

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/178938 A1

(43) International Publication Date
10 November 2016 (10.11.2016)

WIPO | PCT

(51) International Patent Classification:
G01K 7/18 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2016/029931

(22) International Filing Date:
29 April 2016 (29.04.2016)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
14/702,262 1 May 2015 (01.05.2015) US

(71) Applicant: VISHAY MEASUREMENTS GROUP, INC.
[US/US]; 951 Wendell Boulevard, Wendell, North Carolina 27591 (US).

(72) Inventors: KIEFFER, Thomas P.; 2201 Oak Lawn Way, Wake Forest, North Carolina 27587 (US). WATSON, Robert B.; 318 Crescent Drive, Clayton, North Carolina 27520 (US).

(74) Agent: LANDOLFI, Steven M.; Volpe and Koenig, P.C., 30 S. 17th Street, United Plaza, Philadelphia, Pennsylvania 19103 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: RESISTANCE TEMPERATURE DETECTOR WITH MEDIUM TEMPERATURE COEFFICIENT AND HIGH LINEARITY

FIG. 1A

(57) Abstract: A resistance temperature detector (RTD) includes a temperature sensing circuit with a conductive element to receive an input signal and produce an output signal that is a function of temperature. The conductive element is formed from a metal having a temperature coefficient of resistance from about 10 ppm/F to about 1000 ppm/F.

WO 2016/178938 A1

RESISTANCE TEMPERATURE DETECTOR WITH MEDIUM TEMPERATURE COEFFICIENT AND HIGH LINEARITY

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Nonprovisional Patent Application No. 14/702,262 which was filed on May 1, 2015, the contents of which is hereby incorporated by reference herein.

FIELD OF INVENTION

[0002] The present invention generally relates to temperature sensors, and more particularly, relates to temperature sensing with a Resistance Temperature Detector.

BACKGROUND

[0003] A Resistance Temperature Detector (RTD) senses an environmental temperature by detecting changes in the electrical characteristics of the sensing circuit in the RTD. The sensing circuit typically includes a metallic wire or metallic film with a known electrical resistance that changes depending on the temperature sensed by the RTD. This relationship between the electrical characteristics of the RTD and temperature change are known. Conventional RTDs include leads that are connected to an external device to provide an electrical signal to the RTD and to provide a conditioning circuit for electrical signal in response from the RTD so that it can be converted to a temperature measurement.

[0004] The conditioning circuit is used to linearize the response signal, attenuate the response signal, or both linearize and attenuate the response signal to provide a readable signal that can be correlated to a temperature. In some applications, it is desirable to read an RTD directly, without a conditioning circuit. Known RTDs produce a non-linear response or a have a large response to small inputs, which preclude direct reading of the output signal.

[0005] Accordingly, a need exists for an RTD that produces a linear response to temperature change that is within the scale of direct read instrumentation.

SUMMARY

[0006] The RTD of the present invention comprises a temperature sensing circuit having a conductive element that receives an input signal and outputs a signal that is a function of temperature. The preferred conductive element is formed from a metal having a temperature coefficient of resistance from about 10 ppm/°F to about 1000 ppm/°F.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Illustrative embodiments of the present invention will be described with reference to the appended drawings wherein:

[0008] Figure 1A illustrates a perspective view of a film RTD in accordance with the invention;

[0009] Figure 1B illustrates a perspective view of the film RTD of Fig. 1 fixed to a substrate;

[0010] Figure 2 illustrates a perspective view of another RTD in accordance with an embodiment of this invention;

[0011] Figure 3A illustrates a top plan view of an RTD circuit in accordance with an embodiment of this invention; and,

[0012] Figure 3B illustrates a top view of another RTD circuit in accordance with an embodiment of this invention.

[0013] To facilitate an understanding of the present invention, similar reference numerals are used, where possible, to designate like elements in the figures.

DETAILED DESCRIPTION

[0014] With reference to Figure 1A, the RTD 100 has a conductive element 102 that is a metal film formed by known methods; however, the metal is a pure metal or an alloy having the electrical properties discussed below. The RTD 100 has connection pads or points 104 that are electrically associated with leads 106. One of the leads 106 transmits an input signal, for example a first voltage to the conductive element 102, and the lead 106 transmits an output signal, for example a second voltage which has been modified by the resistance of conductive element 102.

[0015] With reference to Figure 1B, the conductive film 102 can be formed by known methods on one surface 108 of a substrate 110. The substrate 110 can be a film or a plate, which is adapted to be fixed to a test article. The second surface 112 of the substrate 110 can be adapted for fixing the substrate 110 to a test article for temperature detection, such as by an adhesive agent, such as glue, or welding, or with mechanical attachment elements, such as threaded fasteners or rivets, as may be required by the environment.

[0016] With reference to Figure 2, there is illustrated an RTD 200 comprising a conductive element or conductive film 202 that is formed in the serpentine pattern or circuit 216 shown on a first surface 208 of the substrate 210. The illustrated pattern or circuit 216 can be formed using known methods. The connection pads or points 204 are electrically associated with leads 206. The circuit 216, in the desired conductive element or conductive film 202, is one surface of the substrate 210, which is similar to substrate 110 in its function and attachment to a test article.

[0017] With reference to Figures 3A and 3B, there are illustrated RTDs made in accordance with another embodiment of the invention. In Figure 3A, RTD 300 includes a metal wire conductive element 302 formed in a serpentine circuit or path 316 with a major axis aligned with the longitudinal axis 308 of the RTD 300. In Figure 3B, RTD 301 includes a circuit 318 of a metal wire 302 with a major axis aligned with the longitudinal axis 310 of the RTD 301.

In this embodiment, the wire 302 has a portion that is wound around a support 312. In a preferred embodiment, the metal wire 302 is wound helically around the support 312. Preferably, support 312 can structurally support and separate the coils of the circuit 318 and is suitable for use at the required operating temperature range, typically from about -320 °F to about 450 °F.

[0018] In the embodiments illustrated in Figures 3A and 3B, the conductive element has electrical terminations as previously discussed that are arranged for the desired end use.

[0019] The conductive elements 102, 202, and 302, in each of the illustrated embodiments of the invention are formed from a pure metal or a metallic alloy having a temperature coefficient of resistance (TCR) that is between about 10 ppm/°F and 1,000 ppm/°F. This TCR range differs significantly from the TCR range associated with conventional RTDs. For example, the TCR of the conductive element of conventional RTDs formed from pure platinum metal is about 2100 ppm/°F. Other conventional RTDs have conductive elements formed from pure nickel that has a TCR of about 3300 ppm/°F. The conductive element of this invention can have a TCR of two orders of magnitude less than the conductive elements in known RTDs.

[0020] Through experimentation and analysis, the inventors observed that, contrary to conventional practice, metals within the above-described TCR ranges provided benefits when used for a conductive element in an RTD. Metals within the above-described TCR ranges are herein after referred to as “select metals.” The inventors observed that conductive elements formed from select metals produced a more controlled response to a change in conductor temperature than conventional RTDs. In addition, responses to a temperature change in the required operating temperature range, typically from about -320 °F to about 450 °F, are within the readable range of currently available data acquisition equipment without the need for an attenuation circuit. The inventors also observed that some select metals have a sufficiently linear resistance response to temperature change to yield accurate

temperature measurements without a conditioning circuit to linearize the response signal. Preferably, a select metal has a linearity between about 0% and about 0.01% over a temperature range from about -40 °F to about 248 °F.

[0021] The inventors observed that the output signal from an RTD having a select metal conductive element fell within the general range of strain gage output. This observation led the inventors to experiment by directly connecting the output signal from select metal RTDs to strain measurement instrumentation. Another benefit of an RTD having a select metal conductive element is that the RTD obviates the need for a dedicated temperature channel in the instrument. The disclosed RTD can be electrically coupled directly to a strain channel of a data acquisition instrument and the temperature sensed by the RTD can be read directly by the instrument. Because the response signal is significantly less than that from a conventional RTD, an attenuation circuit is not necessary.

[0022] The select metals include alloys of nickel and chromium (NiCr) which have been produced with a TCR of approximately 50 ppm/°F, and alloys of iron, nickel, and chromium (FeNiCr) and platinum and tungsten (PtW) both of which have been produced with a TCR of approximately 250 ppm/°F. NiCr alloys with an approximate composition of 80% Ni and 20% Cr, FeNiCr alloys with an approximate composition of 36% Ni, 57% Fe, and 7% Cr, and PtW alloys with an approximate composition of 92% Pt and 8% W have been observed to have TCRs within the specified range. Beneficially, these alloys also appear to have an approximately linear resistance response to temperature change (e.g., approximately 0% to 0.01%) over a temperature range from about -40 °F to about 248 °F.

* * *

CLAIMS

What is claimed is:

1. A resistance temperature detector (RTD), comprising:
a temperature sensing circuit having a conductive element formed from a metal having a temperature coefficient of resistance (TCR) from about 10 ppm/°F to about 1000 ppm/°F.
2. The RTD of claim 1, wherein the conductive element is formed from an alloy of nickel and chromium, the conductive element having a temperature coefficient of resistance of approximately 50 ppm/°F.
3. The RTD of claim 1, wherein the conductive element is formed from an alloy of iron, nickel, and chromium, the conductive element having a temperature coefficient of resistance of approximately 250 ppm/°F.
4. The RTD of claim 1, wherein the conductive element is formed from an alloy of platinum and tungsten, the conductive element having a temperature coefficient of resistance of approximately 250 ppm/°F.
5. The RTD of claim 1, wherein the conductive element is formed from a metal having a linear resistance response to a change in temperature of 0.0% to 0.01%.
6. The RTD of claim 1, wherein the conductive element is a conductive film.
7. The RTD of claim 6, wherein the conductive film is formed on a first surface of a substrate.
8. The RTD of claim 7, wherein the substrate is adapted for fixing to a test article.

9. The RTD of claim 8, wherein a second surface of the substrate is adapted for bonding to the test article with an adhesive agent.

10. The RTD of claim 8, wherein the substrate is adapted for fixing to the test article by welding.

11. The RTD of claim 8, wherein the substrate is adapted for fixing to the test article by mechanical fasteners.

12. The RTD of claim 7, wherein the conductive film is formed in a pattern on the first surface of the substrate.

13. The RTD of claim 1, wherein the conductive element is a wire formed as a serpentine circuit.

14. The RTD of claim 1, wherein the conductive element is a coiled wire.

15. The RTD of claim 14, wherein the wire is coiled at least partially around a support.

16. The RTD of claim 14, wherein the coiled wire is at least partially wrapped around a support.

17. The RTD of claim 1, wherein the conductive element has temperature coefficient of resistance (TCR) that is between about 10 ppm/°F and 1,000 ppm/°F.

18. The RTD of claim 1, wherein the metal is an alloy of elements selected from the group consisting of nickel and chromium, iron, nickel and chromium, platinum and tungsten, and combinations thereof.

1/2

FIG. 1A

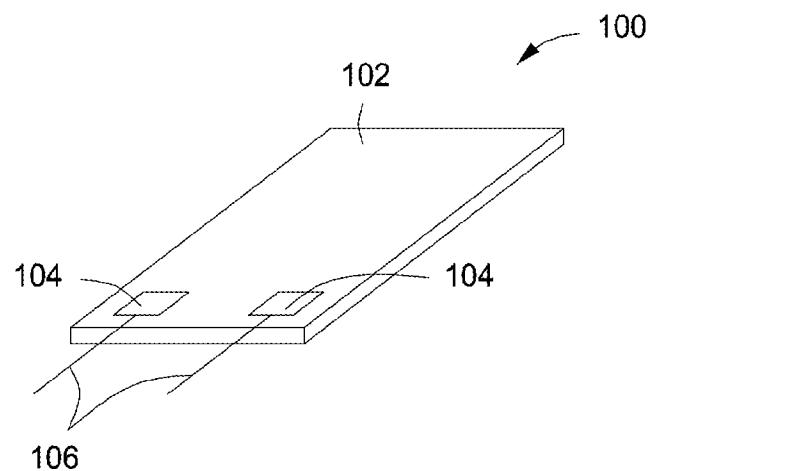


FIG. 1B

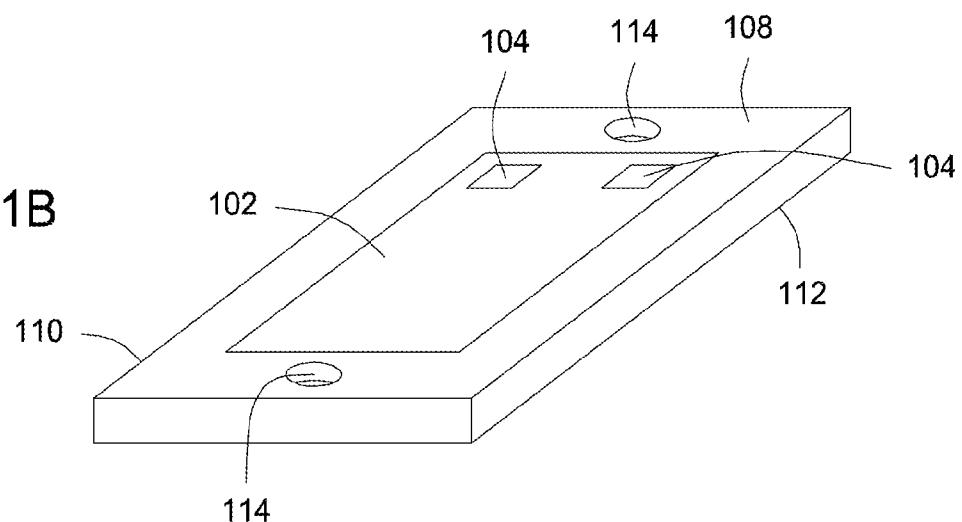
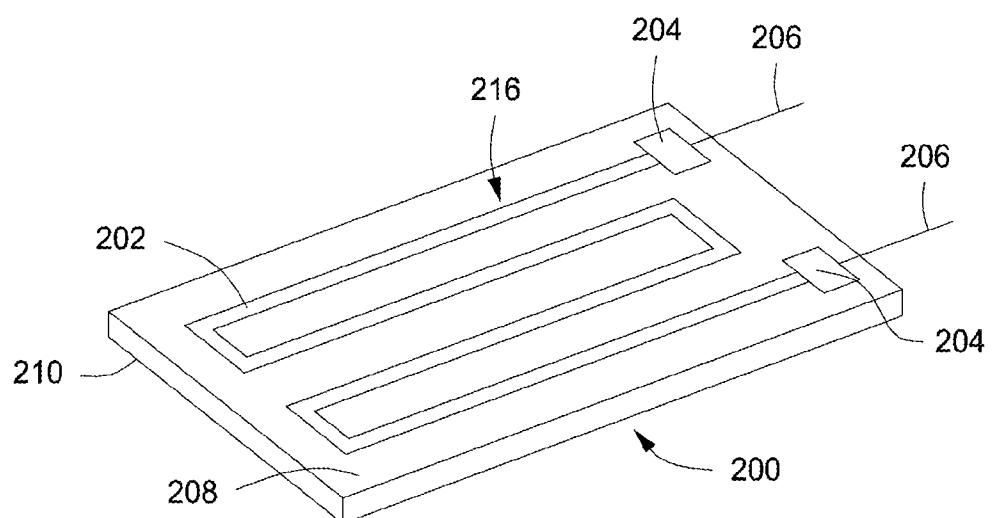



FIG. 2

2/2

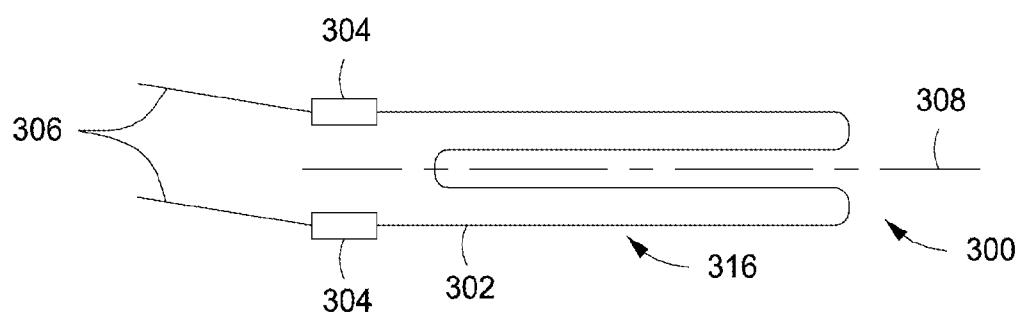


FIG. 3A

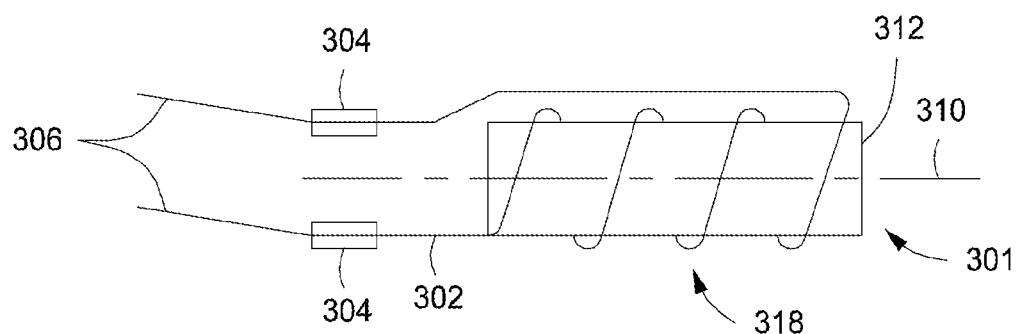


FIG. 3B

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2016/029931

A. CLASSIFICATION OF SUBJECT MATTER
INV. G01K7/18
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 10 2004 063207 A1 (EGO ELEKTRO GERAETEBAU GMBH [DE]) 13 July 2006 (2006-07-13) abstract figures 3, 4, 6 paragraphs [0011], [0024] - [0042] -----	1-18
X	US 8 305 186 B1 (MYERS BRYAN JACOB [US]) 6 November 2012 (2012-11-06) abstract figures 1-4 column 5, line 1 - column 6, line 48 -----	1-18
A	GB 1 245 604 A (DEGUSSA [DE]) 8 September 1971 (1971-09-08) figures 1-4 page 1, left-hand column, line 12 - page 2, right-hand column, line 85 ----- -/-	1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 29 July 2016	Date of mailing of the international search report 04/08/2016
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Totò, Nicola

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2016/029931

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GB 1 578 830 A (ELECTRO RESISTANCE) 12 November 1980 (1980-11-12) figures 1-3, 7 page 2, right-hand column, lines 107-130 page 4, left-hand column, lines 27-63 page 4, right-hand column, line 130 - page 5, right-hand column, line 89 -----	1-18

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/US2016/029931

Patent document cited in search report	Publication date	Patent family member(s)	
		Publication date	
DE 102004063207 A1	13-07-2006	NONE	
US 8305186 B1	06-11-2012	NONE	
GB 1245604 A	08-09-1971	BE 713034 A 31-07-1968 DE 1648198 B1 31-05-1972 FR 1566141 A 02-05-1969 GB 1245604 A 08-09-1971 NL 6806924 A 18-06-1969 SE 350603 B 30-10-1972	
GB 1578830 A	12-11-1980	AT 353893 B 10-12-1979 BE 855171 A1 28-11-1977 CA 1085062 A 02-09-1980 CH 620545 A5 28-11-1980 DD 134469 A5 28-02-1979 DE 2724679 A1 15-12-1977 DK 250577 A 09-12-1977 ES 459573 A1 16-11-1978 GB 1578830 A 12-11-1980 IT 1078455 B 08-05-1985 JP S5314400 A 08-02-1978 JP S5735564 B2 29-07-1982 NL 7706265 A 12-12-1977 NO 771916 A 09-12-1977 SE 414557 B 04-08-1980	