

[54] SHINGLING DEVICE

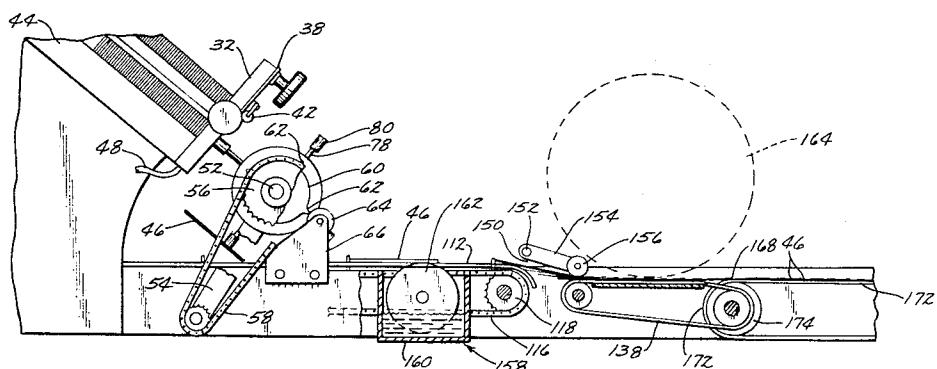
[75] Inventor: Alfred E. Comstock, Frontenac, Minn.
[73] Assignee: Latta's Inc., Waterloo, Iowa
[22] Filed: Feb. 12, 1971
[21] Appl. No.: 115,009

[52] U.S. Cl. 271/20, 271/26 E, 271/29
[51] Int. Cl. B65h 3/08, B65h 3/30
[58] Field of Search..... 271/19-21, 23, 271/29, 26, 26 E, 27-28, 11, DIG. 1

[56] References Cited

UNITED STATES PATENTS

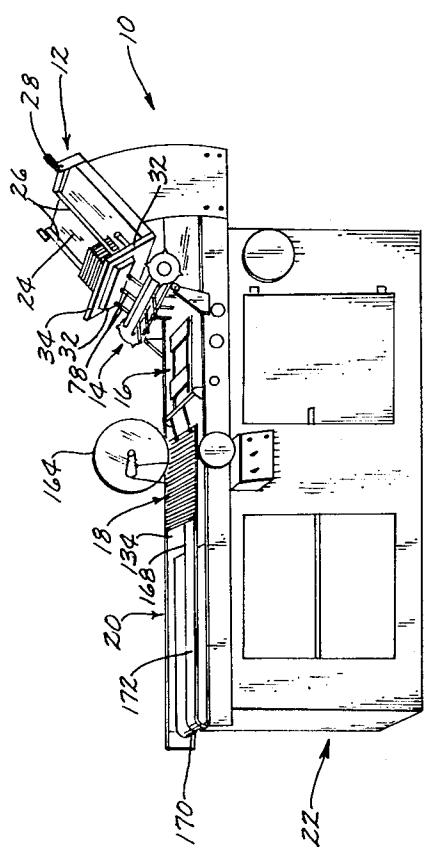
3,302,946 2/1967 Anderson 217/DIG. 1
3,386,558 6/1968 Benatar 217/DIG. 1


3,575,409 4/1971 Calvert 271/27

Primary Examiner—Edward A. Sroka
Attorney—Zarley, McKee & Thomte

[57] ABSTRACT

The shingling device includes a feeder, a rotating hub having grasping members thereon, a first conveyor, and a second conveyor adapted to move more slowly than the first conveyor. The grasping members are adapted to move by the feeder, grasp sheet members from said feeder, and deposit the sheet members on the first conveyor. The first conveyor carries the sheet members to the second conveyor and deposits them on the second conveyor. The sheet members stack up in shingle-like arrangement on the second conveyor because the second conveyor is moving substantially slower than the first conveyor.


9 Claims, 11 Drawing Figures

PATENTED FEB 27 1973

3,718,328

SHEET 1 OF 4

INVENTOR
ALFRED E COMSTOCK
BY
Jarley, McKee & Thornton
ATTORNEYS

PATENTED FEB 27 1973

3,718,328

SHEET 2 OF 4

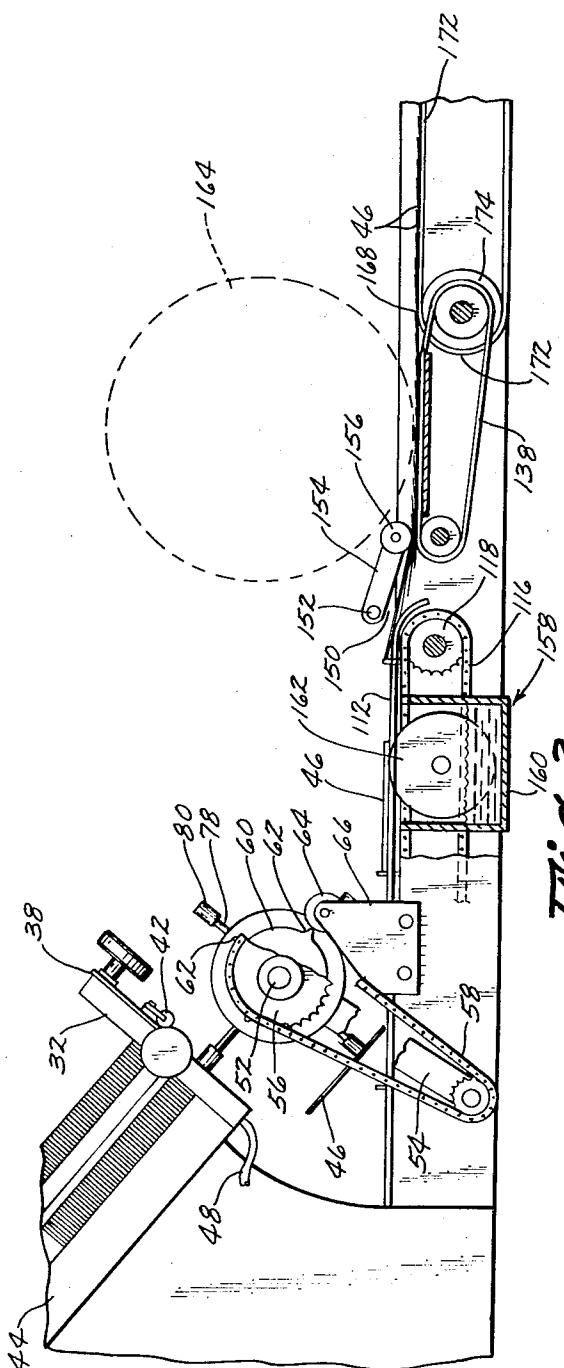


Fig. 3

Fig. 4

INVENTOR
ALFRED E. COMSTOCK
BY
Forsley, McKee & Thomas
ATTORNEYS

PATENTED FEB 27 1973

3,718,328

SHEET 3 OF 4

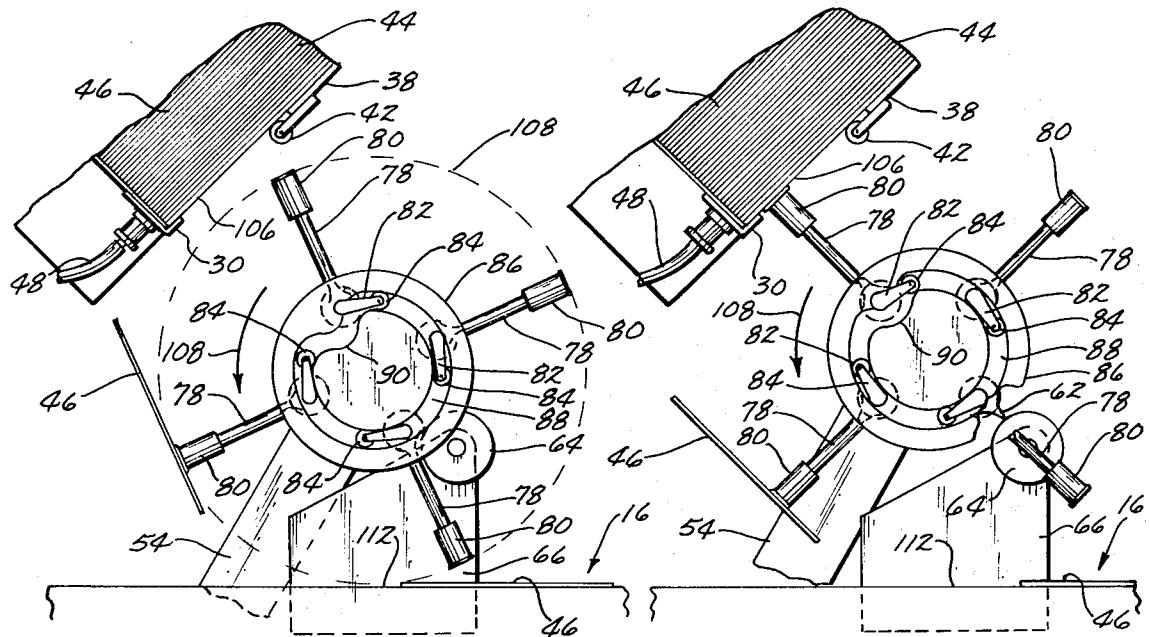


Fig. 5

Fig. 6

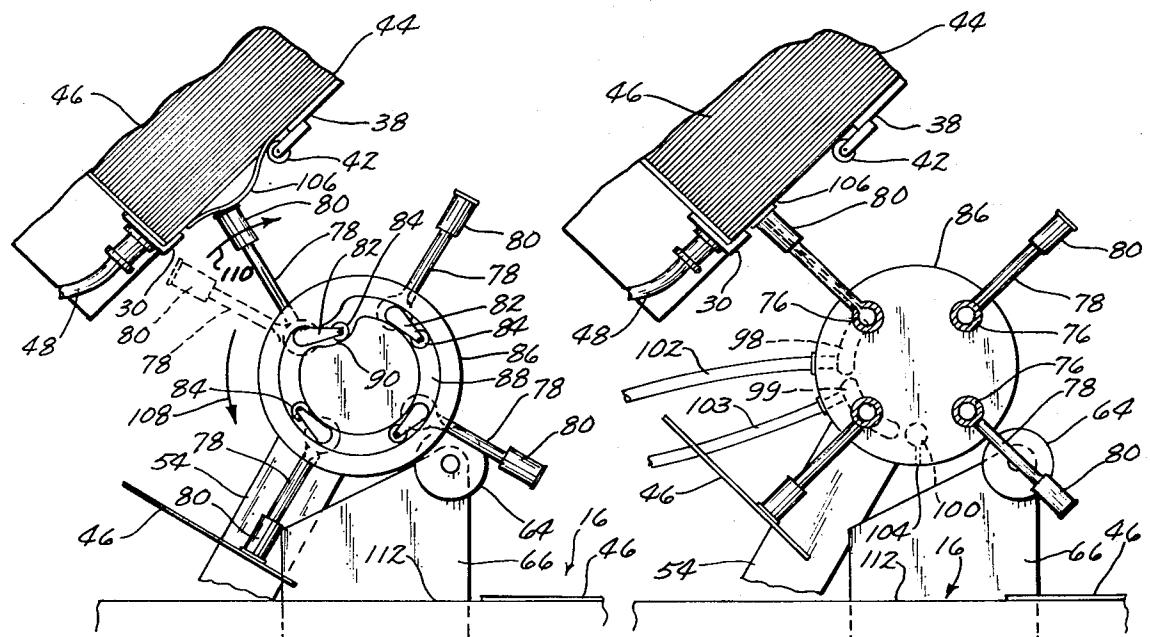
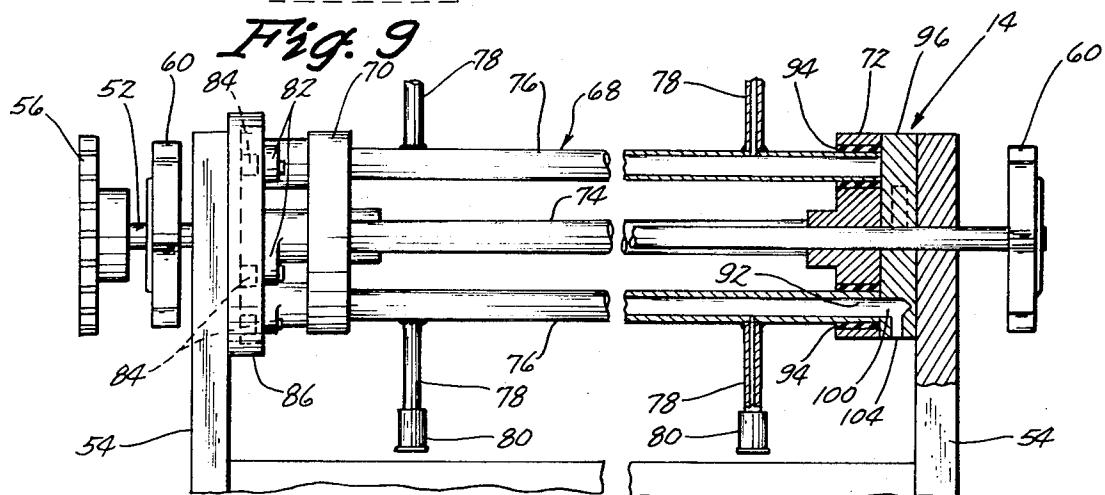
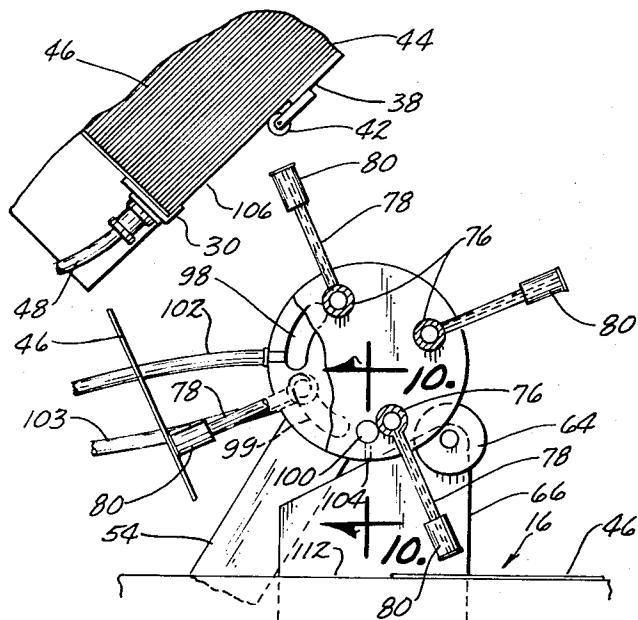
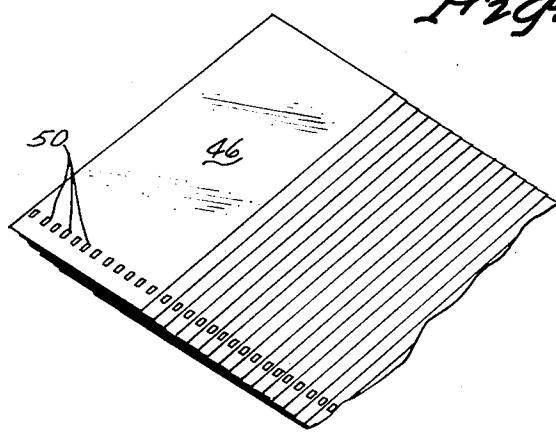


Fig. 7



Fig. 8

INVENTOR
ALFRED E. COMSTOCK
By
Zarley, Mike & Thomas
ATTORNEYS


PATENTED FEB 27 1973

3,718,328

SHEET 4 OF 4

Fig. 10

Fig. 11

INVENTOR
ALFRED E. COMSTOCK
BY
Zarley, McKea & Thomte
ATTORNEY.

SHINGLING DEVICE

This invention relates to the shingling device for arranging a plurality of sheet members in a shingle-like configuration and for securing them together in that configuration.

Many office records, billing records, invoices, and other clerical devices utilize sheets of paper arranged in a shingle-like configuration. Heretofore these configurations have been produced by manually arranging the sheet members and by manually gluing them or otherwise joining them together. The device of the present invention provides a fully mechanized means for arranging and securing these sheet members in a shingle-like arrangement.

Therefore a principal object of the present invention is the provision of a shingling device which fully mechanizes the arrangement and securing of a plurality of sheet members in a shingle-like configuration.

A further object is the provision of a device which will remove sheet members from a hopper one at a time without tearing or damaging them.

A further object is the provision of a device which will arrange the sheet members so that they are uniformly shingled.

A further object is the provision of a device which will apply adhesive to the sheet members and cause them to be joined together automatically without the necessity of manual labor.

A further object is the provision of a device which speeds up the process of shingling sheet members over the speed attained by devices presently being used.

A further object is the provision of a shingling device which is efficient in operation, durable in use, and economical to manufacture.

These and other objects will be apparent to those skilled in the art.

This invention consists in the construction, arrangements, and combination of the various parts of the device, whereby the objects contemplated are attained as hereinafter more fully set forth, specifically pointed out in the claims, and illustrated in the accompanying drawings in which:

FIG. 1 is a perspective view of the shingling device;

FIG. 2 is a top plan view of the shingling device;

FIG. 3 is a sectional view taken along line 3-3 of FIG. 2;

FIG. 4 is an enlarged sectional view taken along line 4-4 of FIG. 2;

FIG. 5 is a sectional view taken along line 5-5 of FIG. 2;

FIGS. 6-9 are sectional views similar to that of FIG. 5, but showing the hub in a plurality of positions during its rotation;

FIG. 10 is a sectional view taken along line 10-10 of FIG. 9; and

FIG. 11 is a perspective view of the sheet members arranged in shingle-like configuration.

Referring to FIG. 1, a shingling device 10 includes a feeder 12, a hub or spindle 14, a first conveyor 16, a second conveyor 18, and a third conveyor 20. Shingling device 10 includes a support frame 22 in which are housed the power means and drive apparatus (not shown) for operating the various components of shingling device 10.

Feeder 12 includes a hopper slide 24 disposed at an oblique inclined angle and provided with adjustable

side rails 26 (FIG. 1). A crank handle 28 is provided for adjusting the distance between side rails 26 so as to accommodate sheet members of varying sizes. At the lower end of hopper slide 24 is an upwardly extending lip 30 (FIGS. 5-9). A pair of support legs 32 (FIGS. 1 and 2) extend upwardly from the lower end of hopper slide 24 and a cross bar 34 extends between the upper ends of support legs 32. Mounted on cross bar 34 for adjustable sliding movement thereon is a hold down assembly 36 best seen in FIG. 2. Hold down assembly 36 includes a slide bar 38 slidably mounted on cross bar 34 and including set screw knobs 40 adapted to be tightened to secure slide bar 38 against sliding movement on cross bar 34. Also secured to slide bar 38 and extending downwardly therefrom is a pair of rollers 42. (FIGS. 3-8).

Feeder 12 is adapted to accommodate a deck 44 of paper sheet members 46. Sheet members 46 are arranged in face to face relationship on hopper slide 24 with the end sheet member 46 at the lower end of deck 44 abutting against lip 30 and roller 42 as can be seen in FIGS. 5-9. At the lower end of hopper slide 24 is a blower tube 48 which is connected to a source of air pressure (not shown) and which is adapted to blow air between the lower sheet members 46 so as to insure that they do not stick together in face to face relationship.

Sheet members 46 are illustrated in FIG. 11 where they are shown in shingled relationship. They are approximately 6-10 inches long and 2 1/2-5 inches wide. A plurality of equally spaced apertures 50 are arranged in a line along one of the end margins of each sheet member 46. While the particular type of sheet member shown in FIG. 11 is the type preferably used with the present invention, other sizes, shapes, and configurations of sheet members could also be shingled by the present device.

Spindle 14 is used for removing sheet members 46 from feeder 12 one at a time and for depositing sheet members 46 on first conveyor 16. Referring to FIG. 10, spindle 14 includes an axle 52 which is rotatably journaled adjacent its opposite ends in a pair of upstanding swing arms 54. Swing arms 54 are hinged at their lower ends to support frame 22 (FIG. 3) so that axle 52 will be swingably movable toward and away from the lower end of hopper slide 24. Fixed to one end of axle 52 is a drive sprocket 56 adapted to receive a drive chain 58 (FIG. 3) which is connected to a drive means (not shown) for causing axle 52 to rotate. Next to drive sprocket 56 is a swing cam 60 (FIG. 10) and a second identical swing cam 60 is mounted on the opposite end of axle 52 from drive sprocket 56. Each swing cam 60 includes a plurality of cam shoulders 62 (FIG. 3) on its outer radial edge. Cam shoulders 62 are adapted to bear against a swing roller 64 which is rotatably supported on support frame 22 by means of gussets 66. Thus as axle 52 and swing cams 60 rotate, cam shoulders 62 bear against swing rollers 64 and cause swing arms 54 to swing about their hinged connection to support frame 22.

Also mounted on axle 52 for rotation therewith is a sucker tube assembly 68 (FIG. 10). Assembly 68 includes a first end member 70 and a second end member 72 which are interconnected by a central tube 74 and a plurality of circumferential tubes 76. Central tube 74

surrounds and is operably fixed to axle 52 so that sucker tube assembly 68 will rotate in unison therewith. Each circumferential tube 76 includes three sucker tubes 78 (see FIG. 1) each extending radially with respect to axle 52 and terminating at its outer end in a sucker mouth 80 (FIGS. 3-9). Sucker tubes 78 are rigid with respect to circumferential tubes 76, and circumferential tubes 76 are rotatably mounted at their opposite ends in first and second end members 70, 72. Circumferential tubes 76 extend completely through first end member 70 and are provided at their ends with a leg 82 (FIGS. 5-7) having a cam roller 84 rotatably mounted thereon. Rigidly secured to the swing arm 54 adjacent first end member 70 is a cam block 86 (FIG. 10) having a continuous cam track 88 therein. (FIGS. 5-7). Cam track 88 is substantially circular except for one dip point 90 located at a predetermined point on its circumference. Cam rollers 84 are rollably guided in cam track 88 and normally hold sucker tubes 78 in a radially extending position such as shown in FIG. 5. However, when one of cam rollers 84 is guided into dip point 90 such as shown in FIG. 7 it causes sucker tube 78 to pivot away from its radially extending position.

Sucker tubes 78 and circumferential tubes 76 are hollow and are in communication with one another as can be seen in FIG. 10. The ends of circumferential tubes 76 which protrude within second end member 72 are each provided with an open end 92 surrounded by an annular sealing ring 94. A valve block 96 is rigidly secured to the one of swing arms 54 adjacent second end member 72. Valve block 96 includes a first vacuum groove 98 (FIGS. 8 and 9), a second vacuum groove 99, and a vent chamber 100 in spaced relation to one another. Vacuum grooves 98, 99 are connected by hoses 102, 103, respectively, to a vacuum pump (not shown). Vent chamber 100 is in communication with the atmosphere by means of a vent port 104. The position of vacuum grooves 98, 99 and vent chamber 100 is such that open ends 92 of circumferential tubes 76 move sequentially into communication first with vacuum groove 98, then with vacuum groove 99, and then with vent chamber 100 as sucker tube assembly 68 rotates on axle 52.

The operation of spindle 14 and feeder 12 is best illustrated in FIGS. 5-9. The point where the end sheet member 46 of deck 44 is held by feeder 12 will be referred to as the pick-up station and is designated in the drawings by the numeral 106. During rotation of sucker tube assembly 68 sucker mouths 80 of sucker tubes 78 are normally rotating in a circular path designated by the numeral 108 (FIG. 5). Path 108 is spaced from pick-up station 106. Sucker tubes 78 are also normally positioned so that they extend radially and are out of communication with a vacuum. As sucker mouths 80 approach pick-up station 106 they first are connected to vacuum groove 98 (FIG. 9) so that a sucking action is commenced at sucker mouths 80. Next cam shoulders 62 of swing cam 60 engage swing rollers 64 so as to cause swing arms 54 to move towards pick-up station 106 (FIG. 6). This camming action urges sucker mouths 80 into grasping engagement with sheet member 46 at pick-up station 106. At the moment that sucker mouths 80 engage sheet member 46, cam rollers 84 begin riding into dip point 90 of cam track 88 (FIG. 7). This causes sucker tubes

78 to pivot in a direction opposite from that in which sucker tube assembly 68 is rotating. The movement of sucker mouths 80 is actually reversed so that they move upwardly as indicated by arrow 110 in FIG. 7. This causes sheet member 46 to be lifted upwardly over lip 30 so that it is freed from feeder 12. By this time cam shoulder 62 is riding off swing roller 64 and sucker mouths 80 are swung away from pick-up station 106 so that they remove sheet member 46 from the vicinity of pick-up station 106. Sucker mouths 80 continue along path 108 until open end 92 of circumferential tube 76 comes into communication with vent chamber 100 whereupon the sucking action of sucker mouths 80 is ceased and sucker mouths 80 release sheet member 46. The use of two separate vacuum chambers 98, 99 prevents venting of chamber 98 when tube 76 comes into communication with vent chamber 100.

First conveyor 16 is positioned adjacent spindle 14 and includes a slide plate 112 (FIG. 2) positioned so as to receive sheet member 46 when it is released from sucker mouths 80. A pair of parallel spaced apart slots 114 are provided in slide plate 112 (FIG. 2). Aligned below slots 114 are a pair of continuous conveyor chains 116 which are trained around a pair of conventional sprockets 118 (FIGS. 3 and 4). Mounted on chains 116 in spaced relation are a plurality of L-shaped dogs 120 each having an upstanding leg 122 and a control leg 124. Dogs 120 are pivotally connected to chains 116 at the junctures 125 between legs 122, 124. On the end of control leg 124 is a cam follower 126 which is slidably or rollably guided in a cam track 128 shown in FIG. 4. Cam track 128 is formed in a cam plate 129 (FIG. 4). Cam track 128 follows the same path as chain 116 with the exception of the end 130 where chain 116 passes downwardly over sprocket 118. At this point cam track 128 forms a tip point 131 wherein it causes control leg 124 to tip upstanding leg 122 rearwardly from a vertical position as illustrated in FIG. 4. A pair of spaced apart guide rails 133 (FIG. 2) are provided on first conveyor 16 for guiding sheet members 46 thereon.

Second conveyor 18 is positioned in a plane slightly below the plane of first conveyor 16 and includes a first end 132 adjacent end 130 of first conveyor 16 and a second end 134 spaced from first conveyor 16. Second conveyor 18 includes a flat slide plate 136 for supporting sheet members 46. A pair of conveyor belts 138 are trained around a pair of belt pulleys 140 and slidably pass over the upper surface of slide plate 136 (FIGS. 2-4). A chain 142 is trained around a pair of sprockets 144, and includes a plurality of spaced pins 148 thereon which protrude upwardly above the upper surface of slide plate 136. Chain 142 is in a predetermined adjusted position with respect to first conveyor 16 so that it will be in registered alignment with the line of apertures 50 in sheet member 46 as sheet members 46 leave first conveyor 16 (see FIG. 2). Pins 148 are spaced so as to register with every fourth aperture 50 in sheet members 46.

Referring to FIG. 4, each pin 148 is provided with a transverse leg 149 having a roller 151 on the end thereof. Rollers 151 are guided within a cam track 153 in a cam plate 155 in the same manner as rollers 126 of first conveyor 16 are guided within cam track 128. Cam track 153 includes a tip point 157 similar to tip

point 131 of first conveyor 16. Tip point 157 causes pins 148 to maintain their vertical orientation as they pass downwardly over sprocket 146 at the far end of second conveyor 18, thereby preventing tearing of sheets 46 as pins 148 slide downwardly out of apertures 50.

Extending upwardly from support frame 22 at a point between first and second conveyors 16, 18, are a pair of spaced apart stubs 150, (FIGS. 2-4) and extending between the upper ends of stubs 150 is a nip roller shaft 152. Mounted on shaft 152 are a pair of nip roller arms 154 having nip rollers 156 on their outer ends. Arms 154 are either pivotally mounted on shaft 152 or they can be rigidly mounted on shaft 152 with shaft 152 rotatably journaled in stubs 150. In either case arms 154 are swingable so that nip rollers 156 can move toward and away from slide plate 136 of second conveyor 18. Spring or bias means (not shown) yieldably urge nip rollers towards slide plate 136.

First conveyor 16 includes a glue applicator 158 including a glue reservoir 160 and a wheel 162 (FIGS. 2 and 3). Applicator 158 is positioned below slide plate 112 of first conveyor 16 with the uppermost margin of wheel 162 protruding a short distance above the upper surface of sliding plate 112 in registered alignment with the line of apertures 50 in sheet members 46 as they are carried by first conveyor 16. The lower margin of wheel 162 protrudes within glue reservoir 160 and is bathed by a glue or other liquid adhesive substance. Means are provided (not shown) for rotating wheel 162 so that it will apply the liquid glue or adhesive substance to the edges of sheet members 46 adjacent apertures 50.

A press wheel 164 is mounted above second conveyor 18 and engages the upper surface of sliding plate 136 of second conveyor 18. Press wheel 164 is provided with a plurality of spaced apertures 166 around its peripheral margin (FIG. 4). Apertures 166 are spaced to register with pins 148 so that operation of chains 140 causes pins 148 to engage press wheel 164 and rotate it.

Referring to FIGS. 1, 3, and 4, third conveyor 20 is positioned adjacent second end 134 of second conveyor 18 and with its opposite end 170 spaced from second conveyor 18. Third conveyor 20 is comprised basically of a wide continuous belt 172 trained around sets of rollers 174.

In operation spindle 14 picks up sheet members 46 from feeder 12 and deposits them one at a time on first conveyor 16 in the manner described above. Upstanding legs 122 of dogs 120 engage and carry sheet members 46 along above slideable plate 112 of first conveyor 16 as illustrated in FIGS. 1 and 2. Referring to FIG. 4, each sheet member 46 is pushed along by dogs 120 until it reaches end 130 of first conveyor 16. As dogs 120 approach end 130, they are tilted rearwardly a short distance by the action of cam follower 126 in cam track 128. This rearward tilting prevents upstanding legs 122 from tilting forwardly as they pass around sprockets 118, thereby causing sheet members 46 to be gently shoved or pushed off end 130 of first conveyor 16 into nip rollers 156.

Because of the somewhat lower position of second conveyor 16, sheet members 46 tilt downwardly and come to rest on the forward end of sliding plate 136 when they are pushed off the end of first conveyor 12.

The pushing action of dogs 120 pushes sheet members 46 under nip rollers 156. Their forward movement is then resumed by their contact with moving conveyor belts 138. Nip rollers 156 engage the upper surfaces of sheet members 46 thereby urging them into frictional driving engagement with conveyor belts 138 of second conveyor 18.

As the sheet advances by the action of the conveyor belts 138 and the nip rollers 156, pins 148 enter every fourth aperture 50 of sheet members 46 so as to position and hold sheet members 46 in a predetermined position on second conveyor 18.

The speeds of first conveyor 16 and second conveyor 18 are set so that first conveyor 16 carries sheet members approximately four times as fast as second conveyor 18. The result of these relative speeds is that sheet members 46 are stacked up in overlapping shingle-like arrangement when they are deposited on second conveyor 18 by first conveyor 16. Since the under surfaces of sheet members 46 are coated with adhesive they tend to stick together as they are deposited in overlapped position on second conveyor 18. Nip rollers 156 and pins 148 also contribute to holding sheet members in alignment as they are carried by second conveyor 18. As the shingled sheet members pass under press wheel 164 they are pressed together at the point where their glued surfaces are in contact.

After the sheet members 46 pass under wheel 164, they are picked up by third conveyor 20 and are carried away. Pins 148 slide downwardly out of sheet members 46 as sheet members 46 are transferred to third conveyor 20.

Thus it can be seen that the device accomplishes at least all of its stated objectives.

I claim:

1. A device of the class described comprising:
a frame;
a sheet feeder for holding a plurality of sheet members, said feeder presenting one of said sheet members in a predetermined orientation at a pick-up station;
a spindle support means movably mounted on said frame for movement toward and away from said pick-up station;
a spindle rotatably mounted on said spindle support means, said spindle including at least one sucker member having a sucker mouth, said spindle being positioned with respect to said pick-up station so that said sucker mouth passes adjacent said one face of said one sheet member when said spindle rotates;
vacuum means for withdrawing air from said sucker mouth;
valve means for connecting said vacuum means to said sucker member when said sucker mouth is adjacent said pick-up station so that said sucker mouth will grasp and hold said one sheet member, said valve means being adapted to disconnect said sucker member from said vacuum means when said sucker mouth is spaced from said pick-up station whereby said sucker mouth will release said one sheet member; and
spindle control means associated with said spindle for moving said spindle toward and away from said pick-up station.

2. A device according to claim 1 wherein said sucker member has an inner end hinged to said spindle for swinging movement about an axis approximately parallel with respect to the rotational axis of said spindle; control means engaging said sucker member for causing said sucker member to swing with respect to said spindle as said sucker mouth passes by said pick-up station. 5

3. A device according to claim 2 wherein said control means is a cam track stationarily mounted with respect to said frame; said inner end of said sucker member including a cam follower guided within said cam track; said cam track and said cam follower being arranged with respect to one another so that said sucker member swings in a direction opposite from the rotational direction of said spindle when said sucker mouth passes adjacent said pick-up station. 10 15

4. A device according to claim 1 wherein said valve means includes a stationary member and a movable member, said stationary member including a vacuum chamber adjacent said pick-up station and a vent port spaced from said pick-up station; said vacuum chamber being connected to said vacuum means and said vent port being in communication with the atmosphere; said movable member being in communication with and carried in unison with said sucker member; said movable member moving successively into communication with said vacuum chamber and said vent port when said spindle rotates. 20 25

5. A device according to claim 1 wherein said spindle control means comprises a first camming surface on said spindle and a second camming surface mounted on said frame, said first and second camming surfaces camming against one another during rotation of said spindle. 30

6. A device according to claim 5 wherein said first camming surface rotates in unison with said spindle. 35

7. A device of the class described comprising:

a frame;
a sheet feeder for holding a plurality of sheet members, said feeder holding said sheet members in face to face relationship and presenting one face of one of said sheet members in a predetermined orientation at a pick-up station; 40
a spindle rotatably mounted with respect to said frame between a pair of arms, said arms being swingably mounted to said frame;
a first camming surface being mounted on said frame;
a second camming surface being on said spindle for 45 rotation in unison therewith;
said first and second camming surfaces bearing against one another for causing controlled swinging movement of said arms with respect to said frame during rotation of said spindle whereupon 50 said rotational axis of said spindle moves toward and away from said pick-up station in a predeter- 55

mined pattern during rotation of said spindle, said spindle including at least one sucker member having a sucker mouth, said spindle being positioned with respect to said pick-up station so that said sucker mouth passes adjacent said one face of said one sheet member when said spindle rotates; vacuum means for withdrawing air from said sucker mouth; and

valve means for connecting said vacuum means to said sucker member when said sucker mouth is adjacent said pick-up station so that said sucker mouth will grasp and hold said one sheet member, said valve means being adapted to disconnect said sucker member from said vacuum means when said sucker mouth is spaced from said pick-up station whereby said sucker mouth will release said one sheet member. 8

8. A frame;
a sheet feeder for holding a plurality of sheet members, said feeder holding said sheet members in face to face relationship and presenting one face of one of said sheet members in a predetermined orientation at a pick-up station;
a support means movably mounted on said frame for movement with respect to said pick-up station; a spindle rotatably mounted on said support means, said spindle including at least one grasping member having grasping means adapted to grasp and hold said one sheet member; said spindle being positioned with respect to said pick-up station so that said grasping means passes adjacent, engages, and grasps said one face of said one sheet member during rotation of said spindle;
a first camming surface on said spindle;
a second camming surface on said frame;
said first and second camming surfaces bearing against one another to cause movement of said support means toward and away from said pick-up station in a predetermined pattern with respect to rotation of said spindle;
said grasping member having an inner end hinged to said spindle for swinging movement about an axis approximately parallel to the rotational axis of said spindle, said grasping means being held radially outwardly from said inner end of said grasping member; and
control means engaging said grasping member for causing said grasping member to swing in a direction opposite from the rotation of said hub as said grasping means passes adjacent said pick-up station so as to cause lost motion as said grasping means grasps said sheet member.

9. A device according to claim 8 wherein said control means is a cam track mounted stationarily with respect to said frame; said inner end of said grasping member including a cam follower guided within said cam track.

* * * *