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DYNAMIC EXECUTION OF PREDICTIVE MODELS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to (1) U.S. Non-Provisional Patent App. No. 15/185,524,
filed on June 17, 2016 and entitled Dynamic Execution of Predictive Models, (ii) U.S. Non-
Provisional Patent App. No. 14/963,207, filed on December 8, 2015 and entitled Local Analytics
at an Asset, and (ii1) U.S. Non-Provisional Patent App. No. 14/744,362, filed on June 19, 2015
and entitled Dynamic Execution of Predictive Models & Workflows, each of which is herein
incorporated by reference in its entirety. This application also incorporates by reference U.S.
Non-Provisional Patent App. No. 14/732,258, filed on June 5, 2015 and entitled Asset Health
Score, in its entirety.

BACKGROUND

Today, machines (also referred to herein as “assets”) are ubiquitous in many industries.
From locomotives that transfer cargo across countries to medical equipment that helps nurses
and doctors to save lives, assets serve an important role in everyday life. Depending on the role
that an asset serves, its complexity, and cost, may vary. For instance, some assets may include
multiple subsystems that must operate in harmony for the asset to function properly (e.g., an
engine, transmission, etc. of a locomotive).

Because of the key role that assets play in everyday life, it is desirable for assets to be
repairable with limited downtime. Accordingly, some have developed mechanisms to monitor
and detect abnormal conditions within an asset to facilitate repairing the asset, perhaps with
minimal downtime.

OVERVIEW

The current approach for monitoring assets generally involves an on-asset computer that
receives signals from various sensors and/or actuators distributed throughout an asset that
monitor the operating conditions of the asset. As one representative example, if the asset is a
locomotive, the sensors and/or actuators may monitor parameters such as temperatures, voltages,
and speeds, among other examples. If sensor and/or actuator signals from one or more of these
devices reach certain values, the on-asset computer may then generate an abnormal-condition
indicator, such as a “fault code,” which is an indication that an abnormal condition has occurred
within the asset.

In general, an abnormal condition may be a defect at an asset or component thereof,
which may lead to a failure of the asset and/or component. As such, an abnormal condition may
be associated with a given failure, or perhaps multiple failures, in that the abnormal condition is

symptomatic of the given failure or failures. In practice, a user typically defines the sensors and
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respective sensor values associated with each abnormal-condition indicator. That is, the user
defines an asset’s “normal” operating conditions (e.g., those that do not trigger fault codes) and
“abnormal” operating conditions (e.g., those that trigger fault codes).

After the on-asset computer generates an abnormal-condition indicator, the indicator
and/or sensor signals may be passed to a remote location where a user may receive some
indication of the abnormal condition and/or sensor signals and decide whether to take action.
One action that the user might take is to assign a mechanic or the like to evaluate and potentially
repair the asset. Once at the asset, the mechanic may connect a computing device to the asset
and operate the computing device to cause the asset to utilize one or more local diagnostic tools
to facilitate diagnosing the cause of the generated indicator.

While current asset-monitoring systems are generally effective at triggering abnormal-
condition indicators, such systems are typically reactionary. That is, by the time the
asset-monitoring system triggers an indicator, a failure within the asset may have already
occurred (or is about to occur), which may lead to costly downtime, among other disadvantages.
Additionally, due to the simplistic nature of on-asset abnormality-detection mechanisms in such
asset-monitoring systems, current asset-monitoring approaches tend to involve a remote
computing system performing monitoring computations for an asset and then transmitting
instructions to the asset if a problem is detected. This may be disadvantageous due to network
latency and/or infeasible when the asset moves outside of coverage of a communication network.
Further still, due to the nature of local diagnostic tools stored on assets, current diagnosis
procedures tend to be inefficient and cumbersome because a mechanic is required to cause the
asset to utilize such tools.

The example systems, devices, and methods disclosed herein seek to help address one or
more of these issues. In example implementations, a network configuration may include a
communication network that facilitates communications between assets and a remote computing
system. In some cases, the communication network may facilitate secure communications
between assets and the remote computing system (e.g., via encryption or other security
measures).

As noted above, each asset may include multiple sensors and/or actuators distributed
throughout the asset that facilitate monitoring operating conditions of the asset. A number of
assets may provide respective data indicative of each asset’s operating conditions to the remote
computing system, which may be configured to perform one or more operations based on the
provided data. Typically, sensor and/or actuator data (e.g., “signal data”) may be utilized for
general asset-monitoring operations. However, as described herein, the remote computing

system and/or assets may leverage such data to facilitate performing more complex operations.
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In example implementations, the remote computing system may be configured to define
and deploy to assets a predictive model and corresponding workflow (referred to herein as a
“model-workflow pair”) that are related to the operation of the assets. The assets may be
configured to receive the model-workflow pair and utilize a local analytics device to operate in
accordance with the model-workflow pair.

Generally, a model-workflow pair may cause an asset to monitor certain operating
conditions and when certain conditions exist, modify a behavior that may help facilitate
preventing an occurrence of a particular event. Specifically, a predictive model may receive as
inputs data from a particular set of asset sensors and/or actuators and output a likelihood that one
or more particular events could occur at the asset within a particular period of time in the future.
A workflow may involve one or more operations that are performed based on the likelihood of
the one or more particular events that is output by the model.

In practice, the remote computing system may define an aggregate, predictive model and
corresponding workflows, individualized, predictive models and corresponding workflows, or
some combination thereof. An “aggregate” model/workflow may refer to a model/workflow that
is generic for a group of assets, while an “individualized” model/workflow may refer to a
model/workflow that is tailored for a single asset or subgroup of assets from the group of assts.

In example implementations, the remote computing system may start by defining an
aggregate, predictive model based on historical data for multiple assets. Utilizing data for
multiple assets may facilitate defining a more accurate predictive model than utilizing operating
data for a single asset.

The historical data that forms the basis of the aggregate model may include at least
operating data that indicates operating conditions of a given asset. Specifically, operating data
may include abnormal-condition data identifying instances when failures occurred at assets
and/or data indicating one or more physical properties measured at the assets at the time of those
instances (e.g., signal data)) The data may also include environment data indicating
environments in which assets have been operated and scheduling data indicating dates and times
when assets were utilized, among other examples of asset-related data used to define the
aggregate model-workflow pair.

Based on the historical data, the remote computing system may define an aggregate
model that predicts the occurrence of particular events. In a particular example implementation,
an aggregate model may output a probability that a failure will occur at an asset within a
particular period of time in the future. Such a model may be referred to herein as a “failure
model.” Other aggregate models may predict the likelihood that an asset will complete a task

within a particular period of time in the future, among other example predictive models.
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After defining the aggregate model, the remote computing system may then define an
aggregate workflow that corresponds to the defined aggregate model. Generally, a workflow
may include one or more operations that an asset may perform based on a corresponding model.
That is, the output of the corresponding model may cause the asset to perform workflow
operations. For instance, an aggregate model-workflow pair may be defined such that when the
aggregate model outputs a probability within a particular range an asset will execute a particular
workflow operation, such as a local diagnostic tool.

After the aggregate model-workflow pair is defined, the remote computing system may
transmit the pair to one or more assets. The one or more assets may then operate in accordance
with the aggregate model-workflow pair.

In example implementations, the remote computing system may be configured to further
define an individualized predictive model and/or corresponding workflow for one or multiple
assets. The remote computing system may do so based on certain characteristics of each given
asset, among other considerations. In example implementations, the remote computing system
may start with an aggregate model-workflow pair as a baseline and individualize one or both of
the aggregate model and workflow for the given asset based on the asset’s characteristics.

In practice, the remote computing system may be configured to determine asset
characteristics that are related to the aggregate model-workflow pair (e.g., characteristics of
interest). Examples of such characteristics may include asset age, asset usage, asset class (e.g.,
brand and/or model), asset health, and environment in which an asset is operated, among other
characteristics.

Then, the remote computing system may determine characteristics of the given asset that
correspond to the characteristics of interest. Based at least on some of the given asset’s
characteristics, the remote computing system may be configured to individualize the aggregate
model and/or corresponding workflow.

Defining an individualized model and/or workflow may involve the remote computing
system making certain modifications to the aggregate model and/or workflow. For example,
individualizing the aggregate model may involve changing model inputs, changing a model
calculation, and/or changing a weight of a variable or output of a calculation, among other
examples. Individualizing the aggregate workflow may involve changing one or more
operations of the workflow and/or changing the model output value or range of values that
triggers the workflow, among other examples.

After defining an individualized model and/or workflow for the given asset, the remote
computing system may then transmit the individualized model and/or workflow to the given

asset. In a scenario where only one of the model or workflow is individualized, the given asset
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may utilize the aggregate version of the model or workflow that is not individualized. The given
asset may then operate in accordance with its individualized model-workflow pair.

In yet further example implementations, the system may have the option of executing a
given predictive model and/or workflow either at the remote computing system or at a local
analytics device. In this respect, there may be some advantages to executing a given predictive
model and/or workflow at the remote computing system and other advantages to executing the
given predictive model and/or workflow at the local analytics device.

For instance, the remote computing system generally possesses greater processing
capabilities and/or intelligence than the local analytics device. Moreover, the remote computing
system may generally possess information that is unknown to the local analytics device. As a
result, the remote computing system is generally capable of executing a given predictive model
more accurately than the local analytics device. For example, the remote computing system may
generally be more likely to accurately predict whether or not a failure is going to occur at an
asset than the local analytics device. This improvement in accuracy may lead to a reduction in
the costs associated with maintaining assets because there may be less false negatives (e.g.,
missed failures that lead to costly downtime) and/or less false positives (e.g., inaccurate
predictions of failures that lead to unnecessary maintenance).

Moreover, the remote computing system generally has the most up-to-date version of a
given predictive model, whereas a local analytics device may have an outdated (e.g., less
accurate) version. Accordingly, the remote computing system may execute the given predictive
model more accurately than the local analytics device for this reason as well. There may be other
advantages to executing a given predictive model at the remote computing system in addition to
those discussed above.

However, there may be certain other advantages to executing a given predictive model at
a local analytics device instead of the remote computing system. For instance, the local analytics
device is located on or near the asset and usually receives the asset operating data directly from
the asset (e.g., via a physical connection or close-range network connection), whereas the remote
computing system is remote from the asset and usually receives the asset operating data
indirectly from the asset via a wide-area network connection to the local analytics device (e.g., a
connection over a cellular network and/or the Internet). As a result, the local analytics device
may gain access to the asset operating data earlier in time than the remote computing system,
which in turn enables the local analytics device to execute the given predictive model and then
act on the model’s output earlier in time than the remote computing system. This earlier
execution by the local analytics device could lead to improvements in preventing a failure from

occurring at the asset (and a corresponding reduction in cost), among other benefits.
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Additionally, the network connection between the asset and the remote computing
system may be provided by a third party that charges fees to use the network connection (e.g., a
wireless carrier that charges for data usage on its cellular network), which means that it is
generally less costly to execute a given predictive model at the local analytics device. There may
be other advantages to executing a given predictive model at a local analytics device as well.

It should also be understood that the relative advantages of executing a given predictive
model at the remote computing system vs. a local analytics device may vary on a model-by-
model basis. For example, executing a first model at the remote computing system may provide
a significant improvement in accuracy, whereas executing a second model at the remote
computing system may provide only a modest improvement in accuracy (if at all). As another
example, executing a first model at a local analytics device may provide a significant reduction
in data transmission costs, whereas executing a second model at the local analytics device may
provide only a modest reduction in data transmission costs. Other examples are possible as well.

In view of the foregoing, the remote computing system may be configured to analyze the
relative advantages of executing a given predictive model at the remote computing system vs. the
local analytics device and based on that analysis, define for that given predictive model an
“execution function” that quantifies these relative advantages. In practice, the remote computing
system may then transmit to the local analytics device the execution function. The local
analytics device may then utilize the execution function to decide whether to execute the given
predictive model at the remote computing system or the local analytics device, and then operate
in accordance with this decision. These functions may be carried out in various manners.

In one particular example embodiment, the remote computing system may select a given
predictive model for analysis and then define (a) a first performance score function (“PSF”) that
outputs a first performance score that reflects the expected value of executing the given
predictive model at the remote computing system and (b) a second PSF that outputs a second
performance score that reflects the expected value of executing the given predictive model at the
local analytics device. These performance scores may take various forms.

In one implementation, the performance scores may be represented in terms of the
respective expected cost associated with executing the given predictive model at the remote
computing system vs. at the local analytics device. For instance, the first performance score for
executing the given predictive model at the remote computing system may be based on (a) the
expected cost corresponding to the historical accuracy of executing the given predictive model at
the remote computing system (e.g., in terms of unnecessary maintenance and downtime flowing
from inaccurate predictions) and (b) the expected cost of transmitting, from a local analytics

device coupled to an asset to the remote computing system, the data needed to execute the model
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at the remote computing system. In turn, the second performance score for executing the given
predictive model at the local analytics device may be based on the expected cost corresponding
to the historical accuracy of executing the given predictive model at the local analytics device
(e.g., in terms of unnecessary maintenance and downtime flowing from inaccurate predictions).

In practice, these expected cost values may be determined based on (a) historical data
related to the given predictive model, such as historical model accuracy and historical cost of
model outcomes, (b) an amount of asset data that the local analytics device transmits in order for
the remote computing system to execute the given predictive model, which may be known or
determined based on historical data transmission volumes, and (c) current and/or historical data
transmission rates. These expected cost values may be determined based on other data as well.

As noted above, in many cases, the expected cost of executing the given predictive model
at the remote computing system may be lower (e.g., better) than the expected cost of executing
the given predictive model at the local analytics device, because the remote computing system is
generally capable of executing a given predictive model more accurately than the local analytics
device. However, this lower cost associated with the remote computing system’s improved
accuracy may be offset by the data transmission cost that is incurred in order to execute the
predictive model at the remote computing system, among other potential costs.

In any event, as noted above, after the remote computing system defines the first and
second PSFs for the given predictive model, it may then transmit these PSFs to a local analytics
device, so that the local analytics device can execute the given predictive model in accordance
with the expected cost values output by the PSFs. In example embodiments, the remote
computing system may transmit a given PSF in a variety of manners. As one particular example,
the remote computing system may transmit an expression of the given PSF (e.g., one or more
parameters and mathematical operators that define a relationship between those parameters) and
one or more values that are used to evaluate that expression (e.g., a respective value for the one
or more parameters). The remote computing system may transmit execution functions in a
variety of other manners as well.

In example implementations, as noted above, a given asset may include a local analytics
device that may be configured to cause the given asset to operate in accordance with a
model-workflow pair provided by the remote computing system. The local analytics device may
be configured to utilize operating data from the asset sensors and/or actuators (e.g., data that is
typically utilized for other asset-related purposes) to run the predictive model. When the local
analytics device receives certain operating data, it may execute the model and depending on the

output of the model, may execute the corresponding workflow.
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Executing the corresponding workflow may help facilitate preventing an undesirable
event from occurring at the given asset. In this way, the given asset may locally determine that
an occurrence of a particular event is likely and may then execute a particular workflow to help
prevent the occurrence of the event. This may be particularly useful if communication between
the given asset and remote computing system is hindered. For example, in some situations, a
failure might occur before a command to take preventative actions reaches the given asset from
the remote computing system. In such situations, the local analytics device may be
advantageous in that it may generate the command locally, thereby avoiding any network latency
or any issues arising from the given asset being “off-line.” As such, the local analytics device
executing a model-workflow pair may facilitate causing the asset to adapt to its conditions.

In some example implementations, before or when first executing a model-workflow
pair, the local analytics device may itself individualize the model-workflow pair that it received
from the remote computing system. Generally, the local analytics device may individualize the
model-workflow pair by evaluating some or all predictions, assumptions, and/or generalizations
related to the given asset that were made when the model-workflow pair was defined. Based on
the evaluation, the local analytics device may modify the model-workflow pair so that the
underlying predictions, assumptions, and/or generalizations of the model-workflow pair more
accurately reflect the actual state of the given asset. The local analytics device may then execute
the individualized model-workflow pair instead of the model-workflow pair it originally received
from the remote computing system, which may result in more accurate monitoring of the asset.

While a given asset is operating in accordance with a model-workflow pair, the given
asset may also continue to provide operating data to the remote computing system. Based at
least on this data, the remote computing system may modify the aggregate model-workflow pair
and/or one or more individualized model-workflow pairs. The remote computing system may
make modifications for a number of reasons.

In one example, the remote computing system may modify a model and/or workflow if a
new event occurred at an asset that the model did not previously account for. For instance, in a
failure model, the new event may be a new failure that had yet to occur at any of the assets
whose data was used to define the aggregate model.

In another example, the remote computing system may modify a model and/or workflow
if an event occurred at an asset under operating conditions that typically do not cause the event to
occur. For instance, returning again to a failure model, the failure model or corresponding
workflow may be modified if a failure occurred under operating conditions that had yet to cause

the failure to occur in the past.
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In yet another example, the remote computing system may modify a model and/or
workflow if an executed workflow failed to prevent an occurrence of an event. Specifically, the
remote computing system may modify the model and/or workflow if the output of the model
caused an asset to execute a workflow aimed to prevent the occurrence of an event but the event
occurred at the asset nonetheless. Other examples of reasons for modifying a model and/or
workflow are also possible.

The remote computing system may then distribute any modifications to the asset whose
data caused the modification and/or to other assets in communication with the remote computing
system. In this way, the remote computing system may dynamically modify models and/or
workflows and distribute these modifications to a whole fleet of assets based on operating
conditions of an individual asset.

In some example implementations, an asset and/or the remote computing system may be
configured to dynamically adjust executing a predictive model and/or workflow. In particular,
the asset (e.g., via the local analytics device coupled thereto) and/or remote computing system
may be configured to detect certain events that trigger a change in responsibilities with respect to
whether the asset and/or the remote computing system are executing a predictive model and/or
workflow.

For instance, in some cases, after the asset receives a model-workflow pair from the
remote computing system, the asset may store the model-workflow pair in data storage but then
may rely on the remote computing system to centrally execute part or all of the model-workflow
pair. On the other hand, in other cases, the remote computing system may rely on the asset to
locally execute part or all of the model-workflow pair. In yet other cases, the remote computing
system and the asset may share in the responsibilities of executing the model-workflow pair.

In any event, at some point in time, certain events may occur that trigger the asset and/or
remote computing system to adjust the execution of the predictive model and/or workflow. For
instance, the asset and/or remote computing system may detect certain characteristics of a
communication network that couples the asset to the remote computing system. Based on the
characteristics of the communication network, the asset may adjust whether it is locally
executing a predictive model and/or workflow and the remote computing system may
accordingly modify whether it is centrally executing the model and/or workflow. In this way,
the asset and/or remote computing system may adapt to conditions of the asset.

In a particular example, the asset may detect an indication that a signal strength of a
communication link between the asset and the remote computing system is relatively weak (e.g.,
the asset may determine that is about to go “off-line”), that a network latency is relatively high,

and/or that a network bandwidth is relatively low. Accordingly, the asset may be programmed to
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take on responsibilities for executing the model-workflow pair that were previously being
handled by the remote computing system. In turn, the remote computing system may cease
centrally executing some or all of the model-workflow pair. In this way, the asset may locally
execute the predictive model and then, based on executing the predictive model, execute the
corresponding workflow to potentially help prevent an occurrence of a failure at the asset.

Moreover, in some implementations, the asset and/or the remote computing system may
similarly adjust executing (or perhaps modify) a predictive model and/or workflow based on
various other considerations. For example, based on the processing capacity of the asset, the
asset may adjust locally executing a model-workflow pair and the remote computing system may
accordingly adjust as well. In another example, based on the bandwidth of the communication
network coupling the asset to the remote computing system, the asset may execute a modified
workflow (e.g., transmitting data to the remote computing system according to a data-
transmission scheme with a reduced transmission rate). Other examples are also possible.

Additionally or alternatively, a local analytics device coupled to a given asset may be
configured to dynamically execute a predictive model and/or workflow based on one or more
execution functions (e.g., PSFs) corresponding to the predictive model and/or workflow. In
particular, as discussed above, the local analytics device may receive such functions from the
remote computing system. During operation of the given asset, the local analytics device may
identify a particular model-workflow pair that should be executed. Based on that identification,
the local analytics device may then execute the corresponding execution functions to determine
whether the local analytics device should execute the particular predictive model and/or
workflow, which may be performed in a variety of manners.

For instance, in example embodiments, the local analytics device may first identify one
or more PSFs corresponding to the particular predictive model and/or workflow and then execute
the PSFs (e.g., one for the local analytics device and one for the remote computing system).
After the local analytics device determines the performance scores for executing the given
predictive model at the remote computing system vs. the local analytics device, the local
analytics device may compare these two performance scores and then decide to execute the given
predictive model at the location having the better performance score (e.g., the lowest expected
cost). In turn, the local analytics device may cause the given predictive model to be executed at
the location having the better performance score.

For instance, if the performance score for the local analytics device is greater than (e.g.,
has a lower expected cost) the performance score for the remote computing system (or a
threshold amount greater), then the local analytics device may locally execute the predictive

model and/or workflow based on operating data (e.g., signal data) for the asset.
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On the other hand, if the performance score for the local analytics device is less than
(e.g., has a higher expected cost) the performance score for the remote computing system (or a
threshold amount less), then the local analytics device may instead transmit to the remote
computing system an instruction for the remote computing system to remotely execute the given
predictive model and/or workflow, as well as operating data from the asset for use in that
execution. The remote computing system may then return to the local analytics device a result of
centrally executing the given predictive model, which may cause the local analytics device to
perform an operation, such as executing a corresponding workflow.
[1] As discussed above, examples provided herein are related to deployment and execution
of predictive models. In one aspect, a computing system is provided. The computing system
comprises at least one processor, a non-transitory computer-readable medium, and program
instructions stored on the non-transitory computer-readable medium that are executable by the at
least one processor to cause the computing system to: (a) transmit to an asset a predictive model
and corresponding workflow that are related to the operation of the asset for local execution by
the asset, (b) detect an indication that the asset is locally executing at least one of the predictive
model or the corresponding workflow, and (c) based on the detected indication, modify central
execution by the computing system of at least one of the predictive model or the corresponding
workflow.
[2] In another aspect, a non-transitory computer-readable medium is provided having
instructions stored thereon that are executable to cause a computing system to: (a) transmit to an
asset a predictive model and corresponding workflow that are related to the operation of the asset
for local execution by the asset, (b) detect an indication that the asset is locally executing at least
one of the predictive model or the corresponding workflow, and (c) based on the detected
indication, modify central execution by the computing system of at least one of the predictive
model or the corresponding workflow.
[3] In yet another aspect, a computer-implemented method is provided. The method
comprises: (a) transmitting to an asset a predictive model and corresponding workflow that are
related to the operation of the asset for local execution by the asset, (b) detecting an indication
that the asset is locally executing at least one of the predictive model or the corresponding
workflow, and (c¢) based on the detected indication, modifying central execution by the
computing system of at least one of the predictive model or the corresponding workflow.

As discussed above, examples provided herein are related to determining where to
execute a predictive model and/or workflow. In one aspect, a local analytics device configured
to monitor operating conditions of an asset is provided. The local analytics device comprises an

asset interface configured to couple the local analytics device to the asset, a network interface
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configured to facilitate communication between the local analytics device and a computing
system (i) configured to monitor operating conditions of the asset and (ii) located remote from
the local analytics device, at least one processor, a non-transitory computer-readable medium,
and program instructions stored on the non-transitory computer-readable medium that are
executable by the at least one processor to cause the local analytics device to: (a) identify a
predictive model that is related to the operation of the asset that is to be executed, (b) based on
one or more execution functions corresponding to the identified predictive model, determine
whether the local analytics device should execute the predictive model, (c) if the local analytics
device should execute the predictive model, execute the predictive model based on operating
data for the asset received via the asset interface, and (d) otherwise, transmit to the computing
system, via the network interface, (i) an instruction for the computing system to execute the
predictive model, and (i1) operating data for the asset received via the asset interface.

In another aspect, a non-transitory computer-readable medium is provided having
instructions stored thereon that are executable to cause a local analytics device coupled to an
asset, via an asset interface of the local analytics device, to: (a) identify a predictive model that is
related to the operation of the asset that is to be executed, (b) based on one or more execution
functions corresponding to the identified predictive model, determine whether the local analytics
device should execute the predictive model, (c) if the local analytics device should execute the
predictive model, execute the predictive model based on operating data for the asset received via
the asset interface, and (d) otherwise, transmit to a computing system that is configured to
monitor operating conditions of the asset and wirelessly communicatively coupled to the local
analytics device (1) an instruction for the computing system to execute the predictive model, and
(i1) operating data for the asset received via the asset interface.

In yet another aspect, a computer-implemented method for facilitating optimal execution
of a predictive model related to the operation of an asset coupled to a local analytics device is
provided. The method comprises: (a) identifying, by the local analytics device, the predictive
model that is to be executed, (b) based on one or more execution functions corresponding to the
identified predictive model, determining whether the local analytics device should execute the
predictive model, (¢) if the local analytics device should execute the predictive model, executing,
by the local analytics device, the predictive model based on operating data for the asset received
via an asset interface of the local analytics device, and (d) otherwise, transmit, by the local
analytics device to a computing system configured to monitor operating conditions of the asset
located remote from the local analytics device, via a network interface of the local analytics
device, (i) an instruction for the computing system to execute the predictive model, and (i)

operating data for the asset received via the asset interface.
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One of ordinary skill in the art will appreciate these as well as numerous other aspects in
reading the following disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts an example network configuration in which example embodiments may
be implemented.

Figure 2 depicts a simplified block diagram of an example asset.

Figure 3 depicts a conceptual illustration of example abnormal-condition indicators and
triggering criteria.

Figure 4 depicts a simplified block diagram of an example analytics system.

Figure 5 depicts an example flow diagram of a definition phase that may be used for
defining model-workflow pairs.

Figure 6A depicts a conceptual illustration of an aggregate model-workflow pair.

Figure 6B depicts a conceptual illustration of an individualized model-workflow pair.

Figure 6C depicts a conceptual illustration of another individualized model-workflow
pair.

Figure 6D depicts a conceptual illustration of a modified model-workflow pair.

Figure 7 depicts an example flow diagram of a modeling phase that may be used for
defining a predictive model that outputs a health metric.

Figure 8 depicts a conceptual illustration of data utilized to define a model.

Figure 9 depicts an example flow diagram of an example definition phase that may be
used for defining performance score functions.

Figure 10 depicts conceptual illustrations of aspects of example performance score
functions.

Figure 11 depicts an example flow diagram of a local-execution phase that may be used
for locally executing a predictive model.

Figure 12 depicts an example flow diagram of a modification phase that may be used for
modifying model-workflow pairs.

Figure 13 depicts an example flow diagram of an adjustment phase that may be used for
adjusting execution of model-workflow pairs.

Figure 14 depicts an example flow diagram of a determination phase that may be used
for determining whether to locally execute a predictive model.

Figure 15 depicts a flow diagram of an example method for defining and deploying an
aggregate, predictive model and corresponding workflow

Figure 16 depicts a flow diagram of an example method for defining and deploying an

individualized, predictive model and/or corresponding workflow
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Figure 17 depicts a flow diagram of an example method for dynamically modifying the
execution of model-workflow pairs.

Figure 18 depicts a flow diagram of an example method for receiving and locally
executing a model-workflow pair.

Figure 19 depicts a flow diagram of an example method for executing a predictive model
in accordance with one or more execution functions.

Figure 20 depicts a flow diagram of an example method for defining a predictive model

and corresponding execution function and executing the predictive model.
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DETAILED DESCRIPTION

The following disclosure makes reference to the accompanying figures and several
exemplary scenarios. One of ordinary skill in the art will understand that such references are for
the purpose of explanation only and are therefore not meant to be limiting. Part or all of the
disclosed systems, devices, and methods may be rearranged, combined, added to, and/or
removed in a variety of manners, each of which is contemplated herein.

L EXAMPLE NETWORK CONFIGURATION

Turning now to the figures, Figure 1 depicts an example network configuration 100 in
which example embodiments may be implemented. As shown, the network configuration 100
includes an asset 102, an asset 104, a communication network 106, a remote computing system
108 that may take the form of an analytics system, an output system 110, and a data source 112.

The communication network 106 may communicatively connect each of the components
in the network configuration 100. For instance, the assets 102 and 104 may communicate with
the analytics system 108 via the communication network 106. In some cases, the assets 102 and
104 may communicate with one or more intermediary systems, such as an asset gateway (not
pictured), that in turn communicates with the analytics system 108. Likewise, the analytics
system 108 may communicate with the output system 110 via the communication network 106.
In some cases, the analytics system 108 may communicate with one or more intermediary
systems, such as a host server (not pictured), that in turn communicates with the output system
110. Many other configurations are also possible. In example cases, the communication
network 106 may facilitate secure communications between network components (e.g., via
encryption or other security measures).

In general, the assets 102 and 104 may take the form of any device configured to perform
one or more operations (which may be defined based on the field) and may also include
equipment configured to transmit data indicative of one or more operating conditions of the
given asset. In some examples, an asset may include one or more subsystems configured to
perform one or more respective operations. In practice, multiple subsystems may operate in
parallel or sequentially in order for an asset to operate.

Example assets may include transportation machines (e.g., locomotives, aircraft,
passenger vehicles, semi-trailer trucks, ships, etc.), industrial machines (e.g., mining equipment,
construction equipment, factory automation, etc.), medical machines (e.g., medical imaging
equipment, surgical equipment, medical monitoring systems, medical laboratory equipment,
etc.), and utility machines (e.g., turbines, solar farms, etc.), among other examples. Those of
ordinary skill in the art will appreciate that these are but a few examples of assets and that

numerous others are possible and contemplated herein.
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In example implementations, the assets 102 and 104 may each be of the same type (e.g., a
fleet of locomotives or aircrafts, a group of wind turbines, or a set of MRI machines, among
other examples) and perhaps may be of the same class (e.g., same brand and/or model). In other
examples, the assets 102 and 104 may differ by type, by brand, by model, etc. The assets are
discussed in further detail below with reference to Figure 2.

As shown, the assets 102 and 104, and perhaps the data source 112, may communicate
with the analytics system 108 via the communication network 106. In general, the
communication network 106 may include one or more computing systems and network
infrastructure configured to facilitate transferring data between network components. The
communication network 106 may be or may include one or more Wide-Area Networks (WANS5)
and/or Local-Area Networks (LANSs), which may be wired and/or wireless and support secure
communication. In some examples, the communication network 106 may include one or more
cellular networks and/or the Internet, among other networks. The communication network 106
may operate according to one or more communication protocols, such as LTE, CDMA, GSM,
LPWAN, WiFi, Bluetooth, Ethernet, HTTP/S, TCP, CoAP/DTLS and the like. Although the
communication network 106 is shown as a single network, it should be understood that the
communication network 106 may include multiple, distinct networks that are themselves
communicatively linked. The communication network 106 could take other forms as well.

As noted above, the analytics system 108 may be configured to receive data from the
assets 102 and 104 and the data source 112. Broadly speaking, the analytics system 108 may
include one or more computing systems, such as servers and databases, configured to receive,
process, analyze, and output data. The analytics system 108 may be configured according to a
given dataflow technology, such as TPL Dataflow or NiFi, among other examples. The analytics
system 108 is discussed in further detail below with reference to Figure 3.

As shown, the analytics system 108 may be configured to transmit data to the assets 102
and 104 and/or to the output system 110. The particular data transmitted may take various forms
and will be described in further detail below.

In general, the output system 110 may take the form of a computing system or device
configured to receive data and provide some form of output. The output system 110 may take
various forms. In one example, the output system 110 may be or include an output device
configured to receive data and provide an audible, visual, and/or tactile output in response to the
data. In general, an output device may include one or more input interfaces configured to receive
user input, and the output device may be configured to transmit data through the communication
network 106 based on such user input. Examples of output devices include tablets, smartphones,

laptop computers, other mobile computing devices, desktop computers, smart TVs, and the like.
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Another example of the output system 110 may take the form of a work-order system
configured to output a request for a mechanic or the like to repair an asset. Yet another example
of the output system 110 may take the form of a parts-ordering system configured to place an
order for a part of an asset and output a receipt thereof. Numerous other output systems are also
possible.

The data source 112 may be configured to communicate with the analytics system 108.
In general, the data source 112 may be or include one or more computing systems configured to
collect, store, and/or provide to other systems, such as the analytics system 108, data that may be
relevant to the functions performed by the analytics system 108. The data source 112 may be
configured to generate and/or obtain data independently from the assets 102 and 104. As such,
the data provided by the data source 112 may be referred to herein as “external data.” The data
source 112 may be configured to provide current and/or historical data. In practice, the analytics
system 108 may receive data from the data source 112 by “subscribing” to a service provided by
the data source. However, the analytics system 108 may receive data from the data source 112 in
other manners as well.

Examples of the data source 112 include environment data sources, asset-management
data sources, and other data sources. In general, environment data sources provide data
indicating some characteristic of the environment in which assets are operated. Examples of
environment data sources include weather-data servers, global navigation satellite systems
(GNSS) servers, map-data servers, and topography-data servers that provide information
regarding natural and artificial features of a given area, among other examples.

In general, asset-management data sources provide data indicating events or statuses of
entities (e.g., other assets) that may affect the operation or maintenance of assets (e.g., when and
where an asset may operate or receive maintenance). Examples of asset-management data
sources include traffic-data servers that provide information regarding air, water, and/or ground
traffic, asset-schedule servers that provide information regarding expected routes and/or
locations of assets on particular dates and/or at particular times, defect detector systems (also
known as “hotbox” detectors) that provide information regarding one or more operating
conditions of an asset that passes in proximity to the defect detector system, part-supplier servers
that provide information regarding parts that particular suppliers have in stock and prices thereof,
and repair-shop servers that provide information regarding repair shop capacity and the like,
among other examples.

Examples of other data sources include power-grid servers that provide information

regarding electricity consumption and external databases that store historical operating data for
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assets, among other examples. One of ordinary skill in the art will appreciate that these are but a
few examples of data sources and that numerous others are possible.

It should be understood that the network configuration 100 is one example of a network
in which embodiments described herein may be implemented. Numerous other arrangements are
possible and contemplated herein. For instance, other network configurations may include
additional components not pictured and/or more or less of the pictured components.

1. EXAMPLE ASSET

Turning to Figure 2, a simplified block diagram of an example asset 200 is depicted.
Either or both of assets 102 and 104 from Figure 1 may be configured like the asset 200. As
shown, the asset 200 may include one or more subsystems 202, one or more sensors 204, one or
more actuators 205, a central processing unit 206, data storage 208, a network interface 210, a
user interface 212, and a local analytics device 220, all of which may be communicatively linked
(either directly or indirectly) by a system bus, network, or other connection mechanism. One of
ordinary skill in the art will appreciate that the asset 200 may include additional components not
shown and/or more or less of the depicted components.

Broadly speaking, the asset 200 may include one or more electrical, mechanical, and/or
electromechanical components configured to perform one or more operations. In some cases,
one or more components may be grouped into a given subsystem 202.

Generally, a subsystem 202 may include a group of related components that are part of
the asset 200. A single subsystem 202 may independently perform one or more operations or the
single subsystem 202 may operate along with one or more other subsystems to perform one or
more operations. Typically, different types of assets, and even different classes of the same type
of assets, may include different subsystems.

For instance, in the context of transportation assets, examples of subsystems 202 may
include engines, transmissions, drivetrains, fuel systems, battery systems, exhaust systems,
braking systems, electrical systems, signal processing systems, generators, gear boxes, rotors,
and hydraulic systems, among numerous other subsystems. In the context of a medical machine,
examples of subsystems 202 may include scanning systems, motors, coil and/or magnet systems,
signal processing systems, rotors, and electrical systems, among numerous other subsystems.

As suggested above, the asset 200 may be outfitted with various sensors 204 that are
configured to monitor operating conditions of the asset 200 and various actuators 205 that are
configured to interact with the asset 200 or a component thereof and monitor operating
conditions of the asset 200. In some cases, some of the sensors 204 and/or actuators 205 may be
grouped based on a particular subsystem 202. In this way, the group of sensors 204 and/or

actuators 205 may be configured to monitor operating conditions of the particular subsystem
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202, and the actuators from that group may be configured to interact with the particular
subsystem 202 in some way that may alter the subsystem’s behavior based on those operating
conditions.

In general, a sensor 204 may be configured to detect a physical property, which may be
indicative of one or more operating conditions of the asset 200, and provide an indication, such
as an electrical signal (e.g., “signal data”), of the detected physical property. In operation, the
sensors 204 may be configured to obtain measurements continuously, periodically (e.g., based on
a sampling frequency), and/or in response to some triggering event. In some examples, the
sensors 204 may be preconfigured with operating parameters for performing measurements
and/or may perform measurements in accordance with operating parameters provided by the
central processing unit 206 (e.g., sampling signals that instruct the sensors 204 to obtain
measurements). In examples, different sensors 204 may have different operating parameters
(e.g., some sensors may sample based on a first frequency, while other sensors sample based on
a second, different frequency). In any event, the sensors 204 may be configured to transmit
electrical signals indicative of a measured physical property to the central processing unit 206.
The sensors 204 may continuously or periodically provide such signals to the central processing
unit 206.

For instance, sensors 204 may be configured to measure physical properties such as the
location and/or movement of the asset 200, in which case the sensors may take the form of
GNSS sensors, dead-reckoning-based sensors, accelerometers, gyroscopes, pedometers,
magnetometers, or the like.

Additionally, various sensors 204 may be configured to measure other operating
conditions of the asset 200, examples of which may include temperatures, pressures, speeds,
acceleration or deceleration rates, friction, power usages, fuel usages, fluid levels, runtimes,
voltages and currents, magnetic fields, electric fields, presence or absence of objects, positions of
components, and power generation, among other examples. One of ordinary skill in the art will
appreciate that these are but a few example operating conditions that sensors may be configured
to measure. Additional or fewer sensors may be used depending on the industrial application or
specific asset.

As suggested above, an actuator 205 may be configured similar in some respects to a
sensor 204. Specifically, an actuator 205 may be configured to detect a physical property
indicative of an operating condition of the asset 200 and provide an indication thereof in a
manner similar to the sensor 204.

Moreover, an actuator 205 may be configured to interact with the asset 200, one or more

subsystems 202, and/or some component thereof. As such, an actuator 205 may include a motor
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or the like that is configured to perform a mechanical operation (e.g., move) or otherwise control
a component, subsystem, or system. In a particular example, an actuator may be configured to
measure a fuel flow and alter the fuel flow (e.g., restrict the fuel flow), or an actuator may be
configured to measure a hydraulic pressure and alter the hydraulic pressure (e.g., increase or
decrease the hydraulic pressure). Numerous other example interactions of an actuator are also
possible and contemplated herein.

Generally, the central processing unit 206 may include one or more processors and/or
controllers, which may take the form of a general- or special-purpose processor or controller. In
particular, in example implementations, the central processing unit 206 may be or include
microprocessors, microcontrollers, application specific integrated circuits, digital signal
processors, and the like. In turn, the data storage 208 may be or include one or more non-
transitory computer-readable storage media, such as optical, magnetic, organic, or flash memory,
among other examples.

The central processing unit 206 may be configured to store, access, and execute
computer-readable program instructions stored in the data storage 208 to perform the operations
of an asset described herein. For instance, as suggested above, the central processing unit 206
may be configured to receive respective sensor signals from the sensors 204 and/or actuators
205. The central processing unit 206 may be configured to store sensor and/or actuator data in
and later access it from the data storage 208.

The central processing unit 206 may also be configured to determine whether received
sensor and/or actuator signals trigger any abnormal-condition indicators, such as fault codes. For
instance, the central processing unit 206 may be configured to store in the data storage 208
abnormal-condition rules, each of which include a given abnormal-condition indicator
representing a particular abnormal condition and respective triggering criteria that trigger the
abnormal-condition indicator. That is, each abnormal-condition indicator corresponds with one
or more sensor and/or actuator measurement values that must be satisfied before the abnormal-
condition indicator is triggered. In practice, the asset 200 may be pre-programmed with the
abnormal-condition rules and/or may receive new abnormal-condition rules or updates to
existing rules from a computing system, such as the analytics system 108.

In any event, the central processing unit 206 may be configured to determine whether
received sensor and/or actuator signals trigger any abnormal-condition indicators. That is, the
central processing unit 206 may determine whether received sensor and/or actuator signals
satisfy any triggering criteria. When such a determination is affirmative, the central processing
unit 206 may generate abnormal-condition data and may also cause the asset’s user interface 212

to output an indication of the abnormal condition, such as a visual and/or audible alert.
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Additionally, the central processing unit 206 may log the occurrence of the abnormal-condition
indicator being triggered in the data storage 208, perhaps with a timestamp.

Figure 3 depicts a conceptual illustration of example abnormal-condition indicators and
respective triggering criteria for an asset. In particular, Figure 3 depicts a conceptual illustration
of example fault codes. As shown, table 300 includes columns 302, 304, and 306 that
correspond to Sensor A, Actuator B, and Sensor C, respectively, and rows 308, 310, and 312 that
correspond to Fault Codes 1, 2, and 3, respectively. Entries 314 then specify sensor criteria (e.g.,
sensor value thresholds) that correspond to the given fault codes.

For example, Fault Code 1 will be triggered when Sensor A detects a rotational
measurement greater than 135 revolutions per minute (RPM) and Sensor C detects a temperature
measurement greater than 65° Celsius (C), Fault Code 2 will be triggered when Actuator B
detects a voltage measurement greater than 1000 Volts (V) and Sensor C detects a temperature
measurement less than 55°C, and Fault Code 3 will be triggered when Sensor A detects a
rotational measurement greater than 100 RPM, Actuator B detects a voltage measurement greater
than 750 V, and Sensor C detects a temperature measurement greater than 60°C. One of
ordinary skill in the art will appreciate that Figure 3 is provided for purposes of example and
explanation only and that numerous other fault codes and/or triggering criteria are possible and
contemplated herein.

Referring back to Figure 2, the central processing unit 206 may be configured to carry
out various additional functions for managing and/or controlling operations of the asset 200 as
well. For example, the central processing unit 206 may be configured to provide instruction
signals to the subsystems 202 and/or the actuators 205 that cause the subsystems 202 and/or the
actuators 205 to perform some operation, such as modifying a throttle position. Additionally, the
central processing unit 206 may be configured to modify the rate at which it processes data from
the sensors 204 and/or the actuators 205, or the central processing unit 206 may be configured to
provide instruction signals to the sensors 204 and/or actuators 205 that cause the sensors 204
and/or actuators 205 to, for example, modify a sampling rate. Moreover, the central processing
unit 206 may be configured to receive signals from the subsystems 202, the sensors 204, the
actuators 205, the network interfaces 210, and/or the user interfaces 212 and based on such
signals, cause an operation to occur. Further still, the central processing unit 206 may be
configured to receive signals from a computing device, such as a diagnostic device, that cause
the central processing unit 206 to execute one or more diagnostic tools in accordance with
diagnostic rules stored in the data storage 208. Other functionalities of the central processing

unit 206 are discussed below.
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The network interface 210 may be configured to provide for communication between the
asset 200 and various network components connected to communication network 106.  For
example, the network interface 210 may be configured to facilitate wireless communications to
and from the communication network 106 and may thus take the form of an antenna structure
and associated equipment for transmitting and receiving various over-the-air signals. Other
examples are possible as well. In practice, the network interface 210 may be configured
according to a communication protocol, such as but not limited to any of those described above.

The user interface 212 may be configured to facilitate user interaction with the asset
200 and may also be configured to facilitate causing the asset 200 to perform an operation in
response to user interaction. Examples of user interfaces 212 include touch-sensitive interfaces,
mechanical interfaces (e.g., levers, buttons, wheels, dials, keyboards, etc.), and other input
interfaces (e.g., microphones), among other examples. In some cases, the user interface 212 may
include or provide connectivity to output components, such as display screens, speakers,
headphone jacks, and the like.

The local analytics device 220 may generally be configured to receive and analyze data
related to the asset 200 and based on such analysis, may cause one or more operations to occur at
the asset 200. For instance, the local analytics device 220 may receive operating data for the
asset 200 (e.g., signal data generated by the sensors 204 and/or actuators 205) and based on such
data, may provide instructions to the central processing unit 206, the sensors 204, and/or the
actuators 205 that cause the asset 200 to perform an operation.

To facilitate this operation, the local analytics device 220 may include one or more asset
interfaces that are configured to couple the local analytics device 220 to one or more of the
asset’s on-board systems. For instance, as shown in Figure 2, the local analytics device 220 may
have an interface to the asset’s central processing unit 206, which may enable the local analytics
device 220 to receive operating data from the central processing unit 206 (e.g., operating data
that is generated by sensors 204 and/or actuators 205 and sent to the central processing unit 206)
and then provide instructions to the central processing unit 206. In this way, the local analytics
device 220 may indirectly interface with and receive data from other on-board systems of the
asset 200 (e.g., the sensors 204 and/or actuators 205) via the central processing unit 206.
Additionally or alternatively, as shown in Figure 2, the local analytics device 220 could have an
interface to one or more sensors 204 and/or actuators 205, which may enable the local analytics
device 220 to communicate directly with the sensors 204 and/or actuators 205. The local
analytics device 220 may interface with the on-board systems of the asset 200 in other manners
as well, including the possibility that the interfaces illustrated in Figure 2 are facilitated by one or

more intermediary systems that are not shown.
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In practice, the local analytics device 220 may enable the asset 200 to locally perform
advanced analytics and associated operations, such as executing a predictive model and
corresponding workflow, that may otherwise not be able to be performed with the other on-asset
components. As such, the local analytics device 220 may help provide additional processing
power and/or intelligence to the asset 200.

It should be understood that the local analytics device 220 may also be configured to
cause the asset 200 to perform operations that are not related to a predictive model. For
example, the local analytics device 220 may receive data from a remote source, such as the
analytics system 108 or the output system 110, and based on the received data cause the asset
200 to perform one or more operations. One particular example may involve the local analytics
device 220 receiving a firmware update for the asset 200 from a remote source and then causing
the asset 200 to update its firmware. Another particular example may involve the local analytics
device 220 receiving a diagnosis instruction from a remote source and then causing the asset 200
to execute a local diagnostic tool in accordance with the received instruction. Numerous other
examples are also possible.

As shown, in addition to the one or more asset interfaces discussed above, the local
analytics device 220 may also include a processing unit 222, a data storage 224, and a network
interface 226, all of which may be communicatively linked by a system bus, network, or other
connection mechanism. The processing unit 222 may include any of the components discussed
above with respect to the central processing unit 206. In turn, the data storage 224 may be or
include one or more non-transitory computer-readable storage media, which may take any of the
forms of computer-readable storage media discussed above.

The processing unit 222 may be configured to store, access, and execute
computer-readable program instructions stored in the data storage 224 to perform the operations
of a local analytics device described herein. For instance, the processing unit 222 may be
configured to receive respective sensor and/or actuator signals generated by the sensors 204
and/or actuators 205 and may execute a predictive model-workflow pair based on such signals.
Other functions are described below.

The network interface 226 may be the same or similar to the network interfaces described
above. In practice, the network interface 226 may facilitate communication between the local
analytics device 220 and the analytics system 108.

In some example implementations, the local analytics device 220 may include and/or
communicate with a user interface that may be similar to the user interface 212. In practice, the
user interface may be located remote from the local analytics device 220 (and the asset 200).

Other examples are also possible.
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While Figure 2 shows the local analytics device 220 physically and communicatively
coupled to its associated asset (e.g., the asset 200) via one or more asset interfaces, it should also
be understood that this might not always be the case. For example, in some implementations, the
local analytics device 220 may not be physically coupled to its associated asset and instead may
be located remote from the asset 220. In an example of such an implementation, the local
analytics device 220 may be wirelessly, communicatively coupled to the asset 200. Other
arrangements and configurations are also possible.

One of ordinary skill in the art will appreciate that the asset 200 shown in Figure 2 is but
one example of a simplified representation of an asset and that numerous others are also
possible. For instance, other assets may include additional components not pictured and/or more
or less of the pictured components. Moreover, a given asset may include multiple, individual
assets that are operated in concert to perform operations of the given asset. Other examples are
also possible.

. EXAMPLE ANALYTICS SYSTEM

Referring now to Figure 4, a simplified block diagram of an example analytics system
400 is depicted. As suggested above, the analytics system 400 may include one or more
computing systems communicatively linked and arranged to carry out various operations
described herein. Specifically, as shown, the analytics system 400 may include a data intake
system 402, a data science system 404, and one or more databases 406. These system
components may be communicatively coupled via one or more wireless and/or wired
connections, which may be configured to facilitate secure communications.

The data intake system 402 may generally function to receive and process data and
output data to the data science system 404. As such, the data intake system 402 may include one
or more network interfaces configured to receive data from various network components of the
network configuration 100, such as the assets 102 and 104, the output system 110, and/or the
data source 112. Specifically, the data intake system 402 may be configured to receive analog
signals, data streams, and/or network packets, among other examples. As such, the network
interfaces may include one or more wired network interfaces, such as a port or the like, and/or
wireless network interfaces, similar to those described above. In some examples, the data intake
system 402 may be or include components configured according to a given dataflow technology,
such as a NiFi receiver or the like.

The data intake system 402 may include one or more processing components configured
to perform one or more operations. Example operations may include compression and/or
decompression, encryption and/or de-encryption, analog-to-digital and/or digital-to-analog

conversion, filtration, and amplification, among other operations. Moreover, the data intake
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system 402 may be configured to parse, sort, organize, and/or route data based on data type
and/or characteristics of the data. In some examples, the data intake system 402 may be
configured to format, package, and/or route data based on one or more characteristics or
operating parameters of the data science system 404,

In general, the data received by the data intake system 402 may take various forms. For
example, the payload of the data may include a single sensor or actuator measurement, multiple
sensor and/or actuator measurements and/or one or more abnormal-condition data. Other
examples are also possible.

Moreover, the received data may include certain characteristics, such as a source
identifier and a timestamp (e.g., a date and/or time at which the information was obtained). For
instance, a unique identifier (e.g., a computer generated alphabetic, numeric, alphanumeric, or
the like identifier) may be assigned to each asset, and perhaps to each sensor and actuator. Such
identifiers may be operable to identify the asset, sensor, or actuator from which data originates.
In some cases, another characteristic may include the location (e.g., GPS coordinates) at which
the information was obtained. Data characteristics may come in the form of signal signatures or
metadata, among other examples.

The data science system 404 may generally function to receive (e.g., from the data intake
system 402) and analyze data and based on such analysis, cause one or more operations to occur.
As such, the data science system 404 may include one or more network interfaces 408, a
processing unit 410, and data storage 412, all of which may be communicatively linked by a
system bus, network, or other connection mechanism. In some cases, the data science system
404 may be configured to store and/or access one or more application program interfaces (APIs)
that facilitate carrying out some of the functionality disclosed herein.

The network interfaces 408 may be the same or similar to any network interface
described above. In practice, the network interfaces 408 may facilitate communication (e.g.,
with some level of security) between the data science system 404 and various other entities, such
as the data intake system 402, the databases 406, the assets 102, the output system 110, etc.

The processing unit 410 may include one or more processors, which may take any of the
processor forms described above. In turn, the data storage 412 may be or include one or more
non-transitory computer-readable storage media, which may take any of the forms of
computer-readable storage media discussed above. The processing unit 410 may be configured
to store, access, and execute computer-readable program instructions stored in the data storage
412 to perform the operations of an analytics system described herein.

In general, the processing unit 410 may be configured to perform analytics on data

received from the data intake system 402. To that end, the processing unit 410 may be
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configured to execute one or more modules, which may each take the form of one or more sets of
program instructions that are stored in the data storage 412. The modules may be configured to
facilitate causing an outcome to occur based on the execution of the respective program
instructions. An example outcome from a given module may include outputting data into
another module, updating the program instructions of the given module and/or of another
module, and outputting data to a network interface 408 for transmission to an asset and/or the
output system 110, among other examples.

The databases 406 may generally function to receive (e.g., from the data science system
404) and store data. As such, each database 406 may include one or more non-transitory
computer-readable storage media, such as any of the examples provided above. In practice, the
databases 406 may be separate from or integrated with the data storage 412.

The databases 406 may be configured to store numerous types of data, some of which is
discussed below. In practice, some of the data stored in the databases 406 may include a
timestamp indicating a date and time at which the data was generated or added to the database.
Moreover, data may be stored in a number of manners in the databases 406. For instance, data
may be stored in time sequence, in a tabular manner, and/or organized based on data source type
(e.g., based on asset, asset type, sensor, sensor type, actuator, or actuator type) or abnormal-
condition indicator, among other examples.
1Vv. EXAMPLE OPERATIONS

The operations of the example network configuration 100 depicted in Figure 1 will now
be discussed in further detail below. To help describe some of these operations, flow diagrams
may be referenced to describe combinations of operations that may be performed. In some
cases, each block may represent a module or portion of program code that includes instructions
that are executable by a processor to implement specific logical functions or steps in a process.
The program code may be stored on any type of computer-readable medium, such as non-
transitory computer-readable media. In other cases, each block may represent circuitry that is
wired to perform specific logical functions or steps in a process. Moreover, the blocks shown in
the flow diagrams may be rearranged into different orders, combined into fewer blocks,
separated into additional blocks, and/or removed based upon the particular embodiment.

The following description may reference examples where a single data source, such as
the asset 102, provides data to the analytics system 108 that then performs one or more
functions. It should be understood that this is done merely for sake of clarity and explanation
and is not meant to be limiting. In practice, the analytics system 108 generally receives data
from multiple sources, perhaps simultaneously, and performs operations based on such aggregate

received data.
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A. COLLECTION OF OPERATING DATA

As mentioned above, the representative asset 102 may take various forms and may be
configured to perform a number of operations. In a non-limiting example, the asset 102 may
take the form of a locomotive that is operable to transfer cargo across the United States. While
in transit, the sensors and/or actuators of the asset 102 may obtain signal data that reflects one or
more operating conditions of the asset 102. The sensors and/or actuators may transmit the data
to a processing unit of the asset 102.

The processing unit may be configured to receive the data from the sensors and/or
actuators. In practice, the processing unit may receive sensor data from multiple sensors and/or
actuator data from multiple actuators simultaneously or sequentially. As discussed above, while
receiving this data, the processing unit may also be configured to determine whether the data
satisfies triggering criteria that trigger any abnormal-condition indicators, such as fault codes. In
the event the processing unit determines that one or more abnormal-condition indicators are
triggered, the processing unit may be configured to perform one or more local operations, such
as outputting an indication of the triggered indicator via a user interface.

The asset 102 may then transmit operating data to the analytics system 108 via a network
interface of the asset 102 and the communication network 106. In operation, the asset 102 may
transmit operating data to the analytics system 108 continuously, periodically, and/or in response
to triggering events (e.g., abnormal conditions). Specifically, the asset 102 may transmit
operating data periodically based on a particular frequency (e.g., daily, hourly, every fifteen
minutes, once per minute, once per second, etc.), or the asset 102 may be configured to transmit
a continuous, real-time feed of operating data. Additionally or alternatively, the asset 102 may
be configured to transmit operating data based on certain triggers, such as when sensor and/or
actuator measurements satisfy triggering criteria for any abnormal-condition indicators. The
asset 102 may transmit operating data in other manners as well.

In practice, operating data for the asset 102 may include sensor data, actuator data, and/or
abnormal-condition data. In some implementations, the asset 102 may be configured to provide
the operating data in a single data stream, while in other implementations the asset 102 may be
configured to provide the operating data in multiple, distinct data streams. For example, the
asset 102 may provide to the analytics system 108 a first data stream of sensor and/or actuator
data and a second data stream of abnormal-condition data. Other possibilities also exist.

Sensor and actuator data may take various forms. For example, at times, sensor data (or
actuator data) may include measurements obtained by each of the sensors (or actuators) of the
asset 102. While at other times, sensor data (or actuator data) may include measurements

obtained by a subset of the sensors (or actuators) of the asset 102.
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Specifically, the sensor and/or actuator data may include measurements obtained by the
sensors and/or actuators associated with a given triggered abnormal-condition indicator. For
example, if a triggered fault code is Fault Code 1 from Figure 3, then sensor data may include
raw measurements obtained by Sensors A and C. Additionally or alternatively, the data may
include measurements obtained by one or more sensors or actuators not directly associated with
the triggered fault code. Continuing off the last example, the data may additionally include
measurements obtained by Actuator B and/or other sensors or actuators. In some examples, the
asset 102 may include particular sensor data in the operating data based on a fault-code rule or
instruction provided by the analytics system 108, which may have, for example, determined that
there is a correlation between that which Actuator B is measuring and that which caused the
Fault Code 1 to be triggered in the first place. Other examples are also possible.

Further still, the data may include one or more sensor and/or actuator measurements from
each sensor and/or actuator of interest based on a particular time of interest, which may be
selected based on a number of factors. In some examples, the particular time of interest may be
based on a sampling rate. In other examples, the particular time of interest may be based on the
time at which an abnormal-condition indicator is triggered.

In particular, based on the time at which an abnormal-condition indicator is triggered, the
data may include one or more respective sensor and/or actuator measurements from each sensor
and/or actuator of interest (e.g., sensors and/or actuators directly and indirectly associated with
the triggered indicator). The one or more measurements may be based on a particular number of
measurements or particular duration of time around the time of the triggered abnormal-condition
indicator.

For example, if a triggered fault code is Fault Code 2 from Figure 3, the sensors and
actuators of interest might include Actuator B and Sensor C. The one or more measurements
may include the most recent respective measurements obtained by Actuator B and Sensor C prior
to the triggering of the fault code (e.g., triggering measurements) or a respective set of
measurements before, after, or about the triggering measurements. For example, a set of five
measurements may include the five measurements before or after the triggering measurement
(e.g., excluding the triggering measurement), the four measurements before or after the
triggering measurement and the triggering measurement, or the two measurements before and the
two after as well as the triggering measurement, among other possibilities.

Similar to sensor and actuator data, the abnormal-condition data may take various forms.
In general, the abnormal-condition data may include or take the form of an indicator that is
operable to uniquely identify a particular abnormal condition that occurred at the asset 102 from

all other abnormal conditions that may occur at the asset 102. The abnormal-condition indicator
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may take the form of an alphabetic, numeric, or alphanumeric identifier, among other examples.
Moreover, the abnormal-condition indicator may take the form of a string of words that is
descriptive of the abnormal condition, such as “Overheated Engine” or “Out of Fuel”, among
other examples.

The analytics system 108, and in particular, the data intake system of the analytics system
108, may be configured to receive operating data from one or more assets and/or data sources.
The data intake system may be configured to perform one or more operations to the received data
and then relay the data to the data science system of the analytics system 108. In turn, the data
science system may analyze the received data and based on such analysis, perform one or more
operations.

B. DEFINING PREDICTIVE MODELS & WORKFLOWS

As one example, the analytics system 108 may be configured to define predictive models
and corresponding workflows based on received operating data for one or more assets and/or
received external data related to the one or more assets. The analytics system 108 may define
model-workflow pairs based on various other data as well.

In general, a model-workflow pair may include a set of program instructions that cause
an asset to monitor certain operating conditions and carry out certain operations that help
facilitate preventing the occurrence of a particular event suggested by the monitored operating
conditions. Specifically, a predictive model may include one or more algorithms whose inputs
are sensor and/or actuator data from one or more sensors and/or actuators of an asset and whose
outputs are utilized to determine a probability that a particular event may occur at the asset
within a particular period of time in the future. In turn, a workflow may include one or more
triggers (e.g., model output values) and corresponding operations that the asset carries out based
on the triggers.

As suggested above, the analytics system 108 may be configured to define aggregate
and/or individualized predictive models and/or workflows. An “aggregate” model/workflow
may refer to a model/workflow that is generic for a group of assets and defined without taking
into consideration particular characteristics of the assets to which the model/workflow is
deployed. On the other hand, an “individualized” model/workflow may refer to a
model/workflow that is specifically tailored for a single asset or a subgroup of assets from the
group of assets and defined based on particular characteristics of the single asset or subgroup of
assets to which the model/workflow is deployed. These different types of models/workflows and
the operations performed by the analytics system 108 to define them are discussed in further

detail below.
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1. Aggregate Models & Workflows

In example implementations, the analytics system 108 may be configured to define an
aggregate model-workflow pair based on aggregated data for a plurality of assets. Defining
aggregate model-workflow pairs may be performed in a variety of manners.

Figure 5 1s a flow diagram 500 depicting one possible example of a definition phase that
may be used for defining model-workflow pairs.  For purposes of illustration, the example
definition phase is described as being carried out by the analytics system 108, but this definition
phase may be carried out by other systems as well. One of ordinary skill in the art will
appreciate that the flow diagram 500 is provided for sake of clarity and explanation and that
numerous other combinations of operations may be utilized to define a model-workflow pair.

As shown in Figure 5, at block 502, the analytics system 108 may begin by defining a set
of data that forms the basis for a given predictive model (e.g., the data of interest). The data of
interest may derive from a number of sources, such as the assets 102 and 104 and the data source
112, and may be stored in a database of the analytics system 108.

The data of interest may include historical data for a particular set of assets from a group
of assets or all of the assets from a group of assets (e.g., the assets of interest). Moreover, the
data of interest may include measurements from a particular set of sensors and/or actuators from
each of the assets of interest or from all of the sensors and/or actuators from each of the assets of
interest. Further still, the data of interest may include data from a particular period of time in the
past, such as two week’s worth of historical data.

The data of interest may include a variety of types data, which may depend on the given
predictive model. In some instances, the data of interest may include at least operating data
indicating operating conditions of assets, where the operating data is as discussed above in the
Collection of Operating Data section. Additionally, the data of interest may include environment
data indicating environments in which assets are typically operated and/or scheduling data
indicating planned dates and times during which assets are to carry out certain tasks. Other types
of data may also be included in the data of interest.

In practice, the data of interest may be defined in a number of manners. In one example,
the data of interest may be user-defined. In particular, a user may operate an output system 110
that receives user inputs indicating a selection of certain data of interest, and the output system
110 may provide to the analytics system 108 data indicating such selections. Based on the
received data, the analytics system 108 may then define the data of interest.

In another example, the data of interest may be machine-defined. In particular, the
analytics system 108 may perform various operations, such as simulations, to determine the data

of interest that generates the most accurate predictive model. Other examples are also possible.
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Returning to Figure 5, at block 504, the analytics system 108 may be configured to, based
on the data of interest, define an aggregate, predictive model that is related to the operation of
assets. In general, an aggregate, predictive model may define a relationship between operating
conditions of assets and a likelihood of an event occurring at the assets. Specifically, an
aggregate, predictive model may receive as inputs sensor data from sensors of an asset and/or
actuator data from actuators of the asset and output a probability that an event will occur at the
asset within a certain amount of time into the future.

The event that the predictive model predicts may vary depending on the particular
implementation. For example, the event may be a failure and so, the predictive model may be a
failure model that predicts whether a failure will occur within a certain period of time in the
future (failure models are discussed in detail below in the Health-Score Models & Workflows
section). In another example, the event may be an asset completing a task and so, the predictive
model may predict the likelihood that an asset will complete a task on time. In other examples,
the event may be a fluid or component replacement, and so, the predictive model may predict an
amount of time before a particular asset fluid or component needs to be replaced. In yet other
examples, the event may be a change in asset productivity, and so, the predictive model may
predict the productivity of an asset during a particular period of time in the future. In one other
example, the event may be the occurrence of a “leading indicator” event, which may indicate an
asset behavior that differs from expected asset behaviors, and so, the predictive model may
predict the likelihood of one or more leading indicator events occurring in the future. Other
examples of predictive models are also possible.

In any event, the analytics system 108 may define the aggregate, predictive model in a
variety of manners. In general, this operation may involve utilizing one or more modeling
techniques to generate a model that returns a probability between zero and one, such as a random
forest technique, logistic regression technique, or other regression technique, among other
modeling techniques. In a particular example implementation, the analytics system 108 may
define the aggregate, predictive model in line with the below discussion referencing Figure 7.
The analytics system 108 may define the aggregate model in other manners as well.

At block 506, the analytics system 108 may be configured to define an aggregate
workflow that corresponds to the defined model from block 504. In general, a workflow may
take the form of an action that is carried out based on a particular output of a predictive model.
In example implementations, a workflow may include one or more operations that an asset
performs based on the output of the defined predictive model. Examples of operations that may
be part of a workflow include an asset acquiring data according to a particular data-acquisition

scheme, transmitting data to the analytics system 108 according to a particular data-transmission
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scheme, executing a local diagnostic tool, and/or modifying an operating condition of the asset,
among other example workflow operations.

A particular data-acquisition scheme may indicate how an asset acquires data. In
particular, a data-acquisition scheme may indicate certain sensors and/or actuators from which
the asset obtains data, such as a subset of sensors and/or actuators of the asset’s plurality of
sensors and actuators (e.g., sensors/actuators of interest). Further, a data-acquisition scheme may
indicate an amount of data that the asset obtains from the sensors/actuators of interest and/or a
sampling frequency at which the asset acquires such data. Data-acquisition schemes may include
various other attributes as well. In a particular example implementation, a particular data-
acquisition scheme may correspond to a predictive model for asset health and may be adjusted to
acquire more data and/or particular data (e.g., from particular sensors) based on a decreasing
asset health. Or a particular data-acquisition scheme may correspond to a leading-indicators
predictive model and may be adjusted to a modify data acquired by asset sensors and/or actuators
based on an increased likelihood of an occurrence of a leading indicator event that may signal
that a subsystem failure might occur.

A particular data-transmission scheme may indicate how an asset transmits data to the
analytics system 108. Specifically, a data-transmission scheme may indicate a type of data (and
may also indicate a format and/or structure of the data) that the asset should transmit, such as
data from certain sensors or actuators, a number of data samples that the asset should transmit, a
transmission frequency, and/or a priority-scheme for the data that the asset should include in its
data transmission. In some cases, a particular data-acquisition scheme may include a data-
transmission scheme or a data-acquisition scheme may be paired with a data-transmission
scheme. In some example implementations, a particular data-transmission scheme may
correspond to a predictive model for asset health and may be adjusted to transmit data less
frequently based on an asset health that is above a threshold value. Other examples are also
possible.

As suggested above, a local diagnostic tool may be a set of procedures or the like that are
stored locally at an asset. The local diagnostic tool may generally facilitate diagnosing a cause
of a fault or failure at an asset. In some cases, when executed, a local diagnostic tool may pass
test inputs into a subsystem of an asset or a portion thereof to obtain test results, which may
facilitate diagnosing the cause of a fault or failure. These local diagnostic tools are typically
dormant on an asset and will not be executed unless the asset receives particular diagnostic
instructions. Other local diagnostic tools are also possible. In one example implementation, a
particular local diagnostic tool may correspond to a predictive model for health of a subsystem of

an asset and may be executed based on a subsystem health that is at or below a threshold value.
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Lastly, a workflow may involve modifying an operating condition of an asset. For
instance, one or more actuators of an asset may be controlled to facilitate modifying an operating
condition of the asset. Various operating conditions may be modified, such as a speed,
temperature, pressure, fluid level, current draw, and power distribution, among other examples.
In a particular example implementation, an operating-condition modification workflow may
correspond to a predictive model for predicting whether an asset will complete a task on time and
may cause the asset to increase its speed of travel based on a predicted completion percentage
that is below a threshold value.

In any event, the aggregate workflow may be defined in a variety of manners. In one
example, the aggregate workflow may be user defined. Specifically, a user may operate a
computing device that receives user inputs indicating selection of certain workflow operations,
and the computing device may provide to the analytics system 108 data indicating such
selections. Based on this data, the analytics system 108 may then define the aggregate
workflow.

In another example, the aggregate workflow may be machine-defined. In particular, the
analytics system 108 may perform various operations, such as simulations, to determine a
workflow that may facilitate determining a cause of the probability output by the predictive
model and/or preventing an occurrence of an event predicted by the model. Other examples of
defining the aggregate workflow are also possible.

In defining the workflow corresponding to the predictive model, the analytics system 108
may define the triggers of the workflow. In example implementations, a workflow trigger may
be a value of the probability output by the predictive model or a range of values output by the
predictive model. In some cases, a workflow may have multiple triggers, each of which may
cause a different operation or operations to occur.

To illustrate, Figure 6A is a conceptual illustration of an aggregate model-workflow pair
600. As shown, the aggregate model-workflow pair illustration 600 includes a column for model
inputs 602, model calculations 604, model output ranges 606, and corresponding workflow
operations 608. In this example, the predictive model has a single input, data from Sensor A,
and has two calculations, Calculations I and II. The output of this predictive model affects the
workflow operation that is performed. If the output probability is less than or equal to 80%, then
workflow Operation 1 is performed. Otherwise, the workflow Operation 2 is performed. Other
example model-workflow pairs are possible and contemplated herein.

2. Individualized Models & Workflows

In another aspect, the analytics system 108 may be configured to define individualized

predictive models and/or workflows for assets, which may involve utilizing the aggregate model-

33



10

15

20

25

30

35

WO 2016/205766 PCT/US2016/038261
workflow pair as a baseline. The individualization may be based on certain characteristics of
assets. In this way, the analytics system 108 may provide a given asset a more accurate and
robust model-workflow pair compared to the aggregate model-workflow pair.

In particular, returning to Figure 5, at block 508, the analytics system 108 may be
configured to decide whether to individualize the aggregate model defined at block 504 for a
given asset, such as the asset 102. The analytics system 108 may carry out this decision in a
number of manners.

In some cases, the analytics system 108 may be configured to define individualized
predictive models by default. In other cases, the analytics system 108 may be configured to
decide whether to define an individualized predictive model based on certain characteristics of
the asset 102. For example, in some cases, only assets of certain types or classes, or operated in
certain environments, or that have certain health scores may receive an individualized predictive
model. In yet other cases, a user may define whether an individualized model is defined for the
asset 102. Other examples are also possible.

In any event, if the analytics system 108 decides to define an individualized predictive
model for the asset 102, the analytics system 108 may do so at block 510. Otherwise, the
analytics system 108 may proceed to block 512.

At block 510, the analytics system 108 may be configured to define an individualized
predictive model in a number of manners. In example implementations, the analytics system 108
may define an individualized predictive model based at least in part on one or more
characteristics of the asset 102.

Before defining the individualized predictive model for the asset 102, the analytics
system 108 may have determined one or more asset characteristics of interest that form the basis
of individualized models. In practice, different predictive models may have different
corresponding characteristics of interest.

In general, the characteristics of interest may be characteristics that are related to the
aggregate model-workflow pair.  For instance, the characteristics of interest may be
characteristics that the analytics system 108 has determined influence the accuracy of the
aggregate model-workflow pair. Examples of such characteristics may include asset age, asset
usage, asset capacity, asset load, asset health (perhaps indicated by an asset health metric,
discussed below), asset class (e.g., brand and/or model), and environment in which an asset is
operated, among other characteristics.

The analytics system 108 may have determined the characteristics of interest in a number
of manners. In one example, the analytics system 108 may have done so by performing one or

more modeling simulations that facilitate identifying the characteristics of interest. In another
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example, the characteristics of interest may have been predefined and stored in the data storage
of the analytics system 108. In yet another example, characteristics of interest may have been
define by a user and provided to the analytics system 108 via the output system 110. Other
examples are also possible.

In any event, after determining the characteristics of interest, the analytics system 108
may determine characteristics of the asset 102 that correspond to the determined characteristics
of interest. That is, the analytics system 108 may determine a type, value, existence or lack
thereof, etc. of the asset 102’s characteristics that correspond to the characteristics of interest.
The analytics system 108 may perform this operation in a number of manners.

For examples, the analytics system 108 may be configured to perform this operation
based on data originating from the asset 102 and/or the data source 112. In particular, the
analytics system108 may utilize operating data for the asset 102 and/or external data from the
data source 112 to determine one or more characteristics of the asset 102. Other examples are
also possible.

Based on the determined one or more characteristics of the asset 102, the analytics
system 108 may define an individualized, predictive model by modifying the aggregate model.
The aggregate model may be modified in a number of manners. For example, the aggregate
model may be modified by changing (e.g., adding, removing, re-ordering, etc.) one or more
model inputs, changing one or more sensor and/or actuator measurement ranges that correspond
to asset-operating limits (e.g., changing operating limits that correspond to “leading indicator”
events), changing one or more model calculations, weighting (or changing a weight of) a variable
or output of a calculation, utilizing a modeling technique that differs from that which was
utilized to define the aggregate model, and/or utilizing a response variable that differs from that
which was utilized to define the aggregate model, among other examples.

To illustrate, Figure 6B is a conceptual illustration of an individualized model-workflow
pair 610. Specifically, the individualized model-workflow pair illustration 610 is a modified
version of the aggregate model-workflow pair from Figure 6A. As shown, the individualized
model-workflow pair illustration 610 includes a modified column for model inputs 612 and
model calculations 614 and includes the original columns for model output ranges 606 and
workflow operations 608 from Figure 6A. In this example, the individualized model has two
inputs, data from Sensor A and Actuator B, and has two calculations, Calculations II and III.
The output ranges and corresponding workflow operations are the same as those of Figure 6A.
The analytics system 108 may have defined the individualized model in this way based on
determining that the asset 102 is, for example, relatively old and has relatively poor health,

among other reasons.
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In practice, individualizing the aggregate model may depend on the one or more
characteristics of the given asset. In particular, certain characteristics may affect the
modification of the aggregate model differently than other characteristics. Further, the type,
value, existence, or the like of a characteristic may affect the modification as well. For example,
the asset age may affect a first part of the aggregate model, while an asset class may affect a
second, different part of the aggregate model. And an asset age within a first range of ages may
affect the first part of the aggregate model in a first manner, while an asset age within a second
range of ages, different from the first range, may affect the first part of the aggregate model in a
second, different manner. Other examples are also possible.

In some implementations, individualizing the aggregate model may depend on
considerations in addition to or alternatively to asset characteristics. For instance, the aggregate
model may be individualized based on sensor and/or actuator readings of an asset when the asset
is known to be in a relatively good operating state (e.g., as defined by a mechanic or the like).
More particularly, in an example of a leading-indicator predictive model, the analytics system
108 may be configured to receive an indication that the asset is in a good operating state (e.g.,
from a computing device operated by a mechanic) along with operating data from the asset.
Based at least on the operating data, the analytics system 108 may then individualize the leading-
indicator predictive model for the asset by modifying respective operating limits corresponding
to “leading indicator” events. Other examples are also possible.

Returning to Figure 5, at block 512, the analytics system 108 may also be configured to
decide whether to individualize a workflow for the asset 102. The analytics system 108 may
carry out this decision in a number of manners. In some implementations, the analytics system
108 may perform this operation in line with block 508. In other implementations, the analytics
system 108 may decide whether to define an individualized workflow based on the
individualized predictive model. In yet another implementation, the analytics system 108 may
decide to define an individualized workflow if an individualized predictive model was defined.
Other examples are also possible.

In any event, if the analytics system 108 decides to define an individualized workflow for
the asset 102, the analytics system 108 may do so at block 514. Otherwise, the analytics system
108 may end the definition phase.

At block 514, the analytics system 108 may be configured to define an individualized
workflow in a number of manners. In example implementations, the analytics system 108 may
define an individualized workflow based at least in part on one or more characteristics of the

asset 102.
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Before defining the individualized workflow for the asset 102, similar to defining the
individualized predictive model, the analytics system 108 may have determined one or more
asset characteristics of interest that form the basis of an individualized workflow, which may
have been determined in line with the discussion of block 510. In general, these characteristics
of interest may be characteristics that affect the efficacy of the aggregate workflow. Such
characteristics may include any of the example characteristics discussed above. Other
characteristics are possible as well.

Similar again to block 510, the analytics system 108 may determine characteristics of
the asset 102 that correspond to the determined characteristics of interest for an individualized
workflow. In example implementations, the analytics system 108 may determine characteristics
of the asset 102 in a manner similar to the characteristic determination discussed with reference
to block 510 and in fact, may utilize some or all of that determination.

In any event, based on the determined one or more characteristics of the asset 102, the
analytics system 108 may individualize a workflow for the asset 102 by modifying the aggregate
workflow. The aggregate workflow may be modified in a number of manners. For example, the
aggregate workflow may be modified by changing (e.g., adding, removing, re-ordering,
replacing, etc.) one or more workflow operations (e.g., changing from a first data-acquisition
scheme to a second scheme or changing from a particular data-acquisition scheme to a particular
local diagnostic tool) and/or changing (e.g., increasing, decreasing, adding to, removing from,
etc.) the corresponding model output value or range of values that triggers particular workflow
operations, among other examples. In practice, modification to the aggregate workflow may
depend on the one or more characteristics of the asset 102 in a manner similar to the
modification to the aggregate model.

To illustrate, Figure 6C is a conceptual illustration of an individualized model-workflow
pair 620. Specifically, the individualized model-workflow pair illustration 620 is a modified
version of the aggregate model-workflow pair from Figure 6A. As shown, the individualized
model-workflow pair illustration 620 includes the original columns for model inputs 602, model
calculations 604, and model output ranges 606 from Figure 6A, but includes a modified column
for workflow operations 628. In this example, the individualized model-workflow pair is similar
to the aggregate model-workflow pair from Figure 6A, except that when the output of the
aggregate model is greater than 80% workflow Operation 3 is triggered instead of Operation 1.
The analytics system 108 may have defined this individual workflow based on determining that
the asset 102, for example, operates in an environment that historically increases the occurrence

of asset failures, among other reasons.
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After defining the individualized workflow, the analytics system 108 may end the
definition phase. At that point, the analytics system 108 may then have an individualized model-
workflow pair for the asset 102.

In some example implementations, the analytics system 108 may be configured to define
an individualized predictive model and/or corresponding workflow for a given asset without first
defining an aggregate predictive model and/or corresponding workflow. Other examples are also
possible.

While the above discussed the analytics system 108 individualizing predictive models
and/or workflows, other devices and/or systems may perform the individualization. For
example, the local analytics device of the asset 102 may individualize a predictive model and/or
workflow or may work with the analytics system 108 to perform such operations. The local
analytics device performing such operations is discussed in further detail below.

3. Health-Score Models & Workflows

In a particular implementation, as mentioned above, the analytics system 108 may be
configured to define predictive models and corresponding workflows associated with the health
of assets. In example implementations, one or more predictive models for monitoring the health
of an asset may be utilized to output a health metric (e.g., “health score”) for an asset, which is a
single, aggregated metric that indicates whether a failure will occur at a given asset within a
given timeframe into the future (e.g., the next two weeks). In particular, a health metric may
indicate a likelihood that no failures from a group of failures will occur at an asset within a given
timeframe into the future, or a health metric may indicate a likelihood that at least one failure
from a group of failures will occur at an asset within a given timeframe into the future.

In practice, the predictive models utilized to output a health metric and the corresponding
workflows may be defined as aggregate or individualized models and/or workflows, in line with
the above discussion.

Moreover, depending on the desired granularity of the health metric, the analytics system
108 may be configured to define different predictive models that output different levels of health
metrics and to define different corresponding workflows. For example, the analytics system 108
may define a predictive model that outputs a health metric for the asset as a whole (i.e., an asset-
level health metric). As another example, the analytics system 108 may define a respective
predictive model that outputs a respective health metric for one or more subsystems of the asset
(i.e., subsystem-level health metrics). In some cases, the outputs of each subsystem-level
predictive model may be combined to generate an asset-level health metric. Other examples are

also possible.
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In general, defining a predictive model that outputs a health metric may be performed in a
variety of manners. Figure 7 is a flow diagram 700 depicting one possible example of a
modeling phase that may be used for defining a model that outputs a health metric. ~ For
purposes of illustration, the example modeling phase is described as being carried out by the
analytics system 108, but this modeling phase may be carried out by other systems as well. One
of ordinary skill in the art will appreciate that the flow diagram 700 is provided for sake of
clarity and explanation and that numerous other combinations of operations may be utilized to
determine a health metric.

As shown in Figure 7, at block 702, the analytics system 108 may begin by defining a set
of the one or more failures that form the basis for the health metric (i.e., the failures of interest).
In practice, the one or more failures may be those failures that could render an asset (or a
subsystem thereof) inoperable if they were to occur. Based on the defined set of failures, the
analytics system 108 may take steps to define a model for predicting a likelihood of any of the
failures occurring within a given timeframe in the future (e.g., the next two weeks).

In particular, at block 704, the analytics system 108 may analyze historical operating data
for a group of one or more assets to identify past occurrences of a given failure from the set of
failures. At block 706, the analytics system 108 may identify a respective set of operating data
that is associated with each identified past occurrence of the given failure (e.g., sensor and/or
actuator data from a given timeframe prior to the occurrence of the given failure). At block 708,
the analytics system 108 may analyze the identified sets of operating data associated with past
occurrences of the given failure to define a relationship (e.g., a failure model) between (1) the
values for a given set of operating metrics and (2) the likelihood of the given failure occurring
within a given timeframe in the future (e.g., the next two weeks). Lastly, at block 710, the
defined relationship for each failure in the defined set (e.g., the individual failure models) may
then be combined into a model for predicting the overall likelihood of a failure occurring.

As the analytics system 108 continues to receive updated operating data for the group of
one or more assets, the analytics system 108 may also continue to refine the predictive model for
the defined set of one or more failures by repeating steps 704-710 on the updated operating data.

The functions of the example modeling phase illustrated in Figure 7 will now be
described in further detail. Starting with block 702, as noted above, the analytics system 108
may begin by defining a set of the one or more failures that form the basis for the health metric.
The analytics system 108 may perform this function in various manners.

In one example, the set of the one or more failures may be based on one or more user

inputs. Specifically, the analytics system 108 may receive from a computing system operated by
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a user, such as the output system 110, input data indicating a user selection of the one or more
failures. As such, the set of one or more failures may be user-defined.

In other examples, the set of the one or more failures may be based on a determination
made by the analytics system 108 (e.g., machine-defined). In particular, the analytics system
108 may be configured to define the set of one or more failures, which may occur in a number of
manners.

For instance, the analytics system 108 may be configured to define the set of failures
based on one or more characteristics of the asset 102. That is, certain failures may correspond to
certain characteristics, such as asset type, class, etc., of an asset. For example, each type and/or
class of asset may have respective failures of interest.

In another instance, the analytics system 108 may be configured to define the set of
failures based on historical data stored in the databases of the analytics system 108 and/or
external data provided by the data source 112. For example, the analytics system 108 may
utilize such data to determine which failures result in the longest repair-time and/or which
failures are historically followed by additional failures, among other examples.

In yet other examples, the set of one or more failures may be defined based on a
combination of user inputs and determinations made by the analytics system 108. Other
examples are also possible.

At block 704, for each of the failures from the set of failures, the analytics system 108
may analyze historical operating data for a group of one or more assets (e.g., abnormal-behavior
data) to identify past occurrences of a given failure. The group of the one or more assets may
include a single asset, such as asset 102, or multiple assets of a same or similar type, such as fleet
of assets that includes the assets 102 and 104. The analytics system 108 may analyze a particular
amount of historical operating data, such as a certain amount of time’s worth of data (e.g., a
month’s worth) or a certain number of data-points (e.g., the most recent thousand data-points),
among other examples.

In practice, identifying past occurrences of the given failure may involve the analytics
system 108 identifying the type of operating data, such as abnormal-condition data, that indicates
the given failure. In general, a given failure may be associated with one or multiple abnormal-
condition indicators, such as fault codes. That is, when the given failure occurs, one or multiple
abnormal-condition indicators may be triggered. As such, abnormal-condition indicators may be
reflective of an underlying symptom of a given failure.

After identifying the type of operating data that indicates the given failure, the analytics
system 108 may identify the past occurrences of the given failure in a number of manners. For

instance, the analytics system 108 may locate, from historical operating data stored in the

40



10

15

20

25

30

WO 2016/205766 PCT/US2016/038261
databases of the analytics system 108, abnormal-condition data corresponding to the abnormal-
condition indicators associated with the given failure. Each located abnormal-condition data
would indicate an occurrence of the given failure. Based on this located abnormal-condition
data, the analytics system 108 may identify a time at which a past failure occurred.

At block 706, the analytics system 108 may identify a respective set of operating data
that is associated with each identified past occurrence of the given failure. In particular, the
analytics system 108 may identify a set of sensor and/or actuator data from a certain timeframe
around the time of the given occurrence of the given failure. For example, the set of data may be
from a particular timeframe (e.g., two weeks) before, after, or around the given occurrence of the
failure. In other cases, the set of data may be identified from a certain number of data-points
before, after, or around the given occurrence of the failure.

In example implementations, the set of operating data may include sensor and/or actuator
data from some or all of the sensors and actuators of the asset 102. For example, the set of
operating data may include data from sensors and/or actuators associated with an abnormal-
condition indicator corresponding to the given failure.

To illustrate, Figure 8 depicts a conceptual illustration of historical operating data that the
analytics system 108 may analyze to facilitate defining a model. Plot 800 may correspond to a
segment of historical data that originated from some (e.g., Sensor A and Actuator B) or all of the
sensors and actuators of the asset 102. As shown, the plot 800 includes time on the x-axis 802,
measurement values on the y-axis 804, and sensor data 806 corresponding to Sensor A and
actuator data 808 corresponding to Actuator B, each of which includes various data-points
representing measurements at particular points in time, T;. Moreover, the plot 800 includes an
indication of an occurrence of a failure 810 that occurred at a past time, Tr (e.g., “time of
failure”), and an indication of an amount of time 812 before the occurrence of the failure, AT,
from which sets of operating data are identified. As such, T¢- AT defines a timeframe 814 of
data-points of interest.

Returning to Figure 7, after the analytics system 108 identifies the set of operating data
for the given occurrence of the given failure (e.g., the occurrence at Ty), the analytics system 108
may determine whether there are any remaining occurrences for which a set of operating data
should be identified. In the event that there is a remaining occurrence, block 706 would be
repeated for each remaining occurrence.

Thereafter, at block 708, the analytics system 108 may analyze the identified sets of
operating data associated with the past occurrences of the given failure to define a relationship

(e.g., a failure model) between (1) a given set of operating metrics (e.g., a given set of sensor
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and/or actuator measurements) and (2) the likelihood of the given failure occurring within a
given timeframe in the future (e.g., the next two weeks). That is, a given failure model may take
as inputs sensor and/or actuator measurements from one or more sensors and/or actuators and
output a probability that the given failure will occur within the given timeframe in the future.

In general, a failure model may define a relationship between operating conditions of the
asset 102 and the likelihood of a failure occurring. In some implementations, in addition to raw
data signals from sensors and/or actuators of the asset 102, a failure model may receive a number
of other data inputs, also known as features, which are derived from the sensor and/or actuator
signals. Such features may include an average or range of values that were historically measured
when a failure occurred, an average or range of value gradients (e.g., a rate of change in
measurements) that were historically measured prior to an occurrence of a failure, a duration of
time between failures (e.g., an amount of time or number of data-points between a first
occurrence of a failure and a second occurrence of a failure), and/or one or more failure patterns
indicating sensor and/or actuator measurement trends around the occurrence of a failure. One of
ordinary skill in the art will appreciate that these are but a few example features that can be
derived from sensor and/or actuator signals and that numerous other features are possible.

In practice, a failure model may be defined in a number of manners. In example
implementations, the analytics system 108 may define a failure model by utilizing one or more
modeling techniques that return a probability between zero and one, which may take the form of
any modeling techniques described above.

In a particular example, defining a failure model may involve the analytics system 108
generating a response variable based on the historical operating data identified at block 706.
Specifically, the analytics system 108 may determine an associated response variable for each set
of sensor and/or actuator measurements received at a particular point in time. As such, the
response variable may take the form of a data set associated with the failure model.

The response variable may indicate whether the given set of measurements is within any
of the timeframes determined at block 706. That is, a response variable may reflect whether a
given set of data is from a time of interest about the occurrence of a failure. The response
variable may be a binary-valued response variable such that, if the given set of measurements is
within any of determined timeframes, the associated response variable is assigned a value of one,
and otherwise, the associated response variable is assigned a value of zero.

Returning to Figure 8, a conceptual illustration of a response variable vector, Y, is
shown on the plot 800. As shown, response variables associated with sets of measurements that

are within the timeframe 814 have a value of one (e.g., Yy at times Tiss -Tirg), while response
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variables associated with sets of measurements outside the timeframe 814 have a value of zero
(e.g., Yres at times T; -Tiy, and Tirg-Tit10). Other response variables are also possible.

Continuing in the particular example of defining a failure model based on a response
variable, the analytics system 108 may train the failure model with the historical operating data
identified at block 706 and the generated response variable. Based on this training process, the
analytics system 108 may then define the failure model that receives as inputs various sensor
and/or actuator data and outputs a probability between zero and one that a failure will occur
within a period of time equivalent to the timeframe used to generate the response variable.

In some cases, training with the historical operating data identified at block 706 and the
generated response variable may result in variable importance statistics for each sensor and/or
actuator. A given variable importance statistic may indicate the sensor’s or actuator’s relative
effect on the probability that a given failure will occur within the period of time into the future.

Additionally or alternatively, the analytics system 108 may be configured to define a
failure model based on one or more survival analysis techniques, such as a Cox proportional
hazard technique. The analytics system 108 may utilize a survival analysis technique in a
manner similar in some respects to the above-discussed modeling technique, but the analytics
system 108 may determine a survival time-response variable that indicates an amount of time
from the last failure to a next expected event. A next expected event may be either reception of
senor and/or actuator measurements or an occurrence of a failure, whichever occurs first. This
response variable may include a pair of values that are associated with each of the particular
points in time at which measurements are received. The response variable may then be utilized
to determine a probability that a failure will occur within the given timeframe in the future.

In some example implementations, the failure model may be defined based in part on
external data, such as weather data, and “hotbox” data, among other data. For instance, based on
such data, the failure model may increase or decrease an output failure probability.

In practice, external data may be observed at points in time that do not coincide with
times at which asset sensors and/or actuators obtain measurements. For example, the times at
which “hotbox™ data is collected (e.g., times at which a locomotive passes along a section of
railroad track that is outfitted with hot box sensors) may be in disagreement with sensor and/or
actuator measurement times. In such cases, the analytics system 108 may be configured to
perform one or more operations to determine external data observations that would have been
observed at times that correspond to the sensor measurement times.

Specifically, the analytics system 108 may utilize the times of the external data
observations and times of the measurements to interpolate the external data observations to

produce external data values for times corresponding to the measurement times. Interpolation of
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the external data may allow external data observations or features derived therefrom to be
included as inputs into the failure model. In practice, various techniques may be used to
interpolate the external data with the sensor and/or actuator data, such as nearest-neighbor
interpolation, linear interpolation, polynomial interpolation, and spline interpolation, among
other examples.

Returning to Figure 7, after the analytics system 108 determines a failure model for a
given failure from the set of failures defined at block 702, the analytics system 108 may
determine whether there are any remaining failures for which a failure model should be
determined. In the event that there remains a failure for which a failure model should be
determined, the analytics system 108 may repeat the loop of blocks 704-708. In some
implementations, the analytics system 108 may determine a single failure model that
encompasses all of the failures defined at block 702. In other implementations, the analytics
system 108 may determine a failure model for each subsystem of the asset 102, which may then
be utilized to determine an asset-level failure model. Other examples are also possible.

Lastly, at block 710, the defined relationship for each failure in the defined set (e.g., the
individual failure models) may then be combined into the model (e.g., the health-metric model)
for predicting the overall likelithood of a failure occurring within the given timeframe in the
future (e.g., the next two weeks). That is, the model receives as inputs sensor and/or actuator
measurements from one or more sensors and/or actuators and outputs a single probability that at
least one failure from the set of failures will occur within the given timeframe in the future.

The analytics system 108 may define the health-metric model in a number of manners,
which may depend on the desired granularity of the health metric. That is, in instances where
there are multiple failure models, the outcomes of the failure models may be utilized in a number
of manners to obtain the output of the health-metric model. For example, the analytics system
108 may determine a maximum, median, or average from the multiple failure models and utilize
that determined value as the output of the health-metric model.

In other examples, determining the health-metric model may involve the analytics system
108 attributing a weight to individual probabilities output by the individual failure models. For
instance, each failure from the set of failures may be considered equally undesirable, and so each
probability may likewise be weighted the same in determining the health-metric model. In other
instances, some failures may be considered more undesirable than others (e.g., more catastrophic
or require longer repair time, etc.), and so those corresponding probabilities may be weighted
more than others.

In yet other examples, determining the health-metric model may involve the analytics

system 108 utilizing one or more modeling techniques, such as a regression technique. An
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aggregate response variable may take the form of the logical disjunction (logical OR) of the
response variables (e.g., Yy in Figure 8) from each of the individual failure models. For
example, aggregate response variables associated with any set of measurements that occur within
any timeframe determined at block 706 (e.g., the timeframe 814 of Figure 8) may have a value of
one, while aggregate response variables associated with sets of measurements that occur outside
any of the timeframes may have a value of zero. Other manners of defining the health-metric
model are also possible.

In some implementations, block 710 may be unnecessary. For example, as discussed
above, the analytics system 108 may determine a single failure model, in which case the health-
metric model may be the single failure model.

In practice, the analytics system 108 may be configured to update the individual failure
models and/or the overall health-metric model. The analytics system 108 may update a model
daily, weekly, monthly, etc. and may do so based on a new portion of historical operating data
from the asset 102 or from other assets (e.g., from other assets in the same fleet as the asset 102).
Other examples are also possible.

C. DEFINING EXECUTION FUNCTIONS

In example embodiments, the analytics system 108 may be configured to define
execution functions that may be helpful in determining whether a local analytics device coupled
to an asset (e.g., the local analytics device 220 coupled to the asset 102) should execute a
predictive model. While the below discusses execution functions in relation to executing
predictive models, it should be understood that the discussion is applicable to executing
workflows as well. Indeed, some of the below discussion may be applicable to determining
whether a local analytics device should execute either or both of a predictive model and
corresponding workflow. Other examples are also possible.

As suggested above, although both the analytics system 108 and the local analytics
device 220 may be configured to execute a predictive model for a given asset to which the
analytics device 220 is coupled (e.g., the asset 102), there may be certain factors that make it
advantageous for the analytics system 108 or the local analytics device 220 to execute the
predictive model for the asset 102 as opposed to the other.

For instance, one factor may be accuracy with regards to executing a predictive model
(i.e., whether a predicted outcome actually occurs). This factor may be especially important for
a predictive model that corresponds to a “critical” asset failure (e.g., one that may render the
asset 102 partially or completely inoperable). Thus, considering accuracy independent of other
factors, it may be advantageous for the analytics system 108 to execute the predictive model

instead of the local analytics device 220. This may be the case because the analytics system 108
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generally possesses greater processing capabilities and/or intelligence.  Additionally or
alternatively, the analytics system 108 may possess information that is unknown to the local
analytics device 220, such as information regarding changes in costs associated with an asset
failure (e.g., repair costs) and/or changes in future operating conditions of the asset 102, among
various other information. The analytics system 108 is therefore typically more accurate than the
local analytics device 220 when executing predictive models. Moreover, the analytics system
108 may have a more up-to-date (i.e., accurate) version of the predictive model than that stored
by the local analytics device 220.

Another factor may be the speed at which the result of a predictive model is available.
That is, the time between determining that the predictive model is to be executed and obtaining
the result of the executed predictive model. This factor may be important for a predictive model
that has a corresponding workflow that causes an operation to occur at the asset 102 based on the
model’s output (e.g., an operation that seeks to avoid an asset failure).

Considering model-result availability speed independent of other factors, it may be
advantageous for the local analytics device 220 to execute the predictive model instead of the
analytics system 108 because the local analytics device 220 can generally obtain a model result
quicker than the analytics system 108. For instance, this may be the case because the local
analytics device 220 is coupled (e.g., physically or via an ad-hoc, point-to-point, etc. data
connection) to the asset 102 from which data to execute the predictive model is obtained. For
the analytics system 108 to execute the model, the local analytics device 220 first transmits asset
data to the analytics system 108 via the communication network 106. The analytics system 108
then executes the predictive model based on the asset data and transmits back to the local
analytics device 220 the results of executing the predictive model. Each of these additional
operations takes some amount of time, thereby delaying the availability of the model’s output.
Moreover, this delay may be extended due to conditions such as network latency, limited
bandwidth, and/or lack of a network connection between the local analytics device 220 and the
analytics system 108, among other factors.

Yet another factor may be any data-transmission costs associated with executing a
predictive model. For instance, there may be data-transmission fees associated with transmitting
data from the local analytics device 220 to the analytics system 108, similar to data-transmission
fees corresponding to a cellular-phone data plan. Accordingly, considering data-transmission
costs independent of other factors, it may be advantageous (e.g., cheaper in terms of data-
transmission fees) for the local analytics device 220 to execute a predictive model. This may be
especially true if executing the predictive model requires a relatively large amount of asset data.

Numerous other example factors are also possible.
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Asset-monitoring systems that fail to practice the examples provided herein may suffer
from a number of deficiencies. For instance, one such deficiency may involve failing to take into
consideration some or all of the aforementioned factors, which may result in the asset-
monitoring system wasting resources (e.g., having multiple devices performing the same or
similar computations), obtaining inaccurate results, and/or incurring unnecessary data-
transmission costs, among other drawbacks. Another deficiency may involve taking into
consideration one factor independent of other factors, which may still result in a non-optimal
execution of the predictive model. The examples provided herein thus attempt to improve upon
such deficiencies.

In particular, the analytics system 108 may be configured to analyze the relative
advantages of executing a particular predictive model at the analytics system 108 versus at a
local analytics device and based on that analysis, define for that model a quantitative measure of
those relative advantages, such as an execution function. In general, an execution function
provides a measure of the relative advantages of a particular device or system (e.g., the analytics
system 108 or the local analytics device 220) executing a particular predictive model. Thus, in
practice, the analytics system 108 may define, for the particular predictive model, at least an
analytics-system execution function and a local-analytics-device execution function (e.g., a set of
execution functions for the particular predictive model). Other example execution function types
are also possible.

As a general matter, execution functions may take various forms. In a particular
example, a given execution function may include or take the form of a mathematical expression
that includes one or more parameters and mathematical operators that define a relationship
between the one or more parameters, and the function may also include one or more
corresponding values that are used to evaluate that expression (e.g., values for one or more of the
parameters). An execution function may take other forms as well.

For purposes of example and explanation only, the below discusses performance score
functions (PSFs), which are one possible example of execution functions. As such, the below
discussion should not be construed as limiting. Various other examples of execution functions
are also possible and contemplated herein.

As just mentioned, in one particular example embodiment, the execution functions may
take the form of PSFs that output an analytics performance metric (e.g., “performance score”)
indicating a value associated with having a particular predictive model executed by a particular
device or system (e.g., the analytics system 108 or the local analytics device 220). Accordingly,
an analytics-system PSF outputs a performance score reflecting a value in having the analytics

system 108 execute the particular predictive model, while a local-analytics-device PSF outputs a
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performance score reflecting a value in having the local analytics device 220 execute the
particular predictive model. Various other execution functions are possible as well.

In any event, the analytics system 108 may define PSFs in a variety of manners. In one
example embodiment, the analytics system 108 may define PSFs for a particular predictive
model based at least on historical data related to the particular predictive model. Examples of
such historical data may include historical model-outcome data and historical outcome-cost data,
among various other data. The historical data may be stored by the analytics system 108 and/or
provided by the data source 112 and may reflect historical data for a plurality of assets, which
may or may not include the asset 102.

In general, historical model-outcome data may indicate or be used to determine the
accuracy of previous predictions that were based on a particular predictive model. In practice,
model-outcome data may take various forms and/or may include various information. As one
particular example, model-outcome data may include (a) an identifier of a predictive model used
to make a prediction, (b) an identifier of the type of system or device that made the prediction
(e.g., an analytics system or a local analytics device), (¢) an indication of the previous prediction
(e.g., a prediction that a failure would or would not occur at an asset) and/or (d) an indication of
the actual outcome related to that prediction, thereby indicating whether that previous prediction
was correct (e.g., the failure actually occurred or did not occur at the asset). Historical model-
outcome data may include various other information as well, such as one or more timestamps
corresponding to any of the above information.

In general, historical outcome-cost data may indicate or be used to determine previous
costs associated with handling assets in accordance with previous predictions that were based on
a particular predictive model. For instance, if the prediction was that a failure would not occur at
an asset, but the failure did actually occur at the asset, the corresponding outcome-cost data may
indicate a relatively large value (e.g., the time and/or dollar costs associated with the asset failing
out in the field, the asset missing a delivery deadline, a mechanic traveling to the asset to repair
it, and/or new parts and the labor required to install those new parts). In another instance, if the
prediction was that a failure would occur, but there was in fact no actual problem with the asset,
the corresponding outcome-cost data may indicate a relatively modest value compared to the
above example (e.g., the time and/or dollar costs associated with the asset being pulled from the
field and brought into a repair shop and the labor required for a mechanic to determine that no
problem exists). Other examples of outcome-cost data are also possible.

In practice, historical outcome-cost data may take various forms and/or may include
various information. As one particular example, historical outcome-cost data may include (a) an

indication of a particular asset outcome (e.g., a particular component of an asset failed, the asset
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was inspected but a particular subsystem was in fact not in need of repair, etc.), (b) a metric
associated with a particular asset outcome (e.g., an amount of time and/or dollars spent based on
the outcome), and/or (c) an indication of the previous prediction that resulted in action being
taken (or not being taken) at the asset (e.g., an indication that the health score for an asset was
below a certain threshold value), among other information. In some example embodiments,
historical outcome-cost data may include additional information, such as some or all of the
information included in historical model-outcome data, which may be determined based on a
timestamp associated with a particular asset outcome. Other examples of outcome-cost data are
also possible.

Turning now to Figure 9, there is a flow diagram 900 depicting one possible example of a
definition phase that may be used for defining PSFs. For purposes of illustration, the example
definition phase is described as being carried out by the analytics system 108, but this definition
phase may be carried out by other systems as well. One of ordinary skill in the art will
appreciate that the flow diagram 900 is provided for sake of clarity and explanation and that
numerous other combinations of operations may be utilized to define PSFs.

As shown in Figure 9, at block 902, the analytics system 108 may begin by determining a
type of PSF that the analytics system 108 is defining. For instance, the analytics system 108 may
determine whether it is defining a PSF associated with a local analytics device or one associated
with an analytics system, among other examples. In practice, this operation may occur in a
variety of manners.

In some embodiments, the analytics system 108 may, by default, first define a local-
analytics-device PSF, and after that PSF is defined, define an analytics-system PSF, or vice
versa. Additionally or alternatively, the analytics system 108 may determine a type of PSF
based on a user input provided via a user interface, among other examples.

At block 904, the analytics system 108 may be configured to determine one or more
prediction accuracies, each of which reflecting the accuracy of a particular predictive model as
executed by an analytics system or local analytics device. In example embodiments, the
analytics system 108 may determine the prediction accuracies based at least on historical model-
outcome data, and perhaps also on the determination from block 902. That is, the one or more
prediction accuracies may be different depending on whether the analytics system 108 is
defining a PSF for a local analytics device or for an analytics system.

Figure 10 depicts conceptual illustrations of aspects of example PSFs. As shown, Figure
10 includes four event tables 1000, 1001, 1010, and 1011. The event tables 1000 and 1001
correspond to a PSF for the local analytics device 220, while the event tables 1010 and 1011
correspond to a PSF for the analytics system 108. The event tables 1000 and 1010 are accuracy
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tables, while the event tables 1001 and 1011 are cost tables. As discussed in further detail
below, the event tables 1000 and 1001 provide a performance score that reflects the expected
value of executing the particular predictive model at the local analytics device 220, while the
event table 1010 and 1011 provide a performance score that reflects the expected value of
executing the particular predictive model at the analytics system 108.

As shown, each event table includes rows 1002 and 1004 corresponding to a predicted
outcome (e.g., that a particular failure associated with the particular predictive model will or will
not occur at an asset) and columns 1006 and 1008 corresponding to an actual outcome (e.g., what
actually occurred at the asset). Each event table also includes four event entries where the rows
1002, 1004 intersect with the columns 1006, 1008.

Each event entry corresponds to a particular prediction-outcome event, where the row
defines the prediction event and the column defines the outcome event. For example, the event
entry where the row 1002 and column 1006 intersect corresponds to a prediction-outcome event
of a prediction that a particular asset failure will occur and that particular asset failure actually
occurring. As another example, the event entry where the row 1004 and column 1006 intersect
corresponds to a prediction-outcome event of a prediction that the particular asset failure will not
occur and that particular asset failure actually occurring.

Moreover, each event entry includes a value that either reflects an accuracy or cost
related to the corresponding prediction-outcome event. For instance, in the event tables 1000
and 1010, each event entry includes an accuracy value (e.g., “P17-“P8”), which may take the
form of a numerical value (e.g., a value between 0 and 1, a percentage, etc.). In the event table
1000, each accuracy value (P1-P4) corresponds to a particular prediction-outcome event and
reflects the likelihood that the local analytics device 220 will correctly predict that outcome
event for the asset 102. As such, the accuracy values P1 and P4 are ideally greater than the
accuracy values P2 and P3, assuming that the local analytics device 220 is more often correct
than incorrect.

Similarly, in the event table 1010, each accuracy value (P5-P8) corresponds to a
particular prediction-outcome event and reflects the likelihood that the analytics system 108 will
correctly predict that outcome event for the asset 102. As with the event table 1000, the
accuracy values P5 and P8 are ideally greater than the accuracy values P6 and P7. Moreover, the
accuracy values P5 and P8 are typically greater than the accuracy values P1 and P4, respectively,
because the analytics system 108 is generally more accurate at making predictions than the local
analytics device 220, as noted above. Consequently, the accuracy values P6 and P7 are typically
less than the accuracy values P2 and P3, respectively. In example embodiments, the accuracy

values in each column of each event table 1000 and 1010 sum to a value of one (or 100%), and
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similarly, the accuracy values in each row of each event table 1000 and 1010 sum to a value of
one (or 100%). Other examples are also possible.

In any event, as mentioned above, the analytics system 108 may determine prediction
accuracies based at least on historical model-outcome data, which may be performed in a variety
of manners. As one particular example, the analytics system 108 may perform this operation by
first identifying, from the historical model-outcome data, data related to the particular predictive
model for which the PSF is being defined (e.g., based on the identifier of the predictive model
used to make the prediction included in the model-outcome data). Then, if the analytics system
108 is defining a local-analytics-device PSF, it may identify historical model-outcome data
related to predictions made by local analytics devices (e.g., based on the identifier of the type of
system or device that made the prediction included in the model-outcome data). On the other
hand, if the analytics system 108 is defining an analytics-system PSF, it may identify historical
model-outcome data related to predictions made by analytics systems.

In any event, once the analytics system 108 has identified the proper universe of
historical model-outcome data, it may then, for each data within that universe, analyze the
previous prediction (e.g., based on the indication of the previous prediction included in the
model-outcome data) and the actual outcome related to that prediction (e.g., based on the
indication of the actual outcome included in the model-outcome data). Based on this analysis,
the analytics system 108 may then determine the prediction accuracies, which may involve
determining one or more probability distributions from the analysis. The analytics system 108
may determine prediction accuracies in various other manners as well.

Returning back to Figure 9, at block 906, the analytics system 108 may be configured to
determine one or more prediction costs based at least on historical outcome-cost data. In
general, a given prediction cost reflects a cost associated with an accurate or inaccurate
prediction. For example, a prediction cost associated with accurately predicting that an asset
needs to be repaired may reflect the cost of taking that asset out of the field and into a repair shop
to make the repair. As another example, a prediction cost associated with inaccurately predicting
that an asset does not need to be repaired may reflect the cost of the asset breaking down in the
field, that asset not completing a delivery or other task on time, and/or repairing the asset out in
the field, which typically is a greater cost than repairing an asset in a repair shop. In example
implementations, a prediction cost might take the form of a negative value representing a dollar
amount and/or an amount of time associated with an asset failure, among other examples.

Returning back to Figure 10, in the event tables 1001 and 1011, each event entry includes
a cost value (e.g., “C17-“C8”), which may take the form of a numerical value (e.g., a signed or

unsigned integer, etc.), among other possibilities. In the event table 1001, each cost value (C1-
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C4) corresponds to a particular prediction-outcome event and reflects a cost associated with that
particular outcome event and the local analytics device 220 executing the particular predictive
model to make the particular prediction. For instance, the cost value C3 may have the highest
value of the cost values C1-C4 because a relatively large cost is typically incurred when the local
analytics device 220 predicts that a failure will not occur but the failure nonetheless occurs at the
asset 102. For example, based on such a prediction, the asset 102 may be out in the field far
away from a repair shop when the failure occurs, which may result in significant time and dollar
costs being spent to make the asset 102 operational again. On the other hand, the cost value C4
may have the lowest value of the cost values C1-C4 because a cost associated with the local
analytics device 220 predicting that a failure will not occur and that failure actually not occurring
at the asset is close to zero cost.

In the event table 1011, each event entry includes the same cost value (C1-C4) as in the
event table 1001. This may be so because a cost associated with a particular prediction-outcome
event may be the same from the perspectives of the analytics system 108 and local analytics
device 220.

However, for an analytics-system PSF, the analytics system 108 may be configured to
define one or more additional prediction costs (depicted in Figure 10 as “C5”) based on a variety
of considerations. In general, an additional prediction cost reflects an additional cost associated
with having the analytics system 108 execute the predictive model instead of the local analytics
device 220. Examples of such additional costs may correspond to the model-result availability
speed factor and/or data-transmission cost factor discussed above, among other possibilities.

In example embodiments, an additional cost may apply equally to each prediction-
outcome event. For instance, in Figure 10, the additional cost value C5 is applied equally in
each event entry of the event table 1011 and may reflect the data-transmission cost associated
with having the analytics system 108 execute the particular predictive model. In other
embodiments, an additional cost may apply to some but not all prediction-outcome events (e.g.,
some event entries of the table 1011 may not include CS5), and/or an additional cost may be
particular to a given prediction-outcome event (e.g., a given event entry of the table 1011 may
include an additional cost, “C6”). Additionally or alternatively, an additional cost may be based
on the particular predictive model for which the PSFs are being defined. Other considerations
are possible as well.

In any event, as mentioned above, the analytics system 108 may determine prediction
costs based at least on historical outcome-cost data, which may be performed in a variety of
manners. As one particular example, the analytics system 108 may perform this operation by

first identifying, from the historical outcome-cost data, data related to the particular predictive
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model for which the PSF is being defined (e.g., based on the indication of the previous prediction
that resulted in action being taken (or not being taken) at the asset and/or a timestamp related
thereto included in the outcome-cost data). That is, the analytics system 108 identifies the
universe of outcome-cost data that is correlated to the particular predictive model.

In some example embodiments, the analytics system 108 may define a standardized unit
of measurement for use in determining prediction costs. For example, an outcome-cost metric
may represent an amount of time wasted that results from an inaccurate prediction or instead it
may represent a dollar amount spent repairing an asset out in the field. In any event, after
identifying the universe of outcome-cost data, the analytics system 108 may, for each data within
that universe, convert the outcome-cost metric (e.g., included in the outcome-cost data) in
accordance with the standardized unit of measurement.

Thereafter, the analytics system 108 may then, for each prediction-outcome event (e.g.,
each event entry of event tables 1001 and 1011), identify a sub-universe of outcome-cost data
corresponding to that event (e.g., based on the indication of the particular asset outcome and
indication of the previous prediction included in the outcome-cost data). That is, the analytics
system 108 may identify sub-universes of costs that are attributable to each particular prediction-
outcome event (e.g., historical costs associated with a correct prediction that a failure will occur,
historical costs associated with an incorrect prediction that a failure will not occur, etc.).

From that sub-universe of outcome-cost data, the analytics system 108 may then
determine a cost for that prediction-outcome event based on performing one or more statistical
processes on outcome-cost values, such as determining a mean or median value from the
historical outcome-cost data. The analytics system 108 may define prediction costs in various
other manners as well.

When the analytics system 108 determines prediction costs for an analytics-system PSF
that include any additional cost (e.g., a data transmission cost), that determination may be based
on data in addition to historical outcome-cost data. For example, an additional cost
corresponding to a data transmission cost associated with having the analytics system 108
execute the particular predictive model may be determined based on (a) an amount of asset data
(e.g., signal data) that a local analytics device must transmit in order for the analytics system 108
to execute the particular predictive model and (b) data transmission fees associated with
transmitting data between a local analytics device and the analytics system 108. In practice, the
amount of asset data may be known for the particular predictive model (i.e., the amount of data is
fixed for the predictive model), and/or it may be determined based on historical data
transmission volumes related to the particular predictive model. Moreover, the data transmission

fees may be based on a current data transmission rate or fee (e.g., a current cellular data usage
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plan) and/or historical data transmission rates. Other examples of data may also be used to
determine prediction costs.

Moreover, in example embodiments, the analytics system 108 may take various other
considerations into account when defining a given prediction cost, such as the severity of the
failure associated with the particular predictive model (e.g., “critical” failures may result in a
higher cost value) and/or a type of workflow triggered by the particular model (e.g., a workflow
involving a preventative operation at the asset 102 might result in a higher cost value for some or
all event entries in the event table 1011 corresponding to the analytics system PSF, because it
might be advantageous for the model output to be available in a relatively short amount of time),
among other considerations.

Back at Figure 9, at block 908, the analytics system 108 may be configured to define the
PSF (e.g., one for the analytics system 108 and one for the local analytics device 220) based at
least on the determined prediction accuracies and prediction costs. As one possible example of
the analytics system 108 performing this function, returning to Figure 10, the PSF for the local
analytics device 220 may be defined by taking the product of the corresponding event entries in
the event tables 1000 and 1001 (e.g., P1*C1, P2*C2, etc.) and summing those products to obtain
an expected cost of executing the particular predictive model at the local analytics device.
Similarly, the PSF for the analytics system 108 may be defined by taking the product of the
corresponding event entries in the event tables 1010 and 1011 (e.g., P5*(C1+CS5), etc.) and
summing those products to obtain an expected cost of executing the particular predictive model
at the local analytics device.

Accordingly, the PSF for the local analytics device 220 and the PSF for the analytics
system 108 may be represented by Formula 1 and Formula 2, respectively:

Formula 1: P *C;+P*C,+P;*C3+P*Cy
Formula 2: P5*(C;+ Cs5) +B*(C, + C5)+P,*(C3+ C5)+FP*(Co+ Cs)

In sum, in example embodiments, a local-analytics-device PSF may be defined based on
an expected cost corresponding to the historical accuracy of executing the particular model at a
local analytics device, and an analytics-system PSF may be defined based on (a) an expected cost
corresponding to the historical accuracy of executing the particular model at an analytics system
and (b) an expected cost of transmitting, from a local analytics device coupled to an asset to the
analytics system, the data needed to execute the model at the analytics system. The analytics
system 108 may be configured to define a PSF in various other manners as well.

D. DEPLOYING MODELS/WORKFLOWS/EXECUTION FUNCTIONS

After the analytics system 108 defines a model-workflow pair, the analytics system 108

may deploy the defined model-workflow pair to one or more assets. Specifically, the analytics
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system 108 may transmit the defined predictive model and/or corresponding workflow to at least
one asset, such as the asset 102. The analytics system 108 may transmit model-workflow pairs
periodically or based on triggering events, such as any modifications or updates to a given
model-workflow pair.

In some cases, the analytics system 108 may transmit only one of an individualized
model or an individualized workflow. For example, in scenarios where the analytics system 108
defined only an individualized model or workflow, the analytics system 108 may transmit an
aggregate version of the workflow or model along with the individualized model or workflow, or
the analytics system 108 may not need to transmit an aggregate version if the asset 102 already
has the aggregate version stored in data storage. In sum, the analytics system 108 may transmit
(1) an individualized model and/or individualized workflow, (2) an individualized model and the
aggregate workflow, (3) the aggregate model and an individualized workflow, or (4) the
aggregate model and the aggregate workflow.

In practice, the analytics system 108 may have carried out some or all of the operations of
blocks 702-710 of Figure 7 for multiple assets to define model-workflow pairs for each asset.
For example, the analytics system 108 may have additionally defined a model-workflow pair for
the asset 104. The analytics system 108 may be configured to transmit respective model-
workflow pairs to the assets 102 and 104 simultaneously or sequentially.

Moreover, after the analytics system 108 defines a set of one or more PSFs corresponding
to a particular predictive model, the analytics system 108 may then transmit those PSFs to one or
more local analytics devices, such as the local analytics device 220 coupled to the asset 102. In
example embodiments, the analytics system 108 may transmit the PSFs in a variety of manners.
For example, the analytics system 108 may transmit a set of PSFs when it transmits the particular
predictive model, or it may transmit the set of PSFs before or after it transmits the model.
Moreover, the analytics system 108 may transmit the set of PSFs together or separately. Further
still, for each PSF, the analytics system may transmit an expression of the given PSF (e.g,
Formula 1 and 2, described above) and/or one or more values that are used to evaluate that
expression (e.g., the values from the event tables shown in Figure 10). Other examples of
transmitting PSFs are also possible.

In example embodiments, the analytics system 108 defines and deploys PSFs for each
predictive model that it transmits to a local analytics device. In this way, as discussed in detail
below, the local analytics device 220 may determine, before executing a given predictive model,
the optimal manner to execute the given predictive model.

In practice, after the analytics system 108 transmits PSFs to local analytics devices, the

analytics system 108 may continue to refine or otherwise update the PSFs. In example
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embodiments, instead of transmitting a whole updated PSF, the analytics system 108 may
transmit only the values that are used to evaluate the PSF’s expression (e.g. any of the values
from the event tables shown in Figure 10), or in a case where the expression has changed, it may
transmit a new expression but may or may not also transmit new values. Other examples are
also possible.

E. LOCAL EXECUTION BY ASSET

A given asset, such as the asset 102, may be configured to receive a model-workflow pair
or a portion thereof and operate in accordance with the received model-workflow pair. That is,
the asset 102 may store in data storage the model-workflow pair and input into the predictive
model data obtained by sensors and/or actuators of the asset 102 and at times, execute the
corresponding workflow based on the output of the predictive model.

In practice, various components of the asset 102 may execute the predictive model and/or
corresponding workflow. For example, as discussed above, each asset may include a local
analytics device configured to store and run model-workflow pairs provided by the analytics
system 108. When the local analytics device receives particular sensor and/or actuator data, it
may input the received data into the predictive model and depending on the output of the model,
may execute one or more operations of the corresponding workflow.

In another example, a central processing unit of the asset 102 that is separate from the
local analytics device may execute the predictive model and/or corresponding workflow. In yet
other examples, the local analytics device and central processing unit of the asset 102 may
collaboratively execute the model-workflow pair. For instance, the local analytics device may
execute the predictive model and the central processing unit may execute the workflow or vice
versa.

In example implementations, before the model-workflow pair is locally executed (or
perhaps when the model-workflow is first locally executed), the local analytics device may
individualize the predictive model and/or corresponding workflow for the asset 102. This may
occur whether the model-workflow pair takes the form of an aggregate model-workflow pair or
an individualized model-workflow pair.

As suggested above, the analytics system 108 may define a model-workflow pair based
on certain predictions, assumptions, and/or generalizations about a group of assets or a particular
asset. For instance, in defining a model-workflow pair, the analytics system 108 may predict,
assume, and/or generalize regarding characteristics of assets and/or operating conditions of
assets, among other considerations.

In any event, the local analytics device individualizing a predictive model and/or

corresponding workflow may involve the local analytics device confirming or refuting one or
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more of the predictions, assumptions, and/or generalizations made by the analytics system 108
when the model-workflow pair was defined. The local analytics device may thereafter modify
(or further modify, in the case of an already-individualized model and/or workflow) the
predictive model and/or workflow in accordance with its evaluation of the predictions,
assumptions, and/or generalizations. In this way, the local analytics device may help define a
more realistic and/or accurate model-workflow pair, which may result in more efficacious asset
monitoring.

In practice, the local analytics device may individualize a predictive model and/or
workflow based on a number of considerations. For example, the local analytics device may do
so based on operating data generated by one or more sensors and/or actuators of the asset 102.
Specifically, the local analytics device may individualize by (1) obtaining operating data
generated by a particular group of one or more sensors and/or actuators (e.g., by obtaining such
data indirectly via the asset’s central processing unit or perhaps directly from certain of the
sensor(s) and/or actuator(s) themselves), (2) evaluating one or more predictions, assumptions,
and/or generalizations associated with the model-workflow pair based on the obtained operating
data, and (3) if the evaluation indicates that any prediction, assumption, and/or generalization
was incorrect, then modify the model and/or workflow accordingly. These operations may be
performed in a variety of manners.

In one example, the local analytics device obtaining operating data generated by a
particular group of sensors and/or actuators (e.g., via the asset’s central processing unit) may be
based on instructions included as part of or along with the model-workflow pair. In particular,
the instructions may identify one or more tests for the local analytics device to execute that
evaluate some or all predictions, assumptions, and/or generalizations that were involved in
defining the model-workflow pair. Each test may identify one or more sensors and/or actuators
of interest for which the local analytics device is to obtain operating data, an amount of operating
data to obtain, and/or other test considerations. Therefore, the local analytics device obtaining
operating data generated by the particular group of sensors and/or actuators may involve the
local analytics device obtaining such operating data in accordance with test instructions or the
like. Other examples of the local analytics device obtaining operating data for use in
individualizing a model-workflow pair are also possible.

As noted above, after obtaining the operating data, the local analytics device may utilize
the data to evaluate some or all predictions, assumptions, and/or generalizations that were
involved in defining the model-workflow pair. This operation may be performed in a variety of
manners. In one example, the local analytics device may compare the obtained operating data to

one or more thresholds (e.g., threshold values and/or threshold ranges of values). Generally, a
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given threshold value or range may correspond to one or more predictions, assumptions, and/or
generalizations used to define the model-workflow pair. Specifically, each sensor or actuator (or
a combination of sensors and/or actuators) identified in the test instructions may have a
corresponding threshold value or range. The local analytics device may then determine whether
the operating data generated by a given sensor or actuator is above or below the corresponding
threshold value or range. Other examples of the local analytics device evaluating predictions,
assumptions, and/or generalizations are also possible.

Thereafter, the local analytics device may modify (or not) the predictive model and/or
workflow based on the evaluation. That is, if the evaluation indicates that any predictions,
assumptions, and/or generalizations were incorrect, then the local analytics device may modify
the predictive model and/or workflow accordingly. Otherwise, the local analytics device may
execute the model-workflow pair without modifications.

In practice, the local analytics device may modify a predictive model and/or workflow in
a number of manners. For example, the local analytics device may modify one or more
parameters of the predictive model and/or corresponding workflow and/or trigger points of the
predictive model and/or workflow (e.g., by modifying a value or range of values), among other
examples.

As one non-limiting example, the analytics system 108 may have defined a model-
workflow pair for the asset 102 assuming that the asset 102’s engine operating temperature does
not exceed a particular temperature. As a result, part of the predictive model for the asset 102
may involve determining a first calculation and then a second calculation only if the first
calculation exceeds a threshold value, which was determined based on the assumed engine
operating temperature. When individualizing the model-workflow pair, the local analytics
device may obtain data generated by one or more sensors and/or actuators that measure operating
data of the asset 102’s engine. The local analytics device may then use this data to determine
whether the assumption regarding the engine operating temperate is true in practice (e.g.,
whether the engine operating temperate exceeds the threshold value). If the data indicates that
the engine operating temperate has a value that exceeds, or is a threshold amount above, the
assumed particular temperature, then the local analytics device may, for example, modify the
threshold value that triggers determining the second calculation. Other examples of the local
analytics device individualizing a predictive model and/or workflow are also possible.

The local analytics device may individualize a model-workflow pair based on additional
or alternative considerations. For example, the local analytics device may do so based on one or

more asset characteristics, such as any of those discussed above, which may be determined by
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the local analytics device or provided to the local analytics device. Other examples are also
possible.

In example implementations, after the local analytics device individualizes a predictive
model and/or workflow, the local analytics device may provide to the analytics system 108 an
indication that the predictive model and/or workflow has been individualized. Such an
indication may take various forms. For example, the indication may identify an aspect or part of
the predictive model and/or workflow that the local analytics device modified (e.g., the
parameter that was modified and/or to what the parameter was modified to) and/or may identify
the cause of the modification (e.g., the underlying operating data or other asset data that caused
the local analytics device to modify and/or a description of the cause). Other examples are also
possible.

In some example implementations, a local analytics device and the analytics system 108
may both be involved in individualizing a model-workflow pair, which may be performed in a
variety of manners. For example, the analytics system 108 may provide to the local analytics
device an instruction to test certain conditions and/or characteristics of the asset 102. Based on
the instruction, the local analytics device may execute the tests at the asset 102. For instance, the
local analytics device may obtain operating data generated by particular asset sensors and/or
actuators. Thereafter, the local analytics device may provide to the analytics system 108 the
results from the tested conditions. Based on such results, the analytics system 108 may
accordingly define a predictive model and/or workflow for the asset 102 and transmit it to local
analytics device for local execution.

In other examples, the local analytics device may perform the same or similar test
operations as part of executing a workflow. That is, a particular workflow corresponding to a
predictive model may cause the local analytics device to execute certain tests and transmit results
to the analytics system 108.

In example implementations, after the local analytics device individualizes a predictive
model and/or workflow (or works with the analytics system 108 to do the same), the local
analytics device may execute the individualized predictive model and/or workflow instead of the
original model and/or workflow (e.g., that which the local analytics device originally received
from the analytics system 108). In some cases, although the local analytics device executes the
individualized version, the local analytics device may retain the original version of the model
and/or workflow in data storage.

In general, an asset executing a predictive model and, based on the resulting output,
executing operations of the workflow may facilitate determining a cause or causes of the

likelihood of a particular event occurring that is output by the model and/or may facilitate
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preventing a particular event from occurring in the future. In executing a workflow, an asset
may locally determine and take actions to help prevent an event from occurring, which may be
beneficial in situations when reliance on the analytics system 108 to make such determinations
and provide recommended actions is not efficient or feasible (e.g., when there is network latency,
when network connection is poor, when the asset moves out of coverage of the communication
network 106, etc.).

In practice, an asset may execute a predictive model in a variety of manners, which may
be dependent on the particular predictive model. Figure 9 is a flow diagram 900 depicting one
possible example of a local-execution phase that may be used for locally executing a predictive
model. The example local-execution phase will be discussed in the context of a health-metric
model that outputs a health metric of an asset, but it should be understood that a same or similar
local-execution phase may be utilized for other types of predictive models. Moreover, for
purposes of illustration, the example local-execution phase is described as being carried out by a
local analytics device of the asset 102, but this phase may be carried out by other devices and/or
systems as well. One of ordinary skill in the art will appreciate that the flow diagram 900 is
provided for sake of clarity and explanation and that numerous other combinations of operations
and functions may be utilized to locally execute a predictive model.

As shown in Figure 11, at block 1102, the local analytics device may receive data that
reflects the current operating conditions of the asset 102. At block 1104, the local analytics
device may identify, from the received data, the set of operating data that is to be input into the
model provided by the analytics system 108. At block 1106, the local analytics device may then
input the identified set of operating data into the model and run the model to obtain a health
metric for the asset 102.

As the local analytics device continues to receive updated operating data for the asset
102, the local analytics device may also continue to update the health metric for the asset 102 by
repeating the operations of blocks 1102-1106 based on the updated operating data. In some
cases, the operations of blocks 1102-1106 may be repeated each time the local analytics device
receives new data from sensors and/or actuators of the asset 102 or periodically (e.g., hourly,
daily, weekly, monthly, etc.). In this way, local analytics devices may be configured to
dynamically update health metrics, perhaps in real-time, as assets are used in operation.

The functions of the example local-execution phase illustrated in Figure 11 will now be
described in further detail. At block 1102, the local analytics device may receive data that
reflects the current operating conditions of the asset 102. Such data may include sensor data
from one or more of the sensors of the asset 102, actuator data from one or more actuators of the

asset 102, and/or it may include abnormal-condition data, among other types of data.
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At block 1104, the local analytics device may identify, from the received data, the set of
operating data that is to be input into the health-metric model provided by the analytics system
108. This operation may be performed in a number of manners.

In one example, the local analytics device may identify the set of operating data inputs
(e.g., data from particular sensors and/or actuators of interest) for the model based on a
characteristic of the asset 102, such as asset type or asset class, for which the health metric is
being determined. In some cases, the identified set of operating data inputs may be sensor data
from some or all of the sensors of the asset 102 and/or actuator data from some of all of the
actuators of the asset 102.

In another example, the local analytics device may identify the set of operating data
inputs based on the predictive model provided by the analytics system 108. That is, the analytics
system 108 may provide some indication to the asset 102 (e.g., either in the predictive model or
in a separate data transmission) of the particular inputs for the model. Other examples of
identifying the set of operating data inputs are also possible.

At block 1106, the local analytics device may then run the health-metric model.
Specifically, the local analytics device may input the identified set of operating data into the
model, which in turn determines and outputs an overall likelihood of at least one failure
occurring within the given timeframe in the future (e.g., the next two weeks).

In some implementations, this operation may involve the local analytics device inputting
particular operating data (e.g., sensor and/or actuator data) into one or more individual failure
models of the health-metric model, which each may output an individual probability. The local
analytics device may then use these individual probabilities, perhaps weighting some more than
others in accordance with the health-metric model, to determine the overall likelihood of a
failure occurring within the given timeframe in the future.

After determining the overall likelihood of a failure occurring, the local analytics device
may convert the probability of a failure occurring into the health metric that may take the form of
a single, aggregated parameter that reflects the likelihood that no failures will occur at the asset
102 within the give timeframe in the future (e.g., two weeks). In example implementations,
converting the failure probability into the health metric may involve the local analytics device
determining the complement of the failure probability. Specifically, the overall failure
probability may take the form of a value ranging from zero to one; the health metric may be
determined by subtracting one by that number. Other examples of converting the failure
probability into the health metric are also possible.

After an asset locally executes a predictive model, the asset may then execute a

corresponding workflow based on the resulting output of the executed predictive model.
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Generally, the asset executing a workflow may involve the local analytics device causing the
performance of an operation at the asset (e.g., by sending an instruction to one or more of the
asset’s on-board systems) and/or the local analytics device causing a computing system, such as
the analytics system 108 and/or the output system 110, to execute an operation remote from the
asset. As mentioned above, workflows may take various forms and so, workflows may be
executed in a variety of manners.

For example, the asset 102 may be caused to internally execute one or more operations
that modify some behavior of the asset 102, such as modifying a data-acquisition
and/or -transmission scheme, executing a local diagnostic tool, modifying an operating condition
of the asset 102 (e.g., modifying a velocity, acceleration, fan speed, propeller angle, air intake,
etc. or performing other mechanical operations via one or more actuators of the asset 102), or
outputting an indication, perhaps of a relatively low health metric or of recommended
preventative actions that should be executed in relation to the asset 102, at a user interface of the
asset 102 or to an external computing system.

In another example, the asset 102 may transmit to a system on the communication
network 106, such as the output system 110, an instruction to cause the system to carry out an
operation, such as generating a work-order or ordering a particular part for a repair of the asset
102. In yet another example, the asset 102 may communicate with a remote system, such as the
analytics system 108, that then facilitates causing an operation to occur remote from the asset
102. Other examples of the asset 102 locally executing a workflow are also possible.

F. MODEL/WORKFLOW MODIFICATION PHASE

In another aspect, the analytics system 108 may carry out a modification phase during
which the analytics system 108 modifies a deployed model and/or workflow based on new asset
data. This phase may be performed for both aggregate and individualized models and
workflows.

In particular, as a given asset (e.g., the asset 102) operates in accordance with a model-
workflow pair, the asset 102 may provide operating data to the analytics system 108 and/or the
data source 112 may provide to the analytics system 108 external data related to the asset 102.
Based at least on this data, the analytics system 108 may modify the model and/or workflow for
the asset 102 and/or the model and/or workflow for other assets, such as the asset 104. In
modifying models and/or workflows for other assets, the analytics system 108 may share
information learned from the behavior of the asset 102.

In practice, the analytics system 108 may make modifications in a number of manners.
Figure 12 is a flow diagram 1200 depicting one possible example of a modification phase that

may be used for modifying model-workflow pairs. For purposes of illustration, the example
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modification phase is described as being carried out by the analytics system 108, but this
modification phase may be carried out by other systems as well. One of ordinary skill in the art
will appreciate that the flow diagram 1200 is provided for sake of clarity and explanation and
that numerous other combinations of operations may be utilized to modify model-workflow
pairs.

As shown in Figure 12, at block 1202, the analytics system 108 may receive data from
which the analytics system 108 identifies an occurrence of a particular event. The data may be
operating data originating from the asset 102 or external data related to the asset 102 from the
data source 112, among other data. The event may take the form of any of the events discussed
above, such as a failure at the asset 102.

In other example implementations, the event may take the form of a new component or
subsystem being added to the asset 102. Another event may take the form of a “leading
indicator” event, which may involve sensors and/or actuators of the asset 102 generating data
that differs, perhaps by a threshold differential, from the data identified at block 706 of Figure 7
during the model-definition phase. This difference may indicate that the asset 102 has operating
conditions that are above or below normal operating conditions for assets similar to the asset
102. Yet another event may take the form of an event that is followed by one or more leading
indicator events.

Based on the identified occurrence of the particular event and/or the underlying data (e.g.,
operating data and/or external data related to the asset 102), the analytics system 108 may then
modify the aggregate, predictive model and/or workflow and/or one or more individualized
predictive models and/or workflows. In particular, at block 1004, the analytics system 108 may
determine whether to modify the aggregate, predictive model. The analytics system 108 may
determine to modify the aggregate, predictive model for a number of reasons.

For example, the analytics system 108 may modify the aggregate, predictive model if the
identified occurrence of the particular event was the first occurrence of this particular event for a
plurality of assets including the asset 102, such as the first time a particular failure occurred at an
asset from a fleet of assets or the first time a particular new component was added to an asset
from a fleet of assets.

In another example, the analytics system 108 may make a modification if data associated
with the identified occurrence of the particular event is different from data that was utilized to
originally define the aggregate model. For instance, the identified occurrence of the particular
event may have occurred under operating conditions that had not previously been associated with

an occurrence of the particular event (e.g., a particular failure might have occurred with
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associated sensor values not previously measured before with the particular failure). Other
reasons for modifying the aggregate model are also possible.

If the analytics system 108 determines to modify the aggregate, predictive model, the
analytics system 108 may do so at block 1006. Otherwise, the analytics system 108 may proceed
to block 1008.

At block 1206, the analytics system 108 may modify the aggregate model based at least
in part on the data related to the asset 102 that was received at block 1202. In example
implementations, the aggregate model may be modified in various manners, such as any manner
discussed above with reference to block 510 of Figure 5. In other implementations, the
aggregate model may be modified in other manners as well.

At block 1208, the analytics system 108 may then determine whether to modify the
aggregate workflow. The analytics system 108 may modify the aggregate workflow for a
number of reasons.

For example, the analytics system 108 may modify the aggregate workflow based on
whether the aggregate model was modified at block 1204 and/or if there was some other change
at the analytics system 108. In other examples, the analytics system 108 may modify the
aggregate workflow if the identified occurrence of the event at block 1202 occurred despite the
asset 102 executing the aggregate workflow. For instance, if the workflow was aimed to help
facilitate preventing the occurrence of the event (e.g., a failure) and the workflow was executed
properly but the event still occurred nonetheless, then the analytics system 108 may modify the
aggregate workflow. Other reasons for modifying the aggregate workflow are also possible.

If the analytics system 108 determines to modify the aggregate workflow, the analytics
system 108 may do so at block 1210. Otherwise, the analytics system 108 may proceed to block
1212.

At block 1210, the analytics system 108 may modify the aggregate workflow based at
least in part on the data related to the asset 102 that was received at block 1202. In example
implementations, the aggregate workflow may be modified in various manners, such as any
manner discussed above with reference to block 514 of Figure 5. In other implementations, the
aggregate model may be modified in other manners as well.

At blocks 1212 through blocks 1218, the analytics system 108 may be configured to
modify one or more individualized models (e.g., for each of assets 102 and 104) and/or one or
more individualized workflows (e.g., for one of asset 102 or asset 104) based at least in part on
the data related to the asset 102 that was received at block 1202. The analytics system 108 may

do so in a manner similar to blocks 1204-1210.
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However, the reasons for modifying an individualized model or workflow may differ
from the reasons for the aggregate case. For instance, the analytics system 108 may further
consider the underlying asset characteristics that were utilized to define the individualized model
and/or workflow in the first place. In a particular example, the analytics system 108 may modify
an individualized model and/or workflow if the identified occurrence of the particular event was
the first occurrence of this particular event for assets with asset characteristics of the asset 102.
Other reasons for modifying an individualized model and/or workflow are also possible.

To illustrate, Figure 6D is a conceptual illustration of a modified model-workflow pair
630. Specifically, the model-workflow pair illustration 630 is a modified version of the
aggregate model-workflow pair from Figure 6A. As shown, the modified model-workflow pair
illustration 630 includes the original column for model inputs 602 from Figure 6A and includes
modified columns for model calculations 634, model output ranges 636, and workflow
operations 638. In this example, the modified predictive model has a single input, data from
Sensor A, and has two calculations, Calculations I and III. If the output probability of the
modified model is less than 75%, then workflow Operation 1 is performed. If the output
probability is between 75% and 85%, then workflow Operation 2 is performed. And if the output
probability is greater than 85%, then workflow Operation 3 is performed. Other example
modified model-workflow pairs are possible and contemplated herein.

Returning to Figure 12, at block 1220, the analytics system 108 may then transmit any
model and/or workflow modifications to one or more assets. For example, the analytics system
108 may transmit a modified individualized model-workflow pair to the asset 102 (e.g., the asset
whose data caused the modification) and a modified aggregate model to the asset 104. In this
way, the analytics system 108 may dynamically modify models and/or workflows based on data
associated with the operation of the asset 102 and distribute such modifications to multiple
assets, such as the fleet to which the asset 102 belongs. Accordingly, other assets may benefit
from the data originating from the asset 102 in that the other assets’ local model-workflow pairs
may be refined based on such data, thereby helping to create more accurate and robust model-
workflow pairs.

While the above modification phase was discussed as being performed by the analytics
system 108, in example implementations, the local analytics device of the asset 102 may
additionally or alternatively carry out the modification phase in a similar manner as discussed
above. For instance, in one example, the local analytics device may modify a model-workflow
pair as the asset 102 operates by utilizing operating data generated by one or more sensors and/or
actuators. Therefore, the local analytics device of the asset 102, the analytics system 108, or

some combination thereof may modify a predictive model and/or workflow as asset-related
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conditions change. In this way, the local analytics device and/or the analytics system 108 may
continuously adapt model-workflow pairs based on the most recent data available to them.

G DYNAMIC EXECUTION OF MODEL/WORKFLOW

In another aspect, the asset 102 and/or the analytics system 108 may be configured to
dynamically adjust executing a model-workflow pair. In particular, the asset 102 and/or the
analytics system 108 may be configured to detect certain events that trigger a change in
responsibilities with respect to whether the asset 102 and/or the analytics system 108 should be
executing the predictive model and/or workflow.

In operation, both the asset 102 and the analytics system 108 may execute all or a part of
a model-workflow pair on behalf of the asset 102. For example, after the asset 102 receives a
model-workflow pair from the analytics system 108, the asset 102 may store the model-
workflow pair in data storage but then may rely on the analytics system 108 to centrally execute
part or all of the model-workflow pair. In particular, the asset 102 may provide at least sensor
and/or actuator data to the analytics system 108, which may then use such data to centrally
execute a predictive model for the asset 102. Based on the output of the model, the analytics
system 108 may then execute the corresponding workflow or the analytics system 108 may
transmit to the asset 102 the output of the model or an instruction for the asset 102 to locally
execute the workflow.

In other examples, the analytics system 108 may rely on the asset 102 to locally execute
part or all of the model-workflow pair. Specifically, the asset 102 may locally execute part or all
of the predictive model and transmit results to the analytics system 108, which may then cause
the analytics system 108 to centrally execute the corresponding workflow. Or the asset 102 may
also locally execute the corresponding workflow.

In yet other examples, the analytics system 108 and the asset 102 may share in the
responsibilities of executing the model-workflow pair. For instance, the analytics system 108
may centrally execute portions of the model and/or workflow, while the asset 102 locally
executes the other portions of the model and/or workflow. The asset 102 and analytics system
108 may transmit results from their respective executed responsibilities. Other examples are also
possible.

At some point in time, the asset 102 and/or the analytics system 108 may determine that
the execution of the model-workflow pair should be adjusted. That is, one or both may
determine that the execution responsibilities should be modified. This operation may occur in a
variety of manners.

1. Dynamic Execution Based on Adjustment Factor
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Figure 13 is a flow diagram 1300 depicting one possible example of an adjustment phase
that may be used for adjusting execution of a model-workflow pair. For purposes of illustration,
the example adjustment phase is described as being carried out by the asset 102 and/or the
analytics system 108, but this modification phase may be carried out by other systems as well.
One of ordinary skill in the art will appreciate that the flow diagram 1100 is provided for sake of
clarity and explanation and that numerous other combinations of operations may be utilized to
adjust the execution of a model-workflow pair.

At block 1302, the asset 102 and/or the analytics system 108 may detect an adjustment
factor (or potentially multiple) that indicates conditions that require an adjustment to the
execution of the model-workflow pair. Examples of such conditions include network conditions
of the communication network 106 or processing conditions of the asset 102 and/or analytics
system 108, among other examples. Example network conditions may include network latency,
network bandwidth, signal strength of a link between the asset 102 and the communication
network 106, or some other indication of network performance, among other examples.
Example processing conditions may include processing capacity (e.g., available processing
power), processing usage (e.g., amount of processing power being consumed) or some other
indication of processing capabilities, among other examples.

In practice, detecting an adjustment factor may be performed in a variety of manners.
For example, this operation may involve determining whether network (or processing)
conditions reach one or more threshold values or whether conditions have changed in a certain
manner. Other examples of detecting an adjustment factor are also possible.

In particular, in some cases, detecting an adjustment factor may involve the asset 102
and/or the analytics system 108 detecting an indication that a signal strength of a communication
link between the asset 102 and the analytics system 108 is below a threshold signal strength or
has been decreasing at a certain rate of change. In this example, the adjustment factor may
indicate that the asset 102 is about to go “off-line.”

In another case, detecting an adjustment factor may additionally or alternatively involve
the asset 102 and/or the analytics system 108 detecting an indication that network latency is
above a threshold latency or has been increasing at a certain rate of change. Or the indication
may be that a network bandwidth is below a threshold bandwidth or has been decreasing at a
certain rate of change. In these examples, the adjustment factor may indicate that the
communication network 106 is lagging.

In yet other cases, detecting an adjustment factor may additionally or alternatively
involve the asset 102 and/or the analytics system 108 detecting an indication that processing

capacity is below a particular threshold or has been decreasing at a certain rate of change and/or
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that processing usage is above a threshold value or increasing at a certain rate of change. In such
examples, the adjustment factor may indicate that processing capabilities of the asset 102 (and/or
the analytics system 108) are low. Other examples of detecting an adjustment factor are also
possible.

At block 1304, based on the detected adjustment factor, the local execution
responsibilities may be adjusted, which may occur in a number of manners. For example, the
asset 102 may have detected the adjustment factor and then determined to locally execute the
model-workflow pair or a portion thereof. In some cases, the asset 102 may then transmit to the
analytics system 108 a notification that the asset 102 is locally executing the predictive model
and/or workflow.

In another example, the analytics system 108 may have detected the adjustment factor
and then transmitted an instruction to the asset 102 to cause the asset 102 to locally execute the
model-workflow pair or a portion thereof. Based on the instruction, the asset 102 may then
locally execute the model-workflow pair.

At block 1306, the central execution responsibilities may be adjusted, which may occur
in a number of manners. For example, the central execution responsibilities may be adjusted
based on the analytics system 108 detecting an indication that the asset 102 is locally executing
the predictive model and/or the workflow. The analytics system 108 may detect such an
indication in a variety of manners.

In some examples, the analytics system 108 may detect the indication by receiving from
the asset 102 a notification that the asset 102 is locally executing the predictive model and/or
workflow. The notification may take various forms, such as binary or textual, and may identify
the particular predictive model and/or workflow that the asset is locally executing.

In other examples, the analytics system 108 may detect the indication based on received
operating data for the asset 102. Specifically, detecting the indication may involve the analytics
system 108 receiving operating data for the asset 102 and then detecting one or more
characteristics of the received data. From the one or more detected characteristics of the
received data, the analytics system 108 may infer that the asset 102 is locally executing the
predictive model and/or workflow.

In practice, detecting the one or more characteristics of the received data may be
performed in a variety of manners. For instance, the analytics system 108 may detect a type of
the received data. In particular, the analytics system 108 may detect a source of the data, such as
a particular sensor or actuator that generated sensor or actuator data. Based on the type of the
received data, the analytics system 108 may infer that the asset 102 is locally executing the

predictive model and/or workflow. For example, based on detecting a sensor-identifier of a
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particular sensor, the analytics system 108 may infer the that asset 102 is locally executing a
predictive model and corresponding workflow that causes the asset 102 to acquire data from the
particular sensor and transmit that data to the analytics system 108.

In another instance, the analytics system 108 may detect an amount of the received data.
The analytics system 108 may compare that amount to a certain threshold amount of data. Based
on the amount reaching the threshold amount, the analytics system 108 may infer that the asset
102 is locally executing a predictive model and/or workflow that causes the asset 102 to acquire
an amount of data equivalent to or greater than the threshold amount. Other examples are also
possible.

In example implementations, detecting the one or more characteristics of the received
data may involve the analytics system 108 detecting a certain change in one or more
characteristics of the received data, such as a change in the type of the received data, a change in
the amount of data that is received, or change in the frequency at which data is received. In a
particular example, a change in the type of the received data may involve the analytics system
108 detecting a change in the source of sensor data that it is receiving (e.g., a change in sensors
and/or actuators that are generating the data provided to the analytics system 108).

In some cases, detecting a change in the received data may involve the analytics system
108 comparing recently received data to data received in the past (e.g., an hour, day, week, etc.
before a present time). In any event, based on detecting the change in the one or more
characteristics of the received data, the analytics system 108 may infer that the asset 102 is
locally executing a predictive model and/or workflow that causes such a change to the data
provided by the asset 102 to the analytics system 108.

Moreover, the analytics system 108 may detect an indication that the asset 102 is locally
executing the predictive model and/or the workflow based on detecting the adjustment factor at
block 1302. For example, in the event that the analytics system 108 detects the adjustment factor
at block 1302, the analytics system 108 may then transmit to the asset 102 instructions that cause
the asset 102 to adjust its local execution responsibilities and accordingly, the analytics system
108 may adjust its own central execution responsibilities. Other examples of detecting the
indication are also possible.

In example implementations, the central execution responsibilities may be adjusted in
accordance with the adjustment to the local execution responsibilities. For instance, if the asset
102 is now locally executing the predictive model, then the analytics system 108 may
accordingly cease centrally executing the predictive model (and may or may not cease centrally
executing the corresponding workflow). Further, if the asset 102 is locally executing the

corresponding workflow, then the analytics system 108 may accordingly cease executing the
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workflow (and may or may not cease centrally executing the predictive model). Other examples
are also possible.

In practice, the asset 102 and/or the analytics system 108 may continuously perform the
operations of blocks 1302-1306. And at times, the local and central execution responsibilities
may be adjusted to facilitate optimizing the execution of model-workflow pairs.

Moreover, in some implementations, the asset 102 and/or the analytics system 108 may
perform other operations based on detecting an adjustment factor. For example, based on a
condition of the communication network 106 (e.g., bandwidth, latency, signal strength, or
another indication of network quality), the asset 102 may locally execute a particular workflow.
The particular workflow may be provided by the analytics system 108 based on the analytics
system 108 detecting the condition of the communication network, may be already stored on the
asset 102, or may be a modified version of a workflow already stored on the asset 102 (e.g., the
asset 102 may locally modify a workflow). In some cases, the particular workflow may include
a data-acquisition scheme that increases or decreases a sampling rate and/or a data-transmission
scheme that increases or decreases a transmission rate or amount of data transmitted to the
analytics system 108, among other possible workflow operations.

In a particular example, the asset 102 may determine that one or more detected conditions
of the communication network have reached respective thresholds (e.g., indicating poor network
quality). Based on such a determination, the asset 102 may locally execute a workflow that
includes transmitting data according to a data-transmission scheme that reduces the amount
and/or frequency of data the asset 102 transmits to the analytics system 108. Other examples are
also possible.

2. Dynamic Execution Based on Execution Functions

Figure 14 is a flow diagram 1400 depicting one possible example of a determination
phase that may be used for determining whether to locally execute a predictive model. For
purpose of illustration, the example determination phase is described as being carried out by the
local analytics device 220 coupled to the asset 102, but this determination phase may be carried
out by other systems or devices as well. For instance, in some implementations, the analytics
system 108 may not transmit PSFs to local analytics devices and may instead itself determine
whether local analytics devices should execute a particular predictive model and then instruct
local analytics devices accordingly. One of ordinary skill in the art will appreciate that the flow
diagram 1400 is provided for sake of clarity and explanation and that numerous other
combinations of operations may be utilized to determine whether to locally execute a predictive

model.
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At block 1402, the local analytics device 220 may begin by identifying a particular
predictive model that should be executed. In one example embodiment, the local analytics
device 220 may periodically or aperiodically execute multiple predictive models for the asset
102 that are stored on the local analytics device 220. Before executing a given predictive model,
the local analytics device 220 may identify a particular predictive model by locating the model in
its memory storage.

Additionally or alternatively, the local analytics device 220 may identify a particular
predictive model based on one or more context-based triggers, such as asset-operating
conditions, triggering of an abnormal-condition indicator, a time of day, a location of the asset
102, etc. As one particular example, the local analytics device 220 may determine that an
operating condition of the asset 102 suggests that the asset 102 is beginning to deviate from
normal operating conditions. Based on such a determination, the local analytics device 220 may
identify, from the multiple models that it has stored in memory, a particular predictive model that
may help predict whether a particular failure might occur at the asset 102 within a given period
of time in the future. Various other examples are also possible.

In any event, after the local analytics device 220 identifies the particular predictive model
that is to be executed, it may then identify one or more PSFs corresponding to the particular
predictive model. This operation may involve the local analytics device 200 utilizing a look-up
table and/or performing a query based on a unique identifier of the particular predictive model,
among various other example operations.

At block 1404, the local analytics device 220 may be optionally configured to determine
whether to modify one or more of the identified PSFs. That is, in some example embodiments,
the local analytics device 220 may be configured to dynamically modify PFSs in an attempt to
further optimize the execution of the particular predictive model. In practice, modifying a given
PSF may involve modifying any parameter of the PSF (e.g., any of the event entry values in the
event tables shown in Figure 10), adding additional parameters to the PSF expression, adding a
value to the output of the PSF, and/or modifying the PSF as a whole (e.g., applying a scale
factor), among other possibilities. The local analytics device 220 may modify a given PSF for a
variety of reasons.

In example embodiments, the local analytics device 220 may modify a given PSF based
on one or more dynamic factors. As one example, the local analytics device 220 may modify a
given PSF based on the age of the PSF and/or particular predictive model (e.g., based on the
“staleness” of the PSF and/or model). For instance, it is assumed that the analytics system 108
has the most up-to-date (e.g., accurate and/or optimal) version of a particular predictive model

and corresponding PSFs. Conversely, the local analytics device 220 may have an outdated
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version of either or both of the model or PSFs. As such, the local analytics device 220 may be
configured to modify the PSF for the local analytics device (e.g., by decreasing the prediction
accuracies and/or increasing the costs) based on an amount of time that has elapsed since the
predictive model was last updated, since the PFS was last updated, or some combination thereof.
In some cases, the local analytics deice 220 may do so if the amount of time exceeds a threshold
amount of time. In sum, in a particular example embodiment, the local analytics device 220 may
(a) modify the local-analytics-device PSF based on an amount of time since an update to (al) the
predictive model that PSF corresponds to and/or (a2) that PSF and (b) not modify the analytics-
system PSF. Other examples are also possible.

Another dynamic factor may involve network conditions. For instance, the local
analytics device 220 may modify a given PSF based on a condition of the communication
network 106 (e.g., bandwidth, latency, signal strength, or another indication of network quality).
In particular, when the local analytics device 220 detects that one or more network conditions
indicate that the network quality is poor, the local analytics device 220 may modify the PSF
corresponding to the analytics system 108 (e.g., by increasing the costs of and/or applying a
scale factor to that PSF). Various other reasons to dynamically modify execution functions are
also possible.

In any event, the local analytics device 220 may be configured to execute the identified
(and perhaps modified) PSFs. For instance, the local analytics device 220 may execute the PSF
for itself and for the analytics system 108. Thereafter, at block 1406, the local analytics device
220 may be configured to determine whether to locally execute the predictive model, which may
be performed in a variety of manners.

In example embodiments, the local analytics device 220 may be configured to compare
the results of executing the PSFs and identify the optimal execution of the particular predictive
model. For example, these operations may involve the local analytics device 220 comparing
performance scores and determining the location of the execution based on the better score (e.g.,
the lower cost). Specifically, if the performance score for the local analytics device 220 is
greater than (or equal to) the performance score for the analytics system 108 (or a threshold
amount greater), then it may be optimal for the local analytics device 220 to execute the
particular predictive model. Otherwise, if the performance score for the local analytics device
220 is less than the performance score for the analytics system 108 (or a threshold amount less),
then it may be optimal for the analytics system 108 to execute the particular predictive model.
Other examples are also possible.

If the local analytics device 220 determines that it should execute the model (e.g., that the

optimal execution of the predictive model is by the local analytics device), then at block 1408,
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the local analytics device 220 may execute the predictive model, which may occur in line with
the above discussion.

If the local analytics device 220 instead determines that the analytics system 108 should
execute the model, then at block 1410, the local analytics device 220 may be configured to send
to the analytics system 108 (a) an instruction for the analytics system 108 to execute the
particular predictive model and (b) operating data (e.g., sensor and/or actuator signal data) from
the asset 102 to be used in executing the model. The analytics system 108 may then execute the
particular predictive model (e.g., in a manner similar to how the local analytics device 220
executes the model) and transmit back to the local analytics device 220 a result of centrally
executing the particular predictive model. Based on that result, the local analytics device 220
may then perform a variety of operations, such as execute a workflow or any other operation
disclosed herein.

In example embodiments, the local analytics device 220 may perform some or all of the
execution-function operations discussed in relation to Figure 14 prior to locally executing some
or any predictive models that it receives from the analytics system 108. Additionally or
alternatively, the local analytics device 220 may perform some or all of the execution-function
operations discussed in relation to Figure 14 prior to each execution of a given model, after an
amount of time has elapsed since the last iteration of the execution-function operations, or
periodically (e.g., hourly, daily, weekly, etc.), among other possibilities.

V. EXAMPLE METHODS

Turning now to Figure 15, a flow diagram is depicted illustrating an example method
1500 for defining and deploying an aggregate, predictive model and corresponding workflow
that may be performed by the analytics system 108. For the method 1500 and the other methods
discussed below, the operations illustrated by the blocks in the flow diagrams may be performed
in line with the above discussion. Moreover, one or more operations discussed above may be
added to a given flow diagram.

At block 1502, the method 1500 may involve the analytics system 108 receiving
respective operating data for a plurality of assets (e.g., the assets 102 and 104). At block 1504,
the method 1500 may involve the analytics system 108, based on the received operating data,
defining a predictive model and a corresponding workflow (e.g., a failure model and
corresponding workflow) that are related to the operation of the plurality of assets. At block
1506, the method 1500 may involve the analytics system 108 transmitting to at least one asset of
the plurality of assets (e.g., the asset 102) the predictive model and the corresponding workflow

for local execution by the at least one asset.
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Figure 16 depicts a flow diagram of an example method 1600 for defining and deploying
an individualized, predictive model and/or corresponding workflow that may be performed by
the analytics system 108. At block 1602, the method 1600 may involve the analytics system 108
receiving operating data for a plurality of assets, where the plurality of assets includes at least a
first asset (e.g., the asset 102). At block 1604, the method 1600 may involve the analytics
system 108, based on the received operating data, defining an aggregate predictive model and an
aggregate corresponding workflow that are related to the operation of the plurality of assets. At
block 1606, the method 1600 may involve the analytics system 108 determining one or more
characteristics of the first asset. At block 1608, the method 1600 may involve the analytics
system 108, based on the one or more characteristics of the first asset and the aggregate
predictive model and the aggregate corresponding workflow, defining at least one of an
individualized predictive model or an individualized corresponding workflow that is related to
the operation of the first asset. At block 1610, the method 1600 may involve the analytics
system 108 transmitting to the first asset the defined at least one individualized predictive model
or individualized corresponding workflow for local execution by the first asset.

Figure 17 depicts a flow diagram of an example method 1700 for dynamically modifying
the execution of model-workflow pairs that may be performed by the analytics system 108. At
block 1702, the method 1700 may involve the analytics system 108 transmitting to an asset (e.g.,
the asset 102) a predictive model and corresponding workflow that are related to the operation of
the asset for local execution by the asset. At block 1704, the method 1700 may involve the
analytics system 108 detecting an indication that the asset is locally executing at least one of the
predictive model or the corresponding workflow. At block 1706, the method 1700 may involve
the analytics system 108, based on the detected indication, modifying central execution by the
computing system of at least one of the predictive model or the corresponding workflow.

Similar to method 1700, another method for dynamically modifying the execution of
model-workflow pairs may be performed by an asset (e.g., the asset 102). For instance, such a
method may involve the asset 102 receiving from a central computing system (e.g., the analytics
system 108) a predictive model and corresponding workflow that are related to the operation of
the asset 102. The method may also involve the asset 102 detecting an adjustment factor
indicating one or more conditions associated with adjusting execution of the predictive model
and the corresponding workflow. The method may involve, based on the detected adjustment
factor, (1) modifying local execution by the asset 102 of at least one of the predictive model or
the corresponding workflow and (ii) transmitting to the central computing system an indication
that the asset 102 is locally executing the at least one of the predictive model or the

corresponding workflow to facilitate causing the central computing system to modify central

74



10

15

20

25

30

35

WO 2016/205766 PCT/US2016/038261
execution by the computing system of at least one of the predictive model or the corresponding
workflow.

Figure 18 depicts a flow diagram of an example method 1800 for locally executing a
model-workflow pair, for example, by the local analytics device of the asset 102. At block 1802,
the method 1800 may involve the local analytics device receiving, via a network interface, a
predictive model that is related to the operation of an asset (e.g. the asset 102) that is coupled to
the local analytics device via an asset interface of the local analytics device, where the predictive
model is defined by a computing system (e.g., the analytics system 108) located remote from the
local analytics device based on operating data for a plurality of assets. At block 1804, the
method 1800 may involve the local analytics device receiving, via the asset interface, operating
data for the asset 102 (e.g., operating data that is generated by one or more sensors and/or
actuators and may be received either indirectly via the asset’s central processing unit or directly
from the one or more sensors and/or actuators). At block 1806, the method 1800 may involve
the local analytics device executing the predictive model based on at least a portion of the
received operating data for the asset 102. At block 1808, the method 1800 may involve the local
analytics device, based on executing the predictive model, executing a workflow corresponding
to the predictive model, where executing the workflow includes causing the asset 102, via the
asset interface, to perform an operation.

Figure 19 depicts a flow diagram of an example method 1900 for executing a predictive
model in accordance with one or more execution functions, for example, by a local analytics
device coupled to the asset 102. At block 1902, the method 1900 may involve identifying, by
the local analytics device, the predictive model that is to be executed. At block 1904, the method
1900 may involve, based on one or more execution functions corresponding to the identified
predictive model, determining whether the local analytics device should execute the predictive
model. At block 1906, the method 1900 may involve, if the local analytics device should
execute the predictive model, executing, by the local analytics device, the predictive model based
on operating data for the asset received via an asset interface of the local analytics device. At
block 1908, the method 1900 may involve otherwise transmitting, by the local analytics device
to a computing system configured to monitor operating conditions of the asset located remote
from the local analytics device, via a network interface of the local analytics device, (i) an
instruction for the computing system to execute the predictive model, and (ii) operating data for
the asset received via the asset interface.

Figure 20 depicts a flow diagram of an example method 2000 for defining a predictive
model and corresponding execution function and executing the predictive model, which may be

performed by the analytics system 108. At block 2002, the method 2000 may involve the
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analytics system 108 defining one or more execution functions corresponding to a previously-
defined predictive model related to the operation of an asset. At block 2004, the method 2000
may involve the analytics system 108 transmitting to a local analytics device coupled to the asset
the defined one or more execution functions. At block 2006, the method 2000 may involve the
analytics system 108 receiving from the local analytics device (1) an instruction, based on the
local analytics device executing the one or more execution functions, for the analytics system
108 to execute the previously-defined predictive model and (ii) operating data for the asset. At
block 2008, the method 2000 may involve the analytics system 108 executing the previously-
defined predictive model utilizing the received operating data. At block 2010, the method 2000
may involve the analytics system 108 transmitting to the local analytics device a result of the
execution of the predictive model.

VI. CONCLUSION

Example embodiments of the disclosed innovations have been described above. Those
skilled in the art will understand, however, that changes and modifications may be made to the
embodiments described without departing from the true scope and sprit of the present invention,
which will be defined by the claims.

Further, to the extent that examples described herein involve operations performed or

29 (13 29 (13

initiated by actors, such as “humans”, “operators”, “users” or other entities, this is for purposes
of example and explanation only. The claims should not be construed as requiring action by

such actors unless explicitly recited in the claim language.
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CLAIMS

1. A computing system comprising:

at least one processor;

a non-transitory computer-readable medium; and

program instructions stored on the non-transitory computer-readable medium that are
executable by the at least one processor to cause the computing system to:

define a predictive model and corresponding workflow that are related to the operation of
an asset;

transmit the predictive model and corresponding workflow to the asset for local
execution;

detect an indication that the asset is locally executing at least one of the predictive model
or the corresponding workflow; and

based on the detected indication, modify central execution by the computing system of at

least one of the predictive model or the corresponding workflow.

2. The computing system of claim 1, wherein detecting the indication comprises:
receiving data for the asset; and

detecting a characteristic of the received data.

3. The computing system of claim 2, wherein detecting the characteristic of the

received data comprises detecting a change in a type of the received data.

4. The computing system of claim 3, wherein the received data comprises data
generated by at least one of a plurality of sensors or a plurality of actuators, and wherein
detecting the change in the type of the received data comprises detecting a change in the at least

one of the plurality of sensors or the plurality of actuators that generated the data.

5. The computing system of claim 2, wherein detecting the characteristic of the

received data comprises detecting a change in an amount of the received data.

6. The computing system of claim 2, wherein detecting the characteristic of the

received data comprises detecting a change in a frequency at which the received data is received.

7. The computing system of claim 2, wherein the received data comprises data

generated by at least one of a plurality of sensors or a plurality of actuators, and wherein
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detecting the characteristic of the received data comprises detecting an identifier identifying one
of a given sensor of the plurality of sensors or a given actuator of the plurality of actuators that

generated the data.

8. The computing system of claim 1, wherein the indication comprises an indication
that the asset is locally executing at least the predictive model, and wherein modifying the central
execution by the computing system of at least one of the predictive model or the corresponding
workflow comprises modifying the central execution by the computing system of at least the

predictive model.

0. The computing system of claim 8, wherein modifying the central execution by the

computing system of the predictive model comprises ceasing to execute the predictive model.

10. The computing system of claim 1, wherein the program instructions further
comprise instructions that are executable to cause the computing system to:

determine a characteristic of a communication network that communicatively couples the
asset and the computing system; and

based on the determined characteristic of the communication network, modify central
execution by the computing system of at least one of the predictive model or the corresponding

workflow.

11.  The computing system of claim 10, wherein the determined characteristic of the

communication is a signal strength.

12. A non-transitory computer-readable medium having instructions stored thereon
that are executable to cause a computing system to:

define a predictive model and corresponding workflow that are related to the operation of
an asset;

transmit the predictive model and corresponding workflow to the asset for local
execution;

detect an indication that the asset is locally executing at least one of the predictive model
or the corresponding workflow; and

based on the detected indication, modify central execution by the computing system of at

least one of the predictive model or the corresponding workflow.
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13.  The non-transitory computer-readable medium of claim 12, wherein detecting the
indication comprises:
receiving data for the asset; and

detecting a characteristic of the received data.

14. The non-transitory computer-readable medium of claim 13, wherein detecting the

characteristic of the received data comprises detecting a change in a type of the received data.

15.  The non-transitory computer-readable medium of claim 14, wherein the received
data comprises sensor data generated by a plurality of sensors, and wherein detecting the change
in the type of the received data comprises detecting a change in the plurality of sensors that

generated the sensor data.

16. The non-transitory computer-readable medium of claim 13, wherein detecting the
characteristic of the received data comprises detecting a change in an amount of the received

data.

17. The non-transitory computer-readable medium of claim 13, wherein detecting the
characteristic of the received data comprises detecting a change in a frequency at which the

received data is received.

18. A computer-implemented method comprising:

defining, by a computing system, a predictive model and corresponding workflow that
are related to the operation of an asset;

transmitting, by the computing system to the asset, the predictive model and
corresponding workflow for local execution by the asset;

detecting, by the computing system, an indication that the asset is locally executing at
least one of the predictive model or the corresponding workflow; and

based on the detected indication, modifying central execution by the computing system of

at least one of the predictive model or the corresponding workflow.
19.  The computer-implemented method of claim 18, wherein the indication comprises

an indication that the asset is locally executing at least the predictive model, and wherein

modifying the central execution by the computing system of at least one of the predictive model
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or the corresponding workflow comprises modifying the central execution by the computing

system of at least the predictive model.

20. The computer-implemented method of claim 19, wherein modifying the central
execution by the computing system of the predictive model comprises ceasing to execute the

predictive model.

21. A local analytics device configured to monitor operating conditions of an asset,
the local analytics device comprising:

an asset interface configured to couple the local analytics device to the asset;

a network interface configured to facilitate communication between the local analytics
device and a computing system (i) configured to monitor operating conditions of the asset and
(i1) located remote from the local analytics device;

at least one processor;

a non-transitory computer-readable medium; and

program instructions stored on the non-transitory computer-readable medium that are
executable by the at least one processor to cause the local analytics device to:

identify a predictive model that is related to the operation of the asset that is to be
executed;

based on one or more execution functions corresponding to the identified
predictive model, determine whether the local analytics device should execute the
predictive model,;

if the local analytics device should execute the predictive model, execute the
predictive model based on operating data for the asset received via the asset interface;
and

otherwise, transmit to the computing system, via the network interface, (i) an
instruction for the computing system to execute the predictive model, and (i1) operating

data for the asset received via the asset interface.

22, The local analytics device of claim 21, wherein the identified predictive model is
a first predictive model, and wherein the program instructions stored on the non-transitory
computer-readable medium are further executable by the at least one processor to cause the local
analytics device to:

before identifying the first predictive model, receiving from the computing system, via

the network interface, a plurality of predictive models comprising the first predictive model,
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wherein each of the plurality of predictive models corresponds to a likelihood that a particular

failure will occur at the asset within a given period of time in the future.

23.  The local analytics device of claim 21, wherein the one or more execution
functions comprise a first performance score function for the local analytics device and a second
performance score function for the computing system, and wherein determining whether the
local analytics device should execute the predictive model is based on a first performance score

for the local analytics device and a second performance score for the computing system.

24.  The local analytics device of claim 23, wherein the first performance score
comprises a first expected value associated with the local analytics device executing the
predictive model, and wherein the second performance score comprises a second expected value

associated with the computing system executing the predictive model.

25.  The local analytics device of claim 23, wherein determining whether the local
analytics device should execute the predictive model comprises:

executing (i) the first performance score function to determine the first performance
score, and (i1) the second performance score function to determine the second performance score;
and

comparing the first performance score and the second performance score.

26.  The local analytics device of claim 25, wherein determining whether the local
analytics device should execute the predictive model comprises:

based on the comparison, determining that the predictive model should be executed by
the local analytics device when the first performance score is greater than or equal to the second

performance score.

27.  The local analytics device of claim 25, wherein determining whether the local
analytics device should execute the predictive model comprises:

based on the comparison, determining that the predictive model should be executed by
the local analytics device when the first performance score is greater than the second

performance score by more than a threshold amount.
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28. The local analytics device of claim 25, wherein the program instructions stored on
the non-transitory computer-readable medium are further executable by the at least one processor
to cause the local analytics device to:
before determining whether the local analytics device should execute the predictive
model, receive from the computing system, via the network interface, the first and second
performance score functions, wherein the first and second performance score functions

correspond to the identified predictive model and are defined by the computing system.

29. The local analytics device of claim 21, wherein the operating data for the asset
received via the asset interface comprises signal data from (i) at least one sensor of the asset, (i)
at least one actuator of the asset, or (iii) at least one sensor of the asset and at least one actuator

of the asset.

30. The local analytics device of claim 21, wherein the program instructions stored on
the non-transitory computer-readable medium are further executable by the at least one processor
to cause the local analytics device to:

before determining whether the local analytics device should execute the predictive

model, modify the one or more execution functions based on one or more dynamic factors.

31.  The local analytics device of claim 30, wherein the local analytics device and the
computing system are communicatively coupled via a wide-area network, and wherein the one or
more dynamic factors comprise at least one of (i) an amount of time since an update to the one or
more execution functions, (i1) an amount of time since an update to the predictive model, or (iii)

one or more network conditions of the wide-area network.

32. A non-transitory computer-readable medium having instructions stored thereon
that are executable to cause a local analytics device coupled to an asset, via an asset interface of
the local analytics device, to:

identify a predictive model that is related to the operation of the asset that is to be
executed;

based on one or more execution functions corresponding to the identified predictive
model, determine whether the local analytics device should execute the predictive model;

if the local analytics device should execute the predictive model, execute the predictive

model based on operating data for the asset received via the asset interface; and
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otherwise, transmit to a computing system that is configured to monitor operating
conditions of the asset and wirelessly communicatively coupled to the local analytics device (1)
an instruction for the computing system to execute the predictive model, and (ii) operating data

for the asset received via the asset interface.

33. The non-transitory computer-readable medium of claim 32, wherein determining
whether the local analytics device should execute the predictive model comprises:

executing (1) a first performance score function to determine a first performance score for
the local analytics device, and (i) a second performance score function to determine a second
performance score for the computing system; and

comparing the first performance score and the second performance score.

34. The non-transitory computer-readable medium of claim 33, wherein determining
whether the local analytics device should execute the predictive model comprises:

based on the comparison, determining that the predictive model should be executed by
the local analytics device when the first performance score is greater than or equal to the second

performance score.

35. The non-transitory computer-readable medium of claim 33, wherein determining
whether the local analytics device should execute the predictive model comprises:

based on the comparison, determining that the predictive model should be executed by
the local analytics device when the first performance score is greater than the second

performance score by more than a threshold amount.

36.  The non-transitory computer-readable medium of claim 32, wherein the
instructions are further executable to cause the local analytics device to:
before determining whether the local analytics device should execute the predictive

model, modify the one or more execution functions based on one or more dynamic factors.

37.  The non-transitory computer-readable medium of claim 36, wherein the local
analytics device and the computing system are wirelessly communicatively coupled via a wide-
area network, and wherein the one or more dynamic factors comprise at least one of (1) an
amount of time since an update to the one or more execution functions, (ii) an amount of time
since an update to the predictive model, or (iii) one or more network conditions of the wide-area

network.
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38. A method for facilitating optimal execution of a predictive model related to the
operation of an asset coupled to a local analytics device, the method comprising:

identifying, by the local analytics device, the predictive model that is to be executed,

based on one or more execution functions corresponding to the identified predictive
model, determining whether the local analytics device should execute the predictive model,

if the local analytics device should execute the predictive model, executing, by the local
analytics device, the predictive model based on operating data for the asset received via an asset
interface of the local analytics device; and

otherwise, transmit, by the local analytics device to a computing system configured to
monitor operating conditions of the asset located remote from the local analytics device, via a
network interface of the local analytics device, (i) an instruction for the computing system to

execute the predictive model, and (i1) operating data for the asset received via the asset interface.

39. The method of claim 38, further comprising:
before determining whether the local analytics device should execute the predictive

model, modifying the one or more execution functions based on one or more dynamic factors.

40. The method of claim 38, wherein determining whether the local analytics device
should execute the predictive model comprises:

executing (1) a first performance score function to determine a first performance score for
the local analytics device, and (i) a second performance score function to determine a second
performance score for the computing system; and

comparing the first performance score and the second performance score.
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