
35— A A
I | — 130
60] /—110
POWER-UP / RESET | SECURE
CIRCUITRY ™ PROCESSOR
A Ly

o (57) Abstract: A method for continuously checking data integrity comprises generating a random number; retrieving data; gener-
ating an authentication value in response to the random number and the retrieved data; storing the data and the authentication value;
generating a subsequent authentication value from the stored data and the random number; and comparing the stored authentication
value with the subsequent authentication value to check data integrity.

=

WO 2007/094857 A1 | NI DA 000 0T 000 000 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2007/094857 PCT/US2006/048218

METHOD AND APPARATUS FOR SECURING DIGITAL CONTENT

' Cross Reference To Related Application

This application claims priority to and all benefits accruing from a
provisional application filed in the United States Patent and Trademark Office on.
February 9, 2006, and there assigned serial number 60/771,692. ‘

Field of the Invention

[01] The present invention relates generally to digital content delivery systems,
and more particularly to digital content receivers.

Background of the Invention

[02] Fig. 1 shows a conventional digital set-top box (STB) architecture 10.

. Architecture 10 includes a processor 20, along with non-volatile memory 30 and

volatile memory 35. “Processor”, as used herein, refers generally to a computing
device including a Central Pfocessirﬁng.Unit (CPU), such as a microprocessor. A
CPU generally includes an arithmetic logic unit (ALU), which performs arithmetic |
and logical operations, and a control unit, which extracts instrdctions (e.g., a
computer program incorporating code) from memory and decodes and executes
the instructions, calling on the ALU when necessary. “Memory”, as used herein,
refers generally to one or more devices capable of storing data, such as in the
form of chips, tapes, disks or drives. Memory may take the form of one or more
random-access memory (RAM), read-only memory (ROM), programmable read-
only memory (PROM), erasable programmable read-only memory (EPROM), or
electrically erasable programmable read-only memory (EEPROM) chips, by way of
example only. Memory may be internal or external to an integrated unit, e.g. an
integrated circuit (IC), including a processor.

15

20

WO 2007/094857 PCT/US2006/048218

[03] In normal operation, digital content is received using input 40., Input 40 may
take the form of a satellite receiver, Internet Protocol (IP) receiver or digital cablé
television receiver, for example. The received content is decoded using decoder
50 responsively to processor 20 executing softwa're instructions, e.g.v, processor
executable code, accessed via memory bus 25. Power-up and reset cichitry 60 is
used to operate, boot and/or re-boot architecture 10 in a conventional manner.
Such architecture is well understood by those possessing an ordinary skill-in the
pertinent arts. |

[04] One drawback of architecture 10 of FIG.1 is its susceptibility to hacking

For example, a hacker can replace the original equupment manufacturer’'s (OEMs)
or other authorized software, such as processor executable code being stored in

memory 30 and/or 35, with unauthonzed or modsf ed software, for the purposes of
copying or stealing digital content or for other ||legal or unauthorized purposes. |

[05] Accordingly, it is desirable to provide a method and apparatus that can |
operate to prevent hackers or pirates from replacing a set-top box’s core software
with their own or modified software, to prevent or impede unauthorized captdre or
viewing of digital content. '

Summary of the Invention

[06] A method for continuously cHecking data integrity, including: generating a
random number; retrieving data; generating an authentication value in response to
the random number and the retrieved data; storing the data and the authentication
value; generating a subsequent authentication value from the stored data and the
random numbér; comparing the stored authéntication value with the subsequent:
authentication value to check data integrity.

10

15

20

25

WO 2007/094857 PCT/US2006/048218

Brief Description of the Figures

[07]1 Understanding of the present invention will be facilitated by consideration of

the following detailed description of the preferred embodiments of the present

invention taken in conjunction with the accompanying drawings, in which like
numerals refer to like parts and in which:

[08] FIG. 1 illustrates a block diagram of a conventional digital set-top box (STB)
architecture; A

[09] FIG. 2 illustrates a block diagram of a digital set-top box (STB) architecture
according to an embodiment of the present invention; and

[10] FIGS. 3-6 illustrate flow diagrams depicting process flows associated with
the secure processor, main processor and memory in accordance with an

embodiment of the invention.

Detailed Description of the Invention

[11] Itis to be understood that the figures and descriptions of the present
invention have been simplified to illustrate elements ihat are relevant for a clear
understanding of the present invention, while eliminating, for purposes of clarity,
many other elements found in typical decoding methods and systems. However,
because such elements are well known in the art, and because they do not
facilitate a better un.derstanding of the present invention, a discussion of such
elements is not provided herein. The disclosure herein is directed to all such
variations and modifications known to those skilled in the art.

[12] Fig. 2 shows a block diagram of a digital content receiver architecture 100
according to an embodiment of the present invention. Architecture 100 may be
embodied as a set-top box analogous to that of Fig. 1. Alternatively, architecture

10

20

25

WO 2007/094857 PCT/US2006/048218

100 may be included in another device, such as a personal video recorder (PVR)
or a digital television, for example. Like elements in architectures 10 and 100
have been labeled using like references. Architecture 100 additionally includes
secure processor 110 with erhbedde,d memory 120. Memory 120 may include
both volatile and non-volatile memory. Volatile memory used as part of memory
120 and/or 35 may take the form of DDR RAM memory. Non-volatile memory'
used as part of memory 120 and/or 30 may take the form‘ of boot ROM and/or
flash memory. Secure processor 110 may take the form of a conventional secure
microprocessor, or integrated circuit (IC) incorporating a microprocessor, for
example. Processors 20, 110 may be embedded within a common integrated
circuit, for example. In one embodiment, processor 20, 110 may be embedded
within a common integrated circuit with decoder 50, for example.

[13] Architecture 100 may support direct memory access (DMA), and allow for
DMA data transfers. A DMA data transfer essentially copies a block of memory
from one device to another. The transfer may be performed by a DMA confroller,
which is incorporated into the secure processor 110. Alternatively, bus mastering
DMA, where the device takes control of the bus and performs the transfer itself,
may be utilized.

[14] Referring now also to Fig. 3, there is shown a flow diagram of a process
according to an embodiment of the present invention, and suitable for use with |
architecture 100 of Fig. 2. Upon booi-up, or reset, secure processor 110 unpacks
processor 20 executable code from non-volatile memory 120 at block 310.
“Unpacking”, as used herein, generally refers to un-compressing. According to an
embodiment of the present invention, the secure processor 110 transfer of
processor 20 executable code at block 310 may include decrypting, where the
processor code is stored in memory 120 in an encrypted form. The code may be
unpacked to memory 120, for example. '

10

15

20

25

WO 2007/094857 PCT/US2006/048218

[15] The packed and/or unpacked code is initially checked for validity by secure
processor 110, such as by verifying the integrity of an irriage or at least a portion4
thereof, at block 320. Here the term image may refer to the code or a portion of
the code. If validated, secure processor 110 stores the processor 20 executable
code in volatile memory 35, and the main processor 20 is permitted to operate,
e.g., boot, using the secure processor 110 volatile memory 35 loaded boot data, at
block 330. Thereafter, the code stored in memory 35 is rechecked for validity, at
block 340. Such a re-check may occur periodically, or aperiodically, such as upon
the occurrence of a predetermined event, or substantially randomly. If the code
stored in volatile memory 35 is deterrnined to be valid by a re-check, architecture
100 continues to operate in a normal fashion, e.g., analbgous to operation of STB
architecture 10. If the stored code is determined to be invalid at either block 320
or block 340, architecture 100 may be reset, such that processing returns to block
310.

[16] In one embodiment of the present invention, a secure boot is performed.
Referring now also to Fig. 4, there is shown a flow diagram of one embodiment of
secure boot actions taken at blocks 310, 320. When the architecture 100 is
booted or re-booted (e.g., reset), secure processor 110 identifies non-volatile
memory 30, such as by checking a jumper configuration, at block 311. At block
312, an initial security state may be established by setting one or more registers to
a default condition. One such register may be incorporated within secure
processor memory 120 or within memory 35, for example, such that the register is
coupled to a reset pin of processor 20 and set to a default value that inhibits
operation of processor 20. | |

[17] At block 313, secure processor 110 boots, such as by using code stored

within a boot sector of memory 120. At block 314, secure processdr 110 selects a
key to authenticate processor 20 executable code stored in non-volatile memory .
30. The key may take the form of any data suitable for authenticating code stored
in memory 30. For example, the selected key may take the form of a Rivest, |

15

20

25

WO 2007/094857 PCT/US2006/048218

Shamir, and Adelman (RSA) algorithm compatible public key. The key may be
stored in memory 120. Optionally, more than one key may be stored in memory
120, and one of the stored keys selected in any conventional manner; as long as
the selected key is a public key that corresponds to a private key used to digitally
sign the memory 30 boot block stored data, or a portion thereof.

[18] At block 315, secure processar 110 reads the boot block from memory 30.
Block 315 may include the operation of identifying the boot block location in non-

volatile memory 30 using a pointer, and loading the boot block stored data (e.g.; a
7 kilobyte data portion) into memory 120.

[19] At block 316, secure processor 110 authenticates the memory 30 read boot

. block using the selected key. By way of further example, the read boot block may

be verified as being created by a party in possession of the private key
corresponding to the public key selected at block 314, by verifying the authenticity
of a digital signature incorporated with the boot block data using the selected key.

[20] At block 317, once the boot ‘blc;ck is aufhenticated at block 316, Aprocessor
20 executable code stored in non-volatile memory ‘i20 is transferred to volatile
memory 35, for subsequent use by processor 20. According to an embodiment of "
the present invention, processor 20 executable code stored in memory 30 may be
encrypted prior to unpacking, to prevent or frustrate unauthorized attempts to
operate processor 20. In such a case, block 317 may involve decrypting the
processor executable code stored in ,non-volatile‘ memory 30 and transferring it to
volatile memory 120. Where the same RSA private key used to digitally sign the
boot block is used to encrypt the processor executable code, the same selected
key may be used to decrypt the processor executable code. Alternatively, a
different key pair (or even a symmetri¢ key) stored in memory 120 may be used to
decrypt the processor 20 executable code. An analogous decrypting can be used
as part of block 310.

20

25

WO 2007/094857 PCT/US2006/048218

[21] Referring again to Fig. 3, processor 20 is booted at block 330. According to
an embodiment of the present invention, block 330 involves secure processor 110
changing the default security configuration (e.g., setting or resetting the register
coupled to the processor 20 reset pin), to enable processor 20 to boot. '

[22] Alternatively, any suitable secure boot methodology may be utilized.

[23] Referring still to Fig. 3, the software is again validated at block 340. In one
gonfiguration, as part of block 320, a random number is generated and stored. An
authentication value indicative of the software (using the random number as a

- seed value) is also generated and stored in memory. After some temporal period,

such as periodically, or upon the occurrence of a triggering event, or pseudo- -
randomly, the authentication value is again calculated (i.e., recalculated) at block
340. [f the software has not been tampered with, the re-calculated authentication
value will match the stored authentication value. If the software has been 4
tampered with or replaced, these authentication values will not match. Thus, by
comparing each re-calculated authentication value with the stored authentication
value, the software may continue to be validated. If the authentication value's do
not match, architecture 100 (Fig. 2) may be reset, so as to re-initialize the software
to a valid condition, such as by secure processor 110 setting or resetting a régister‘
coupled to the reset pin of processor 20.

[24] According to an embodiment of the present invention, primitive
cryptographic functions can be used to provide a suitable authentication value or
code for the processor 20 executable software. One such example méy be
implemented utilizing a cryptographic hash function. Another such example is
implemented utilizing a message authentication code generating function, such as
cipher block chaining, where a cryptographic block cipher is used, like DES,
3DES, for example. Referring now also to Fig. 5, there is shown a flow diagram of
a process 500 that may be used at blocks 320, 340 (Fig. 3). According to an
embodiment of the present inventioh, either during or after processor 20.

10

15

20

25

WO 2007/094857 PCT/US2006/048218

executable code initial validation at block 320, a random number may be
determined at block 510. Thereafter, at block 520, an authentication value of at
least a portion of the processor 20 executable code and the random number is
generated. “Authentication vélue”, as used herein, generally refers to a small
digitél value akin to a "fingerprint” of data. An authentication value is commonly
represented as a short string of random-looking letters and numbers. Where an
authentication value implementation is utilized, a variety of hash functions may be
used to generate the authentication valué. Examples of conventional hash
functions include: HAVAL, MD2, MD4, MD5, PANAMA, RIPEMD, SHA-x, Tiger(2)
and WHIRLPOOL. |

[25] Referring still to Fig. 5, once the authentication value is determined (at
block 520), the authentication value may be stored at block 530. The _
authentication value may be stored in memory 120 of secure processor 110 (Fig.

‘2), to frustrate unauthorized efforts to alter it, for example. The random number

determined at block 510 may also be stored in memory 120. At block 540, itis
determined whether the processor 20 executable code stored in memory 35 (Fig.
2) should be re-validated. This may occur at pre-determined intervals, such as
once every x seconds, minutes or hours, or upon the occurrence of a pre-
determined event, such as a channel change or a digital content event occurring
(e.g., a user selected program commencing). Alternatively, it may occur pseudo-

randomly, such as by determining another pseudorandom number, and using it in

"~ combination with a counter as a pseudorandom timer.

[26] When it is determined the processor 20 executable code should be re-
validated at block 540, a subsequent authentication value is determined at block
550. To determine a subsequent authentication value, the random number
determined at block 510 is recovered from memory 120 (Fig. 2) and used in
combination with the processor 110 executable code then stored in memory 120 to
determine a subsequent authentication value using the same methodology as was
used at block 520.

10

15

20

25

WO 2007/094857 PCT/US2006/048218

[27] The authentication value stored at block 530 and subsequent authentication
value determined at block 550 are then compared at block 560. 1] the.proces‘sor. |
20 executable code has not been tampered with, the subsequently determined
and stored authentication values will match. If the processor 20 executable code
has been tampered with or replaced, the authentication values will not match.
Thus, by comparing the subsequently determined authentication value with the
stored authentication value at block $60, the processor 20 executable code may
continue to be validated. If the authentication values do not match, processor 20
fnay be reset at block 570, so as to re-initialize the software to a valid condition. If
the authentication values do match, processing may return to block 540.

[28] Referring now to Fig. 6, there is shown a flow diagram of an authentication
process 600 suitable for use at blockss 520, 550 of the process of Fig. 5. At block
620, a memory address is determined using the random number détermined at
block 510 (?ig. 5). The random 'numbe.r is converted to a physical addreés in
volatile memory 35. This may be accomplished in any suitable manner, such as
by truncating a number of most significant bits of the random number (if
necessary), and adding the remaining least significant bits portion to a given
physical address, such as the lowest physical address, in memory 35. Of course,
another physical address may alternatively be used as a starting point.

[29] Atblock 630, an authentication value of the data content of the memory
address determined at block 620 is calculated. According to an embodiment of
the present invention, an encrypting DMA transfer of the data content of the
memory address determined at block 620 to a register (such as a register included
in memory 120 or memory 35, Fig. 2) may be used. The key used in the |
encrypting DMA transfer may be the same public key that was used to initially
authenticate the processor executable code, or may take the form 6f a different
key. Such an encrypting DMA transfer may be accomplished by the DMA engine
itself, for example. |

10

15

20

25

WO 2007/094857 PCT/US2006/048218

[30] Atblock 640, it is determined if more memory locations are to be
considered in the authentication value. This may be accomplished by determining
what percentage of the stored processor code is statistically significant for
purposes of confirming the processor executable code stored in memory 35 has
not changed. The address and authentication value determination is then
repeated on at least a number of addresses in memory 35 that corresponds td that
percentage. Alternatively, a given number of memory locations, such as 2'®, may
be considered in the authentication v’alue determination. .

[31] When it is determined the data content of additional memory location(s) ié
to be considered in the authentication value, another address in memory 35 is
determined at block 620. According o aAn embodiment of the present invention,
the subsequent address locations in memory 35 may be determined in a)
pseudorandom fashion. This may be accomplished by performing an encrypting
DMA transfer in place using the previous address and a key. Again, the key used
may be the same public key that was used to initially authenticate the processor
executable code, or may take the forrn of a different key. Such an encrypting DMA
transfer may be accomplished by the DMA engine itself, for example.

[32] Thereafter, a new authenticaticyh value is determined at block 630. This
may be accomplished by exclusive OR’ing the data contents of the currently ‘
determined memory address with the prior determined authentication value, and
again performing an encrypting DMA transfer of the resultant in place in an
authgantication value storing register.

[33] Processing again returns to block 640, such that the memory address and
authentication value determining are repeated until a final authentication value is
determined. Thereafter, processing ends at block 650.

[34] It will be apparent to those skilled in the art thaf modifications and variations
may be made in the apparatus and process of the present invention without

10

WO 2007/094857 PCT/US2006/048218

departing from the spirit or scope of the invention. It is intended that the present
invention cover the modification and variations of this invention provided they
come within the scope of the appended claims and their equivalents.

11

15

20

25

WO 2007/094857 PCT/US2006/048218

CLAIMS

1. A method for continuously checking data integrity, comprising:

generating a random number;

retrieving data;

generating an authentication value in response to the random number and
the retrieved data;

storing the data and the authentication value;

generating a subsequent authentication value from the stored data and the
random number; and '

comparing the stored authentication value with the subsequent
authentication value to check data integrity.

2. The method of Claim 1, wherein the data is retrieved from a first memory,
and the authentication value and datza are stored in at least one memory distinct
from the first memory. |

3. The method of Claim 2, wherein the first memory is a read-only memory.

4, The method of Claim 2, wherein the authentication value and random
number are stored in a second memory, and the data is stored in a third memory
distinct from the second memory.

5. The method of Claim 1, further comprising:

periodically generating subsequent authentication values from the stored
data and the random number; and, |

comparing the stored authentication value with the subsequent
authentication values to check data integrity.

12

15

20

25

30

WO 2007/094857 PCT/US2006/048218

6. The method of Claim 1, further comprising detecting an event, wherein the
generating a subsequent authentication value from the stored data and the
random number and comparing the stored authentication value with the
subsequent authentication values to check data integrity are performed
responsively to the detecting.

7. The method of Claim 1, further comprising setting a timer, wherein the
generating a subsequent authentication value from the stored data and the |
random number and comparing the stored authentication value with the
subsequent authentication values to check data integrity are performed
responsively to the timer.

8. The method of Claim 1, further comprising:
generating subsequent authentication values from the stored data and the

random number; and,

comparing the stored authentication value with the subsequent
authentication values to check data integrity;

wherein, the subsequent authentication values are generated and
compared at substantially random times.

9. A method for checking the integrity of processor executable code stored in
a first memory, said method comprising:

generating an authentication value using at least a portion of the stored
processor executable code; '

storing the generated authentication value in a second memory;

generating subsequent authentication values using the at least said portion
of processor executable code; and

comparing the stored authentication value with the subsequent generated
authentication values.

13

10

20

WO 2007/094857 PCT/US2006/048218

10. The method of Claim 1, further comprising operating a processor
responsively to the stored processorexecutable code. '

11. The method of Claim 10, whesein the processor operates over a time period
that commences prior to generating said subsequént authentication values.

12. The method of Claim 11, further comprising resetting the processor when
one of the subsequent authentication values does not match the stored

authentication value.

13. The method of Claim 12, wherein the resetting comprises retrieving the.
processor executable code from a third memory and storing said retrieved
processor executable code in the first memory.

14. The method of Claim 9, wherein said generating the stored authentication
value comprises: determining a substantially random number.

15. The method of Claim 14, wherein generating the stored authentication
value further comprises: determining a first memory address using the determined

substantially random number.

16. The method of Claim 15, wherein the determining a first merhory address

comprises truncating a value.

14

10

15

20

25

WO 2007/094857 PCT/US2006/048218

17. A device comprising:
a processor;
a memory;
first processor executable code being stored in the memory;
data indicative of a random number being stored in the memory;
data indicative of an authentication value being stored in the memory; and,
second processor executable ¢code being stored in the memory; |
wherein, when executed, the second processor executable code causes:
a subsequént authentication value to be determinéd dependently
upon the first processor executable code being stored in the memory and the data
indicative of a random number being stored in the memory; and,
the subsequent authentication value to be compared with the data

indicative of an authentication value being stored in the memory.

18. ° The device of Claim 17, wherein the processor and memory are embedded
within a common integrated circuit.

19. The device of Claim 17, further comprising a data bus coupled to the
processor and memory.

20. The device of Claim 17, further comp:rising:

third processor executable code being stored in the merhory;

wherein, when executed, the third processor executable code resets the
processor.

15

PCT/US2006/048218

WO 2007/094857

1/6

. TYNOIS

indno___ |

7

05—/

10dNITYNSIS

o

d30034d < YO0SS300Ud [

AMLINONID
13834/ dN-¥3IMOd
n
\I Gt
" onn
JULYIOA
f
-/ - J
7 Bmﬁ%uoz
g

«HY 101d,

) b4

PCT/US2006/048218

2/6

WO 2007/094857

om—l/ k
40SSIN0Yd ANLINDYID
———
N03S 13534/ dN-43MOd
—
ozu\ | ,r%
A B 4
0gl
\lmm
1Nd1N0 1 NOWEW
<+l soc—] ¥300030 le—>! ¥0SS300Md Alcl_.v AMONIN
A'.
05 J oml\
R
ANOWIN
JULVIOANON
LNdNI TYNSIS —>
87\ mmlx e
v
Z bi4

WO 2007/094857 PCT/US2006/048218

3/6

Fig. 3

o ¥ 300

] UNPACK CODE |<—

320 ‘L INVALID
VALIDATE
N r ‘
INVALID VALID 330
BOOT UP MAIN
PROCESSOR
|
RECHECK
VALID

o d

WO 2007/094857

Fig. 4

311
N

IDENTIFY NON-
VOLATILE MEMORY

PCT/US2006/048218

l

READ BOOT BLOCK
FROM NON-
VOLATILE MEMORY

310/320
/_
\— 315

312
N\

POLL/SET INITIAL
SECURITY

'

AUTHENTICATE
BOOT BLOCK

\316

313
N\

:

BOOT SECURE
PROCESSOR

l

l

"DECRYPT AND
MOVE
AUTHENTICATED
CODE TO VOLATILE
MEMORY

\— 317

314
N

SELECT KEY

WO 2007/094857 PCT/US2006/048218

5/6

510
"\] DETERMINE
RANDOM NUMBER

'

520 DETERMINE Fig. 5
N AUTHENTICATION, g
VALUE

530 STORE -
N AUTHENTICATION

VALUE

540

RE-
VALIDATE?

YES

YES
v . 560

DETERMINE

550 —~] SUBSEQUENT

AUTHENTICATION
VALUE |

NO '

A} //r—570

RESET

WO 2007/094857

6/6

Fig. 6

620
_\

DETERMINE
MEMCRY ADDRESS

'

DETERMINE

‘ — 630
NO AUTHENTICATION

VALUE

640 —

IDONE?

YES
N 50

END

PCT/US2006/048218

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/048218

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/00 GO6F21/24

According to International Patent Classification (IPC) orto both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

1

line 18
Tine 19

page 6, line 13
page 8, line 12
page 8, line 30

LAURI [FI]) 29 September 2005 (2005-09-29)
page 4, line 24 - page 5, line 2

page 9, 1line 30
page 15, line 21 - page 16, line 23
page 17, 1ine 8 - page 18, line 4

X US 5 757 919 A (HERBERT HOWARD C [US] ET 1-4,6,7,
AL) 26 May 1998 (1998-05-26) 9-20
cotumn 2, Tine 39 - column 3, Tine 3
column 4, line 15 - column 5, Tine 2b
figures 3,5

X WO 2005/091108 A (NOKIA CORP [FIJ]; PAATERO 1-20

)=

Further documents are listed in the continuation of Box C.

[I See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0 document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

*T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to undetrstand the principle or theory underiying the
invention

'X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
me;]ns, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

29 June 2007

Date of mailing of the intemational search repont

05/07/2007

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Alecu, Mihail

Form PCT/ISA/210 (second sheet) (April 2008)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Internatlonal application No

PCT/US2006/048218

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where approprlate, of the relevant passages Relevant to claim No.

A TCG: "TCG Specification Architecture 1-20
Overview, Specification Revision 1.2"
TCG SPECIFICATION ARCHITECTURE OVERVIEW,
TRUSTED COMPUTING GROUP, US,

28 April 2004 (2004-04-28), pages 1-54,
XP002413737

the whole document

A MENEZES A J ET AL: "HASH FUNCTIONS AND 1-20
DATA INTEGRITY"

HANDBOOK OF APPLIED CRYPTOGRAPHY, CRC
PRESS SERIES ON DISCRETE MATHEMATICES AND
ITS APPLICATIONS, BOCA RATON, FL, CRC
PRESS, US, 1997, pages 321-383,
XP002275660

ISBN: 0-8493-8523-7

the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent famlly members

International application No

PCT/US2006/048218
Patent document Publication Patent family Publication
cited in search report date member(s) date
Us 5757919 A 26-05-1998 AU 5688998 A 03-07-1998
DE 19782169 C2 06-09-2001
DE 19782169 TO 28-10~1999
GB 2334866 A 01-09-1999
HK - 1022797 Al 22-03-2002
JP 2001508893 T 03-07-2001
WO 9826535 Al 18-06-1998
WO 2005091108 A 29-09-2005 EP 1725923 Al 29-11-2006
KR 20060127206 A 11-12-2006
US 2005210287 Al 22-09-2005

Formm PCT/ISA/210 {patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report
	Page 26 - wo-search-report

