

APPARATUS FOR HIGH-VACUUM DISTILLATION

Filed June 15, 1936





## UNITED STATES PATENT OFFICE

2,137,553

APPARATUS FOR HIGH-VACUUM DISTILLA-TION

Brian Edmund Allen Vigers, Dunstable, and John Lewis McCowen, Northwich, England, assignors to Imperial Chemical Industries Limited, a corporation of Great Britain

Application June 15, 1936, Serial No. 85,410 In Great Britain June 14, 1935

7 Claims. (Cl. 202-205)

(Granted under the provisions of sec. 14, act of March 2, 1927; 357 O. G. 5)

The invention relates to an improved apparatus for carrying out short-path high-vacuum distillation.

The general conditions for carrying out distillations of this type are, firstly that the distillation is effected under an extremely high vacuum of the order of 10-2 to 10-5 mms. of mercury, and secondly that the evaporating and condensing surfaces inside the still are in close proximity, 10 usually about 1 to 5 cms. apart. It is known to construct the evaporating and condensing surfaces as vertical surfaces, down which flow respectively the liquid to be distilled and the condensate, either by employing a concentric tube 15 arrangement or by employing flat-surfaced plates or blocks. In such apparatus it is desirable that there should be ready access to the interior and working parts of the still including all joints subjected to high vacuum on one side, that the mini-20 mum number of such joints should be used, and that the various control points should be conveniently situated. The present invention provides a construction of apparatus which meets these desiderata, and is, in general, an improve-25 ment over existing types of still.

According to the invention, an apparatus for effecting short-path high-vacuum distillation comprises a number of parallel plates or blocks, the faces of which provide the evaporating and 30 condensing surfaces, the said plates or blocks being supported in a vertical or inclined position, from a headstock, that is a combined support and closure member, through which substantially all pipe and other connections necessary for 35 the working of the still are made, while the assembly of plates or blocks together with their attendant feeding and collecting apparatus is enclosed by a vacuum-tight casing, preferably a cylindrical casing, making a single vacuum-tight 40 joint at the headstock. The plates or blocks are suitably formed with tubular or hollow passages in order to permit of the passage of heating or cooling media. Where the headstock is arranged vertically and the casing is horizontal, it may be 45 mounted on wheels running on rails, so that it may be easily retracted for inspection.

An advantageous form of the invention will now be described with reference to the accompanying drawing in which Figures 1 and 2 are diagram-50 matic sectional side and end elevations respectively of the apparatus.

The evaporating plates 1 and the condensing plates 2 are carried in the desired positions by the cantilever truss 3, which is attached to the 55 headstock frame 4. The whole assembly of plates

is enclosed by a cylindrical casing 5, which makes a vacuum-tight joint at 6 with the headstock. The headstock thus serves as a closure for the casing as well as a support for the plates.

The arrangement of rectangular plates in a 5 casing of circular cross-section provides four segmental spaces around the plate assembly. In the upper segmental space are provided troughs 7, 8 and 9. The material to be distilled is fed into the main trough 7 by the pipe 10 passing through the 10 headstock 4, and is thence distributed by the troughs 8 and 9 to the tops of the evaporating plates 1. Troughs 30 are provided integral with or attached to the tops of the evaporating plates and the feed to the latter is by a series of weir 15 notches 31 (Fig. 2) along each side of the top in order to provide even distribution over both faces of the plates. It is advantageous to have the condensing plates rather larger than the evaporating plates, the top edges of the former having 20 ridges as indicated at 32 arranged to act as baffles to catch molecules escaping from the ends of the evaporating plates, and from the gap between the plates, into the evacuated space, which would not otherwise strike the cooling surfaces. This ar- 25 rangement of the condensing plates also facilitates the attaining of the necessary high vacuum.

In the lower segmental space are provided collecting troughs 11 and 12 respectively for the residues from the evaporating plates and distillates from the condensing plates. These troughs are drained respectively by the residue manifold 13 and the distillate manifold 14, which are led through the headstock to extraction pumps (not shown). The troughs 11 are positioned close to the hot plates and the troughs 12 are located on a lower level in order to reduce heat transfer by radiation from the hot residue to the cold distillate. Radiation may be further reduced by interposing bright metal foil radiation 40 screens between the troughs 11 and 12.

In the segmental spaces at the sides of the plate assembly the first stage or stages of evacuation pumps 15 may be arranged. Such pumps may be of the molecular diffusion or condensation type, supplemented by a backing pump, the backing connections 16 being carried out through the headstock and connected to an appropriate backing pump (not shown), for the purpose of producing as high a vacuum as possible within the 50 apparatus. Cooled baffles 17 may be provided over the intakes of the pumps 15.

Hot oil for heating the evaporating plates is introduced by the pipe 18 and removed by the pipe 19. The plates are shown as having tubular

passages 33 for conducting the hot oil (Figs. 1 and 2). Cold water for cooling the condensing plates is introduced by the pipe 20 and removed by the pipe 21. The condensing plates are similarly formed with tubular passages, 34, for the cooling water. These pipes 18, 19, 20 and 21 come out through the headstock, although not shown in Figure 1. The heating and cooling media are conducted to their appropriate plates by pipes 22, which are preferably of considerable length in order that their elasticity may permit of slight movements due to temperature changes. For ease of dismantling, joints 23, preferably of the metallic lens ring type, may be introduced in the pipes 22.

The above construction and assembly of distillation apparatus can be applied for the purpose of a multi-stage still, in which case the necessary pumping arrangements are provided for trans20 ferring distillate or residue or both from one stage to another, such pumps being located in the bottom segmental space at 24. These pumps may be driven by electrical means, or by means of a common driving shaft brought out through the behadstock by a gland and connected to a suitable source of power.

Various modifications of the apparatus hereinbefore described may be made in carrying out our invention, and all such modifications are in-30 tended to come within the scope of the appended claims insofar as they achieve to a useful degree the improvements and advantages hereinbefore disclosed.

We claim:-

1. Apparatus for carrying out short-path high vacuum distillation, comprising a plurality of plate-like members in parallel arrangement and having opposed substantially vertical parallel faces, means for heating alternate members so as 40 to provide evaporating surfaces, means for cooling the members intermediate the heated members so as to provide condensing surfaces opposed to said evaporating surfaces, a casing and a closure member making a vacuum-tight joint with 45 the casing, the casing and closure member defining a vacuum-tight chamber surrounding the plate-like members, means for supporting said plate-like members on said closure member, conduit means extending through the closure mem-50 ber into the chamber for feeding raw material to the upper portion of the heated members, and means for collecting distilled material from the cooled members.

2. Apparatus for carrying out short-path high

vacuum distillation, comprising a plurality of rectangular plate-like members having opposed, parallel faces arranged for flow of liquids downward thereover by gravity, means for heating alternate members to provide evaporating surfaces, 5 means for cooling intermediate members to provide condensing surfaces, a housing for said members, troughs provided above the evaporating members and arranged to deliver liquid to be distilled over the surfaces of the evaporating 10 members, a closure member for the housing arranged to support said plate-like members, the closure member and housing defining a vacuumtight chamber surrounding the plate-members, collecting troughs below the members arranged 15 to collect separately the liquid condensate and residue from the condensing members and evaporating members respectively, and conduit means communicating with said troughs and passing through the closure member for separately with- 20 drawing condensate and residue.

3. The matter of claim 2 wherein the troughs for collecting the condensate are located at a lower level than the troughs for collecting the residue, so as to reduce heat transfer by radia- 25 tion from the hot residue to the cold distillate.

4. The apparatus of claim 1 wherein at least some of the plate-like members are provided with interior passages for circulation of temperature regulating fluid, and conduit means are provided 30 extending through the closure member and inside the casing for supplying said plate-like members with the fluid.

5. The matter of claim 1 wherein the condensing members are provided with ridges at their 35 top extending beyond the tops of the evaporating members and serving as baffles to catch molecules escaping from the ends of the evaporating members and from the gap between the members.

6. The apparatus of claim 1 wherein there are provided evacuating pumps in the casing adjacent the sides of the plate-like members and conduit connections for the pumps extending out through the closure member, and arranged to be put in communication with backing pumps. 45

7. The apparatus of claim 1 wherein there are provided evacuating pumps in the chamber adjacent the sides of the plate-like members, conduit connections for the pumps extending out through the closure member, for connection to backing pumps, and cooled baffles arranged over the intakes of said evacuating pumps.

BRIAN E. A. VIGERS. JOHN LEWIS MCCOWEN.