(54) 发明名称
液晶显示器的共同信号的准位调整电路

(57) 摘要
一种液晶显示器的共同信号的准位调整电路，可根据共同电压产生第一准位电压及第一准位电压，以产生第一共同信号及第二共同信号。该液晶显示器的每一像素包含二储存电容，分别接收第一共同信号及第二共同信号。该共同信号的准位调整电路利用一运算放大器再加上一个或二个齐纳二极管来产生该第一准位电压及该第二准位电压。由于该第一准位电压与该第二准位电压相对于该共同电压具有相同的电压差，因此可以减轻该液晶显示器闪烁的现象。
1. 一种用于液晶显示器的准位调整电路，其特征在于，包含：
 一运算放大器，具有正输入端、负输入端及输出端；
 一第一电阻，具有一端电性连接于该运算放大器的负输入端，及一第二端电性连接于一接地端；
 一第二电阻，具有一端电性连接于该运算放大器的正输入端，及一第二端电用来接收一共同电压；
 一第三电阻，具有一端电性连接于该运算放大器的正输入端，及一第二端电用来接收一参考电压；
 一第四电阻，具有一端电性连接于该运算放大器的负输入端，及一第二端电性连接于该运算放大器的输出端；及
 一齐纳二极管，具有一端电性连接于该运算放大器的输出端，用来输出一共同信号的第一准位电压，及一第二端经由一输出电阻电性连接于该接地端，用来输出该共同信号的第二准位电压。

2. 如权利要求1所述的准位调整电路，其特征在于，该齐纳二极管具有一崩溃电压值。

3. 如权利要求2所述的准位调整电路，其特征在于，该第一电阻及该第三电阻具有一第一电阻值，该第二电阻及该第四电阻具有一第二电阻值。

4. 如权利要求3所述的准位调整电路，其特征在于，该第一电阻值与该第二电阻值用来产生一系数，该系数与该参考电压的乘积等于该崩溃电压值。

5. 如权利要求2所述的准位调整电路，其特征在于，共同信号的第一准位电压为该共同电压加上该崩溃电压值，该共同信号的第二准位电压为该共同电压减去该崩溃电压值。
液晶显示器的共同信号的准位调整电路

技术领域
[0001] 本发明是有关于一种液晶显示器的共同信号的准位调整电路，尤指一种液晶显示器的摆动共同信号的准位调整电路。

背景技术
[0002] 请参考图1，图2为现有技术的薄膜晶体管液晶显示器的像素的示意图。液晶显示器的每一像素包含一第一子像素及一第二子像素。第一子像素包含一薄膜晶体管16a、一液晶电容Clc0及储存电容Ccs0。第二子像素包含一薄膜晶体管16b、一液晶电容ClcE及储存电容CcsE。第一子像素的薄膜晶体管16a及第二子像素的薄膜晶体管16b电性连接于相同的数据线14(m)与扫描线12(n)。第一子像素的储存电容Ccs0电性连接于一第一共同信号线240，第二子像素的储存电容CcsE电性连接于一第二共同信号线24E。因此，储存电容Ccs0与储存电容CcsE可被施加不同的电压。

[0003] 请参考图2，图2为图1的像素的电压的波形图。Vs(m)表示数据线14(m)的电压信号，Vcom表示共同电压，Vg(n)表示扫描线12(n)的电压信号，VgL表示Vg(n)的高准位电压，VGL表示Vg(n)的低准位电压。Vcs0表示第一共同信号线240的电压信号，VcsE表示第二共同信号线24E的电压信号，Vcls表示Vcs0及VcsE的高准位电压，Vcls表示Vcs0及VcsE的低准位电压。Vic0表示第一子像素的液晶电容Clc0的电压信号，VicE表示第二子像素的液晶电容ClcE的电压信号，VicC表示液晶电容的中心电压。第一共同信号线240的电压信号Vcs0及第二共同信号线24E的电压信号VcsE为互补信号，电压信号Vcs0及VcsE的高准位电压Vcls及低准位电压Vcls以共同电压Vcom为中心所产生的周期性的方波。

[0004] 由于每一液晶显示器的显示面板的共同电压Vcom都会有差异，因此在液晶显示器需要对共同电压Vcom进行调整以降低液晶显示器画面闪烁(flicker)。然而，在上述包含二子像素的液晶显示器中，电压信号Vcs0及VcsE的高准位电压Vcls及低准位电压Vcls无法随着共同电压Vcom的调整而变动，使得液晶显示器的画面闪烁不能得到改善。

发明内容
[0005] 因此，本发明的目的在于提供一种液晶显示器的共同信号的准位调整电路。

[0006] 本发明是提供一种用于液晶显示器的共同信号的准位调整电路，包含一运算放大器、一第一电阻、一第二电阻、一第三电阻、一第四电阻及一齐纳二极管。该运算放大器具有二输入端、一负输入端及一输出端。该第一电阻具有一第一端性连接于该运算放大器的负输入端，及二第二端性连接于一接地端。该第二电阻具有一第一端性连接于该运算放大器的正输入端，及一第二端性连接于一参考电压。该第三电阻，具有一第一端性连接于该运算放大器的正输入端，及一第二端性连接于一参考电压。该第四电阻具有一第一端性连接于该运算放大器的负输入端，及一第二端性连接于该运算放大器的输出端。该齐纳二极管具有一第一端性连接于该运算放大器的输出端，用来输出一共同信号
的第二准位电压，及一第二端经由一输出电感电性连接于该接地端，用输出该共同信号
的第二准位电压。

【0007】 本发明另提供一种用于液晶显示器的共同信号的准位调整电路，包含一运算放大器、一电阻、一第一齐纳二极管及一第二齐纳二极管。该运算放大器具有一正输入端、一负输入端及一输出端电性连接于该负输入端。该电阻具有一第一端电性连接于该运算放大器的正输入端，及一第二端电用来接收一参考电压。该第一齐纳二极管具有一第一端电性连接于该运算放大器的正输入端，及一第二端用来接收一共同电压。该第二齐纳二极管具有一第一端电性连接于该运算放大器的输出端，用来输出一共同信号的第一准位电压，及一第二端经由一输出电阻电性连接于该接地端，用来输出该共同信号的第二准位电压。

附图说明
【0008】 图 1 为先前技术的薄膜晶体管液晶显示器的像素的示意图。
【0009】 图 2 为图 1 的像素的电压的波形图。
【0010】 图 3 为共同信号的波形图。
【0011】 图 4 为共同信号的产生电路的方块图。
【0012】 图 5 为共同信号的准位调整电路的示意图。
【0013】 图 6 为本发明共同信号的准位调整电路的第一实施例的电路图。
【0014】 图 7 为本发明共同信号的准位调整电路的第二实施例的电路图。
【0015】 图 8 为电流放大器的电路图。
【0016】 图 9 为信号输出电路的电路图。

具体实施方式
【0017】在说明书及上述的权利要求当中使用了某些词汇来指称特定的组件。所属领域中
具有通常知识者应可理解，制造商可能会用不同的名词来称呼同样的组件。本说明书及上
述的权利要求并不以名称的差异来作为区别组件的方式，而是以组件在功能上的差异来作
为区别的基准。在通篇说明书及上述的权利请求项中所提及的「包含」是为一开放式的
用语，故应解释成为包含但不限定于。此外，「电性连接」一词在此是包含任何直接及间接
的电气连接手段。因此，若文中描述第一装置电性连接于第二装置，则代表该第一装置
可直接连接于该第二装置，或透过其它装置或连接手段间接地连接至该第二装置。
【0018】请参考图 3，图 3 为液晶显示器的共同信号的波形图。在本发明实施例中，液晶显
示器的共同信号为摆动 (swing) 信号，包含一第一共同信号 CSO 及一第二共同信号 CSE，第
一共同信号 CSO 及第二共同信号 CSE 为互补信号。共同信号的高准位电压 VCSH 与共同信
号的低准位电压 VCSL 对称于共同电压 VCOM，共同电压 VCOM 与高准位电压 VCSH 及低准位
电压 VCSL 之间具有相同的电压差 ΔV。因此，高准位电压 VCSH 及低准位电压 VCSL 可表示
为：
【0019】VCSH = VCOM + ΔV 式 (1)
【0020】VCSL = VCOM - ΔV 式 (2)
【0021】像素的第一储存电容的共同电极端接收第一共同信号，像素的第二储存电容的共
同电极端接收第二共同信号。因此，共同信号的高准位电压 VCSH 及低准位电压 VCSL 需随着
共同电压 VCOM 而变动，以避免液晶反转时储存电容的电压不对称所造成的闪烁（flicker）现象。

【0022】请参考图 4，图 4 为共同信号的产生电路的方框图。共同信号的产生电路包含一准位调整电路 500、一电流放大器 600 及一信号输出电路 700。准位调整电路 500 根据共同电压产生共同信号的准高电位电压 VCSH 与共同信号的低准位电压 VCSL。电流放大器 600 可增加共同信号的准高电位电压 VCSH 与共同信号的低准位电压 VCSL 的驱动能力。信号输出电路 700 将二频率信号的准位拉至共同信号的准高电位电压 VCSH 与低准位电压 VCSL。因此，信号输出电路 700 可根据共同信号的准高电位电压 VCSH 与共同信号的低准位电压 VCSL 产生第一共同信号 CSO 及第二共同信号 CSE。

【0023】请参考图 5，图 5 为共同信号的准位调整电路的示意图。由式 (1) 及式 (2) 可知，共同信号的准位调整电路的实施方式就是分别利用一加法器 551 及一减法器 552 来产生共同信号的准高电位电压 VCSH 与共同信号的低准位电压 VCSL。共同电压 VCOM 及电压差输入加法器 551 可产生共同信号的准高电位电压 VCSH，共同电压 VCOM 及电压差输入减法器 552 可产生共同信号的准高电位电压 VCSL。由于加法器 551 及减法器 552 分别需要一个运算放大器，因此在本发明中，利用一个运算放大器来产生共同信号的准高电位电压 VCSH 与共同信号的低准位电压 VCSL。

【0024】请参考图 6，图 6 为本发明共同信号的准位调整电路的第一实施例的电路图。准位调整电路包含一运算放大器 511、五电阻 512, 513, 514, 515, 517 及一齐纳（Zener）二极管 516。电阻 512, 514 的电阻值为 R1，电阻 513, 515 的电阻值为 R2，电阻 517 的电阻值为 R。齐纳二极管 516 的崩溃电压（breakdown voltage）为 2 mA。电阻 512 电性连接于运算放大器 511 的负输入端及一接地端之间。电阻 513 电性连接于运算放大器 511 的正输入端及共同电压 VCOM 之间。电阻 514 电性连接于运算放大器 511 的正输入端及一参考电压 V1 之间。电阻 515 电性连接于运算放大器 511 的负输入端及运算放大器 511 的输出端之间。齐纳二极管 516 电性连接于运算放大器 511 的输出端。电阻 517 电性连接于齐纳二极管 516 及接地端之间。准位调整电路在运算放大器 511 的输出端可产生共同电压 VCOM 的高准位电压 VCSH，共同电压 VCOM 与高准位电压 VCSH 的关系如下：

\[VCSH = VCOM + V1 \times (R1/R2) \] 式 (3)

【0025】VCSH = VCOM + V1 * (R2/R1) 式 (3)

【0026】在式 (3) 中，可借由调整电阻值 R1 与 R2 使 \(V1 \times (R2/R1) = \Delta V \)，所以高准位电压 VCSH = VCOM + \Delta V。由于齐纳二极管 516 操作在崩溃电压 2 mA，高准位电压 VCSH 经由齐纳二极管 516 产生低准位电压 VCSL = VCSH - 2 mA。因此本发明的准位调整电路只需要利用一个运算放大器即可产生共同电压 VCOM 的高准位电压 VCSH 及低准位电压 VCSL。

【0027】请参考图 7，图 7 为本发明共同信号的准位调整电路的第二实施例的电路图。在图 6 的第一实施例中，高准位电压 VCSH 可能会受到参考电压 V1 的影响而变动，因此便要调整电阻值 R1 与 R2 使来高准位电压 VCSH 维持在 VCOM + \Delta V。在第二实施例中，准位产生电路则可产生稳定的 VCOM + \Delta V。准位调整电路包含一运算放大器 531，一电阻 533, 535 及一齐纳二极管 532, 534。电阻 533 的电阻值为 R3，电阻 535 的电阻值为 R。齐纳二极管 532 的崩溃电压为 \(\Delta V \)。齐纳二极管 534 的崩溃电压为 2 mA。电阻 533 电性连接于运算放大器 531 的正输入端及参考电压 V1 之间。齐纳二极管 532 电性连接于运算放大器 531 的正输入端及共同电压 VCOM 之间。运算放大器 531 的负输入端电性连接于运算放大器 531 的输出端。齐
纳级二极管 534 电性连接于运算放大器 531 的输出端。电阻 535 电性连接于齐纳二极管 534 及接地端之间。参考电压 V1 必须大于共同电压 VCOM，即使同电压 VCOM 变动，也能使齐纳二极管 532 操作在崩漏电压为 Δ V。准位调整电路在运算放大器 531 的输出端可产生共同电压 VCOM 的高准位电压 VCSH，共同电压 VCOM 与高准位电压 VCSH 的关系如下：

\[VCSH = VCOM + Δ V \] 式 (4)

高准位电压 VCSH 经由齐纳二极管 534 产生低准位电压 VCSL = VCOM−Δ V。在本实施例中，运算放大器 531 形成一电压跟随器 (voltage follower)，因此只要运算放大器 531 的正输入端为 VCOM+Δ V，运算放大器 531 的输出端可输出稳定的 VCOM+Δ V。

请参考图 8，图 8 为电流放大器的电路图。电流放大器包含一 NPN 晶体管 611、一 PNP 晶体管 612 及一运算放大器 613。NPN 晶体管 611 电性连接于参考电压 V1，PNP 晶体管 612 电性连接于接地端，NPN 晶体管 611 及 PNP 晶体管 612 组成一反相器。运算放大器 613 的输出端电性连接于该反相器的输入端，运算放大器 613 的负输入电性连接于该反相器的输出端，准位调整电路产生的高准位电压 VCSH 及低准位电压 VCSL 由运算放大器 613 的正输入端输入。电流放大器可增加共同信号的高准位电压 VCSH 与低准位电压 VCSL 的驱动能力。

请参考图 9，图 9 为信号输出电路的电路图。信号输出电路包含二 PMOS 晶体管 711、713 及二 NMOS 晶体管 712、714。PMOS 晶体管 711、713 电性连接于共同信号的高准位电压 VCSH，NMOS 晶体管 712、714 电性连接于共同信号的低准位电压 VCSL。PMOS 晶体管 711 及 NMOS 晶体管 712 组成一第一反相器，PMOS 晶体管 713 及 NMOS 晶体管 714 组成一第二反相器。当一频率信号由节点 A 输入时，该频率信号的准位可被拉至共同信号的高准位电压 VCSH 与低准位电压 VCSL。因此，第一共同信号 CSO 由节点 B 输出，第二共同信号 CSE 由节点 C 输出。

综上所述，本发明提供一种液晶显示器的共同信号的准位调整电路，可根据一共同电压产生一第一准位电压及一第二准位电压，以产生一第一共同信号及一第二共同信号。该液晶显示器的每一像素包含二储存电容，分别接收该第一共同信号及该第二共同信号。该共同信号的准位调整电路利用一运算放大器再加上一个或二个齐纳二极管来产生该第一准位电压及该第二准位电压。由于该第一准位电压与该第二准位电压相对于该共同电压具有相同的电压差，因此可以减轻该液晶显示器闪烁的现象。

以上所述仅为本发明的较佳实施例，凡依本发明权利要求范围所做的均等变化与修饰，皆应属本发明的涵盖范围。
图 1
图4

图5

\[V_{CSH} = V_{COM} + \Delta V \]

\[V_{CSL} = V_{COM} - \Delta V \]