wo 2018/@2133 A1 |00 OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert <
I organization = OO0 0. O OO0

International Bureau

(43) International Publication Date

—;/// (10) International Publication Number

WO 2018/068133 Al

19 April 2018 (19.04.2018) WIPO I PCT

(51) International Patent Classification:
GO6F 21/62 (2013.01) GO6F 21/30 (2013.01)

(21) International Application Number:

PCT/CA20 17/051202

(22) International Filing Date:

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP,KE, KG, KH, KN, KP,
KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

10 October 2017 (10.10.2017) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN,
. . TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English
. 84) Designated States (unless otherwise indicated, for ever
(26) Publication Language: English &) 9 (y

(30) Priority Data:
62/406,482 11 October 2016 (11.10.2016)

(71) Applicant: BICDROID INC. [CA/CA]; 84 Milne Drive,

Petersburg, Ontario NOB 2HO (CA).

kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, 8L, ST, SZ, TZ,
us UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(72) Inventors. YANG, En-Hui; 84 Milne Drive, Petersburg, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Ontario NOB 2HO (CA). YU, Xiang; 268 Lemon Grass KM, ML, MR, NE, SN, TD, TG).
Crescent, Kitchener, Ontario N2N 3R5 (CA). MENG, Jin;

67 Condor Street, Kitchener, Ontario N2K 0B2 (CA).

Published:
— with international search report (Art. 21(3))

(74) Agent: BERESKIN & PARRLLP/SE.N.C.R.L., SR.L;
40 King Street West, 40th Floor, Toronto, Ontario M5H

3Y2 (CA).

(81) Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT,AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,BZ,

(54) Titlee METHODS, SYSTEMS AND COMPUTER PROGRAM PRODUCTS FOR DATA PROTECTION BY POLICING PRO-

CESSES ACCESSING ENCRYPTED DATA

101D
101A 101B 101C

| |
| |
| |
| FILTER |
| | APPLICATION | |APPLICAT\ON | | APPLICATION | COMPANION | I
| l
| [
| |
| |

APPLICATION

102

103

FIG. 1

(57) Abstract: The described embodiments relate to data protection
methods, systems, and computer program products. A process-based en-
crypted data access policing system is proposed based on methods of en-
crypted data file management, process authentication and authorization,
Trojan detection for authorized processes, encryption key generation and
caching, and encrypted- file cache management. The process-based en-
crypted data access policing system may beimplemented asakernel level
file system filter and a user- mode filter companion application, which
polices the reading/writing of encrypted data in either a server system or
an endpoint computer and protects data from data breaches and known or
unknown attacks including ransomware and/or phishing attacks.

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

TITLE: METHODS, SYSTEMS AND COMPUTER PROGRAM PRODUCTS
FOR DATA PROTECTION BY POLICING PROCESSES ACCESSING
ENCRYPTED DATA

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional
Application No. 62/406,482 filed October 11, 2016, the entirety of which is

hereby incorporated by reference.

FIELD

[0002] The described embodiments relate generally to data access

management and in particular to systems, methods and computer program

products for managing data access of processes executing on a computer

system.
BACKGROUND
[0003] As society becomes more digitized, sensitive information is

increasingly being stored and transmitted electronically. As a result, the
importance of cybersecurity to our digital society is becoming increasingly

fundamental.

[0004] Many computer security technologies have been proposed to
address cyber security issues. These technologies include firewalls, role-
based access controls, data backup services, data encryption and so forth.
These technologies often take different approaches to protecting user data.
For instance, Firewall technology aims to prevent malware (malicious
software) from gaining access to a computer system. Role-based access
control restricts system access rights to authorized users, based on roles and
privileges assigned to various users. Data backups archive data according to
a predetermined schedule to prevent data loss. Encryption encodes a
plaintext file into a format which is not recognizable unless decrypted with the

corresponding decryption key.

[0005] While the above technologies provide some safeguards for user
data, they are all vulnerable to sophisticated attacks, as evidenced by the

increasing number of large institutions which have had data breaches and/or

-1-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

have been held for ransom. As cyber-physical-human networks and systems
become increasingly interconnected, the overall system tends to be only as

strong as the weakest link at the weakest moment.

SUMMARY

[0006] The following introduction is provided to introduce the reader to
the more detailed discussion to follow. The introduction is not intended to limit
or define any claimed or as yet unclaimed invention. One or more inventions
may reside in any combination or sub-combination of the elements or process

steps disclosed in any part of this document including its claims and figures.

[0007] Embodiments described herein may include methods and
systems for managing data access in a computer system. The embodiments
described herein may operate to protect against data breaches and known
and unknown attacks including, for example, ransomware and phishing
attacks. Embodiments of the systems and methods described herein may
police processes attempting to access encrypted data files, based on process
authentication and authorization methods. Unauthorized processes, such as

malware processes, can be denied access to the encrypted data.

[0008] Embodiments of the methods and systems described herein
may provide a data protection module that may be referred to as a kernel
level file system filter. The data protection module may implement methods for
process authentication and/or process authorization to police (i.e. manage
data access for) processes trying to access data (encrypted data and/or

unencrypted data) on a computer system.

[0009] In a broad aspect, there is provided a method for managing
access to a plurality of data files stored on at least one storage module in a
computer system using a data protection module installed on the computer
system. The method can include identifying, by the data protection module, a
plurality of protected data files in the plurality of data files stored on the at
least one storage module, where the plurality of data files stored on the at
least one storage module includes the plurality of protected data files and a

plurality of unprotected data files, and where each protected data file in the

-2.

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

plurality of protected data files is stored on the at least one storage module in
an encrypted format; associating each of the protected data files stored on the
at least one storage module with a protected file identifier; receiving, by the
data protection module, a file access request from a requesting process
instance operating on the computer system, where the file access request
includes file identifying information corresponding to a particular data file in
the plurality of data files; identifying, by the data protection module, the
particular data file from the file identifying information; determining, by the
data protection module, that the particular data file is one of the protected
data files by identifying the associated protected file identifier; determining, by
the data protection module, an authorization level of the requesting process
instance based on a process authorization level of a corresponding process
determined by accessing a configuration map stored on the at least one
storage module that defines authorization levels of a plurality of processes;
and providing the requesting process instance with a level of access to the
particular data file based on the determined authorization level of the

requesting process instance.

[0010] In some embodiments, the configuration map defines a first
group of processes from the plurality of processes having a plaintext
authorization level, and a second group of processes from the plurality of

processes having a cypher-text authorization level.

[001 1] In some embodiments, the process authorization level of the
corresponding process for the particular data file may be determined to be a
plaintext authorization level; and providing the requesting process instance
with the level of access to the particular data file can include: decrypting the
particular data file to provide a decrypted data file; temporarily storing the
decrypted data file in the cache of the computer system; and providing the

requesting process instance with access to the decrypted data file in plaintext.

[0012] In some embodiments, the process authorization level of the
corresponding process for the particular data file may be determined to be a

cypher-text authorization level; and providing the requesting process instance

-3-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

with the level of access to the particular data file can include providing the
requesting process instance with access to the particular data file in the

encrypted format.

[0013] In some embodiments, the process authorization level of the
corresponding process for the particular data file may be determined to be
neither a plaintext authorization level nor a cypher-text authorization level; and
providing the requesting process instance with the level of access to the
particular data file can include denying the requesting process instance

access to the particular data file.

[0014] In some embodiments, for each of at least one protected data
file, associating that protected data file with the protected file identifier may
include storing that protected data file in a file location within a predefined file
directory area on the at least one storage module; and the protected file

identifier for that protected data file can be the predefined file directory area.

[0015] In some embodiments, for each of at least one protected data
file, associating that protected data file with the protected file identifier may
include modifying data associated with the encrypted data file to include the

protected file identifier.

[0016] In some embodiments, the method may include, prior to
providing the requesting process instance with the level of access,
authenticating the requesting process instance by: determining an application
program associated with the corresponding process; determining that the
requesting process instance includes additional process instructions that do
not correspond to the known application program; and modifying the
determined authorization level so that providing the requesting process
instance with the level of access to the particular data file includes denying

the requesting process instance access to the particular data file.

[0017] In some embodiments, the configuration map can be defined by:
identifying a first plurality of application programs permitted to access files in a

plaintext format; defining the first group of processes as the processes in the

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

plurality of processes that correspond to the first plurality of application
programs; identifying a second plurality of application programs permitted to
access files in a cypher-text format; and defining the second group of
processes as the processes in the plurality of processes that correspond to

the second plurality of application programs.

[0018] In some embodiments, the configuration map may be fixed prior

to receiving the file access request.

[0019] In some embodiments, the method may include determining, by
the data protection module, an initial process authorization level of the
corresponding process by accessing the configuration map, where the initial
authorization level indicates that the corresponding process is to be denied
access to the particular data file; displaying a denial notification through a
user application installed on the computer system; receiving a madification
input through the user application in response to the denial notification; and
updating, by the data protection module, the configuration map based on the
modification input to change the initial authorization level of the corresponding

process.

[0020] In some embodiments, the method may include determining, by
the data protection module, an authorization type of the requesting process
instance based on a process authorization type of the corresponding process
by accessing the configuration map, the authorization type defining at least
one file operation that the requesting process instance is permitted to perform;
and providing the requesting process instance with the level of access to the
particular data file can include permitting the requesting process instance to
perform operations on the particular data file in accordance with the
determined authorization type and preventing the requesting process from

performing operations excluded from the authorization type.

[0021] In some embodiments, the method may include receiving, by the
data protection module, a second file access request from a second process
instance operating on the computer system while the requesting process

instance has the level of access to the particular data file, where the second

-5-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

file access request includes file identifying information corresponding to the
particular data file; determining that the authorization level of the process
corresponding to the second process instance is different from the level of
access provided to the process corresponding to the requesting process
instance; and denying the second process instance access to the particular

data file.

[0022] In some embodiments, the method may include receiving, by the
data protection module, a second file access request from a second process
instance operating on the computer system while the requesting process
instance has the level of access to the particular data file, where the second
file access request includes file identifying information corresponding to the
particular data file; determining that the authorization level of the process
corresponding to the second process instance is different from the level of
access provided to the process corresponding to the requesting process
instance; generating a copy of the particular data file; and providing the
second process instance with the second level of access to the copy of the

particular data file.

[0023] In a broad aspect, there is provided a system for managing
access to a plurality of data files. The system can include a processor; at least
one storage module coupled to the processor, the at least one storage
module storing the plurality of data files and a data protection module; where
the processor is configured by the data protection module to: identify a
plurality of protected data files in the plurality of data files stored on the at
least one storage module, where the plurality of data files stored on the at
least one storage module includes the plurality of protected data files and a
plurality of unprotected data files, and where each protected data file in the
plurality of protected data files is stored on the at least one storage module in
an encrypted format; associate each of the protected data files stored on the
at least one storage module with a protected file identifier; intercept a file
access request from a requesting process instance operating on the

processor, where the file access request includes file identifying information

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

corresponding to a particular data file in the plurality of data files; identify the
particular data file from the file identifying information; determine that the
particular data file is one of the protected data files by identifying the
associated protected file identifier; determine an authorization level of the
requesting process instance based on a process authorization level of a
corresponding process determined by accessing a configuration map stored
on the at least one storage module that defines authorization levels of a
plurality of processes; and provide the requesting process instance with a
level of access to the particular data file based on the determined

authorization level of the requesting process instance.

[0024] In some embodiments, the configuration map defines a first
group of processes from the plurality of processes having a plaintext
authorization level, and a second group of processes from the plurality of

processes having a cypher-text authorization level.

[0025] In some embodiments, the process authorization level of the
corresponding process for the particular data file may be determined to be a
plaintext authorization level; and the processor can be configured by the data
protection module to provide the requesting process instance with the level of
access to the particular data file by: decrypting the particular data file to
provide a decrypted data file; temporarily storing the decrypted data file in the
cache of the computer system; and providing the requesting process instance

with access to the decrypted data file in plaintext.

[0026] In some embodiments, the process authorization level of the
corresponding process for the particular data file may be determined to be a
cypher-text authorization level; and the processor can be configured by the
data protection module to provide the requesting process instance with the
level of access to the particular data file by providing the requesting process

instance with access to the particular data file in the encrypted format.

[0027] In some embodiments, the process authorization level of the
corresponding process for the particular data file may be determined to be

neither a plaintext authorization level nor a cypher-text authorization level; and

-7-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

the processor can be configured by the data protection module to provide the
requesting process instance with the level of access to the particular data file

by denying the requesting process instance access to the particular data file.

[0028] In some embodiments, for each of at least one protected data
file, the processor can be configured by the data protection module to:
associate that protected data file with the protected file identifier by storing
that protected data file in a file location within a predefined file directory area
on the at least one storage module; where the protected file identifier for that

protected data file includes the predefined file directory area.

[0029] In some embodiments, for each of at least one protected data
file, the processor can be configured by the data protection module to:
associate that protected data file with the protected file identifier by modifying
data associated with the encrypted data file to include the protected file

identifier.

[0030] In some embodiments, the processor can be configured by the
data protection module to, prior to providing the requesting process instance
with the level of access, authenticate the requesting process instance by:
determining an application program associated with the corresponding
process; determining that the requesting process instance includes additional
process instructions that do not correspond to the known application program;
and modifying the determined authorization level such that the providing the
requesting process instance with the level of access to the particular data file
includes denying the requesting process instance access to the particular

data file.

[0031] In some embodiments, the processor can be configured by the
data protection module to define the configuration map by: identifying a first
plurality of application programs permitted to access files in a plaintext format;
defining the first group of processes as the processes in the plurality of
processes that correspond to the first plurality of application programs;
identifying a second plurality of application programs permitted to access files

in a cypher-text format; and defining the second group of processes as the

-8-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

processes in the plurality of processes that correspond to the second plurality

of application programs.

[0032] In some embodiments, the configuration map can be fixed prior

to receiving the file access request.

[0033] In some embodiments, the processor can be configured by the
data protection module to: determine an initial process authorization level of
the corresponding process by accessing the configuration map, where the
initial authorization level indicates that the corresponding process is to be
denied access to the particular data file; display a denial notification through a
user application installed on the computer system; receive a maodification input
through the user application in response to the denial notification; and update
the configuration map based on the modification input to change the initial

authorization level of the corresponding process.

[0034] In some embodiments, the processor can be configured by the
data protection module to: determine an authorization type of the requesting
process instance based on a process authorization type of the corresponding
process by accessing the configuration map, the authorization type defining at
least one file operation that the requesting process instance is permitted to
perform; and provide the requesting process instance with the level of access
to the particular data file by permitting the requesting process instance to
perform operations on the particular data file in accordance with the
determined authorization type and preventing the requesting process from

performing operations excluded from the authorization type.

[0035] In some embodiments, the processor can be configured by the
data protection module to: receive a second file access request from a second
process instance operating on the computer system while the requesting
process instance has the level of access to the particular data file, where the
second file access request includes file identifying information corresponding
to the particular data file; determine that the authorization level of the process
corresponding to the second process instance is different from the level of

access provided to the process corresponding to the requesting process

-9-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

instance; and deny the second process instance access to the particular data

file.

[0036] In some embodiments, the processor can be configured by the
data protection module to: receive a second file access request from a second
process instance operating on the computer system while the requesting
process instance has the level of access to the particular data file, where the
second file access request includes file identifying information corresponding
to the particular data file; determine that the authorization level of the process
corresponding to the second process instance is different from the level of
access provided to the process corresponding to the requesting process
instance; generate a copy of the particular data file; and provide the second
process instance with the second level of access to the copy of the particular

data file.

[0037] In a broad aspect there is provided a computer program product
for managing access to a plurality of data files stored on at least one storage
module in a computer system, the computer program product can include a
non-transitory computer readable medium having computer-executable
instructions stored thereon, the instructions for configuring a processor to:
identify a plurality of protected data files in the plurality of data files stored on
the at least one storage module, where the plurality of data files stored on the
at least one storage module includes the plurality of protected data files and a
plurality of unprotected data files, and where each protected data file in the
plurality of protected data files is stored on the at least one storage module in
an encrypted format; associate each of the protected data files stored on the
at least one storage module with a protected file identifier; receive a file
access request from a requesting process instance operating on the computer
system, where the file access request includes file identifying information
corresponding to a particular data file in the plurality of data files; identify the
particular data file from the file identifying information; determine that the
particular data file is one of the protected data files by identifying the

associated protected file identifier; determine an authorization level of the

-10 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

requesting process instance based on a process authorization level of a
corresponding process determined by accessing a configuration map stored
on the at least one storage module that defines authorization levels of a
plurality of processes; and provide the requesting process instance with a
level of access to the particular data file based on the determined

authorization level of the requesting process instance.

[0038] In some embodiments, the computer program product can
further include instructions for configuring the processor to perform the
various embodiments of methods for managing access to a plurality of data

files described herein.

[0039] These and other aspects and features of various embodiments

will be described in greater detail below.

BRIEF DESCRIPTION OF DRAWINGS

[0040] For a better understanding of the described embodiments and to
show more clearly how they may be carried into effect, reference will now be

made, by way of example, to the accompanying drawings in which:

[0041] FIG. 1 shows a block diagram of a system for managing access

to a plurality of data files in accordance with an example embodiment;

[0042] FIG. 2 is a flow chart illustrating an example of a method for
managing access to a plurality of data files in accordance with an

embodiment;

[0043] FIG. 3 is a flow chart illustrating an example of method for

managing requests to read data files in accordance with an embodiment;

[0044] FIG 4 is a flow chart illustrating an example of method for
managing requests to write data to a data file in accordance with an

embodiment; and

-11 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[0045] FIG. 5 is a flow chart illustrating another example of a method
for managing access to a plurality of data files in accordance with an example

embodiment.

[0046] The drawings, described below, are provided for purposes of
illustration, and not of limitation, of the aspects and features of various
examples of embodiments described herein. For simplicity and clarity of
illustration, elements shown in the drawings have not necessarily been drawn
to scale. The dimensions of some of the elements may be exaggerated
relative to other elements for clarity. It will be appreciated that for simplicity
and clarity of illustration, where considered appropriate, reference numerals
may be repeated among the drawings to indicate corresponding or analogous

elements or steps.

DETAILED DESCRIPTION

[0047] Various systems or methods will be described below to provide
an example of an embodiment of the claimed subject matter. No embodiment
described below limits any claimed subject matter and any claimed subject
matter may cover methods or systems that differ from those described below.
The claimed subject matter is not limited to systems or methods having all of
the features of any one system or method described below or to features
common to multiple or all of the apparatuses or methods described below. It is
possible that a system or method described below is not an embodiment that
is recited in any claimed subject matter. Any subject matter disclosed in a
system or method described below that is not claimed in this document may
be the subject matter of another protective instrument, for example, a
continuing patent application, and the applicants, inventors or owners do not
intend to abandon, disclaim or dedicate to the public any such subject matter

by its disclosure in this document.

[0048] Furthermore, it will be appreciated that for simplicity and clarity
of illustration, where considered appropriate, reference numerals may be
repeated among the figures to indicate corresponding or analogous elements.

In addition, numerous specific details are set forth in order to provide a

-12 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

thorough understanding of the embodiments described herein. However, it will
be understood by those of ordinary skill in the art that the embodiments
described herein may be practiced without these specific details. In other
instances, well-known methods, procedures and components have not been
described in detail so as not to obscure the embodiments described herein.
Also, the drawings and the description is not to be considered as limiting the

scope of the embodiments described herein.

[0049] It should also be noted that, as used herein, the wording
"and/or" is intended to represent an inclusive-or. That is, "X and/or Y" is
intended to mean X or Y or both, for example. As a further example, "X, Y,

and/or Z" is intended to mean X or Y or Z or any combination thereof.

[0050] It should be noted that the term "application" is meant to be a
shorter form of application program, which refers to a program (i.e. a set of
computer instructions) that is designed to realize a specific function for an end
user. From an end user's perspective, a program in the computer system is
usually referred to as an application. For example, an end user may refer to
Microsoft Windows Word as an application of word processing, while in the
operating system Microsoft Windows Word is identified as the program

winword.exe.

[0051] Hereinafter, the term "application" is used to refer to an end
user's perspective of an application program. For example, an application
may refer to the program with which an end user interacts in order to set up
(i.e. define) a configuration map that authorizes one or more applications to
access encrypted data. The term "program" may be used to refer to the
operating system perspective of the program that executes on the processor
as one or more processes to provide the corresponding application. For
example, the term "program" may be used to describe the operation of the
kernel level file system filter in applying a configuration map to policing a

process that is executing a program.

[0052] Hacking techniques and malware programs are continually

evolving and adapting to security technologies. Even with appropriate security

-13 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

systems in place, malware may still bypass many existing security
technologies (e.g. because of human error) using known or unknown forms of
intrusion, such as phishing attacks. These attacks often exploit the weakest
links and moments (human and/or technological) in order to access computer
networks and systems. Once the malicious software is within the computer
network/system, many existing security technologies are not equipped to
prevent the malware from spreading and/or accessing important and sensitive

data files.

[0053] Embodiments described herein may provide methods, systems
and computer program products which can protect data files even after
malware has intruded into, and is operational on, a computer system or
network. Such embodiments may include methods and systems for managing
access to encrypted data files to protect against data breaches by

authenticating and authorizing process requesting data files.

[0054] Computer operating systems such as Windows, Linux, UNIX,
and Mac OS generally have two executing modes: a kernel mode and a user
mode. The kernel mode refers to a privileged status of the CPU when it
possesses the privilege to execute any instructions and reference any

memory addresses.

[0055] The user mode is a non-privileged status for user programs. In
user mode, the executing code (i.e. the currently executing user-mode
processes) cannot directly access hardware or reference memory addresses.
When the CPU operates in the user mode, all user mode processes may be
assumed to be untrusted and thus must request use of the kernel by means of

a system call.

[0056] In a computer system, when a process wants to access a file,
the process issues a request for obtaining a reference to this file (called a file
handle) to the file system. Depending on the properties of the request and
whether the requested file exists, a new file may be created or an existing file
may be opened. After a file handle to the file is obtained by the requesting

process, the process can write data into the file by passing the file handle and

-14 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

the data to be written to the file system. Similarly, the process reads data from
the file by passing the file handle and a location to hold the data to be read to
the file system. When the process no longer needs to access the file, the
process can issue a request to close the file handle to the file system. In
embodiments described herein, all requests for obtaining file handles, writing
and reading data, and closing file handles that are issued by a process (i.e. by
any non-kernel mode process) can be routed through, or intercepted by, the

data protection module before being transmitted to the file system.

[0057] Embodiments described herein may manage access to
encrypted data files using process-based access policing implemented by a
kernel level file system filter (also referred to herein as a data protection
module). In such embodiments, authorized processes can be granted access
to requested data files (e.g. encrypted data files) while unauthorized
processes can be denied access to the requested data files (i.e. prevented
from accessing the requested data files or having limited or reduced access to

the data file).

[0058] In some cases, a process may request a particular level of
access to a data file. For example, a first process may request access to the
plaintext content of the data file while a second process might only request
access to the cypher-text content of the data file. The data protection module
may then determine the authorized level of access for the requesting process.
Based on the determined authorized level of access, the data protection
module may provide the requesting process with the requested level of
access, a reduced level of access, or may even deny access to the requested

data file.

[0059] Embodiments described herein may provide data protection
methods employing process-based access policing to encrypted data. For
example, a data protection module may be provided for installation on a
computing device; the data protection module can be configured to determine
or identify a group or zone of protected data files (i.e. those data files to be

protected and encrypted); the data protection module can then operate to

-15-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

authenticate processes trying to write data to or read data from a protected
(and encrypted) data file; the data protection module may then provide a
permission level to the process. The permission level may define the level of
access the process has to the data file. For instance, an authenticated
process may be granted permission to access the data file in plaintext, an
authenticated process may be granted permission to access the cypher-text
of the data file, or the data protection module may deny access to an
unauthenticated process or even to an authenticated process (e.g. if the

process is not authorized to access the requested data file).

[0060] The data protection module may also define a permission type
for the requesting process. The permission type may define the types of
actions the process is authorized to perform in respect of the requested data
file. For example, the granted permission type may be one of the following
permission types: authorized/permitted to write data to the encrypted file,
authorized/permitted to read the encrypted file. The data protection module
can be configured to authenticate every process trying to write data to or read

data from a protected and encrypted file.

[0061] Embodiments described herein may provide a file management
scheme for encrypted data files in the kernel mode. In operation, the data
protection module (i.e. kernel level file system filter) can respond to all
requests from user-mode processes to access any and all data files in the
computer system. This data protection module may effectively provide file
management for data files within a protected data group or zone. In some
embodiments, the protected data files may be stored within a defined region
in the file directory of the computer system. Alternatively, the data protection
module may determine a directory tree that can be defined based on the
storage locations of the protected data files. The data protection module may
then implement a fast string search algorithm based on the tree structure of
the file system path strings to determine whether a requested data file is a

protected data file.

-16 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[0062] For example, the data protection module may initiate a search
tree when it is loaded in the kernel. The data protection module may then
define the search tree by detecting, for every data file stored on the storage
module(s) associated with the computer system, whether that data file is
encrypted. In some cases, the data protection module may define the search
tree dynamically, for instance when the data file is accessed by the kernel
filter for the first time, which may be in response to a request from any

process or application operating on the computer system.

[0063] Embodiments described herein may use protected file identifiers
to determine whether data files are protected (and also whether they are
encrypted in embodiments where all protected files are encrypted). In some
cases, the protected file identifier may be a file extension name appended to a
protected data file when that data file is stored on a storage module (e.g.
physical storage media such as a hard-disk or USB disk). The data protection
module may then determine that the file is a protected file by identifying the
presence of the protected file extension. In some cases, the protected file
extension may be invisible to user mode processes to provide transparent
operation to the user applications (e.g., an encrypted Windows Word file will
show only its original extension name such as .doc to a Word process).
Accordingly, the data protection module may define a file nhame mapping for
protected data files between the user-side file name without the protected file
extension and the filter-side file names that include the protected file

extension.

[0064] Additionally or alternatively, the data protection module may
embed a protected file identifier into the protected data file. For example, the
protected file identifier may be provided as an encryption token embedded
into the file header of an encrypted data file. The data protection module may
then access the encryption token in the file header to determine that a

particular data file is an encrypted data file.

[0065] Additionally or alternatively, the data protection module may

record a protected file identifier in the file attribute domain of the computer file

-17 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

system. The data protection module may record an encryption sign or
encryption indicator in the file attribute domain for encrypted data files. The
data protection module may then identify the sign in the file attributes of a
particular data file to determine that the particular data file is an encrypted

data file.

[0066] Embodiments described herein may provide a process-based
access policing system for encrypted data. The system may include one or
more storage modules that include physical storage media, a data protection
module (kernel level file system filter), and optionally a user-mode filter
companion application. A plurality of data files can be stored in the one or
more storage modules. At least some of the data files stored in the storage
modules may be encrypted (e.g. using random encryption keys). The data
protection module may provide an interface between the data files stored in
the computer system and various applications trying to access data stored in
those data files. The data protection module can perform various operations
related to the management of data files on the computer system, such as
encrypting data, decrypting data, policing application processes trying to
access data (e.g. intercepting requests for data from processes operating on
the computer system), authenticating processes, and authorizing processes to

access data.

[0067] In a general computation system, a process is the execution of a
collection of instructions, which are generally referred to as a program. In a
Unix-like system, a program is stored in the file system as a program file. The
program can be loaded through a system call in the computer kernel level to
initiate a process (i.e. initiate the execution of the program instructions). Once

initiated, the process can be identified by the kernel using a process ID.

[0068] In embodiments described herein, when a currently loaded
process attempts to access data stored in the computer system, the data
request may be intercepted by the data protection module. The data
protection module may then determine, based on information associated with

the requested file and the process requesting the file, whether to grant the

-18 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

requested access. The data protection module may apply an authentication
and authorization procedure to the process before the process is allowed to
access protected data (e.g. encrypted data) in the form of either plaintext or

cypher-text.

[0069] In some cases, the data protection module may implement a

data access management procedure that involve 3 stages:

1. Configuration Stage: An authorization level (e.g. an access permission
level) can be defined for each process operating, or that may
subsequently operate, on the computer system. In some cases, the
configuration map may only include processes that are authorized to
access protected data stored on the computer system. The
configuration map may also include an authorization type for each
authorized process. The configuration map can be provided to the data

protection module.

2. Process Authentication Stage: The data protection module may assess
the genuine identity of a process requesting data access. The data
protection module may also compare this identify information with the

processes identified on the configuration map.

3. Process Authorization Stage: The data protection module may
determine the authorization level (and in some cases the authorization
type) for a requesting process using the configuration map. The data
protection module may then permit that process to access the
requested data in accordance with the determined authorization level

and/or authorization type.

[0070] In some embodiments, the configuration map may identify
executing process instances based on the corresponding program.
Accordingly, each process executing an instance of the corresponding

program may then be provided with the same authorization level/type.

[0071] In some cases, the system may also include a user-mode filter

companion application. The system may provide a duplex channel between

-19 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

the user-mode filter companion application and the data protection module.
The user-mode filter companion application may permit a user of the
computer system to define and/or modify the authorization level and/or type

for one or more processes.

[0072] In some cases, the data protection module (or the configuration
map) may be configured to initially prevent all processes from accessing any
protected data and to report all blocked events to the user-mode filter
companion application. The user-mode filter companion application may
provide an indication (e.g. a pop up message) to the user for each blocked
event. The user-mode filter companion application may provide an interface
for the user to modify the permissions for processes executing the program

associated with the blocked event.

[0073] For example, the user-mode filter companion application may
provide a list of access permissions for the user to select from. The access
permission options may include, for example, (1) authorization to access
plaintext content of an encrypted data file; (2) authorization to access cypher-
text content of an encrypted data file; and (3) denying a process from
accessing any encrypted data file. The user-mode filter companion application
can then send the modified access permission to the data protection module
using the dedicated duplex channel. The data protection module may then

update the configuration map in response to the user selection.

[0074] In some embodiments, the data protection module may have an
initial configuration map that includes a first group of application programs
whose corresponding processes are allowed to access the plaintext content of
encrypted data, and a second group of application programs whose
corresponding processes are allowed to access the cypher-text content of
encrypted data. The end-user may then modify the configuration map using

the user-mode filter companion application.

[0075] In some embodiments, the configuration map may be defined
using link list data structures. A first link list data structure may include the

legitimate application programs whose corresponding processes are allowed

-20 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

to access the plaintext content of encrypted data. A second link list data
structure may include the legitimate application programs whose
corresponding processes are allowed to access the cypher-text content of
encrypted data, and a list of all program names that has access to cypher-text
content. All processes corresponding to programs not identified in these link

lists may then be denied access to encrypted data.

[0076] In some embodiments, the user-side application may be
omitted. For example, the configuration map can be fixed for the data
protection module installed on a particular computer system. In such cases,
local computer users may not be permitted to modify the configuration map.
This may be particularly useful in implementations where multiple users can

access the same data files (e.g. in server applications).

[0077] As mentioned, some embodiments described herein may
authenticate requesting processes prior to providing access to requested data
files. In such embodiments, the data protection module may make a system
call to map the process ID of the requesting process to its corresponding
program file path. The data protection module may use this program file path
mapping along with the digital signature of the program (stored in the

configuration map) to authenticate the requesting process.

[0078] In some cases, the data protection module may analyze the
requesting process to identify whether Trojan instructions are present in the
requesting process. As used herein, the term "Trojan" refers to a set of
instructions that is loaded into a process from a source other than the
corresponding program (i.e. the corresponding authentic program whose
digital signature can be used to identify that process) and protected data files,
where that set of instructions is executed as part of that process. If the data
protection module determines that Trojan instructions are present in the
requesting process, the authorization level of the requesting process can be
modified e.g. to deny access to the requested data files. This may prevent
unauthorized instructions from piggybacking on the authorization level of the

authentic process and in turn causing a data breach. For example, the data

-21 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

protection module may modify the authorization level for a requesting process
that would otherwise be permitted to access the plaintext content of encrypted

data to deny access to the requested data.

[0079] Various methods may be used to detect Trojan instructions. For
example, the data protection module may analyze a script language pattern
from an unprotected data file written in a particular script language which is to
be loaded into a process requesting access to files written in that particular
script language. That is, when a process attempts to access data from a data
file that is not one of the protected data files, the data protection module may
analyze the data file to determine if Trojan instructions are present (and would

be loaded into the requesting process).

[0080] For instance, consider an implementation in which the data
protection module operates to protect php scripts running on a web server,
where the php interpreter process is authorized to access a predefined list of
php files. In this implementation, when the php interpreter process tries to
access a file that is not one of the protected php script files, the data
protection module can analyze the file being accessed, detect a php script
pattern such as '<?php' and prevent the process from accessing the
unprotected data file if such a script pattern is found. Similar processes may
be applied to other types of scripting file protection, e.g., Ruby, Python, Perl,
Node-JS, Jscript, HTML, etc.

[0081] In some embodiments, the data protection module may
determine the presence of Trojan instructions by detecting a plug-in or add-in
in a process otherwise authorized to access protected data files (i.e. the
plaintext content of protected data files). For example, processes
corresponding to a Windows Word may be authorized to access a predefined
list of .doc files. In such cases, the data protection module may analyze all the
Windows Word plug-ins or add-ins and only authorize access for a subset of
the plug-ins or add-ins. For instance, the data protection module may only

authorize access for plug-ins authorized by the end user.

-22-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[0082] For instance, when data is to be encrypted or decrypted, the
encryption key and/or decryption key can be generated first. The generated
key can then be applied to encrypt/decrypt data in a buffer for file
reading/writing. In embodiments using symmetric encryption, the encryption

key and the corresponding decryption key are the same.

[0083] To generate an encryption key, the data protection module may
receive input data and generate/output an encryption key based on the input
data in a deterministic manner, i.e. the output (encryption key) can be the
same as long as input data is the same. Examples of methods for key
generation are described in greater details in the Applicant's US Patent
Application No. 15/178,680 filed on June 10, 2016 and entitled "Methods and
computer program products for encryption key generation and management"
which has now issued as US Patent No. 9,703,979, the entirety of which is
hereby incorporated by reference. In some examples, such as those
described in US Patent No. 9,703,979, the input data may include input
portions: a first portion that includes a unique identifier of a keystore seed and
a second portion that includes auxiliary information referred to as keying
material or keying information. Given a unique identifier of a keystore seed
and the keying material, the identifier may be used to determine a keystore
seed and then the keystore seed and the keying material can be combined to

generate an encryption key.

[0084] In some embodiments, the systems described herein may use
encryption key caching to facilitate the encryption and decryption of protected
data files. An encryption key hash mapping (also referred to as an encryption
key cache) between file identifiers and corresponding encryption keys can be
maintained in volatile memory of the computer system. This may allow the
data protection module to efficiently record or retrieve an encryption key
corresponding to a data file when that file is being encrypted or decrypted.
The data protection module may initiate the hash map when the data
protection module is loaded (e.g. on system start-up). The hash map may

then be defined by recording a file encryption pair that includes a file identifier

-23-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

and the corresponding encryption key at the time the encryption key is

generated for the file.

[0085] In some embodiments, encryption keys may be generated and
cached using a cooperative procedure between the user-mode filter
companion application and the data protection module using the duplex
channel therebetween. In response to receiving, from a process, a request for
a file handle to be used in generating a new encrypted data file, the data
protection module may retrieve new file properties for the new encrypted data
file (e.g. the location where the data file is to be generated in the file system)
and transmit the new file properties to the user-mode filter companion
application. The user-mode filter companion application can then use the new
file properties in determining a keystore seed (with a unique identifier),
generating (randomly) keying material, and generating an encryption key for
the new encrypted file using the determined keystore seed and the keying
material. The user-mode filter companion application can then transmit the
unique keystore seed identifier, the keying material, and the encryption key to
the data protection module. The data protection module can then store the
keying material together with the unique identifier of the selected keystore
seed for the new encrypted data file. The data protection module can also
store an encrypted file data pair in the encryption key cache that includes a

unique file identifier and the corresponding encryption key.

[0086] The data protection module may also access the encryption key
cache in response to receiving a request for obtaining a file handle to an
existing encrypted data file. The data protection module may identify the
unique file identifier from the requested file and attempt to retrieve the
corresponding encryption key in the encryption key cache using the unique
identifier. If the encryption key cache does not contain the encryption key for
the requested file, the data protection module can retrieve the keystore seed
identifier and keying material from the encrypted data file. The data protection
module can then transmit the keystore seed identifier and keying material to

the user-mode filter companion application.

-24-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[0087] The user-mode filter companion application can then determine
the keystore seed using the keystore seed identifier, generate the encryption
key for the encrypted data file using the keystore seed and the keying
material, and transmit the encryption key to the data protection module. The
data protection module can then store file key data representing the keying
material together with the unique identifier of the selected keystore seed for

the requested encrypted data file in the encryption key cache.

[0088] In some embodiments, encryption key generating and caching
may be performed in the absence of a user-mode filter companion application
(or without requiring communication with the user-mode application). In
response to a request for afile handle to a file that would result in creating a
new encrypted data file, the data protection module can determine a keystore
seed having a unique identifier. The data protection module may then
generate (randomly) keying material, generate an encryption key using the
keystore seed and the keying material, and then store the keying material
together with the keystore seed identifier in the encrypted data file. The data
protection module can then store file key data representing the keying
material together with the unique identifier of the selected keystore seed for

the encrypted data file in the encryption key cache.

[0089] In some embodiments, upon receiving a request for obtaining a
file handle to an existing encrypted data file, the data protection module may
determine a file identifier from the encrypted data file and attempt to retrieve
the corresponding encryption key in the encryption cache using the file
identifier. If the encryption key cache does not contain the encryption key for
the requested file, the data protection module may retrieve the keystore seed
identifier and keying material stored in the encrypted data file, retrieve the
keystore seed using the keystore seed identifier, and generate the encryption
key using the keystore seed and the keying material. The data protection
module can then store file key data representing the keying material together
with the unique identifier of the selected keystore seed for the requested data

file in the encryption key cache.

-25.-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[0090] In response to receiving a request for writing data into a file or
reading data from an encrypted data file, the data protection module can
retrieve a unique file identifier corresponding to the file, identify a
corresponding encryption key in the encryption key cache using the file
identifier, and use the encryption key to encrypt or decrypt data before the
data is written into the file system or read by the authorized process that

issued the request.

[0091] In some cases, after all file handles to a file are closed, the
encryption key for this file can be purged from the encryption key cache. The
encryption keys may be purged in response to the file handles being closed.
This may prevent the encryption keys from being accessible after authorized

processes are no longer accessing the data from encrypted data files.

[0092] In some embodiments, a single keystore seed (and its
corresponding keystore seed identifier) can be loaded into the volatile
memory of the computer system when the data protection module is loaded.
The data protection module may always use this keystore seed along with
random keying material to generate encryption keys for files to be created or
opened (i.e. to decrypt data before the data is read by an authorized process).
However, the keying material, which can be randomly generated for files to be
created or read from files to be opened, may be different for each file (and

may be generated for each file, or selected randomly for each file).

[0093] For example, consider encrypted files that may be accessed by
Microsoft SQL Servers. Typically, Microsoft SQL Servers create and/or
access a limited number of files, each of which is very large. In such a
scenario, one encryption key may be secure enough to encrypt all the files
accessed by the Microsoft SQL Servers. Whenever a Microsoft SQL Server
writes data into a file, the data protection module can use the single
encryption key in the encryption key cache to encrypt the data before the data
is written into the file system. Similarly, whenever the Microsoft SQL Servers

attempt to read data from a file, the data protection module can use the same

-26 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

encryption key in the encryption key cache to decrypt the data before the data

is read by Microsoft SQL Servers.

[0094] Embodiments described herein may also incorporate encryption
key generation and caching techniques. In general in a computer system, a
file cache refers to a defined portion of volatiie memory that is used to store
data from a data file. When the data file is initially accessed by a process,
some data from the data file can be stored in the file cache. Subsequently,
when other processes open a file handle to the file and read data from the file,
the data may be directly copied from the file cache, in which case no read
request need be sent to the file system. Analogously, when other processes
open a file handle to the file and write data into the file, the data may be
directly copied to the file cache, in which case no write request need be sent
to the file system. Data in a file cache is said to be "dirty" if the data has been
changed and has not yet been written into the non-volatilie memory (for
example hard disks) of the computer system. Periodically, or on demand, a
system request may be issued to flush dirty data from the file cache to the
non-volatile memory. In embodiments of the data access management
systems described herein, file cache management for encrypted data files can
be more complex as some processes may be authorized to access the
plaintext of the encrypted data file while other processes may only be
authorized to access the cipher-text of the encrypted data file. Accordingly,
embodiments described herein may monitor the data stored in the cache to
ensure that requesting processes are not provided access to data in the file

cache for which they are not authorized.

[0095] The data protection module can track open file handles for
respective data files. A process is said to be holding an open file handle to a
data file if the process has not closed the file handle after obtaining the file
handle. The data protection module may separately track file handles being
held by processes authorized to access the plaintext of an encrypted data file
and file handles being held by processes authorized to access only the

cypher-text of the encrypted data file. For example, to track open file handles

-27 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

for an encrypted data file, the data protection module may assign the data file

a pair of file cache counters.

[0096] File cache counters can be assigned to a file if at least one open
file handle to the file is being held by some process. A first cache counter can
track the numbers of open file handles to the file that are being held by
processes authorized to access the plaintext of an encrypted data file. A
second cache counter can track the numbers of open file handles to the file
that are being held by processes authorized to access the cypher-text of an
encrypted data file. An exemplary embodiment of a data structure to be used
in the open file handle tracking may be constructed as a hash map between a
unique file identifier and a pair of integers corresponding to the file cache
counters for that file. In some cases, when the sum of the values of the two
counters assigned to the encrypted data file increases from 0 to 1, the data
protection module can issue a request to the system to flush all dirty data of
the file to the non-volatile memory and then purge all data of the file that is

stored in the file cache.

[0097] In response to a request from a process for a file handle to an
encrypted data file, the data protection module may determine whether the
process is authorized to access the plaintext of the encrypted data file or the
cypher-text of the encrypted data file. The data protection module may also
determine if there are any open file handles to the file. If there are open file
handles to the file, the data protection module may determine the
authorization level of the process or processes holding the open file handle. I
the authorization levels are the same, the requesting process can be
providing access to the encrypted data file in accordance with its authorization

level.

[0098] In some cases, if the authorization level of the requesting
process is different from the authorization level of the process or processes
holding the open file handle, the requesting process may be denied access to
the data file. For example, if the requesting process is authorized to access

the plaintext content of the file, but a file handle is being held by a first

-28 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

process authorized only to access the cypher-text, the requesting process
may be denied access to the requested file. This may prevent the first process
from accessing the plaintext of the file if it were loaded into the cache.
Similarly, if the requesting process is only authorized to access the cypher-
text content of the file, but a file handle is being held by a first process
authorized to access the plaintext, the requesting process may be denied

access to the requested file.

[0099] In some cases, the data protection module may generate a
shadow copy of a requested encrypted data file. In some cases, the data
protection module may generate shadow copies for each of the encrypted
data files stored on the computer system (e.g. when there is sufficient storage
capacity). In response to a request to obtain a file handle to the encrypted
data file, the data protection module can provide the requesting process with
the file handle to the encrypted data file if the process is authorized to access
the plaintext content of the file, and provide the requesting process with the
file handle to the shadow copy if the process is only authorized to access the
cypher-text content of the file (or vice-versa). This may ensure that processes
authorized to access the plaintext content of the file and processes only
authorized to access the cypher-text content of the file may always access
different copies of the file, and therefore different data in the file cache. The
data protection module may synchronize the encrypted data file and the
shadow periodically, on demand, or in response to an operation on the file
(such as a write operation) to ensure that the encrypted data file and its

shadow copy remain identical.

[01 00] Referring now to FIG. 1, shown therein is an example
embodiment of a system 100 that may be used to manage access to a
plurality of data files. System 100 is an example of a system that may conduct
process-based access policing to encrypted data. System 100 may be
implemented as part of a computer system that includes a processor, volatile
memory and non-volatile storage memory such as storage component 103.

The system 100 may include various other components not shown in FIG. 1,

-29 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

such as a network interface, input devices such as a keyboard or trackpad,

and output devices such as a display and speakers.

[01 01] In some embodiments, system 100 may be implemented to
manage access to data files stored on one or more server storage
components 103 or end-user computer storage components 103. The
physical storage 103 may refer to one or more storage modules using various
forms of storage media where files can be stored, such as hard-disks,

network-disks, USB drive, CD drive, SD cards, etc.

[01 02] In general, the system 100 can manage access to protected
data files that are user-generated as contrasted with the protected code from
the kernel. That is, the protected data files (and encrypted data files) referred
to herein correspond to user generated data that is being protected, rather

than system files that are used to perform the operations of the kernel.

[01 03] In some cases, the protected data files may always be stored on
the storage component(s) 103 in an encrypted format. That is, whenever a
protected data file is stored long-term, it may be stored in the encrypted
format. The plaintext content of the protected data file may only be stored
temporarily in volatile memory of the system 100, such as in a file cache,
when being accessed by an authorized process. The plaintext content of the
protected data files may then be flushed from the cache once it is no longer
being accessed by the authorized process. This can minimize the period over

which the plaintext content of the protected data file is available.

[01 04] The system 100 may be configured to prevent data breaches
and/or known or unknown forms of attacks such as phishing and ransomware
attacks. The system 100 may also be integrated with various types of server
systems such as SharePoint, Exchange, SQL, Perforce, Web servers, etc. to
manage access to the encrypted and protected data transparently. In other
cases, system 100 may manage access to data files at the file system level

on an endpoint computer.

-30-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[01 05] In general, the kernel 120 of a computer system includes critical
codes that are loaded into a protected area of memory. These critical codes
are used for resource management such as memory and CPU, device
management such as file management for hard-disks, and system call

management.

[01 06] The data protection module, shown here as kernel level file
system filter 102, can be integrated into the file management system that
manages data files stored in physical storage component 103. For example,
the data protection module can be installed as a plug-in to the kernel 120. The
filter 102 can receive and handle file access requests from all user mode
processes of all user mode applications 101A-101 D, and perform process

authentication and authorization, among other functions.

[01 07] The user space 110 in a computer system generally refers to all
processes that are not in the kernel. These processes may have limited
access to system resources. Specifically, all user mode processes may be
required to issue system calls to the kernel in order to access system

resources such as file reading/writing.

[01 08] Each application 101 may have corresponding processes that
have different authorization levels in the system 100. For example, processes
corresponding to applications 101A may be authorized to access the plaintext
of a particular encrypted data file, processes corresponding to applications
101B may be authorized to access only the cypher-text of a particular
encrypted data file, and processes corresponding to applications 101C may

not be authorized to access a particular encrypted data file.

[01 09] In some cases, the authorization level for a particular application
101A (and its corresponding processes) may depend on the file being
requested. For example, processes corresponding to the Windows Word
application may be authorized to access the plaintext of a .doc file, processes
corresponding to Acrobat Reader/Writer applications may be authorized to
access the plaintext of a .pdf file, processes corresponding to the Notepad

application may be authorized to access the plaintext of a text file, processes

-31 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

corresponding to Virtual Studio applications may be authorized to access the

plaintext of C/C++ files, and so on.

[01 10] Examples of the second type of process include file
synchronization applications 101B such as Dropbox, OneDrive, GoogleDrive,
etc. To prevent the plaintext content of an encrypted data file from being
transmitted to a cloud, these file synchronization applications 101B may only
be authorized to access the cypher-text content of protected data files so that

only the cypher-text of an encrypted data file is synchronized to the cloud.

[01 11] The third type of processes (corresponding to applications
101C) can include all processes blocked from accessing any encrypted data
files. These may include processes that have not been examined by the end

user or by an administrator of a server system.

[01 12] In some embodiments, a user-mode filter companion application
101 D may be used to provide a method for an end user to configure the
kernel level file system filter 102. This may be particularly useful when system
100 is used to provide data protection on an endpoint computer. Additionally
or alternatively, the user-mode filter companion application 101D may
communicate with the file system filter 102 to log file access information for

data use monitoring and governance.

[01 13] In this case, a communication channel can be established
between the user-mode filter companion application 101 D and the kernel level
file system filter 102. The file system filter 102 can collect/report information
such as processes declined access to an encrypted data file back to the
application 101 D, which can in turn present an interface for the end user to
change the access permission for processes, if so desired. In such an
embodiment when an application 101 D is employed for configuring the file
system filter 102, the application 101 D may not require authorized to access
any protected files, because the application 101 D may not need to access

data from any encrypted data file.

-32-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[01 14] In some embodiments where the system 100 is employed for
data protection on a server computer, the file system filter 102 may be
configured with a fixed configuration map. Accordingly, there may be no need
for a user-mode filter companion application 101 D and user-mode application

101D may be omitted.

[01 15] In a server computer the kernel level file system filter 102 may
be pre-configured based on service information such as which processes are
authorized to access particular encrypted data files. For example, a web
developer may implement system 100 to protect php source code while
deploying a web service on a public web host. In this case, a web server may
call a php interpreter to execute php codes. Thus, the php interpreter can be
granted access to plain-text content of all encrypted php files, while all other
processes can be declined access to any encrypted php files. This
configuration may be predefined by the web developer and hardcoded into the

kernel level file system filter 102.

[01 16] Referring now to FIG. 2, shown therein is a flowchart illustrating
an example method 200 for managing access to a plurality of data files in
accordance with an example embodiment. Method 200 is an example of a
method for managing access to data files stored on one or more storage

modules in a computer system such as system 100.

[01 17] The steps of method 200 may be implemented using a data
protection module 102 installed on the computer system 100. That is, the data
protection module 102 may configure the processor of the computer system

100 to perform the steps described in method 200.

[01 18] At 210, the data protection module can identify a plurality of
protected data files in the data files stored on the at least one storage module.
The data files stored on the storage module(s) can include both protected
data files and unprotected data files. Each protected data file may be stored
on the storage module(s) in an encrypted data format. This may prevent the
data in the protected data files from being breached unless it is decrypted

using the appropriate decryption key. In some cases, the data protection

-33-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

module may initially identify the protected data files by identifying encrypted
data files stored on the computer system. The data protection module may
also identify the protected data files based on user input identifying specific

data files to be protected.

[01 19] At 220, the data protection module may associate each of the
protected data files with a protected file identifier. The data protection module
may subsequently distinguish the protected data files from the unprotected

data files using the protected file identifiers.

[0120] In some cases, the protected file identifier may be in the form of
a file storage location. For example, the data protection module may
associate a protected file with a protected file identifier by storing that
protected data file in a file location within a predefined file directory area that

corresponds to a protected file area.

[0121] In other cases, the protected file identifier may be associated
with a protected file by modifying data associated with the protected data file.
For example, the protected file identifier may be a protected file extension
appended to the protected data file. Additionally or alternatively, the protected
file identifier may be embedded into the file header data and/or included as a

file attribute associated with the protected data file.

[0122] At 230, a file access request can be received from a requesting
process instance operating on the computer system. In general, the
requesting process can be a process other than a kernel mode process, such
as a user-mode process. The data protection module may receive the file
access request prior to its execution e.g. by intercepting all user-mode file
access requests. The file access request can include identifying information
corresponding to a particular data file whose data content is requested by the

requesting process.

[0123] At 240, the data protection module can identify the particular
data file using the file identifying information. The data protection module can

also determine whether the particular data file is a protected data file or an

-34-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

unprotected data file. For example, the data protection module may identify

protected data files by identifying the associated protected file identifier.

[0124] At 250, the data protection module can determine an
authorization level of the requesting process instance. The authorization level
may indicate a level of access to the requested file that is permitted for the

requesting process (e.g. no access, cypher-text access, or plaintext access).

[0125] The data protection module can determine the authorization
level by accessing a configuration map stored in the computer system. The
configuration map can define authorization level for a plurality of processes
that may include the process corresponding to the requesting process
instance. In some cases, the corresponding process may not be included on
the configuration map (or may not have an authorization level indicated for the
particular file). This may indicate that the requesting process instance is not

authorized to access the requested file.

[0126] The configuration map can define the authorization levels for the
processes based on characteristics of the processes themselves. That is, the
authorization level of a process instance is determined based on the
authorization level of its corresponding process (e.g. and not the specific user

accessing the process).

[0127] The configuration map can be defined to include a first group of
processes having a plaintext authorization level (either generally or for
specific data files) and a second group of processes having a cypher-text
authorization level (either generally or for specific data files). In some cases,
the configuration map may include a third group of processes whose
authorization level indicates that no access is to be provided (either generally
or for specific data files). Alternatively, the third group of processes may be
omitted from the configuration map and this omission may be used to

determine that access should be denied.

[0128] In some cases, the configuration map may be fixed prior to

receiving a file access request. This may be desirable in enterprise or server-

-35-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

based implementations where processes from multiple end-users may

request data from the same data files.

[0129] Alternatively, the configuration map may be modifiable by the
data protection module. The data protection module may determine (i.e. the
configuration map may initially define) an initial authorization level of the
process corresponding to the requesting process instance. If the initial
authorization level indicates that access is to be denied, the data protection
module may display a denial notification to a user through a companion user
application installed on the computer system. The user may then provide an
input through the user application modifying the authorization level for the
corresponding process. The data protection module may then update the

configuration map based on the modification input.

[01 30] In some cases, the data protection module may authenticate a
requesting process instance prior to providing access to the requesting data
file. For instance, the configuration map may include a digital signature of the
program that is supposed to correspond to the requesting process instance.
The data protection module may access this digital signature information to

ensure that the requesting process instance is authentic.

[01 31] In some cases, the data protection module may also determine
whether additional Trojan instructions are present in the requesting process
instance. The data protection module may do so by determining that the
requesting process instance includes additional process instructions that do
not correspond to the known application program. The data protection module
may then modify the authorization level if Trojan instructions are detected.
This may deny access to the requested data for an otherwise authorized
process. This may prevent the Trojan instructions from piggybacking onto the

access granted to the authentic process.

[01 32] At 260, the requesting process instance can be provided with a
level of access to the requested data file based on the authorization level of

the corresponding process determined at 250.

-36 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[01 33] For example, the data protection module may determine that the
corresponding process has a plaintext authorization level for the requested
data file. The requesting process instance can be provided with plaintext
access to the data file by decrypting the particular data file to provide a
decrypted data file, and then temporarily storing the decrypted data file in the
computer system cache. The requesting process instance may then access

the decrypted data in the cache.

[01 34] In some cases, the authorization level of the corresponding
process may be determined to be a cypher-text authorization level. The
requesting process instance may then be provided with access to the

particular data file in the encrypted format.

[01 35] In some cases, providing the requesting process instance with a
level of access may include denying access to the requested data file if the
corresponding process is not authorized. For example, the authorization level
of the corresponding process for the particular data file may be determined to
be neither a plaintext authorization level nor a cypher-text authorization level.
Providing the requesting process instance with the level of access to the
particular data file may then include denying the requesting process instance

access to the particular data file.

[01 36] In some cases, the data protection module may also determine
an authorization type for the requesting process instance. For instance, the
configuration map may define authorization types for one or more processes.
The authorization type may define one or more file operations (e.g. read,
write, read/write) that the requesting process is permitted to perform in
respect of the requested data file. Providing the requesting process instance
with access to the requested data may then include permitting the requesting
process instance to perform the file operations associated with the determined
authorization type and preventing the requesting process instance from

performing operations excluded from the authorization type.

[01 37] In some cases, protected data files may only be stored on the

system in an encrypted format. That is, the protected data files may only be

-37 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

decrypted temporarily in the computer system cache. Once an authorized
process no longer requires access to the decrypted data file, the data
protection module may flush the decrypted data from the cache to prevent

unauthorized access.

[01 38] In some cases, the data protection module may receive a
second file access request for a particular data file. The second file access
request may be received from a second process operating on the computer
system while a first requesting process is being provided a first level of access
to the particular data file. The data protection module may then determine the
authorization level of the second process in a manner analogous to the first

process.

[01 39] In some cases, if the data protection module determines that the
authorization level of the second process is different from the level of access
provided to the first process, the second process can be denied access to the

particular data file.

[0140] In other cases, if the data protection module determines that the
authorization level of the second process is different from the level of access
provided to the first process, the data protection module may generate a copy
of the particular data file being requested. The data protection module may
then provide the second process with the corresponding level of access to the

copy of the data file.

[0141] Referring now to FIG 3, shown therein is an example method
300 for managing requests to read data from a data file stored on system 100.
Method 300 may be implemented using the data protection module 102, for

example, as a sub-process in implementations of method 200.

[0142] At 302, a read request is received from a requesting process P
having a corresponding process ID. The read request also includes file
identifying information enabling the data protection module to identify the data
file F being requested (e.g. by identifying the file path of the data file). The

data protection module may also identify requested data D from the file F that

-38 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

is being requested by process P. In the example shown in FIG. 3, the
requested process P may be any process currently executing in the computer
system while the requested file F may be any data file stored on a storage

module 103 in the computer system 100.

[0143] In general, the output from method 300 may be one of a valid
data buffer (containing either the plaintext content of the target file or the
cypher-text content of the target file) and a denial of access (And potentially a
user indication of denial) depending on the authorization level of the process

P, and whether the file F is a protected data file.

[0144] At 304, the data protection module can determine if the
requested file is a protected data file. In some cases, the data protection
module may determine if the requested file is protected based on the file path.
This may be the case where all encrypted data files are stored in a known
"protected" directory location. Accordingly, a protected file may be identified
by determining that the file path of the requested file is within the "protected"

directory location.

[0145] Additionally or alternatively, the data protection module may
identify modifications to data associated with the requested file. For instance,
a protected file extension may be appended to each protected data file and

used to identify the protected data files.

[0146] Additionally or alternatively, a protected token may be stored in
the file header or in any side stream that accompanies a protected file in the
file system. The data protection module may then identify the presence of the
protected token to determine that the requested file is a protected file. In some
cases, particularly when all protected files have been previously identified, the
data protection module may store the file paths of all protected files. The data
protection module may then use the file path of the requested file to determine

if it is a protected file.

[0147] If it is determined that the requested file is a protected file (i.e.
when F is in the "protected zone") method 300 proceeds to step 306. At 306,

-39 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

the data protection module can determine if the requesting process is
authorized to access the plaintext content of the requested file by accessing
the configuration map 330. If the requesting process is authorized, the data
protection module can decrypt the file F and return the plaintext content of the

requested data to the requesting process at 308.

[0148] To decrypt the requested file, the data protection module may
example encryption key generation methods such as those described herein
(and in US Patent Application No. 15/178,680) to obtain the file encryption key
and decrypt the file. The obtained plaintext content can then be returned back

to the calling process through a data buffer D.

[0149] As mentioned herein above, a file encryption key may be
cached in some embodiments. As such, the encryption key generation
method may be employed only once when an encrypted data file is opened to
obtain the encryption key, which can be used many times for file reading

operations. This may facilitate multiple read operations for the same data file.

[01 50] lf the data protection module determines at 306 that the
requesting process is not authorized to access the plaintext content, the
method can proceed to 310. At 310, the data protection module can
determine if the requesting process is authorized to access the cypher-text
content of the requested file by accessing the configuration map 330. If the
requesting process is authorized to access the cypher-text, the data
protection module can return the requested data from the file F to the

requesting process at 312 in its encrypted format.

[01 51] If the data protection module determines at 310 that the
requesting process is not authorized to access the cypher-text content, the
method can deny the requesting process access to the requested file at 314.
In some cases (e.g. where a user-side companion application is used), the
data protection module can provide an indication to the user that the
requesting process has been denied access. The user may, in some cases,
be permitted to modify the authorization level of the requesting process using

the user-side companion application.

-40 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[01 52] This may enable the configuration map to be updated in real-
time or on the fly through a channel between the data protection module and
the user-mode filter companion application. In other cases, the configuration
map may be fixed and hardcoded, e.g., when all programs to be authorized to

access the encrypted data are known in the system.

[01 53] In some cases, prior to determining the authorization level of the
requesting process, the data protection module may authenticate the
requesting process to ensure that it has not been corrupted by any malware
instructions, such as Trojans. The requesting process P can be first identified
through the process authentication procedure described in embodiments
herein, for instance using a digital signature of an authentic process that may
be stored in the configuration map. Once the requesting process is
authenticated, the data protection module may then determine the
authorization level for that process. If the process is determined to not be
authentic, or to include Trojan instructions, its authorization level can be

modified to deny access to the requested data.

[01 54] In some cases, if the requested file is not a protected file (i.e. F
is not in the protected zone) the data protection module may return the
requested file content back to the requesting process. In some cases,
however, such as when the requesting process is determined to be authorized
to access the plaintext of other protected files (as at 318), the data protection
module may analyze the unprotected file (as at 320) before providing the
requesting process with access to the unprotected file at 324 if the
unprotected file does not contain malicious code. This may prevent the
requesting process from being corrupted, e.g. by Trojans that may be
contained within the unprotected process. For instance, the data protection
module deny a requesting process access to a requested file at 322, if that
requesting process is authorized to access the plaintext content of encrypted
data and the data protection module determines at 320 that the requested file

is an unencrypted data file that contains Trojan codes.

41 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[01 55] As a skilled reader will appreciate, the order of the steps shown
in method 300 may be varied in different embodiments. For instance,
determining the authorization level of a requesting process may occur prior to
determining whether the requested file is a protected file. In general, the data
protection module may assess two criteria (process authorization level and file
protection status) and manage the various combinations of those criteria.
Method 300 is one example of a method for managing data access using

those criteria.

[01 56] Referring now to FIG 4, shown therein is an example method
400 for managing requests from a process P to write data D to a requested
file F. Method 400 is an example of process that may be implemented by data

protection module 102 in system 100.

[01 57] At 402 a request can be received from a requesting process to
write data to a requested file. The request can include file identifying
information of the requested file. At 404, the data protection module can
determine whether the requested file is a protected file. In general, method
400 may determine if the requested file is protected in a manner analogous to
methods 200 and 300 described herein above. If the file is unprotected, then
method 400 may proceed to 418 where the process is permitted to write the
data to the unprotected file. The updated file may then be provided to the

requesting process.

[01 58] Method 400 may also perform process authentication and
authorization for reading and writing operations the same manner as
described herein above, e.g. with reference to methods 200 and 300. As with
method 300, method 400 can determine at 406 whether the requesting
process is authorized to access plaintext content of the protected data file

using the configuration map 330.

[01 59] If the process is authorized for plaintext access, the data
protection module can permit the data from the process to be encrypted and
stored as part of the protected file that is stored on the storage component

103 in cypher-text. If the process is not authorized for plaintext access, but is

-42 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

determined at 410 to be authorized for cypher-text access, the data protection
module can permit the requesting process to receive the file in cypher-text
format and write data to that file in cypher-text at 412. If the process is also
not authorized for cypher-text access, the data protection module can deny

access at 414 and may provide an indication of the denial at 416.

[0160] In other words, the authorization of a process for the plaintext
content of a file can result in both reading and writing operations by this
process being performed using data in a plaintext format (this process can
obtain plaintext from the reading operation and send out plaintext for writing).
In contrast, the authorization of a process for only the cypher-text content of
the file can result in both reading and writing operations by this process being
performed using data in the cypher-text format (this process can obtain

cypher-text from the reading operation and send out cypher-text for writing).

[0161] Method 400 differs from method 300 in that the data D coming
from process P at 402 is to be written to a data file F while in method 300 data
D is to be read from file F and returned to process P. In some cases, the data
D in method 400 may have been in the encrypted format, e.g., when P is a
process that is authorized to access cypher text content of an encrypted data
file and obtains D by reading it from an encrypted data file. One example may
be a cloud application that is synchronizing some encrypted data files. In this
case, the data D from the cloud application may be in the encrypted format

and can be written to the disk directly.

When a process that is authorized to access plaintext content requests to
write to a protected data file, the data protection module may use the various
methods described herein for generating encryption keys for existing
encrypted data files (if the file already exists) or methods for generating
encryption keys for newly created encrypted data files (if the file does not
already exist). The obtained key can then be used to encrypt the input data D
from the process P and the resulting cypher-text can be written to the file F in

the physical storage module 103.

-43 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[0162] In some cases, to enhance the file writing efficiency, the file
encryption key may be cached as described herein above. As such, the
encryption key generation method may be employed only once when an
encrypted data file is opened or is newly created to obtain the encryption key,

which can be used repeatedly for write operations.

[0163] The data protection module may also implement encrypted-file
cache management methods described herein above to manage cache
conflicts and potential cache conflicts. For example, when a process that is
authorized to access the plaintext content of a protected file accesses that
encrypted data file, the plaintext content of that file may be stored in the file
cache. Alternatively, when a process that is authorized to access the cypher-
text content of a protected file accesses that encrypted data file, the file cache
may be filed with the cypher-text content of the encrypted data file.
Accordingly, cache management techniques (e.g. using counters and/or
shadow copies) may be used to manage and prevent unauthorized processes

from accessing data associated with encrypted data files.

[0164] In some cases, the data protection module may be implemented
using a two-layer design. For example, the process-based access policing
system including the encrypted-file management, process authentication and
authorization and Trojan detection for authorized processes, may be
implemented on a first upper layer, while encryption and decryption functions
including the encryption key generating and caching and the encrypted-file
cache management may be implemented on a second lower layer below the

top layer.

[0165] Furthermore, a skilled reader will appreciate that the
combination of functionalities implemented in a particular data protection
module may depend on factors such as the kind of data files to be encrypted
and protected, the kind of processes to be authorized for various authorization
levels, the type of computer system, e.g., a server computer or an endpoint

computer, and so forth.

-44 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

[0166] For example, the data protection module may be configured to
protect a specific subset of files (a plurality of protected files) stored on a
server computer and only allow certain processes to access those protected
files. Referring now to FIG 5, shown therein is an example of a method 500
that may be implemented by a data protection module to protected data files
stored on a server computer. For example, method 500 may be implemented
to provide source code protection for securing scripting code files on a server
computer. Such an implementation may be provided in connection with
deploying a service using a scripting language to a public host computer or
untrusted host computer, where it can be desired for the scripting source code

files to be protected.

[0167] In some cases, the data protection module may only handle file
read operations because the protected files may have been encrypted in
advance and need not be changed when they are used in the server system.
Thus, the data protection module may not be required to manage file writing

operations.

[0168] Additionally or alternatively, the processes to be authorized may
have been determined in advance and there may be no need to communicate
with any user-mode filter companion application, either to report some denial
of access or to update a configuration map. That is, the configuration map

may be fixed.

[0169] The data protection module may respond to each request for file
access received at 502. For example, the request may include a process ID
P, file identifying information for a file F including the corresponding file path,
and a data buffer D as one possible output from the data protection module to

the requesting process.

[01 70] At 504, the data protection module may determine if the
requested file F is a protected data file. In an example system for protecting
scripting source code files, all fles may be encrypted and stored in a fixed
directory. Accordingly, the data protection module may determine that the

requested file is a protected file by determining if the requested file is stored

-45-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

within this fixed directory. In another case where encrypted data file may be
stored in various locations, yet the number of files is small, another method for
detecting whether the file F is a protected file can be to hardcode the fixed file
paths of all source code files in a list in the data protection module and

determine if F is in the list or not.

[0171] If the requested file is a protected file, and the data protection
module determines at 506 that the requesting process is authorized to access
the plaintext content, the data protection module may decrypt the file F and
return the plaintext content to the requesting process at 508. If the requesting
process is hot authorized to access the plaintext content of the requested file,

the data protection module can deny access to the requesting file at 510.

[0172] When the requested file F is not a protected data file, the data
protection module may either conduct a Trojan detection at 514 if the
requesting process is determined at 512 to be authorized to access the
plaintext content of encrypted data files. If Trojan instructions are detected at
514, access to the unprotected file can be denied at 516. If a Trojan is not
detected and/or the requesting process is not authorized to access the
plaintext content of encrypted data files, the data protection module may

permit the requesting process to access the unprotected file.

[01 73] In embodiments of a scripting source code files protection
system, only the script interpreter may be authorized to access the plaintext
content of any encrypted data files. Accordingly, the interpreter program path
and its digital signature may be hardcoded in the data protection module to

facilitate process authentication and authorization.

[01 74] The Trojan detection methods, as described in embodiments
herein, can be applied to prevent an authorized process P from executing any
script codes that are not encrypted, so that no such script code may be used
to abuse the authorization level of process P to breach the plaintext content of
protected files. In this scenario, all legitimate script code files can have been
encrypted and stored as protected files. The data protection module can then

prevent the interpreter from accessing any other script code files to prevent

-46 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

the execution of harmful script codes that may jeopardize the security of the

encrypted data files.

[01 75] Another example implementation may be to protect data such
as SQL data stored on a server computer. For example, an implementation

for an SQL file protection system may include the following functionalities:

e The data protection module may manage file write operations for
encrypted data files to enable a SQL files to be modified and re-
encrypted. Accordingly, methods of encryption key generation for
existing encrypted data files and encryption key generation for newly

created encrypted data files can be employed.

« The data protection module may also secure all protected files in a
defined directory location or locations. This may be facilitated because
in a SQL server a given location is usually specified for storing SQL

data files.

The data protection module may also hardcode process authentication
and authorization data to authorize only two processes to access
plaintext content of data files, i.e., the SQL process to access the
plaintext content and a backup service process to access the cypher-
text content. As there may be switches between plaintext and cypher-
text in the file cache, encrypted-file cache management methods
described herein can be used. If the process authentication and
authorization data is hardcoded, the configuration map can be fixed so
there is no need to include functionality to update the configuration
map. Nonetheless, a channel between the data protection module and
a user-mode filter companion application may still be included to report
the denial of access events. This may facilitate recording illegal

attempts in a log file for data use monitoring and auditing.

[01 76] It will be understood by persons skilled in the art that a system
similar to the above one may be employed to protect data on a Share-point

server, a Perforce server, a mail server such as Exchange, etc. In these

-47 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

servers, specific processes can be authorized to access the plaintext content
of some specific data files. Accordingly, implementations similar to that

described for the SQL server may be used.

[01 77] An example implementation of a data protection system for an
endpoint computer as described herein may include the following

functionalities:

e The data protection module may implement both file reading
management and file writing management methods for encrypted data
files. Accordingly, methods of encryption key generation for existing
encrypted data files and encryption key generation for newly created

encrypted data files can be employed.

» The data protection module may also allow end users to store their
protected files in any locations, rather than to be constrained in certain
specific folders. The data protection module may then generate a

directory tree to identify protected data files.

* The data protection module may permit the configuration map to be
updated and/or modified by a user. For instance, a duplex channel
between the data protection module and a user-mode filter companion
application can be provided to allow end users to change the

configuration map.

 The data protection module may permit one process to access the
plaintext content of an encrypted data file at one time and another
process to access the cypher-text content of this encrypted data file at
another time. Accordingly, the data protection module may manage the
file cache, using encrypted-file cache management methods described
herein above. For example, the end user may have encrypted data files
in a cloud application, such as Dropbox, GoogleDrive, or OneDrive. For
those encrypted data files, their cypher-text accessibility can be
authorized for the cloud application so that the cloud application can

synchronize the encrypted data files to the cloud in an encrypted

- 48 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

format. Plaintext content authorization can be granted to other
applications such as those used to handle those types of files locally
(e.g. Acrobat for a pdf file) so that the end user can interact with those

files as usual.

[01 78] The embodiments described herein may be implemented as
systems, methods, devices and computer program products that provide data

protection using process-based encrypted data access policing.

[01 79] Various embodiments of methods for data protection have been
described. These include encrypted-file management, process authentication
and authorization, Trojan detection for authorized processes, encryption key
generation and caching, and encrypted-file cache management. Based on
these methods, some process-based encrypted data policing systems are
described for data protection against data breaches and known or unknown
attacks including ransomware or phishing attacks on either a server system or

an endpoint computer.

[01 80] A number of example embodiments have been described
herein. However, it will be understood by persons skilled in the art that other
variations and modifications may be made without departing from the scope of

the embodiments as defined in the claims appended hereto.

-49-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

We claim:

1. A method for managing access to a plurality of data files stored on at least
one storage module in a computer system using a data protection module
installed on the computer system, the method comprising:

identifying, by the data protection module, a plurality of protected data
files in the plurality of data files stored on the at least one storage module,
wherein the plurality of data files stored on the at least one storage module
includes the plurality of protected data files and a plurality of unprotected data
files, and wherein each protected data file in the plurality of protected data
files is stored on the at least one storage module in an encrypted format;

associating each of the protected data files stored on the at least one
storage module with a protected file identifier;

receiving, by the data protection module, a file access request from a
requesting process instance operating on the computer system, wherein the
file access request includes file identifying information corresponding to a
particular data file in the plurality of data files;

identifying, by the data protection module, the particular data file from
the file identifying information;

determining, by the data protection module, that the particular data file
is one of the protected data files by identifying the associated protected file
identifier;

determining, by the data protection module, an authorization level of
the requesting process instance based on a process authorization level of a
corresponding process determined by accessing a configuration map stored
on the at least one storage module that defines authorization levels of a
plurality of processes; and

providing the requesting process instance with a level of access to the
particular data file based on the determined authorization level of the

requesting process instance.

-50-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

2. The method of claims 1, wherein the configuration map defines a first group
of processes from the plurality of processes having a plaintext authorization
level, and a second group of processes from the plurality of processes having

a cypher-text authorization level.

3. The method of any one of claims 1 and 2, wherein:
the process authorization level of the corresponding process for the
particular data file is determined to be a plaintext authorization level; and
providing the requesting process instance with the level of access to
the particular data file comprises:
decrypting the particular data file to provide a decrypted data
file;
temporarily storing the decrypted data file in the cache of the
computer system; and
providing the requesting process instance with access to the

decrypted data file in plaintext.

4. The method of any one of claims 1 and 2, wherein:
the process authorization level of the corresponding process for the
particular data file is determined to be a cypher-text authorization level; and
providing the requesting process instance with the level of access to
the particular data file comprises providing the requesting process instance

with access to the particular data file in the encrypted format.

5. The method of any one of claims 1 and 2, wherein:

the process authorization level of the corresponding process for the
particular data file is determined to be neither a plaintext authorization level
nor a cypher-text authorization level; and

providing the requesting process instance with the level of access to
the particular data file comprises denying the requesting process instance

access to the particular data file.

-51 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

6.The method of any one of claims 1to 5, wherein, for each of at least one
protected data file,

associating that protected data file with the protected file identifier
comprises storing that protected data file in a file location within a predefined
file directory area on the at least one storage module; and

the protected file identifier for that protected data file is the predefined

file directory area.

7. The method of any one of claims 1to 5, wherein, for each of at least one
protected data file,

associating that protected data file with the protected file identifier
comprises modifying data associated with the encrypted data file to include

the protected file identifier.

8. The method of any one of claims 1to 7, wherein:
prior to providing the requesting process instance with the level of
access, authenticating the requesting process instance by:
determining an application program associated with the
corresponding process;
determining that the requesting process instance includes
additional process instructions that do not correspond to the known
application program; and
modifying the determined authorization level whereby the
providing the requesting process instance with the level of access to
the particular data file comprises denying the requesting process

instance access to the particular data file.

9. The method of claim 2, wherein the configuration map is defined by:
identifying a first plurality of application programs permitted to access
files in a plaintext format;
defining the first group of processes as the processes in the plurality of

processes that correspond to the first plurality of application programs;

-52-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

identifying a second plurality of application programs permitted to
access files in a cypher-text format; and

defining the second group of processes as the processes in the
plurality of processes that correspond to the second plurality of application

programs.

10. The method of any one of claims 2 and 9, wherein the configuration map

is fixed prior to receiving the file access request.

11. The method of any one of claims 2 and 9, further comprising:

determining, by the data protection module, an initial process
authorization level of the corresponding process by accessing the
configuration map, wherein the initial authorization level indicates that the
corresponding process is to be denied access to the particular data file;

displaying a denial notification through a user application installed on
the computer system;

receiving a modification input through the user application in response
to the denial notification; and

updating, by the data protection module, the configuration map based
on the modification input to change the initial authorization level of the

corresponding process.

12. The method of any one of claims 1to 11, further comprising

determining, by the data protection module, an authorization type of the
requesting process instance based on a process authorization type of the
corresponding process by accessing the configuration map, the authorization
type defining at least one file operation that the requesting process instance is
permitted to perform;

wherein providing the requesting process instance with the level of
access to the particular data file comprises permitting the requesting process

instance to perform operations on the particular data file in accordance with

-53-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

the determined authorization type and preventing the requesting process from

performing operations excluded from the authorization type.

13. The method of any one of claims 1to 12, further comprising:

receiving, by the data protection module, a second file access request
from a second process instance operating on the computer system while the
requesting process instance has the level of access to the particular data file,
wherein the second file access request includes file identifying information
corresponding to the particular data file;

determining that the authorization level of the process corresponding to
the second process instance is different from the level of access provided to
the process corresponding to the requesting process instance; and

denying the second process instance access to the particular data file.

14 . The method of any one of claims 1to 12, further comprising:

receiving, by the data protection module, a second file access request
from a second process instance operating on the computer system while the
requesting process instance has the level of access to the particular data file,
wherein the second file access request includes file identifying information
corresponding to the particular data file;

determining that the authorization level of the process corresponding to
the second process instance is different from the level of access provided to
the process corresponding to the requesting process instance;

generating a copy of the particular data file; and

providing the second process instance with the second level of access

to the copy of the particular data file.

15. A system for managing access to a plurality of data files, the system
comprising:

a processor;

at least one storage module coupled to the processor, the at least one

storage module storing the plurality of data files and a data protection module;

-54-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

wherein the processor is configured by the data protection module to:

identify a plurality of protected data files in the plurality of data
files stored on the at least one storage module, wherein the plurality of data
files stored on the at least one storage module includes the plurality of
protected data files and a plurality of unprotected data files, and wherein each
protected data file in the plurality of protected data files is stored on the at
least one storage module in an encrypted format;

associate each of the protected data files stored on the at least
one storage module with a protected file identifier;

intercept a file access request from a requesting process
instance operating on the processor, wherein the file access request includes
file identifying information corresponding to a particular data file in the plurality
of data files;

identify the particular data file from the file identifying
information;

determine that the particular data file is one of the protected
data files by identifying the associated protected file identifier;

determine an authorization level of the requesting process
instance based on a process authorization level of a corresponding process
determined by accessing a configuration map stored on the at least one
storage module that defines authorization levels of a plurality of processes;
and

provide the requesting process instance with a level of access to
the particular data file based on the determined authorization level of the

requesting process instance.

16. The system of claim 15, wherein the configuration map defines a first
group of processes from the plurality of processes having a plaintext
authorization level, and a second group of processes from the plurality of

processes having a cypher-text authorization level.

17. The system of any one of claims 15 and 16, wherein:

-55.

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

the process authorization level of the corresponding process for the
particular data file is determined to be a plaintext authorization level; and
the processor is configured by the data protection module to provide
the requesting process instance with the level of access to the particular data
file by:
decrypting the particular data file to provide a decrypted data
file;
temporarily storing the decrypted data file in the cache of the
computer system; and
providing the requesting process instance with access to the

decrypted data file in plaintext.

18. The system of any one of claims 15 and 16, wherein:
the process authorization level of the corresponding process for the
particular data file is determined to be a cypher-text authorization level; and
the processor is configured by the data protection module to provide
the requesting process instance with the level of access to the particular data
file by providing the requesting process instance with access to the particular

data file in the encrypted format.

19. The system of any one of claims 15 and 16, wherein:

the process authorization level of the corresponding process for the
particular data file is determined to be neither a plaintext authorization level
nor a cypher-text authorization level; and

the processor is configured by the data protection module to provide
the requesting process instance with the level of access to the particular data
file by denying the requesting process instance access to the particular data

file.
20.The system of any one of claims 15 to 19, wherein, for each of at least one

protected data file, the processor is configured by the data protection module

to:

-56 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

associate that protected data file with the protected file identifier by
storing that protected data file in a file location within a predefined file
directory area on the at least one storage module;

wherein the protected file identifier for that protected data file is the

predefined file directory area.

2 1. The system of any one of claims 15 to 19, wherein, for each of at least
one protected data file, the processor is configured by the data protection
module to:

associate that protected data file with the protected file identifier by
modifying data associated with the encrypted data file to include the protected

file identifier.

22. The system of any one of claims 15 to 2 1, wherein:
the processor is configured by the data protection module to, prior to
providing the requesting process instance with the level of access,
authenticate the requesting process instance by:
determining an application program associated with the
corresponding process;
determining that the requesting process instance includes
additional process instructions that do not correspond to the known
application program; and
modifying the determined authorization level whereby the
providing the requesting process instance with the level of access to
the particular data file comprises denying the requesting process

instance access to the particular data file.

23. The system of claim 16, wherein the processor is configured by the data
protection module to define the configuration map by:
identifying a first plurality of application programs permitted to access

files in a plaintext format;

-57 -

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

defining the first group of processes as the processes in the plurality of
processes that correspond to the first plurality of application programs;

identifying a second plurality of application programs permitted to
access files in a cypher-text format; and

defining the second group of processes as the processes in the
plurality of processes that correspond to the second plurality of application

programs.

24. The system of any one of claims 16 and 23, wherein the configuration

map is fixed prior to receiving the file access request.

25. The system of any one of claims 16 and 23, wherein the processor is
configured by the data protection module to:

determine an initial process authorization level of the corresponding
process by accessing the configuration map, wherein the initial authorization
level indicates that the corresponding process is to be denied access to the
particular data file;

display a denial notification through a user application installed on the
computer system;

receive a modification input through the user application in response to
the denial notification; and

update the configuration map based on the modification input to

change the initial authorization level of the corresponding process.

26. The system of any one of claims 15 to 25, wherein the processor is
configured by the data protection module to:
determine an authorization type of the requesting process instance
based on a process authorization type of the corresponding process by
accessing the configuration map, the authorization type defining at least one
file operation that the requesting process instance is permitted to perform; and
provide the requesting process instance with the level of access to the

particular data file by permitting the requesting process instance to perform

-58 -

WO 2018/068133 PCT/CA2017/051202

operations on the particular data file in accordance with the determined
authorization type and preventing the requesting process from performing

operations excluded from the authorization type.

5 27. The system of any one of claims 15 to 26, wherein the processor is

configured by the data protection module to:

receive a second file access request from a second process instance
operating on the computer system while the requesting process instance has
the level of access to the particular data file, wherein the second file access

10 request includes file identifying information corresponding to the particular

data file;

determine that the authorization level of the process corresponding to
the second process instance is different from the level of access provided to
the process corresponding to the requesting process instance; and

15 deny the second process instance access to the particular data file.

28.The system of any one of claims 15 to 26, wherein the processor is
configured by the data protection module to:
receive a second file access request from a second process instance
20 operating on the computer system while the requesting process instance has
the level of access to the particular data file, wherein the second file access
request includes file identifying information corresponding to the particular
data file;
determine that the authorization level of the process corresponding to
25 the second process instance is different from the level of access provided to
the process corresponding to the requesting process instance;
generate a copy of the particular data file; and
provide the second process instance with the second level of access to
the copy of the particular data file.
30
29. A computer program product for managing access to a plurality of data

files stored on at least one storage module in a computer system, the

-59-

WO 2018/068133 PCT/CA2017/051202

10

15

20

25

30

computer program product comprising a non-transitory computer readable
medium having computer-executable instructions stored thereon, the
instructions for configuring a processor to:

identify a plurality of protected data files in the plurality of data files
stored on the at least one storage module, wherein the plurality of data files
stored on the at least one storage module includes the plurality of protected
data files and a plurality of unprotected data files, and wherein each protected
data file in the plurality of protected data files is stored on the at least one
storage module in an encrypted format;

associate each of the protected data files stored on the at least one
storage module with a protected file identifier;

receive a file access request from a requesting process instance
operating on the computer system, wherein the file access request includes
file identifying information corresponding to a particular data file in the plurality
of data files;

identify the particular data file from the file identifying information;

determine that the particular data file is one of the protected data files
by identifying the associated protected file identifier;

determine an authorization level of the requesting process instance
based on a process authorization level of a corresponding process
determined by accessing a configuration map stored on the at least one
storage module that defines authorization levels of a plurality of processes;
and

provide the requesting process instance with a level of access to the
particular data file based on the determined authorization level of the

requesting process instance.
30. The computer program product of claim 29, further comprising instructions

for configuring the processor to perform the method of any one of claims 2 to
14.

-60 -

WO 2018/068133 PCT/CA2017/051202

1/5

100\

101D
101A 1018 101C
\\ \\ /110
FILTER

I
I
I
I
APPLICATION APPLICATION APPLICATION COMPANION | |
I
I
I
I

APPLICATION

102 |
T~ FILE SYSTEM FILTER

I
|
|
|
103 I
[
\:\ STORAGE COMPONENT
I

|

|

|

|

|

|

|

|

|

|

|

_____________ J
\120

FIG. 1

WO 2018/068133 PCT/CA2017/051202

2/5
200 210
IDENTIFY A PLURALITY OF |/
AW PROTECTED DATAFILES

ASSOCIATE PROTECTED
DATA FILES WITH L/
PROTECTED FILE

IDENTIFIER

220

RECEIVE FILE ACCESS | 230
REQUEST FROMA V/
REQUESTING PROCESS

DETERMINE THAT 240
REQUESTEDFILEISA V/
PROTECTED DATAFILE

DETERMINE 250
AUTHORIZATION LEVEL OF
REQUESTING PROCESS

Y
PROVIDE THE REQUESTING
PROCESS WITH /260
AUTHORIZED LEVEL OF
ACCESS TOTHE
REQUESTED DATA FILE

FIG. 2

WO 2018/068133 PCT/CA2017/051202

3/5
300

\ 302
4

REQUEST FOR A GIVEN
PROCESS P TO READ DATA
DFROMFILE F

304

IS FIN
PROTECTED
ZONE?

no

READ D FROM F.
DOES D CONTAIN
TROJANS?

330
AN
CONFIGURATION MAP
FOR PROCESS 322 v 2
yes AUTHENTICATION AND
AUTHORIZATION DENY RETURN D
ACCESS 0P
TOP

306 310

P AUTHORIZED
OR PLAINTEXT?

P AUTHORIZED
OR CYPHERTEXT?

yes 312 DENY
ACCESS
READ D FROM F TOP
AND RETURN D
308 TOP i 316

\READ DVFROM F <
DECRYPT D AND g REPORT
! DENIAL OF P i
RETURN TO USER APP |
PLAINTEXT TO P. é , 5

END l

FIG. 3

WO 2018/068133 PCT/CA2017/051202

4/5
400

402
4

REQUEST FOR A GIVEN
PROCESS PTO WRITE
DATAD TOFILE F

418

404

IS FIN
PROTECTED
ZONE?

no WRITED TO F AND
RETURN TO P

330

CONFIEURATION MAP
FOR PROCESS
AUTHENTICATION AND
AUTHORIZATION

yes

P AUTHORIZED

yes 412 DENY
ACCESS
TO P
WRITEDTOF
408 416
\ Y . ¢ Z
ENCRYPT D AND i REPORT
WRITE THE | DENIAL OF P
CYPHERTEXT TO F | TO USER APP

END l

FIG. 4

WO 2018/068133

500

N

502
4

5/5

REQUEST FOR A GIVEN

DFROMFILE F

PROCESS P TO READ DATA

504

IS FIN
PROTECTED
ZONE?

no

330

yes

AN
CONFIGURATION MAP

AUTHENTICATION AND

FOR PROCESS

AUTHORIZATION

506

P AUTHORIZED

no

OR PLAINTEXT?

510
AN
yes DENY
ACCESS
TO P
508
Y
READ DFROM F.,
DECRYPT D AND
RETURN
PLAINTEXT TO P.
END

FIG. 6

READ D FROM

DOES D CONTAIN

PCT/CA2017/051202

F.

TROJANS?
518
Y/
RETURN D
yes TOP
516
Y/
DENY
ACCESS
TOP
A J

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2017/051202

A

CLASSIFICATION OF SUBJECT MATTER
IPC: GOBF 21/62 (2013.01) , GOBF 21/30 (2013.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC: GO6F 21/62 (2013.01) , GO6F 21/30 (2013.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Databases. Google Patent; QuesTel/Orbit; Canadian Patent Database
Search terms used: dataprotection; storage; protected file; encrypted; authorization level; processes; file access request; file identifier;
validating request; level of access; application program; plaintext; cypher; storage; configuration map; bicdroid; en-hui yang; xiang yu; jin meng

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US2016/0072796 Al (ADAM, P. et a.) 10 March 2016 (10-03-2016) 1-30
* paragraphs [0004], [0010], [0021], [0024], [0026], [0028], [0034], [0036], [0039], [0044],
[0054]-[0056], [0067]-[0068], [0070], [0077]*
Y US2012/0297188 Al (van der LINDEN, R.) 22 November 2012 (22-1 1-2012) 1-30
* paragraphs [0104], [0109], [0134]-[0135], [0161], [0187]-[0188]*
Y US 2004/0093506 Al (GRAWROCK, D. et al.) 13 May 2004 (13-05-2004) 3,17
* paragraph [0062] and Page19, claim 28*
T Further documents are listed in the continuation of Box C. I See patent family annex.
* | Special categories of cited documents: "T" |later document published after the international filing date or priority
"A" |document defining the general state of the art which isnot considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" |earlier application or patent but published on or after the international "X" |document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" |document which may throw doubts on priority claim(s) or which is step when the document istaken alone
cited to establish the publication date of another citation or other "Y" |document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" |document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination
being obvious to aperson skilled in the art
"P" |document published prior tothe international filing date but later than "&" |document member of the same patent family
thepriority date claimed

Date of the actual completion of the international search
14 December 2017 (14-12-2017)

Date of mailing of the international search report
15 January 2018 (15-01-2018)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage |, Cl 14 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 819-953-2476

Authorized officer

Albert Lau (819) 639-8191

Form PCT/ISA/210 (second sheet) (January 2015)

Page 2 of 4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2017/051202

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,609,428 (MCDONNAL, W. & a.) 16 December 1997 (16-12-1997)
* entire document
A US 2007/0061867 Al (SHINOHARA, M. et a.) 15 March 2007 (15-03-2007)
* entire document
A US 2011/0035783 Al (TERASAKI, H. et al.) 10 February 201 1(10-02-201 1)

* entire document

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

Page 3 of 4

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT /C A 2017/051202

Patent Document Publication Patent Family Publication

Cited in Search Report Date Member(s) Date

US2016072796A1 10 March 201 6 (10-03-201 6) US9825945B2 21 November 2017 (21-1 1-2017)
CN106605232A 26 April 2017 (26-04-2017)
EP3192002A2 19 July 2017 (19-07-201 7)
JP2017527919A 21 September 2017 (21-09-2017)
W02016040204A2 17 March 201 6 (17-03-2016)
W02016040204A3 09 June 2016 (09-06-2016)

US201 22971 88A1 22 November 201 2 (22-1 1-2012) US8443456B2 14 May 2013 (14-05-2013)
CN103649950A 19 March 2014 (19-03-2014)
CN103649950B 31 October 2017 (31-10-2017)
EP2710500A1 26 March 2014 (26-03-2014)
EP2710500A4 05 November 2014 (05-1 1-2014)
W020121 6 1980A1 29 November 201 2 (29-1 1-2012)

US2004093506A1 13 May 2004 (13-05-2004) US7594276B2 22 September 2009 (22-09-2009)
AT252248T 15 November 2003 (15-1 1-2003)
CA2325621A1 30 September 1999 (30-09-1999)
DE69912109D1 20 November 2003 (20-1 1-2003)
EP1 066554A1 10 January 2001 (10-01-2001)
EP1066554B1 15 October 2003 (15-10-2003)
US2001 044901 A1 22 November 2001 (22-1 1-2001)
WO09949380A1 30 September 1999 (30-09-1999)
WO09949380A8 29 December 1999 (29-1 2-1999)

US5699428A 16 December 1997 (16-12-1997) CA2242876A1 24 July 1997 (24-07-1997)
CA2242876C 14 March 2006 (14-03-2006)
EP1 008249A1 14 June 2000 (14-06-2000)
EP1 008249A4 21 September 2005 (21-09-2005)
US5796825A 18 Aug ust 1998 (18-08- 1998)
WO09726736A1 24 July 1997 (24-07-1997)

US2007061 867A1 15 March 2007 (15-03-2007) JP2007041631A 15 February 2007 (15-02-2007)

US201 1035783A1 10 February 201 1 (10-02-201 1) CN101960465A 26 January 2011 (26-01-201 1)

JPWO020091 10275A1

JP5429157B2
WO20091 10275A1

14 July 201 1 (14-07-201 1)
26 February 2014 (26-02-2014)
11 September 2009 (11-09-2009)

Form PCT/ISA/2 10 (patent family annex) (January 2015)

Page 4 of 4

	abstract
	description
	claims
	drawings
	wo-search-report

