A method for treating an impulse control disorder in a patient comprising administering to the patient an effective amount of pimavanserin or a pharmaceutical acceptable salt thereof.
CROSS REFERENCE

[0001] This application claims the benefit of priority of U.S. Provisional Patent Application No. 62/491,820, filed April 28, 2017, the content of which is incorporated herein by reference in its entirety.

[0002] The present disclosure relates generally to therapeutic use of pimavanserin or a pharmaceutical acceptable salt thereof. More specifically, the present disclosure provides methods for treating a disease or disorder by administering pimavanserin or a pharmaceutical acceptable salt thereof to a patient having impulse control disorder.

BACKGROUND

[0003] New and effective pharmacological treatments for psychiatric disorders continue to be an area of intense research. Impulse control disorder (ICD) a psychiatric disorder categorized in Diagnostic and Statistical Manual of Mental Disorders (DSM) fourth edition (herein referred to as DSM-5)

[0004] ICD is often recognized by impulsivity, e.g. failure to resist a temptation, drive, urge or temptation to perform act that is harmful to oneself or others. There are several aspect of impulsivity, and it is generally believed there are five behavioural stages characterize impulsivity: an impulse, growing tension, pleasure on acting, relief from the urge and finally guilt (which may or may not arise). It is recognized that impulsivity is a features in many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), substance-related disorders (e.g. cocaine abuse etc), mood disorders, and borderline personality disorders etc.

[0005] Current literatures suggests that serotonergic control play a role in impulsivity, see, e.g., Cunningham, Neuropharmacology, 2014, vol. 76, pages 460-478.

[0006] Pimavanserin (formerly ACP-103) is a potent and selective 5-hydroxytryptamine (5-HT)2A receptor inverse agonist of interest as therapeutic for neuropsychiatric diseases and disorders, such as, for example, Parkinson’s disease psychosis, sleep disorders, and schizophrenia. See, e.g., U.S. Patent No. 7,601,740 B2; Vanover et al., The Journal of Pharmacology and Experimental Therapeutics, 2006, vol. 317, no. 2, pages 910-918. Preparations of pimavanserin and pimavanserin in salt and crystalline forms have been described in, for instance, U.S. Patent No. 7,601,740 B2, WO 2006/037043 A1 and
WO 2006/036874 Al. Tolerability and safety of pimavanserin has been studied in healthy volunteers, see, e.g., Vanover et al., The Journal of Clinical Pharmacology, 2007, vol. 47, no. 6, pages 704-714, and clinical studies with pimavanserin have been undertaken.

[0007] A demand exists for new mono- and combination therapies for treatments of ICD as there is evidence that ICD is under-recognized and undertreated, Weintraub et al., Movement Disorders, 2015, vol. 30, pages 121-127.

SUMMARY

[0008] Provided herein are methods for therapeutic use of pimavanserin or a pharmaceutically acceptable salt thereof. More specifically, the present disclosure provides methods for treating a disease or disorder by administering pimavanserin or a pharmaceutical acceptable salt thereof to a patient who has an impulse control disorder.

[0009] In one aspect, provided herein is a method for treating an impulse control disorder in a patient comprising administering to the patient a compound of Formula (I) or a pharmaceutically acceptable salt thereof:

![Formula (I)](image)

[0010] In another aspect, provided herein is compound of Formula (I) or a pharmaceutical acceptable salt thereof:

![Formula (I)](image)
for treating an impulse control disorder.

[0011] In some specific embodiments, the impulse treated is selected from the group consisting of hypersexuality, gambling, buying, eating, punding, hobbyism, walkabout, hoarding, dopamine dysregulation syndrome and addiction.

[0012] In some specific embodiments, the impulse treated is selected from the group consisting of hypersexuality, gambling, buying, and eating, for example pathological gambling, the buying is compulsive buying and eating is binge-eating disorder (BED).

[0013] In some embodiments pimavanserin is administered to a patient, optionally undergoing Parkinson's treatment, to treat hypersexuality.

[0014] In some embodiments pimavanserin is administered to a patient, optionally undergoing Parkinson's treatment, to treat compulsive gambling.

[0015] In some embodiments pimavanserin is administered to a patient, optionally undergoing Parkinson's treatment, to treat compulsive buying.

[0016] In some embodiments pimavanserin is administered to a patient, optionally undergoing Parkinson's treatment, to treat compulsive eating, such as binge-eating disorder.

[0017] In some specific embodiments, the patient has been diagnosed with Parkinson's disease.

[0018] In some specific embodiments, the patient is on dopamine replacement therapy (DRT) or administered a dopamine agonist. In other embodiment the patient is subject to a dose change of the dopamine replacement therapy or dopamine agonist.

[0019] In other embodiments, the dose of the compound of Formula (I) is an effective daily dose. The effective daily dose may be selected from the group consisting of 8.5, 10, 12, 15, 17, 20, 22, 25, 30, and 34 mg of the compound of Formula (I). In some embodiments the daily dose is selected from 17 mg and 34 mg of pimavanserin.

[0020] In other embodiments, the compound of Formula (I) is administered as a tartrate salt.
In other embodiments, an effective daily amount of the compound of Formula (I) as a tartrate salt is administered. Example of effective doses of the tartrate salt of the compound of Formula (I) are 10, 15, 20, 25, 20, 35, and 40 mg. In some embodiments the daily dose is selected from 20 mg and 40 mg of pimavanserin tartrate.

In some embodiments, a pharmaceutical salt of the compound of Formula (I) is administered to the patient. In some specific embodiments, a tartrate salt of the compound of Formula (I) is administered to the patient.

In some embodiments, the tartrate salt of the compound of Formula (I) is administered daily. In some embodiments, the tartrate salt of compound of Formula (I) is administered once daily. In some embodiments, the tartrate salt of compound of Formula (I) is formulated for oral administration as a unit dose. In a specific embodiment, the unit dose is a tablet.

In some embodiments, the tartrate salt of the compound of Formula (I) is in a crystalline form, wherein the crystalline form of the tartrate salt of the compound of Formula (I) exhibits a X-ray powder diffraction pattern comprising peaks having d-values in angstroms of about 10.7, about 4.84, about 4.57, and about 3.77.

DETAILED DESCRIPTION

The present disclosure provides methods for treating impulse control disorder (ICD) by administering pimavanserin or a pharmaceutical acceptable salt thereof to a patient.

Aspects of ICD have been connected to various diseases and can be very troublesome to the patient as well as the caregiver, depending on what type of impulse control. The present disclosure primarily relates to hypersexuality/compulsive sexual behaviour, and related behavior such as paraphilia, zoophilia with devastating consequences; gambling, such as inappropriate and maladaptive gaming behavior, such as repetitive slot machines, lottery or scratch cards and internet gambling; buying, eating, such as binge eating disorder; punding, such as repetitive and stereotyped non-goal-oriented behavior, characterized by an intense preoccupation with items or activities; hobbyism, such as the compulsive pursuit of a hobby such as collecting, cleaning or excessive internet use; walkabout, such as excessive, aimless wandering, hoarding, such as collecting and failure to discard items without objective value, dopamine dysregulation syndrome, such as misuse and
escalating dose of medication, and addiction. The present disclosure relates to the method of treatment of ICD, and for example to the treatment of hypersexuality, gambling, buying, eating, punding, hobbyism, walkabout, dopamine dysregulation syndrome and addiction. The present disclosure relates to pimavanserin for treating hypersexuality, gambling, buying, eating, punding, hobbyism, walkabout, hoarding, dopamine dysregulation syndrome and addiction.

[0027] One particular disease where ICD can be particular troublesome is Parkinson's disease (PD) where patients may experience impulse control disorders (ICDs) when on dopamine agonist therapy, and optionally when on DRT, for their motor symptoms. ICDs include behaviors such as pathological gambling, hypersexuality, binge eating and excessive or compulsive shopping as discussed above, any or all of which negatively impacts the quality of life of the patients (Voon et al., Lancet Neurol., 2009, 8(12): 1140-9). The emergence of these disorders can have an exceedingly grave impact on the quality of life for the families and care takers as well as the affected PD patient.

[0028] ICD prevalence is significantly increased in PD patients by the dopamine replacement therapies (DRTs) these patients require to control their motor symptoms (Weintraub et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch. Neurol. 67, 589-595). This represents a treatment dilemma for physicians treating PD patients because controlling one set of symptoms frequently leads to worsening another set of symptoms. Therefore, there exists a need for medications that treat motor deficits but do not induce ICDs. In the absence of such medications, relevant alternatives include adjunct treatments that can mitigate established ICDs, without impacting the capacity of a dopamine agonist to improve motor symptoms in PD patients. Candidates for such medications include selective 5-HT2A inverse agonists such as pimavanserin (Nuplazid™, ACP-103), which has been shown to control hallucinations and delusions associated with PD without impacting motor function in those patients (Cummings et al., vol. 383, No. 9916, pages 533-540, published online 2013).

[0029] In one aspect pimavanserin is used to effectively treat one or more of the following: compulsive or pathological gambling, eating, buying and sexual behaviours.
[0030] In some aspects the compulsive or pathological gambling, eating, buying and sexual behaviours is in a Parkinson's disease patient.

[0031] In some aspects the compulsive or pathological gambling, eating, buying and sexual behaviours is in a Parkinson's disease patient currently undergoing Parkinson treatment. In some aspects the Parkinson treatment is a dopamine replacement therapy or the patient is administered a dopamine agonist. The following is a non-exhaustive list comprising examples of dopamine agonist: pramipexole, ropinirole, rotigotine, apomorphine, bromocriptine, cabergoline, ciladopa, dihydrexidine, dinapsoline, doxanthrine, epicritine, lisuride, pergolide, piribedil, propynorapomorphine, quinagolide, roxindole, and sumanirole. In some aspects the compulsive or pathological gambling, eating, buying and sexual behaviours is in a Parkinson's disease patient currently undergoing Parkinson treatment are considered a side effect of the administration of a DRT (e.g. levodopa/carbidopa) or the dopamine agonist, e.g. pramipexole, ropinirole, rotigotine, apomorphine, bromocriptine, cabergoline, ciladopa, dihydrexidine, dinapsoline, doxanthrine, epicritine, lisuride, pergolide, piribedil, propynorapomorphine, quinagolide, roxindole, and sumanirole.

[0032] In some aspects the compulsive or pathological gambling, eating, buying and sexual behaviours is in a Parkinson's disease patient currently not undergoing Parkinson treatment.

[0033] In some aspects the ICD is in a patient having Parkinson's disease.

[0034] In some aspects the administration of pimavanserin to treat ICD does not impair motor function nor interfere with dopamine replacement therapies in a patient having Parkinson's disease.

[0035] In some aspects the ICD is in a patient not having Parkinson's disease.

[0036] In some aspects the ICD is in a patient having Tourettes syndrome.

[0037] In some aspects the ICD is in a patient not having Tourettes syndrome.

[0038] The ICDs, mentioned herein above can be screened using different techniques, for example the Minnesota Impulsive Disorders Interview (MIDI) can be used to screen buying and eating behaviours, Massachusetts Gambling screen (MAGS) may be used to screen
gambling behaviour, and Diagnostic and statistical manual of mental disorders 5th edition (DSM-5) can be used to screen eating disorders.

In some aspects the screening for gambling, eating, buying and sexual behaviours is done using Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease (QUIP). In some aspects the patient is rated using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease rating scale (QUIP-RS). The QUIP-RS is a validated, reliable clinical questionnaire to assess the severity of ICD in PD. Seven dimensions of ICD over the 4 past weeks are assessed through 4 questions: Gambling; Buying; Eating; and Sexual Behavior, leading to the total ICD score from 0 (normal) to 64 (most abnormal). The questionnaire also assesses Hobbyism; Punding and Medication use, that, when added to the former 4 ICD correspond to the total QUIP-RS score from 0 to 112.

In some aspects pimavanserin is used to treat one or more of the compulsive or pathological gambling, eating, buying and sexual behaviours is in a Parkinson's disease patient, and evaluated using the total ICD score using Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS). In some aspect the total ICD score after at least 4 weeks is at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, or -20, compared to the total ICD score at week zero (prior to administration of pimavanserin).

In some aspects pimavanserin is administered to a Parkinson's disease patient during 4 weeks and wherein the patient receives a total ICD score of at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, or -20, compared to the total ICD score at week zero.

In some aspects pimavanserin is administered during 4 weeks to a Parkinson's disease patient, currently undergoing Parkinson treatment, wherein the patient after receiving pimavanserin for 4 weeks receives a total ICD score of at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, or -20, compared to the total ICD score at week zero.

In some aspects pimavanserin is administered in a daily dose of 40 mg pimavanserin tartrate to a Parkinson's disease patient, currently undergoing Parkinson treatment, during 4 weeks and wherein the patient receives a total ICD score of at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, or -20, compared to the total ICD score at week zero.
In some aspects pimavanserin is administered to a Parkinson's disease patient during 8 weeks and wherein the patient receives a total ICD score of at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, or -20, compared to the total ICD score at week zero.

In some aspects pimavanserin is administered during 8 weeks to a Parkinson's disease patient, currently undergoing Parkinson treatment, and wherein the patient after receiving pimavanserin for 8 weeks receives a total ICD score of at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, or -20, compared to the total ICD score at week zero.

In some aspects a daily dose of 34 mg pimavanserin is administered during 8 weeks to a Parkinson's disease patient, currently undergoing Parkinson treatment, wherein the patient after receiving pimavanserin for 8 weeks receives a total ICD score of at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, or -20, compared to the total ICD score at week zero.

In some aspects the Parkinson treatment is dopamine replacement therapy.

In some aspects the Parkinson treatment is administration of a dopamine agonist.

In some aspects the patient has been diagnosed with Parkinson's disease and is undergoing treatment for the disease. Examples of treatments are dopamine replacement therapy and dopamine agonist.

In some aspect the patient undergoing Parkinson's disease treatment is subject to a change in the dopamine replacements therapy, for example a dose adjustment.

In some aspect the patient undergoing Parkinson's disease treatment is subject to a change in the administration of the dopamine agonist, for example a dose adjustment, such as an increased dose (e.g. as the disease progress and motor symptoms become worse).

A Parkinson's disease patient, subject to a change in the Parkinson's disease treatment (e.g. because the disease progress and motor symptoms become worse), may develop an impulse control, e.g. one or more of the compulsive or pathological gambling, eating, buying and sexual behaviours. The change in the treatment, for example an increased dose of a dopamine agonist, may result in the patient developing one or more impulse control such as compulsive or pathological gambling, eating, buying and sexual behaviours. In some aspects pimavanserin is administered to treat the impulse control that may be the result of the
change in the Parkinson's disease treatment, for example an increased dose of the currently administered dopamine agonist.

[0053] In some aspects pimavanserin and a dopamine agonist are co-administered to a Parkinson's disease patient.

[0054] Pimavanserin is N-(1-methylpiperidin-4-yl)-N-(4-fluorophenylmethyl)-N'-(4-(2-methylpropyloxy)phenylmethyl)carbamide, and has the structure of Formula (I):

\[\text{CH}_3 \\
\text{F} \\
\text{N} \]

\[\text{H} \\
\text{N} \]

\[\text{O} \\
\text{O} \]

(I)

[0055] Pimavanserin may be synthesized by methods described in U.S. Patent No. 7,601,740 (see columns 22-26), which is incorporated herein by reference in its entirety. In a specific embodiment, pimavanserin is prepared as shown in Scheme I below, or by modification of these methods. Ways of modifying the methodology include, among others, modification in temperature, solvent, reagents, etc., as will be known those skilled in the art.

[0056] Pimavanserin can be present in a number of salts and crystalline forms which are included in the present disclosure.

[0057] Exemplary salts include the tartrate, hemi-tartrate, citrate, fumarate, maleate, malate, phosphate, succinate, sulphate, and edisylate (ethanedi sulfonate) salts. Pimavanserin salts including the aforementioned ions, among others, are described in U.S. Patent No. 7,868,176, which is incorporated herein by reference in its entirety.

[0058] The term "pharmaceutically acceptable salt" refers to a salt of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. In some embodiments, the salt is an acid addition salt of the compound. Pharmaceutical salts can be obtained by reacting a compound with inorganic acids such as hydrohalic acid (e.g., hydrochloric acid or hydrobromic acid), sulfuric acid, nitric acid, phosphoric acid and the like. Pharmaceutical
salts can also be obtained by reacting a compound with an organic acid such as aliphatic or aromatic carboxylic or sulfonic acids, for example acetic, succinic, lactic, malic, tartaric, citric, ascorbic, nicotinic, methanesulfonic, ethanesulfonic, p-toluensulfonic, salicylic or naphthalenesulfonic acid. Pharmaceutical salts can also be obtained by reacting a compound with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, C1-C7 alkylamine, cyclohexylamine, triethanolamine, ethylenediamine, and salts with amino acids such as arginine, lysine, and the like.
In certain embodiments, the pharmaceutically acceptable salt of pimavanserin is a tartrate salt of pimavanserin. In some embodiments, the pimavanserin tartrate salt can, for example, be urea, N\-[(4-fluorophenyl)methyl]-N\-[(1-methyl-4-piperidinyl)\-N\-[4-(2-...
methylpropoxy)phenyl[methyl]-, (2R,3R)-2,3-dihydroxybutanedioate (2:1), which has the following chemical structure:

![Chemical Structure Image]

[0060] Several crystalline forms of the tartrate salt are referred to as crystalline Form A, Form B, Form C, Form D, Form E and Form F, and are described in U.S. Patent No. 7,732,615, which is incorporated herein by reference in its entirety. In one embodiment, the crystalline form of the tartrate salt of pimavanserin is Form C, which exhibits an X-ray powder diffraction pattern comprising peaks having d-values in angstroms of about 10.7, about 4.84, about 4.57, and about 3.77. Specifically the X-ray powder diffraction pattern of Form C exhibits the following characteristic peaks expressed in d-values (Å): 12.0 (w), 10.7 (vs), 7.4 (vw), 6.9 (vw), 6.6 (vw), 6.2 (w), 5.86 (m), 5.53 (w), 5.28 (m), 5.16 (m), 4.84 (vs), 4.70 (m), 4.57 (s), 4.38 (m), 4.09 (w), 3.94 (w), 3.77 (s), 3.71 (m), 3.49 (w), 3.46 (w), 3.25 (w), 3.08 (w), and 2.93 (w). In various embodiments, Form C is present in a solid form of pimavanserin in amounts of at least about 50%, 70%, 80%, 90%, 95%, or 98%, with the remainder being other crystalline forms (including hydrates and solvates) and/or amorphous forms.

[0061] Pimavanserin (including, for example, the tartrate salt) may be formulated into tablets, such as is described in more detail in U.S. Patent No. 7,790,899, and U.S. Patent Publication No. 2007-0264330, filed May 15, 2007, each entitled "PHARMACEUTICAL FORMULATIONS OF PIMAVANSERIN," which are incorporated herein by reference in their entireties.

[0062] The methods and the compositions provided herein can be used to treat various aspects of impulse control disorders treatable by pimavanserin or a pharmaceutically acceptable salt thereof, such as a psychiatric disorder, a neurodegenerative disorder, and a condition induced by treatment of a psychiatric or neurodegenerative disorder. Many
psychiatric disorders feature impulsivity including substance-related disorders, attention deficit hyperactivity disorder, antisocial personality disorder, borderline personality disorder, conduct disorder and mood disorders.

[0063] In some embodiments, the impulse control disorder is associated with Parkinson's disease or the treatment thereof.

[0064] In some embodiments, a pharmaceutical salt of pimavanserin is administered to the patient. In some specific embodiments, a tartrate salt of pimavanserin is administered to the patient.

[0065] The exact route of administration, dose, or frequency of administration would be readily determined by those skilled in the art and can be dependent on the age, weight, general physical condition, or other clinical symptoms specific to the patient to be treated.

[0066] In some embodiments, the tartrate salt of pimavanserin is administered daily. In some embodiments, the tartrate salt of pimavanserin is administered once daily. In some embodiments, the tartrate salt of pimavanserin is formulated for oral administration as a unit dose. In a specific embodiment, the unit dose is a tablet.

EXAMPLES

[0067] Example of a pimavanserin study relating to binge eating disorder (BED)

[0068] The criteria for a diagnosis of BED includes (1) eating much more rapidly than normal, (2) eating large amounts of food when not feeling physically hungry, and (3) eating until feeling uncomfortably full (Association Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), 2013).

[0069] Carbohydrate and fat 'comfort foods', with bingeing on chocolate are known to be associated with eating disorders in humans and in rodents. Robust binge-eating behaviour can be induced in rats by giving them time-limited periods to consume highly palatable foods using an unpredictable, intermittent presentation schedule over an extended period of time (weeks) and without restricting their ability to consume normal chow and water (Corwin et al. Binge-type eating induced by limited access in rats does not require energy restriction on the previous day. Appetite 42: 139-142, 2004).
[0070] Rats will then avidly consume excessive amounts of the palatable food during the
sessions they receive access, with compensatory reductions of normal chow intake in these
sessions and the days thereafter.

[0071] BED is, for example, to be studied using lean, female, Wistar rats (weight range
200-250g at the start of the study) from Charles River, UK. Rats are to be contained in
a controlled environment and housed in an appropriate way to perform the study, for example
singly-housed in polypropylene cages with wire grid floors to enable food intake of each rat
to be recorded.

[0072] Establishment of binge-eating behavior in rats:

[0073] With each cohort of animals in a binge-eating study (cohorts of rats (N = 5 to 10
per group) to be used in the study including groups of binge-eating and non-binge-eating
controls; rats receiving test drug or vehicle), rats are to be trained to binge on chocolate for at
least three weeks and randomized to pimavanserin treatment on the basis of body weight,
food and water intake and the size of the previous binge meal.

[0074] Body weight, food and water intake are to be measured each day throughout the
study, for example as described in the following: Animals are to be weighed at weekly
intervals after arrival. After a two-week acclimatization period, animals are to be allocated
into treatment groups based on body weight. All animals shall have 24 h ad libitum access to
standard powdered diet (e.g. Harlan Teklad 2018; 13.0 kJ/g) and tap water throughout the
study. The diet may be contained in a glass feeding jar with an aluminium lid (e.g. Solmedia
Laboratory Suppliers, Romford, Essex, UK), allowing access to the food. On binge days, an
additional jar containing chocolate (23.44 kJ/g) or an empty jar (control) is to be placed in
each cage for a 2 h period, (optionally other suitable time intervals may be used), on Days 1,
2, 4, 6, 7, 9, 12, 14, 15, 18, 23 and 28 (optionally other similar randomly spaced,
intermittent, and progressively longer time intervals may be used). The interval between the
binge sessions are to be gradually increased as the training progress. Once the rats showed
robust, reproducible binge-eating, the binge-eating behaviour can be maintained by giving the
rats only one or two binge sessions per week. The jars are to be placed in the cages at
~10:30h, which was at the beginning of the dark phase for the rats. The weights of the jars are
to be recorded before and after the 2 h test session. Hence, the binge-eating sessions are in the
dark phase, when rats consume most of their food. The body weight of each rat and its food
and water intake are to be measured on every morning of the study; readings are to be taken
in the final stage of the light phase at ~09:45h. All diets are to be provided as a powder to
control as far as possible for differences in physical form which may have affected diet preference.

[0075] During the training period, an extra food jar (along with the jar containing normal chow) containing chocolate are to be added to the cage for 2 hr/day intermittently, for at least three weeks, using the access schedule above. On the test day, rats are to be weighed in the final stage of the light phase and then dosed with pimavanserin or an appropriate vehicle. The chocolate and chow consumed during this 2 h period are to be measured. The body weights of the rats and the quantity of chow and water that the rats consumed in the 24 h after dosing (including consumption in the binge session) are also to be measured the following morning.

[0076] The doses of pimavanserin to be used are 0.1 mg/kg - 50 mg/kg. When rats are administered pimavanserin (0.1, 0.5, 1.0, 3.0, 6.0, 10.0 mg/kg po) 60 min (or optionally 30 min or 120 min or 24 hours or some other time interval may be used) prior to a 2 h binge-eating session on chocolate, the pimavanserin shall decrease the consumption of this palatable food. The decrease is likely dose dependent and the doses shall have no effect on the consumption of standard laboratory diet during the 2 h binge-eating session compared to vehicle treated control.

[0077] The method described above may be used to show BED behavior in rats, and the usefulness of pimavanserin to treat BED.

[0078] Example of a pimavanserin study to functionally assess both measures of ICD and motor function

[0079] As discussed above, therapies to treat ICDs that do not impair motor function nor interfere with DA replacement therapies are needed. To assess both measures of ICD and motor function, a protocol was developed that allows for concurrent testing of PD-like motor dysfunction (akinesia) and impulsivity related to ICDs observed in vulnerable dopamine agonist-treated PD patients.

[0080] Impulsiveness includes a greater tendency for risk-taking. This tendency can be quantified using probability discounting procedures; a cross-species assessment in which the subject chooses between a small reinforcer (SR) delivered at a high probability, and a large reinforcer (LR) delivered at a low probability. Typically, the subjective value of the LR is discounted when its probability is low, and individuals then select the smaller, yet more certain reinforcer. Those who suffer from ICD are less sensitive to low probabilities than
healthy individuals, and they more frequently select the LR even when the odds to obtain the reward are very low (Hendrickson, et al., Effects of mindful eating training on delay and probability discounting for food and money in obese and healthy-weight individuals. Behav. Res. Ther. 51, 399-409, 2013).

[0081] Discounting tasks also have been implemented in a rat model of PD (rats with 6-hydroxydopamine (6OHDA)-induced lesions of the dorsolateral striatum (DLS)), using intracranial self-stimulation (ICSS) as positive reinforcers. Furthermore, administration of pramipexole (PPX), a D2 dopamine receptor agonist used to treat motor dysfunction in PD patients, increases ICSS-mediated probability discounting (Napier et al., Pramipexole-induced increased probabilistic discounting: comparison between a rodent model of Parkinson's disease and controls. Neuropsychopharmacology 37, 1397-1408, 2012).

[0082] Male Sprague-Dawley (outbred) rats (250-300 g; Harlan Laboratories, Indianapolis, IN) are to be pair-housed under environmentally controlled conditions under a 12 h light/dark cycle (lights on at 07:00); food and water are to be available ad libitum.

[0083] 6-OHDA lesions will be carried out as described previously (Napier et al., Pramipexole-induced increased probabilistic discounting: comparison between a rodent model of Parkinson's disease and controls. Neuropsychopharmacology 37, 1397-1408, 2012). Prior to inducing lesions, desipramine (obtained from Sigma-Aldrich), a norepinephrine reuptake inhibitor, will be administered (25 mg/kg subcutaneously (sc)) to enhance selectivity of 6OHDA for dopamine neurons. Rats were anesthetized with isoflurane and secured in a stereotaxic frame. To create lesions, 6OHDA (7 µg or similar amount) will be bilaterally infused (0.2 µL/µin for 10 min) into the dorsolateral striatum (DLS) at the following coordinates from Bregma: +1.0 mm AP, ±3.4 mm ML; -4.7 mm DV (optionally similar coordinates may be used) from skull. After the 6OHDA injection, a bipolar stimulating electrode (MS303/3-B/SPC; Plastics One, Roanoke, VA) is to be lowered to the lateral hypothalamus (LH) for ICSS (from Bregma: -2.6 mm AP; -1.8 mm ML; -8.4 mm DV from skull), and the electrode plug held in place with dental acrylic affixed to stainless steel screws secured in the skull. At least one week recovery time will be allowed before initiating operant task training. ICSS does not occur if electrode tips are located outside the LH, however tip location within the LH does not correlate with ICSS-mediated outcomes (Floresco et al., Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology 34, 681-697, 2009).

[0084] Rats then will be trained for ICSS followed by probability discounting. Once a stable baseline is obtained, rats will receive a subcutaneous osmotic minipump that released
pramipexole at a rate of 0.3 mg/kg/day or 1.2 mg/kg/day (optionally similar dosages may be used). Pramipexole will be infused for 14 days (optionally a similar time period may be used), during which probability discounting will be assessed each day. Forelimb akinesia will be evaluated before lesion, after lesion, and at various time points during pramipexole administration. To assess the effects of pimavanserin and pramipexole on forelimb akinesia in the 6-OHDA lesioned rats, a forelimb step task will be used (Chang et al., Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson's disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 88, 617-628, 1999). To assess the effects of pimavanserin on pramipexole-induced risk-taking using parameters of the ICSS-mediated probability discounting task that were previously established (Napier et al., Intracranial self-stimulation as a positive reinforcer to study impulsivity in a probability discounting paradigm. J. Neurosci. Methods 198, 260-269, 2011), pramipexole (1.2 mg/kg/day (optionally a similar dose may be used) will be infused for a total of 28 days (optionally a similar length of time may be used). On day 14 (optionally another timing may be used) of pramipexole treatment, a second osmotic minipump will be implanted that releases pimavanserin at a dose rate of 0.1 or 0.3 or 1 or 3 or 6 or 10 mg/kg/day for 14 days (optionally a similar length of time may be used). Probability discounting will be assessed each day of chronic drug treatment; forelimb akinesia will be evaluated before lesion, after lesion, and at various time points during chronic drug administration.

Infusion of pramipexole (1.2 mg/kg/day or similar dose) for 14 days increased the risk taking behavior of rats as assessed by an increased proportion of selection of the LR delivered at a low probability, and it restored motor function as assessed by a reduction in forelimb akinesia. Co-administration of pimavanserin reduced risk taking behavior in rats receiving pramipexole as assessed by the proportion of rats selecting LR, but did not alter motor function in these animals.

Currently, there are no FDA-approved pharmacotherapies for ICDs with neurological comorbidities. These results showing A) suppression of pramipexole-induced risk taking by concomittant administration of pimavanserin as assessed by a reduction in the rate of responding to low probability, large reinforcers and B) lack of effect on restoration of motor function by pramipexole suggests pimavanserin may be useful in treating ICD in PD patients.

Example of Clinical trial design
The trial can be a multi-site, 8-week, randomized, double-blind, parallel, placebo-controlled, comparative, evaluating the efficacy of pimavanserin versus placebo. Suitably 40 mg of pimavanserin tartrate, containing 17 mg pimavanserin per tablet, is administered as 2x20 mg oral tablets once a day, for a total dose of 34 mg of pimavanserin per day. Identically designed placebo tablets are administered to the subjects in the placebo arm.

At least 100 subjects should be allowed into the study in order to have at least 50 subjects in each arm. The subjects should have been diagnosed with Parkinson's disease for at least one year and on stable DRT or dopamine agonist treatment for at least three months. Additionally the subjects should have a QUIP-RS total score of at least 10, obtained from the sum of the sub-scores obtained from gambling, buying, eating, and hypersexuality.

QUIP-RS is to be used just before initiating the trial in order to set the baseline (W0), and thereafter half-way through the study (W4), and again at the end of the study (W8). In order to determine the severity of ICD the total score is to be evaluated compared to the score obtained at W0. Equally the scores from the individual sub-groups (gambling, buying, eating, and hypersexuality) are to be analyzed.
WHAT IS CLAIMED:

1. A method for treating an impulse control disorder in a patient comprising administering to the patient a compound of Formula (I) or a pharmaceutically acceptable salt thereof:

 \[\text{Figure: Chemical structure of Formula (I).} \]

2. The method of claim 1, wherein the impulse treated is selected from the group consisting of hypersexuality, gambling, buying, eating, punding, hobbyism, walkabout, hoarding, dopamine dysregulation syndrome and addiction.

3. The method of any one of claims 1-2, wherein the impulse treated is selected from the group consisting of hypersexuality, gambling, buying, and eating.

4. The method of claim 3, wherein the hypersexuality is compulsive sexual behaviour, the gambling is pathological gambling, the buying is compulsive buying and eating is binge-eating disorder.

5. The method of any one of claims 1-4, wherein the compound according to Formula (I) or a pharmaceutically acceptable salt thereof decreases 5HT2A receptor activity.

6. The method of any one of claims 1-5, wherein the patient has been diagnosed with Parkinson’s disease.

7. The method of any one of claims 1-6, wherein the patient is on dopamine replacement therapy (DRT) or has been administered a dopamine agonist.

8. The method of claim 7, wherein the patient has been subject to a change in the
dopamine replacement therapy (DRT) or has been subject to a change in the administration of
the dopamine agonist.

9. The method of claim 8, wherein the change is a dose adjustment.

10. The method of claim 8, wherein the change is an increased dose.

11. The method of any one of claims 1-10, wherein the patient is administered
levodopa.

12. The method of any one of claims 1-10, wherein the patient is administered a
dopamine agonist.

13. The method of any one of claims 1-12, wherein the patient fulfils one or more of
the following: a personal or familial history of alcoholism or gambling; impulsive or novelty
seeking traits; male sex; early onset of PD; being unmarried; and past or current cigarette
smoking.

14. The method of any one of claims 1-13, wherein the ICD severity is evaluated
using the total ICD score using Questionnaire for Impulsive-Compulsive Disorders in
Parkinson's Disease-Rating Scale (QUIP-RS).

15. The method of claims 13, wherein the ICD severity in the patient is evaluated
after being administered compound of Formula (I) or a pharmaceutically acceptable salt
thereof for at least 8 weeks.

16. The method of claims 13, wherein the ICD severity in the patient is evaluated
after being administered a compound of Formula (I) or a pharmaceutically acceptable salt
thereof for at least 4 weeks.

17. The method of claims 13, wherein the ICD severity in the patient is evaluated
after being administered a compound of Formula (I) or a pharmaceutically acceptable salt
thereof for at least 8 weeks.

18. The method of anyone claims 1-17, wherein the total ICD score using QUIP-RS is
at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, -20, points after the patient being administered a compound of Formula (I) or a pharmaceutically acceptable salt thereof for at least 4 weeks compared to prior to the administration.

19. The method according to any one of claims 1-18, wherein an effective amount of the compound of Formula (I) or a pharmaceutically acceptable salt thereof is administered to the patient.

20. The method according to claim 19, wherein the effective amount of the compound of Formula (I) is a dose selected from the group consisting of 8.5, 12.75, 17, 21.25, 25.5, 29.75, and 34 mg of the compound of Formula (I).

21. The method of any one claims 1-20, wherein the total ICD score using QUIP-RS is at least -10, such as at least -12, -14, -15, -16, -17, -18, -19, -20, points after the patient being administered a compound of Formula (I) or a pharmaceutically acceptable salt thereof for 8 weeks.

22. A compound of Formula (I) or a pharmaceutical acceptable salt thereof:

\[
\text{(I),}
\]

for treating an impulse control disorder.

23. The compound of claim 22, wherein the impulse treated is selected from the group consisting of hypersexuality, gambling, buying, eating, punding, hobbyism, walkabout, dopamine dysregulation syndrome and addiction.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61K31/4468 A61P43/00 A61P25/00 A61P15/00 A61P25/30
ADD.

According to International Patent Classification (IPC) and/or national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, BIOSIS, CHEM ABS Data, WPI Data, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2006/037043 A1 (ACADIA PHARM INC [US]; THYSSEN MI K KEL [DK]; SCHUL ENG NATHALIE [DK]) 6 April 1 2006 (2006-04-06) page 4, paragraph 110 page 27, paragraphs 120, 124</td>
<td>1-23</td>
</tr>
<tr>
<td>X</td>
<td>WO 2009/035473 A2 (SANFI LI PP0 LOUIS C [US]) 19 March 2009 (2009-03-19) claims 1, 5, 11, 12</td>
<td>1-23</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A* document defining the general state of the art which is not considered to be of particular relevance

E* earlier application or patent but published on or after the international filing date

L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another application or other special reason (as specified)

O* document referring to an oral disclosure, use, exhibition or other means

P* document published prior to the international filing date but later than the priority date claimed

T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A" document member of the same patent family

Date of the actual completion of the international search
29 June 2018

Date of mailing of the international search report
11/07/2018

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Terenzi, Carl a
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2009/039461 A2 (ACADIA PHARM INC [US]; ULDAM HENRIETTE KOLD; THYGENSEN M I K KEL BOAS [DK]) 26 March 2009 (2009-03-26) page 5; compound Formula (II) page 27, paragraph 93 - page 28 page 31, paragraph 104 - page 34 claims 1, 16, 18, 29, 31</td>
<td>1-23</td>
</tr>
<tr>
<td>X</td>
<td>WO 2011/085216 A2 (IRONWOOD PHARMACEUTICALS INC; PEARSON JAMES PHILIP; MILNE G T O D D; JOHN) 14 July 2011 (2011-07-14) claims 1, 12, 13, 14, 15, 44, 45, 46, 47</td>
<td>1-23</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2006037043 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2006036874 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2006037043 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2009035473 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2009035473 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2009039461 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2009039461 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011085216 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011085216 A2</td>
</tr>
</tbody>
</table>