
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization I

International Bureau (10) International Publication Number

(43) International Publication Date WO 2018/068133 Al
19 April 2018 (19.04.2018) W !P O PCT

(51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
G06F 21/62 (2013.01) G06F 21/30 (2013.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
(21) International Application Number:

KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
PCT/CA20 17/05 1202

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

10 October 2017 (10.10.2017) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English
(84) Designated States (unless otherwise indicated, for every

(26) Publication Language: English
kind of regional protection available): ARIPO (BW, GH,

(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
62/406,482 11 October 2016 (11.10.2016) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(71) Applicant: BICDROID INC. [CA/CA]; 84 Milne Drive, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

Petersburg, Ontario NOB 2H0 (CA). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(72) Inventors: YANG, En-Hui; 84 Milne Drive, Petersburg, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

Ontario NOB 2H0 (CA). YU, Xiang; 268 Lemon Grass KM, ML, MR, NE, SN, TD, TG).

Crescent, Kitchener, Ontario N2N 3R5 (CA). MENG, Jin;
67 Condor Street, Kitchener, Ontario N2K 0B2 (CA). Published:

— with international search report (Art. 21(3))
(74) Agent: BERESKIN & PARR LLP/S.E.N.C.R.L., S.R.L.;

40 King Street West, 40th Floor, Toronto, Ontario M5H
3Y2 (CA).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(54) Title: METHODS, SYSTEMS AND COMPUTER PROGRAM PRODUCTS FOR DATA PROTECTION BY POLICING PRO
CESSES ACCESSING ENCRYPTED DATA

(57) Abstract: The described embodiments relate to data protection
methods, systems, and computer program products. A process-based en

crypted data access policing system is proposed based on methods of en

crypted data file management, process authentication and authorization,
Trojan detection for authorized processes, encryption key generation and
caching, and encrypted- file cache management. The process-based en

crypted data access policing system may be implemented as a kernel level
file system filter and a user- mode filter companion application, which
polices the reading/writing of encrypted data in either a server system or
an endpoint computer and protects data from data breaches and known or
unknown attacks including ransomware and/or phishing attacks.

00

©

o
FIG. 1

o

TITLE: METHODS, SYSTEMS AND COMPUTER PROGRAM PRODUCTS
FOR DATA PROTECTION BY POLICING PROCESSES ACCESSING

ENCRYPTED DATA

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional

Application No. 62/406,482 filed October 11, 2016, the entirety of which is

hereby incorporated by reference.

FIELD

[0002] The described embodiments relate generally to data access

management and in particular to systems, methods and computer program

products for managing data access of processes executing on a computer

system.

BACKGROUND

[0003] As society becomes more digitized, sensitive information is

increasingly being stored and transmitted electronically. As a result, the

importance of cybersecurity to our digital society is becoming increasingly

fundamental.

[0004] Many computer security technologies have been proposed to

address cyber security issues. These technologies include firewalls, role-

based access controls, data backup services, data encryption and so forth.

These technologies often take different approaches to protecting user data.

For instance, Firewall technology aims to prevent malware (malicious

software) from gaining access to a computer system. Role-based access

control restricts system access rights to authorized users, based on roles and

privileges assigned to various users. Data backups archive data according to

a predetermined schedule to prevent data loss. Encryption encodes a

plaintext file into a format which is not recognizable unless decrypted with the

corresponding decryption key.

[0005] While the above technologies provide some safeguards for user

data, they are all vulnerable to sophisticated attacks, as evidenced by the

increasing number of large institutions which have had data breaches and/or

have been held for ransom. As cyber-physical-human networks and systems

become increasingly interconnected, the overall system tends to be only as

strong as the weakest link at the weakest moment.

SUMMARY

[0006] The following introduction is provided to introduce the reader to

the more detailed discussion to follow. The introduction is not intended to limit

or define any claimed or as yet unclaimed invention. One or more inventions

may reside in any combination or sub-combination of the elements or process

steps disclosed in any part of this document including its claims and figures.

[0007] Embodiments described herein may include methods and

systems for managing data access in a computer system. The embodiments

described herein may operate to protect against data breaches and known

and unknown attacks including, for example, ransomware and phishing

attacks. Embodiments of the systems and methods described herein may

police processes attempting to access encrypted data files, based on process

authentication and authorization methods. Unauthorized processes, such as

malware processes, can be denied access to the encrypted data.

[0008] Embodiments of the methods and systems described herein

may provide a data protection module that may be referred to as a kernel

level file system filter. The data protection module may implement methods for

process authentication and/or process authorization to police (i.e. manage

data access for) processes trying to access data (encrypted data and/or

unencrypted data) on a computer system.

[0009] In a broad aspect, there is provided a method for managing

access to a plurality of data files stored on at least one storage module in a

computer system using a data protection module installed on the computer

system. The method can include identifying, by the data protection module, a

plurality of protected data files in the plurality of data files stored on the at

least one storage module, where the plurality of data files stored on the at

least one storage module includes the plurality of protected data files and a

plurality of unprotected data files, and where each protected data file in the

plurality of protected data files is stored on the at least one storage module in

an encrypted format; associating each of the protected data files stored on the

at least one storage module with a protected file identifier; receiving, by the

data protection module, a file access request from a requesting process

instance operating on the computer system, where the file access request

includes file identifying information corresponding to a particular data file in

the plurality of data files; identifying, by the data protection module, the

particular data file from the file identifying information; determining, by the

data protection module, that the particular data file is one of the protected

data files by identifying the associated protected file identifier; determining, by

the data protection module, an authorization level of the requesting process

instance based on a process authorization level of a corresponding process

determined by accessing a configuration map stored on the at least one

storage module that defines authorization levels of a plurality of processes;

and providing the requesting process instance with a level of access to the

particular data file based on the determined authorization level of the

requesting process instance.

[0010] In some embodiments, the configuration map defines a first

group of processes from the plurality of processes having a plaintext

authorization level, and a second group of processes from the plurality of

processes having a cypher-text authorization level.

[001 1] In some embodiments, the process authorization level of the

corresponding process for the particular data file may be determined to be a

plaintext authorization level; and providing the requesting process instance

with the level of access to the particular data file can include: decrypting the

particular data file to provide a decrypted data file; temporarily storing the

decrypted data file in the cache of the computer system; and providing the

requesting process instance with access to the decrypted data file in plaintext.

[0012] In some embodiments, the process authorization level of the

corresponding process for the particular data file may be determined to be a

cypher-text authorization level; and providing the requesting process instance

with the level of access to the particular data file can include providing the

requesting process instance with access to the particular data file in the

encrypted format.

[0013] In some embodiments, the process authorization level of the

corresponding process for the particular data file may be determined to be

neither a plaintext authorization level nor a cypher-text authorization level; and

providing the requesting process instance with the level of access to the

particular data file can include denying the requesting process instance

access to the particular data file.

[0014] In some embodiments, for each of at least one protected data

file, associating that protected data file with the protected file identifier may

include storing that protected data file in a file location within a predefined file

directory area on the at least one storage module; and the protected file

identifier for that protected data file can be the predefined file directory area.

[0015] In some embodiments, for each of at least one protected data

file, associating that protected data file with the protected file identifier may

include modifying data associated with the encrypted data file to include the

protected file identifier.

[0016] In some embodiments, the method may include, prior to

providing the requesting process instance with the level of access,

authenticating the requesting process instance by: determining an application

program associated with the corresponding process; determining that the

requesting process instance includes additional process instructions that do

not correspond to the known application program; and modifying the

determined authorization level so that providing the requesting process

instance with the level of access to the particular data file includes denying

the requesting process instance access to the particular data file.

[0017] In some embodiments, the configuration map can be defined by:

identifying a first plurality of application programs permitted to access files in a

plaintext format; defining the first group of processes as the processes in the

plurality of processes that correspond to the first plurality of application

programs; identifying a second plurality of application programs permitted to

access files in a cypher-text format; and defining the second group of

processes as the processes in the plurality of processes that correspond to

the second plurality of application programs.

[0018] In some embodiments, the configuration map may be fixed prior

to receiving the file access request.

[0019] In some embodiments, the method may include determining, by

the data protection module, an initial process authorization level of the

corresponding process by accessing the configuration map, where the initial

authorization level indicates that the corresponding process is to be denied

access to the particular data file; displaying a denial notification through a

user application installed on the computer system; receiving a modification

input through the user application in response to the denial notification; and

updating, by the data protection module, the configuration map based on the

modification input to change the initial authorization level of the corresponding

process.

[0020] In some embodiments, the method may include determining, by

the data protection module, an authorization type of the requesting process

instance based on a process authorization type of the corresponding process

by accessing the configuration map, the authorization type defining at least

one file operation that the requesting process instance is permitted to perform;

and providing the requesting process instance with the level of access to the

particular data file can include permitting the requesting process instance to

perform operations on the particular data file in accordance with the

determined authorization type and preventing the requesting process from

performing operations excluded from the authorization type.

[0021] In some embodiments, the method may include receiving, by the

data protection module, a second file access request from a second process

instance operating on the computer system while the requesting process

instance has the level of access to the particular data file, where the second

file access request includes file identifying information corresponding to the

particular data file; determining that the authorization level of the process

corresponding to the second process instance is different from the level of

access provided to the process corresponding to the requesting process

instance; and denying the second process instance access to the particular

data file.

[0022] In some embodiments, the method may include receiving, by the

data protection module, a second file access request from a second process

instance operating on the computer system while the requesting process

instance has the level of access to the particular data file, where the second

file access request includes file identifying information corresponding to the

particular data file; determining that the authorization level of the process

corresponding to the second process instance is different from the level of

access provided to the process corresponding to the requesting process

instance; generating a copy of the particular data file; and providing the

second process instance with the second level of access to the copy of the

particular data file.

[0023] In a broad aspect, there is provided a system for managing

access to a plurality of data files. The system can include a processor; at least

one storage module coupled to the processor, the at least one storage

module storing the plurality of data files and a data protection module; where

the processor is configured by the data protection module to: identify a

plurality of protected data files in the plurality of data files stored on the at

least one storage module, where the plurality of data files stored on the at

least one storage module includes the plurality of protected data files and a

plurality of unprotected data files, and where each protected data file in the

plurality of protected data files is stored on the at least one storage module in

an encrypted format; associate each of the protected data files stored on the

at least one storage module with a protected file identifier; intercept a file

access request from a requesting process instance operating on the

processor, where the file access request includes file identifying information

corresponding to a particular data file in the plurality of data files; identify the

particular data file from the file identifying information; determine that the

particular data file is one of the protected data files by identifying the

associated protected file identifier; determine an authorization level of the

requesting process instance based on a process authorization level of a

corresponding process determined by accessing a configuration map stored

on the at least one storage module that defines authorization levels of a

plurality of processes; and provide the requesting process instance with a

level of access to the particular data file based on the determined

authorization level of the requesting process instance.

[0024] In some embodiments, the configuration map defines a first

group of processes from the plurality of processes having a plaintext

authorization level, and a second group of processes from the plurality of

processes having a cypher-text authorization level.

[0025] In some embodiments, the process authorization level of the

corresponding process for the particular data file may be determined to be a

plaintext authorization level; and the processor can be configured by the data

protection module to provide the requesting process instance with the level of

access to the particular data file by: decrypting the particular data file to

provide a decrypted data file; temporarily storing the decrypted data file in the

cache of the computer system; and providing the requesting process instance

with access to the decrypted data file in plaintext.

[0026] In some embodiments, the process authorization level of the

corresponding process for the particular data file may be determined to be a

cypher-text authorization level; and the processor can be configured by the

data protection module to provide the requesting process instance with the

level of access to the particular data file by providing the requesting process

instance with access to the particular data file in the encrypted format.

[0027] In some embodiments, the process authorization level of the

corresponding process for the particular data file may be determined to be

neither a plaintext authorization level nor a cypher-text authorization level; and

the processor can be configured by the data protection module to provide the

requesting process instance with the level of access to the particular data file

by denying the requesting process instance access to the particular data file.

[0028] In some embodiments, for each of at least one protected data

file, the processor can be configured by the data protection module to:

associate that protected data file with the protected file identifier by storing

that protected data file in a file location within a predefined file directory area

on the at least one storage module; where the protected file identifier for that

protected data file includes the predefined file directory area.

[0029] In some embodiments, for each of at least one protected data

file, the processor can be configured by the data protection module to:

associate that protected data file with the protected file identifier by modifying

data associated with the encrypted data file to include the protected file

identifier.

[0030] In some embodiments, the processor can be configured by the

data protection module to, prior to providing the requesting process instance

with the level of access, authenticate the requesting process instance by:

determining an application program associated with the corresponding

process; determining that the requesting process instance includes additional

process instructions that do not correspond to the known application program;

and modifying the determined authorization level such that the providing the

requesting process instance with the level of access to the particular data file

includes denying the requesting process instance access to the particular

data file.

[0031] In some embodiments, the processor can be configured by the

data protection module to define the configuration map by: identifying a first

plurality of application programs permitted to access files in a plaintext format;

defining the first group of processes as the processes in the plurality of

processes that correspond to the first plurality of application programs;

identifying a second plurality of application programs permitted to access files

in a cypher-text format; and defining the second group of processes as the

processes in the plurality of processes that correspond to the second plurality

of application programs.

[0032] In some embodiments, the configuration map can be fixed prior

to receiving the file access request.

[0033] In some embodiments, the processor can be configured by the

data protection module to: determine an initial process authorization level of

the corresponding process by accessing the configuration map, where the

initial authorization level indicates that the corresponding process is to be

denied access to the particular data file; display a denial notification through a

user application installed on the computer system; receive a modification input

through the user application in response to the denial notification; and update

the configuration map based on the modification input to change the initial

authorization level of the corresponding process.

[0034] In some embodiments, the processor can be configured by the

data protection module to: determine an authorization type of the requesting

process instance based on a process authorization type of the corresponding

process by accessing the configuration map, the authorization type defining at

least one file operation that the requesting process instance is permitted to

perform; and provide the requesting process instance with the level of access

to the particular data file by permitting the requesting process instance to

perform operations on the particular data file in accordance with the

determined authorization type and preventing the requesting process from

performing operations excluded from the authorization type.

[0035] In some embodiments, the processor can be configured by the

data protection module to: receive a second file access request from a second

process instance operating on the computer system while the requesting

process instance has the level of access to the particular data file, where the

second file access request includes file identifying information corresponding

to the particular data file; determine that the authorization level of the process

corresponding to the second process instance is different from the level of

access provided to the process corresponding to the requesting process

instance; and deny the second process instance access to the particular data

file.

[0036] In some embodiments, the processor can be configured by the

data protection module to: receive a second file access request from a second

process instance operating on the computer system while the requesting

process instance has the level of access to the particular data file, where the

second file access request includes file identifying information corresponding

to the particular data file; determine that the authorization level of the process

corresponding to the second process instance is different from the level of

access provided to the process corresponding to the requesting process

instance; generate a copy of the particular data file; and provide the second

process instance with the second level of access to the copy of the particular

data file.

[0037] In a broad aspect there is provided a computer program product

for managing access to a plurality of data files stored on at least one storage

module in a computer system, the computer program product can include a

non-transitory computer readable medium having computer-executable

instructions stored thereon, the instructions for configuring a processor to:

identify a plurality of protected data files in the plurality of data files stored on

the at least one storage module, where the plurality of data files stored on the

at least one storage module includes the plurality of protected data files and a

plurality of unprotected data files, and where each protected data file in the

plurality of protected data files is stored on the at least one storage module in

an encrypted format; associate each of the protected data files stored on the

at least one storage module with a protected file identifier; receive a file

access request from a requesting process instance operating on the computer

system, where the file access request includes file identifying information

corresponding to a particular data file in the plurality of data files; identify the

particular data file from the file identifying information; determine that the

particular data file is one of the protected data files by identifying the

associated protected file identifier; determine an authorization level of the

requesting process instance based on a process authorization level of a

corresponding process determined by accessing a configuration map stored

on the at least one storage module that defines authorization levels of a

plurality of processes; and provide the requesting process instance with a

level of access to the particular data file based on the determined

authorization level of the requesting process instance.

[0038] In some embodiments, the computer program product can

further include instructions for configuring the processor to perform the

various embodiments of methods for managing access to a plurality of data

files described herein.

[0039] These and other aspects and features of various embodiments

will be described in greater detail below.

BRIEF DESCRIPTION OF DRAWINGS

[0040] For a better understanding of the described embodiments and to

show more clearly how they may be carried into effect, reference will now be

made, by way of example, to the accompanying drawings in which:

[0041] FIG. 1 shows a block diagram of a system for managing access

to a plurality of data files in accordance with an example embodiment;

[0042] FIG. 2 is a flow chart illustrating an example of a method for

managing access to a plurality of data files in accordance with an

embodiment;

[0043] FIG. 3 is a flow chart illustrating an example of method for

managing requests to read data files in accordance with an embodiment;

[0044] FIG 4 is a flow chart illustrating an example of method for

managing requests to write data to a data file in accordance with an

embodiment; and

[0045] FIG. 5 is a flow chart illustrating another example of a method

for managing access to a plurality of data files in accordance with an example

embodiment.

[0046] The drawings, described below, are provided for purposes of

illustration, and not of limitation, of the aspects and features of various

examples of embodiments described herein. For simplicity and clarity of

illustration, elements shown in the drawings have not necessarily been drawn

to scale. The dimensions of some of the elements may be exaggerated

relative to other elements for clarity. It will be appreciated that for simplicity

and clarity of illustration, where considered appropriate, reference numerals

may be repeated among the drawings to indicate corresponding or analogous

elements or steps.

DETAILED DESCRIPTION

[0047] Various systems or methods will be described below to provide

an example of an embodiment of the claimed subject matter. No embodiment

described below limits any claimed subject matter and any claimed subject

matter may cover methods or systems that differ from those described below.

The claimed subject matter is not limited to systems or methods having all of

the features of any one system or method described below or to features

common to multiple or all of the apparatuses or methods described below. It is

possible that a system or method described below is not an embodiment that

is recited in any claimed subject matter. Any subject matter disclosed in a

system or method described below that is not claimed in this document may

be the subject matter of another protective instrument, for example, a

continuing patent application, and the applicants, inventors or owners do not

intend to abandon, disclaim or dedicate to the public any such subject matter

by its disclosure in this document.

[0048] Furthermore, it will be appreciated that for simplicity and clarity

of illustration, where considered appropriate, reference numerals may be

repeated among the figures to indicate corresponding or analogous elements.

In addition, numerous specific details are set forth in order to provide a

thorough understanding of the embodiments described herein. However, it will

be understood by those of ordinary skill in the art that the embodiments

described herein may be practiced without these specific details. In other

instances, well-known methods, procedures and components have not been

described in detail so as not to obscure the embodiments described herein.

Also, the drawings and the description is not to be considered as limiting the

scope of the embodiments described herein.

[0049] It should also be noted that, as used herein, the wording

"and/or" is intended to represent an inclusive-or. That is, "X and/or Y" is

intended to mean X or Y or both, for example. As a further example, "X, Y,

and/or Z" is intended to mean X or Y or Z or any combination thereof.

[0050] It should be noted that the term "application" is meant to be a

shorter form of application program, which refers to a program (i.e. a set of

computer instructions) that is designed to realize a specific function for an end

user. From an end user's perspective, a program in the computer system is

usually referred to as an application. For example, an end user may refer to

Microsoft Windows Word as an application of word processing, while in the

operating system Microsoft Windows Word is identified as the program

winword.exe.

[0051] Hereinafter, the term "application" is used to refer to an end

user's perspective of an application program. For example, an application

may refer to the program with which an end user interacts in order to set up

(i.e. define) a configuration map that authorizes one or more applications to

access encrypted data. The term "program" may be used to refer to the

operating system perspective of the program that executes on the processor

as one or more processes to provide the corresponding application. For

example, the term "program" may be used to describe the operation of the

kernel level file system filter in applying a configuration map to policing a

process that is executing a program.

[0052] Hacking techniques and malware programs are continually

evolving and adapting to security technologies. Even with appropriate security

systems in place, malware may still bypass many existing security

technologies (e.g. because of human error) using known or unknown forms of

intrusion, such as phishing attacks. These attacks often exploit the weakest

links and moments (human and/or technological) in order to access computer

networks and systems. Once the malicious software is within the computer

network/system, many existing security technologies are not equipped to

prevent the malware from spreading and/or accessing important and sensitive

data files.

[0053] Embodiments described herein may provide methods, systems

and computer program products which can protect data files even after

malware has intruded into, and is operational on, a computer system or

network. Such embodiments may include methods and systems for managing

access to encrypted data files to protect against data breaches by

authenticating and authorizing process requesting data files.

[0054] Computer operating systems such as Windows, Linux, UNIX,

and Mac OS generally have two executing modes: a kernel mode and a user

mode. The kernel mode refers to a privileged status of the CPU when it

possesses the privilege to execute any instructions and reference any

memory addresses.

[0055] The user mode is a non-privileged status for user programs. In

user mode, the executing code (i.e. the currently executing user-mode

processes) cannot directly access hardware or reference memory addresses.

When the CPU operates in the user mode, all user mode processes may be

assumed to be untrusted and thus must request use of the kernel by means of

a system call.

[0056] In a computer system, when a process wants to access a file,

the process issues a request for obtaining a reference to this file (called a file

handle) to the file system. Depending on the properties of the request and

whether the requested file exists, a new file may be created or an existing file

may be opened. After a file handle to the file is obtained by the requesting

process, the process can write data into the file by passing the file handle and

the data to be written to the file system. Similarly, the process reads data from

the file by passing the file handle and a location to hold the data to be read to

the file system. When the process no longer needs to access the file, the

process can issue a request to close the file handle to the file system. In

embodiments described herein, all requests for obtaining file handles, writing

and reading data, and closing file handles that are issued by a process (i.e. by

any non-kernel mode process) can be routed through, or intercepted by, the

data protection module before being transmitted to the file system.

[0057] Embodiments described herein may manage access to

encrypted data files using process-based access policing implemented by a

kernel level file system filter (also referred to herein as a data protection

module). In such embodiments, authorized processes can be granted access

to requested data files (e.g. encrypted data files) while unauthorized

processes can be denied access to the requested data files (i.e. prevented

from accessing the requested data files or having limited or reduced access to

the data file).

[0058] In some cases, a process may request a particular level of

access to a data file. For example, a first process may request access to the

plaintext content of the data file while a second process might only request

access to the cypher-text content of the data file. The data protection module

may then determine the authorized level of access for the requesting process.

Based on the determined authorized level of access, the data protection

module may provide the requesting process with the requested level of

access, a reduced level of access, or may even deny access to the requested

data file.

[0059] Embodiments described herein may provide data protection

methods employing process-based access policing to encrypted data. For

example, a data protection module may be provided for installation on a

computing device; the data protection module can be configured to determine

or identify a group or zone of protected data files (i.e. those data files to be

protected and encrypted); the data protection module can then operate to

authenticate processes trying to write data to or read data from a protected

(and encrypted) data file; the data protection module may then provide a

permission level to the process. The permission level may define the level of

access the process has to the data file. For instance, an authenticated

process may be granted permission to access the data file in plaintext, an

authenticated process may be granted permission to access the cypher-text

of the data file, or the data protection module may deny access to an

unauthenticated process or even to an authenticated process (e.g. if the

process is not authorized to access the requested data file).

[0060] The data protection module may also define a permission type

for the requesting process. The permission type may define the types of

actions the process is authorized to perform in respect of the requested data

file. For example, the granted permission type may be one of the following

permission types: authorized/permitted to write data to the encrypted file,

authorized/permitted to read the encrypted file. The data protection module

can be configured to authenticate every process trying to write data to or read

data from a protected and encrypted file.

[0061] Embodiments described herein may provide a file management

scheme for encrypted data files in the kernel mode. In operation, the data

protection module (i.e. kernel level file system filter) can respond to all

requests from user-mode processes to access any and all data files in the

computer system. This data protection module may effectively provide file

management for data files within a protected data group or zone. In some

embodiments, the protected data files may be stored within a defined region

in the file directory of the computer system. Alternatively, the data protection

module may determine a directory tree that can be defined based on the

storage locations of the protected data files. The data protection module may

then implement a fast string search algorithm based on the tree structure of

the file system path strings to determine whether a requested data file is a

protected data file.

[0062] For example, the data protection module may initiate a search

tree when it is loaded in the kernel. The data protection module may then

define the search tree by detecting, for every data file stored on the storage

module(s) associated with the computer system, whether that data file is

encrypted. In some cases, the data protection module may define the search

tree dynamically, for instance when the data file is accessed by the kernel

filter for the first time, which may be in response to a request from any

process or application operating on the computer system.

[0063] Embodiments described herein may use protected file identifiers

to determine whether data files are protected (and also whether they are

encrypted in embodiments where all protected files are encrypted). In some

cases, the protected file identifier may be a file extension name appended to a

protected data file when that data file is stored on a storage module (e.g.

physical storage media such as a hard-disk or USB disk). The data protection

module may then determine that the file is a protected file by identifying the

presence of the protected file extension. In some cases, the protected file

extension may be invisible to user mode processes to provide transparent

operation to the user applications (e.g., an encrypted Windows Word file will

show only its original extension name such as .doc to a Word process).

Accordingly, the data protection module may define a file name mapping for

protected data files between the user-side file name without the protected file

extension and the filter-side file names that include the protected file

extension.

[0064] Additionally or alternatively, the data protection module may

embed a protected file identifier into the protected data file. For example, the

protected file identifier may be provided as an encryption token embedded

into the file header of an encrypted data file. The data protection module may

then access the encryption token in the file header to determine that a

particular data file is an encrypted data file.

[0065] Additionally or alternatively, the data protection module may

record a protected file identifier in the file attribute domain of the computer file

system. The data protection module may record an encryption sign or

encryption indicator in the file attribute domain for encrypted data files. The

data protection module may then identify the sign in the file attributes of a

particular data file to determine that the particular data file is an encrypted

data file.

[0066] Embodiments described herein may provide a process-based

access policing system for encrypted data. The system may include one or

more storage modules that include physical storage media, a data protection

module (kernel level file system filter), and optionally a user-mode filter

companion application. A plurality of data files can be stored in the one or

more storage modules. At least some of the data files stored in the storage

modules may be encrypted (e.g. using random encryption keys). The data

protection module may provide an interface between the data files stored in

the computer system and various applications trying to access data stored in

those data files. The data protection module can perform various operations

related to the management of data files on the computer system, such as

encrypting data, decrypting data, policing application processes trying to

access data (e.g. intercepting requests for data from processes operating on

the computer system), authenticating processes, and authorizing processes to

access data.

[0067] In a general computation system, a process is the execution of a

collection of instructions, which are generally referred to as a program. In a

Unix-like system, a program is stored in the file system as a program file. The

program can be loaded through a system call in the computer kernel level to

initiate a process (i.e. initiate the execution of the program instructions). Once

initiated, the process can be identified by the kernel using a process ID.

[0068] In embodiments described herein, when a currently loaded

process attempts to access data stored in the computer system, the data

request may be intercepted by the data protection module. The data

protection module may then determine, based on information associated with

the requested file and the process requesting the file, whether to grant the

requested access. The data protection module may apply an authentication

and authorization procedure to the process before the process is allowed to

access protected data (e.g. encrypted data) in the form of either plaintext or

cypher-text.

[0069] In some cases, the data protection module may implement a

data access management procedure that involve 3 stages:

1. Configuration Stage: An authorization level (e.g. an access permission

level) can be defined for each process operating, or that may

subsequently operate, on the computer system. In some cases, the

configuration map may only include processes that are authorized to

access protected data stored on the computer system. The

configuration map may also include an authorization type for each

authorized process. The configuration map can be provided to the data

protection module.

2 . Process Authentication Stage: The data protection module may assess

the genuine identity of a process requesting data access. The data

protection module may also compare this identify information with the

processes identified on the configuration map.

3 . Process Authorization Stage: The data protection module may

determine the authorization level (and in some cases the authorization

type) for a requesting process using the configuration map. The data

protection module may then permit that process to access the

requested data in accordance with the determined authorization level

and/or authorization type.

[0070] In some embodiments, the configuration map may identify

executing process instances based on the corresponding program.

Accordingly, each process executing an instance of the corresponding

program may then be provided with the same authorization level/type.

[0071] In some cases, the system may also include a user-mode filter

companion application. The system may provide a duplex channel between

the user-mode filter companion application and the data protection module.

The user-mode filter companion application may permit a user of the

computer system to define and/or modify the authorization level and/or type

for one or more processes.

[0072] In some cases, the data protection module (or the configuration

map) may be configured to initially prevent all processes from accessing any

protected data and to report all blocked events to the user-mode filter

companion application. The user-mode filter companion application may

provide an indication (e.g. a pop up message) to the user for each blocked

event. The user-mode filter companion application may provide an interface

for the user to modify the permissions for processes executing the program

associated with the blocked event.

[0073] For example, the user-mode filter companion application may

provide a list of access permissions for the user to select from. The access

permission options may include, for example, (1) authorization to access

plaintext content of an encrypted data file; (2) authorization to access cypher-

text content of an encrypted data file; and (3) denying a process from

accessing any encrypted data file. The user-mode filter companion application

can then send the modified access permission to the data protection module

using the dedicated duplex channel. The data protection module may then

update the configuration map in response to the user selection.

[0074] In some embodiments, the data protection module may have an

initial configuration map that includes a first group of application programs

whose corresponding processes are allowed to access the plaintext content of

encrypted data, and a second group of application programs whose

corresponding processes are allowed to access the cypher-text content of

encrypted data. The end-user may then modify the configuration map using

the user-mode filter companion application.

[0075] In some embodiments, the configuration map may be defined

using link list data structures. A first link list data structure may include the

legitimate application programs whose corresponding processes are allowed

to access the plaintext content of encrypted data. A second link list data

structure may include the legitimate application programs whose

corresponding processes are allowed to access the cypher-text content of

encrypted data, and a list of all program names that has access to cypher-text

content. All processes corresponding to programs not identified in these link

lists may then be denied access to encrypted data.

[0076] In some embodiments, the user-side application may be

omitted. For example, the configuration map can be fixed for the data

protection module installed on a particular computer system. In such cases,

local computer users may not be permitted to modify the configuration map.

This may be particularly useful in implementations where multiple users can

access the same data files (e.g. in server applications).

[0077] As mentioned, some embodiments described herein may

authenticate requesting processes prior to providing access to requested data

files. In such embodiments, the data protection module may make a system

call to map the process ID of the requesting process to its corresponding

program file path. The data protection module may use this program file path

mapping along with the digital signature of the program (stored in the

configuration map) to authenticate the requesting process.

[0078] In some cases, the data protection module may analyze the

requesting process to identify whether Trojan instructions are present in the

requesting process. As used herein, the term "Trojan" refers to a set of

instructions that is loaded into a process from a source other than the

corresponding program (i.e. the corresponding authentic program whose

digital signature can be used to identify that process) and protected data files,

where that set of instructions is executed as part of that process. If the data

protection module determines that Trojan instructions are present in the

requesting process, the authorization level of the requesting process can be

modified e.g. to deny access to the requested data files. This may prevent

unauthorized instructions from piggybacking on the authorization level of the

authentic process and in turn causing a data breach. For example, the data

protection module may modify the authorization level for a requesting process

that would otherwise be permitted to access the plaintext content of encrypted

data to deny access to the requested data.

[0079] Various methods may be used to detect Trojan instructions. For

example, the data protection module may analyze a script language pattern

from an unprotected data file written in a particular script language which is to

be loaded into a process requesting access to files written in that particular

script language. That is, when a process attempts to access data from a data

file that is not one of the protected data files, the data protection module may

analyze the data file to determine if Trojan instructions are present (and would

be loaded into the requesting process).

[0080] For instance, consider an implementation in which the data

protection module operates to protect php scripts running on a web server,

where the php interpreter process is authorized to access a predefined list of

php files. In this implementation, when the php interpreter process tries to

access a file that is not one of the protected php script files, the data

protection module can analyze the file being accessed, detect a php script

pattern such as '<?php' and prevent the process from accessing the

unprotected data file if such a script pattern is found. Similar processes may

be applied to other types of scripting file protection, e.g., Ruby, Python, Perl,

Node-JS, Jscript, HTML, etc.

[0081] In some embodiments, the data protection module may

determine the presence of Trojan instructions by detecting a plug-in or add-in

in a process otherwise authorized to access protected data files (i.e. the

plaintext content of protected data files). For example, processes

corresponding to a Windows Word may be authorized to access a predefined

list of .doc files. In such cases, the data protection module may analyze all the

Windows Word plug-ins or add-ins and only authorize access for a subset of

the plug-ins or add-ins. For instance, the data protection module may only

authorize access for plug-ins authorized by the end user.

[0082] For instance, when data is to be encrypted or decrypted, the

encryption key and/or decryption key can be generated first. The generated

key can then be applied to encrypt/decrypt data in a buffer for file

reading/writing. In embodiments using symmetric encryption, the encryption

key and the corresponding decryption key are the same.

[0083] To generate an encryption key, the data protection module may

receive input data and generate/output an encryption key based on the input

data in a deterministic manner, i.e. the output (encryption key) can be the

same as long as input data is the same. Examples of methods for key

generation are described in greater details in the Applicant's US Patent

Application No. 15/178,680 filed on June 10 , 2016 and entitled "Methods and

computer program products for encryption key generation and management"

which has now issued as US Patent No. 9,703,979, the entirety of which is

hereby incorporated by reference. In some examples, such as those

described in US Patent No. 9,703,979, the input data may include input

portions: a first portion that includes a unique identifier of a keystore seed and

a second portion that includes auxiliary information referred to as keying

material or keying information. Given a unique identifier of a keystore seed

and the keying material, the identifier may be used to determine a keystore

seed and then the keystore seed and the keying material can be combined to

generate an encryption key.

[0084] In some embodiments, the systems described herein may use

encryption key caching to facilitate the encryption and decryption of protected

data files. An encryption key hash mapping (also referred to as an encryption

key cache) between file identifiers and corresponding encryption keys can be

maintained in volatile memory of the computer system. This may allow the

data protection module to efficiently record or retrieve an encryption key

corresponding to a data file when that file is being encrypted or decrypted.

The data protection module may initiate the hash map when the data

protection module is loaded (e.g. on system start-up). The hash map may

then be defined by recording a file encryption pair that includes a file identifier

and the corresponding encryption key at the time the encryption key is

generated for the file.

[0085] In some embodiments, encryption keys may be generated and

cached using a cooperative procedure between the user-mode filter

companion application and the data protection module using the duplex

channel therebetween. In response to receiving, from a process, a request for

a file handle to be used in generating a new encrypted data file, the data

protection module may retrieve new file properties for the new encrypted data

file (e.g. the location where the data file is to be generated in the file system)

and transmit the new file properties to the user-mode filter companion

application. The user-mode filter companion application can then use the new

file properties in determining a keystore seed (with a unique identifier),

generating (randomly) keying material, and generating an encryption key for

the new encrypted file using the determined keystore seed and the keying

material. The user-mode filter companion application can then transmit the

unique keystore seed identifier, the keying material, and the encryption key to

the data protection module. The data protection module can then store the

keying material together with the unique identifier of the selected keystore

seed for the new encrypted data file. The data protection module can also

store an encrypted file data pair in the encryption key cache that includes a

unique file identifier and the corresponding encryption key.

[0086] The data protection module may also access the encryption key

cache in response to receiving a request for obtaining a file handle to an

existing encrypted data file. The data protection module may identify the

unique file identifier from the requested file and attempt to retrieve the

corresponding encryption key in the encryption key cache using the unique

identifier. If the encryption key cache does not contain the encryption key for

the requested file, the data protection module can retrieve the keystore seed

identifier and keying material from the encrypted data file. The data protection

module can then transmit the keystore seed identifier and keying material to

the user-mode filter companion application.

[0087] The user-mode filter companion application can then determine

the keystore seed using the keystore seed identifier, generate the encryption

key for the encrypted data file using the keystore seed and the keying

material, and transmit the encryption key to the data protection module. The

data protection module can then store file key data representing the keying

material together with the unique identifier of the selected keystore seed for

the requested encrypted data file in the encryption key cache.

[0088] In some embodiments, encryption key generating and caching

may be performed in the absence of a user-mode filter companion application

(or without requiring communication with the user-mode application). In

response to a request for a file handle to a file that would result in creating a

new encrypted data file, the data protection module can determine a keystore

seed having a unique identifier. The data protection module may then

generate (randomly) keying material, generate an encryption key using the

keystore seed and the keying material, and then store the keying material

together with the keystore seed identifier in the encrypted data file. The data

protection module can then store file key data representing the keying

material together with the unique identifier of the selected keystore seed for

the encrypted data file in the encryption key cache.

[0089] In some embodiments, upon receiving a request for obtaining a

file handle to an existing encrypted data file, the data protection module may

determine a file identifier from the encrypted data file and attempt to retrieve

the corresponding encryption key in the encryption cache using the file

identifier. If the encryption key cache does not contain the encryption key for

the requested file, the data protection module may retrieve the keystore seed

identifier and keying material stored in the encrypted data file, retrieve the

keystore seed using the keystore seed identifier, and generate the encryption

key using the keystore seed and the keying material. The data protection

module can then store file key data representing the keying material together

with the unique identifier of the selected keystore seed for the requested data

file in the encryption key cache.

[0090] In response to receiving a request for writing data into a file or

reading data from an encrypted data file, the data protection module can

retrieve a unique file identifier corresponding to the file, identify a

corresponding encryption key in the encryption key cache using the file

identifier, and use the encryption key to encrypt or decrypt data before the

data is written into the file system or read by the authorized process that

issued the request.

[0091] In some cases, after all file handles to a file are closed, the

encryption key for this file can be purged from the encryption key cache. The

encryption keys may be purged in response to the file handles being closed.

This may prevent the encryption keys from being accessible after authorized

processes are no longer accessing the data from encrypted data files.

[0092] In some embodiments, a single keystore seed (and its

corresponding keystore seed identifier) can be loaded into the volatile

memory of the computer system when the data protection module is loaded.

The data protection module may always use this keystore seed along with

random keying material to generate encryption keys for files to be created or

opened (i.e. to decrypt data before the data is read by an authorized process).

However, the keying material, which can be randomly generated for files to be

created or read from files to be opened, may be different for each file (and

may be generated for each file, or selected randomly for each file).

[0093] For example, consider encrypted files that may be accessed by

Microsoft SQL Servers. Typically, Microsoft SQL Servers create and/or

access a limited number of files, each of which is very large. In such a

scenario, one encryption key may be secure enough to encrypt all the files

accessed by the Microsoft SQL Servers. Whenever a Microsoft SQL Server

writes data into a file, the data protection module can use the single

encryption key in the encryption key cache to encrypt the data before the data

is written into the file system. Similarly, whenever the Microsoft SQL Servers

attempt to read data from a file, the data protection module can use the same

encryption key in the encryption key cache to decrypt the data before the data

is read by Microsoft SQL Servers.

[0094] Embodiments described herein may also incorporate encryption

key generation and caching techniques. In general in a computer system, a

file cache refers to a defined portion of volatile memory that is used to store

data from a data file. When the data file is initially accessed by a process,

some data from the data file can be stored in the file cache. Subsequently,

when other processes open a file handle to the file and read data from the file,

the data may be directly copied from the file cache, in which case no read

request need be sent to the file system. Analogously, when other processes

open a file handle to the file and write data into the file, the data may be

directly copied to the file cache, in which case no write request need be sent

to the file system. Data in a file cache is said to be "dirty" if the data has been

changed and has not yet been written into the non-volatile memory (for

example hard disks) of the computer system. Periodically, or on demand, a

system request may be issued to flush dirty data from the file cache to the

non-volatile memory. In embodiments of the data access management

systems described herein, file cache management for encrypted data files can

be more complex as some processes may be authorized to access the

plaintext of the encrypted data file while other processes may only be

authorized to access the cipher-text of the encrypted data file. Accordingly,

embodiments described herein may monitor the data stored in the cache to

ensure that requesting processes are not provided access to data in the file

cache for which they are not authorized.

[0095] The data protection module can track open file handles for

respective data files. A process is said to be holding an open file handle to a

data file if the process has not closed the file handle after obtaining the file

handle. The data protection module may separately track file handles being

held by processes authorized to access the plaintext of an encrypted data file

and file handles being held by processes authorized to access only the

cypher-text of the encrypted data file. For example, to track open file handles

for an encrypted data file, the data protection module may assign the data file

a pair of file cache counters.

[0096] File cache counters can be assigned to a file if at least one open

file handle to the file is being held by some process. A first cache counter can

track the numbers of open file handles to the file that are being held by

processes authorized to access the plaintext of an encrypted data file. A

second cache counter can track the numbers of open file handles to the file

that are being held by processes authorized to access the cypher-text of an

encrypted data file. An exemplary embodiment of a data structure to be used

in the open file handle tracking may be constructed as a hash map between a

unique file identifier and a pair of integers corresponding to the file cache

counters for that file. In some cases, when the sum of the values of the two

counters assigned to the encrypted data file increases from 0 to 1, the data

protection module can issue a request to the system to flush all dirty data of

the file to the non-volatile memory and then purge all data of the file that is

stored in the file cache.

[0097] In response to a request from a process for a file handle to an

encrypted data file, the data protection module may determine whether the

process is authorized to access the plaintext of the encrypted data file or the

cypher-text of the encrypted data file. The data protection module may also

determine if there are any open file handles to the file. If there are open file

handles to the file, the data protection module may determine the

authorization level of the process or processes holding the open file handle. If

the authorization levels are the same, the requesting process can be

providing access to the encrypted data file in accordance with its authorization

level.

[0098] In some cases, if the authorization level of the requesting

process is different from the authorization level of the process or processes

holding the open file handle, the requesting process may be denied access to

the data file. For example, if the requesting process is authorized to access

the plaintext content of the file, but a file handle is being held by a first

process authorized only to access the cypher-text, the requesting process

may be denied access to the requested file. This may prevent the first process

from accessing the plaintext of the file if it were loaded into the cache.

Similarly, if the requesting process is only authorized to access the cypher-

text content of the file, but a file handle is being held by a first process

authorized to access the plaintext, the requesting process may be denied

access to the requested file.

[0099] In some cases, the data protection module may generate a

shadow copy of a requested encrypted data file. In some cases, the data

protection module may generate shadow copies for each of the encrypted

data files stored on the computer system (e.g. when there is sufficient storage

capacity). In response to a request to obtain a file handle to the encrypted

data file, the data protection module can provide the requesting process with

the file handle to the encrypted data file if the process is authorized to access

the plaintext content of the file, and provide the requesting process with the

file handle to the shadow copy if the process is only authorized to access the

cypher-text content of the file (or vice-versa). This may ensure that processes

authorized to access the plaintext content of the file and processes only

authorized to access the cypher-text content of the file may always access

different copies of the file, and therefore different data in the file cache. The

data protection module may synchronize the encrypted data file and the

shadow periodically, on demand, or in response to an operation on the file

(such as a write operation) to ensure that the encrypted data file and its

shadow copy remain identical.

[01 00] Referring now to FIG. 1, shown therein is an example

embodiment of a system 100 that may be used to manage access to a

plurality of data files. System 100 is an example of a system that may conduct

process-based access policing to encrypted data. System 100 may be

implemented as part of a computer system that includes a processor, volatile

memory and non-volatile storage memory such as storage component 103.

The system 100 may include various other components not shown in FIG. 1,

such as a network interface, input devices such as a keyboard or trackpad,

and output devices such as a display and speakers.

[01 01] In some embodiments, system 100 may be implemented to

manage access to data files stored on one or more server storage

components 103 or end-user computer storage components 103. The

physical storage 103 may refer to one or more storage modules using various

forms of storage media where files can be stored, such as hard-disks,

network-disks, USB drive, CD drive, SD cards, etc.

[01 02] In general, the system 100 can manage access to protected

data files that are user-generated as contrasted with the protected code from

the kernel. That is, the protected data files (and encrypted data files) referred

to herein correspond to user generated data that is being protected, rather

than system files that are used to perform the operations of the kernel.

[01 03] In some cases, the protected data files may always be stored on

the storage component(s) 103 in an encrypted format. That is, whenever a

protected data file is stored long-term, it may be stored in the encrypted

format. The plaintext content of the protected data file may only be stored

temporarily in volatile memory of the system 100, such as in a file cache,

when being accessed by an authorized process. The plaintext content of the

protected data files may then be flushed from the cache once it is no longer

being accessed by the authorized process. This can minimize the period over

which the plaintext content of the protected data file is available.

[01 04] The system 100 may be configured to prevent data breaches

and/or known or unknown forms of attacks such as phishing and ransomware

attacks. The system 100 may also be integrated with various types of server

systems such as SharePoint, Exchange, SQL, Perforce, Web servers, etc. to

manage access to the encrypted and protected data transparently. In other

cases, system 100 may manage access to data files at the file system level

on an endpoint computer.

[01 05] In general, the kernel 120 of a computer system includes critical

codes that are loaded into a protected area of memory. These critical codes

are used for resource management such as memory and CPU, device

management such as file management for hard-disks, and system call

management.

[01 06] The data protection module, shown here as kernel level file

system filter 102, can be integrated into the file management system that

manages data files stored in physical storage component 103. For example,

the data protection module can be installed as a plug-in to the kernel 120. The

filter 102 can receive and handle file access requests from all user mode

processes of all user mode applications 101A-101 D, and perform process

authentication and authorization, among other functions.

[01 07] The user space 110 in a computer system generally refers to all

processes that are not in the kernel. These processes may have limited

access to system resources. Specifically, all user mode processes may be

required to issue system calls to the kernel in order to access system

resources such as file reading/writing.

[01 08] Each application 10 1 may have corresponding processes that

have different authorization levels in the system 100. For example, processes

corresponding to applications 10 1A may be authorized to access the plaintext

of a particular encrypted data file, processes corresponding to applications

10 B may be authorized to access only the cypher-text of a particular

encrypted data file, and processes corresponding to applications 101C may

not be authorized to access a particular encrypted data file.

[01 09] In some cases, the authorization level for a particular application

101 A (and its corresponding processes) may depend on the file being

requested. For example, processes corresponding to the Windows Word

application may be authorized to access the plaintext of a .doc file, processes

corresponding to Acrobat Reader/Writer applications may be authorized to

access the plaintext of a .pdf file, processes corresponding to the Notepad

application may be authorized to access the plaintext of a text file, processes

corresponding to Virtual Studio applications may be authorized to access the

plaintext of C/C++ files, and so on.

[01 10] Examples of the second type of process include file

synchronization applications 10 B such as Dropbox, OneDrive, GoogleDrive,

etc. To prevent the plaintext content of an encrypted data file from being

transmitted to a cloud, these file synchronization applications 10 B may only

be authorized to access the cypher-text content of protected data files so that

only the cypher-text of an encrypted data file is synchronized to the cloud.

[01 11] The third type of processes (corresponding to applications

101C) can include all processes blocked from accessing any encrypted data

files. These may include processes that have not been examined by the end

user or by an administrator of a server system.

[01 12] In some embodiments, a user-mode filter companion application

101 D may be used to provide a method for an end user to configure the

kernel level file system filter 102. This may be particularly useful when system

100 is used to provide data protection on an endpoint computer. Additionally

or alternatively, the user-mode filter companion application 101 D may

communicate with the file system filter 102 to log file access information for

data use monitoring and governance.

[01 13] In this case, a communication channel can be established

between the user-mode filter companion application 101 D and the kernel level

file system filter 102. The file system filter 102 can collect/report information

such as processes declined access to an encrypted data file back to the

application 101 D, which can in turn present an interface for the end user to

change the access permission for processes, if so desired. In such an

embodiment when an application 101 D is employed for configuring the file

system filter 102, the application 101 D may not require authorized to access

any protected files, because the application 101 D may not need to access

data from any encrypted data file.

[01 14] In some embodiments where the system 100 is employed for

data protection on a server computer, the file system filter 102 may be

configured with a fixed configuration map. Accordingly, there may be no need

for a user-mode filter companion application 101 D and user-mode application

10 1D may be omitted.

[01 15] In a server computer the kernel level file system filter 102 may

be pre-configured based on service information such as which processes are

authorized to access particular encrypted data files. For example, a web

developer may implement system 100 to protect php source code while

deploying a web service on a public web host. In this case, a web server may

call a php interpreter to execute php codes. Thus, the php interpreter can be

granted access to plain-text content of all encrypted php files, while all other

processes can be declined access to any encrypted php files. This

configuration may be predefined by the web developer and hardcoded into the

kernel level file system filter 102.

[01 16] Referring now to FIG. 2 , shown therein is a flowchart illustrating

an example method 200 for managing access to a plurality of data files in

accordance with an example embodiment. Method 200 is an example of a

method for managing access to data files stored on one or more storage

modules in a computer system such as system 100.

[01 17] The steps of method 200 may be implemented using a data

protection module 102 installed on the computer system 100. That is, the data

protection module 102 may configure the processor of the computer system

100 to perform the steps described in method 200.

[01 18] At 210, the data protection module can identify a plurality of

protected data files in the data files stored on the at least one storage module.

The data files stored on the storage module(s) can include both protected

data files and unprotected data files. Each protected data file may be stored

on the storage module(s) in an encrypted data format. This may prevent the

data in the protected data files from being breached unless it is decrypted

using the appropriate decryption key. In some cases, the data protection

module may initially identify the protected data files by identifying encrypted

data files stored on the computer system. The data protection module may

also identify the protected data files based on user input identifying specific

data files to be protected.

[01 19] At 220, the data protection module may associate each of the

protected data files with a protected file identifier. The data protection module

may subsequently distinguish the protected data files from the unprotected

data files using the protected file identifiers.

[0120] In some cases, the protected file identifier may be in the form of

a file storage location. For example, the data protection module may

associate a protected file with a protected file identifier by storing that

protected data file in a file location within a predefined file directory area that

corresponds to a protected file area.

[0121] In other cases, the protected file identifier may be associated

with a protected file by modifying data associated with the protected data file.

For example, the protected file identifier may be a protected file extension

appended to the protected data file. Additionally or alternatively, the protected

file identifier may be embedded into the file header data and/or included as a

file attribute associated with the protected data file.

[0122] At 230, a file access request can be received from a requesting

process instance operating on the computer system. In general, the

requesting process can be a process other than a kernel mode process, such

as a user-mode process. The data protection module may receive the file

access request prior to its execution e.g. by intercepting all user-mode file

access requests. The file access request can include identifying information

corresponding to a particular data file whose data content is requested by the

requesting process.

[0123] At 240, the data protection module can identify the particular

data file using the file identifying information. The data protection module can

also determine whether the particular data file is a protected data file or an

unprotected data file. For example, the data protection module may identify

protected data files by identifying the associated protected file identifier.

[0124] At 250, the data protection module can determine an

authorization level of the requesting process instance. The authorization level

may indicate a level of access to the requested file that is permitted for the

requesting process (e.g. no access, cypher-text access, or plaintext access).

[0125] The data protection module can determine the authorization

level by accessing a configuration map stored in the computer system. The

configuration map can define authorization level for a plurality of processes

that may include the process corresponding to the requesting process

instance. In some cases, the corresponding process may not be included on

the configuration map (or may not have an authorization level indicated for the

particular file). This may indicate that the requesting process instance is not

authorized to access the requested file.

[0126] The configuration map can define the authorization levels for the

processes based on characteristics of the processes themselves. That is, the

authorization level of a process instance is determined based on the

authorization level of its corresponding process (e.g. and not the specific user

accessing the process).

[0127] The configuration map can be defined to include a first group of

processes having a plaintext authorization level (either generally or for

specific data files) and a second group of processes having a cypher-text

authorization level (either generally or for specific data files). In some cases,

the configuration map may include a third group of processes whose

authorization level indicates that no access is to be provided (either generally

or for specific data files). Alternatively, the third group of processes may be

omitted from the configuration map and this omission may be used to

determine that access should be denied.

[0128] In some cases, the configuration map may be fixed prior to

receiving a file access request. This may be desirable in enterprise or server-

based implementations where processes from multiple end-users may

request data from the same data files.

[0129] Alternatively, the configuration map may be modifiable by the

data protection module. The data protection module may determine (i.e. the

configuration map may initially define) an initial authorization level of the

process corresponding to the requesting process instance. If the initial

authorization level indicates that access is to be denied, the data protection

module may display a denial notification to a user through a companion user

application installed on the computer system. The user may then provide an

input through the user application modifying the authorization level for the

corresponding process. The data protection module may then update the

configuration map based on the modification input.

[01 30] In some cases, the data protection module may authenticate a

requesting process instance prior to providing access to the requesting data

file. For instance, the configuration map may include a digital signature of the

program that is supposed to correspond to the requesting process instance.

The data protection module may access this digital signature information to

ensure that the requesting process instance is authentic.

[01 31] In some cases, the data protection module may also determine

whether additional Trojan instructions are present in the requesting process

instance. The data protection module may do so by determining that the

requesting process instance includes additional process instructions that do

not correspond to the known application program. The data protection module

may then modify the authorization level if Trojan instructions are detected.

This may deny access to the requested data for an otherwise authorized

process. This may prevent the Trojan instructions from piggybacking onto the

access granted to the authentic process.

[01 32] At 260, the requesting process instance can be provided with a

level of access to the requested data file based on the authorization level of

the corresponding process determined at 250.

[01 33] For example, the data protection module may determine that the

corresponding process has a plaintext authorization level for the requested

data file. The requesting process instance can be provided with plaintext

access to the data file by decrypting the particular data file to provide a

decrypted data file, and then temporarily storing the decrypted data file in the

computer system cache. The requesting process instance may then access

the decrypted data in the cache.

[01 34] In some cases, the authorization level of the corresponding

process may be determined to be a cypher-text authorization level. The

requesting process instance may then be provided with access to the

particular data file in the encrypted format.

[01 35] In some cases, providing the requesting process instance with a

level of access may include denying access to the requested data file if the

corresponding process is not authorized. For example, the authorization level

of the corresponding process for the particular data file may be determined to

be neither a plaintext authorization level nor a cypher-text authorization level.

Providing the requesting process instance with the level of access to the

particular data file may then include denying the requesting process instance

access to the particular data file.

[01 36] In some cases, the data protection module may also determine

an authorization type for the requesting process instance. For instance, the

configuration map may define authorization types for one or more processes.

The authorization type may define one or more file operations (e.g. read,

write, read/write) that the requesting process is permitted to perform in

respect of the requested data file. Providing the requesting process instance

with access to the requested data may then include permitting the requesting

process instance to perform the file operations associated with the determined

authorization type and preventing the requesting process instance from

performing operations excluded from the authorization type.

[01 37] In some cases, protected data files may only be stored on the

system in an encrypted format. That is, the protected data files may only be

decrypted temporarily in the computer system cache. Once an authorized

process no longer requires access to the decrypted data file, the data

protection module may flush the decrypted data from the cache to prevent

unauthorized access.

[01 38] In some cases, the data protection module may receive a

second file access request for a particular data file. The second file access

request may be received from a second process operating on the computer

system while a first requesting process is being provided a first level of access

to the particular data file. The data protection module may then determine the

authorization level of the second process in a manner analogous to the first

process.

[01 39] In some cases, if the data protection module determines that the

authorization level of the second process is different from the level of access

provided to the first process, the second process can be denied access to the

particular data file.

[0140] In other cases, if the data protection module determines that the

authorization level of the second process is different from the level of access

provided to the first process, the data protection module may generate a copy

of the particular data file being requested. The data protection module may

then provide the second process with the corresponding level of access to the

copy of the data file.

[0141] Referring now to FIG 3 , shown therein is an example method

300 for managing requests to read data from a data file stored on system 100.

Method 300 may be implemented using the data protection module 102, for

example, as a sub-process in implementations of method 200.

[0142] At 302, a read request is received from a requesting process P

having a corresponding process ID. The read request also includes file

identifying information enabling the data protection module to identify the data

file F being requested (e.g. by identifying the file path of the data file). The

data protection module may also identify requested data D from the file F that

is being requested by process P. In the example shown in FIG. 3 , the

requested process P may be any process currently executing in the computer

system while the requested file F may be any data file stored on a storage

module 103 in the computer system 100.

[0143] In general, the output from method 300 may be one of a valid

data buffer (containing either the plaintext content of the target file or the

cypher-text content of the target file) and a denial of access (And potentially a

user indication of denial) depending on the authorization level of the process

P, and whether the file F is a protected data file.

[0144] At 304, the data protection module can determine if the

requested file is a protected data file. In some cases, the data protection

module may determine if the requested file is protected based on the file path.

This may be the case where all encrypted data files are stored in a known

"protected" directory location. Accordingly, a protected file may be identified

by determining that the file path of the requested file is within the "protected"

directory location.

[0145] Additionally or alternatively, the data protection module may

identify modifications to data associated with the requested file. For instance,

a protected file extension may be appended to each protected data file and

used to identify the protected data files.

[0146] Additionally or alternatively, a protected token may be stored in

the file header or in any side stream that accompanies a protected file in the

file system. The data protection module may then identify the presence of the

protected token to determine that the requested file is a protected file. In some

cases, particularly when all protected files have been previously identified, the

data protection module may store the file paths of all protected files. The data

protection module may then use the file path of the requested file to determine

if it is a protected file.

[0147] If it is determined that the requested file is a protected file (i.e.

when F is in the "protected zone") method 300 proceeds to step 306. At 306,

the data protection module can determine if the requesting process is

authorized to access the plaintext content of the requested file by accessing

the configuration map 330. If the requesting process is authorized, the data

protection module can decrypt the file F and return the plaintext content of the

requested data to the requesting process at 308.

[0148] To decrypt the requested file, the data protection module may

example encryption key generation methods such as those described herein

(and in US Patent Application No. 15/178,680) to obtain the file encryption key

and decrypt the file. The obtained plaintext content can then be returned back

to the calling process through a data buffer D.

[0149] As mentioned herein above, a file encryption key may be

cached in some embodiments. As such, the encryption key generation

method may be employed only once when an encrypted data file is opened to

obtain the encryption key, which can be used many times for file reading

operations. This may facilitate multiple read operations for the same data file.

[01 50] If the data protection module determines at 306 that the

requesting process is not authorized to access the plaintext content, the

method can proceed to 310. At 3 10 , the data protection module can

determine if the requesting process is authorized to access the cypher-text

content of the requested file by accessing the configuration map 330. If the

requesting process is authorized to access the cypher-text, the data

protection module can return the requested data from the file F to the

requesting process at 312 in its encrypted format.

[01 51] If the data protection module determines at 310 that the

requesting process is not authorized to access the cypher-text content, the

method can deny the requesting process access to the requested file at 314.

In some cases (e.g. where a user-side companion application is used), the

data protection module can provide an indication to the user that the

requesting process has been denied access. The user may, in some cases,

be permitted to modify the authorization level of the requesting process using

the user-side companion application.

[01 52] This may enable the configuration map to be updated in rea l

time or on the fly through a channel between the data protection module and

the user-mode filter companion application. In other cases, the configuration

map may be fixed and hardcoded, e.g., when all programs to be authorized to

access the encrypted data are known in the system.

[01 53] In some cases, prior to determining the authorization level of the

requesting process, the data protection module may authenticate the

requesting process to ensure that it has not been corrupted by any malware

instructions, such as Trojans. The requesting process P can be first identified

through the process authentication procedure described in embodiments

herein, for instance using a digital signature of an authentic process that may

be stored in the configuration map. Once the requesting process is

authenticated, the data protection module may then determine the

authorization level for that process. If the process is determined to not be

authentic, or to include Trojan instructions, its authorization level can be

modified to deny access to the requested data.

[01 54] In some cases, if the requested file is not a protected file (i.e. F

is not in the protected zone) the data protection module may return the

requested file content back to the requesting process. In some cases,

however, such as when the requesting process is determined to be authorized

to access the plaintext of other protected files (as at 3 18), the data protection

module may analyze the unprotected file (as at 320) before providing the

requesting process with access to the unprotected file at 324 if the

unprotected file does not contain malicious code. This may prevent the

requesting process from being corrupted, e.g. by Trojans that may be

contained within the unprotected process. For instance, the data protection

module deny a requesting process access to a requested file at 322, if that

requesting process is authorized to access the plaintext content of encrypted

data and the data protection module determines at 320 that the requested file

is an unencrypted data file that contains Trojan codes.

[01 55] As a skilled reader will appreciate, the order of the steps shown

in method 300 may be varied in different embodiments. For instance,

determining the authorization level of a requesting process may occur prior to

determining whether the requested file is a protected file. In general, the data

protection module may assess two criteria (process authorization level and file

protection status) and manage the various combinations of those criteria.

Method 300 is one example of a method for managing data access using

those criteria.

[01 56] Referring now to FIG 4, shown therein is an example method

400 for managing requests from a process P to write data D to a requested

file F. Method 400 is an example of process that may be implemented by data

protection module 102 in system 100.

[01 57] At 402 a request can be received from a requesting process to

write data to a requested file. The request can include file identifying

information of the requested file. At 404, the data protection module can

determine whether the requested file is a protected file. In general, method

400 may determine if the requested file is protected in a manner analogous to

methods 200 and 300 described herein above. If the file is unprotected, then

method 400 may proceed to 418 where the process is permitted to write the

data to the unprotected file. The updated file may then be provided to the

requesting process.

[01 58] Method 400 may also perform process authentication and

authorization for reading and writing operations the same manner as

described herein above, e.g. with reference to methods 200 and 300. As with

method 300, method 400 can determine at 406 whether the requesting

process is authorized to access plaintext content of the protected data file

using the configuration map 330.

[01 59] If the process is authorized for plaintext access, the data

protection module can permit the data from the process to be encrypted and

stored as part of the protected file that is stored on the storage component

103 in cypher-text. If the process is not authorized for plaintext access, but is

determined at 410 to be authorized for cypher-text access, the data protection

module can permit the requesting process to receive the file in cypher-text

format and write data to that file in cypher-text at 412. If the process is also

not authorized for cypher-text access, the data protection module can deny

access at 414 and may provide an indication of the denial at 416.

[0160] In other words, the authorization of a process for the plaintext

content of a file can result in both reading and writing operations by this

process being performed using data in a plaintext format (this process can

obtain plaintext from the reading operation and send out plaintext for writing).

In contrast, the authorization of a process for only the cypher-text content of

the file can result in both reading and writing operations by this process being

performed using data in the cypher-text format (this process can obtain

cypher-text from the reading operation and send out cypher-text for writing).

[0161] Method 400 differs from method 300 in that the data D coming

from process P at 402 is to be written to a data file F while in method 300 data

D is to be read from file F and returned to process P . In some cases, the data

D in method 400 may have been in the encrypted format, e.g., when P is a

process that is authorized to access cypher text content of an encrypted data

file and obtains D by reading it from an encrypted data file. One example may

be a cloud application that is synchronizing some encrypted data files. In this

case, the data D from the cloud application may be in the encrypted format

and can be written to the disk directly.

When a process that is authorized to access plaintext content requests to

write to a protected data file, the data protection module may use the various

methods described herein for generating encryption keys for existing

encrypted data files (if the file already exists) or methods for generating

encryption keys for newly created encrypted data files (if the file does not

already exist). The obtained key can then be used to encrypt the input data D

from the process P and the resulting cypher-text can be written to the file F in

the physical storage module 103.

[0162] In some cases, to enhance the file writing efficiency, the file

encryption key may be cached as described herein above. As such, the

encryption key generation method may be employed only once when an

encrypted data file is opened or is newly created to obtain the encryption key,

which can be used repeatedly for write operations.

[0163] The data protection module may also implement encrypted-file

cache management methods described herein above to manage cache

conflicts and potential cache conflicts. For example, when a process that is

authorized to access the plaintext content of a protected file accesses that

encrypted data file, the plaintext content of that file may be stored in the file

cache. Alternatively, when a process that is authorized to access the cypher-

text content of a protected file accesses that encrypted data file, the file cache

may be filled with the cypher-text content of the encrypted data file.

Accordingly, cache management techniques (e.g. using counters and/or

shadow copies) may be used to manage and prevent unauthorized processes

from accessing data associated with encrypted data files.

[0164] In some cases, the data protection module may be implemented

using a two-layer design. For example, the process-based access policing

system including the encrypted-file management, process authentication and

authorization and Trojan detection for authorized processes, may be

implemented on a first upper layer, while encryption and decryption functions

including the encryption key generating and caching and the encrypted-file

cache management may be implemented on a second lower layer below the

top layer.

[0165] Furthermore, a skilled reader will appreciate that the

combination of functionalities implemented in a particular data protection

module may depend on factors such as the kind of data files to be encrypted

and protected, the kind of processes to be authorized for various authorization

levels, the type of computer system, e.g., a server computer or an endpoint

computer, and so forth.

[0166] For example, the data protection module may be configured to

protect a specific subset of files (a plurality of protected files) stored on a

server computer and only allow certain processes to access those protected

files. Referring now to FIG 5, shown therein is an example of a method 500

that may be implemented by a data protection module to protected data files

stored on a server computer. For example, method 500 may be implemented

to provide source code protection for securing scripting code files on a server

computer. Such an implementation may be provided in connection with

deploying a service using a scripting language to a public host computer or

untrusted host computer, where it can be desired for the scripting source code

files to be protected.

[0167] In some cases, the data protection module may only handle file

read operations because the protected files may have been encrypted in

advance and need not be changed when they are used in the server system.

Thus, the data protection module may not be required to manage file writing

operations.

[0168] Additionally or alternatively, the processes to be authorized may

have been determined in advance and there may be no need to communicate

with any user-mode filter companion application, either to report some denial

of access or to update a configuration map. That is, the configuration map

may be fixed.

[0169] The data protection module may respond to each request for file

access received at 502. For example, the request may include a process ID

P, file identifying information for a file F including the corresponding file path,

and a data buffer D as one possible output from the data protection module to

the requesting process.

[01 70] At 504, the data protection module may determine if the

requested file F is a protected data file. In an example system for protecting

scripting source code files, all files may be encrypted and stored in a fixed

directory. Accordingly, the data protection module may determine that the

requested file is a protected file by determining if the requested file is stored

within this fixed directory. In another case where encrypted data file may be

stored in various locations, yet the number of files is small, another method for

detecting whether the file F is a protected file can be to hardcode the fixed file

paths of all source code files in a list in the data protection module and

determine if F is in the list or not.

[01 71] If the requested file is a protected file, and the data protection

module determines at 506 that the requesting process is authorized to access

the plaintext content, the data protection module may decrypt the file F and

return the plaintext content to the requesting process at 508. If the requesting

process is not authorized to access the plaintext content of the requested file,

the data protection module can deny access to the requesting file at 510.

[01 72] When the requested file F is not a protected data file, the data

protection module may either conduct a Trojan detection at 514 if the

requesting process is determined at 512 to be authorized to access the

plaintext content of encrypted data files. If Trojan instructions are detected at

514, access to the unprotected file can be denied at 516. If a Trojan is not

detected and/or the requesting process is not authorized to access the

plaintext content of encrypted data files, the data protection module may

permit the requesting process to access the unprotected file.

[01 73] In embodiments of a scripting source code files protection

system, only the script interpreter may be authorized to access the plaintext

content of any encrypted data files. Accordingly, the interpreter program path

and its digital signature may be hardcoded in the data protection module to

facilitate process authentication and authorization.

[01 74] The Trojan detection methods, as described in embodiments

herein, can be applied to prevent an authorized process from executing any

script codes that are not encrypted, so that no such script code may be used

to abuse the authorization level of process P to breach the plaintext content of

protected files. In this scenario, all legitimate script code files can have been

encrypted and stored as protected files. The data protection module can then

prevent the interpreter from accessing any other script code files to prevent

the execution of harmful script codes that may jeopardize the security of the

encrypted data files.

[01 75] Another example implementation may be to protect data such

as SQL data stored on a server computer. For example, an implementation

for an SQL file protection system may include the following functionalities:

• The data protection module may manage file write operations for

encrypted data files to enable a SQL files to be modified and re-

encrypted. Accordingly, methods of encryption key generation for

existing encrypted data files and encryption key generation for newly

created encrypted data files can be employed.

• The data protection module may also secure all protected files in a

defined directory location or locations. This may be facilitated because

in a SQL server a given location is usually specified for storing SQL

data files.

· The data protection module may also hardcode process authentication

and authorization data to authorize only two processes to access

plaintext content of data files, i.e., the SQL process to access the

plaintext content and a backup service process to access the cypher-

text content. As there may be switches between plaintext and cypher-

text in the file cache, encrypted-file cache management methods

described herein can be used. If the process authentication and

authorization data is hardcoded, the configuration map can be fixed so

there is no need to include functionality to update the configuration

map. Nonetheless, a channel between the data protection module and

a user-mode filter companion application may still be included to report

the denial of access events. This may facilitate recording illegal

attempts in a log file for data use monitoring and auditing.

[01 76] It will be understood by persons skilled in the art that a system

similar to the above one may be employed to protect data on a Share-point

server, a Perforce server, a mail server such as Exchange, etc. In these

servers, specific processes can be authorized to access the plaintext content

of some specific data files. Accordingly, implementations similar to that

described for the SQL server may be used.

[01 77] An example implementation of a data protection system for an

endpoint computer as described herein may include the following

functionalities:

• The data protection module may implement both file reading

management and file writing management methods for encrypted data

files. Accordingly, methods of encryption key generation for existing

encrypted data files and encryption key generation for newly created

encrypted data files can be employed.

• The data protection module may also allow end users to store their

protected files in any locations, rather than to be constrained in certain

specific folders. The data protection module may then generate a

directory tree to identify protected data files.

• The data protection module may permit the configuration map to be

updated and/or modified by a user. For instance, a duplex channel

between the data protection module and a user-mode filter companion

application can be provided to allow end users to change the

configuration map.

• The data protection module may permit one process to access the

plaintext content of an encrypted data file at one time and another

process to access the cypher-text content of this encrypted data file at

another time. Accordingly, the data protection module may manage the

file cache, using encrypted-file cache management methods described

herein above. For example, the end user may have encrypted data files

in a cloud application, such as Dropbox, GoogleDrive, or OneDrive. For

those encrypted data files, their cypher-text accessibility can be

authorized for the cloud application so that the cloud application can

synchronize the encrypted data files to the cloud in an encrypted

format. Plaintext content authorization can be granted to other

applications such as those used to handle those types of files locally

(e.g. Acrobat for a pdf file) so that the end user can interact with those

files as usual.

[01 78] The embodiments described herein may be implemented as

systems, methods, devices and computer program products that provide data

protection using process-based encrypted data access policing.

[01 79] Various embodiments of methods for data protection have been

described. These include encrypted-file management, process authentication

and authorization, Trojan detection for authorized processes, encryption key

generation and caching, and encrypted-file cache management. Based on

these methods, some process-based encrypted data policing systems are

described for data protection against data breaches and known or unknown

attacks including ransomware or phishing attacks on either a server system or

an endpoint computer.

[01 80] A number of example embodiments have been described

herein. However, it will be understood by persons skilled in the art that other

variations and modifications may be made without departing from the scope of

the embodiments as defined in the claims appended hereto.

We claim:

1. A method for managing access to a plurality of data files stored on at least

one storage module in a computer system using a data protection module

installed on the computer system, the method comprising:

identifying, by the data protection module, a plurality of protected data

files in the plurality of data files stored on the at least one storage module,

wherein the plurality of data files stored on the at least one storage module

includes the plurality of protected data files and a plurality of unprotected data

files, and wherein each protected data file in the plurality of protected data

files is stored on the at least one storage module in an encrypted format;

associating each of the protected data files stored on the at least one

storage module with a protected file identifier;

receiving, by the data protection module, a file access request from a

requesting process instance operating on the computer system, wherein the

file access request includes file identifying information corresponding to a

particular data file in the plurality of data files;

identifying, by the data protection module, the particular data file from

the file identifying information;

determining, by the data protection module, that the particular data file

is one of the protected data files by identifying the associated protected file

identifier;

determining, by the data protection module, an authorization level of

the requesting process instance based on a process authorization level of a

corresponding process determined by accessing a configuration map stored

on the at least one storage module that defines authorization levels of a

plurality of processes; and

providing the requesting process instance with a level of access to the

particular data file based on the determined authorization level of the

requesting process instance.

2 . The method of claims 1, wherein the configuration map defines a first group

of processes from the plurality of processes having a plaintext authorization

level, and a second group of processes from the plurality of processes having

a cypher-text authorization level.

3 . The method of any one of claims 1 and 2 , wherein:

the process authorization level of the corresponding process for the

particular data file is determined to be a plaintext authorization level; and

providing the requesting process instance with the level of access to

the particular data file comprises:

decrypting the particular data file to provide a decrypted data

file;

temporarily storing the decrypted data file in the cache of the

computer system; and

providing the requesting process instance with access to the

decrypted data file in plaintext.

4 . The method of any one of claims 1 and 2 , wherein:

the process authorization level of the corresponding process for the

particular data file is determined to be a cypher-text authorization level; and

providing the requesting process instance with the level of access to

the particular data file comprises providing the requesting process instance

with access to the particular data file in the encrypted format.

5 . The method of any one of claims 1 and 2 , wherein:

the process authorization level of the corresponding process for the

particular data file is determined to be neither a plaintext authorization level

nor a cypher-text authorization level; and

providing the requesting process instance with the level of access to

the particular data file comprises denying the requesting process instance

access to the particular data file.

6 .The method of any one of claims 1 to 5 , wherein, for each of at least one

protected data file,

associating that protected data file with the protected file identifier

comprises storing that protected data file in a file location within a predefined

file directory area on the at least one storage module; and

the protected file identifier for that protected data file is the predefined

file directory area.

7 . The method of any one of claims 1 to 5 , wherein, for each of at least one

protected data file,

associating that protected data file with the protected file identifier

comprises modifying data associated with the encrypted data file to include

the protected file identifier.

8 . The method of any one of claims 1 to 7 , wherein:

prior to providing the requesting process instance with the level of

access, authenticating the requesting process instance by:

determining an application program associated with the

corresponding process;

determining that the requesting process instance includes

additional process instructions that do not correspond to the known

application program; and

modifying the determined authorization level whereby the

providing the requesting process instance with the level of access to

the particular data file comprises denying the requesting process

instance access to the particular data file.

9 . The method of claim 2 , wherein the configuration map is defined by:

identifying a first plurality of application programs permitted to access

files in a plaintext format;

defining the first group of processes as the processes in the plurality of

processes that correspond to the first plurality of application programs;

identifying a second plurality of application programs permitted to

access files in a cypher-text format; and

defining the second group of processes as the processes in the

plurality of processes that correspond to the second plurality of application

programs.

10. The method of any one of claims 2 and 9 , wherein the configuration map

is fixed prior to receiving the file access request.

11. The method of any one of claims 2 and 9 , further comprising:

determining, by the data protection module, an initial process

authorization level of the corresponding process by accessing the

configuration map, wherein the initial authorization level indicates that the

corresponding process is to be denied access to the particular data file;

displaying a denial notification through a user application installed on

the computer system;

receiving a modification input through the user application in response

to the denial notification; and

updating, by the data protection module, the configuration map based

on the modification input to change the initial authorization level of the

corresponding process.

12. The method of any one of claims 1 to 11, further comprising

determining, by the data protection module, an authorization type of the

requesting process instance based on a process authorization type of the

corresponding process by accessing the configuration map, the authorization

type defining at least one file operation that the requesting process instance is

permitted to perform;

wherein providing the requesting process instance with the level of

access to the particular data file comprises permitting the requesting process

instance to perform operations on the particular data file in accordance with

the determined authorization type and preventing the requesting process from

performing operations excluded from the authorization type.

13 . The method of any one of claims 1 to 12 , further comprising:

receiving, by the data protection module, a second file access request

from a second process instance operating on the computer system while the

requesting process instance has the level of access to the particular data file,

wherein the second file access request includes file identifying information

corresponding to the particular data file;

determining that the authorization level of the process corresponding to

the second process instance is different from the level of access provided to

the process corresponding to the requesting process instance; and

denying the second process instance access to the particular data file.

14 .The method of any one of claims 1 to 12, further comprising:

receiving, by the data protection module, a second file access request

from a second process instance operating on the computer system while the

requesting process instance has the level of access to the particular data file,

wherein the second file access request includes file identifying information

corresponding to the particular data file;

determining that the authorization level of the process corresponding to

the second process instance is different from the level of access provided to

the process corresponding to the requesting process instance;

generating a copy of the particular data file; and

providing the second process instance with the second level of access

to the copy of the particular data file.

15. A system for managing access to a plurality of data files, the system

comprising:

a processor;

at least one storage module coupled to the processor, the at least one

storage module storing the plurality of data files and a data protection module;

wherein the processor is configured by the data protection module to:

identify a plurality of protected data files in the plurality of data

files stored on the at least one storage module, wherein the plurality of data

files stored on the at least one storage module includes the plurality of

protected data files and a plurality of unprotected data files, and wherein each

protected data file in the plurality of protected data files is stored on the at

least one storage module in an encrypted format;

associate each of the protected data files stored on the at least

one storage module with a protected file identifier;

intercept a file access request from a requesting process

instance operating on the processor, wherein the file access request includes

file identifying information corresponding to a particular data file in the plurality

of data files;

identify the particular data file from the file identifying

information;

determine that the particular data file is one of the protected

data files by identifying the associated protected file identifier;

determine an authorization level of the requesting process

instance based on a process authorization level of a corresponding process

determined by accessing a configuration map stored on the at least one

storage module that defines authorization levels of a plurality of processes;

and

provide the requesting process instance with a level of access to

the particular data file based on the determined authorization level of the

requesting process instance.

16. The system of claim 15, wherein the configuration map defines a first

group of processes from the plurality of processes having a plaintext

authorization level, and a second group of processes from the plurality of

processes having a cypher-text authorization level.

17. The system of any one of claims 15 and 16, wherein:

the process authorization level of the corresponding process for the

particular data file is determined to be a plaintext authorization level; and

the processor is configured by the data protection module to provide

the requesting process instance with the level of access to the particular data

file by:

decrypting the particular data file to provide a decrypted data

file;

temporarily storing the decrypted data file in the cache of the

computer system; and

providing the requesting process instance with access to the

decrypted data file in plaintext.

18. The system of any one of claims 15 and 16, wherein:

the process authorization level of the corresponding process for the

particular data file is determined to be a cypher-text authorization level; and

the processor is configured by the data protection module to provide

the requesting process instance with the level of access to the particular data

file by providing the requesting process instance with access to the particular

data file in the encrypted format.

19. The system of any one of claims 15 and 16, wherein:

the process authorization level of the corresponding process for the

particular data file is determined to be neither a plaintext authorization level

nor a cypher-text authorization level; and

the processor is configured by the data protection module to provide

the requesting process instance with the level of access to the particular data

file by denying the requesting process instance access to the particular data

file.

20.The system of any one of claims 15 to 19 , wherein, for each of at least one

protected data file, the processor is configured by the data protection module

to:

associate that protected data file with the protected file identifier by

storing that protected data file in a file location within a predefined file

directory area on the at least one storage module;

wherein the protected file identifier for that protected data file is the

predefined file directory area.

2 1. The system of any one of claims 15 to 19, wherein, for each of at least

one protected data file, the processor is configured by the data protection

module to:

associate that protected data file with the protected file identifier by

modifying data associated with the encrypted data file to include the protected

file identifier.

22. The system of any one of claims 15 to 2 1, wherein:

the processor is configured by the data protection module to, prior to

providing the requesting process instance with the level of access,

authenticate the requesting process instance by:

determining an application program associated with the

corresponding process;

determining that the requesting process instance includes

additional process instructions that do not correspond to the known

application program; and

modifying the determined authorization level whereby the

providing the requesting process instance with the level of access to

the particular data file comprises denying the requesting process

instance access to the particular data file.

23. The system of claim 16, wherein the processor is configured by the data

protection module to define the configuration map by:

identifying a first plurality of application programs permitted to access

files in a plaintext format;

defining the first group of processes as the processes in the plurality of

processes that correspond to the first plurality of application programs;

identifying a second plurality of application programs permitted to

access files in a cypher-text format; and

defining the second group of processes as the processes in the

plurality of processes that correspond to the second plurality of application

programs.

24. The system of any one of claims 16 and 23, wherein the configuration

map is fixed prior to receiving the file access request.

25. The system of any one of claims 16 and 23, wherein the processor is

configured by the data protection module to:

determine an initial process authorization level of the corresponding

process by accessing the configuration map, wherein the initial authorization

level indicates that the corresponding process is to be denied access to the

particular data file;

display a denial notification through a user application installed on the

computer system;

receive a modification input through the user application in response to

the denial notification; and

update the configuration map based on the modification input to

change the initial authorization level of the corresponding process.

26. The system of any one of claims 15 to 25, wherein the processor is

configured by the data protection module to:

determine an authorization type of the requesting process instance

based on a process authorization type of the corresponding process by

accessing the configuration map, the authorization type defining at least one

file operation that the requesting process instance is permitted to perform; and

provide the requesting process instance with the level of access to the

particular data file by permitting the requesting process instance to perform

operations on the particular data file in accordance with the determined

authorization type and preventing the requesting process from performing

operations excluded from the authorization type.

27. The system of any one of claims 15 to 26, wherein the processor is

configured by the data protection module to:

receive a second file access request from a second process instance

operating on the computer system while the requesting process instance has

the level of access to the particular data file, wherein the second file access

request includes file identifying information corresponding to the particular

data file;

determine that the authorization level of the process corresponding to

the second process instance is different from the level of access provided to

the process corresponding to the requesting process instance; and

deny the second process instance access to the particular data file.

28.The system of any one of claims 15 to 26, wherein the processor is

configured by the data protection module to:

receive a second file access request from a second process instance

operating on the computer system while the requesting process instance has

the level of access to the particular data file, wherein the second file access

request includes file identifying information corresponding to the particular

data file;

determine that the authorization level of the process corresponding to

the second process instance is different from the level of access provided to

the process corresponding to the requesting process instance;

generate a copy of the particular data file; and

provide the second process instance with the second level of access to

the copy of the particular data file.

29. A computer program product for managing access to a plurality of data

files stored on at least one storage module in a computer system, the

computer program product comprising a non-transitory computer readable

medium having computer-executable instructions stored thereon, the

instructions for configuring a processor to:

identify a plurality of protected data files in the plurality of data files

stored on the at least one storage module, wherein the plurality of data files

stored on the at least one storage module includes the plurality of protected

data files and a plurality of unprotected data files, and wherein each protected

data file in the plurality of protected data files is stored on the at least one

storage module in an encrypted format;

associate each of the protected data files stored on the at least one

storage module with a protected file identifier;

receive a file access request from a requesting process instance

operating on the computer system, wherein the file access request includes

file identifying information corresponding to a particular data file in the plurality

of data files;

identify the particular data file from the file identifying information;

determine that the particular data file is one of the protected data files

by identifying the associated protected file identifier;

determine an authorization level of the requesting process instance

based on a process authorization level of a corresponding process

determined by accessing a configuration map stored on the at least one

storage module that defines authorization levels of a plurality of processes;

and

provide the requesting process instance with a level of access to the

particular data file based on the determined authorization level of the

requesting process instance.

30. The computer program product of claim 29, further comprising instructions

for configuring the processor to perform the method of any one of claims 2 to

14.

International application No.
INTERNATIONAL SEARCH REPORT PCT/CA2017/051202

CLASSIFICATION OF SUBJECT MATTER
IPC: G06F 21/62 (2013.01) , G06F 21/30 (2013.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC: G06F 21/62 (2013.01) , G06F 21/30 (2013.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Databases: Google Patent; QuesTel/Orbit; Canadian Patent Database
Search terms used: data protection; storage; protected file; encrypted; authorization level; processes; file access request; file identifier;
validating request; level of access; application program; plaintext; cypher; storage; configuration map; bicdroid; en-hui yang; xiang yu; jin meng

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2016/0072796 Al (ADAM, P. et al.) 10 March 2016 (10-03-2016)
* paragraphs [0004], [0010], [0021], [0024], [0026], [0028], [0034], [0036], [0039], [0044],
[0054]-[0056], [0067]-[0068], [0070], [0077]*

US 2012/0297188 Al (van der LINDEN, R.) 22 November 2012 (22-1 1-2012)
* paragraphs [0104], [0109], [0134]-[0135], [0161], [0187]-[0188]*

US 2004/0093506 Al (GRAWROCK, D. et al.) 13 May 2004 (13-05-2004)
* paragraph [0062] and Page 19, claim 28*

17 Further documents are listed in the continuation of Box C. . See patent family annex.

Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than "&" document member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
14 December 2017 (14-12-2017) 15 January 2018 (15-01-2018)

Name and mailing address of the ISA CA Authorized officer
Canadian Intellectual Property Office
Place du Portage I, CI 14 - 1st Floor, Box PCT Albert Lau (819) 639-8191
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 819-953-2476

Form PCT/ISA/210 (second sheet) (January 2015) Page 2 of 4

International application No.
INTERNATIONAL SEARCH REPORT PCT/CA2017/051202

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 5,699,428 (McDONNAL, W. et al.) 16 December 1997 (16-12-1997)
* entire document

US 2007/0061867 Al (SHINOHARA, M. et al.) 15 March 2007 (15-03-2007)
* entire document

US 2011/0035783 Al (TERASAKI, H. et l.) 10 February 201 1 (10-02-201 1)
* entire document

Form PCT/ISA/210 (continuation of second sheet) (January 2015) Page 3 of 4

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/CA2017/051202

Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date

US2016072796A1 10 March 201 6 (10-03-201 6) US9825945B2 2 1 November 201 7 (21-1 1-2017)
CN106605232A 26 April 2017 (26-04-2017)
EP3192002A2 19 July 2017 (19-07-201 7)
JP2017527919A 2 1 September 201 7 (21-09-2017)
WO2016040204A2 17 March 201 6 (17-03-2016)
WO2016040204A3 09 June 2016 (09-06-2016)

US201 22971 88A1 22 November 201 2 (22-1 1-2012) US8443456B2 14 May 2013 (14-05-2013)
CN103649950A 19 March 2014 (19-03-2014)
CN103649950B 3 1 October 201 7 (31 -10-201 7)
EP2710500A1 26 March 2014 (26-03-2014)
EP2710500A4 05 November 2014 (05-1 1-2014)
WO20121 6 1980A1 29 November 201 2 (29-1 1-2012)

US2004093506A1 13 May 200 (13-05-2004) US7594276B2 22 September 2009 (22-09-2009)
AT252248T 15 November 2003 (15-1 1-2003)
CA2325621A1 30 September 1999 (30-09-1999)
DE69912109D1 20 November 2003 (20-1 1-2003)
EP1 066554A1 10 January 2001 (10-01-2001)
EP1 066554B1 15 October 2003 (15-10-2003)
US2001 044901 A 1 22 November 2001 (22-1 1-2001)
WO9949380A1 30 September 1999 (30-09-1999)
WO9949380A8 29 December 1999 (29-1 2-1999)

US5699428A 16 December 1997 (16-1 2-1997) CA2242876A1 24 July 1997 (24-07-1 997)
CA2242876C 14 March 2006 (14-03-2006)
EP1 008249A1 14 June 2000 (14-06-2000)
EP1 008249A4 2 1 September 2005 (21-09-2005)
US5796825A 18 Aug ust 1998 (1 8-08- 1998)
W09726736A1 24 July 1997 (24-07-1 997)

US2007061 867A1 15 March 2007 (15-03-2007) JP2007041631A 15 February 2007 (15-02-2007)

US201 1035783A1 10 February 201 1 (10-02-201 1) CN101960465A 26 January 201 1 (26-01-201 1)
JPWO20091 10275A1 14 July 201 1 (14-07-201 1)
JP5429157B2 26 February 2014 (26-02-2014)
WO20091 10275A1 11 September 2009 (1 1-09-2009)

Form PCT/ISA/2 10 (patent family annex) (January 201 5) Page 4 of 4

	abstract
	description
	claims
	drawings
	wo-search-report

