A folding garment container having an internal hingeable frame mechanism, and a handle for pulling in a direction of minimum width. The garment container can be tightly folded and bound for compact stowing, or released, whereupon the frame mechanism is spring loaded to force the folded halves of the container apart in an inverted V-shape configuration. The frame mechanism includes wheels protruding beyond the cover panels for wheeled transport.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HINGEABLE GARMENT BAG FRAME

RELATED APPLICATION

This is a continuation-in-part of pending U.S. patent application entitled "Wheeled Garment Bag", filed March 1, 1993, and accorded Serial No.08/24,511.

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to garment bags, and more particularly to a garment bag frame that provides support to the garment bag as well as allows folding thereof.
BACKGROUND OF THE INVENTION

Conventional soft sided garment bags are widely used by airline passengers because of convenience, as compared to hard sided luggage. The reasons for this are that folding soft-sided luggage is usually less expensive than hard sided luggage, lighter in weight, the overall thickness of the bag is only as thick as the amount of garments contained therein, the clothes only have to be folded once, such luggage can be easily carried on an airplane and placed in an overhead bin and doesn't have to be checked. The soft sided type of garment bags are structured to be carried by a handle or by a shoulder strap. When travelers take advantage of the fact that the garment bag expands to hold all that can be stuffed therein, the bag and contents can often weigh 30-40 pounds. A bag of this weight makes it difficult to carry long distances with the handle or strap. Most conventionally available hard sided luggage has the advantage of wheels and handle devices for easily pulling behind the traveler. To date, garment bags have not been designed to accommodate wheels or towing type handles. Herein lies the need for a lightweight luggage device that combines the advantages of a garment bag noted above, and the portability of wheeled hard sided luggage.

Attempts to add wheels and handles to the garment bag have resulted in devices that solve some problems but add yet others. For example, U.S. Patent Nos. 4,538,709 to Williams et al., 4,062,429 to Tabor et al., and 4,030,768 to Lugash, require travelers to push the garment bag upright in an unfolded position. The disadvantages are:

It requires that the bag be steered forward. Most travelers have found that pulling a piece of luggage behind them is easier than pushing luggage because no side to side manipulation or steering is needed for pulling.
These bags are also structurally complicated in terms of the number and complexity of additional parts required to provide the wheeled support and handle mechanism.

In addition to the patents identified above, U.S. Patent Nos. 4,383,141 and 4,354,583, both issued to Walker, have the disadvantages:

This bag structure raises the center of gravity, thus placing more weight on one’s hand when moving the bag.

When these bags are left standing alone they are more easily tipped over than a folded garment bag with a lower center of gravity. This makes it inconvenient to the traveler when stopped at a ticket counter, a shop, or a rest room.

With respect to U.S. Pat. Nos. 4,538,709 to Williams et al. and 4,062,429 to Tabor et al., the bags described therein are pushed forward with the full width of the bag facing the oncoming travelers. The wider a bag one is trying to push through a crowded airport, the more difficult it is to negotiate crowded areas. It is also more difficult to maneuver this type of bag through tight doorways, rest rooms, shops, and will not allow the traveler to wheel the bag down the narrow aisle of an airplane.

Other attempts to add wheels, handles, or frames to the garment bag are disclosed in U.S. Pat. Nos. 4,442,927, 4,411,344, 4,406,353, 4,383,141, all issued to Walker. All of these bags are pulled behind the traveler and have the same problem in that the bags are pulled in the direction of the maximum width instead of the narrowest width. In addition to this there are other major drawbacks:

Some of the bags are pulled using a strap for a handle. This causes the wheeled garment bag to pull in
towards the feet of the traveler, thus constantly bumping into the traveler's heels.

The bags are pulled with the width centered directly behind the traveler. This will also cause the bags to bump into the traveler's heels while walking.

Additionally, when carrying multiple bags, travelers have tried to stack baggage pieces on a folding luggage cart and secure the bags with an elastic type cord. The disadvantage of this is that:

When passing through a security checkpoint the entire load must be disassembled and individually passed through the checkpoint and then reassembled. Similarly, upon boarding an airplane the same sequence must take place with the use of a separate cart that results in additional apparatus that must be carried and stowed away. Sometimes this additional piece is not allowed on board the airplane.

Attempts have been made to provide a single piece of luggage that has a self-contained wheeling apparatus and that can be wheeled on an airplane and put in an overhead bin. These bags are shown in U.S. Pat. Nos. 5,116,289 to Pond et al., 4,995,487 to Plath, 4,792,025 to Thomas, and 4,254,850 to Knowles. The disadvantages with these types of apparatus are:

Since the overall storage dimensions are smaller than a garment bag, suits or dresses must be folded many times or rolled up in a spiral fashion. This creates creases in the garments and results in an unsightly appearance.

Also, a disadvantage with all the above mentioned apparatus is that extra parts or complicated parts must be added that would allow additional luggage to be carried on it.

It is against this general background that the present invention has evolved.
Accordingly, several objects and advantages of the present invention are:

To provide a garment bag that is pulled from behind, thus eliminating the need to be pushed and thus steered.

To provide a garment bag that requires a minimum number of parts, is cost effective, and easy to manufacture.

To provide a lower center of gravity thus making the garment bag easier to manipulate.

To provide a garment bag that is stable and will not fall over when being pulled, turning corners or when left standing alone.

To provide a garment bag that is wheeled so that the bag rolls in the direction of its minimum width, thus also making it easier to maneuver through tight doorways, rest rooms, shops, and down the aisle of an airplane.

To provide a garment bag that has a stiff pulling handle that keeps the bag away from the traveler’s heels when being pulled.

To provide a garment bag that has a handle that will keep the bag positioned off to one side of the traveler, thus also helping to keep the bag away from the traveler’s heels when walking.

To provide a garment bag that has a self-contained wheeled apparatus for transport thereof.

To provide a garment bag that allows clothes such as suits and dresses to be folded a minimal number of times.

To provide a garment bag that allows other pieces of luggage to be attached to it without adding extra apparatus such as hooks or complicated strap mechanisms.
SUMMARY OF THE INVENTION

In accordance with the principles and concepts of the invention, a frame infrastructure is integrated into a soft garment bag for allowing the folded halves to be compactly bound together and stowed, as well as released so that the halves of the garment bag spring apart into an inverted V-shaped configuration. Two or more wheels are attached to the garment bag for easy wheeled transport in a direction of minimum width. A telescopic handle can be extended from within the folded portion of the garment bag and locked so that the bag can be easily pulled behind a person. In the released configuration, where the folded bag is in the inverted V-shape, the halves of the bag are spring biased apart so that the bag is upright and remains in a stable configuration for pulling, and the bag is stabilized so that it does not lean from side to side when pulled around sharp corners. Further, in the towing configuration, the bag can be pulled down narrow aisles, such as in airplanes, and then can be quickly folded into a tight configuration, the handle can be easily retracted within the bag, and stowed in an overhead bin.

In one embodiment of the frame structure of the garment bag there is included a pair of U-shaped tubular members that are routed about the periphery of each of the halves of the garment bag, and connected to a rigid plate support at a location where the bag is normally folded. The U-shaped tubular members are hinged to the plate member, and spring biased apart. The hingeable connection of the U-shaped tubular members to the plate support allows the bag to be compactly folded together and bound with Velcro-equipped straps, or completely unfolded and hung by a hangar or to remove the clothing therefrom. For towing, the Velcro-equipped straps can be loosened, whereupon the spring-biased U-shaped tubular members
spring apart to the extent allowed by the straps. When the straps become taut, the garment bag is in an inverted V-shape so that it can be pulled with the wheels protruding through the bottom of the halves of the garment bag.

According to another embodiment of the frame structure of the garment bag, a spring connects each end of U-shaped members together. The springs provide both a hinging function for allowing the baggage to be compactly folded, as well as a means to bias the baggage parts apart when deployed in the inverted V-shape. With this simplified frame arrangement, conventionally available luggage can be modified to fix the frame therein to achieve many of the advantages noted above.

In a modification of the simplified frame structure, the frame parts can be made telescopic, and spring loaded so that the baggage can be manually compressed, such as when stuffing it in a small compartment of an airplane overhead compartment. The spring loaded telescopic frame does not compromise the rigidity thereof when pulling the baggage on its wheels.

A multi-function strap arrangement is provided to allow the baggage to be hung on a hangar when not folded, and to be easily cinched to a first position to compactly fold the bag, or to a second position to assist in maintaining the deployed bag in an inverted V-shape.

In accordance with yet another embodiment of the invention, the spring loaded frame can be integrated with a pullman-type suitcase. The pullman suitcase is modified so that it can be partially opened in a V-shape, and yet able to contain clothes therein. When the pullman suitcase is outfitted with the frame of the invention, it can be compactly folded together, or deployed in an inverted V-shape and pulled on wheels.
BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages will become apparent from the following and more particular description of the preferred and other embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters generally refer to the same parts, functions or elements throughout the views, and in which:

FIG. 1a is a perspective view of the wheeled garment bag configured in an inverted V-shape, and being pulled in a direction of minimum width;

FIG. 1b is an enlarged fragmentary view showing a catch and loop mechanism for holding the garment bag in the configuration shown in FIG. 1a;

FIG. 2 is a plan view of the exterior of the garment bag in an unfolded position, with the telescopic handle extended;

FIG. 3 is a plan view of the interior of the garment bag in an unfolded position, with a cutaway view showing the interior mechanism, and showing various positions of the telescoping handle;

FIG. 4 is a perspective view of the folded garment bag in a compact position for storage;

FIG. 5 is a fragmentary perspective view of a portion of the folded garment bag showing the cross section used in FIGS. 9a, 9b, 10a, and 10b;

FIG. 6a is a perspective view of the folded garment bag in a partially opened position, with the soft cover partially removed to illustrate the tubular frame;

FIG. 6b is an enlarged fragmentary plan view showing an alternative for mounting recessed wheels to the tubular frame;

FIG. 7 is an enlarged exploded view showing a portion of the frame mechanism as viewed from the handle end;
FIG. 8 is an enlarged exploded view showing a portion of the frame mechanism opposite the handle end;

FIG. 9a is an enlarged partial cross section showing the locking telescopic tubing and handle mechanism;

FIG. 9b is an enlarged partial cross section showing the telescopic tubing and locking mechanism;

FIG. 10a is an enlarged partial cross section showing an alternative locking telescopic tubing and handle mechanism with a push button release;

FIG. 10b is an enlarged partial cross section showing another alternative locking telescopic tubing that has a bend at one end to form a handle;

FIG. 11 is a side view showing how additional baggage can be securely carried with the garment bag of the invention;

FIG. 12 is a perspective view of the folded garment bag in a partially opened position, showing an alternative handle mechanism;

FIG. 13 is a perspective view of the folded garment bag in a partially opened position showing another alternative handle mechanism and end catch securing mechanism;

FIG. 14 is a perspective view of the folded garment bag in a partially opened position showing another alternative handle mechanism that is pivotally mounted outside the soft cover panel;

FIG. 15 is a perspective view of the folded garment bag in a closed storage position showing an alternative structure for the securing mechanism;

FIG. 16 is an enlarged exploded view showing an alternative frame mechanism opposite the handle end;

FIG. 17 is a perspective view of another embodiment of a folded garment bag in an inverted V-shape, being pulled on four wheels with soft pull handle;
FIG. 18 is a plan view of the exterior of the folded garment bag of FIG. 17 in the unfolded position with a soft pull handle, a cinching strap, and four wheels;

FIG. 19 is a plan view of the interior of the garment bag in the unfolded position with a soft pull handle and four wheels, and partially showing the spring-hinged frame;

FIG. 20 is a perspective view of the folded garment bag in an inverted V-shape with the tubular frame mechanism shown partially exposed, and showing an extension spring functioning as the hinge mechanism;

FIG. 21 is a perspective view of the folded garment bag in an inverted V-shape with a combination flat and tubular mechanism shown partially exposed, and showing an extension spring functioning as the hinge mechanism;

FIG. 22 is a perspective view of the folded garment bag in a partially opened position;

FIG. 23 is a perspective view of the folded garment bag of FIG. 22 cinched to the closed position for storage;

FIG. 24 is a perspective view of the folded garment bag of FIG. 22 shown upside down, and illustrating a strap mechanism for holding the bag in a V-shape;

FIG. 25 is a perspective view of the folded garment bag in an inverted V-shape, partially showing a shock absorbing tubular frame mechanism, and illustrating an extension spring as the hinge mechanism;

FIG. 26 is a partial cross-sectional view of the shock absorbing tubular frame mechanism shown in FIG. 25;

FIG. 27 is a perspective view of another folded garment bag held in a closed storage position by a releasable latching mechanism;

FIG. 28 is a perspective view of another alternative garment bag folded in an inverted V-shape with a tubular
frame mechanism shown partially exposed, and where the baggage material itself functions as a hinge;

FIG. 29 is a perspective view of the folded garment bag of FIG. 27 in a partially opened position, and utilizing a rigid cross member for supporting the bag in an inverted V-shape;

FIG. 30 is a perspective view of a folded pullman suitcase in the closed position for storage, and having therein a frame mechanism according to the invention;

FIG. 31 is a perspective view of the pullman suitcase of FIG. 30, disposed in a partially opened position;

FIG. 32 is a perspective view of the pullman suitcase of FIG. 30, shown in an opened position;

FIG. 33 is a partial sectional view of the frame mechanism supporting the pullman suitcase in an inverted V-shape;

FIG. 34 is a perspective view of another embodiment of a folded pullman suitcase in the closed position for storage;

FIG. 35 is a perspective view of the pullman suitcase of FIG. 34, shown in a partially opened position; and

FIG. 36 is a perspective view of a partially opened pullman suitcase, shown with side flaps thereof opened.
DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1a, a garment bag 50 of the present invention includes an outer soft panel 24 and an inner soft panel 33, each sewn along the edges to an edge panel 84. The outer panel 24, inner panel 33, and edge panel 84 are formed of suitable fabric material, such as nylon, so that the garment bag 50 can be folded in half for traveling, as shown in FIG. 1a, or compactly for storage as shown in FIG. 4. A handle 26 is attached to the middle of the outer panel 24 for grasping and lifting the garment bag 50. As illustrated in FIG. 2, outer panel 24 includes a zipper 35 and a zipper 28 to allow access to pockets that can be used for holding articles therein.

Shown in FIGS. 1a, 1b, 2, and 4, a nylon strap 32 is sewn to the edge panel 84 and looped through a male plastic catch 31. Also sewn to the edge panel 84 is a long end strap 29 that is threaded through a slot in a female plastic catch 30. The male and female plastic catches 30 and 31 are of convention construction that are mateable together for locking, and are releasable. Female plastic catch 30 can slide between the sewn end of the long end strap 29 and the opposite end that is sewn in a loop that functions as a stop, as seen in FIG. 1b. Sewn to the loop end of the long end strap 29 is a Velcro hook fastener 41. Sewn to outer panel 24 of the bag are two Velcro loop fasteners 25. This arrangement allows the Velcro fastener 41 on the end of the long end strap 29 to hold both ends of the garment bag 50 tightly together for storage, when the female plastic catch 30 and the male plastic catch 31 are snapped together as shown in FIG. 4. This locking and strap arrangement is duplicated on both sides of the garment bag 50.

FIG. 3 shows an interior plan view of garment bag 50 with a partial cutaway area exposing the inner parts along
the middle section where the bag is folded. Sewn in an inner panel 33 is a zipper 34 that allows access to an inner packing space 86. Sewn around a U-shaped tubular frame 49 and edge panel 84 is a hanger strap 38 that is looped and sewn around a hanger hook 39. Sewn to the hanger strap 38 is a Velcro fastener 40. When not using the hanger hook 39 to hang garment bag 50, the Velcro fastener 40 can be attached to a matable Velcro fastener 42 for storing the hanger 39 out of the way. Fastened to the inside of the garment bag 50 are one or more hangers from which garments can be suspended. Preferably, the internal hangers can be attached to the internal liner and therethrough to the U-shaped tubular frame 49. A substantial load of the garments is thus supported by the frame infrastructure of the garment bag.

FIGS. 3, 6a, 7 and 8 show cutaway views of the garment bag 50 frame mechanism. A soft liner 44 is sewn to the inside of outer panel 24 and is used to form the pockets that can be accessed by zippers 35 and 28 (FIG. 2). The liner 44 is also used to cover an outer telescopic tube 52, supporting brackets 45, a front angle bracket 47, a rear angle bracket 46, springs 48, an exterior plastic cap 51, and a stiffener plate 53. Another liner 43 is sewn to the inside of edge panel 84 and is used to cover the tubular frame member 49.

In order for the garment bag 50 to be pulled or towed, a wheel 27 and an associated support bracket 36 (FIG. 6a) are mounted by rivets 54 on the rear corners of the left and right tubular frame members 49. The tubular frame 49 can be constructed of either a lightweight tubular, solid metal or plastic rod. Mounted on the front of each tubular frame member 49 is a plastic bumper 37. The bumper 37 is connected to frame member 49 through the edge panel 84 via a rivet 34 (FIG. 3).
As an alternative for mounting the wheel 27, as shown in FIG. 6b, the wheel 27 can be recessed in the frame to allow a longer garment bag 50. This is accomplished by mounting the wheel 27 and associated support bracket 36 through holes in a plastic wheel housing 55 in a recessed part of the frame 56. Rivets 54 are used to mount the parts together.

FIG. 3 illustrates a plastic handle 22 and associated foam handgrip 21 mounted to a inner telescoping tube 23. The inner telescoping tube 23 slides inside the outer telescoping tube 52. The telescoping tube 23 is fully extended and rotated into various positions shown in FIG. 3. The inner telescopic tube 23 will lock in two places 180 degrees apart with respect to outer tube 52 by way of a catch button 63.

FIG. 7 and FIG. 9a show the foam handgrip 21 attached to the plastic handle 22 by a friction fit. The plastic handle 22 is attached to one end of inner telescoping tube 23 by denting in the top and bottom of the inner telescoping tube 23 so that it deforms the plastic handle 22 and thus locks both parts together. Additionally, FIG. 9b shows that within the inner telescoping tube 23 is a U-shaped spring metal piece 64 attached to both catch buttons 63. Catch holes 59 are formed in the inner telescoping tube 23, in a tubular interior plastic spacer 62 and outer telescopic tube 52 so that when inner telescoping tube 23 is fully extended outwardly, the catch buttons 63 pop out through the holes and lock the outer tube 52 to the inner telescoping tube 23. To release the parts and telescope them together, the end of the foam handgrip 21 can be tapped, whereupon the catch button 63 recedes back into the end of the inner telescoping tube 23. This action occurs because of a camming surface on the catch buttons 63. The inner telescoping tube 23 can
then be slid back into the garment bag 50 for compact storage, as seen in FIG. 4.

An alternative technique for releasing the catch buttons 63 from outer tube 52 is by way of a thumb operated push button 66 (FIG. 10a). Push button 66 moves in a hole in the plastic handle 88 and pushes against a catch release rod 68. The catch release rod 68 has at its other end a catch release roller 69 that pushes under spring member 64 and causes the catch button 63 to be withdrawn and disengaged from the outer telescopic tube 52. A coil spring 67 returns the thumb button 66 to an extended position when not being pressed. Yet another construction of the handle is shown in FIG. 10b. This handle construction is similar to that shown in Fig. 9a, except that the plastic handle 22 is eliminated and an inner telescoping tube 89 is bent with a crush bend to form a right angled handle. The advantage of this is that the cost of plastic handle 22 is eliminated, although the radius of the handle bend cannot be very small.

FIGS. 9a and 9b show that an interior end cap 65 is attached to the inner telescoping tube 23 in a swaged manner similar to the technique in which the plastic handle 22 is attached to the inner telescopic tube 23. This is accomplished by denting in the top and bottom of inner telescoping tube 23 so that it deforms end cap 65 and thus locks both pieces together. The end cap 65 provides a stop with respect to the interior plastic stop 62 when the inner telescoping tube 23 is fully pulled out. The end cap 65 abuts against the interior plastic spacer 62, which functions as a spacer between the inner telescoping tube 23 and the outer tube 52. The outer end of the interior plastic spacer 62 is flanged and held in place by an exterior plastic cap 51 that is attached by way of friction fit or adhesive to the outer telescoping
tube 52. End cap 65 is carried with inner telescoping tube 23 during telescopic movements. The interior plastic spacer 62 and the exterior plastic cap 51 remain fixed at the end of outer telescoping tube 52.

FIGS. 7 and 8 illustrate a pair of support brackets 45 holding the outer telescoping tube 52 to each end of the stiffener plate 53. A number of rivets 57 are passed through the outer soft panel 24, the stiffener plate to secure the support brackets 45 thereto. The stiffener plate 53 can be constructed with extruded plastic with internal webs, as shown, or with wood, or a thin rigid metal. The stiffener plate 53 is also connected by rivets 57 at one end to a front angle bracket 47 (FIG. 7), and at the other end to a rear angle bracket 46. A long rivet 60 passes through the stiffener plate 53 and outer telescoping tube 52. Both the right and left tubular frame members 49 are connected to and pivot about the rear angle bracket 46 and the front angle bracket 47 via rivets 57.

An important feature of the garment bag 50 of the invention are the springs 48 that are engaged in holes in the right and left tubular frame members 49, and in holes in the angle bracket 46 (FIG. 8). Also provided are springs 48 that engage in holes in the right and left tubular frame members 49 and in holes in the front angle bracket 47 (FIG. 7). The springs 48 cause the right and left tubular frame members 49 to be spring biased apart from each other. The long end strap 29 limits the separation of the right and left tubular frame members 49, and thus the halves of the garment bag 50. When so configured, the garment bag 50 resembles the shape of an inverted V. As shown in FIG. 1, the wheels 27 are maintained apart when pulling the garment bag 50. By maintaining the wheels 27 spread apart, the garment bag 50
is prevented from tipping over and is made substantially more stable. The springs 48 are in a relaxed state when the garment bag 50 is in an unfolded or flat position (FIGS. 2, 3), but are in a loaded or tensioned state when the garment bag 50 is configured in an inverted V-shape (FIG. 1a), or in a compactly folded condition (FIG. 4).

Another important feature of the garment bag 50 is the provision of tubular frame stops 58 on the front angle bracket 47 (FIG. 7) and tubular frame stops 61 on the rear angle bracket 46 (FIG. 8). The stops 58 and 61 keep the tubular frames 49 from rotating inward too far, but do not limit outward rotation. The stops 58 and 61 are tabs that are stamped out of the angle brackets and engage the edges of the flattened ends of the tubular members 49 that are rotatably fastened to the respective angle brackets 46 and 47. By keeping the right and left structural frames 49 from rotating inwardly keeps the garment bag 50 maintained in an upright position and from leaning over to either side when being pulled by the foam handgrip 21. The garment bag 50 remains upright because the interior angle between the left and right tubular frame members 49 and either the front angle bracket 47 or rear angle bracket 46 cannot become less than approximately 90 degrees.

An important feature of garment bag 50 is that it is a safe and low cost way to carry other baggage the traveler might be carrying. This is shown in FIG. 11. The handle of an additional bag 70 can be slipped over the foam grip 21 and suspended on the inner telescopic tube 23. This is advantageous because the garment bag 50 can carry additional baggage without having to add any additional parts, and prevents theft because the extra bag 70 would have to pass by the traveler’s hand in order to be removed.
Other embodiments of handle devices are shown in FIGS. 12, 13, and 14. In FIG. 12, a double handle rod 72 with a foam handgrip 71 can either telescope out or rotate into a locked position. In FIG. 13, a pull strap 74 can be attached to the end of the garment bag 85 of the type that additionally requires four wheels instead of two. In FIG. 14, a handle tube 73 and associated foam grip 21 can rotate and lock into position to provide a handle mechanism.

Other embodiments of mechanisms that can hold a garment bag in a variable but folded position are shown in FIG. 13 and 15. In FIG. 13, rigid brackets 75 and 76 are hinged together via a rivet 57, and connected to a detachable catch 77. In FIG. 15 a long middle strap 79 is placed around the bottom of the folded bag and connected to a Velcro fastener 78 that is fastened to the garment bag 87. This holds both halves of the garment bag 87 tightly for storage. When the end of the long middle strap 79 is detached from the Velcro fastener 78, the halves of the garment bag 87 are spring biased apart so that it can be pulled, similar to that show in FIG. 1.

FIG. 16 illustrates an alternative way of connecting a right frame member with a curved bend 82 and a left frame with curved bend 83 to an outer tube with a flattened and angled end 81, via a rivet 57. Again, a support bracket 45 holds the outer tube with the angled end 81 to a narrow stiffener plate 80 and outer soft panel 24 with rivets 57. A spring 48 keeps the right frame with curved bend 82 and the left frame with curved bend 83 biased apart for stable movement when pulling. This arrangement allows a lower unit cost of the garment bag, but with a more limited storage capacity. In this embodiment, the two springs 48 and the rear angle bracket 46 would be eliminated. Further, the size of the
stiffener 53 would be modified so that it comprises a narrow stiffener 80.

The manner of using garment bag 50 of the invention is described below for a traveler departing from home and going to an airport. First, clothes and other items are packed into the garment bag 50, and then it is folded over in a conventional manner. The female plastic catch 30 and the male plastic catch 31 at the back edge of the garment bag 50 are then secured together. The springs 48 keep the long end straps 29 in tension and wheels 27 spread apart. This keeps the garment bag 50 upright and in a stable position for movement (FIG. 1a). Additionally, the tubular frame stops 58 and 61 are important in that they keep the garment bag 50 from leaning over from side to side while pulling it in a straight path, or while turning a corner.

The inner telescoping tube 23, the foam handgrip 21, and plastic handle 22 are then telescoped outwardly until stopped by the internal stops. The foam handgrip 21 is then rotated clockwise or counter-clockwise until spring button 63 pops out through catch holes 59, thus locking inner telescoping tube 23 to outer tube 52. This prevents the foam handgrip 21 and the plastic handle 22 from rotating in a horizontal position (FIG. 1a, 5, 6a, 9a, 11). The foam handgrip 21 can lock in two different horizontal positions 180 degrees apart. This makes it easier for the traveler to pull the garment bag, irrespective if the traveler is left or right handed (FIG. 1a, 3). Since either of these two handle positions forces the traveler to one side or the other of the garment bag 50, it helps keep the traveler's heels from coming into contact with the garment bag 50.

Additional baggage can be slipped over the foam handgrip 21 and the plastic handle 22 and rested on the
inner telescoping tube 23 (FIG. 11). The traveler can then lift the foam handgrip 21 and pull the garment bag 50 in a direction of minimum width. Since the inner telescoping tube 23 is rigid, the garment bag 50 is not pulled into the traveler's heels.

For stowing the garment bag 50 in the trunk of a car, the traveler collapses the inner telescoping tube 23 back into the garment bag 50 by simply tapping inwardly on the foam handgrip 21. This causes the spring button 63 to become disengaged from the outer tube 52, thus allowing the inner telescoping tube 23 to be retracted. Additionally, the traveler can pull on the loops at the end of long end strap 29 and secure them to Velcro fastener 25 on both front and back sides of the garment bag 50. This action will close garment bag 50 into a tightly folded and compact position (FIG. 4).

Once at the airport, the traveler pulls on the loops at the end of both of the long end straps 29, thus releasing them from Velcro fasteners 25. Again, the springs 48 will bias apart both halves of the garment bag into an inverted V-shape, and place both of the long end straps 29 in tension. Both wheels 27 will also be spaced apart for stability when pulling the bag. The inner telescoping tube 23 is again pulled out and locked into place. The garment bag 50 can be pulled through the airport terminal, down the airplane aisle and to the traveler's seat where the inner telescoping tube 23 is collapsed and the garment bag 50 can be tightly folded together, strapped and placed in an overhead bin.

Once the traveler arrives at a hotel, the male plastic catch 31 and the female plastic catch 30 are disengaged and the garment bag 50 can be unfolded and hung up by the hanger 39 in a closet.
Overall, the garment bag 50 is designed to provide a simple lightweight piece of luggage that may be carried on an airline and not checked, is only slightly larger than whatever contents it is holding, and be used to carry other pieces of luggage as well. In addition, the garment bag of the invention is economical and is easily pulled through crowded areas.

FIG. 17 demonstrates the use of another alternative way of constructing a simplified and inexpensive frame mechanism to support a wheeled garment bag. A garment bag 92 according to this embodiment is supported by two in-line wheels 27 and two swivel wheels 100. A detachable pull strap 98 is used to pull the bag 92.

FIG. 18, 19, and 24 show a sliding hanger strap bracket 122 which is attached to either structural frame 49 or a flat extrusion frame 110 (FIG. 21), through the side panel 84 of the bag. Sliding hanger strap bracket 122 is utilized to retain a hanger strap 102 therein, but yet allow the hanger strap 102 to freely slide through a slot in the bracket. Fastened at the end of hanger strap 102 is a hanger 39 having a hooked end and a loop through which the hanger strap 102 is looped and fastened. The hanger strap 102 is constructed of a length of woven material, one end of which is looped through the loop in the hanger 39 and sewn to itself. The other end of the woven hanger strap 102 is folded on itself in a zig-zag manner, and formed to include a finger loop, then sewn together while in a circular or arcuate shape. In this manner, the zig-zag end with a finger loop and the hooked end of the hanger strap 102 are retained within the slot of the bracket 122.

Further, by sewing the zig-zag configuration while held in an arcuate shape results in the finger loop end that is directed upwardly when the bag is disposed in an
inverted V-shape, thus preventing the finger loop end of the hanger strap 102 from dragging the ground or catching objects. The hook of the hanger 39 on the other end of the hanger strap 102 can be inserted into an eye portion of a hanger catch 106 that is fastened on the opposite end of garment bag 92, as shown in FIG. 24. This keeps the garment bag 92 in the inverted "V" shape when the in-line wheels 27 and the swivel wheels 100 are in contact with the ground, as shown in FIG. 22.

Two extension springs 108, shown in FIG. 19, are connected to the ends of the V-shaped structural frame members 49. The frame members 49 are constructed much like those shown in FIGS. 3 and 6a, but are hinged together with a pair of helical coil springs 108. The coil springs 108 are of the conventional type, but have an internal diameter somewhat smaller than the outside diameter of the tubular frame members 49. The ends of the coil springs 108 are expanded somewhat by forcing the springs 108 onto the ends of the tubular frame 59. With this type of connection, the ends of the springs 108 become fixed to the frame members 49 and resist any tendency to be separated. The advantage of this fastening arrangement is that no additional screws, rivets, brackets, adhesives, etc., are required to attach the components together. As further noted in FIG. 19, the V-shaped frame members 49 are attached internal to the bag 92 in pockets that are sewn to the cover material of the bag.

When the garment bag 92 is folded over into an inverted "V" shape, this action forces the two extension springs 108 into an unrelaxed state, thus tending to force the garment bag halves apart to an unfolded position. The hanger strap 102 attaches both halves of the bag and remains in tension to prevent further separation of the
garment bag halves. A stable inverted V-shape of the bag is thus achieved. The hanger strap 102 will slide as far out as it can go until the finger loop stop 124 of the hanger strap 102 catches on sliding hanger strap bracket 122. Pulling on finger loop at the end of sliding hanger strap 102 causes both halves of garment bag 92 to come together. By snapping a female snap 114 attached to the hanger strap 102 into a top male snap 104 on the bag holds both halves together in a compact condition, for stowing as shown in FIG. 23. To hang the garment bag 92 up in a closet, the hook part of the hanger 39 is detached from hanger catch 106 to allow the bag halves to spring apart. The hook is then hooked on a closet rod so that the garment bag 92 is suspended vertically as shown in FIG. 18 and FIG. 19.

FIGS. 20 and 21 show cutaway views of two different variations of the frame structure of the garment bag 92. The extension springs 108 are connected via friction fit to the ends of structural frame members 49 in FIG. 20, and to the ends of small diameter tubes 112 of the frame shown in FIG. 21. In FIG. 21, small diameter tubes 112 are connected to flat extrusion pieces 110 by rivets. This is an alternative frame structure that allows for easier attachment of in-line wheels 27 and swivel wheels 100. While the extension springs 108 are shown to be of the helical coil type, flat or other types of springs can be fastened to the frame parts to function in the manner described above. In FIGS. 20 and 21, the frame parts are shown disposed in elongated pockets that extend around the inner circumference of the garment bag 92.

FIG. 25 shows a cutaway view illustrating yet another alternative frame structure for a garment bag 94. There exists a need for a garment bag that can be compacted into a smaller space when placed in the overhead compartment of
an airplane. The garment bag 94 contains a frame that allows the garment bag 94 to be compressed. Instead of having a single small diameter tubular frame 112 between extension spring 108 and flat extrusion 110 (FIG. 21), two tubes, a large diameter tube 116 and a short, small diameter tube 118 are utilized for the compressible frame. As shown in more detail in FIG. 26, the short, small diameter tube 118 telescopically fits inside the large diameter tube 116. A compression spring 120 supports the small diameter tube 118 and also compresses within the larger diameter tube 116 when a downward force is exerted on handle 26 of garment bag 94. This frame structure is held together when sewn or otherwise attached to the outer panel 24 and side panel 84 of the garment bag 94.

FIGS. 27, 28, and 29 demonstrate the use of other techniques for constructing a frame mechanism to support a garment bag 96 of the type similar to the garment bag 92 shown in FIG. 21. In these embodiments of FIGS. 27-29, the extension springs 108 and the sliding hanger strap 102 are removed. The garment bag 96 is supported by two in-line wheels 27 and two swivel wheels 100. A detachable pull strip 98 is employed to pull the bag 96. The small diameter tubular frame members 112 are sewn or otherwise fastened to the outer panel 24 and the side panel 84 of the garment bag 96. In this embodiment, the fabric of the bag cover and lining is utilized as a hinging mechanism for the frame. As shown in FIG. 29, a rotating side support bracket 126 is utilized to separate both halves of garment bag 96 partially, in the inverted V-shape. When a female bracket snap 130 on the support bracket 126 is snapped to a male snap 128 on the opposite half of garment bag 96, the support bracket 126 supports the garment bag 96 in the inverted "V" shape structure. The support bracket 126 and snaps are located on both ends of garment
bag 96. To hold garment bag 96 in a compact closed position, the support bracket 126 is unsnapped and a female plastic catch 30 and a male plastic catch 31 are latched together as shown in FIG. 27. The male and female catches 31 and 30 are fastened by respective straps to the halves of the bag.

While the garment bag embodiments shown in conjunction with FIGS. 17-29 utilize a strap-type of pulling handle, the telescopic handles, such as shown in FIGS. 9 and 10 can also be utilized with equal advantage. Also, while the frame structures shown can be fabricated of aluminum, rigid plastic frame components can also be utilized. When using plastic, the components can be fastened using plastic rivets where the ends are melted to fix the parts together.

FIGS. 30-33 demonstrate the use of the frame mechanism of the invention in a pullman suitcase. In this type of garment case, clothes can be placed in one or the other of the compartments that are separated by the transverse connecting material, but garments cannot be extended from one compartment to the other, as in the garment bag of FIGS. 1-29. To that end, the pullman-type suitcase has many of the aspects of a conventional suitcase. A wide flat extrusion 140 (FIG. 33) is routed around the edge of both compartments and is connected at the folding midsection of the suitcase by a short small diameter tube 118 and the extension spring 108. The flat extrusion frame parts 140 can be integrated into the suitcase by sewing or otherwise fastening the liner and cover material around the frame parts to contain the same, as well as provide an aesthetic appearance to the inside compartments of the suitcase. Three flat stiffener panels 142 are sewn into the folding midsection of the suitcase to help provide support for handle 26, as shown in FIG.
33. When the hanger strap 102 is pulled up and attached to male snap 104, both halves of the pullman suitcase 132 are brought together in a closed form as shown in FIG. 30. Releasing the female plastic catch 30 from the male plastic catch 31 allows the pullman suitcase 132 to spring open completely, as illustrated in FIG. 32. By unzipping a pair of inner flaps 136, garments can be placed in or removed from both compartments. Although the flaps 136 are preferably constructed of a rather stiff material, they need not be as the frame provides the necessary rigidity to the suitcase whether compactly folded together or allowed to spring to the V-shape.

FIGS. 34-36 illustrate yet another application of the frame mechanism in a pullman suitcase of a different type. In this pullman suitcase 134, gusseted folding side flaps 146 connect one half of the suitcase to the other half. A zipper 148 is effective to pull the halves together when zipped downwardly, as shown in FIG. 34, or allow the halves to spring apart as shown in FIG. 35. The extent by which the halves of the suitcase 134 can be separated by the spring action of the frame is limited by the folding side flaps. The side flaps 146 can be constructed of a fabric-covered plastic having a living hinge in the crease where the flaps 146 join each other. When the side zipper 148 is zipped down as shown in FIG. 34, both suitcase compartments are held close together for compact storage. When the side zipper 148 is zipped up, both suitcase compartments are forced to spread apart by the action of spring 108. The folding side flaps 146 then keep the pullman case 134 in an inverted "V" shape. Access to both compartments of the suitcase 134 is obtained by unzipping outer flaps 144.

Although the present invention has been described above with a certain degree of particularity, it is
understood that the present disclosure has been made by way of example, and changes in detail or structure such as replacing round tubing with square, or replacing plastic for metal, etc., and other routine changes may be made without departing from the spirit of the invention, as defined in the appended claims.
WHAT IS CLAIMED IS:

1. A garment bag, comprising:
 an enclosure for holding garments, said enclosure being
constructed of a pliable material that can be folded to
define first and second compartments with a foldable section
therebetween;
 a hingeable frame structure for supporting each
compartment of the garment bag, said frame structure having
frame parts hinged together at the foldable section of the
enclosure;
 means for supporting the garment bag in a partially
folded manner where each garment bag compartment is spaced
from each other;
 at least one wheel being attached to an end of each
garment bag compartment that is at a location opposite an
end of the garment bag that is partially folded, so that
when the partially folded garment bag compartment is
positioned with a folded part of the garment bag at a top
and the wheels at a bottom, the garment bag can be
transported; and
 a handle attached to the garment bag for pulling the
garment bag.

2. The garment bag of Claim 1, wherein said means for
supporting includes at least one spring for spring biasing
apart the hinged frame structure that supports each
compartment of the garment bag, said spring cooperating with
said means for supporting so that said garment bag is
supported in an inverted V-shape configuration when
transported.
3. The garment bag of Claim 2, further including means for limiting the extent by which the frame structure is spring biased apart when configured in the V-shaped configuration.

4. The garment bag of Claim 1, further including a plate structure attached at the midsection of the enclosure, said frame structure comprising a pair of U-shaped members hinged to said plate structure, and said handle is attached to said plate structure.

5. The garment bag of Claim 1, wherein said handle comprises rigid telescopic members, one of which is attached at the midsection of the garment bag and another member which is structured so as to be retracted into the garment bag or extended therefrom to tow the garment bag.

6. The garment bag of Claim 5, wherein said handle has a hand grip formed at an angle with respect to a longitudinal axis of the telescopic members.

7. The garment bag of Claim 5, wherein said handle includes an outer tubular part fixed to the garment bag and a cylindrical handle part telescopic therewith, said tubular part and said handle part define said telescopic members, and means for locking the telescopic members together.
8. The garment bag of Claim 4, further including a stop formed from a stationary part of said plate structure and engagable with each said U-shaped member for limiting pivotal movement thereof.

9. The garment bag of Claim 1, further including a rigid support attachable to each compartment for maintaining the garment bag compartments separated but folded at an angle less than about 90°.

10. The garment bag of Claim 1, further including at least one strap fixed to one compartment of the garment bag and means for removable attachment to the other compartment of the garment bag for limiting the extent by which the spring biases each U-shaped frame structure apart.

11. The garment bag of Claim 10, further including means for adjusting the strap without removing an end thereof so that the halves of the garment bag can be held compactly together.

12. The garment bag of Claim 4, further including at least one stop tab fixed to at least one angle bracket, said stop tab being engagable with one said U-shaped frame member so that the garment bag does not sway when being pulled around a corner.

13. The garment bag of Claim 4, further including a pair of coil springs, each spring for coupling an end of one U-shaped frame member to an end of the other U-shaped frame member, said springs functioning as hinges for hinging when said garment bag is folded.
14. The garment bag of Claim 13, wherein a transverse part of each U-shaped frame is flat, and opposing frame parts connected to said transverse frame part are tubular.

15. The garment bag of Claim 13, wherein said springs are friction fit to tubular portions of said U-shaped frame members.

16. A method of manufacturing a garment bag arrangement, comprising the steps of:
 fabricating a hingeable frame structure for supporting a flexible garment enclosure that encloses and protects garments held therein when both folded and unfolded, said fabricating step including attaching the hingeable frame structure to the enclosure so that the enclosure and the frame structure can be folded together in a compact configuration and so that the folded garment bag is supported by the hinged frame structure;
 providing means for supporting the garment bag in a partially folded configuration so that a first portion of the folded garment bag is spaced from a second portion of the folded garment bag, with a fold in the garment bag connecting the first and second portions together;
 fastening at least one wheel to the first portion of the garment bag and fastening at least one wheel to the second portion of the garment bag, said wheels providing wheeled transportability of the garment bag arrangement; and
 fastening a handle to the garment bag arrangement for pulling the garment bag arrangement.
17. The method of Claim 16, further including constructing the hingeable frame structure so as to be hinged about two parallel axes.

18. The method of Claim 16, further including attaching at least one spring to the hingeable frame structure to bias a first frame member away from a second frame member so that the frame members resemble an inverted V-shape.

19. The method of Claim 18, further including limiting hingeable rotation of said first and second frame members to thereby maintain the inverted V-shape when the bag is pulled around a corner.

20. The method of Claim 16, further including employing at least one spring providing a hinge for hinging a first and second frame part, said spring also forcing the frame parts apart from each other.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 5 A45C7/00 A45C5/14 A45C13/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 A45C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US,A,4 262 780 (SAMUELIAN) 21 April 1981 see column 2, line 35 - column 6, line 14; figures 1-7</td>
<td>1-3,10, 16,18,20</td>
</tr>
<tr>
<td>A</td>
<td>WO,A,87 02561 (WIEDERMANN) 7 May 1987 see page 5, line 16 - page 7, line 22; figures 1-3</td>
<td>1-3,10, 16,18,20 9,13</td>
</tr>
<tr>
<td>A</td>
<td>US,A,3 139 164 (KOFFLER) 30 June 1964 see the whole document</td>
<td>1,2,13, 16-18,20</td>
</tr>
<tr>
<td>A</td>
<td>US,A,2 862 586 (DAVIS) 2 December 1958 see column 1, line 58 - column 3, line 47; figures 1-8</td>
<td>1,4,10, 14,16,17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited or used to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 * "Z" document member of the same patent family

Date of the actual completion of the international search 7 July 1994

Date of mailing of the international search report 22.08.92

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer
Williams, M

Form PCT/ISA/30 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE, U, 88 10 556 (DEUTER) 29 September 1988 see page 6, paragraph 2 - page 8, last paragraph; figure</td>
<td>1, 5, 7, 16</td>
</tr>
<tr>
<td>A</td>
<td>WO, A, 90 10398 (SAMSONITE) 20 September 1990 see page 9, line 12 - page 15, line 16; figures 1-7</td>
<td>1, 16</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 256 320 (HAGER) 17 March 1981 see the whole document</td>
<td>5-7</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 538 709 (WILLIAMS ET AL.) 3 September 1985 cited in the application see column 4, line 27 - column 6, line 19; figures 5-10</td>
<td>5-7</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3 613 843 (DAVIS) 19 October 1971</td>
<td>----</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 062 429 (TABOR ET AL.) 13 December 1977 cited in the application</td>
<td>----</td>
</tr>
</tbody>
</table>