

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

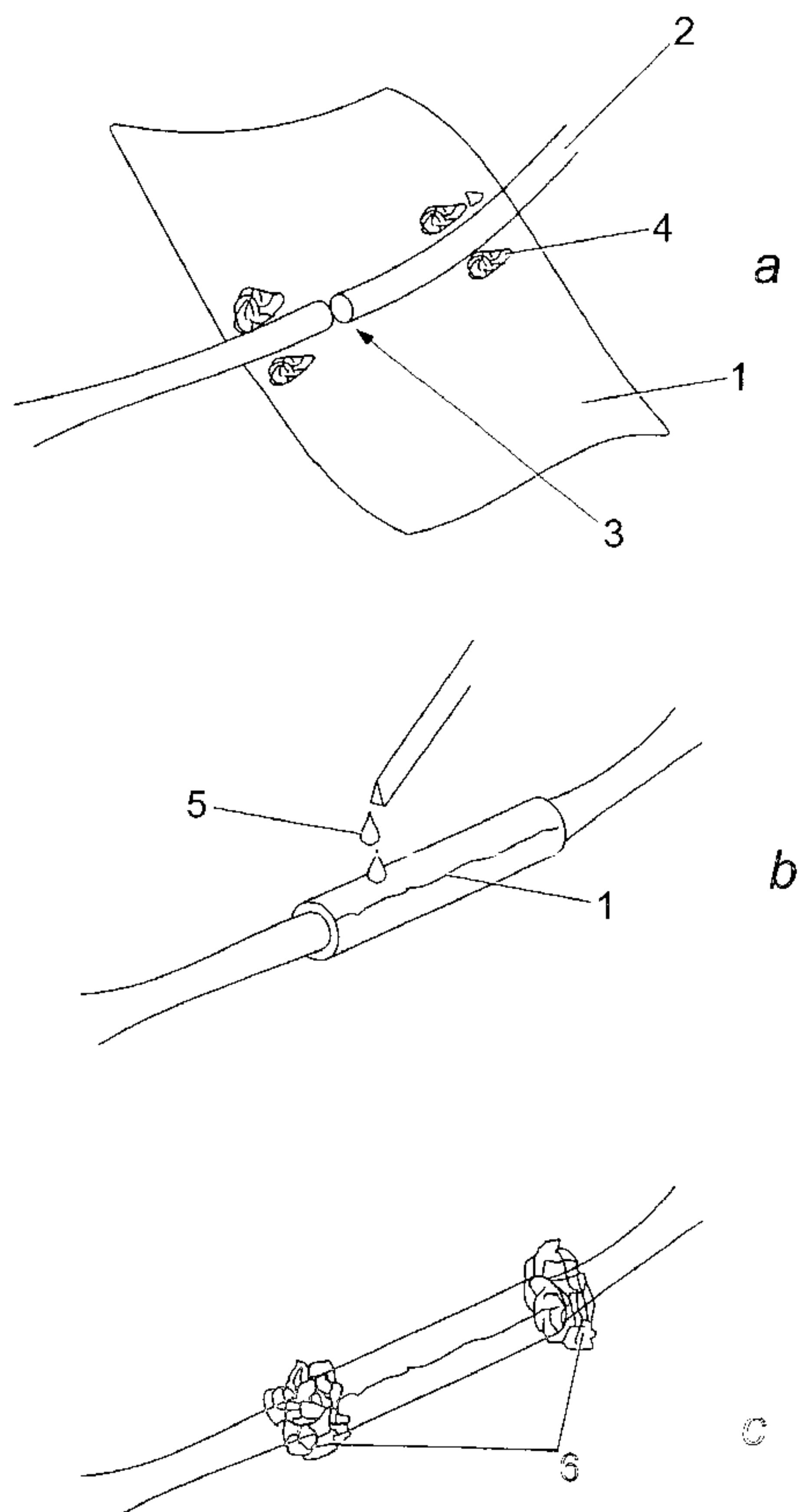
CA 2484024 A1 2003/11/13

(21) 2 484 024

(12) DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION

(13) A1

(86) Date de dépôt PCT/PCT Filing Date: 2003/05/02
(87) Date publication PCT/PCT Publication Date: 2003/11/13
(85) Entrée phase nationale/National Entry: 2004/10/20
(86) N° demande PCT/PCT Application No.: GB 2003/001918
(87) N° publication PCT/PCT Publication No.: 2003/092761
(30) Priorité/Priority: 2002/05/03 (0210517.9) GB


(51) Cl.Int.⁷/Int.Cl.⁷ A61L 27/12, A61L 27/42, A61L 31/12,
A61L 31/02

(71) Demandeur/Applicant:
FITE HOLDINGS LIMITED, GB

(72) Inventeurs/Inventors:
GILCHRIST, THOMAS, GB;
HEALY, DAVID, GB

(74) Agent: OGILVY RENAULT

(54) Titre : MATERIAU CHIRURGICAL COMPRENANT DES FIBRES DE VERRE HYDROSOLUBLES
(54) Title: SURGICAL MATERIAL COMPRISING WATER GLASS FIBRES

(57) Abrégé/Abstract:

There is provided a surgical material formed using water soluble glass fibres, optionally together with a binding material such as polycaprolactone. One or more layers of non-woven glass fibre material may be present. The material, which is usually in sheet form, can be folded around a defective area of tissue to promote healing, or may be used to prevent adhesion formation following surgery. A method of forming the surgical material is also described.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
13 November 2003 (13.11.2003)

PCT

(10) International Publication Number
WO 03/092761 A1(51) International Patent Classification⁷: A61L 27/12,
27/42, 31/02, 31/12Thomas [GB/GB]; The Lodge, 67 Midton Road, Ayr KA8
8AA (GB). HEALY, David [GB/GB]; Midton House, By
Alloway, Ayr KA7 4EG (GB).

(21) International Application Number: PCT/GB03/01918

(74) Agent: MURGITROYD & COMPANY; Scotland
House, 165-169 Scotland Street, Glasgow G5 8PL (GB).

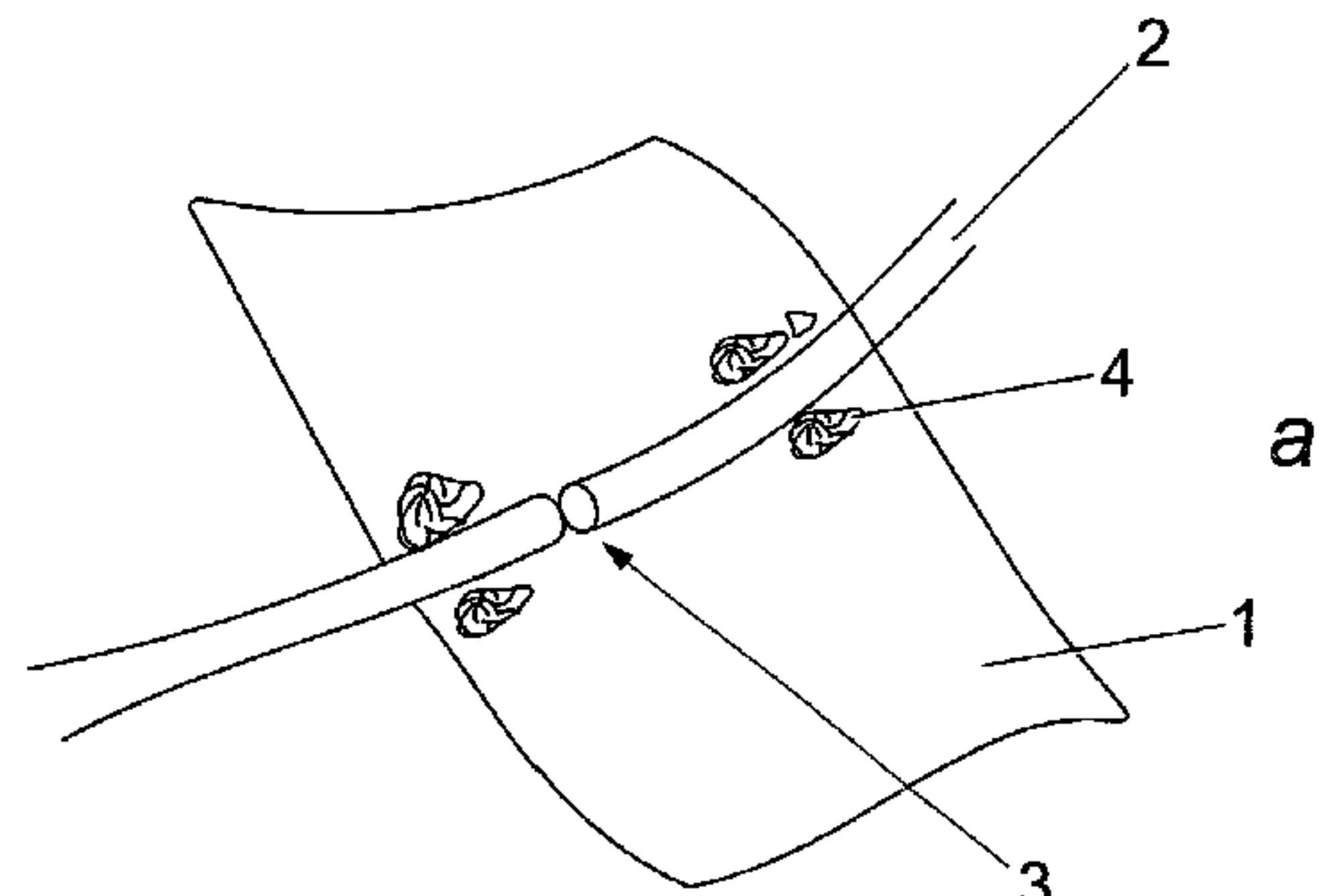
(22) International Filing Date: 2 May 2003 (02.05.2003)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

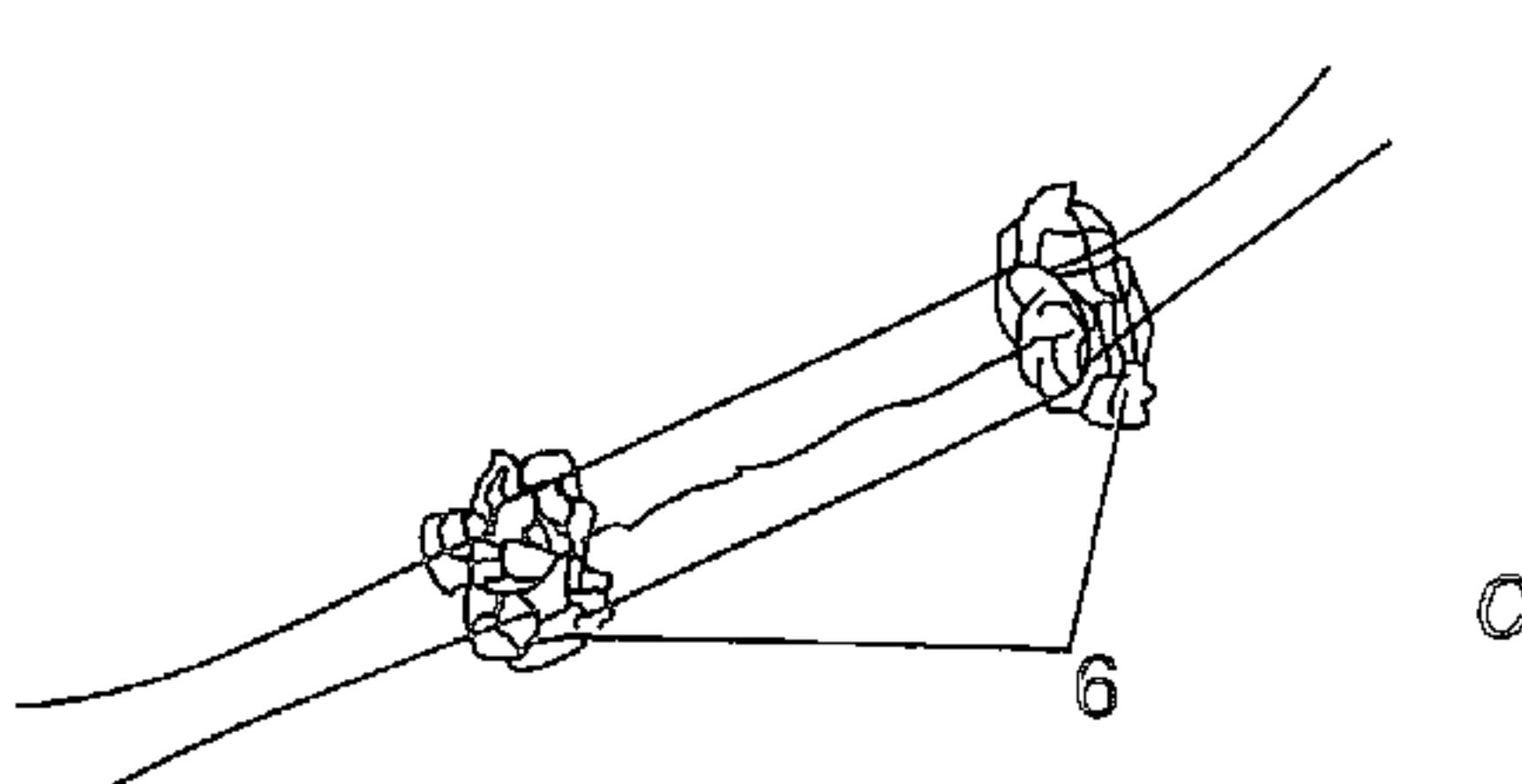
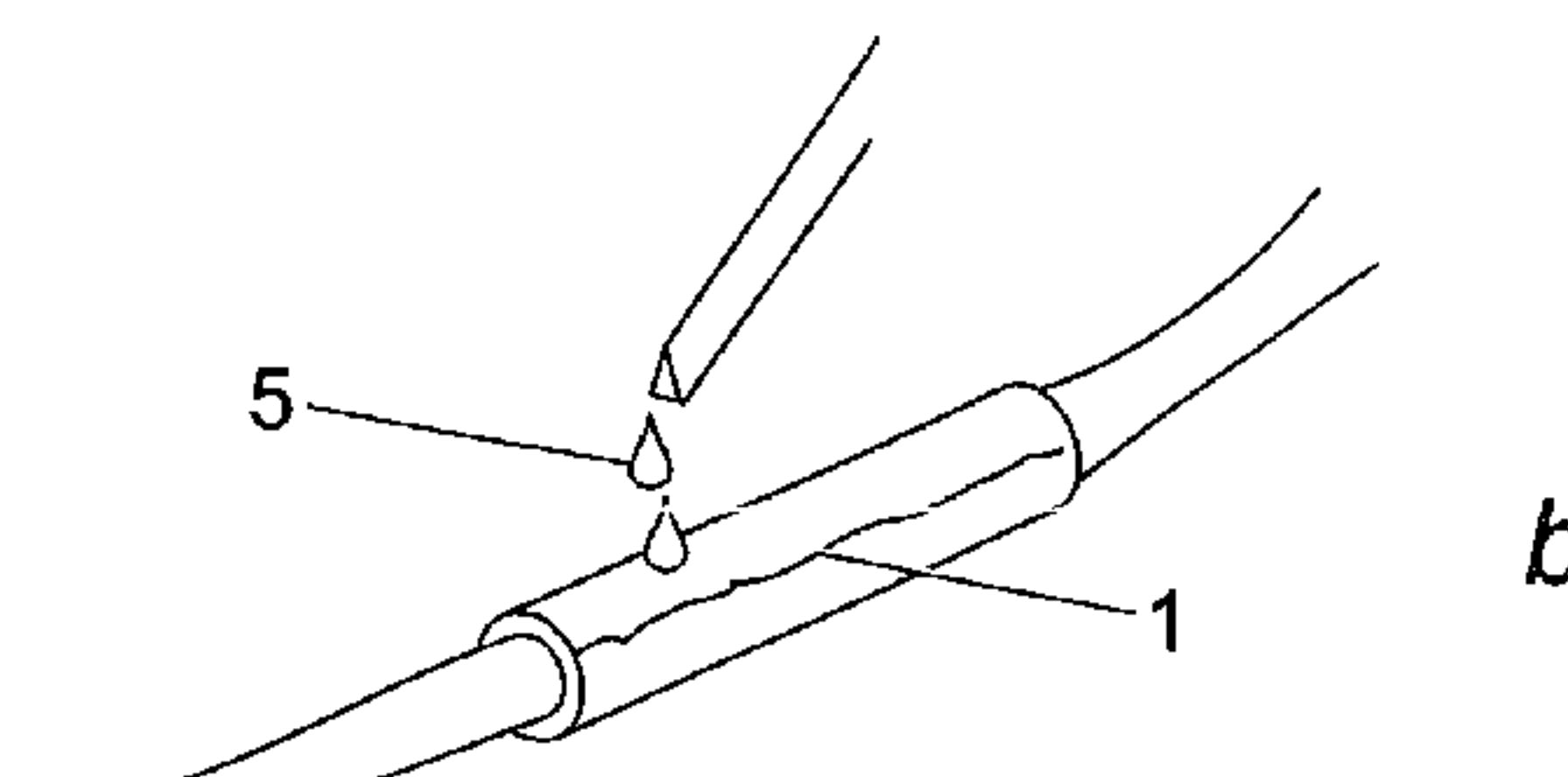
(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,

(26) Publication Language: English


(30) Priority Data:
0210517.9 3 May 2002 (03.05.2002) GB(71) Applicant (for all designated States except US): FITE
HOLDINGS LIMITED [GB/GB]; 152 Bath Street,
Glasgow G2 4TB (GB).

(72) Inventors; and



(75) Inventors/Applicants (for US only): GILCHRIST,

[Continued on next page]

(54) Title: SURGICAL MATERIAL COMPRISING WATER GLASS FIBRES

(57) Abstract: There is provided a surgical material formed using water soluble glass fibres, optionally together with a binding material such as polycaprolactone. One or more layers of non-woven glass fibre material may be present. The material, which is usually in sheet form, can be folded around a defective area of tissue to promote healing, or may be used to prevent adhesion formation following surgery. A method of forming the surgical material is also described.

WO 03/092761 A1

WO 03/092761 A1

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

— *with international search report*

1 SURGICAL MATERIAL COMPRISING WATER SOLUBLE GLASS FIBRES

2

3 The present invention relates to a flexible
4 biodegradable material which is particularly useful
5 for tissue repair and tissue engineering.

6

7 Tissue damage can result from a variety of sources,
8 particularly from trauma, disease or as the result
9 of surgery. It is well known that following damage
10 the healing of many tissues progresses slowly or,
11 indeed, may not happen at all.

12

13 Healing of certain tissues (such as ligaments,
14 tendons or internal organs) may be further hindered
15 by the formation of adhesions between the damaged
16 tissue and surrounding tissues. This is known to be
17 a particular problem in tendon/ligament damage and
18 also after surgery, for example heart surgery (when
19 the heart can form adhesions with the back of the
20 sternum) or abdominal surgery. Complications caused
21 by adhesions include poor recovery, substantial
22 morbidity and even catastrophic haemorrhage during

1 reoperative surgery following adhesion of cardiac
2 tissue (Nkere, U.U., ASIO Journal, 2000, Vol 46,
3 pages 654 - 656). There is currently no reliable
4 way to prevent formation of such adhesions.

5

6 Skin damage following severe burns or ulcers, such
7 as diabetic foot ulcers, is notoriously difficult to
8 heal. This is primarily because the dermis cells
9 will not regenerate in the absence of a matrix on
10 which to grow. Conventional skin grafts
11 (autografts) generally result in scarring and
12 necessitate creation of a further wound in the
13 patient to obtain the graft. Use of non-autologous
14 skin grafts brings the risk of rejection. Recently
15 the development of tissue engineering and, in
16 particular, artificial skin has presented advances
17 in this area. Notable products are keratinocyte
18 seeded IntegraTM, DermagraftTM, and ApligraftTM which
19 contain neonatal cells in combination with matrices
20 formed from bovine collagen or the soluble suture
21 materials polylactic and polyglycolic acids. These
22 artificial skins provide a matrix for dermis growth
23 and the neonatal cells contained in them produce
24 growth factors which promote healing. These prior
25 art products are, however, unsatisfactory because of
26 health concerns regarding bovine derived collagen
27 and because the dissolution rates of suture
28 materials cannot be tailored to specific needs.
29 Mulder, G. T. (Journal of Wound Care, 1998, Vol 8,
30 No 1, pages 21 - 23) discusses the shortcomings of
31 autografts (including pain, infection, and delayed
32 closure) and the advantages and problems associated

1 with tissue engineering. Naughton, G. et al.
2 (Artificial Organs 1997, Vol 21, No 11, pages 1203 -
3 1210) discusses clinical trials and successes of the
4 Dermagraft™ product in the treatment of diabetic
5 foot ulcers. Hollander, D. et al. (Journal of Wound
6 Care, 1999, Vol 8, No 7, pages 351 - 355) discusses
7 the success of treatment ulcers of different
8 aetiologies using autologous keratinocytes cultured
9 on benzylester hyaluronic acid membranes then
10 applied as autologous grafts.

11

12 Healing of nerve fibres is also known to be
13 particularly troublesome. Nerves regenerate
14 following injury caused by trauma or disease through
15 a biological process which, in the absence of
16 outside assistance, is typically extremely slow and
17 incomplete and frequently does not occur at all.
18 Thus patients with nerve damage who do not receive
19 expert surgery will frequently fail to regain the
20 function of the damaged nerves. Early nerve repair
21 is associated with a better outcome and delay should
22 be resorted to only if life-threatening problems
23 exist coincidentally (Glasby, M. A., et al. 1997,
24 Journal of Hand Surgery, Vol 22B, No 4, pages 479-
25 485; Glasby, M. A., et al. 1998, Journal of Hand
26 Surgery, Vol 23B, pages 354-359; and Lawson, G. M.
27 et al. 1995, Journal of Hand Surgery, Vol 20B, No 5,
28 pages 663-670). Surgical methods of improving the
29 healing of nerves are concerned with optimising the
30 biological environment surrounding the damaged
31 nerves and hence promoting the natural healing
32 process. Over the past decade, interest has arisen

1 in the use of neurotrophic factors as an adjunct to
2 nerve repair. An early problem in the use of these
3 substances was their supply, at an appropriate
4 concentration, at the site of injury. Modern
5 microsurgery techniques are currently used to
6 achieve this but are costly, time consuming and
7 require highly trained surgeons. An alternative
8 which is now being explored is the use of tubes to
9 surround damaged nerves and provide a favourable
10 biological environment for nerve repair. In the case
11 of non-biodegradable tubes this technique has
12 achieved relatively little success, primarily
13 because the tubes remain in place after the nerve
14 fibre has regenerated and prevent subsequent
15 maturation of the nerve, or necessitate a second
16 operation to remove the tube. Silicone is the most
17 extensively investigated non-biological conduit.
18 However there have been problems with inflammation
19 and compression of the nerve, in some cases
20 requiring a second procedure to remove the conduit.
21 Kiyotani, T. et al. (ASAIO Journal, 1995, Vol 41,
22 pages 657 - 661) describes the use of biodegradable
23 tubes made from collagen and polyglycolic acid in
24 regenerating sciatic nerve damage in cats. Nerve
25 regeneration of gaps of 25mm was achieved.
26
27 WO-A-96/31160 (Giltech Limited) discloses a tubular
28 device made from water soluble glass to promote
29 healing of nerves, tendons or muscles which
30 optionally contains a substance to promote healing.
31 The devices described are inflexible and are not
32 easily adaptable for different applications and may

1 require considerable dexterity by the surgeon to
2 implant correctly.

3

4 Additionally some difficulties were associated with
5 the implantation of rigid glass tubes, and swelling
6 was frequently produced at the site of implantation
7 which caused discomfort and irritation for patients.
8 Furthermore to provide for the entire range of
9 injuries, a large number of differently sized tubes
10 is necessary. The rigid tube may often not be an
11 exact fit for the tendon, nerve or bone which it
12 surrounds.

13

14 WO-A-00/47245 (Giltech Limited) discloses a rigid
15 water soluble composite. The composite is formed
16 from water soluble glass fibres set in a
17 biodegradable polymer and is particularly useful for
18 bone repair. The composite may be moulded into
19 shapes as required by a particular application. The
20 uses of this composite are, however, limited due to
21 the need to pre-form the composite into the desired
22 shape. The rigid nature of the composite precludes
23 manipulation and reshaping of the composite once
24 formed.

25

26 There thus remains a need for adaptable
27 biodegradable and bio-compatible materials for use
28 in adhesion prevention, tissue engineering and to
29 promote healing.

30

31 The present invention provides a flexible
32 biodegradable material comprising water soluble

1 glass fibres and being suitable for implantation in
2 a human or non-human animal body. The material of
3 the invention is bio-compatible and will preferably
4 promote or enhance healing of any damaged
5 surrounding tissue.

6

7 The biodegradable material of the present invention
8 is preferably in the form of a flexible sheet.

9

10 The flexible biodegradable material may comprise one
11 or more coherent layers of water soluble glass
12 fibres. Each of the layers preferably comprises a
13 non-woven web of water soluble glass fibres.

14

15 The implantation of the flexible biodegradable
16 material of the present invention does not require
17 specialist equipment or microsurgery training and is
18 thus ideal for use on the battle field or in the
19 developing world where surgical expertise may be
20 limited.

21

22 Furthermore, conduits formed from the material of
23 the present invention support nerve regeneration
24 over several centimetres and can therefore be used
25 as an alternative to nerve grafting without the
26 donor site morbidity involved with the latter
27 process. The use of a conduit results in less
28 damage to nerve ends as no sutures are required.

29 Conduits formed from the material of the present
30 invention can also be used to study the process of
31 nerve growth and act as a reservoir for growth

1 factors in the chemical enhancement of nerve
2 regeneration.

3

4 The flexible biodegradable material of the present
5 invention is easy to attach to nerve stumps and
6 occupies minimal space in the wound cavity. As the
7 material of the present invention may be cut to size
8 it provides an exact fit around the tissue member.

9

10 As discussed above, tendon and ligament repair is
11 confounded by adhesions of the tendon or ligament at
12 the site of its repair to the surrounding tendon or
13 ligament sheath. This invariably leads to poor
14 healing of the tendon or ligament but can also lead
15 to substantial morbidity or catastrophic
16 haemorrhage. Instances of adhesion are commonly
17 associated with the rigid tubes known in the prior
18 art. Surprisingly it has been found that very
19 little proliferation of connective tissue at the
20 site of injury is observed when the flexible
21 biodegradable material of the present invention is
22 used to surround ligaments or tendons. The
23 formation of adhesions is reduced.

24

25 The ideal conduits formed from the material of the
26 present invention are non-biological, inert and
27 dissolve over time so there is no permanent foreign
28 body. Water soluble glass has the added advantage
29 that it can be produced in a flexible glass fabric
30 which can be adapted to different sizes of nerves.

31

1 Suitable water soluble glass fibres which may be
2 used to form the flexible sheet are known in the
3 art. These fibres, as is described later, may be
4 selected to allow accurate tailoring of dissolution
5 rate and/or the controlled release of selected ions.

6

7 Examples of compositions suitable for the production
8 of water soluble glass fibres for the flexible
9 biodegradable material include compositions
10 comprising:

11

12 0 to 35 mole % of Na₂O
13 0 to 30 mole % of CaO
14 35 to 55 mole % P₂O₅
15 0 to 5 mole % of transition metal oxide
16 0 to 20 mole % MgO
17 0 to 10 mole % ZnO
18 0 to 10 mole % K₂O
19 0 to 8 mole % B₂O₃
20 0 to 10 mole % SO₃ and
21 0 to 5 mole % of NaF, Na₂PO₃F, 2Al₂O₃.B₂O₃, Na₂SO₄,
22 FePO₄, MnHPO₄, Fe₂O₃ or Na₂B₄O₇.10H₂O.

23

24 Generally compositions suitable for production of
25 the flexible biodegradable material comprise:

26

27 15 to 25 mole % of Na₂O
28 10 to 15 mole % of CaO
29 45 to 50 mole % P₂O₅
30 0 to 5 mole % of transition metal oxide
31 0 to 5 mole % MgO
32 5 to 10 mole % ZnO

1 3 to 8 mole % B_2O_3 and
 2 0 to 3 mole % Fe_2O_3 .

3

4 Exemplary compositions include:

5

Composition	Mole %							
	Na_2O	CaO	P_2O_5	M_2O	MgO	ZnO	B_2O_3	Fe_2O_3
1	25	13	48	-	-	8	5	1
2	20	13	49	-	4.25	8	5	0.75
3	23	12	48	3	-	8	5	1
4	18	12	49	3	4.25	8	5	0.75

6

7 (where M_2O is a suitable transition metal oxide or
 8 K_2O).

9

10 Whilst any suitable biocompatible water soluble
 11 glass may be used, phosphorous pentoxide (P_2O_5) is
 12 preferably used as the glass former.

13

14 Generally the mole percentage of phosphorous
 15 pentoxide in the glass composition is less than 85%,
 16 preferably less than 60% and especially between
 17 30-60%.

18

19 Alkali metals, alkaline earth metals and lanthanoid
 20 oxides or carbonates are preferably used as glass
 21 modifiers.

22

23 Generally, the mole percentage of alkali metals,
 24 alkaline earth metals and lanthanoid oxides or
 25 carbonates is less than 60%, preferably between
 26 40-60%.

1 Boron containing compounds (e.g. B₂O₃) are preferably
2 used as glass additives.

3

4 Generally, the mole percentage of boron containing
5 compounds is less than 15% or less, preferably less
6 than 10%, and usually around 5% or less.

7 Other compounds may also be added to the glass to
8 modify its properties, for example SiO₂, Al₂O₃, SO₃
9 or transition metal compounds (e.g. first row
10 transition metal compounds). Generally, the glass
11 will release ionic species upon dissolution,
12 the exact ionic species released depending upon the
13 compounds added to the glass. Glasses which release
14 aluminium ions, sulphate ions or fluorine ions may
15 be desirable in some circumstances.

16

17 Typically the soluble glasses used in this invention
18 comprise phosphorus pentoxide (P₂O₅) as the principal
19 glass-former, together with any one or more
20 glass-modifying non-toxic materials such as sodium
21 oxide (Na₂O), potassium oxide (K₂O), magnesium oxide
22 (MgO), zinc oxide (ZnO) and calcium oxide (CaO).

23 The rate at which the glass dissolves in fluids is
24 determined by the glass composition, generally by
25 the ratio of glass-modifier to glass-former and by
26 the relative proportions of the glass-modifiers in
27 the glass. By suitable adjustment of the glass
28 composition, the dissolution rates in water at 38°C
29 ranging from substantially zero (e.g. 0.002
30 mg/cm²/hr) to 25mg/cm²/hour or more can be designed.
31 However, the most desirable dissolution rate R of
32 the glass is between 0.005 and 2.0mg/cm²/hour.

1 The water-soluble glass is preferably a phosphate
2 glass. Other metals may alternatively or
3 additionally be present and mention may be made of
4 Cu, Mg, Zn, Ce, Mn, Bi, Se, Cs. Preferred metals
5 include Cu, Zn and Mg. The glass preferably enables
6 controlled release of metal and other constituents
7 in the glass and the content of these additives can
8 vary in accordance with conditions of use and
9 desired rates of release, the content of metal
10 generally being up to 5 mole %. While we are
11 following convention in describing the composition
12 of the glass in terms of the mole % of oxides, of
13 halides and of sulphate ions, this is not intended
14 to imply that such chemical species are present in
15 the glass nor that they are used for the batch for
16 the preparation of the glass.

17
18 The optimum rate of release of metal ions into an
19 aqueous environment may be selected by circumstances
20 and particularly by the specific function of the
21 released metal. The glass used in this invention
22 provides a means of delivering metal ions to an
23 aqueous medium at a rate which will maintain a
24 concentration of metal ions in said aqueous medium
25 of not less than 0.01 parts per million and not
26 greater than 10 parts per million.

27
28 In some cases, the required rate of release may be
29 such that all of the metal added to the system is
30 released in a short period of hours or days and in
31 other applications it may be that the total metal be
32 released slowly at a substantially uniform rate over

1 a period extending to months or even years. In
2 particular cases there may be additional
3 requirements, for example it may be desirable that
4 no residue remains after the source of the metal
5 ions is exhausted or, in other cases, where the
6 metal is made available it will be desirable that
7 any materials, other than the metal itself, which
8 are simultaneously released should be
9 physiologically harmless. In yet other cases, it
10 may be necessary to ensure that the pH of the
11 resulting solution does not fall outside defined
12 limits. Generally, the mole percentage of these
13 additives in the glass is less than 25%, preferably
14 less than 10%.

15

16 In one embodiment of the present invention the
17 flexible biodegradable material comprises one or
18 more non-woven coherent layers of water soluble
19 glass fibres. Optionally the layer(s) are needle-
20 punched to form a non-woven felt. In general, in
21 this embodiment, the flexible biodegradable material
22 may consist substantially of water soluble glass.
23 For example, the flexible biodegradable material may
24 consist of 95% by weight or greater of water soluble
25 glass.

26

27 In another embodiment of the present invention the
28 flexible biodegradable material comprises one or
29 more non-woven coherent layers of water soluble
30 glass fibres wherein regions of the fibres are fused
31 together. Fusion of the fibres may occur through
32 any suitable means, for example by partial melting

1 or sintering of the fibres or by partial dissolution
2 of the fibres with water or any other suitable
3 solvent, followed by solidification or evaporation
4 respectively. In general, in this embodiment, the
5 flexible biodegradable material may consist
6 substantially of water soluble glass. For example,
7 the flexible biodegradable material may consist of
8 95% by weight or greater of water soluble glass.

9

10 Optionally, a needle-punched felt of the first
11 embodiment may undergo fusion by partial
12 melting/sintering or by partial dissolution as
13 described above.

14

15 In a further embodiment the present invention
16 provides a flexible biodegradable composite
17 material, comprising water soluble glass fibres and
18 a bio-compatible binding material. The composite is
19 suitable for implantation in a human or non-human
20 animal body.

21

22 In one aspect of the above embodiment the bio-
23 compatible binding material is coated onto the
24 surface of the glass fibres. Alternatively the
25 binding material may comprise a film fused to one or
26 both sides of the layer of water soluble glass
27 fibres. Films of binding material may also be
28 sandwiched between two or more layers of the water
29 soluble glass fibres.

30

31 Suitable bio-compatible binding materials include
32 non-biodegradable polymers (such as nylon,

1 polyester, polycarbonate, polypropylene,
2 polyethylene, silicones, polyurethanes, PVC,
3 polymethyl methacrylates and cyanoacrylates),
4 biodegradable polymers (such as polymers of
5 polycaprolactones, polyglycolic acid, polylactic
6 acid, lactide/glycolide co-polymers) and natural
7 materials (such as alginates, chitosans, starches,
8 polysaccharides, collagen, skin, milk proteins,
9 blood components including platelets or the like).

10

11 Preferably the bio-compatible binding material is a
12 biodegradable polymer, particularly one of the
13 biodegradable polymers listed above.

14

15 Preferably the bio-compatible binding material is
16 polycaprolactone.

17

18 Preferably the amount of binding material in the
19 composite material is less than 50% by weight, for
20 example is less than 30% by weight.

21

22 The bio-compatible binding material may further
23 comprise water soluble glass in powder form.

24

25 The level of permeability of the flexible
26 biodegradable material of the present invention may
27 be selected to permit a particular degree of
28 movement of biological agents across the material.

29

30 Where the flexible biodegradable material is a non-
31 woven felt and/or is formed from fused layer(s) of
32 water soluble glass fibres, the level of

1 permeability may be adjusted by increasing the
2 number of layers (to decrease permeability) or
3 decreasing the number of layers (to increase
4 permeability). Additionally or alternatively, the
5 permeability of the material may be adjusted through
6 the needle felting process (the greater the density
7 of needles, the lower the permeability and vice
8 versa) and/or by adjusting the density of the fusion
9 points (increased density of fusion equating to
10 decreased permeability and vice versa). Where a
11 composite material is under consideration, the
12 binding material selected may affect permeability.
13 Through adjustment of the permeability of the
14 material, a substantially isolated biological
15 environment could be achieved using an occlusive
16 material to surround a tissue such as a nerve fibre
17 or bone. Alternatively a diffusion permitting
18 material could be used where isolation is not
19 desirable, e.g. in poorly vascularised tissue. The
20 use of a film of binding material is particularly
21 suitable for controlling the permeability level of
22 the composite material as the precise character of
23 the film may be determined during manufacture.

24

25 Preferably the flexible biodegradable material is
26 sterilised, for example by gamma-irradiation. One
27 particular advantage of the present invention is
28 that the water soluble glass fibres are not degraded
29 by this method of sterilisation.

30

31 In a further embodiment of the present invention the
32 flexible biodegradable material may further comprise

1 additives such as cytokines, cells or other
2 biological agents. In this respect mention may be
3 made of:

4

5 Nutritional agents, such as vitamins,
6 oxygenators and free radical scavengers, and
7 proteins;

8

9 Growth factors, (especially growth factors
10 specific for the type of tissue concerned) such
11 as platelet released and platelet derived growth
12 factor, nerve growth factor, keratinocyte
13 stimulation factors, insulin-like growth
14 factors, ketanserin (a serotonergic blocking
15 agent);

16

17 Living cells, for example keratinocytes or
18 fibroblasts;

19

20 Enzymes, including streptokinase and
21 streptodornase;

22

23 Elements such as zinc, selenium, cerium, copper,
24 manganese, cobalt, boron, arsenic, chromium,
25 gold, gallium;

26

27 Charcoal;

28

29 Desloughing and debriding agents such as
30 hypochlorite and hydrogen peroxide;

31

1 Astringents including potassium permanganate;
2 and/or
3 Anti-adhesiogenic substances - particularly
4 triamcinolone.

5

6 In a further embodiment the flexible biodegradable
7 material may function as a delivery device for
8 pharmacologically active agents. This may be
9 achieved, for example, by the controlled release of
10 metal ions contained in the water soluble glass
11 fibres. Alternatively or additionally where the
12 flexible biodegradable material is a composite
13 material comprising a binding material, the binding
14 material may contain a pharmacologically active
15 agent. For example water soluble glass powders may
16 be present in the binding material. Alternatively
17 other medicaments, exemplified by but not limited to
18 those listed above, may be released by the flexible
19 biodegradable material. These agents may be
20 initially retained in the structure of the flexible
21 biodegradable material and released as the material
22 degrades *in vivo*.

23

24 In a further aspect, the present invention provides
25 a method of treating an area of defective tissue in
26 a patient, said method comprising using a flexible
27 biodegradable material as described above to
28 surround, cover or isolate said area of tissue.
29 Optionally the material is attached to healthy or
30 defective tissue by conventional means such as
31 staples, sutures or biodegradable adhesive.

32

1 The tissue is suitably nerve, tendon, ligament,
2 bone, skin, internal organ (for instance heart or
3 intestine), dura matter, muscle, cartilage, blood, or
4 lymph vessels and ducts.

5

6 In a further embodiment the present invention
7 provides use of a flexible biodegradable material as
8 described above in the treatment of an area of
9 defective tissue, for example to protect said area
10 of defective tissue, to promote healthy healing
11 thereof or to prevent adhesion formation.

12

13 In a further embodiment the present invention
14 provides the use of the flexible biodegradable
15 material, as described above, in the manufacture of
16 a surgical implant. In particular the implant may
17 be useful for the treatment of tendon, nerve, skin
18 and bone damage or to prevent adhesion.

19

20 In one embodiment the flexible biodegradable
21 material is positioned between two internal tissue
22 surfaces to prevent or reduce the formation of
23 adhesions. This is particularly appropriate in
24 treating tendon/ligament damage or after surgery
25 (especially cardiac or abdominal surgery).

26

27 In another embodiment the flexible biodegradable
28 material is formed into a tube around the area of
29 damaged tissue (for example nerve, ligament, tendon
30 or bone tissue). This may be achieved by simply
31 wrapping or folding the material around the damaged
32 tissue and then sticking, sewing or stapling the

1 material into the desired conformation. In such
2 applications creating an isolated biological
3 environment for repair is often useful in addition
4 to providing an element of structural support for
5 directing tissue growth.

6

7 In a further embodiment the flexible biodegradable
8 material may be used as dressing to cover an
9 external area of tissue damage. This application is
10 particularly appropriate for tissue damage caused by
11 burns or diabetic ulcers, though other forms of
12 dermal damage may also be treated. Here the
13 material may act as a scaffold for adhesion and
14 growth of dermal cells. In addition dermal cells
15 can be provided on the material prior to application
16 to a patient to further promote healing.

17

18 In a particular embodiment, the present invention
19 provides a method of reducing adhesion formation
20 following surgery in a patient. In this embodiment
21 a sheet or pre-formed portion of the biodegradable
22 flexible material is inserted into the patient
23 during surgery and is located between the surfaces
24 where cohesion formation is likely. Optionally the
25 material may be fixed into place, for example using
26 biodegradable adhesive, but this is not always
27 necessary. The biodegradable material would be
28 manufactured to degrade over the appropriate healing
29 period, typically 1 to 3 months.

30

31 Likewise in an alternative embodiment the present
32 invention provides a method of repairing a damaged

1 tendon or nerve. Here the flexible material is
2 simply wrapped around the damaged nerve or tendon
3 and sealed in place by surgical glue. Where the
4 nerve or tendon is severed, the two ends are located
5 together and then held in place by wrapping and
6 fixing the material as before.

7

8 In a further aspect the present invention provides a
9 method of producing a flexible biodegradable
10 material in sheet form, suitable for implantation
11 into a patient's body, said method comprising:

12

- 13 a) providing one or more layer(s) of water
14 soluble glass fibres; and
- 15 b) forming the fibres into a coherent layer by
16 at least one of the following steps:
 - 17 i) fusing the fibres together by partial
18 melting or dissolution; or
 - 19 ii) needle-punching the layer of fibres
20 to form a non-woven felt; or
 - 21 iii) providing a binding material to
22 adhere said layer to form a composite
23 sheet.

24

25 In one embodiment the layer of water soluble glass
26 fibres is formed by:

27

- 28 a) winding glass fibre(s) onto a drum;
- 29 b) cutting along the length of the drum and
30 removing the substantially aligned glass
31 fibres therefrom; and

1 c) pulling the glass fibres in a lateral
2 direction to form a non-woven web.

3

4 In one embodiment the binding material may be
5 adhered to the water soluble glass fibres by:

6

7 a) melting or dissolving the binding material
8 in an appropriate solvent;
9 b) applying the binding material to the fibres
10 by dipping, spraying or pouring to form a
11 fibre/binding material composite; and
12 c) cooling, curing or drying the fibre/binding
13 material composite.

14 In another embodiment the binding material is
15 produced as a film and is then adhered to the water
16 soluble glass layer by heat, solvent or adhesive.

17

18 Examples of uses and benefits of the flexible
19 biodegradable material include:

20

21 Peripheral nerve repair: Where a peripheral nerve
22 requires repair due to trauma or disease the
23 flexible biodegradable material can be wrapped
24 around the damaged area and fixed with adhesives or
25 sutures. This system has advantages over existing
26 peripheral nerve repair procedures in that it is
27 very fast, requires less skill than a microsurgical
28 repair and requires no sophisticated microsurgical
29 equipment.

30

31 Tendon and ligament repair: Flexible biodegradable
32 material fixed around recovering tendons and

1 ligaments will prevent the formation of adhesions
2 and subsequent damage to the bearing surfaces of the
3 tendons.

4

5 Orthopaedics: The flexible biodegradable material
6 can be used to enclose fracture sites and defects
7 and contain bone fragments, chips or synthetic bone
8 materials as well as other growth/repair factors at
9 the implant site. The material can also be used, as
10 a heavier sheet, as a scaffold for low load bone
11 repairs such as orbital repair.

12

13 Skin equivalents: With the appropriate combination
14 of fibre(s) and binding material(s), skin equivalent
15 systems may be used as support and implantable
16 delivery substrates for skin repair. These
17 materials can be used to grow various cell types on
18 prior to transfer to the patient, or used directly
19 *in vivo*.

20

21 Woundcare: The flexible biodegradable material can
22 be used to deliver blood platelets and growth
23 factors to wounds to encourage rapid recovery.

24

25 Dura mater equivalent: The flexible biodegradable
26 material may be used as an equivalent to the dura
27 mater where it has been damaged or removed by trauma
28 or surgical intervention.

29

30 Cardio thoracic: Cardio thoracic surgery would
31 benefit from use of the flexible biodegradable

1 material to assist wound closure without encouraging
2 adhesion formation.

3

4 Slings: The flexible biodegradable material may
5 prove to be an easy to use sling for incontinence
6 and hernia repair procedures.

7

8 Hole patches: The flexible biodegradable material
9 sheets may be used for the repair of holes, such as
10 stab or gunshot wounds, in the body created by
11 trauma (heart, lungs, digestive tract, cut or torn
12 blood vessels, etc).

13

14 The flexibility of the material allows it to be used
15 in repairs where mobility is needed. In the
16 convenient sheet form, the material can be
17 manipulated to conform to any shape and can be
18 thermoformed to produce shapes of the desired size
19 and contour at the site of use. Since the flexible
20 material dissolves completely it will not cause
21 fibrous tissue occlusion of the repaired nerve (as
22 may occur with non-biodegradable materials). The
23 flexible biodegradable material can be used around
24 tissues which have not been severed (tendons,
25 ligaments, crush injuries) where the local
26 environment requires temporary control.

27

28 Where appropriate, the surgeon may secure a damaged
29 area with more than one layer of flexible
30 biodegradable material.

31

1 Embodiments of the invention will be described in
2 the following non-limiting examples with reference
3 to the accompanying drawings in which:

4

5 Figs 1a and 1b show Scanning Electron Microscopy
6 (SEM) images (x 100) of both sterile (a) and non-
7 sterile (b) flexible biodegradable material
8 manufactured in accordance with the present
9 invention.

10

11 Figs 2a and 2b show SEM images (x 100) of both sides
12 of a flexible biodegradable material according to
13 the invention following 48 hours incubation with
14 L929 fibroblasts.

15

16 Fig 3 shows the modified Kesseler repair of a
17 tendon.

18

19 Fig 4 shows epitelon repair of a tendon.

20

21 Fig 5 shows the flexible biodegradable material
22 wrapped around a tendon following repair.

23

24 Fig 6 shows use of the flexible biodegradable
25 material in nerve repair.

26

27 **Example 1**

28

29 **Method of forming a glass fibre.**

30

31 The glass-forming composition is initially heated to
32 a melting temperature of 500°-1200°C, preferably

1 750°-1050°C. The temperature is then slowly lowered
2 to the working temperature at which fibre formation
3 occurs. Generally, the working temperature of the
4 glass will be at least 200°C lower than the
5 temperature at which the glass is initially heated.
6 Suitable working temperatures may fall within the
7 following ranges 400°-500°C, 500°-900°C (preferably
8 550°-700°C, more preferably 550°-650°C, especially
9 600°-650°C) and 800°-1000°C. The working
10 temperature selected will depend upon the glass
11 composition, but an approximate indication of a
12 suitable working temperature can be established as
13 hereinafter described. Depending upon the glass
14 composition used, the working temperature may be a
15 range of suitable temperatures. The range of
16 working temperatures may be narrow, for example of
17 only 10°C, so that fibre formation may occur only
18 between the temperature of N°C to (N+10)°C. Other
19 glass compositions may have a wider temperature
20 range for the working temperature in which glass
21 formation is possible.

22
23 Alternatively, the working temperature of the glass
24 may be defined as 50-300°C above the Tg of the
25 glass.

26
27 In order to obtain an approximate indication of the
28 working temperature for any particular glass
29 composition, the glass composition should be slowly
30 heated to its melting point. As soon as the glass
31 is molten, frequent attempts to pull the composition
32 upwardly to form a fibre should be made, with the

1 temperature of the composition being very gradually
2 increased between attempts. The temperature range
3 of the composition during which fibre formation is
4 possible should be noted and used as a preliminary
5 working temperature in the process of the invention.

6

7 It will be clear to those skilled in the art that
8 the pulling speed at which the fibre is drawn off
9 can affect the choice of working temperature and the
10 diameter of the fibre required. Where a fibre of
11 relatively large diameter is required, the fibre
12 tends to be pulled more slowly and the working
13 temperature may need to be decreased slightly.
14 Where a fibre of relatively small diameter is
15 required (e.g. a glass wool), the fibres may be
16 drawn at the much higher pulling speed and the
17 working temperature may need to be increased (thus
18 lowering the viscosity of the composition to
19 accommodate the increased pulling speed). Selection
20 of the exact working temperature in respect of any
21 particular fibre size and composition will be a
22 simple matter of routine evaluation of optimal
23 process conditions.

24

25 With reference to the "working temperature" of the
26 glass, the skilled person will appreciate that the
27 furnace temperature may differ considerably from the
28 temperature of the glass itself and indeed there may
29 be a significant temperature gradient in the glass.
30 Ideally the "working temperature" will be the
31 temperature of the glass as fibre formation (i.e.

1 pulling) takes place. In many compositions however,
2 it may not be practical to measure the temperature
3 at the surface of the glass where pulling occurs by
4 insertion of a temperature probe as the introduction
5 of the probe may precipitate crystallisation of the
6 glass. One alternative is to place a temperature
7 probe into the bushing and to monitor the bushing
8 temperature which will be a good indicator of the
9 glass temperature at the moment of fibre formation.
10 Alternatively an Infra Red pyrometer may be focused
11 onto the appropriate area of the glass and used to
12 monitor the temperature.

13

14 The glass to be formed into fibres will generally be
15 heated until molten, optionally clarified, and then
16 cooled slowly and controllably until the appropriate
17 working temperature is reached and fibre formation
18 can commence. The initial heating of the glass above
19 its melting point and the subsequent fibre formation
20 may be carried out in a single vessel or,
21 alternatively, the molten glass may be transferred
22 to a vessel designed specifically for fibre
23 formation. One way of holding the molten glass in a
24 vessel having a bushing within its lower surface
25 until the temperature drops to the required working
26 temperature is to coat or fill the holes of the
27 bushing with a material that gradually melts over
28 the period of time taken for the glass to reach the
29 temperature required.

30

31 The most important aspect of the method is the
32 manner in which the working temperature is reached.

1 We have found that the molten glass, which may
2 preferably be heated significantly above
3 its melting point, should be allowed to cool in a
4 highly controlled manner, the temperature being only
5 gradually reduced until the working temperature is
6 reached. A stirrer may be present to ensure that the
7 temperature of the whole of the molten glass is kept
8 as uniform as possible.

9

10 The glass is cooled to a temperature at which the
11 glass will not crystallise for at least the period
12 of time needed to convert the melt to fibre. This
13 temperature is termed herein as a "holding
14 temperature". The rate of cooling from this holding
15 temperature is determined by the rate at which the
16 melt is consumed at the bushing and the difference
17 in temperature between the bushing temperature (the
18 working temperature) and the melt holding
19 temperature.

20

21 Due to low viscosity and narrow temperature band for
22 many of these compositions, control of the balance
23 between melt temperature, bushing temperature and
24 glass throughput rate is critical.

25

26 **Example 2**

27

28 **Producing a flexible biodegradable material.**

29

30 Glass fibres of desired composition are formed as
31 described above in Example 1 using a multi-hole

1 bushing, the fibres being wound onto a drum at high
2 speed during production.

3

4 The following table shows water soluble glass
5 compositions which are particularly suitable for
6 producing fibres for producing a flexible
7 biodegradable material:

Composition	Mole %							
	Na ₂ O	CaO	P ₂ O ₅	M ₂ O	MgO	ZnO	B ₂ O ₃	Fe ₂ O ₃
1	25	13	48	-	-	8	5	1
2	20	13	49	-	4.25	8	5	0.75
3	23	12	48	3	-	8	5	1
4	18	12	49	3	4.25	8	5	0.75

8

9 (where M₂O is a transition metal oxide, or K₂O).

10

11 It should be understood, however, that these
12 examples are non-limiting and other water soluble
13 glass compositions may be suitable.

14

15 The windings of collected fibres are then cut
16 perpendicular to their direction, i.e. the cut is
17 made longitudinally along the surface of the drum,
18 and the windings removed from the drum as a bundle
19 of fibres (the uniform length of the fibres being
20 the same as the drum circumference). At this point,
21 all the fibres are substantially aligned in the same
22 direction.

23

24 The bundle of fibres is then laid flat on a clean
25 surface and one of the non-cut edges is gently
26 teased sideways away from the bundle. As the edge
27 is pulled out the fibres expand to form a non-woven

1 web; the arrangement of the fibres being
2 intrinsically interlinked and the web resembles the
3 wires in a chain-link fence. This intertwining of
4 wound fibres and the consequent nature of expansion
5 upon pulling is a known property of conventional
6 glass fibres.

7

8 Expansion is continued by pulling until the fibres
9 of the web are well separated and a suitable amount
10 of fibre material has been obtained. The weight and
11 texture of the web are determined by the initial
12 fibre properties, the degree of expansion and the
13 thickness of the bundle from which the web is drawn.
14 Several layers of the expanded web may be overlapped
15 to obtain a layer of glass fibres of the desired
16 thickness. This may conveniently be achieved by
17 rolling the expanded web onto a further drum, the
18 number of complete revolutions of the drum
19 corresponding to the number of layers required. The
20 fibres are then cut and the layer removed in sheet
21 form in a manner similar to the earlier technique.

22

23 At this point the fibre layer could be heat bonded,
24 partially dissolved or needle-punched in order to
25 form a coherent material.

26

27 To form a composite material the layer is then
28 conveniently placed on a releasable backing material
29 (for example siliconised sheeting) and a binding
30 material applied; for example, polycaprolactone 650
31 dissolved in chloroform (70g/dm³) may simply be
32 poured onto the layer. Releasable backing material

1 is then put on top of the layer and the sandwiched
2 material pressed flat. Once the chloroform has
3 evaporated the composite material is peeled off from
4 the releasable backing material. Figs. 1a and 1b
5 show SEM images of a composite material made
6 according to the present invention. The material in
7 Fig. 1a has been sterilised by exposure to γ -
8 irradiation whereas the example shown in Fig. 1b has
9 not; the structures appear substantially identical
10 showing that γ -irradiation has not affected the
11 fibre structure of the material.

12

13 Alternatively a pre-formed film of binding material
14 could be positioned on one surface of the sheet of
15 glass fibres and bound to the sheet by heating,
16 applying a solvent or biodegradable adhesive.

17

18 The level of permeability of the composite material
19 may be controlled by the nature of the binding
20 material. For example, a perforated film or low
21 amount of binding material results in an open
22 structure that would allow the free passage of
23 fluids, gasses and small particulates through the
24 flexible composite material. Alternatively, use of
25 an intact film or a large amount of binding material
26 would render the flexible composite material
27 occlusive, therefore limiting the passage of fluids
28 and gases through the flexible composite material.

29

30 It will be clear to a person skilled in the art that
31 a plurality of layers of glass fibre sheet and/or
32 binding material film could be built up to produce a

1 laminar material of desired properties. In addition
2 layers of other materials such as alginates could be
3 incorporated.

4

5 It will also be clear that a plurality of fibres of
6 different properties could be employed to produce a
7 composite material of desirable properties, e.g.
8 combining a strong fibre with an antimicrobial
9 fibre.

10

11 Conveniently, where a thermoplastic binding material
12 (such as polycaprolactone) is used, the composite
13 material may be shaped and moulded by manipulation
14 in combination with heating, for example with a
15 hairdryer.

16

17 The composite material can be supplied in sheet or
18 roll form or can be pre-formed into various three
19 dimensional shapes.

20

21 Examples 3 to 19 give alternative glass compositions
22 suitable for fibre formation and thus for the
23 production of the composite material using the
24 methodology of Example 2.

25

26 **Example 3**

27

28	Na ₂ O	31.19 mole %
29	K ₂ O	9.63 mole %
30	M ₂ O	2.9 mole %
31	B ₂ O ₃	2.74 mole %
32	NaF	0.66 mole %

1 P_2O_5 52.88 mole %
2 (Where M_2O is a suitable transition metal oxide or
3 potassium oxide).

4

5 Furnace at 710°C - 800°C.

6 Bushing at 450°C - 460°C.

7 4.5mm bushing holes.

8 50km per hour pull rate.

9 Good fibres.

10 Solution rate = 1.68 not annealed 2.28 annealed.

11

12 **Example 4**

13

14 Na_2O 32 mole %
15 K_2O 10 mole %
16 M_2O 3 mole %
17 P_2O_5 55 mole %

18

19 (Where M_2O is a suitable transition metal oxide or
20 potassium oxide).

21

22 Furnace at 850°C.

23 Bushing at 530°C.

24 5mm bushing holes.

25 55kmph.

26 Good strong fibres.

27

28 **Example 5**

29

30 Na_2O 32 mole %
31 K_2O 10 mole %
32 MgO 4 mole %

1 B₂O₃ 5 mole %
2 M₂O 3 mole %
3 P₂O₅ 46 mole %

4
5 (Where M₂O is a suitable transition metal oxide or
6 potassium oxide).

7

8 Furnace temperature 650°C - 730°C.

9 Bushing temperature 410°C - 420°C.

10 Bushing 5.5mm diameter.

11 Speed up to 100kmph.

12 Solution rate 0.7 annealed 1.0 non annealed (mg.cm⁻³.hr⁻¹).

13 Very good strong reliable fibre. Very stable.

14

15 Example 5 can be modified by replacing the MgO with
16 ZnO.

17

18 **Example 6**

19

20 Na₂O 36.68 mole %
21 K₂O 8.63 mole %
22 P₂O₅ 45.09 mole %
23 B₂O₃ 5.29 mole %
24 M₂O 2.59 mole %
25 (CaO 1.73 mole % to attenuate solution rate)

26

27 (Where M₂O is a suitable transition metal oxide or
28 potassium oxide).

29

30 Furnace temperature 550°C.

31 Bushing 62 x 5.0mm holes.

32 Bushing temperature 400°C.

1 Speed 80kmph.

2

3 Very good fibres.

4 Solution rate 3.11 annealed, 3.8 non annealed (mg.cm⁻².hr⁻¹).

5 The fibres show excellent tensile strength,

6 flexibility and shock resistance.

7

8 The fibres are especially suitable for rapidly

9 biodegradable applications.

10

11 **Example 7**

12

13 Na₂O 31.05 mole %

14 CaO 16.00 mole %

15 M₂O 3.88 mole %

16 P₂O₅ 46.08 mole %

17 Na₂PO₃F 0.97 mole %

18 2Al₂O₃.B₂O₃ 2.00 mole %

19

20 (Where M₂O is a suitable transition metal oxide or
21 potassium oxide).

22

23 100 grams of the sample was heated to 900°C before
24 being cooled and pulled at 650°C, at 25 km/hr.

25 Overall the fibre was good; one sample was 10 km in
26 length and 11 grams in weight, although there was
27 some crystallisation at the pulling temperature.

28

29 **Example 8**

30

31 Na₂O 29.51 mole %

32 CaO 15.21 mole %

1 M₂O 3.68 mole %
2 P₂O₅ 43.80 mole %
3 2Al₂O₃.B₂O₃ 1.90 mole %
4 Na₂PO₃F 1.90 mole %
5 Na₂B₄O₇.10H₂O 1.00 mole %
6 Na₂PO₄ 3.00 mole %

7

8 (Where M₂O is a suitable transition metal oxide or
9 potassium oxide).

10

11 74 grams of the sample was heated to 1000°C before
12 being cooled and pulled at 635°C at 25 km/hr. The
13 fibre produced was ultrafine; one sample was 18 km
14 in length and 59 grams in weight. The sample was
15 sprayed with WD40 to prevent water absorption and to
16 aid lubricity. There was some debris at the bottom
17 of the crucible, but this was found to be just iron
18 deposits from the brushing rod.

19

20 **Example 9**

21

22 Na₂O 34.20 mole %
23 CaO 16.15 mole %
24 P₂O₅ 44.65 mole %
25 Na₂SO₄ 5.00 mole %

26

27 200 grams of the sample was heated to 1050°C before
28 being cooled and pulled at 635°C at 25 km/hr. The
29 fibre was good although there was some
30 crystallisation at the pulling temperature.

31

32

1 **Example 10**

2

3 Na₂O 32.40 mole %
4 CaO 15.30 mole %
5 P₂O₅ 42.30 mole %
6 2Al₂O₃.B₂O₃ 3.00 mole %
7 Na₂PO₃F 1.00 mole %
8 Na₂SO₄ 6.00 mole %

9

10 117 grams of the sample was heated to 950°C before
11 being cooled and pulled at 635°C, at 40 km/hr. The
12 fibre produced was good and there were no
13 crystallisation problems even though the surface
14 temperature of the fibre dropped to 510°C in the
15 pulling process.

16

17 **Example 11**

18

19 Na₂O 31.71 mole %
20 CaO 14.73 mole %
21 P₂O₅ 36.33 mole %
22 B₂O₃ 4.78 mole %
23 SO₃ 9.40 mole %
24 Na₂PO₃F 3.00 mole %

25

26 99 grams of the sample was heated to 800°C before
27 being cooled to 650°C and pulled at 40 km/hr. The
28 fibre produced was very fine but difficult to pull
29 and quite fragile at speed.

30

31

1 **Example 12**

2

3 Na₂O 30.77 mole %
4 CaO 14.28 mole %
5 P₂O₅ 35.28 mole %
6 B₂O₃ 4.64 mole %
7 SO₃ 9.12 mole %
8 FePO₄ 2.41 mole %
9 Na₂PO₃F 0.20 mole %
10 MnHPO₄ 2.06 mole %

11

12 200 grams of the sample was heated to 850°C before
13 being cooled to 545°C and pulled at 40 km/hr. The
14 fibre produced was strong and thin; there was not a
15 problem of crystallisation, in fact the glass can be
16 stored at 550°C for 72 hours without the onset of
17 crystallisation.

18

19 **Example 13**

20

21 Below is an example of a wool formulation and
22 running conditions to illustrate the differences
23 with the monofilament examples given above. A
24 typical wool formulation is:

25

26 Na₂O 26.31 mole %
27 CaO 17.78 mole %
28 P₂O₅ 47.04 mole %
29 B₂O₃ 5.94 mole %
30 MnO 1.55 mole %
31 Fe₂O₃ 0.97 mole %
32 NaF 0.41 mole %

1 Solution rate, non annealed = 0.0278 mg.cm⁻²hr⁻¹
2 Melted and refined at 1000°C.
3 Cooled and held at 725°C.
4 Bushing temperature maintained at 365°C.
5
6 Thick fibres approx 1.2mm diameter drawn through
7 pinch rollers at 2.5 M.mm⁻¹ from a bushing with 6 x
8 6.5mm diameter holes. Fibres jet attenuated to
9 produce a fine wool 5 -15µm diameter. The wool was
10 sprayed with silicone oil finish during the
11 attenuation process and collected on a stainless
12 steel mesh conveyor. Typically, attenuated wools
13 will have diameters of 5 to 20µm. Monofilament
14 fibres will mostly be 20 to 50µm diameter.
15

16 **Example 14**

17
18 Na₂O 32 mole %
19 K₂O 10 mole %
20 M₂O 3 mole %
21 P₂O₅ 55 mole %
22

23 (Where M₂O is a suitable transition metal oxide or
24 potassium oxide).

25
26 Furnace at 850°C.
27 Bushing at 530°C.
28 5mm bushing holes.
29 55kmph.
30 Good strong fibres.
31

1 **Example 15**

2

3 Na₂O 32 mole %
4 K₂O 10 mole %
5 MgO 4 mole %
6 B₂O₃ 5 mole %
7 M₂O 3 mole %
8 P₂O₅ 46 mole %

9

10 (Where M₂O is a suitable transition metal oxide or
11 potassium oxide).

12

13 Furnace temperature 650°C - 730°C.

14 Bushing temperature 410°C - 420°C.

15 Bushing 5.5mm diameter.

16 Speed up to 100kmph.

17 Solution rate 0.7 annealed 1.0 non annealed (mg.cm⁻³.hr⁻¹).

18 Very good strong reliable fibre. Very stable.

19

20 **Example 16**

21

22 (K₂O 5 mole %) Trace to alter
23 dissolution rate
24 CaO 25 mole %
25 MgO 20 mole %
26 P₂O₅ 50 mole %

27

28 Furnace 1000°C.

29 Bushing 5.5mm.

30 Bushing temperature 560°C - 620°C.

31 Speed up to 70kmph.

32 Solution rate TBA.

1 Very strong fibre.

2

3 **Example 17**

4

5 CaO 28.5 mole %

6 MgO 18.5 mole %

7 M₂O 3 mole %

8 P₂O₅ 50 mole %

9

10 (Where M₂O is a suitable transition metal oxide or
11 potassium oxide).

12

13 Furnace temperature 1050°C - 1150°C.

14 Bushing 4 x 5.5mm.

15 Bushing temperature 700°C.

16 Speed 50kmph.

17 Solution rate TBA.

18 Very good, strong fibre.

19

20 **Example 18**

21

22 CaO 30 mole %

23 MgO 20 mole %

24 P₂O₅ 50 mole %

25

26 The fibres show excellent tensile strength,
27 flexibility and shock resistance. These fibres are
28 suitable for applications requiring slower release
29 and greater tensile strength plus biodegradability.

30 The fibres are suitable for orthopaedic implants and
31 tissue engineering applications.

32

1 **Example 19**

2

3 CaO 28 mole %

4 MgO 20 mole %

5 ZnO 10 mole %

6 P₂O₅ 45 mole %

7

8 The fibres show excellent tensile strength,
9 flexibility and shock resistance. These fibres are
10 suitable for applications requiring slower release
11 and greater tensile strength plus biodegradability.
12 The fibres are suitable for orthopaedic implants and
13 tissue engineering applications.

14

15 **Example 20**

16

17 **Prevention of adhesion formation following flexor**
18 **tendon surgery in sheep.**

19

20 This example demonstrates that the flexible
21 composite material reduces adhesion formation and/or
22 improves healing following tenotomy in sheep. The
23 tendon to be severed is the *pars superficialis* of
24 the flexor digitorum superficialis (FPS(PS)), the
25 tendon in the ovine model being of comparable size
26 to tendons of the human hand. This protocol would
27 clearly also be applicable to a non-composite
28 material such as a needle felt or heat fused
29 material.

30

31 The current "gold-standard" procedure for tendon
32 repair in clinical practice is that of modified

1 Kessler core suture (see Fig. 3) reinforced by the
2 addition of a circumferential epitendon suture (see
3 Fig. 4). In Fig. 3 the two ends 20, 20' of the
4 severed tendon are pulled into close proximity by
5 the suture 7. Fig. 3a shows the route of the suture
6 and Fig. 3b shows the tendon ends 20, 20' once pulled
7 together by the suture 7. In Fig. 4, the modified
8 epitendon repair is shown. Here, the severed ends of
9 the tendon, 20, 20' are held together by stitching
10 using a suture 7.

11

12 However some controversy still exists about the
13 addition of the epitendon suture (see Fig. 4) as,
14 although it adds greatly to overall strength of the
15 repaired tendon and "tucks in" the raw tendon ends,
16 some believe it exacerbates the problem of adhesion
17 formation postoperatively. Thus both forms of
18 repair were evaluated in this study.

19

20 In the comparative groups, repair of tenotomy is
21 carried out by the modified Kesseler technique (Fig.
22 3) and additionally, in some animals, epitendon
23 repair (Fig. 4). In the test groups composite
24 material according to the invention was wrapped
25 around the repair site (see Fig. 5). In Fig. 5 the
26 spirally wrapped composite material 1 is shown in
27 place around the severed ends of the tendon 20, 20'
28 and spanning across the site of repair. The
29 composite material 1 is held in place by tissue glue
30 or suture (not shown).

31

32 The following experimental groups were devised:

1 Group 1 - Control.
2 Group 2 - Tenotomy + modified Kessler repair.
3 Group 3 - Tenotomy + modified Kessler repair +
4 repair of epitenon.
5 Group 4 - Tenotomy + modified Kessler repair +
6 flexible composite material.
7 Group 5 - Tenotomy + modified Kessler repair +
8 repair of epitenon + flexible composite
9 material.

10

11 Two cohorts of 12 animals were studied for each
12 group. One cohort for each group was assessed at
13 six weeks after surgery, the other cohort for each
14 group was assessed six months after surgery. After
15 six months the healing process would be expected to
16 be complete. After six weeks the healing process
17 would not be expected to be complete but assessment
18 at this stage in the healing process allows
19 investigation of the presence of early scar tissue.
20 It is usual that early brisk tissue reaction
21 produces a mass of connective tissue and the
22 production of such tissue was compared with the
23 permanent scarring resulting from adhesion
24 formation.

25

26 Each operation was performed under general
27 anaesthesia, with the full spectrum of non-invasive
28 monitoring and with strict aseptic technique. The
29 anatomical findings were observed to be consistent
30 among individual animals. The techniques of
31 creating the tendon division and of primary surgical

1 repair were consistently reproducible. No
2 unforeseen difficulties were encountered.

3

4 Surgical Technique:

5

6 All operations were carried out under sterile
7 conditions using throughout techniques established
8 in human surgery.

9

10 The tendon was approached through an incision
11 beginning over the carpo-metacarpal joint and
12 extended distally over the metacarpal bone. The
13 tendon and muscle are invested by a fibrous sheath
14 which is opened longitudinally to expose the tendon.
15 Relieved of its sheath the tendon falls naturally
16 into its two slips, the larger *pars superficialis*
17 and the smaller *pars profunda*. The two slips derive
18 from separate muscle bellies and run separately for
19 most of their lengths before reuniting just proximal
20 to their combined insertion into the middle phalanx.
21 The *pars profunda* was left intact and the *pars*
22 *superficialis* was severed at least 2 cm proximal to
23 its junction with the *pars profunda*.

24

25 Tendons were repaired using the established modified
26 Kessler technique which is an interwoven "core"
27 suture designed to give maximum strength in the axis
28 of the pull with minimal exposure of adhesiogenic
29 suture material on the surface of the tendon (see
30 Fig. 3). In selected groups this is supplemented by
31 repair of the epitendon (see Fig. 4). Epitenon
32 repair serves to improve strength of the repair, but

1 may also cause an increase in the number of
2 adhesions hence limiting movement.

3
4 After repair of the tendon, certain groups of sheep
5 have the composite material according to the
6 invention wrapped around the repair site (Fig. 5).
7 The composite material used water soluble glass
8 fibres formed from the following composition:

9

Mole %						
Na ₂ O	CaO	P ₂ O ₅	MgO	ZnO	B ₂ O ₃	Fe ₂ O ₃
25	13	48	-	8	5	1

10
11 in accordance with Example 2; the binding material
12 was polycaprolactone.

13
14 The overlapping edges of the composite material were
15 fixed together by polymer glue, although other
16 suitable means such as sutures or "spot welding"
17 with a cauterising tool may be appropriate. The
18 composite material wrap was fastened in position on
19 the tendon by a tissue glue (such as TisseelTM glue).

20
21 Closure of the wound was by layers using
22 conventional techniques and absorbable sutures
23 throughout.

24 The animals were then allowed to recuperate for the
25 specified time period (6 weeks or 6 months,
26 depending on the experimental group).

27
28 After the specified time period had elapsed for each
29 group a number of *in vivo* and *in vitro* tests were

1 performed. Within groups-variation is reduced by
2 expressing all measured variables as a fraction of
3 that obtained from the corresponding site on the
4 unoperated (left) side of each animal.

5

6 For all twelve animals in each group two *in vivo*
7 (physiological) procedures were carried out. First
8 tendon blood flow was measured by laser doppler
9 flowmetry at two sites simultaneously; probe one
10 (P1) sited proximal to the repair site and probe two
11 (P2) distal to the repair site. This allowed
12 assessment of blood flow around the area of repair.

13

14 Next the FDS(PS) tendon was divided at its distal
15 end and attached to a displacement transducer. The
16 FDS(PS) muscle was then triggered to contract by use
17 of a transcutaneous nerve stimulator. The objective
18 of this second procedure was to determine functional
19 characteristics of the tendon's performance *in situ*
20 after healing has occurred.

21

22 The FDS(PS) tendon was then harvested and *in vitro*
23 (either mechanical or morphological) observations
24 were carried out on groups of 6 animals. The
25 mechanical analysis involves measuring the strength
26 of the tendon using standard engineering methods,
27 placing the specimen in a tensile testing machine
28 (Instron). As this clearly results in destruction
29 of the specimen, the remaining six specimens in
30 each group were used for morphological analysis.
31 This involves tissue processing of the sites of
32 repair to allow histological sections to be

1 prepared, stained and examined under microscopy for
2 general histological appearance and calculation of
3 percentage composition.

4

5 Results

6

7 Firstly with regard to doppler flux levels, in both
8 time cohorts, Groups 2 and 3 (where repairs were
9 performed without the flexible biodegradable
10 material) showed markedly higher flux levels at the
11 proximal (P1) probe compared to those of Groups 4
12 and 5. The repairs performed using the flexible
13 biodegradable material (Groups 4 and 5) show P1 flux
14 levels approximately equivalent to those of the
15 normal, un-operated left side. This indicates a
16 less florid vascular/adhesive response in the cases
17 where the flexible biodegradable material was used.
18 In a number of cases this can also be seen on gross
19 inspection of the tendon, with large amounts of
20 thickened vascular tissue surrounding the proximal
21 area of tendon and repair site. These results show
22 that use of the flexible biodegradable material
23 allows tendons to heal whilst reducing the
24 occurrence of adhesions.

25

26 The second important finding relates to the
27 resultant ultimate tensile strength of the repaired
28 tendons when tested in the Instron machine. In the
29 six month groups, all repaired tendons, right
30 FDS(PS), demonstrate a breaking strength equal to or
31 greater than that of their own contralateral control
32 tendon, left FDS(PS) (which was not operated on).

1 This suggests that the incorporation of the flexible
2 biodegradable material encourages good healing of
3 the tissue and does not inhibit or weaken the
4 process of tendon healing.

5

6 In summary, the experiments described above
7 indicated that;

- 8 • there is not incompatibility between the
9 implanted biodegradable material and the tissues
10 involved in the healing process.
- 11 • After repair with biodegradable material the
12 recovered strength of the tendon is equal to or
13 greater than that of their normal (opposite limb)
14 controls. This is as good as might be expected
15 for any sort of repair.
- 16 • Blood flow studies around the tendons repaired
17 with biodegradable material show a less florid
18 response than where no material has been used.
19 This suggests that less scar tissue is being
20 formed.

21

22 **Example 21**

23

24 **Peripheral nerve repair using biodegradable glass
25 fabric.**

26

27 This study is being carried out on sheep to
28 demonstrate the potential of the composite material
29 to promote peripheral nerve repair. The study
30 comprised three experimental groups and one control
31 group; all groups contain six sheep.

32

1 The surgical method involves neurotomy (complete
2 severing of the nerve fibre) of the medial and
3 facial nerve in the three experimental groups.
4 Spontaneous recovery is never observed following
5 neurotomy.
6
7 In two of the experimental groups the repair
8 procedure shown in Fig. 6a-c is carried out, and
9 composite material 1 is placed under the intact
10 nerve prior to neurotomy. This is done for
11 simplicity but the composite material could be
12 placed in position after cutting. The nerve is then
13 cut. As shown in Fig. 6a, the composite material 1
14 is in position under the nerve 2 which has been cut.
15 The site of neurotomy is shown at 3. The composite
16 material 1 is fastened in place on the nerve 2 by
17 Tisseel™ glue 3 and Fig. 6a shows portions of such
18 tissue glue 4 at each side of the nerve 2 on both
19 edges of material 1. The composite material 1 is
20 then wrapped around the nerve 2, the overlapping
21 regions of material being bonded together by tissue
22 or polymer glue 5 (see Fig. 6b) to hold the material
23 1 in a spirally wrapped conformation around the
24 nerve. The exposed edges wrapped material 1 are
25 then sealed by tissue or polymer glue 6 as shown in
26 Fig. 6c. The manipulation and fastening of the
27 composite material is a relatively simple procedure
28 requiring considerably less skill than conventional
29 micro-surgical nerve repair. A similar technique
30 can be used for tendon repair. The composite
31 material used in this protocol is the same as that
32 in Example 20.

1 In the third experimental group the nerve is
2 repaired by conventional end-to-end repair.
3 The wounds are then closed and the animals allowed
4 to recover for 6 months. Repair of the nerve fibre
5 is examined by single-fibre electromyography, nerve
6 conduction studies, target muscle isometric twitch,
7 tetanic tensions and morphometric analysis. The
8 results were subjected to statistical analysis.

9

10 There was no statistical significance between the
11 groups in which the material of the present
12 invention was used, and the group in which nerve is
13 repaired by conventional end-to-end repair for any
14 of the variables measured.

15

16 In this series of experiments, repair of the facial
17 nerve in the sheep model using biodegradable
18 composite material according to the present
19 invention produced a level of recovery of function
20 equal to that found after conventional epineurial
21 repair. Since the latter method is widely used in
22 clinical practice this suggests a surgical role for
23 the composite material for repair of the facial
24 nerve which obviates the need for microsurgical
25 techniques.

26

27

28

29

30

31

32

1 **Example 22**

2

3 **Anti-adhesiogenic properties of the flexible
4 biodegradable material.**

5

6 *In vitro* direct contact tests were carried out with
7 L929 fibroblast and neuroblastoma cell lines to
8 examine the effects of the flexible composite
9 material on cell proliferation and adhesion.10 Small pieces (approx 1 cm³) of flexible composite
11 material were put into wells of 6-well plates with
12 freshly subcultured fibroblasts or neuroblastoma
13 cells. 0.1 - 0.2 cm³ of the freshly suspended cells
14 at a concentration of 0.1 - 0.2 x 10⁶ cells/ml or
15 0.6 - 0.7 x 10⁶ cells/ml were added. The samples
16 were prepared in duplicate, with duplicate control
17 wells containing the fibroblast or neuroblastoma
18 cells only (ie. no composite material). The water
19 soluble glass fibres used in the manufacture of the
20 composite material for the present protocol were of
21 the composition:

22

Mole %					
Na ₂ O	CaO	P ₂ O ₅	ZnO	B ₂ O ₃	Fe ₂ O ₃
25	13	48	8	5	1

23

24 The binding material was polycaprolactone.

25

26 The wells were then incubated (37°C, 5% CO₂) for half
27 an hour to encourage adhesion to the material. 3
28 cm³ of fresh culture medium was then added to each
29 well. Following further incubation for 24, 48 or 72

1 hours the pieces of flexible composite material were
2 removed for examination.

3

4 Scanning electron microscopy (SEM) was performed on
5 samples of the material to determine its structure
6 prior to addition of the cells in both sterile and
7 non-sterile form (see Fig. 1) and following
8 incubation as described above to determine if cells
9 adhered to the surface (see Fig. 2).

10

11 At the lower level of cell concentration (0.1-0.2 x
12 10^6 cells/ml) there were few signs of the L929
13 fibroblasts attaching to the material after 24
14 hours. In the control wells the cells had
15 proliferated and looked healthy and normal. After
16 48 hours, similar observations were obtained.

17

18 At the higher level of cell concentration (0.6-0.7 x
19 10^6 cells/ml), cells looked normal in each well
20 after 24 hours, with more cells being observed in
21 the control well. Similar results were obtained at
22 48 hours.

23

24 The SEM results showed that although cells did
25 adhere to the composite material, they did so at a
26 low density. A far higher density of adhered cells
27 was observed on the surface of the wells in which
28 the experiment was carried out. In addition it was
29 noted that the cells particularly did not adhere to
30 regions of the fibres where polycaprolactone was
31 present.

32

1 Figs. 2a and 2b show SEM images (x 100) of the non-
2 sterile flexible composite material after 48 hours
3 of incubation with L929 fibroblasts.

4

5 Thus this experiment demonstrates that the flexible
6 biodegradable material, and in particular a
7 composite material containing polycaprolactone, act
8 *in vitro* to prevent cell adhesion.

1 CLAIMS

2

3 1. A flexible biodegradable material in the form
4 of a sheet comprising water soluble glass
5 fibres and being suitable for implantation in a
6 human or non-human animal body.

7

8 2. The flexible biodegradable material as claimed
9 in Claim 1 comprising one or more coherent
10 layers of water soluble glass fibres wherein
11 each of the layers comprises a non-woven web of
12 water soluble glass fibres.

13

14 3. The flexible biodegradable material as claimed
15 in either one of Claims 1 and 2 comprising a
16 composite of water soluble glass fibres and a
17 bio-compatible binding material.

18

19 4. The flexible biodegradable material as claimed
20 in Claim 3 wherein the bio-compatible binding
21 material is coated onto the surface of the
22 glass fibres, or is in the form of a film fused
23 to one or both sides of a layer of the glass
24 fibres, or sandwiched between two or more
25 layers of the glass fibres.

26

27 5. The flexible biodegradable material as claimed
28 in either one of Claims 3 and 4 wherein the
29 binding material is polycaprolactone,
30 polyglycolic acid, polylactic acid,
31 lactide/glycolide co-polymer or a mixture
32 thereof.

- 1 6. A flexible biodegradable material as claimed in
2 any one of Claims 3 to 5 wherein the amount of
3 binding material in the composite material is
4 50% by weight or less.
- 5
- 6 7. A flexible biodegradable material as claimed in
7 any one of Claims 3 to 6 wherein the binding
8 material further comprises water soluble glass
9 in powder form.
- 10
- 11 8. A flexible biodegradable material as claimed in
12 any one of Claims 3 to 7 wherein the binding
13 material comprises a pharmacologically active
14 agent.
- 15
- 16 9. A flexible biodegradable material as claimed in
17 any preceding Claim further comprising
18 nutritional agents, growth factors, and healing
19 agents, living cells, enzymes, chemical
20 elements, charcoal, desloughing, debriding
21 agents, or astringents.
- 22
- 23 10. A flexible biodegradable material as claimed in
24 any preceding Claim wherein the water soluble
25 glass comprises one or more pharmacologically
26 active agents releasable at a controllable
27 rate.
- 28
- 29 11. A flexible biodegradable material as claimed in
30 any preceding Claim comprising a mixture of
31 water soluble glass fibres of different
32 formulations.

- 1 12. A flexible biodegradable material as claimed in
- 2 any preceding Claim comprising at least two
- 3 biodegradable and/or non-biodegradable binders.
- 4
- 5 13. A method of treating an area of defective
- 6 tissue in a patient, said method comprising
- 7 using a flexible biodegradable material as
- 8 claimed in any one of Claims 1 to 12 to
- 9 surround, cover or isolate said area of tissue.
- 10
- 11 14. The method as claimed in Claim 13 wherein the
- 12 material is attached to healthy or defective
- 13 tissue by staples, sutures or biodegradable
- 14 adhesive.
- 15
- 16 15. The method as claimed in Claim 14 wherein the
- 17 defective tissue is tendon, nerve, skin, bone,
- 18 cardiovascular or abdominal tissue or dura
- 19 matter.
- 20
- 21 16. The method as claimed in any one of Claims 13
- 22 to 15 comprising the step of positioning the
- 23 flexible biodegradable material between two
- 24 internal tissue surfaces.
- 25
- 26 17. The method as claimed in any one of Claims 13
- 27 to 15 comprising the step of forming the
- 28 flexible biodegradable material into a tube
- 29 around the area of tissue.
- 30
- 31 18. The method as claimed in any one of Claims 13
- 32 to 15 comprising the step of positioning the

1 flexible biodegradable material over an
2 external area of tissue as a dressing.

3

4 19. The method as claimed in Claim 18 wherein
5 dermal cells are provided on the flexible
6 biodegradable material prior to application to
7 the external area of tissue.

8

9 20. A method of reducing adhesion formation
10 following surgery in a patient, said method
11 comprising inserting a biodegradable flexible
12 material as claimed in any one of Claims 1 to
13 12 into the patient during surgery, and
14 locating said material between the tissue
15 surfaces where prevention of adhesion is
16 required.

17

18 21. A method of repairing a damaged or severed
19 nerve or tendon, said method comprising
20 surrounding said damaged nerve or tendon, or
21 the severed ends thereof by the flexible
22 biodegradable material of Claims 1 to 12.

23

24 22. The flexible biodegradable material as claimed
25 in any one of Claims 1 to 12 for use in the
26 treatment of an area of defective tissue, to
27 protect said area of defective tissue, to
28 promote healthy healing thereof or to prevent
29 adhesion formation.

30

1 23. The use of the flexible biodegradable material
2 as claimed in any one of Claims 1 to 12 in the
3 manufacture of a surgical implant.

4

5 24. A surgical implant comprising the flexible
6 biodegradable material as claimed in any one of
7 Claims 1 to 12.

8

9 25. A method of producing a flexible biodegradable
10 material in sheet form, suitable for
11 implantation into a patient's body, said method
12 comprising:

13

14 a) providing one or more layer(s) of water
15 soluble glass fibres; and
16 b) forming the fibres into a coherent layer by
17 at least one of the following steps:
18 i) fusing the fibres together by partial
19 melting or dissolution; or
20 ii) needle-punching the layer of fibres
21 to form a non-woven felt; or
22 iii) providing a binding material to
23 adhere said layer to form a composite
24 sheet.

25

26 26. The method as claimed in Claim 25 wherein the
27 layer of water soluble glass fibres is formed
28 by:

29

30 a) winding glass fibre(s) onto a drum;

1 b) cutting along the length of the drum and
2 removing the substantially aligned glass
3 fibres therefrom; and

4 c) pulling the glass fibres in a lateral
5 direction to form a non-woven web.

6

7 27. The method as claimed in either one of Claims
8 25 and 26 wherein the binding material is
9 adhered to the water soluble glass fibres by:

10

11 a) melting or dissolving the binding material
12 in an appropriate solvent;

13 b) applying the binding material to the fibres
14 by dipping, spraying or pouring to form a
15 fibre/binder composite; and

16 c) cooling, curing or drying the fibre/binder
17 composite.

18


19 28. The method as claimed in either one of Claims
20 25 and 26 wherein the binding material is
21 produced as a film and is then adhered to the
22 water soluble glass layer by heat, solvent or
23 adhesive.

24

1 / 4

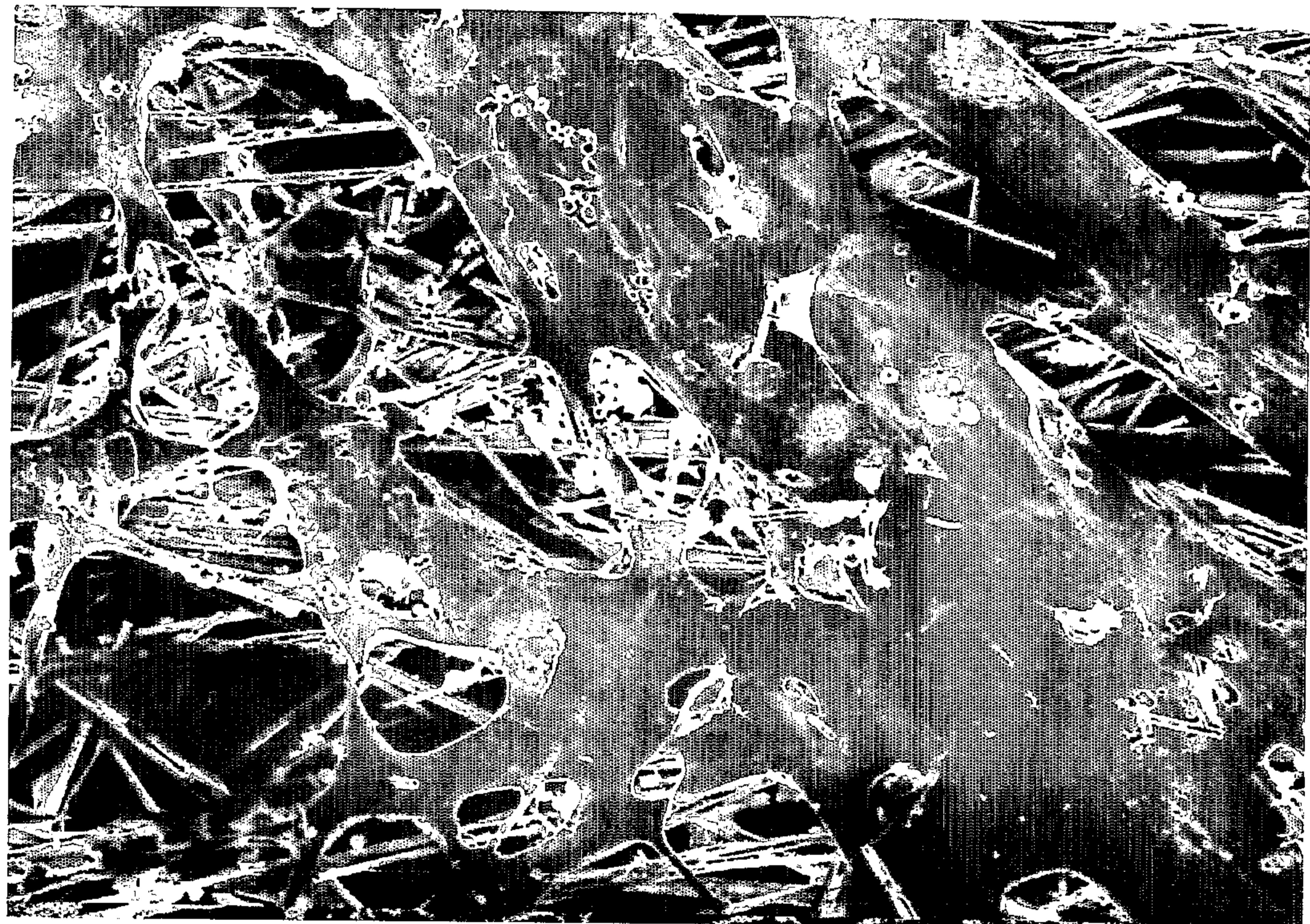


Fig. 1a

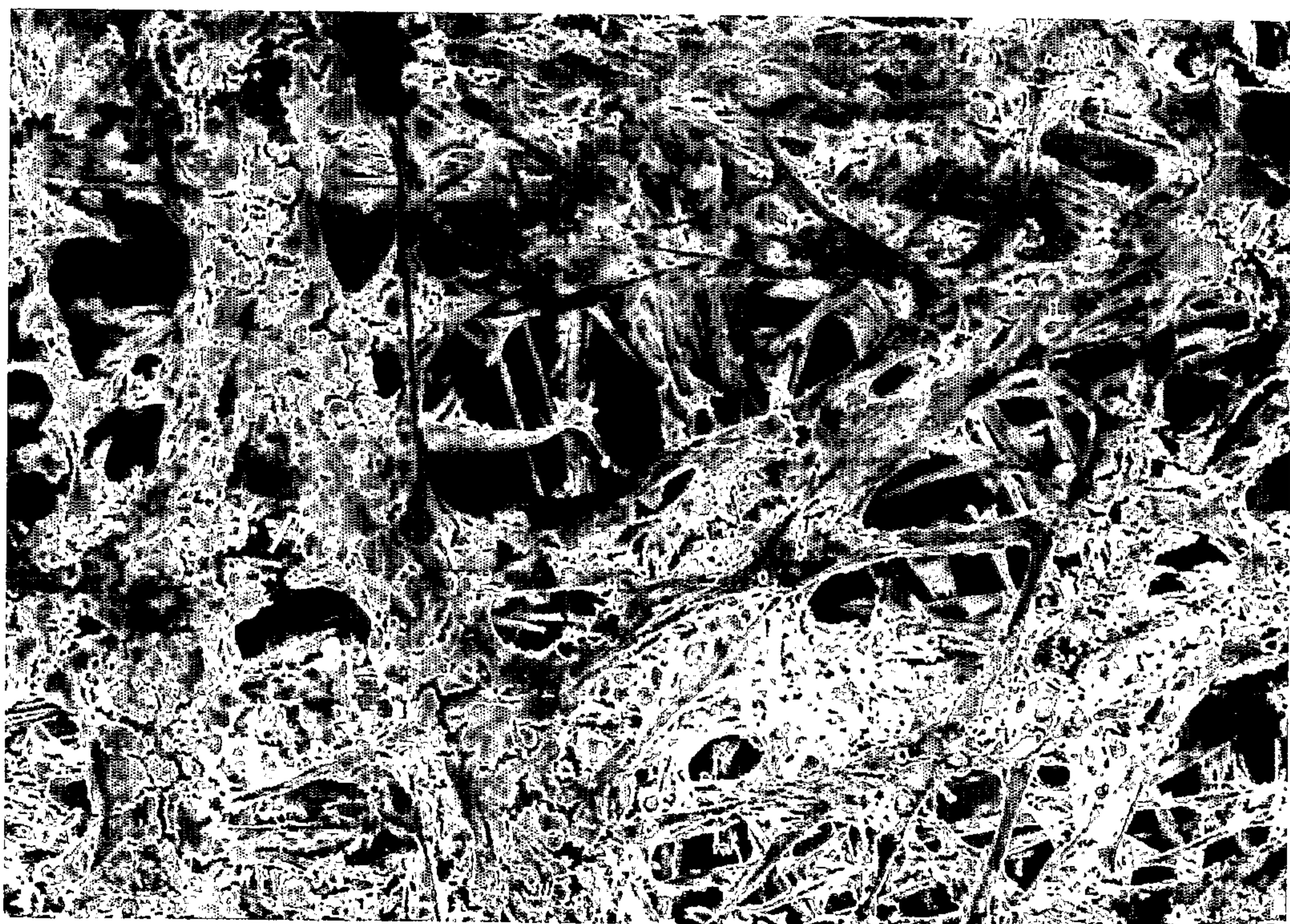
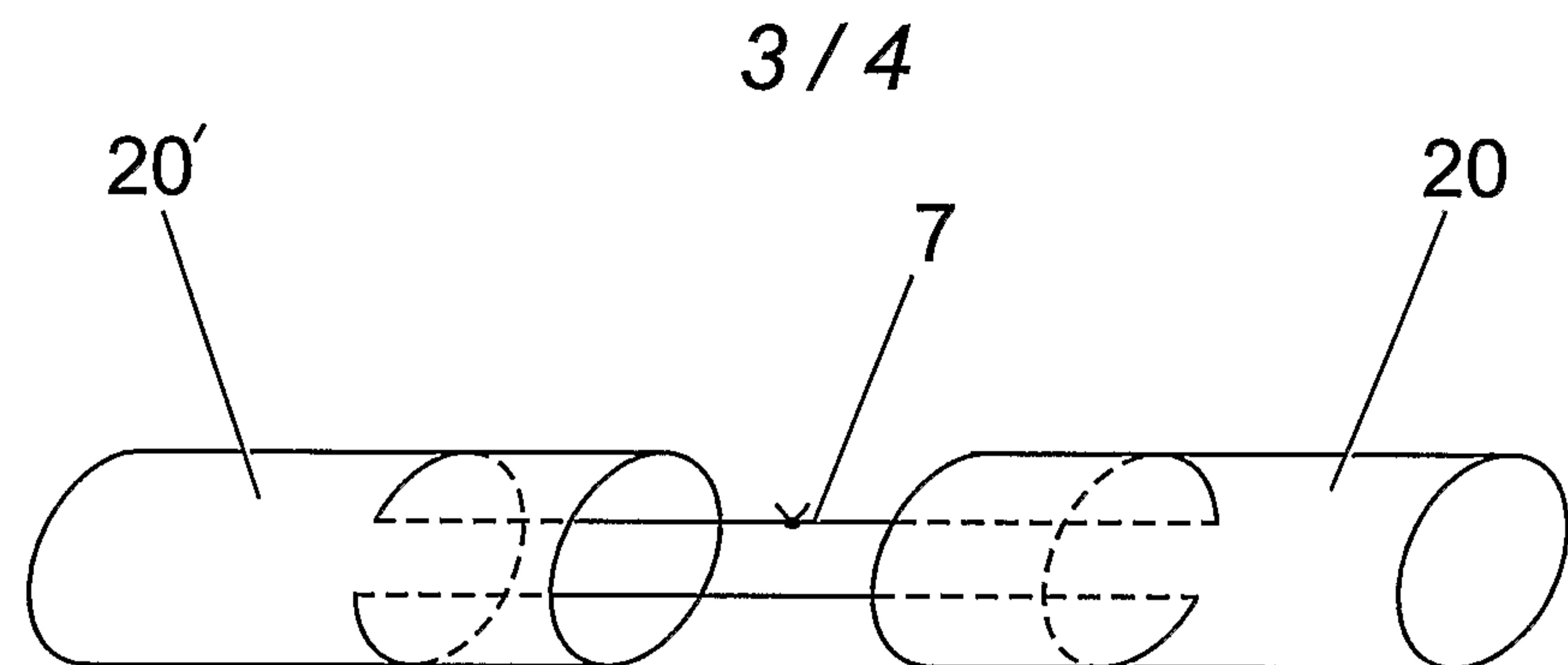
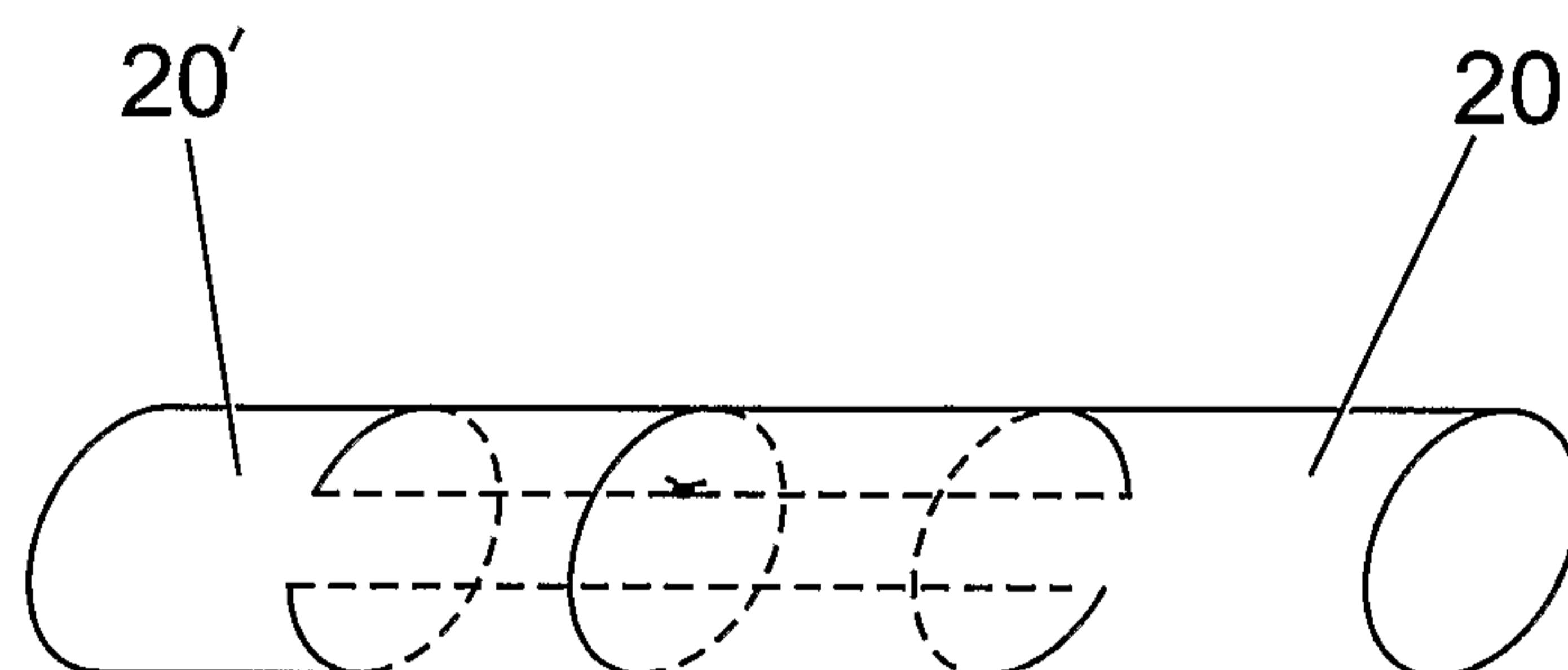
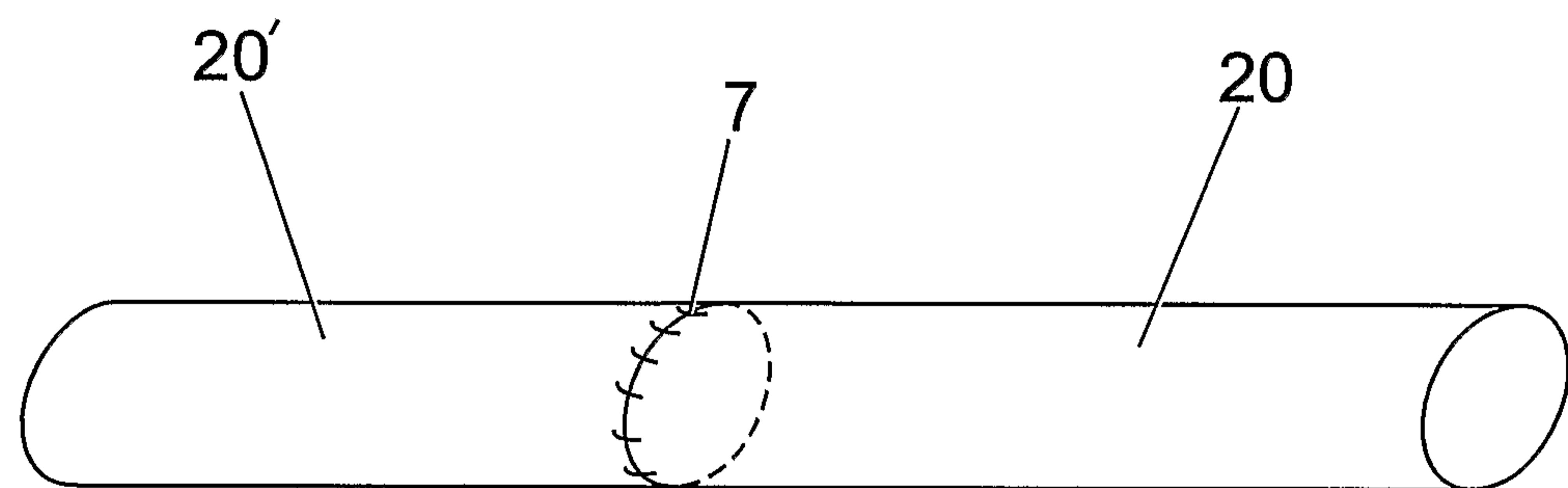


Fig. 1b


2 / 4


Fig. 2a


Fig. 2b

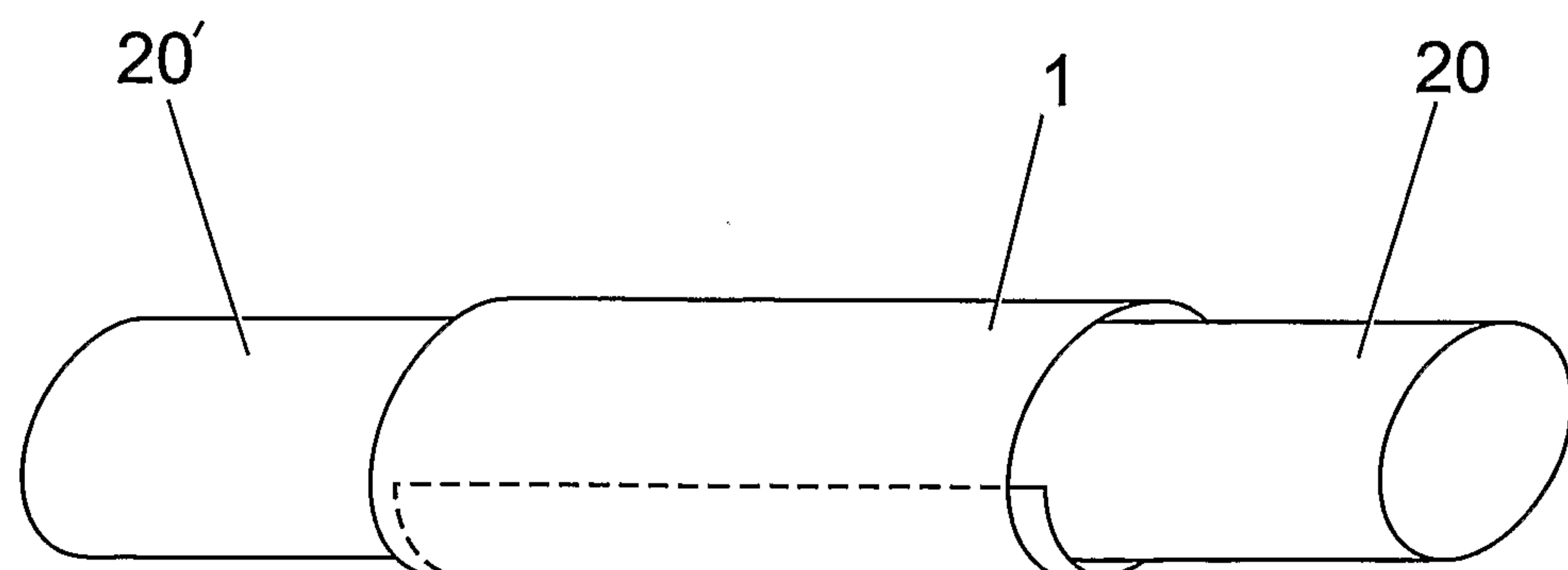

Fig. 3a

Fig. 3b

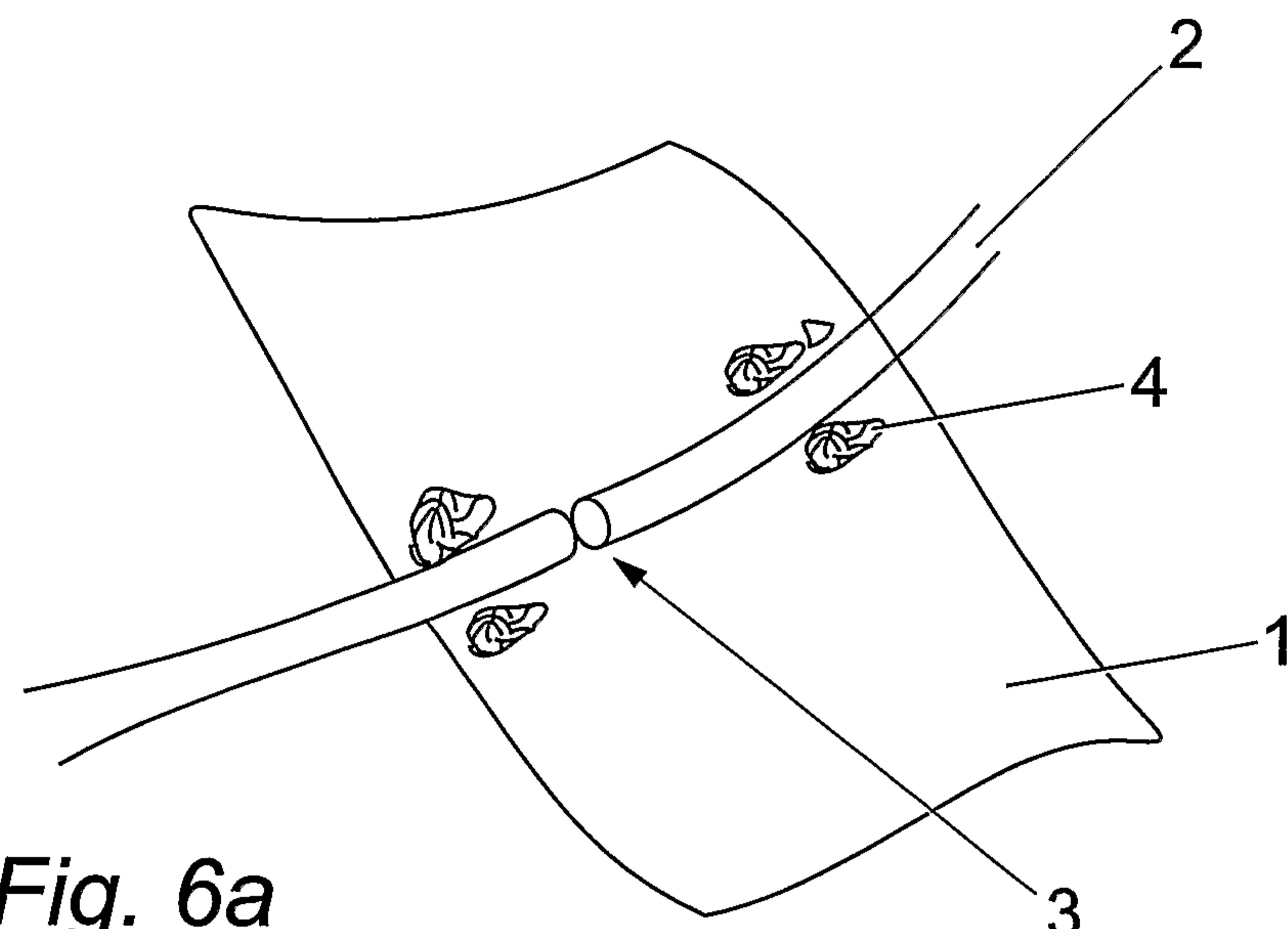


Fig. 4

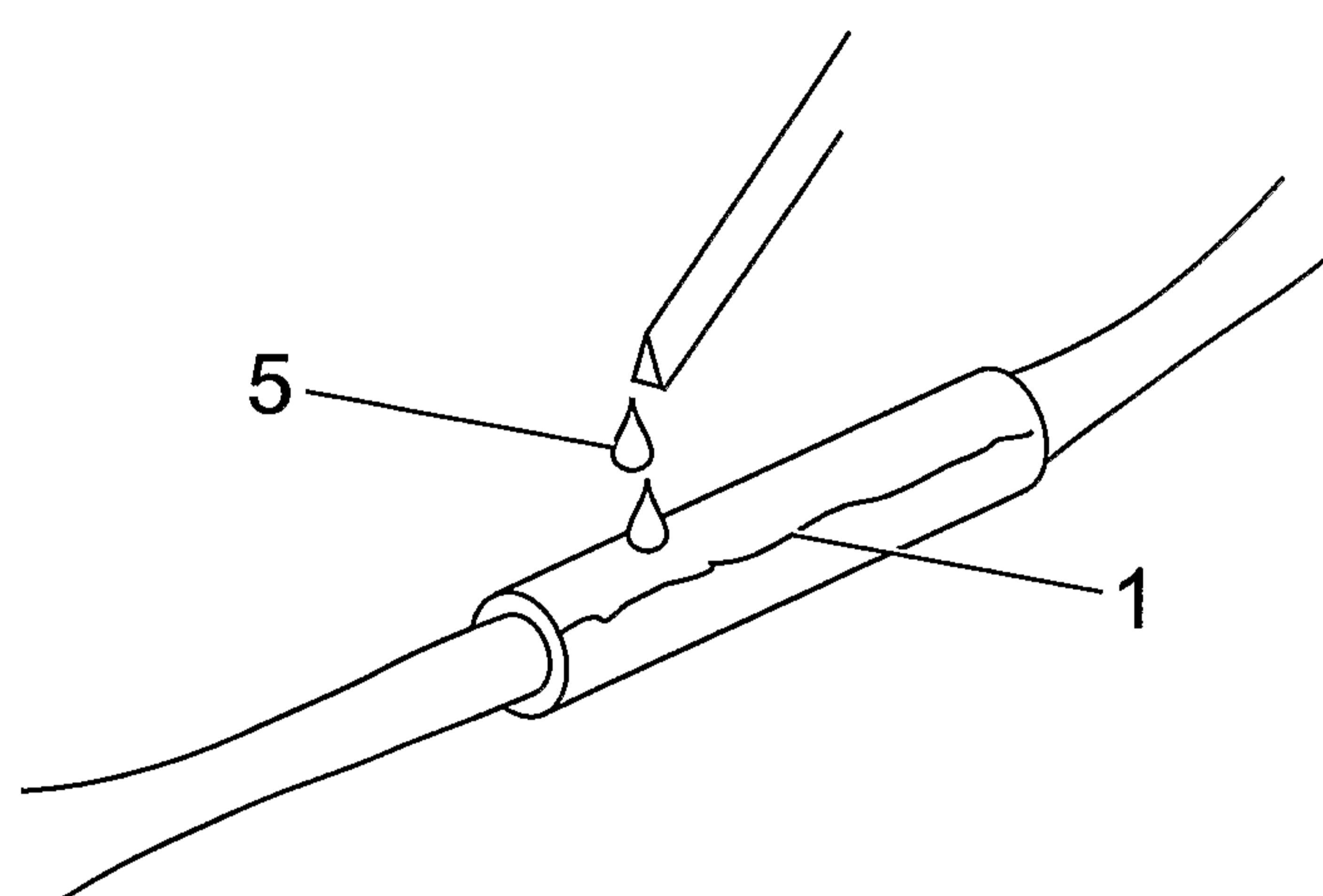
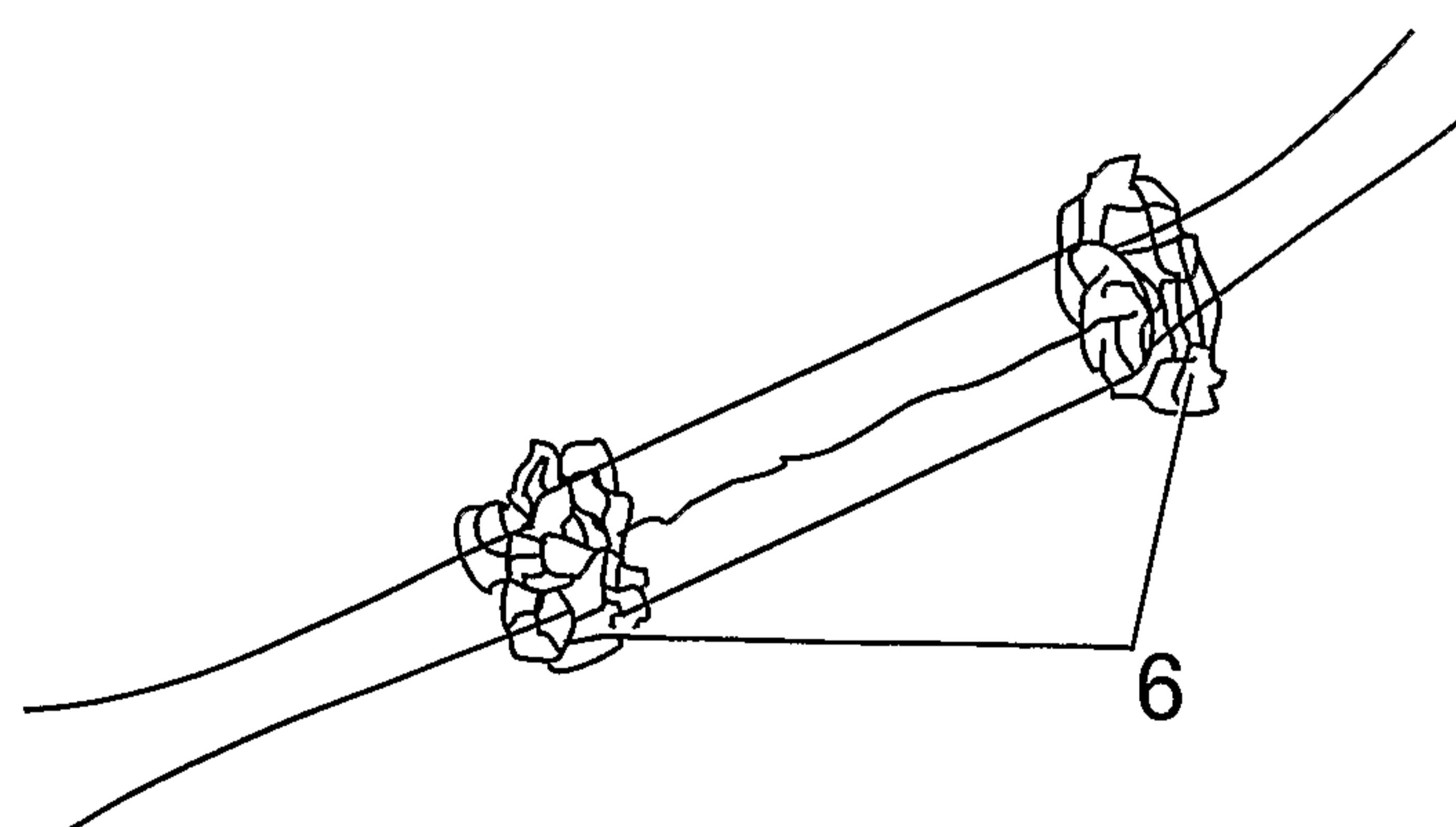


Fig. 5


4 / 4

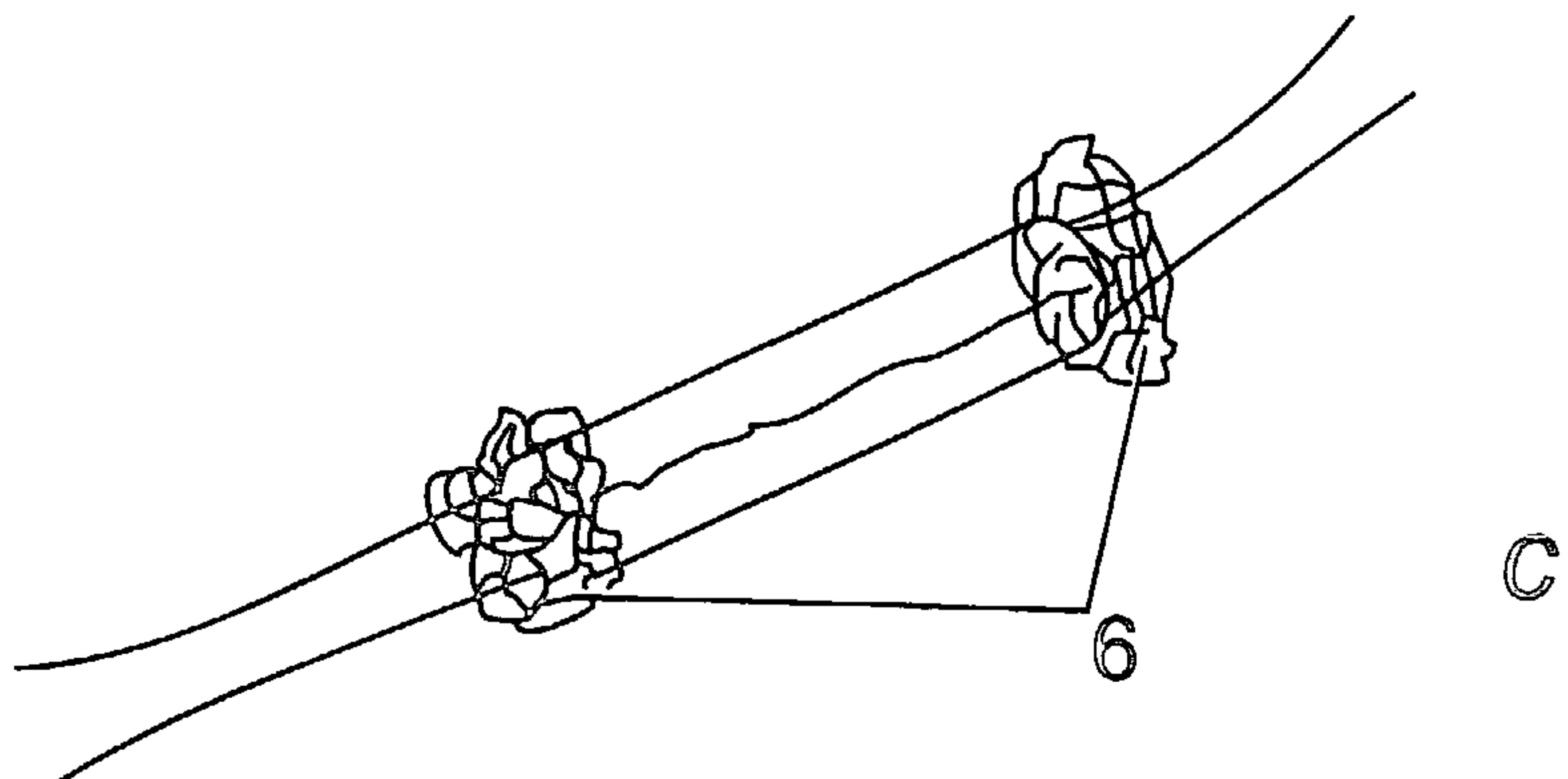
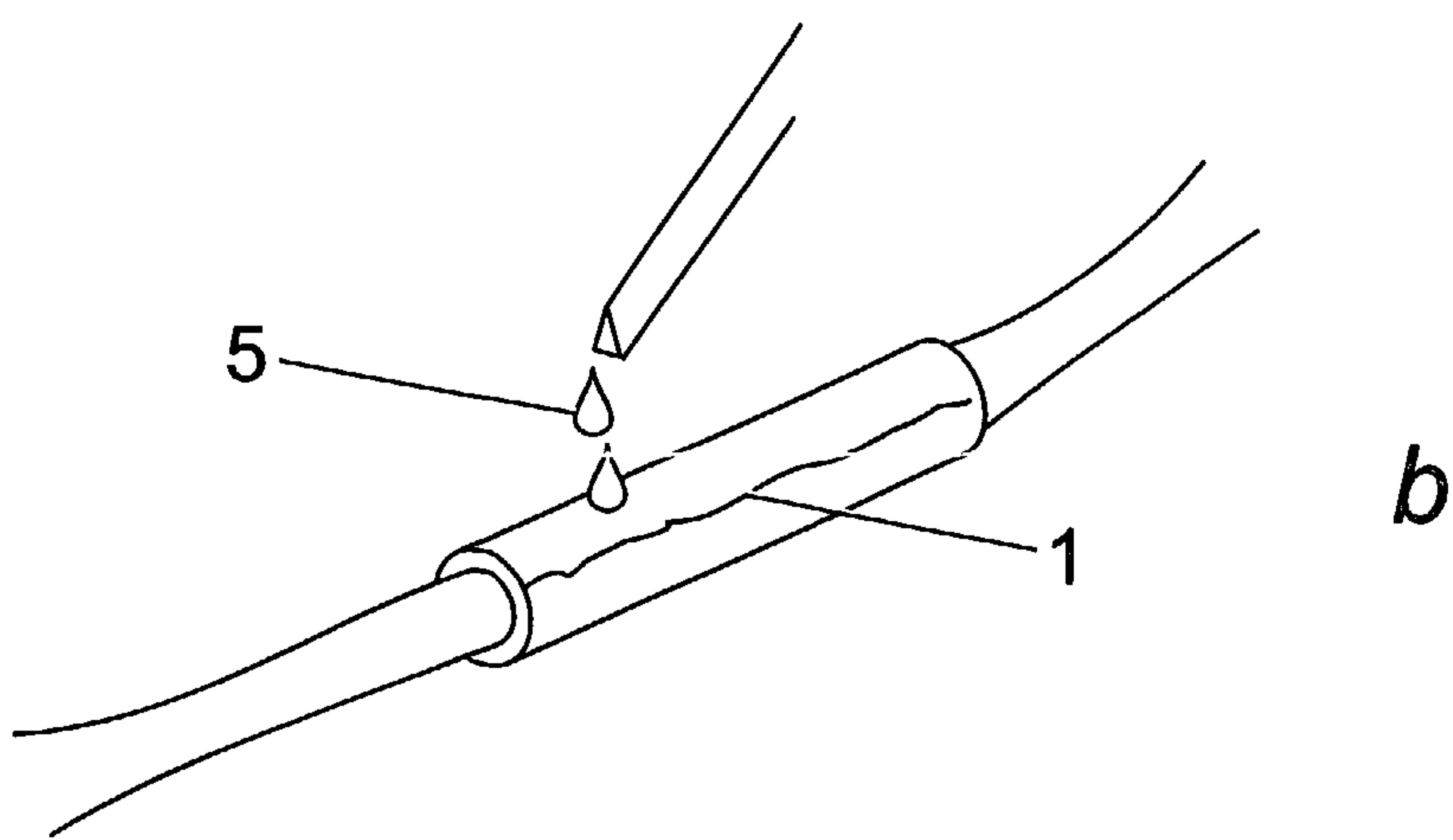
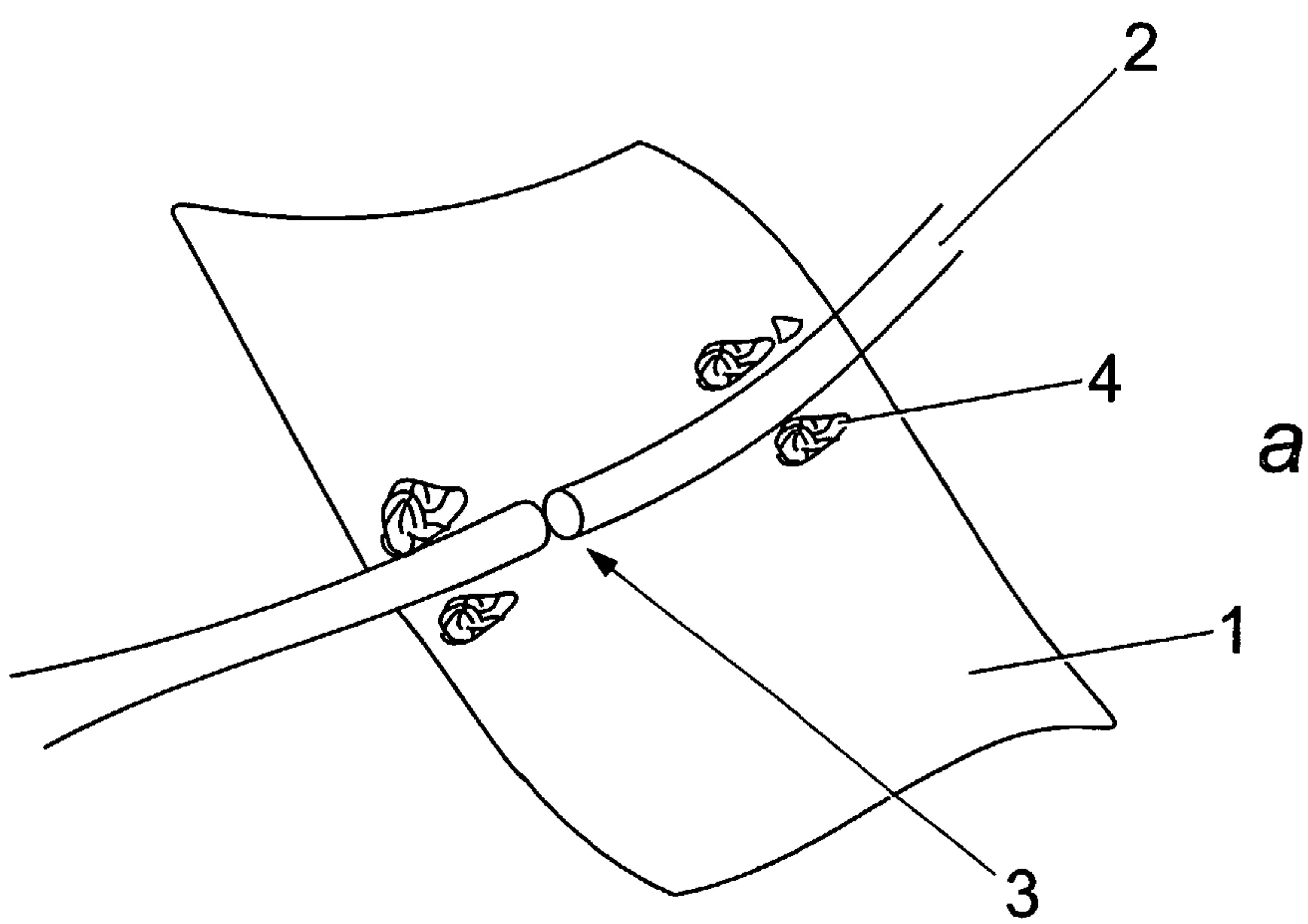



Fig. 6a

Fig. 6b

Fig. 6c

