a2 United States Patent

Aravkin et al.

US009984104B2

US 9,984,104 B2
*May 29, 2018

(10) Patent No.:
45) Date of Patent:

(54) INDEXING CONTENT AND SOURCE CODE
OF A SOFTWARE APPLICATION
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Inventors: Aleksandr Y. Aravkin, Bronx, NY
(US); Sasha P. Caskey, New York, NY
(US); Ossama S. Emam, Giza (EG);
Dimitri Kanevsky, Ossining, NY (US);
Tara N. Sainath, New York, NY (US)
(73) International Business Machines
Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days. days.

This patent is subject to a terminal dis-
claimer.
2D 14/994,224

(22)

Appl. No.:
Filed: Jan. 13, 2016

Prior Publication Data

US 2016/0125006 Al May 5, 2016

(65)

Related U.S. Application Data

Continuation of application No. 14/094,834, filed on
Dec. 3, 2013, now Pat. No. 9,286,338.

(63)

Int. CI.

GOGF 17/30

HO4L 29/08
U.S. CL

CPC .. GOGF 17/30321 (2013.01); GOGF 17/30598

(2013.01); GOGF 17/30864 (2013.01); HO4L

67/34 (2013.01)

(51)
(2006.01)
(2006.01)

(52)

130
H

INDEXING COMPUTER

INDEX 150
EXTRACTION PROGRAM [T~

APPLICATION
ROLE
REPOSITORY

)
170

SOFTWARE
APPLICATION

110
2

NETWORK
ACCESSING
COMPUTER

INDEX
SEARCHING
PROGRAM

1121

175

(58) Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,231,405 B2 6/2007 Xia
7,809,703 B2 10/2010 Balabhadrapatruni et al.
7,886,267 B2 2/2011 Pratt et al.
(Continued)
FOREIGN PATENT DOCUMENTS
Jp 4927850 B2 5/2012

OTHER PUBLICATIONS

Bajracharya et al.; “Sourcerer: An Internet-Scale Software Reposi-
tory”; ICSE 09 Workshop; Suite 09; May 16, 2009; Copyright
2009 IEEE.

(Continued)

Primary Examiner — Shyue Jiunn Hwa
(74) Attorney, Agent, or Firm — Tihon Poltavets

(57) ABSTRACT

In a method for generating a searchable index from an
analysis of a software application, receiving a first software
application. The one or more processors determine that a
first source code of the first software application is inacces-
sible. The one or more processors stimulate the first software
application. The one or more processors analyze textual data
resulting from the stimulation of the first software applica-
tion. The one or more processors classify one or more
images resulting from the stimulation of the first software
application. The one or more processors index the analyzed
textual data and the classified one or more images resulting
from the stimulation of the first software application.

12 Claims, 5 Drawing Sheets

/100

12)0
NETWORK
ACCESSING
COMPUTER

INDEX
SEARCHING
PROGRAM

122~

SERVER
COMPUTER

INDEX
160 ~11 REPOSITORY

US 9,984,104 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,122,017 Bl 2/2012 Sung et al.
8,433,687 Bl 4/2013 Pydi
2007/0299825 Al 12/2007 Rush et al.
2008/0147642 Al* 6/2008 Leflingwell GO6F 17/30864
2009/0259987 Al 10/2009 Bergman et al.
2012/0159625 Al 6/2012 Jeong et al.
2012/0254835 Al 10/2012 Muddu et al.

2013/0036117 A1* 2/2013 Fisher GO6F 17/30041
707/736
2014/0040273 Al* 2/2014 Cooper ... GO6F 17/3002
707/741

2014/0250098 Al 9/2014 Kasterstein et al.
2014/0379696 Al 12/2014 Gyongyi et al.
2015/0100563 Al 4/2015 Ellis
2015/0154236 Al 6/2015 Aravkin et al.

OTHER PUBLICATIONS

Bajracharya et al.; “Searching API Usage Examples in Code
Repositories with Sourcerer API Search”; Suite *10; May 1, 2012;
pp. 5-8; Copyright 2010.

Hemel et al.; “Finding Software License Violations Through Binary
Code Clone Detection”; MSR ’11; May 21-22, 2011; Copyright
2011.

Mahmoud et al.; “Source Code Indexing for Automated Tracing”;
TEFSE ’11; May 23, 2011; pp. 3.-6; Copyright 2011.

McMillan et al.; “Exemplar: A Source Code Search Engine for
Finding Highly Relevant Applications”; IEEE Transactions on
Software Engineering; vol. 38; No. 5; Sep./Oct. 2012; pp. 1069-
1087; Published by the IEEE Computer Society; Copyright 2012
IEEE.

* cited by examiner

U.S. Patent May 29, 2018 Sheet 1 of 5 US 9,984,104 B2

130 /100

INDEXING COMPUTER
INDEX | 150
EXTRACTION PROGRAM [T~ 120
)
NETWORK
ACCESSING
APPLIGATION 175 COMPUTER
REPOSITORY DX
5 122~} SEARCHING
170 PROGRAM

SOFTWARE
APPLICATION [T~ 190

140
110)
! SERVER
NETWORK COMPUTER
ACCESSING
COMPUTER 160] INDEX
REPOSITORY
INDEX
1121 SEARCHING
PROGRAM

FIG. 1

U.S. Patent May 29, 2018 Sheet 2 of 5 US 9,984,104 B2

150
/

210

IS SOURCE CODE

YES LEGALLY ACCESSIBLE ? NO
220 ~ EXTRACT BINARY DATA | STIMULATE APPLICATION |~ 240
OCR&ASR | IMAGES
TEXT
230 ~] PROCESS TEXTUAL DATA | EXTRACT IMAGE DATA |~ 250
\]
TRANSLATE DATA

INTO INDEXABLE DATA [~ 260

\

UPDATE INDEX
REPOSITORY [~ 270

y

(_END)

FIG. 2

U.S. Patent May 29, 2018 Sheet 3 of 5 US 9,984,104 B2
110, 120, 130, 140
306
/
MEMORY
314
308
Y
RAM f—
304 » PERSISTENT
s STORAGE
CACHE |+
PROCESSOR(S) >
316
302~
320 312
\ N 310
110 a
DISPLAY INTERFACE(S) COMMUNICATIONS UNIT
318
\
EXTERNAL
DEVICE(S)

FIG. 3

U.S. Patent May 29, 2018 Sheet 4 of 5 US 9,984,104 B2

400~~~ 500 N
420 BINARY 900
410~ N\ PROCESSOR [
LICENSE INDEX
/APPLICATION /"] INTERPRETER PROCESSOR
SIMULATION
PROCESSOR ’
700’
FIG. 4
500~~~ 510 ~
STRING
EXTRACTION

600

520 | SOURCE CODE TEXT
BINARY EXTRACTION PROCESSOR
METADATA
530 ——| EXTRACTION
FIG. 5
600 ~ s~
605 o197 g 640
M LANGUAGE SEGMENTATION '
UNSTRUCTURED) SUMMARY
TEXT ENCODING GENERATION
DETECTION MENTION/RELATION
DETECTION
630— STRUCTURE
COMPOSITION
FIG. 6 (PREPARE

FOR
650 | INDEXING)

U.S. Patent May 29, 2018 Sheet 5 of 5 US 9,984,104 B2
/720 /800
700 ~s~o IMAGE IMAGE
710— EXTRACTION PROCESSOR
410
SIMU(BETORI 730 600
APPLICATION APPLIGATION OCR [~
DRIVER TEXT
PROCESSOR
ASR
~- 740
FIG.7
800
> 810~
8051 IMAGE 830
CLASSIFICATION r
/ IMAGE/VIDEO SEMANTIC
CLASSIFICATION
KEY FRAME
820 —] EXTRACTION
FIG. 8
900
oS ~- 710)/I/
SIMULATOR/
APPLICATION
DRIVER CODE VS.
APPLICATION MODEL
St | oo
SOURCE |
520~ CODE B A
EXTRACTION ~G5EE
REPOSITORY
\d
]
NEW BEHAVIOR SCORING
APPLICATION | | ANALYSIS || MODULE
|
FIG. 9 CODE |

US 9,984,104 B2

1
INDEXING CONTENT AND SOURCE CODE
OF A SOFTWARE APPLICATION

FIELD OF THE INVENTION

The present invention relates generally to the field of web
indexing software, and more particularly to indexing content
and source code of software applications.

BACKGROUND OF THE INVENTION

Search engines are known. Search engines enable users to
search for documents on the World Wide Web (WWW). A
search engine searches documents for specified keywords
and returns a list of the documents to a user probing for
pertinent information. A search engine is a general class of
programs.

Conventional search engines work by sending out a spider
to fetch as many documents as possible. The term “search
engine spider” can be used interchangeably with the term
“search engine crawler.” A spider is a program that a search
engine uses to seek out and index the information that it
finds. Traditionally, the search engine spider “reads” the text
on the web page, or collection of web pages, and records any
hyperlinks it finds. Search engines can have spiders visit
many sites in parallel, so that efficient cataloging will occur.
Spiders visit sites that have been submitted by website
owners as new or updated.

The spider method of cataloging information usually
entails another program called an indexer which reads
documents and creates a record based on the words con-
tained in each document. Indexing facilitates finding perti-
nent references for searchers using a variety of keywords
and gathering similar information under a single topic. Web
indexing refers to various methods for indexing the contents
of a website or of the Internet as a whole.

SUMMARY

Aspects of an embodiment of the present invention dis-
close a method, computer program product, and computing
system for generating a searchable index from an analysis of
a software application. The method includes receiving a first
software application. The method further includes one or
more processors determining that a first source code of the
first software application is inaccessible. The method further
includes the one or more processors stimulating the first
software application. The method further includes the one or
more processors analyzing textual data resulting from the
stimulation of the first software application. The method
further includes the one or more processors classifying one
or more images resulting from the stimulation of the first
software application. The method further includes the one or
more processors indexing the analyzed textual data and the
classified one or more images resulting from the stimulation
of the first software application.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a diagram illustrating a distributed data process-
ing environment in accordance with one embodiment of the
present invention.

FIG. 2 is a flowchart depicting operational steps of an
index extraction program executing within the distributed
data processing environment of FIG. 1, for indexing both the

10

40

45

60

2

artifacts and source code of a software application in accor-
dance with one embodiment of the present invention.

FIG. 3 depicts a block diagram of components of network
accessing computer, network accessing computer, indexing
computer, and server computer in accordance with one
embodiment of the present invention.

FIG. 4 is a general functional block diagram of an
embodiment of the present invention.

FIG. 5 is a functional block diagram of a binary processor
in accordance with one embodiment of the present inven-
tion.

FIG. 6 is a functional block diagram of a text processor in
accordance with one embodiment of the present invention.

FIG. 7 is a functional block diagram of a simulation
processor in accordance with one embodiment of the present
invention.

FIG. 8 is a functional block diagram of an image proces-
sor in accordance with one embodiment of the present
invention.

FIG. 9 is a functional block diagram of an index processor
in accordance with one embodiment of the present inven-
tion.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer-readable medium(s) having computer
readable program code/instructions embodied thereon.

Any combination of computer-readable media may be
utilized. Computer-readable media may be a computer-
readable signal medium or a computer-readable storage
medium. A computer-readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, or device, or any suitable combination of the forego-
ing. More specific examples (a non-exhaustive list) of a
computer-readable storage medium would include the fol-
lowing: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer-readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer-readable signal medium may be any computer-
readable medium that is not a computer-readable storage
medium and that can communicate, propagate, or transport

US 9,984,104 B2

3

a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on a user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer-readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer-readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer-imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The present invention will now be described in detail with
reference to the Figures. The following Figures provide an
illustration of one embodiment. The embodiment, taken in
part or in whole, does not imply any limitations with regard
to the environments in which different embodiments may be
implemented.

FIG. 1 is a diagram illustrating a distributed data process-
ing environment 100 in accordance with one embodiment of
the present invention. Distributed data processing environ-
ment 100 includes indexing computer 130, server computer
140, and network accessing computers 110 and 120 all

25

40

45

4

interconnected over network 175. Indexing computer 130,
server computer 140, and network accessing computers 110
and 120 may each include components as depicted in further
detail with respect to FIG. 3. Network 175 may be a local
area network (LAN), a wide area network (WAN) such as
the Internet, any combination thereof, or any combination of
connections and protocols that will support communications
among indexing computer 130, server computer 140, and
network accessing computers 110 and 120 in accordance
with embodiments of the invention. Network 175 may
include wired, wireless, or fiber optic connections. Distrib-
uted data processing environment 100 may include addi-
tional servers, computers, or other devices not shown.

Network accessing computers 110 and 120 may each be
laptop computers, tablet computers, netbook computers,
personal computers (PC), desktop computers, personal digi-
tal assistants (PDA), smart phones, or any programmable
electronic devices capable of communicating with other
devices, such as server computer 140, via network 175.

Network accessing computers 110 and 120 contain index
searching programs 112 and 122, respectively. Index search-
ing programs 112 and 122 utilize the information extracted
by index extraction program 150 and stored in index reposi-
tory 160. Index searching programs 112 and 122 include, but
are not limited to: (i) search engine spiders; (ii) general
public searching for index information; and (iii) programs
that emulate human behavior, such as artificial intelligence
automata, with sufficient intelligence to act as a user search-
ing for index information.

Server computer 140 may be a management server, a web
server, or any other electronic device or computing system
capable of receiving and sending data. In other embodi-
ments, server computer 140 may represent a server comput-
ing system utilizing multiple computers as a server system,
such as in a cloud computing environment. Server computer
140 contains index repository 160.

Index repository 160 is an information store. Index
repository 160 holds information extracted by index extrac-
tion program 150. In one embodiment, index repository 160
is a data file that can be written to and read by index
extraction program 150 and read by index searching pro-
grams 112 and 122. In other embodiments, index repository
160 may be a database that can be written to and read by
index extraction program 150. In one embodiment, index
repository 160 is located on server computer 140. In other
embodiments, index repository 160 may be located on
indexing computer 130, another server, or another comput-
ing device (shown or not shown), provided that index
repository 160 is accessible to index extraction program 150
and index searching programs 112 and 122.

Index computer 130 may be a laptop computer, tablet
computer, netbook computer, personal computer (PC), desk-
top computer, personal digital assistant (PDA), smart phone,
or any programmable electronic device capable of commu-
nicating with other devices, such as server computer 140, via
network 175. Index computer 130 contains index extraction
program 150 and application role repository 170.

Index extraction program 150 operates to extract index
information from non-traditional electronic media. Embodi-
ments of index extraction program 150 extends indexing
capabilities from traditional indexing to non-traditional
media, such as pictures, video, textual data contained within
a software application, and artifacts of software applications.
An artifact can be any output produced by a set of computer
instructions. In one embodiment, index extraction program
150 indexes both human readable text and artifacts of
software applications, such as screen shots and different

US 9,984,104 B2

5

modality streams. Index extraction program 150 communi-
cates with application role repository 170. Application role
repository 170 holds a cross-reference of software applica-
tions and their generated artifacts.

In one embodiment, index extraction program 150 resides
on indexing computer 130. In another embodiment, index
extraction program 150 may reside on another computer or
another computing device, provided that index extraction
program 150 has access to software application 190, appli-
cation role repository 170, and index repository 160.

Application role repository 170 is an information store.
Application role repository 170 contains a cross-reference of
software applications and their generated artifacts.
Examples of the contents within application role repository
170 include, but not limited to: (i) a word processing
program being crossed referenced with its artifact, text; (ii)
an aircraft caution and warning program being crossed
referenced with its artifact, warning data; (iii) a computer
backup program being crossed referenced with its artifact,
backup data; and (iv) so on and so forth. Application role
repository 170 can be in the form of a: (i) database; (ii) flat
file; (iii) or any structure that would facilitate access and
security of such information. The information within the
information store is obtainable through methods, whether
custom or off-the-shelf, that facilitate access by authorized
users. For example, such methods include, but are not
limited to, a database management system (DBMS). In some
embodiments, application role repository 170 may be a
database.

Embodiments of the present invention recognize that as
content moves away from web pages into proprietary for-
mats, like software applications, conventional indexing
methods will no longer work. Additionally, the rise in usage
of hand held devices push content away from traditional
publishing methods (i.e. web based) to more proprietary
methods encoded inside software applications. These appli-
cations include, but are not limited to: (i) games for various
game consoles; (ii) applications written for small devices,
such as smart phones; and (iii) domain specific applications
(e.g. medical, social networking, etc). Therefore, there exists
a need for a method to index both human readable text and
artifacts of software applications in software applications.
Nevertheless, whenever the source code is available and
accessible, it is difficult to identify the parts of the code that
correspond to certain functionality of a software application
unless the source code is very well documented.

FIG. 2 is a flowchart depicting operational steps of index
extraction program 150 executing within the distributed data
processing environment of FIG. 1, indexing both human
readable text and artifacts of software applications in accor-
dance with one embodiment of the present invention.

In one embodiment, initially, indexing computer 130
invokes index extraction program 150. Software application
190 may have been preselected to be indexed by index
extraction program 150 or a user may select software
application 190 as the software application to be indexed by
index extraction program 150.

Index extraction program 150 branches whether the
source code licensing permits accessibility. In decision 210,
index extraction program 150 determines, based upon avail-
able license information for software application 190, if
index the source code of software application 190 can be
accessed. In one embodiment, index extraction program 150
determines accessibility by searching and comparing a cata-
log known legal phases (not shown) to textual phases within
the source code. If index extraction program 150 determines
the source code of software application 190 can be accessed

35

40

45

50

55

6

(decision 210, yes branch), index extraction program 150
proceeds to step 220. If index extraction program 150
determines that the source code of software application 190
cannot be accessed (decision 210, no branch), index extrac-
tion program proceeds to step 240. If the license information
is ambiguous, inconsistent, or simply missing, index extrac-
tion program 150 determines that the source code of soft-
ware application 190 cannot be accessed (decision 210, no
branch) and proceeds to step 240.

In step 220, index extraction program 150 extracts the
binary file data of software application 190. In one embodi-
ment, index extraction program 150 examines the source
code of software application 190. An examination of the
source code can provide textual content that is indexable.
Indexable textual content of interest includes, but is not
limited to: (i) text strings; (ii) source code extraction; and
(iii) metadata. The indexable textual content gathered in step
220 is characterized as unstructured.

For example, many software applications produce text
strings that are displayed to the user of the software appli-
cation during execution. Usually, these text strings are
embedded within the software application. For example, the
code, written in the C language—printf(“hello world”);—
will be translated into a binary format, which can be
searched. Searching the binary format produces the text
string “hello world.”

Source code extraction, for one embodiment, functions in
a similar manner as string extraction, however, rather than
looking for strings the source code is examined for content
that would be of interest to indexing.

Metadata extraction, for one embodiment, functions in a
similar manner as string extraction. More specifically, within
the source code, indexable textual content may be embedded
within metadata. For instance, indexable textual content of
interest, e.g. “hello world,” may be enclosed between meta-
data symbols “<<” and “>>” as <<hello world>>.

In step 230, index extraction program 150 processes
textual data by translating unstructured texts and performing
language and encoding detection. In step 230, index extrac-
tion program 150 processes the textual content extracted in
step 220 (and step 240, which will be discussed shortly)
through text processing software instructions. In this
embodiment, the text processing software instructions are:
(1) segmentation; (ii) language and encoding detection; and
(iii) relation mention detection. Furthermore, both segmen-
tation and relation mention detection (also referred to as
“mention/relation detection”) generate summaries to be pro-
cessed by step 260 (discussed shortly).

Stimulate application 240 performs the following tasks:
(1) language and encoding detection for software application
190; (ii) segmentation for software application 190, text is
separated into smallest segments that are still meaningful to
index; (iii) relation mention detection for software applica-
tion 190, relation mention detection includes, but is not
limited to: (a) times, (b) locations, and (c¢) named entities,
and (d) provides a semantic interpretation of the text; (iv)
summaries are generated for software application 190; and
(v) summaries are prepared for indexing.

In step 240, index extraction program 150 stimulates
software application 190 whenever index extraction pro-
gram 150 does not have permission to view the source code.
In one embodiment, index extraction program 150 will
interact with software application 190 in a variety of ways.
For instance, by taking snapshots of code generated artifacts,
including, but not limited to: (i) image extractions; (ii)
character recognition; and (iii) speech extraction using auto-
matic speech recognition (ASR). In order to capture these

US 9,984,104 B2

7

artifacts software application 190 is executed with proper
input stimulation. Software application 190 can be executed
within an artificial environment (as in a virtual machine
environment) or within a native environment. Images are
sent to an image processor to be processed in step 250, while
optical character reading (OCR) and automatic speech rec-
ognition (ASR) type content are sent to a text processor to
be processed in step 230; step 230 was formerly discussed.

In another embodiment the software application 190 is
simulated. Simulation of software application 190 can be
executed within an artificial environment (as in a virtual
machine environment) or within a native environment. The
simulation of software application 190 is such that it will
preserve the inputs and outputs to and from the application
and the math models of software application 190.

Furthermore, in step 240, to better classify the type of
software application under stimulation, application role
repository 170 (see FIG. 1) is utilized. Application role
repository 170 is an information store. Application role
repository 170 holds a cross-reference of applications and
their generated artifacts. For instance, when stimulating a
speech recognition application the artifact produced may be
a textual representation of the verbal input. A query of
application role repository 170 would result in the applica-
tion being identified as a speech recognition application, and
therefore be indexed as such.

The artifacts that are produced by an application, and
consequently cross-reference in application role repository
170, are varied in modality streams. Artifacts include, but
are not limited to: (i) sensation, such as heat or cold; (ii)
smell; (iii) tactile sensations; and (iv) sounds. For instance,
if the application under stimulation produces a smell or
process a smell in some way (e.g. identifies, finds, or tracks
using smell) one embodiment of the present invention would
index it as such.

In step 250, index extraction program 150 extracts image
data as a set of images, possibly video, by software instruc-
tions to perform both an image classification and key frame
extraction. Important components of the frame are extracted,
such as images. For example: (i) images of football fields or
football players would correspond to sports video games or
sports game simulations; (ii) images of cars or roads corre-
spond to driving emulations or driving video games; and (iii)
images that have computer menu components (e.g. windows
button, edit icons, and arrow/box/circle icons) correspond to
editing or graphic building programs (that edit text or
multimedia). The object identification is performed with
respect to a database of commonly encountered objects in
different applications that is built in advance. In addition to
identifying objects, index extraction program 150 identifies
interactions/dynamic behavior between objects to further
specify the application. In the car example above, a moving
car likely corresponds to a video game, while a stationary
representation of a car with text can correspond to a car parts
ordering program, or a ‘fix it yourself” guide. These com-
ponents, images, are processed by instructions to perform
semantic classification.

In step 260, index extraction program 150 processes data
from step 230 and/or data from step 250 by translating data
into indexable data. After data is identified, an automatic
summary of the data description is performed in order to
generate an index.

For example, when software application 190 is software
that produces food recipes for pasta, index extraction pro-
gram 150, in step 260, would produce two indexes: (i) an
index for the pasta recipes, and (ii) an index indicating that
software application 190 is software that produces food

10

15

20

25

30

35

40

45

50

55

60

65

8

recipes. The second index is stored in application role
repository 170, and used in step 240, as previously dis-
cussed. Furthermore, summaries from step 220 are indexed
in step 260. The first index is a summary of the media
produced by the application. A person searching specifically
for pasta recipes can find the recipes produced by the
application. The second index is a meta-summary related to
the application itself, so that it is accessible to people who
are searching, e.g. for cognitive systems that generate food
recipes.

In step 260, index extraction program 150 may also
suggest part of the code for a new application. Software
application starts in the simulated environment. The system
interacts with the software application 190 in a variety of
ways, and takes snapshots of its integration with the code.
The system identifies the parts of the code that correspond
to certain functionalities of a software application. Various
variants of codes are treated as models that may generate
some parts of applications. Each of these models is repre-
sented as columns “h(I)” in a sensing matrix “H.” A new
application is represented as a vector “y.” Finding the most
relevant code given an application can be represented as a
sparse regression of this optimization problem for “x,” as
described by the following equation, equation (A).

min|y—Hx|? Equation (A):

In step 270, index extraction program 150 stores indexing
information in index repository 160. Index repository 160 is
an information store. Index repository 160 can be in the form
of'a: (i) database; (ii) flat file; (iii) or any structure that would
facilitate access and security of such information. The
information within the information store is obtainable
through methods, whether custom or off-the-shelf, that
facilitate access by authorized users. For example, such
methods include, but are not limited to, a database manage-
ment system (DBMS).

Updating index repository 160 involves communication
between index extraction program 150 and index repository
160. The method to communicate over a network, such as
network 175, see FIG. 1, (sometimes referred to as “data
handshaking™) may include, but not limited to: (i) emailing
requests and responses, using possibly simple mail transfer
protocol (SMTP); (ii) off-the-shelf or custom-developed
applications that allow data transferring; (iii) extensible
markup language (XML), or variations of such, one being
“beep” (Blocks Extensible Exchange Protocol); (iv) trans-
mission control protocol/internet protocol TCP/IP or its
derivatives; (v) process communication, such as messaging;
and (vi) using computer browsers for the inquiries and
responses. For instance, using an off-the-shelf or custom-
developed application, a transmission control protocol/in-
ternet protocol (TCP/IP) can be established to pass the data
to and from index repository 160.

FIG. 3 depicts a block diagram of components of network
accessing computer 110, network accessing computer 120,
indexing computer 130, and server computer 140 in accor-
dance with one embodiment of the present invention. It
should be appreciated that FIG. 3 provides only an illustra-
tion of one implementation and does not imply any limita-
tions with regard to the environments in which different
embodiments may be implemented. Many modifications to
the depicted environment may be made.

Network accessing computer 110, network accessing
computer 120, indexing computer 130, and server computer
140 each include communications fabric 302, which pro-
vides communications between computer processor(s) 304,
memory 306, persistent storage 308, communications unit

US 9,984,104 B2

9

310, and input/output (I/O) interface(s) 312. Communica-
tions fabric 302 can be implemented with any architecture
designed for passing data and/or control information
between processors (such as microprocessors, communica-
tions and network processors, etc.), system memory, periph-
eral devices, and any other hardware components within a
system. For example, communications fabric 302 can be
implemented with one or more buses.

Memory 306 and persistent storage 308 are computer-
readable storage media. In this embodiment, memory 306
includes random access memory (RAM) 314 and cache
memory 316. In general, memory 306 can include any
suitable volatile or non-volatile computer-readable storage
media.

Index extraction program 150, application type repository
170, and software application 190 are stored in persistent
storage 308 of indexing computer 130 for execution and/or
access by one or more of the respective computer processors
304 of indexing computer 130 via one or more memories of
memory 306 of indexing computer 130. Index repository
160 is stored in persistent storage 308 of server computer
140 for access by one or more of the respective computer
processors 304 of server computer 140 via one or more
memories of memory 306 of server computer 140. Index
searching program 112 is stored in persistent storage 308 of
network accessing computer 110 for execution by one or
more of the respective computer processors 304 of network
accessing computer 110 via one or more memories of
memory 306 of network accessing computer 110. Index
searching program 122 is stored in persistent storage 308 of
network accessing computer 120 for execution by one or
more of the respective computer processors 304 of network
accessing computer 120 via one or more memories of
memory 306 of network accessing computer 120. In this
embodiment, persistent storage 308 includes a magnetic
hard disk drive. Alternatively, or in addition to a magnetic
hard disk drive, persistent storage 308 can include a solid
state hard drive, a semiconductor storage device, read-only
memory (ROM), erasable programmable read-only memory
(EPROM), flash memory, or any other computer-readable
storage media that is capable of storing program instructions
or digital information.

The media used by persistent storage 308 may also be
removable. For example, a removable hard drive may be
used for persistent storage 308. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer-readable storage medium that is also part of per-
sistent storage 308.

Communications unit 310, in these examples, provides
for communications with other data processing systems or
devices, including resources of enterprise grid (not shown)
and distributed data processing environment computers. In
these examples, communications unit 310 includes one or
more network interface cards. Communications unit 310
may provide communications through the use of either or
both physical and wireless communications links. Index
extraction program 150, application type repository 170, and
software application 190 may be downloaded to persistent
storage 308 of indexing computer 130 through communica-
tions unit 308 of indexing computer 130. Index repository
160 may be downloaded to persistent storage 308 of server
computer 140 through communication unit 308 of server
computer 140. Index searching program 112 may be down-
loaded to persistent storage 308 of network accessing com-
puter 110 through communications unit 308 of network
accessing computer 110. Index searching program 122 may

20

25

30

40

45

55

10

be downloaded to persistent storage 308 of network access-
ing computer 120 through communications unit 308 of
network accessing computer 120.

1/0O interface(s) 312 allows for input and output of data
with other devices that may be connected to distributed data
processing environment computers. For example, 1/O inter-
face 312 may provide a connection to external devices 318
such as a keyboard, keypad, a touch screen, and/or some
other suitable input device. External devices 318 can also
include portable computer-readable storage media such as,
for example, thumb drives, portable optical or magnetic
disks, and memory cards. Software and data used to practice
embodiments of the present invention, e.g., index extraction
program 150, application type repository 170, and software
application 190, can be stored on such portable computer-
readable storage media and can be loaded onto persistent
storage 308 of indexing computer 130 via I/O interface(s)
312 of indexing computer 130. Software and data used to
practice embodiments of the present invention, e.g., index
repository 160, can be stored on such portable computer-
readable storage media and can be loaded onto persistent
storage 308 of server computer 140 via /O interface(s) 312
of server computer 140. Software and data used to practice
embodiments of the present invention, e.g., index searching
program 112, can be stored on such portable computer-
readable storage media and can be loaded onto persistent
storage 308 of network accessing computer 110 via 1/O
interface(s) 312 of network accessing computer 110. Soft-
ware and data used to practice embodiments of the present
invention, e.g., index searching program 122, can be stored
on such portable computer-readable storage media and can
be loaded onto persistent storage 308 of network accessing
computer 120 via I/O interface(s) 312 of network accessing
computer 120. [/O interface(s) 312 also connect to a display
320.

Display 320 provides a mechanism to display data to a
user and may be, for example, a computer monitor.

Now that the embodiment(s) of FIGS. 1 through 3 have
been fully discussed, some additional discussion and
embodiments of the present invention will be discussed in
the following paragraphs.

Turning now to FIG. 4, process 400, is a general func-
tional block diagram of an embodiment of the present
invention (henceforth, also referred to as “the system”).
Process 400 is responsible for indexing the textual contents
of the software application. The software application 410 is
sent to license interpreter 420 to determine license type. For
example, license types, in this embodiment of the present
invention, includes, but is not limited to: (i) the system can
look at the software application’s source code; or (ii) the
system cannot look at the software application’s source
code. Whenever the system can look at the source code, the
software application is sent to binary processor 500; other-
wise, the software application will be sent to simulation
processor 700. Binary processor 500 and simulation proces-
sor 700 send their resulting data to index processor 900 to be
indexed.

Turning now to FIG. 5. FIG. 5 is a functional block
diagram of a binary processor in accordance with one
embodiment of the present invention. Binary processor 500
performs: (i) string extraction 510; (ii) source code extrac-
tion 520; and (iii) metadata extraction 530. These processors
produce one or more sets of text that is sent to text processor
600.

Turning now to FIG. 6. FIG. 6 is a functional block
diagram of a text processor in accordance with one embodi-
ment of the present invention. Text processor 600 takes one

US 9,984,104 B2

11

or more sets of unstructured text 605 and performs language
and encoding detection 610. After language and encoding
detection 610 processing the text is separated into smaller
segments that are easier to process. In addition, mention/
relation detection 630 processing includes, but not limited
to: (i) identification of times; (ii) locations; (iii) named
entities; and (iv) so on and so forth. Mention/relation detec-
tion 630 provides a semantic interpretation of the text. Both
segmentation 620 and mention/relation detection 630 are
used to consequently generate summaries, identified in
block summary generation 640. Finally, the summaries are
passed to structure composition 650 which prepares the
summaries for indexing.

Turning now to FIG. 7. FIG. 7 is a functional block
diagram of a simulation processor in accordance with one
embodiment of the present invention. Simulation processor
700 runs software application 410 in the simulated environ-
ment. The system tries to interact with the application in a
variety of ways using os simulator application driver 710.
Additionally, when possible, the system takes snapshots of
its integration with the code, which include, but not limited
to: (i) image extraction 720; (ii) character recognition using
OCR 730; and (iii) speech extraction using automatic speech
recognition (ASR) 740. The extracted information is sent to
image processor 800 and text processor 600, appropriately.

Turning now to FIG. 8. FIG. 8 is a functional block
diagram of an image processor in accordance with one
embodiment of the present invention. Image processor 800
processes imagery, which includes, but not limited to: (i)
pictures, in conventional formats (e.g., jpeg, tiff, bmp, etc.,
and any future developed formats); (ii) streaming video, in
conventional formats (e.g., wmv, avi, quicktime, etc., and
any future developed formats); and (iii) non-streaming
video, in conventional formats (digital video disk (DVD),
Blu-Ray, high-density digital video disk (HD-DVD, etc.,
and any future developed formats). Image/video 805 is sent
to both mage classification 810 and key frame extraction
820, which detects the important frames from the video or
the set of pictures, so that important components of the scene
are extracted. This information is handed to semantic clas-
sification 830.

Turning now to FIG. 9. FIG. 9 is a functional block
diagram of an index processor in accordance with one
embodiment of the present invention. Index processor 900 is
responsible for indexing the source code of software appli-
cation 410 and suggesting part of the code for new appli-
cation. Software application 410 is started in the simulated
environment, os simulator application driver 710. The sys-
tem interacts with the software application 410 in a variety
of' ways, and takes snapshots of its integration with the code.
The system identifies the parts of source code that corre-
spond to certain functionalities of a software application by
using source code extraction 520. Various variants of codes
are treated as models that may generate some parts of
applications. Each of these models are represented as col-
umns “h(I)” in a sensing matrix “H.” A new application is
represented as a vector “y.” Finding the most relevant code
given application can be represented as a sparse regression
of this optimization problem for “x,” as described by the
following equation, equation (B).

minly-Hx? Equation (B):

The programs herein are identified based upon the appli-
cation for which they are implemented in a specific embodi-
ment of the invention. However, it should be appreciated
that any particular program nomenclature herein is used
merely for convenience, and thus the invention should not be

10

15

20

25

30

35

40

45

50

55

60

65

12

limited to use solely in any specific application identified
and/or implied by such nomenclature.
The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
devices that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.
What is claimed is:
1. A method for generating a searchable index from an
analysis of a software application, the method comprising
the steps of:
one or more processors determining whether first source
code of a first software application is inaccessible;

responsive to determining that the first source code of the
first software application is inaccessible, the one or
more processors stimulating the first software applica-
tion to perform one or more functionalities correspond-
ing to the first source code of the first software appli-
cation;

the one or more processors taking a snapshot of artifacts

generated by the first source code of the first software
application as a result of stimulation, wherein the
artifacts comprise textual data and one or more images;
the one or more processors analyzing the textual data
resulting from the stimulation of the first software
application, wherein analyzing the textual data result-
ing from the stimulation of the first software applica-
tion comprises separating the textual data resulting
from the stimulation of the first software application
into at least one smaller segment and generating a
summary from the at least one smaller segment;
the one or more processors semantically classifying the
one or more images resulting from the stimulation of
the first software application;

the one or more processors indexing the analyzed textual

data and the semantically classified one or more images
resulting from the stimulation of the first software
application;

the one or more processors extracting similar indexes as

the indexed analyzed textual data and the semantically
classified one or more images resulting from the stimu-
lation of the first software application from an index
repository; and

the one or more processors storing the indexed analyzed

textual data and the semantically classified one or more
images resulting from the stimulation of the first soft-
ware application cross-referred with the extracted simi-
lar indexes in the index repository.

2. The method of claim 1, the method further comprising:

the one or more processors receiving a second software

application;

US 9,984,104 B2

13

the one or more processors determining that a second
source code of the second software application is
accessible;

the one or more processors extracting textual data from

the second source code of the second software appli-
cation;

the one or more processors analyzing the textual data

extracted from the second source code of the second
software application; and

the one or more processors indexing the analyzed textual

data from the second source code.

3. The method of claim 1, wherein the step of the one or
more processors analyzing the textual data resulting from
the stimulation of the first software application comprises:

the one or more processors detecting textual data from the

one or more images resulting from the stimulation of
the first software application; and

the one or more processors analyzing the textual data

detected from the one or more images resulting from
the stimulation of the first software application.

4. The method of claim 1, wherein the step of the one or
more processors analyzing the textual data resulting from
the stimulation of the first software application comprises
using relation mention detection processing to analyze the
textual data resulting from the stimulation of the first soft-
ware application.

5. A computer program product for generating a search-
able index from an analysis of a software application, the
computer program product comprising:

one or more computer-readable storage media and pro-

gram instructions stored on the one or more computer-
readable storage media, the program instructions com-
prising:
program instructions to determine whether first source
code of a first software application is inaccessible;

program instructions to, responsive to determining that
the first source code of the first software application is
inaccessible, stimulate the first software application to
perform one or more functionalities corresponding to
the first source code of the first software application;

program instructions to take a snapshot of artifacts gen-
erated by the first source code of the first software
application as a result of stimulation, wherein the
artifacts comprise textual data and one or more images;

program instructions to analyze the textual data resulting
from the stimulation of the first software application,
wherein analyzing the textual data resulting from the
stimulation of the first software application comprises
separating the textual data resulting from the stimula-
tion of the first software application into at least one
smaller segment and generating a summary from the at
least one smaller segment;

program instructions to semantically classify the one or

more images resulting from the stimulation of the first
software application;

program instructions to index the analyzed textual data

and the semantically classified one or more images
resulting from the stimulation of the first software
application;

program instructions to extract similar indexes as the

indexed analyzed textual data and the semantically
classified one or more images resulting from the stimu-
lation of the first software application from an index
repository; and

program instructions to store the indexed analyzed textual

data and the semantically classified one or more images
resulting from the stimulation of the first software

20

25

30

35

40

45

55

14

application cross-referred with the extracted similar
indexes in the index repository.

6. The computer program product of claim 5 further
comprising:

program instructions, stored on the one or more computer-

readable storage media, to receive a second software
application;

program instructions, stored on the one or more computer-

readable storage media, to determine that a second
source code of the second software application is
accessible;
program instructions, stored on the one or more computer-
readable storage media, to extract textual data from the
second source code of the second software application;

program instructions, stored on the one or more computer-
readable storage media, to analyze the textual data
extracted from the second source code of the second
software application; and

program instructions, stored on the one or more computer-

readable storage media, to index the analyzed textual
data from the second source code.

7. The computer program product of claim 5, wherein the
program instructions to analyze the textual data resulting
from the stimulation of the first software application com-
prise:

program instructions, stored on the one or more computer-

readable storage media, to detect textual data from the
one or more images resulting from the stimulation of
the first software application; and

program instructions, stored on the one or more computer-

readable storage media, to analyze the textual data
detected from the one or more images resulting from
the stimulation of the first software application.

8. The computer program product of claim 5, wherein the
program instructions to analyze the textual data resulting
from the stimulation of the first software application com-
prise program instructions to use relation mention detection
processing to analyze the textual data resulting from the
stimulation of the first software application.

9. A computer system for generating a searchable index
from an analysis of a software application, the computer
system comprising:

one or more computer processors, one or more computer-

readable storage media, and program instructions
stored on the one or more computer-readable storage
media for execution by at least one of the one or more
processors, the program instructions comprising:
program instructions to determine whether first source
code of a first software application is inaccessible;
program instructions to, responsive to determining that
the first source code of the first software application is
inaccessible, stimulate the first software application to
perform one or more functionalities corresponding to
the first source code of the first software application;
program instructions to take a snapshot of artifacts gen-
erated by the first source code of the first software
application as a result of stimulation, wherein the
artifacts comprise textual data and one or more images;
program instructions to analyze the textual data resulting
from the stimulation of the first software application,
wherein analyzing the textual data resulting from the
stimulation of the first software application comprises
separating the textual data resulting from the stimula-
tion of the first software application into at least one
smaller segment and generating a summary from the at
least one smaller segment;

US 9,984,104 B2

15

program instructions to semantically classify the one or
more images resulting from the stimulation of the first
software application;

program instructions to index the analyzed textual data
and the semantically classified one or more images
resulting from the stimulation of the first software
application;

program instructions to extract similar indexes as the
indexed analyzed textual data and the semantically
classified one or more images resulting from the stimu-
lation of the first software application from an index
repository; and

program instructions to store the indexed analyzed textual
data and the semantically classified one or more images
resulting from the stimulation of the first software
application cross-referred with the extracted similar
indexes in the index repository.

10. The computer system of claim 9, further comprising:

program instructions, stored on the one or more computer-
readable storage media for execution by at least one of
the one or more processors, to receive a second soft-
ware application;

program instructions, stored on the one or more computer-
readable storage media for execution by at least one of
the one or more processors, to determine that a second
source code of the second software application is
accessible;

program instructions, stored on the one or more computer-
readable storage media for execution by at least one of

<

16

the one or more processors, to extract textual data from
the second source code of the second software appli-
cation;

program instructions, stored on the one or more computer-
readable storage media for execution by at least one of
the one or more processors, to analyze the textual data
extracted from the second source code of the second
software application; and

program instructions, stored on the one or more computer-
readable storage media for execution by at least one of
the one or more processors, to index the analyzed
textual data from the second source code.

11. The computer system of claim 9, wherein the program

instructions to analyze the textual data resulting from the
stimulation of the first software application comprise:

program instructions, stored on the one or more computer-
readable storage media, to detect textual data from the
one or more images resulting from the stimulation of
the first software application; and

program instructions, stored on the one or more computer-
readable storage media, to analyze the textual data
detected from the one or more images resulting from
the stimulation of the first software application.

12. The computer system of claim 9, wherein the program

instructions to analyze the textual data resulting from the
stimulation of the first software application comprise pro-
gram instructions to use relation mention detection process-
ing to analyze the textual data resulting from the stimulation
of the first software application.

#* #* #* #* #*

