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INTENT-DRIVEN FUNCTIONAL VERIFICATION OF DIGITAL DESIGNS

COPYRIGHT NOTICE
Contained herein is material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduction of the patent disclosure
by any person as it appears in the Patent and Trademark Office patent files or records,

but otherwise reserves all rights to the copyright whatsoever.
BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates generally to the field of design verification. More
particularly, the invention relates to a new approach for functional verification of

digital designs.

Description of the Related Art

The objective of design verification is to ensure that etrors are absent from a
design. Deep sub-micron integrated circuit (IC) manufacturing technology is enabling
IC designers to put millions of transistors on a single IC. Following Moore’s law,
design complexity is doubling every 12-18 months, which causes design verification
complexity to increase at an exponential rate. In addition, competitive pressures are
putting increased demands on reducing time to market. The combination of these
forces has caused an ever worsening “verification crisis”.

Today’s design flow starts with a specification for the design. The designer
then implements the design in a language model, typically Hardware Description
Language (HDL). This model is typically verified to discover incorrect input/output
(I/0) behavior via a stimulus in expected results out paradigm at the top level of the
design.

By far the most popular method of functional verification today, simulation-
based functional verification, is widely used within the digital design industry as a
method for finding defects within designs. A very wide variety of products are

available in the market to support simulation-based verification methodologies.
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However, a fundamental problem with conventional simulation-based verification
approaches is that they are vector and testbench limited.

Simulation-based verification is driven by a testbench that explicitly generates
the vectors to achieve stimulus coverage and also implements the checking mechanism.
Testbenches create a fundamental bottleneck in simulation-based functional
verification. In order to verify a design hierarchy level, a testbench must be generated
for it. This creates verification overhead for coding and debugging the testbench.
Hence, a significant amount of expensive design and verification engineering resources
are needed to produce results in a cumbersome and slow process.

Several methods have been attempted by Electronic Design Automation (EDA)
companies today in order to address the shortcomings of simulation. However, none of
these attempts address this fundamental limitation of the process. For example,
simulation vendors have tried to meet the simulation throughput challenge by
increasing the performance of hardware and software simulators thereby allowing
designers to process a greater number of vectors in the same amount of simulation
time. While this does increase stimulus coverage, the results are incremental. The
technology is not keeping pace with the required growth rate and the verification
processes are lagging in achieving the required stimulus coverage. |

Formal verification is another class of tools that has entered the functional
verification arena. These tools rely on mathematical analysis rather than simulation of
the design. The strong selling point of formal verification is the fact that the results
hold true for all possible input combinations to the design. However, in practice this
high level of stimulus coverage has come at the cost of both error coverage and
particularly usability. While some formal techniques are available, they are not widely
used because they typically require the designer to know the details of how the tool
works in order to operate it. Formal verification tools generally fall into two classes:
(1) equivalence checking, and (2) model checking.

Equivalence checking is a form of formal verification that provides designers
with the ability to perform RTL-to-gate and gate-to-gate comparisons of a design to
determine if they are functionally equivalent. Importantly, however, equivalence

checking is not a method of functional verification. Rather, equivalence checking
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merely provides an alternate solution for comparing a design representation to an
original golden reference. It does not verify the functionality of the original golden
reference for the design. Consequently, the original golden reference must be
functionally verified using other methods. :

Model checking is a functional verification technology that réquires designers
to formulate properties about the design’s expected behavior. Each property is then
checked against an exhaustive set of functional behaviors in the design. The linﬁtatioﬁ
of this approach is that the designer is responsible for exactly specifying the set of
properties to be verified. The property specification languages are new and obscure.
Usually the technology runs into capacity problems and the designer has to engage with
the tools to solve the problems. There are severe limits on the size of the design and
the scope of problems that can be analyzed. For example, the designer does not know
which properties are necessary for complete analysis of the design. Further, specifying
a large number of properties does not correlate well with better error coverage.
Consequently, model checking has proven to be very difficult to use and has not
provided much value in the verification process.

In view of the foregoing it would be desirable to create a verification
methodology to create high quality designs without the need for simulation testbench
and to increase the productiveness of design engineers by minimizing the tool setup
effort and report processing effort. In particular, it would be advantageous to abstract
the internal details of the tools from the user to make these tools more accessible to
designers. For example, it would be advantageous to allow a verification methodology
to be employed while allowing the designer to think about characteristics of the design.
In this manner, the designer can think in terms of time progression of data at various
design elements (entities) rather than the implementation of the verification tool.
Additionally, rather than requiring the designer to write properties in a complex and
arcane language, it would be advantageous to automatically formulate a list of
verification checks that, if satisfied, would guarantee the absence of errors in a design
with a high level of confidence. Finally, it would be advantageous to maintain and

utilize relationships among the list of automatically generated verification checks to
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facilitate error reporting and to prune the error space for more efficient run-time

processing.
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BRIEF SUMMARY OF THE INVENTION

A method and apparatus are described that facilitate analysis of the intended
flow of logical signals between key points in a design. According to one aspect of the
present invention, hardware design defects can be detected using a novel Intent-Driven
Verification process. First, a representation of a hardware design and information
regarding the intended flow of logical signals among variables in the representation are
received. Then, the existence of potential errors in the hardware design may be
inferred based upon the information regarding the intended flow of logical signals by
(1) translating the information regarding the intended flow of logical signals into a
comprehensive set of checks that must hold true in order for the hardware design to
operate in accordance with the intended flow of logical signals, and (2) determining if
any of the checks can be violated during operation of circuitry represented by the
hardware design. Advantageously, in this manner, the designer is not required to
manually code individual monitors for each property he/she would like to verify.
Rather, verification cycle time and resource requirements are reduced by allowing the
designer to simply annotate a language representation of the hardware design under test
with information regarding the desired/expected interaction between components of the
design and/or the designer’s expectations for acceptable functional behavior (in terms
of the expected state of variables at various points in the control flow structure of a
finite state machine associated with the hardwaré design representation, for example)
and the generation of a comprehensive set of checks for identifying the intent gap is
automatically performed.

Other features of the present invention will be apparent from the accompanying

drawings and from the detailed description that follows.
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BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements and in which:

Figure 1 is a block diagram illustrating an exemplary architecture of an Intent-
Driven Verification system according to one embodiment of the present invention.

Figure 2 is a high-level flow diagram illustrating an Intent-Driven Verification
processing according to one embodiment of the present invention.

Figure 3 is an example of a computer system upon which one embodiment of
the present invention may be implemented.

Figure 4A is a high-level block diagram illustrating an exemplary Sentry
verification entity according to one embodiment.

Figure 4B is a schematic diagram illustrating an exemplary implementation of
a Sentry verification entity according to one embodiment.

Figure 4C illustrates what is meant by concept of flow of logical signals
according to one embodiment of the present invention.

Figure S is a flow diagram that illustrates the automatic formulation of design
verification checks according to one embodiment of the present invention.

Figure 6A is a block diagram illustrating a design example.

Figure 6B is a block diagram illustrating the design example of Figure 6A with
the inclusion of Sentry verification entities.

Figure 7 is a state diagram illustrating the operation of the bus interface units of
Figures 6A and 6B.

Figure 8 is a simplified state diagram illustrating the operation of the round
robin arbiter of Figures 6A and 6B.

Figures 9A - 9E represent an exemplary RTL source code representation of the
design example of Figure 6B.

Figure 10 is a block diagram that conceptually illustrates linking processing

according to one embodiment of the present invention.
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Figure 11 is a high-level flow diagram that illustrates linking processing
according to one embodiment of the present invention.

Figure 12 is a flow diagram that illustrates processing block 1130 of Figure 11
according to one embodiment of the present invention.

Figures 13A — 13E illustrate an exemplary text report file for the annotated

RTL of Figures 9A - 9E according to one embodiment of the present invention.
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DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus are described that facilitate analysis of the intended
flow of logical signals between key points in a design. Embodiments of the present
invention seek to solve or at least alleviate the above-referenced problems of
conventional verification approaches by employing a revolutionary approach for
functional verification. Importantly, this approach enables verification of design intent
prior to simulation and synthesis. Identifying and eliminating design defects early in
the design cycle eliminates costly down-stream design iterations resulting in
dramatically shorter design verification cycles.

Broadly stated, embodiments of the present invention allow errors in a hardware
design to be discovered by checking a representation of the hardware design against
design intent. In one embodiment, a comprehensive set of design verification checks
including behavioral integrity checks and temporal integrity checks are automatically
generated based upon a language representation of a hardware design and information
regarding the design intent, e.g., the intended flow of logical signals among a plurality
of variables in the language representation of the hardware design. The design intent
may be communicated to a hardware design verification tool, for example, by way of
inline annotations embedded within the hardware design description. Advantageously,
in this manner, the design verification process is streamlined thereby allowing quality
levels to be achieved faster and with reduced resource requirements.

According to one embodiment, a novel “verification entity,” referred to as a
Sentry™ verification entity, is provided that facilitates modeling and verification of
what the designer intended to build (SENTRY is a trademark or registered trademark of
Real Intent, Inc. of Santa Clara, California). For example, feedback may be provided to
the designer regarding differences between what has actually been created by a
language representation of a hardware design, such as a Register Transfer Language
(RTL) source code representation, and the design intent, e.g., the intended flow of
logical signals in a the hardware design.

Briefly, Sentry verification entities may conceptually be thought of as objects,
which are embedded in a design during the verification process. Sentry verification

entities are not structural entities — they are not included in the final hardware. Rather,
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Sentry verification entities are special purpose objects for support of verification.
Sentry verification entities provide a mechanism for expressing design intent.
Expressed design intent (i.e., design intent that is explicitly stated by the designer) and
implied design intent (i.e., expected behaviors that should occur within standard design
practices although not explicitly stated by the designer) are checked against what the
design actually accomplishes. As will be described further below, in one embodiment,
Sentry verification entities are embedded within a model of the design under test to
represent sentinel variables in the design through which logical signals in the design
pass. For example, a Sentry verification entity may be used to explicitly associate state
information with a sentinel variable independent of the value of the sentinel variable.
The state information may indicate whether or not the sentinel variable is active or
inactive at various points in the control flow structure of a finite state machine
associated with the hardware design representation. Consequently, the integrity of the
data flow can be verified by confirming checks that are expressed as a function of the
states associated with one or more sentinel variables.

According to another embodiment, a comprehensive set of design verification
checks may be formulated by applying predetermined properties to an annotated
hardware design representation. The application of predetermined properties, such as
conflicting assignments (CA), block enable (BE), assignment execution (AX), constant
value memory element (CME), constant value variable (CV), Sentry activate always off
(AAO), loss of valid data (LVD), assertion correctness (AC), and access of invalid data
(AID), to signal propagation among all the sentinel variables results in an exhaustive
list of checks that confirm whether or not the predetermined properties hold true for the
intended flow of logical signals. Advantageously, in this manner, a designer gets the
benefits of a comprehensive Intent-Driven Verification” (IDV"") methodology by
simply identifying sentinel variables and providing information regarding intended
temporal behaviors and/or relationships INTENT-DRIVEN VERIFICATION and IDV
are trademarks or registered trademarks of Real Intent, Inc. of Santa Clara, California.)

According to yet another embodiment, an ordered representation of the
comprehensive set of design verification checks can be created to allow conclusions to
be drawn about the hardware design. For example, dependency relationships among

the comprehensive set of design verification checks may be determined. A check is
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dependent upon a set of other checks if it is impossible to violate the first without
violating at least one or more checks from the set. After the dependency relationships
have been determined, this linking information may be used to facilitate error reporting
or to streamline check processing. Notably, reporting of multiple intent violations due
to a common design defect may be avoided thereby containing redundant failures
commonly produced by prior art simulators. Additionally, if there is no way to violate
the current check being verified without also violating one or more other previously
processed checks, there is no point in reporting the violation of the current check since
this would not communicate any new information to the user. Finally, assuming it has
already been determined that a first check cannot be violated, during the processing of a
subsequent check, if the current search path violates the first check, then the current
search path can be abandoned since there is no solution along the current search path.
In this manner, checks may be more efficiently processed and the user is not inundated
with redundant, cumulative information.

In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the art that the present
invention may be practiced without some of these specific details. In other instances,
well-known structures and devices are shown in block diagram form.

The present invention includes various steps, which will be described below.
The steps of the present invention may be performed by hardware components or may
be embodied in machine-executable instructions, which may be used to cause a
general-purpose or special-purpose processor programmed with the instructions to
perform the steps. Alternatively, the steps may be performed by a combination of
hardware and software.

The present invention may be provided as a computer program product that may
include a machine-readable medium having stored thereon instructions, which may be
used to program a computer (or other electronic devices) to perform a process
according to the present invention. The machine-readable medium may include, but is
not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, magnet or optical cards, flash memory, or other

type of media / machine-readable medium suitable for storing electronic instructions.

10
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Moreover, the present invention may also be downloaded as a computer program
product, wherein the program may be transferred from a remote computer to a

- requesting computer by way of data signals embodied in a carrier wave or other
propagation medium via a communication link (e.g., a modem or network connection).

For convenience, embodiments of the present invention will be described with

reference to Verilog and VHDL. However, the present invention is not limited to any
particular representation of a hardware design. For example, the language
representation of a hardware design may be in the C programming language, C++,
derivatives of C and/or C++, or other high-level languages. In addition, while
embodiments of the present invention are described with reference to functional
verification of hardware designs, aspects of the present invention are equally applicable
to other types of design activities as well, such as hardware synthesis, design
optimization, design simulation and performance analysis. Furthermore, while
embodiments of the present invention are described with reference to the provision of
augmented design information by way of hardware description language (HDL)
annotations, it is contemplated that the augmented design information could reside in a
file separate from the file containing the HDL. Alternatively, a new HDL could be

developed having semantics capable of capturing the augmented design information.

11
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Terminology
Before describing an illustrative design verification environment in which

various embodiments of the present invention may be implemented, brief definitions of
terms used throughout this application are given below.

A “design” is defined as a description of a collection of objects, such as
modules, blocks, wires, registers, etc. that represent a logic circuit.

A design may be expressed in the form of a language. For example, a hardware
description language (HDL), such as Verilog or VHDL can be used to describe the
behavior of hardware as well as its implementation.

As used herein an “annotation” refers to text embedded in a language construct,
such as a comment statement or remark. Most programming languages have a syntax
for creating comments thereby allowing tools designed to read and/or process the
programming language to read and ignore the comments.

“Simulation” is generally the process of evaluating design behavior for a set of
input conditions to draw approximate conclusions about the behavior of many different
attributes of the design.

“Formal analysis™ generally refers to the process of analyzing a design for all
possible input conditions to derive definite conclusions about the behavior of an
attribute with respect to the design.

“Functional verification” generally refers to the process of applying stimuli to a
design under test with appropriate checking mechanisms to either detect a defect in the
design or to establish that the functionality performs as expectéd. Typically, the three
key components of a functional verification process are the applied stimulus, the
checking mechanism, and the user’s ability to both run the process and debug the
results. As will be described later, the effectiveness of a functional verification process
may be measured in terms of the following three metrics: (1) error coverage, (2)
stimulus coverage, and (3) usability.

The term “design intent” generally refers to what the designer intends in terms
of the interaction between components of the design and the designer’s expectations
regarding acceptable functional behavior. For example, the designer may intend a

particular flow of logical signals among the variables of an RTL design description (the

12
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intended flow). Traditionally, design intent has referred to input constraints, internal
constraints, and/or cause and effect modeling. In contrast, as used herein the term
“design intent” includes “implied design intent” and additional forms of “expressed
design intent.” Expressed design intent generally refers to design intent explicitly
conveyed by a designer by way of intent modeling semantics in a control file or
embedded within annotations of RTL source code (the hardware design representation),
for example. Examples of expressed design intent regarding the intended flow of
logical signals may include the intended temporal behaviors (e.g., the ACK signal must
go high within 4 cycles of the REQ signal) and the intended data flow relationships
(e.g., the data being loaded from the input port is the data intended for transfer by the
driver of the input port). Implied design intent generally refers to design intent that is
inferred from the design description including expected behaviors that should occur
within standard design practices.

A “Sentry verification entity” or “verification entity” generally refers to an
object that may be embedded within a hardware design to facilitate the modeling of
design intent. As described further below, Sentry verification entities provide a
mechanism by which state information can be associated with variables in a
representation of a hardware design. According to various embodiments of the present
invention, Sentry verification entities may be used to verify a design by allowing
design intent (both expressed and implied) to be checked against what the design
actually accomplishes.

A “property” is a condition or statement, typically expressed in terms of a
relationship among a group of one or more signals in a hardware design, that must hold
for the hardware design to function as intended. According to one embodiment,
violations are reported at the property-level rather than at the more detailed level of
design verification checks.

The term “design verification check” or simply “check” generally refers to a
mechanism for verifying a property. Properties may be composed of one or more
checks, which are the atomic units that are verified. That is, properties may be broken
down into one or more checks. Since properties and checks are sometimes equivalent

(i.e., when a property comprises a single design verification check), these terms may at
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times be used interchangeably. Examples of checks include, but are not limited to:
monitors, Boolean conditions, sensitized path conditions, and the like. According to
one embodiment, a comprehensive set of checks may be automatically formulated
based upon a representation of the hardware design and information regarding the
intended flow of logical signals among a plurality of variables in the representation.

Check A is said to be “dependent” upon checks B, C, and D if it is impossible
to violate check A without violating at least one of checks B, C, and D. If check A is
dependent upon check B, C and D, then a “dependency relationship” exists between
check A and checks B, C, and D.

Characteristics of Effective Functional Verification

As mentioned earlier, the effectiveness of a functional verification process may
be measured in terms of error coverage, stimulus coverage, and usability. Error
coverage refers to the ability of the verification methodology to identify a broad range
of potential design defects. A verification process should be effective in identifying all
potential failures in a hardware design. This is achieved by creating a checking
mechanism. In traditional practice, the checking mechanism is created by comparing
the hardware design representation, e.g., RTL source code, to an independently created
design model. This independent model is used to predict the response of the design for
comparison. Given that the purpose of the verification process is to assure design
quality, it is important to build a very comprehensive checking mechanism.

- Stimulus coverage refers to the ability of the verification methodology’s ability
to achieve broad coverage of the input domain. Preferably, the verification process
should examine all possible combinations of input sequences for the design under test.
High stimulus coverage is critical to verification, particularly with designs containing
large numbers of states. Yet, all existing technologies fall short here. The ideal
verification process should achieve exhaustive stimulus coverage for any design.

Usability refers to the overall ease and effectiveness of user interaction with the
verification tool. The verification process should be simple and effective to use. To
accomplish this, setup costs for running the process should be minimized, and the

reported information should be well organized to allow easy debugging. The process
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should fit well into existing design methodologies and should require a minimum
amount of training in order to be used effectively. Usability should be given high
priority when developing any functional verification system and should not be an

afterthought that is secondary to the underlying technology.

Intent-Driven Verification Overview

Intent-Driven Verification (IDV) is a revolutionary approach for functional
 verification of hardware designs. IDV ranks high on all three of the above-described
metrics and successfully integrates the technologies required for an effective functional
verification system together into a complete package. Briefly, IDV identifies the
“intent gap” between what a designer intends to build (design intent) and what has
actually been created within the language representation of the hardware design (design
implementation), such as RTL source code. Advantageously, by simply augmenting
the RTL source code or associated control file with information indicative of the
designer’s intent, a comprehensive set of checks can be automatically formulated and
verified. This provides a novel and effective way to identify design problems early in
the development process. Additionally, IDV is scalable, provides fast isolation of the
source of defects, and significantly reduces the overall verification effort, thus enabling

IC design projects to dramatically reduce their time to market.
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An Exemplary Intent-Driven Verification System

Figure 1 is a block diagram illustrating an exemplary architecture of an Intent-
Driven Verification (IDV) system according to one embodiment of the present
invention. According to the embodiment depicted, the IDV system 100 includes an
annotated hardware design representation reader 120. The annotated hardware design
representation reader 120 may be a conventional RTL reader with the additional ability
to recognize and process augmented design information. Alternatively, the annotated
hardware design representation reader 120 may be a conventional C or C++ parser
capable of processing the augmented design information. In one embodiment, the
augmented design information comprises annotations embedded within the hardware
design representation 105, such as an annotated RTL source code file 105 containing
special verification semantics (directives). Exemplary directives and their syntax are
described further below. In alternative embodiments, the augmented design
information may be included in a control file associated with the hardware design
representation 105, such as control file 115.

The IDV system 100 also includes a control file reader 130. The control file
reader 130 may be a conventional control file reader. Alternatively, in the case that the
augmented design information (e.g., information regarding design intent, such as the
intended flow of logical signal among variables in the hardware design representation)
is to be provided by way of control file 115, then the control file reader 130
additionally includes parsing functionality enabling the control file reader 130 to
recognize and process the augmented design information.

According to the architecture depicted, the IDV system 100 also includes a
model builder 145, a design intent analyzer 140, a property manager 165, an analysis
engine 180, and a report manager 170. The model builder 145 receives output of the
hardware design representation reader 120, the control file reader 130, and a cell library
(not shown) and builds an internal representation of the hardware design, a model.
Additionally, based upon the designer’s expressed design intent and/or implied intent,
the model builder embeds special verification entities into the model for the purpose of
identifying the intent gap between what the designer intended to build (design intent)

and what has actually been created within the source code (design implementation).
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These special embedded objects are referred to as Sentry verification entities. Details
regarding the use, functionality, and implementation of Sentry verification entities are
presented below.

The design intent analyzer 140 automatically produces a comprehensive set of
design verification checks, such as behavioral integrity checks and temporal integrity
checks, based upon a predetermined set of properties and the Sentry verification
entities. For example, for each Sentry verification entity in the model, the design intent
analyzer 140 may automatically create checks to verify that there is no access of invalid
data by the Sentry verification entity and that no active data from the Sentry
verification entity is lost. Other properties and verification of these properties, in terms
of checks and Sentry verification entities, are discussed below. Consequently, by
merely associating the Sentry attribute with a variable in an RTL representation of the
hardware design and providing minimal additional information regarding the
desired/expected interaction between components of the design and regarding
expectations for acceptable functional behavior, the design intent analyzer 140 enables
verification while the design is being developed and facilitates detection of design
defects at the RTL-level. Advantageously, in this manner, the designer is not required
to manually code individual monitors for each property he/she would like to verify.
Rather, verification cycle time and resource requirements are reduces by allowing the
designer to simply associate the Sentry attribute with certain important variables,
sentinel variables (e.g., by “declaring” the sentinel variables as Sentry verification
entities), provide minimal additional information regarding the desired/expected
interaction between components of the design (such as an indication regarding the
expected state of the sentinel variables at various points in the control flow structure of
a finite state machine associated with the hardware design representation), and the
generation of a complete set of checks involving the sentinel variables is automatically
performed. Importantly, the use of Sentry verification entities to enable automatic
formulation of a comprehensive set of design verification checks not only dramatically
reduces verification effort and time but also significantly increases design robustness.

The property manager 165 maintains information regarding relationships among
the checks generated by the design intent analyzer and additionally maintains

information regarding relationships among properties and whether the properties are
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satisfied, violated, or whether the results are indeterminate or conditional upon one or
more other properties. According to one embodiment, the property manger 165 and
analysis engine 180 cooperate to determine dependency relationships among the
comprehensive set of design verification checks. As described further below, the
dependency relationships (or “linking” information) may be used to facilitate error
reporting or used to streamline check processing.

The analysis engine 180 verifies the model produced by the model builder by
testing for violations of the properties. Preferably, the analysis engine 180 employs an
analysis-based technique, such as an integration of simulation and formal analysis
methodologies, so as to maximize stimulus coverage for the design under test.
However, in alternative embodiments, simulation, functional verification, or other well-
known verification methodologies may be employed individually.

The report manager 170 provides feedback to the designer, in the form of a
report file 175, for example, regarding potential design defects. It should be noted that
a single error in the hardware design might lead to a violation of 25 to 30 or more
different design verifications checks. There is no point in reporting every violation if
the user has already been notified that an error exists. Therefore, according to one
embodiment, an intent violation hierarchy may be maintained when reporting design
defects. In this manner, redundancy of reported information is contained. Multiple
intent violations due to a common defect are not reported. This minimizes the amount

of data to be analyzed to detect defects.
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High-Ievel Intent-Driven Verification Processing
Figure 2 is a high-level flow diagram illustrating Intent-Driven Verification

processing according to one embodiment of the present invention. The Intent-Driven
Verification process generally breaks down into three fundamental technologies, intent
capture, intent gap detection, and intent violation reporting. A method for capturing the
designer’s intent for the design (intent capture) is represented by processing blocks 210
— 230, detection of areas within the design source code that differ from the original
design intent (intent gap detection) comprises processing block 240, and identification
and reporting of the space between the designer’s intent and the design’s
implementation (intent violation reporting) is represented by processing block 250.
Briefly, after a complete view of the overall design intent is captured, e.g., after the two
forms of intent are integrated together by the design intent analyzer 140, the analysis
engine 180 may begin identifying individual intent violations. When the analysis is
complete, the report manager 170 provides feedback to the user in a well-organized
manner. In one embodiment, the processing blocks described below may be performed
under the control of a programmed processor, such as processor 302. However, in
alternative embodiments, the processing blocks may be fully or partially implemented
by any programmable or hardcoded logic, such as Field Programmable Gate Arrays
(FPGAs), TTL logic, or Application Specific Integrated Circuits (ASICs), for example.

Intent-Driven Verification processing begins at processing block 210 where a
language representation of a hardware design under test is received. The language
representation may be RTL source code, such as Verilog or VHDL. Preferably, to take
advantage of the control flow structure of the language representation, augmented
design information is provided by inline annotations to the language representation of
the hardware design, e.g., annotated RTL 105. However, in alternative embodiments,
design intent may be provided in the control file 115.

In this example, at processing blocks 220 and 230, the design intent is captured
in two basic forms: expressed and implied. Expressed design intent is design intent
that is explicitly stated by the designer. The implementation of IDV described herein
may use an elegant RTL-based method to express this intent in an annotated RTL

source code file, such as annotated hardware description representation 105, and/or the
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control file 115. Regardless of their source, the expressed design intent is determined
based upon the annotations. Importantly, the form of intent modeling provided herein
is very intuitive and does not require the users to learn a new language. Additionally,
this intent modeling captures the intent in a concise manner and thereby minimizes
setup effort. Typically, the expressed intent defines the interaction between
components of the design and/or the designer’s expectations regarding acceptable
functional behavior. Implied design intent may be inferred directly from the design
description. Advantageously, implied intent capture infers numerous and complex
design behaviors automatically without requiring a designer to explicitly state them.
Typically, this consists of expected behaviors that should occur within standard design
practices.

At processing block 240, the intent gap is identified based upon the design
intent and the design implementation. In the example depicted, the two forms of design
intent are integrated and used as input to processing block 240. In alternative
embodiments, the intent gap may be determined for only a single form of design intent
or one or more other combinations of subsets of expressed and implied design intent.
At any rate, preferably, the intent gap is statically identified using functional
verification techniques. The intent gap is the distance between a design’s intent and the
actual implementation. According to one embodiment, IDV detects the intent gap in
terms of individual intent violations. Intent violations are the result of defects within
the design implementation. Importantly, because the intended behavior of the design is
well understood, intent violations isolate design defects with high localization to their
source.

At processing block 250, feedback is provided to the user. For example, one or
more report files 175 may be created that provide information regarding the individual
intent violations identified in processing block 240. Preferably, the redundancy of
information is contained and the intent violation data is organized into a format that
provides useful and highly accurate debugging information to a designer. Additionally,
sequential debugging information may be provided along with detailed explanations of
any identified intent violations. An exemplary report file format is illustrated in
Figures 13A - 13E.
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An Exemplary Computer Architecture
Having briefly described an exemplary verification system in which various

features of the present invention may be employed and high-level Intent-Driven
Verification processing, an exemplary machine in the form of a computer system 300
representing an exemplary workstation, host, or server in which features of the present
invention may be implemented will now be described with reference to Figure 3.
Computer system 300 comprises a bus or other communication means 301 for
communicating information, and a processing means such as processor 302 coupled with
bus 301 for processing information. Computer system 300 further comprises a random
access memory (RAM) or other dynamic storage device 304 (referred to as main
memory), coupled to bus 301 for storing information and instructions to be executed by
processor 302. Main memory 304 also may be used for storing temporary variables or
other intermediate information during execution of instructions by processor 302.
Computer system 300 also comprises a read only memory (ROM) and/or other static '
storage device 306 coupled to bus 301 for storing static information and instructions for
processor 302.

A data storage device 307 such as a magnetic disk or optical disc and its
corresponding drive may also be coupled to computer system 300 for storing information
and instructions. Computer system 300 can also be coupled via bus 301 to a display
device 321, such as a cathode ray tube (CRT) or Liquid Crystal Display (LCD), for
displaying information to an end user. For example, graphical and/or textual
depictions/indications of design errors, and other data types and information may be
presented to the end user on the display device 321. Typically, an alphanumeric input
device 322, including alphanumeric and other keys, may be coupled to bus 301 for
communicating information and/or command selections to processor 302. Another type
of user input device is cursor control 323, such as a mouse, a trackball, or cursor
direction keys for communicating direction information and command selections to
processor 302 and for controlling cursor movement on display 321.

A communication device 325 is also coupled to bus 301. Depending upon the
particular design environment implementation, the communication device 325 may

include a modem, a network interface card, or other well-known interface devices, such
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as those used for coupling to Ethernet, token ring, or other types of physical attachment
for purposes of providing a communication link to support a local or wide area
network, for example. In any event, in this manner, the computer system 300 may be
coupled to a number of clients and/or servers via a conventional network infrastructure,

such as a company’s Intranet and/or the Internet, for example.

Modeling Intended Flow of Logical Signals in a Hardware Design

Currently available verification methodologies lack suitable mechanisms to
allow designers to adequately express their design intent. Rather, existing functional
verification methodologies, such as model checking, generally require a designer to
formulate properties about the design’s expected behavior. Consequently, the designer
is responsible for exactly specifying the set of properties to be verified. One problem
with this approach, however, is that the designer may not know or even be capable of
knowing which properties are necessary for a complete analysis of the design.
Additionally, the property specification languages are new and obscure and typically
require the designer to know the details of how the verification tool works in order to
operate it.

Briefly, the intent modeling techniques described herein seek to raise the level
of abstraction of the verification process to increase the productiveness of existing
design environments/design verification tools. In particular, there is no need for the
designer to have any knowledge regarding the internal details of tools employing these
intent modeling techniques. Rather, the designer is free to focus on characteristics of
the design under test. For example, according to one embodiment, incorporation of
Sentry verification entities into a hardware design representation only requires simply
annotations indicative of the expected state of variables at various points in the control
flow structure of a finite state machine associated with the hardware design
representation.

Referring now to Figure 4A, a high-level block diagram illustrating an
exemplary Sentry verification entity 400 will now be described. At this level, the
Sentry verification entity 400 may be conceptually thought of as an object that enables

explicit association of state information with variables of a language description of a
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hardware design. This association may be accomplished by “declaring” a variable, e.g.,
an interconnect in the hardware design representation through with logical signals pass,
as a Sentry verification entity resulting in the creation of a sentinel variable. Data in
420 represents a flow of data signals into to the sentinel variable (e.g., an assignment of
a data value to the sentinel variable); and data out 440 represents a flow of data signals
out of the sentinel variable (e.g., an assignment of the current data value of the sentinel
variable to another variable in the representation of the hardware design). As described
further below, one or more control signals 410 may be employed to represent the
intended flow of logical signals among sentinel variables by associating expected states
with the sentinel variables at different points of the designs control flow. Additionally,
design verification checks, expressed as a function of the expected states of the sentinel
variables, may be automatically formulated thereby allowing the integrity of the data
flow to be verified by confirming whether or not any positive checks (e.g., checks that
indicate a design defect when there is a solution) are violated or whether or not a
counterexample may be found for any negative checks (e.g., checks that indicate a
design defect when there is not a solution).

Figure 4B is a schematic diagram illustrating an exemplary implementation of
a Sentry verification entity 400 according to one embodiment. In the embodiment
depicted, the Sentry verification entity 400 includes a state latch 445 to store the current
state 435 of a variable. The Sentry verification entity 400 also includes state
maintenance logic 455 for maintaining the state 435 or updating the state 435 based
upon a deactivate control signal 411 and an activate signal 412. In this example, the
state maintenance logic 455 comprises an AND gate 415 and an OR gate 425. The
AND gate 415 receives the current state 435 of the corresponding variable from the
state latch 445 and an inverted version of the deactivate control signal 411. The OR
gate 425 receives the output of the AND gate 415 and the activate control signal 412.
Consequently, the state maintenance logic 455 outputs the same state input from the
state latch 445 when both the activate control signal 412 and the deactivate control
signal 411 are logic 0 thereby holding the variable’s current state. The state 435
transitions to active, e.g., logic 1, if the activate control signal is logic 1; and the state

435 transitions to inactive, e.g., logic 0, if the deactivate control signal is logic 1. In
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this example, the input combination of logic 1 on both the activate control signal 412
and the deactivate control signal 411 is invalid. Importantly, while for simplicity the
present example is illustrated with two states, active and inactive, the concept of
associating state information with a variable in a hardware design representation by
Sentry verification entities is extensible to more than two states. Also, it is appreciated
that the implementation of the Sentry verification entity 400 may have many equivalent
logical representations than that depicted in Figure 4B. The implementation of Figure
4B, therefore, is to be considered merely representative of one or the many various
possible logically equivalent implementations.

Figure 4C illustrates what is meant by concept of intended flow of logical
signals according to one embodiment of the present invention. In one embodiment, if a
path (not necessarily a “sensitized path™) exists between two sentinel variables, then
there is a flow of logical signals from one to the other. In this example, since the
outputs of sentinel variables 401, 402, and 403 are all electrically coupled to the input
of sentinel variable 405 in the resultant hardware component, design verification
checks associated with sentinel variable 405 will be a function of at least the state of
sentinel variables 401, 402, and 403. Notably, in this example, there is not always a
“sensitized path” between each of the sentinel variables 401, 402, and 403 and sentinel
variable 405 as the output of any given sentinel variable 401, 402, and 403 does not
always have an effect on the value of sentinel variable 405. Consequently, it may be
said that a design structure implements the intended flow of logical signals between
key elements (e.g., sentinel variables) in the design where the intended flow of logical
signals consists of: (1) The logical signal at a key destination design element, at a given
time, resulted from the logical signals at a set of key source design elements, at the
same or earlier time, and would be different or will not change if a key source signal
was different or did not change respectively; (2) The logical signal at a key destination
design element, at a given time, independent of the logical signals at a set of key source
design elements, at the same or earlier time, and will not change if a key source signal
was different, (3) The logical signal at a key source design element, at a given time,

should not govern the logical signal at a key destination design element. This intended

24



WO 01/88765 PCT/US01/14973

flow of logical signals can be inferred from the states associated with the key variables

and the rules for correct design behavior.

Exemplary Annotations

Various statements that may be used to make up annotations will now be

described. According to one embodiment, annotations can be entered in one of two

ways:
(1) A Single Line // vx statement;
(2) Multiple Lines /*vx code ON
Statement,
statement;
¥/

According to one embodiment, any synthesizeable Verilog can also be entered
within the context of an annotation to create additional validation checks. Importantly,
by placing these annotations within the RTL code itself, the designer performs three
tasks in one:

1. Documents the source code through the assertions
2. Identifies assumptions made during block development
3. Prepares the RTL for validation

Several built-in constructs may be used in annotations to simplify assertion
coding. The examples listed in Table 1 cover common behaviors that many signal
groups exhibit. In these examples, the syntax for an annotation comprises a comment
delimiter (e.g., “//” or a “/*” “*/” pair), a directive marker (e.g., “vx”), a directive (e.g.,

“onehot”), and optional directive parameters (e.g., variables i, j, and k).
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Annotation Meaning

// vx onehot (i,j,k); | Exactly one of i, j, or k must be high

// vx onecold (i,j,k); | Exactly one of i, j, or k must be low

// vx onetrue (i,j,k); | At most one of i, j, or k can be high

// vx onefalse(i,j,k); | At most one of i, j, or k can be low

Table 1: Built-in Assertions

Such assertions allow the designer to explicitly specify design constraints for
annotated signals. According to one embodiment, techniques are also provided for
implicit design constraints based upon the control flow in the circuit. These implicit
constraints are thought to be key to both block and interface validation.

In any design, signals are used to coordinate information exchange between
different sections of the circuit. Such signals may be the contents of a data bus, or the
handshaking signals between two interacting state machines. These key signals are
referred to herein as sentinel variables of the design. The purpose of other logic in the
circuit is to ensure proper interaction between these signals. A design failure is nothing
but the incorrect exchange of data among sentinel variables.

According to one embodiment, sentinel variables are identified in annotations
by the “sentry” directive. Sentry verification entities may be used to identify a sentinel
signal and to model its behavior. In the examples described herein, Sentry verification
entities have two states, active and inactive, that are controlled by “activate” and
“deactivate” directives presented in vx annotations. The various Sentry verification
entity controls, e.g., in the form of annotations, are placed in the control flow of the
design so that the state of the Sentry verification entity is dependent on the state of the
design. The Sentry verification entity should be activated when its corresponding
sentinel variable carries valid information that is utilized somewhere in the design, and
deactivated when the data is invalid or not used. Importantly, according to one

embodiment, IDV automatically validates multiple forms of data exchange between

26



WO 01/88765 PCT/US01/14973

sentinel variables to ensure that the exchange is always valid. This checking
mechanism works both in block-level and full-chip validation.

The designer is responsible for identifying signals that should be modeled as
Sentry verification entities. Common sentinel variables in a design are: handshaking
signals, data buses, state variables, and output ports. After sentinel variables have been
identified, the designer may add appropriate annotations to the design representation.

Any signal (wire, register, or /O) may be declared as a Sentry verification
entity. A Sentry verification entity may also be declared on a sub-range of a vector.
Each Sentry verification entity declaration should also identify a clock signal that
controls when the corresponding sentinel variable may change its value. The following

are examples of sentry annotations:

reg a; //vx sentry a: clk;
wire b; // vx sentry b: clk;
reg [0:15] c; // vx sentry [1:2] c: clk;

According to one embodiment, Sentry verification entities alternate between
active and inactive states based upon the control flow in the design. For instance, a
data bus controlled by a state machine may be declared as a Sentry verification entity.
When the state machine is in the idle state, the data bus Sentry verification entity is
deactivated. Once the state machine enters a transmitting state, the data bus Sentry
verification entity is activated. Any other Sentry verification entities in the design that
try to access the data bus while it is deactivated will be flagged as an error, such as a
“bad data access” error. Similarly, a design defect is indicated if no other Sentry
verification entities in the design are accessing the data bus while it is active. For
example, a “data loss” may be reported.

According to one embodiment, Sentry verification entities may be activated and

deactivated using the annotations in Table 2.

Annotation Meaning

// vx activate(a); Activate Sentry a:
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// vx deactivate(a); | Deactivate Sentry a:

Table 2: Exemplary Sentry verification entity controls

Sentry annotations may be placed within the control flow of the design so that
the state of the Sentry verification entity is dependent on the control state. Sentry
annotations can also be coded using the “//vx code ON’ annotation thereby allowing
the designer to code the Sentry verification entity states within their own annotation

block separate from the source code for the hardware design representation.

Formulation of Design Verification Checks

Figure S is a flow diagram that illustrates the automatic formulation of design
verification checks according to one embodiment of the present invention. As
described above, properties may be verified by breaking them down into one or more
checks and performing verification processing at the check-level. Briefly, according to
this example, a set of predetermined properties are applied to each sentinel variable in
the design representation. More specifically, the predetermined properties are applied
to signal propagation among the sentinel variables to produce an exhaustive list of
checks that confirm whether or not the predetermined properties are violated for the
intended flow of logical signals.

According to the embodiment depicted, design verification check formulation
begins at processing block 510 where a model of the hardware design under test is
received. Preferably, the model includes embedded objects, such as Sentry verification
entities, associated with each sentinel variable to facilitate check generation. At
processing block 520, the model is traversed to locate the next sentinel variable. Upon
locating the next sentinel variable, at processing block 530, design verification checks
for the sentinel variable are automatically formulated based upon the predetermined
properties. For example, each property may be expressed as one or more checks.
Further, many of the checks may be expressed at least partially as a function of the
states of one or more sentinel variables as described further below.

At processing block 540, a determination is made whether or not the model

traversal is complete. If so, processing proceeds to processing block 550. Otherwise,
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processing returns to processing block 520. At processing block 550, the design
verification checks generated in processing block 530 are added to the property

manager for subsequent linking and analysis, for example, which are described further

below.
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Exemplary Properties / Design Verification Checks
Empirical analysis performed by the assignee has shown that verification of a

relatively small set of properties at key points of a hardware design representation (e.g.,
handshaking signals, data buses, state variables, and output ports) can guarantee the
absence of errors in the hardware design with a high level of confidence.

An exemplary set of properties will now be described. Importantly, however,
the present invention should not be construed as being limited to this particular set of
properties. In various circumstances, a subset of the properties described below may be
sufficient to achieve the desired level of confidence. Additionally, the set of properties
described herein is not intended to be an exhaustive list. It is contemplated that Sentry
verification entities and the verification techniques described herein would be equally
useful in the context of a larger set of properties or even a completely different set of
properties.

In one embodiment, the predefined set of properties applied to signal
propagation among the sentinel variables of the hardware design representation
include: access of invalid data (AID), loss of valid data (LVD), assertion correctness
(AC), conflicting assignments (CA), block enable (BE), assignment execution (AX),
constant value memory element (CME), constant value variable (CV), Sentry activate
always off (AAO).

AID (Access of Invalid Data) is an undesirable condition. A Sentry verification
entity that is in the valid state should not receive data that flowed through a Sentry
verification entity that was in the invalid state. Therefore, a solution to one or more
checks representing a violation of this property is indicative of a design defect.
According to an embodiment of the present invention, an approach for finding AID is
to search for an input sequence for the sentinel variable under verification, starting
from the reset state, that will: (1) set the corresponding destination Sentry verification
entity in the valid state, (2) create a sequentially sensitized path from a source Sentry
verification entity to the Sentry verification entity under verification, and (3) set the
source Sentry verification entity in the invalid state at the time when the sensitive data

was flowing through the destination Sentry verification entity.
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LVD (Loss of Valid Data) is another undesirable condition. Any data flowing
through a Sentry verification entity that is in the valid state must be received by some
Sentry verification entity that is in the valid state. Therefore, a solution to one or more
checks representing a violation of this property is indicative of a design defect.
According to an embodiment of the present invention, an approach for finding LVD is
to search for an input sequence for the sentinel variable under verification, starting
from the reset state, that will: (1) set the corresponding source Sentry verification entity
in the valid state, and (2a) block the sensitized paths between the source Sentry
verification entity and all possible destination Sentry verification entities, or (2b) set
the destination Sentry verification entities with sensitized paths from the source Sentry
verification entity, in the invalid state.

AC (Assertion Correctness) is a desired condition. An assertion represents a
condition the designer explicitly indicated should occur at a particular point in the
design. Consequently, a counterexample for compliance with the assertion is indicative
of a design defect. According to an embodiment of the present invention, an approach
for determining an AC violation is to search for an input sequence for the sentinel
variable under verification, starting from the reset state, that will be a counterexample
for the assertion.

The remaining properties (i.e., conflicting assignments, block enable,
assignment execution, constant value memory element, constant value variable, and
Sentry activate always off) may be verified in a similar manner. However, for sake of
brevity, checking algorithms for these properties will not be described. Rather, only
brief descriptions will be provided. CA (Conflicting Assignments) is an undesirable
condition where a wire in the design can be driven by multiple conflicting drivers. BE
(Block Enable) checks if the condition enabling the execution of a certain block of code
in the HDL will never be enabled. AX (Assignment Execution) checks to see if each
logical value can be assigned to a variable through each assignment. CME (Constant
Value Memory Element) checks to see if a memory element in the design will always
hold a-constant value. CV (Constant Value Variable) checks to see if a variable in the

design will always hold a constant value. AAO (Sentry Activate Always Off) is an
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undesirable condition indicative of an error in the specification of the design intent

where a sentry verification entity is never set in active state.

An Exemplary Design Example

In the design example illustrated by Figures 6 - 9, it is assumed that there is a
need for three independent units, such as microprocessors, client A 605, client B 610,
and client C 615, that are required to share access to the same memory 640, such as a
synchronous RAM. In this design example, it is assumed that the memory 640 requires
a single read/write signal. The following data/control signals are therefore needed from
each unit: (1) Address - 10 bits, (2) Write data - 8 bits, (3) Read data - 8 bits, and (4)
Read/write - 1 bit. As a result, an arbiter, such as round robin arbiter 636, has been
designed that accepts data from each unit 605, 610, and 615 and arbitrates to determine
which one is granted access to the memory 640 at any one time. Each unit 605, 610,
and 615 will initiate a memory request signal when it wants access to the memory 640
and will deactivate it when finished. If more than one unit 605, 610, and 615 requests
the bus 641 at the same time, access should be grated on a “round-robin” basis so that
no one unit 605, 610, or 615 is locked out while another has continuous access.
Continuous access is granted to any one unit 605, 610, or 615 for a period of time, up
to a number of clock cycles separately programmable from client A’s data bus 606.
When a programmable “watch dog” time has not been set, an 8 clock cycle delay
should default. For speed purposes, the use of Tri-state buffers, rather than
multiplexers is desirable.

Figure 6B is a block diagram illustrating the design ¢éxample of Figure 6A with
the inclusion of Sentry verification entities at appropriate points of the circuit
corresponding to the RTL representation of Figures 9A — 9E. Thus, Figure 6B
conceptually illustrates the internal model representation after the model builder 145
embeds Sentry verification entities 645, 650, 655, 660, 665, and 670; and as seen by the
design intent analyzer 140 and the analysis engine 180.

In this example, the Sentry verification entities 645, 650, 655, 660, 665, and
670 have been chosen to (1) verify the operation of the signals between clients 603,
610, and 615 and bus interface units (BIUs) 620, 625, and 630, respectively; and (2)
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verify the operation of the signals between the BIUs 620, 625, 630 and the round robin
arbiter 635. The data signals (i.e., dataA, dataB, and dataC) flowing from clients 605,
610, and 615 to bus interface units (BIUs) 620, 625, and 630, respectively, are declared
as sentinel variables at line 20 of Figure 9A. The data signals (i.e., dataOut ) flowing
from BIUs 620, 625, and 630 to clients 605, 610, and 615, respectively, are declared as
sentinel variables at line 50 of Figure 9B. The data signals (i.e., dataA, dataB, and
dataC) received by the round robin arbiter 635 are declared as sentinel variables at line
115 of Figure 9C.

The states associated with the Sentry verification entities 645, 650, 655, 660,
665, and 670 at different points of the control flow are controlled by way of annotations
at line 21 of Figure 9A, at lines 73, 81, and 91 of Figure 9B, at line 131 of Figure 9C,
and at lines 156, 169, and 180 of Figure 9D. In this example, therefore, the designer
has expressed his/her intent that (1) the Sentry verification entities associated with
dataA, dataB, and dataC remain active constantly in module main; (2) on reset, the
Sentry verification entity associated with dataOut is deactive; (3) the Sentry verification
entity associated with dataOut is deactive when the corresponding BIU is in the
“NO_REQ?” state and active when the corresponding BIU is in the “GRANTED” state;
(4) the Sentry verification entities associated with dataA, dataB, and dataC are deactive
during state transition of the round robin arbiter 635; and (5) the Sentry verification
entities associated with dataA, dataB, and dataC are activated when the round robin
arbiter is in “stateA”, “stateB”, and “stateC”, respectively, thereby allowing only one of
dataA, dataB, and dataC to be active at any given time.

An exemplary text report file iliustrating the verification results for the
annotated RTL of Figures 9A - 9E will be described below with reference to Figures
13A - 13E.

Linkin

As mentioned above, the property manager 165 may track information
regarding relationships among the various design verification checks generated by the
design intent analyzer. In the embodiments described herein, the linking process is

performed concurrently with verification of the checks. In alternative embodiments,
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however, linking and verification processing may be performed separately. In any
event, the dependency relationships (or “linking” information) may be used to facilitate
error reporting or used to streamline check verification processing.

Figure 10 is a block diagram that conceptually illustrates linking processing
according to one embodiment of the present invention. According to this example, link
processing involves both the property manager 165 and the analysis engine 180. The
property manager 165 provides the next check 1005 to be processed to the analysis
engine 180; and the analysis engine 180 returns link information 1010, such as whether
or not the currently processed check is dependent upon another check and if so, which
check. The analysis engine 180 includes a linking process 1020 and a local model
1025. The local model 1025 is initialized with a copy of the model 1015 generated by
the model builder. However, during link processing, the local model is modified to
disable various checks.

Figure 11 is a high-level flow diagram that illustrates linking processing
according to one embodiment of the present invention. At processing block 1110, the
next design verification check is received by the analysis engine 180 from the property
manager 165. In order to avoid circular dependency relationships, those design
verification checks that are already known to be dependent upon the received design
verification check are disabled in the local model 1025 at processing block 1120. The
received design verification check is evaluated at processing block 1130 and
appropriate linking is also performed. Then, at processing block 1140, all of the design
verification checks are enabled in anticipation of further check processing. Finally, at
decision block 1150, a determination is made whether or not there are more checks to
be processed. If so, control flow returns to processing block 1110. Otherwise, link
processing is complete.

Figure 12 is a flow diagram that illustrates processing block 1130 of Figure 11
according to one embodiment of the present invention. Processing of the received
design verification check begins at processing block 1231 where the previous partial
solution is expanded to create a current partial solution. Next, at processing block
1232, the current partial solution is evaluated; and a determination is made at

processing block 1233 whether or not the current partial solution violates an
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independent check. If it is determined that the current partial solution violates an
independent check, then processing proceeds to processing block 1235. Otherwise,
processing branches to decision block 1234.

At decision block 1234 the current partial solution is tested to determine
whether or not it is complete. If the current partial solution is complete, then the
currently processed check is marked as an independent check and processing continues
with processing block 1238. Otherwise, if the current partial solution is not complete,
then processing returns to processing block 1231.

Assuming the current partial solution has been found to violate an independent
check, then at processing block 1235, the current check is temporarily locally marked
as being dependent upon the independent check. At processing block, a determination
is made whether or not the current partial solution can be rectified to remove the
violation of the independent check. If the current partial solution can be so rectified,
then processing proceeds to processing block 1237. Otherwise, processing continues
with processing block 1238. At processing block 1237, the current solution is rectified
to remove the violation and control flow returns to processing block 1231.

Finally, at processing block 1238, the local dependency information is used to
update the master dependency information in the property database 160. In this
manner, an intent violation hierarchy may be built for use during reporting of design
defects.

Intent Violation Reporting

Figures 13A - 13E illustrate an exemplary text report file for the annotated
RTL of Figures 9A - 9E according to one embodiment of the present invention. In this
example, a summary of the functional checks is listed at lines 5 through 17. The
summary indicates a total of five failed checks, three inconclusive checks, twelve
interface checks, and 144 passed checks (some of which may be conditional). A
summary of the failed checks is listed at lines 27 through 38. One block enable
violation is reported at line 31, one assignment execution violation is reported at line

32, and three occurrences of loss of valid data are reported at line 38 of Figure 13A.
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Exemplary detailed debugging information regarding the property violations is shown
in Figure 13B.

In the foregoing specification, the invention has been described with reference
to specific embodiments thereof. It will, however, be evident that various
modifications and changes may be made thereto without departing from the broader
spirit and scope of the invention. The specification and drawings are, accordingly, to

be regarded in an illustrative rather than a restrictive sense.
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CLAIMS

What is claimed is:

1. A method of detecting errors in a hardware design comprising:
receiving a representation of a hardware design and information regarding the

intended flow of logical signals among a plurality of variables in the
representation; ‘
inferring the existence of potential errors in the hardware design based upon the
information regarding the intended flow of logical signals by
translating the information regarding the intended flow of logical signals
into a plurality of checks, each of the plurality of checks
representing a condition that must hold true in order for the
hardware design to operate in accordance with the intended flow
of logical signals, and
determining if any of the plurality of checks can be violated during operation of
circuitry represented by the hardware design.

2. The method of claim 1, further comprising identifying one or more key points
in the hardware design based upon the information regarding the intended flow
of logical signals.

3. The method as in claim 1 or 2, wherein the hardware design is expressed in a
hardware description language (HDL.).

4. The method of claim 3, wherein information regarding the intended flow of
logical signals is captured by semantics of the HDL.

5. The method as in any of the preceding claims, further including determining the
intended flow of logical signals through one or more of the plurality of
variables by interpreting the information regarding the intended flow based
upon its context.

6. The method of claim 5, wherein the context of the information regarding the
intended flow comprises its position within the control flow structure.

The method of claim 3, wherein the HDL comprises VHDL.
The method of claim 3, wherein the HDL comprises Verilog.
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10.

11.
12.

13.

14.

15.

16.

17.

18.

The method as in any of the preceding claims, further including extracting the
information regarding the intended flow from one or more inline annotations
embedded within the representation of the hardware design.

The method of claim 9, wherein the one or more inline annotations have a
predetermined format including a comment start marker, a directive marker, and
a directive name.

The method of claim 10, wherein the directive marker comprises “vx”.

The method as in any of the preceding claims, wherein the information
regarding the intended flow of logical signals among one or more of the
plurality of variables is provided by way of a file separate from that containing
the hardware design.

The method as in any of the preceding claims, further comprising reporting the
existence of one or more potential errors in the hardware design.

The method as in any of the preceding claims, wherein the information
regarding the intended flow of logical signals among a plurality of variables in
the representation includes information regarding a state associated with a
variable of the plurality of variables.

The method of claim 14, wherein the plurality of checks include one or more
rules relating to signal propagation, and wherein the method further comprises
evaluating whether or not a signal associated with the variable is propagated in
accordance with the one or more rules.

The method of claim 15, wherein one or more of the plurality of checks are
violated if the signal is capable of causing data flow activity in the hardware
design while the variable is in the inactive state.

The method of claim 15, wherein one or more of the plurality of checks are
violated if the signal is incapable of causing data flow activity in the hardware
design while the variable is in the active state.

The method as in any of the preceding claims, wherein the information
regarding the intended flow of logical signals includes an indication of one or
more conditions under which each of the plurality of variables are to be
associated with each of a plurality of states, and wherein conclusions regarding

each of the plurality of checks capable of being inferred based upon the states
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19.

20.

21.

22.

23.

24.

25.

associated with the plurality of variables during propagation of the logical
signals.
The method of claim 18, wherein the plurality of checks includes a first check
relating to access of inactive data by any of the plurality of variables in the
representation.
The method as in claim 18 or 19, wherein the plurality of checks includes a
second check relating to loss of active data from any of the plurality of variables
in the representation.
The method as in any of the preceding claims, wherein said determining if any
of the plurality of checks can be violated during operation of circuitry
represented by the hardware design employs formal techniques.
The method as in any of the preceding claims, wherein said determining if any
of the plurality of checks can be violated during operation of circuitry
represented by the hardware design employs a simulation-based approach.
The method as in claims 3-8, further comprising determining a failure model by
automatically generating the plurality of checks, including one or more
behavioral integrity checks and one or more temporal integrity checks, based
upon the HDL and the information regarding the intended flow of logical
signals among the plurality of variables in the representation, each of the
plurality of checks symptomatic of one or more errors in the hardware design.
The method as in any of the preceding claims, wherein the plurality of variables
represent interconnects in the hardware design through which the logical signals
pass, the method further comprising explicitly associating state information
with one or more variables of the plurality of variables independent of the
values of the one or more variables and in accordance with the intended flow of
the logical signals.
The method of claim 24, wherein the representation contains inline annotations,
wherein the state information comprises an active state and an inactive state,
and wherein the method further includes:
causing a variable of the one or more variables to be associated with the active
state in response to a first directive included within the inline

annotations; and
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26.

27.

28.

29.

30.

31.

causing the variable to be associated with the inactive state in response to a

second directive included within the inline annotations.
The method of claim 25, wherein the active state represents a state in which
those of the logical signals passing through the associated variable are intended
to reach one or more other variables of the plurality of variables while at least
one of the one or more other variables is in the active state, the inactive state
representing a state in which those of the logical signals passing through the
associated variable are not intended to reach other variables of the plurality of
variables while the other variables are in the active state.
The method as in any of the preceding claims, further including evaluating
whether inactive data is accessed by determining if a value received by a first
variable of the plurality of variables is governed by a second variable of the
plurality of variables while the second variable is in an inactive state.
The method as in any of the preceding claims, further including evaluating
whether active data is lost by determining if a value on one or more of the
logical signals governed by a first variable of the plurality of variables while the
first variable is in an active state is not received by at least one other variable of
the plurality of variables while the at least one other variable is in an active
state.
The method as in any of the preceding claims, further comprising linking two or
more checks of the plurality of checks by determining dependency relationships
among the two or more checks.
The method of claim 29, further comprising:
for each check of the plurality of checks

disabling those of the other plurality of checks that are dependent on the

check,

evaluating the check, and

enabling all of the plurality of checks.
The method of claim 30, wherein said evaluating the check includes:
expanding a current partial solution to create a new partial solution;

evaluating the new partial solution;
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32.

33.

34.

35.

36.

determining whether or not the new partial solution will violate another
independent check, and

if it is determined that the new partial solution will violate the other
independent check and if the new partial solution cannot be rectified to
remove the violation, then treating the check as dependent upon the
other independent check.

The method as in claims 29-31, further comprising using the dependency

relationships to facilitate error reporting.

The method of claim 31, wherein the method is performed in the context of

simulation of a circuit, and the method further includes rectifying the new

partial solution to remove the violation by abandoning the current input from
the sequence of inputs and restoring the state of the circuit to an earlier state.

The method of claim 31, wherein the method is performed in the context of

formal analysis, and the method further includes rectifying the new partial

solution to remove the violation by abandoning the current search path for the
solution and restoring the search to build a different solution.

The method as in claims 29-34, further comprising containing the reporting of

redundant failures by suppressing reporting of multiple property violations

associated with the plurality of checks that are due to a common design defect
of the hardware design.

An apparatus for detecting errors in a hardware design, the apparatus

comprising:

a storage device having stored therein one or more design analysis routines for
verifying the design integrity of a hardware design described in a
hardware description language (HDL), conforming to a particular
methodology, and employing a particular form of annotations to the
HDL; and

a processor coupled to the storage device for executing the one or more design
analysis routines to receive the hardware design, receive one or more
indications of design intent, produce a failure model, and detect the

existence of potential errors in the hardware design, where:
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the one or more indications of design intent are received by extracting
the one or more indications of design intent from the annotations
to the HDL,

the failure model is produced by generating a plurality of checks based
upon the HDL and the design intent, each of the plurality of
checks being symptomatic of one or more errors in the hardware
design, and

the existence of the potential errors in the hardware design, if any, are
detected by analyzing each check of the plurality of checks.

37.  The apparatus of claim 36, wherein the one or more design analysis routines,
when executed, further identify one or more key points in the hardware design
based upon the design intent.

38.  The apparatus as in claims 36 or 37, wherein the one or more indications of
design intent comprise information regarding a state associated with a variable
in the HDL.

39.  The apparatus as in claims 36-38, wherein the plurality of checks include one or
more rules relating to signal propagation, and wherein said detecting the
existence of potential errors in the design, if any, by analyzing each check of the
plurality of checks includes evaluating whether or not a signal associated with
the variable is propagated in accordance with the one or more rules.

40.  The apparatus of claim 39, wherein one or more of the plurality of checks are
violated if the signal causes data flow activity in the hardware design while the
state of the variable is inactive.

41.  The apparatus as in claims 39 or 40, wherein one or more of the plurality of
checks are violated if the signal does not cause data flow activity in the
hardware design while the state of the variable is active.

42.  The apparatus as in claims 36-41, wherein the HDL comprises VHDL.

43.  The apparatus as in claims 36-41, wherein the HDL comprises Verilog.
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1. “define DEFAULT_MAX_ACGCESS_TIME 1'b1
2.
3. module main(clk, reset,
4. dataA, clientRequestA, jobCompleteA, clientGrantA,
5. dataB, clientRequestB, jobCompleteB, clientGrantB,
6. dataC, clientRequestC, jobCompleteC, clientGrantC,
7. memoryData);
8.
9. input clk, reset;
10. input [0:0] dataA, dataB, dataC;
11. input clientRequestA, clientRequestB, clientRequestC;
12. input jobCompleteA, jobCompleteB, jobCompleteC;
13. output clientGrantA, clientGrantB, clientGrantC;
14. output [0:0] memoryData;
15.
16. wire [0:0] dataOutA, dataOutB, dataOutC;
17.
18. // Put sentries at the boundary signals and make them active constantly.
19.
20. / vx sentry dataA, dataB, dataC:clk;
21. // vx always activate(dataA dataB,dataC);
22,
23. // Create three instances of the bus interface
24,
25. Buslnterface businterfaceA(clk, reset, clientRequestA, jobCompleteA,
26. dataA, dataOutA, requestA, grantA,
27. clientGrantA);
28,
29. Buslnterface businterfaceB(clk, reset, clientRequestB, jobCompleteB,
30. dataB, dataOutB, requestB, grantB,
31. clientGrantB); ’
32,
33. Buslinterface businterfaceC(clk, reset, clientRequestC, jobCompleteC,
34. dataC, dataOutC, requestC, grantC,
35. clientGrantC);
36.
37. RoundRobinArbiter arbiter(clk, reset,
38. dataOutA, requestA, grantA,
39. dataOutB, requestB, grantB,
40, dataOutC, requestC, grantC,
41. memoryData);
42,
43, endmodule // main
Figure 9A
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44. module Businterface(tclk, reset,clientRequest, jobComplete,

data, dataOut, request, grant, clientGrant);

input clk, reset, clientRequest, job complete
input [0:0] data;

output [0:] dataOut

/1 vx sentry dataOut:clk;

output request;

input grant;

output clientGrant;

parameter No_REQ = 2'b00;
parameter REQ =2b01;
parameter GRANTED = 2h10

req [1:0] state, nextState;
Il vx flop state;

/lassign request = ((state == REQ) fst&te == GRANTED));

assign request = (éstate == REQ l{(state == GRANTED) && ljobComplete));
assign dataOut = data;

assignclientGrant = grant

glways @(state or reset or clientRequest or jobComplete or grant)
egin
] if(reset)
begin
nextState =NO_REQ;
Il vx deactivate(dataOut);

end
glse-_
egin nextState = state;
case (state)
NO_REQ;
begin
Il vx deactivate(dataOut{;
’ if (clientRequest0 nextState =REQ;
en
REQ:
begin _ _
llvx assert("env1”, chentRequst && ljobComplete):
; if (grant) nextState = GRANTED;
en
GRANTED:
begin

I vx activate(dataOut);

Fig. 9B
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92. Il vxassert('env2’ lchentRequest)

93. if (JobComglete" rant)

94. nextState =NO REQ

95. end

96. endcase // case(state)

97. end //else

99. end // always l

100. always osedge clk

101. statey<+@né?(t8tatg )

102. endmodule // BusInterface
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103. module RoundRobinArbiter(clk, reset,

104, dataA, requestA, grantA,

105. dataB, requesiB, grantB,

106. dataC, requestC, grantC,

107. writeData);

108.

109, input clk, reset;

110. input [0:0] dataA, dataB, dataC;

111. input requestA, requestB, requestC;

112. output grantA, grantB, grantC;

113. output [0:0] writeData;

114,

115. // vx sentry dataA, dataB, dataC: clk;

116.

117. reg [0:0] watchDogTimer, nextWatchDogTimer;
118. reg [2:0] state, nextState;

119. // vx flop state, watchDogTimer;

120. wire [0:0] maxAccessTime;

121.

122. parameter idle = 3'b000;

123. parameter ready = 3'b001;

124. parameter stateA = 3'b010;

125. parameter stateB = 3'b011;

126. parameter stateC = 3'b100;

127.

128. /I next state logic ,

129. always @ (reset or requestA or requestB or requestC or state or watchDogTimer)
130. begin

131. /! vx deactivate(dataA,dataB,dataC);

132. if (reset) begin

133. nextState= idle;

134. nextWatchDogTimer = 1'b0;

135. end

1386. else begin

137. nextState= idle; // default state

138. /I by default timer should increment
139. nextWatchDogTimer = watchDogTimer+1'b1;
Figure 9C
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192. // state transition
193. always @ (posedge clk)
194. begin
195. state <= nextState;
196. watchDogTimer <= nextWatchDogTimer;
197. end
198. // outputs
199. assign grantA = (nextState == stateA);
200. assign grantB = (nextState == stateB);
201. assign grantG = (nextState == stateC);
202. assign writeData = (grantA ? dataA : 'DATA_WIDTH'bz);
203. assign writeData = (graniB ? dataB : "DATA_WIDTH'bz);
204. assign writeData = (grantC ? dataC : 'DATA_WIDTH'bz);
205, assign maxAccessTime = ‘DEFAULT_MAX_ACCESS_TIME;
206. // vx always onetrue("grant", grantA, grantB, grantC);
207. endmodule // RoundRobinArbiter

Figure 9E
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1.  ======

2. Validation Results for Module "main”

3.  ======

4.

5.

6. Functional Checks Summary

7. '

8. Failed checks (FAILED) =5

9. Bounded failed checks (BOUNDED_FAIL) =

10. Inconclusive checks (INCONCLUSIVE) =3

11. Secondary failed checks (SECONDARY) =0

12, Interface checks (INTERFACE) =12

18. Skipped checks (UNPROCESSED/DISABLED/DEFERRED) =0

14, Bounded passed checks (BOUNDED_PASS) =0

15, Passed checks (PASSED/USER PASSED/CONDITIONAL) =144

16.

17. Total checks =164

18.

19,  co==so==s======

20, RTL Characteristics Summary

21,

22, Number of inferred flops =10

23, Number of inferred latches =0

24, Number of static X sources =0

25, Number of non-resettable flops =0

26.

27. ==o=osssossoomsossoossooosoossmos=s

28. Summary of failed checks by type:

29.

30. [CA] =0 (outof 39)

31, [BE] =1 (out of 40)

32, [AX] =1 (outof 15)

33. [CME] =0 (outof10)

34, [CV] =0 (out of 29)

35. [AC] =0 (outof7)

36. [AAO] =0 (out of 6)

37. [AID] =0 (outof 9)

38, [LVD]=38 (outof9)

Figure 13A
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