

US009249122B1

(12) United States Patent

Yang et al.

(10) Patent No.:

US 9,249,122 B1

(45) **Date of Patent:**

Feb. 2, 2016

(54) PROCESS FOR THE PREPARATION OF 3-(3-CHLORO-1*H*-PYRAZOL-1-YL)PYRIDINE

(71) Applicant: Dow AgroSciences LLC, Indianapolis,

IN (US)

(72) Inventors: Qiang Yang, Zionsville, IN (US); Beth

Lorsbach, Indianapolis, IN (US); Xiaoyong Li, Midland, MI (US); Gary Roth, Midland, MI (US); David E. Podhorez, Midland, MI (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 14/517,315
- (22) Filed: Oct. 17, 2014

Related U.S. Application Data

- (60) Provisional application No. 62/031,547, filed on Jul. 31, 2014.
- (51) Int. Cl. C07D 401/04 (2006.01) C07D 231/14 (2006.01) C07D 403/04 (2006.01) A01N 43/46 (2006.01) A61K 31/415 (2006.01)
- (58) Field of Classification Search CPC C07D 231/14; C07D 403/04; A01N 43/46;

A61K 31/415 USPC 514/352, 406; 546/275.4; 548/364.1 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2.505.241	0/10/0	
3,597,341 A	9/1968	Alexis
4,080,457 A	3/1978	Harrison et al.
4,260,765 A	4/1981	Harrison et al.
4,407,803 A	10/1983	Haviv et al.
4,536,506 A	8/1985	Marcoux et al.
4,824,953 A	4/1989	Bronn
5,220,028 A	6/1993	Iwasawa et al.
5,625,074 A	4/1997	Daum et al.
5,631,380 A	5/1997	Haas et al.
5,652,372 A	7/1997	Muller et al.
5,693,657 A	12/1997	Lee et al.
5,750,718 A	5/1998	Muller et al.
5,817,677 A	10/1998	Linz et al.
5,854,264 A	12/1998	Anthony et al.
5,854,265 A	12/1998	Anthony et al.
5,869,681 A	2/1999	Muller et al.
6,040,331 A	3/2000	Yamamoto et al.
6,218,418 B1	4/2001	Pevarello et al.
6,506,747 B1	1/2003	Betageri et al.
6,548,525 B2	4/2003	Galemmo, Jr. et al.
6,720,427 B2	4/2004	Sanner et al.
6,878,196 B2	4/2005	Harada et al.
6,916,927 B2	7/2005	Bunnage et al.
6,965,032 B2	11/2005	Freudenberger et al.
7,192,906 B2	3/2007	Hirohara et al.
7,196,104 B2	3/2007	Askew, Jr. et al.
7,150,104 DZ	5,2007	ribhow, sr. et ar.

7,319,108	B2	1/2008	Schwink et al.
7,774,978	B2	8/2010	Ding et al.
7,803,832	B2	9/2010	Critcher et al.
7,910,606	B2	3/2011	Nazare et al.
7,923,573	B2	4/2011	Tamaki et al.
8,163,756	B2	4/2012	Flynn et al.
8,222,280	B2	7/2012	Liu et al.
8,901,153	B2	12/2014	Buysse et al.
2002/0013326	A1	1/2002	Tiebes et al.
2003/0153464	A1	8/2003	Nakamura et al.
2003/0213405	A1	11/2003	Harada et al.
2004/0043904	A1	3/2004	Yamaguchi et al.
2004/0082629	A1	4/2004	Iwataki et al.
2005/0038059	A1	2/2005	Mueller et al.
2005/0176710	A1	8/2005	Schwink et al.
2006/0135778	A1	6/2006	Schnatterer et al.
2006/0160857	A1	7/2006	Buettelmann et al.
2006/0160875	A1	7/2006	Gaines et al.
2006/0167020	A1	7/2006	Dickerson et al.
2006/0287365	A1	12/2006	Billen et al.
2006/0287541	A1	12/2006	Nishino et al.
2007/0049604	A1	3/2007	Nam et al.
2007/0167426	A1	7/2007	Siddiqui et al.
2008/0004301	A1	1/2008	Tamaki et al.
2008/0027046	A1	1/2008	Annan et al.
2009/0023709	A1	1/2009	Gillespie et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0097323 A2 1/1984 EP 0190457 A1 8/1986 (Continued)

OTHER PUBLICATIONS

Kempe et al. 'Responsive Glyco-poly(2-oxazoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding,' Biomacromolecules 2011, vol. 12, pp. 2591-2600.

Fields et al. 'Preparation of Trifluoromethyl-Pyrazoles and -Pyrazolines by the Reaction of 2,2,2-Trifluorodiazoethane With Carbon—Carbon Multiple Bonds,' Journal of Fluorine Chemistry, 1979, vol. 13, pp. 147-158.

Bradbury et al. 'Enzyme-catalysed peptide amidation,' Eur. J. Biochem. 1987, vol. 169, pp. 579-584.

International Search Report and Written Opinion for PCT/US2014/061005 mailed Dec. 16, 2014.

International Search Report and Written Opinion for PCT/US2014/061006 mailed Dec. 8, 2014.

(Continued)

Primary Examiner — John Mabry

Assistant Examiner — Daniel Carcanague

(74) Attorney, Agent, or Firm — Barnes & Thornburg LLP; Carl Corvin

(57) ABSTRACT

3-(3-Chloro-1H-pyrazol-1-yl)pyridine is prepared by cyclizing 3-hydrazinopyridine•dihydrochloride with acrylonitrile to provide 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine, by oxidizing to provide 3-(3-amino-1H-pyrazol-1-yl) pyridine, and by converting the amino group to a chloro group by a Sandmeyer reaction.

4 Claims, No Drawings

(56)	Referen	ices Cited	WO	WO 2006/103045 A1	10/2006
	U.S. PATENT	DOCUMENTS	WO WO	WO 2007/005838 A2 WO 2007/087427 A2	1/2007 8/2007
			WO	WO 2007/098826 A2	9/2007
		Breinlinger et al.	WO WO	WO 2008/005457 A2 WO 2008/079277 A1	1/2008 7/2008
		Billen et al. Taniguchi et al.	wo	WO 2008/090382 A1	7/2008
		Bothmann et al.	WO	WO 2009/149858 A1	12/2009
		Crouse et al.	WO WO	WO 2010/006713 A2 WO 2010/009290 A1	1/2010 1/2010
		Guiles et al. Trullinger et al.	wo	WO 2010/003230 A1 WO 2010/012442 A2	2/2010
		Velicelebi et al.	WO	WO 2010/033360 A1	3/2010
		Mallais et al.	WO WO	WO 2010/048207 A2 WO 2010/060379 A1	4/2010 6/2010
		Shimura Bretschneider et al.	wo	WO 2010/000375 A1 WO 2010/075376 A2	7/2010
		Bretschneider et al.	WO	WO 2010/129497 A1	11/2010
		Machacek et al.	WO WO	WO 2010/133336 A1 WO 2010/146236 A1	11/2010 12/2010
		Bretschneider et al. Wada et al.	wo	WO 2011/003065 A2	1/2011
		Matsuzaki et al.	WO	WO 2011/043371 A1	4/2011
		Bretschneider et al.	WO WO	WO 2011/045224 A1 WO 2011/045240 A1	4/2011 4/2011
		Bretschneider et al. Fublein et al.	wo	WO 2011/091153 A1	7/2011
		Parker et al.	WO	WO 2011/101229 A1	8/2011
		Muhlthau et al.	WO WO	WO 2011/126903 A2 WO 2011/128304 A1	10/2011 10/2011
		Bretschneider et al. Garizi et al.	wo	WO 2011/134964 A1	11/2011
		Yap et al.	WO	WO 2011/138285 A1	11/2011
2012/		Du et al.	WO WO	WO 2011/163518 A1 WO 2012/000896 A2	12/2011 1/2012
		Bretschneider et al.	wo	WO 2012/004217 A1	1/2012
		Crouse et al. Lowe et al.	WO	WO 2012/007500 A2	1/2012
		Berger et al.	WO WO	WO 2012/035011 A1 WO 2012/052412 A1	3/2012 4/2012
2013/		Trullinger et al.	wo	WO 2012/061290 A2	5/2012
		Trullinger et al.	WO	WO 2012/070114 A1	5/2012
		Niyaz et al. Bretschneider et al.	WO WO	WO 2012/102387 A1 WO 2012/108511 A1	8/2012 8/2012
		Buysse et al.	WO	WO 2012/147107 A2	11/2012
		Buysse et al.	WO	WO 2012/168361 A1	12/2012
		Ross, Jr. et al. Ross, Jr. et al.	WO WO	WO 2013/000931 A1 WO 2013/010946 A2	1/2013 1/2013
2013/	0324/3/ AT 12/2013	Koss, Jr. et al.	WO	WO 2013/010947 A2	1/2013
	FOREIGN PATE	NT DOCUMENTS	WO	WO 2013/062980 A1	5/2013
			WO WO	WO 2013/064324 A1 WO 2013/156431 A1	5/2013 10/2013
EP EP	0205024 A2 0248315 A2	12/1986 12/1987	WO	WO 2013/156433 A1	10/2013
EP	0425948 A2	5/1991	T /		BLICATIONS
EP	1273582 A1	1/2003		7 mailed Dec. 31, 2014.	Written Opinion for PCT/US2014/
EP EP	1321463 A1 1329160 A2	6/2003 7/2003	Intern	ational Search Report and V	Written Opinion for PCT/US2014/
JР	1987-153273 A	7/1987		9 mailed Dec. 8, 2014.	Written Opinion for PCT/US2014/
JP JP	1988-174905 A 1989-226815 A	7/1988 9/1989	06101	0 mailed Dec. 15, 2014.	
JP	2003-212864 A	7/2003			Written Opinion for PCT/US2014/
JP JP	2004-051628 A 2004-292703 A	2/2004 10/2004		2 mailed Dec. 15, 2014. ational Search Report and V	Written Opinion for PCT/US2014/
JР	2012-188418 A	10/2012	06101	4 mailed Dec. 15, 2014.	•
JP JP	2013-075871 A	4/2013 5/2013		ational Search Report and V 6 mailed Dec. 15, 2014.	Written Opinion for PCT/US2014/
JР	2013-082699 A 2013-082704 A	5/2013			Written Opinion for PCT/US2014/
JP	2013-107867 A	6/2013	06102	2 mailed Dec. 29, 2014.	•
JP JP	2013-129651 A 2013-129653 A	7/2013 7/2013		ational Search Report and V 3 mailed Dec. 15, 2014.	Written Opinion for PCT/US2014/
WO	WO 94/13644 A1	6/1994	Intern	ational Search Report and V	Written Opinion for PCT/US2014/
WO WO	WO 97/36897 A1 WO 98/49166 A1	10/1997 11/1998	06102	4 mailed Dec. 15, 2014.	
WO	WO 00/35919 A2	6/2000		ational Search Report and v 7 mailed Dec. 15, 2014.	Written Opinion for PCT/US2014/
WO WO	WO 01/34127 A1	5/2001	Intern	ational Search Report and V	Written Opinion for PCT/US2014/
WO	WO 01/90078 A1 WO 02/083111 A2	11/2001 10/2002		9 mailed Dec. 15, 2014. ational Search Report and V	Written Opinion for PCT/US2014/
WO WO	WO 03/008405 A1	1/2003		0 mailed Dec. 15, 2014.	
WO	WO 03/072102 A1 WO 2004/041813 A1	9/2003 5/2004	Intern	ational Preliminary Report	on Patentability for PCT/US2011/
WO WO	WO 2005/070925 A1 WO 2005/074875 A2	8/2005 8/2005		8 mailed Dec. 21, 2012. ational Search Report and V	Written Opinion for PCT/US2011/
WO	WO 2006/023462 A1	3/2006	05857	8 mailed Apr. 5, 2012.	
WO WO	WO 2006/033005 A2 WO 2006/046593 A1	3/2006 5/2006		ational Search Report and V 5 mailed May 8, 2013.	Written Opinion for PCT/US2013/
., 0	3 2000,0 10333 111	5,2000	02501		

BACKGROUND

The present invention concerns an improved process for ¹⁵ preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine.

US 20130288893(A1) describes, inter alia, certain (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amides and carbamates and their use as pesticides. The route to prepare such compounds involved the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) by the direct coupling of 3-bromopyridine with 3-chloropyrazole. The 3-chloropyrazole was prepared by a) treating 1H-pyrazole with 2-dimethylsulfamoyl chloride and sodium hydride to provide N,N-dimethyl-1H-pyrazole-1-sulfonamide, b) treating the N,N-dimethyl-1H-pyrazole-1-sulfonamide with perchloroethane and n-butyl lithium to provide 3-chloro-N,N-dimethyl-1H-pyrazole-1-sulfonamide, and c) removing the N,N-dimethylsulfonamide from 3-chloro-N,N-dimethyl-1H-pyrazole-1-sulfonamide with trifluoroacetic acid to give the 3-chloropyrazole.

The disclosed process produces low yields, relies on a starting material that is difficult to prepare (3-chloropyrazole) and provides a product that is difficult to isolate in a pure form. It would be desirable to have a process for preparing 35-(3-chloro-1H-pyrazol-1-yl)pyridine that avoids these problems.

SUMMARY

The present invention provides such an alternative by cyclizing 3-hydrazinopyridine•dihydrochloride with acrylonitrile to provide 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a), by oxidizing to provide 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a), and by converting the amino group to a chloro group by a Sandmeyer reaction. Thus, the present invention concerns a process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b),

which comprises

a) treating 3-hydrazinopyridine•dihydrochloride

2

with acrylonitrile

10 in a $(C_1$ - $C_4)$ aliphatic alcohol at a temperature of about 25° C. to about 100° C. in the presence of an alkali metal $(C_1$ - $C_4)$ alkoxide to provide 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a)

$$NH_{2};$$

$$NH_{2};$$

$$NH_{2};$$

b) treating the 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a) with an oxidant in an inert organic solvent at a temperature of about 25° C. to about 100° C. to provide 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a)

$$NH_{2};$$

$$NH_{$$

c) treating the 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a) in aqueous hydrochloric acid with sodium nitrite at a temperature of about 0° C. to about 25° C. to provide the diazonium salt (8b)

$$N_{2}^{+} \text{ Cl}^{-};$$

$$N_{2}^{+} \text{ N}$$

$$N_{2}^{+} \text{ N}$$

$$N_{3}^{+} \text{ N}$$

$$N_{4}^{-} \text{ N}$$

$$N_{5}^{+} \text{ N}$$

and

40

d) treating the diazonium salt (8b) with copper chloride at a temperature of about 0° C. to about 25° C.

DETAILED DESCRIPTION

The present invention provides an improved process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b), by

3

cyclizing 3-hydrazinopyridine•dihydrochloride with acrylonitrile to provide 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a), by oxidizing to provide 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a), and by converting the amino group to a chloro group by a Sandmeyer reaction.

In the first step, 3-hydrazinopyridine•dihydrochloride is treated with acrylonitrile in a $(C_1 - C_4)$ aliphatic alcohol at a temperature of about 25° C. to about 100° C. in the presence of an alkali metal $(C_1 - C_4)$ alkoxide to provide 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine. While stoichiometric 10 amounts of 3-hydrazinopyridine•dihydrochloride and acrylonitrile are required, it is often convenient to use about a 1.5 fold to about a 2 fold excess of acrylonitrile. The cyclization is run in the presence of an alkali metal $(C_1 - C_4)$ alkoxide base. It is often convenient to use about a 2 fold to about a 5 fold 15 excess of base. The cyclization is performed in a $(C_1 - C_4)$ aliphatic alcohol. It is most convenient that the alkoxide base and the alcohol solvent be the same, for example, sodium ethoxide in ethanol.

In a typical reaction, 3-hydrazinopyridine•dihydrochloride 20 and an anhydrous alcohol are introduced into a reaction vessel and the alkoxide base is gradually added. The mixture is stirred and the acrylonitrile is added. The mixture is stirred at about 60° C. until most of the 3-hydrazinopyridine has reacted. The mixture is allowed to cool and the excess base is 25 neutralized with acid. The crude 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a) is conveniently isolated and purified by standard techniques.

In the second step, 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a) is treated with an oxidant in an organic 30 solvent at a temperature of about 25° C. to about 100° C. to provide 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a). Suitable oxidants include manganese(IV) oxide, potassium ferricyanide(III), copper(I) chloride in the presence of oxygen, and iron(III) chloride in the presence of oxygen. Manganese(IV) 35 oxide is preferred. It is often convenient to use about a 2 fold to about a 10 fold excess of oxidant. The oxidation is performed in a solvent that is inert to the oxidant. Suitable solvents include nitriles such as acetonitrile or halocarbons such as dichloromethane. With manganese(IV) oxide as the 40 oxidant, acetonitrile is a preferred solvent.

In a typical reaction, 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a) and solvent are mixed with the oxidant and the mixture is heated at about 60° C. until the reaction is completed. The 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a) is 45 conveniently isolated and purified by standard techniques.

The 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a) is then converted to the desired 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) by treatment in aqueous hydrochloric acid with sodium nitrite at a temperature of about 0° C. to about 25° C. 50 to provide a diazonium salt followed by treatment of the diazonium salt with copper chloride at a temperature of about 0° C. to about 25° C. While stoichiometric amounts of reagents are required, it is often convenient to use an excesses of reagents with respect to the 3-(3-amino-1H-pyrazol-1-yl) 55 pyridine (8a). Thus, aqueous hydrochloric acid is used in large excess as the reaction medium. Sodium nitrite is used in about a 1.3 fold to about a 2 fold excess. Copper chloride is used in about 5 mole percent to about 60 mole percent excess, preferably from about 15 mole percent to about 30 mole 60 percent excess. The copper chloride may be either copper(I) chloride or copper(II) chloride. To suppress foaming during the reaction a water-immiscible organic solvent such as toluene or chloroform can be added during the treatment of the diazonium salt with copper chloride.

In a typical reaction, a mixture of 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a) and aqueous hydrochloric acid are mixed

4

and cooled to about 0° C. An aqueous solution of sodium nitrite is slowly added maintaining the temperature below about 5° C. The suspension is stirred at about 0° C. for about 2 hours. In a separate vessel, a mixture of copper(II) chloride and toluene is cooled to about 0° C. and the chilled suspension of diazonium salt is added at a rate maintaining the temperature below about 5° C. The mixture is allowed to warm to about ambient temperature. After completion of the reaction, the mixture is treated with aqueous sodium hydroxide to adjust the pH to about 8 to about 10. The resulting solution is extracted with a water-immiscible organic solvent. After removal of the solvent, the 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) can be used directly in the next reaction or further purified by standard techniques such as flash column chromatography or crystallization.

The following examples are presented to illustrate the invention.

EXAMPLES

1. Preparation of 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a)

To a 4-neck, round bottomed flask (250 mL) was charged sodium ethanolate (21 wt % in ethanol, 32 mL). 3-Hydrazinopyridine•dihydrochloride (5.00 g, 27.5 mmol) was added, causing an exotherm from 20° C. to 58° C. The mixture was allowed to cool to 20° C. and acrylonitrile (2.91 g, 54.9 mmol) was added. The reaction was heated at 60° C. for 5 hours and cooled to 20° C. The excess sodium ethanolate was quenched with hydrochloric acid (4 M in 1,4-dioxane, 6.88 mL, 27.5 mmol) at <20° C. The mixture was adsorbed on silica gel (10 g) and the crude product was purified by flash column chromatography using 0-10% methanol/dichloromethane as eluent. The fractions containing pure product were concentrated to dryness to afford the title compound as a yellow solid (3.28 g, 74%): mp 156-160° C.; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, J=2.8, 0.8 Hz, 1H), 8.01 (dd, J=4.6, 1.4 Hz, 1H), 7.22 (ddd, J=8.4, 2.8, 1.5 Hz, 1H), 7.12 (ddd, J=8.4, 4.6, 0.8 Hz, 1H), 4.20 (s, 2H), 3.70 (t, J=9.3 Hz, 2H), $_{65}$ 2.92 (t, J=9.3 Hz, 2H); $^{13}\mathrm{C}$ NMR (101 MHz, CDCl3) δ 154.23, 144.78, 139.22, 135.08, 123.44, 119.44, 49.23, 32.74; ESIMS m/z 163 ([M+H]+).

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ N & & \\ &$$

To a 3-neck, round bottomed flask (100 mL) was charged 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (1.00 g, 6.17 mmol) and acetonitrile (20 mL). Manganese(IV) oxide (2.68 g, 30.8 mmol) was added, causing an exotherm from 20° C. to 25° C. The reaction was stirred at 60° C. for 18hours, after which it was filtered through a Celite® pad and the pad was rinsed with acetonitrile (20 mL). Water (20 mL) was added to the combined filtrates and the resulting mixture was concentrated to $10\,\text{mL}$. Water ($20\,\text{mL}$) was added and the resulting mixture was again concentrated to 10 mL. The resulting suspension was stirred at 20° C. for 18 hours and filtered. The filter cake was rinsed with water (2×5 mL) and dried to afford the title compound as a brown solid (0.68 g, 69%): mp 169-172° C.; ¹H NMR (400 MHz, DMSO-d₆) δ 9.07-8.82 (m, 1H), 8.33 (dd, J=4.6, 1.5 Hz, 1H), 8.24 (d, J=2.6 Hz, 1H), 8.00 (ddd, J=8.4, 2.7, 1.4 Hz, 1H), 7.42 (ddd, J=8.5, 4.6, 0.8 Hz, 1H), 5.80 (d, J=2.6 Hz, 1H), 5.21 (s, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 157.67, 144.68, 138.00, $_{30}$ 136.22, 128.30, 123.95, 123.17, 97.08; ESIMS m/z 161 ([M+ $H]^+$).

3. Preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b)

To a 3-neck round bottomed flask (250 mL) was charged 45 3-(3-amino-1H-pyrazol-1-yl)pyridine (5.00 g, 31.2 mmol) and hydrogen chloride (37 wt %, 15 mL). The mixture was cooled to 0° C. A solution of sodium nitrite (4.31 g, 62.4 mmol) in water (15 mL) was added in portions at <1° C. over 20 minutes and the resulting brown solution was stirred at <0° 50 C. for 2 hours. To a separate 3-neck round bottomed flask (250 mL) was charged copper(II) chloride (5.04 g, 37.5 mmol) and toluene (30 mL). It was cooled to 0° C. and the yellow solution was added in portions at <1° C. over 15 minutes. The resulting mixture was allowed to warm up, off-gassing was 55 observed when the reaction temperature reached 18° C. The reaction was stirred at 20° C. for 18 hours. The reaction was basified with 50 wt % sodium hydroxide to pH ~10. Celite® (10 g) was added and the resulting suspension was stirred for 10 minutes. The suspension was filtered through a Celite® 60 pad (10 g) and the filter cake was rinsed with ethyl acetate $(2\times50 \text{ mL})$. The layers of the filtrates were separated and the aqueous layer was extracted with ethyl acetate (100 mL). The organic layers were concentrated to dryness and the residue was purified by flash column chromatography using 0-60% 65 ethyl acetate/hexanes as eluent. The fractions containing the desired product were concentrated to give the title compound

6

as a white solid (3.80 g, 68%): mp 104-106° C.; 1 H NMR (400 MHz, CDCl₃) δ 8.93 (d, J=2.7 Hz, 1H), 8.57 (dd, J=4.8, 1.4 Hz, 1H), 8.02 (ddd, J=8.3, 2.7, 1.5 Hz, 1H), 7.91 (d, J=2.6 Hz, 1H), 7.47-7.34 (M, 1H), 6.45 (d, J=2.6 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 148.01, 142.72, 140.12, 135.99, 128.64, 126.41, 124.01, 108.08; EIMS m/z 179 ([M] $^{+}$).

What is claimed is:

1. A process for preparing 3-(3-chloro-1H-pyrazol-1-yl) pyridine (5b),

which comprises

a) treating 3-hydrazinopyridine•dihydrochloride

with acrylonitrile

35

in a (C_1-C_4) aliphatic alcohol at a temperature of about 25° C. to about 100° C. in the presence of an alkali metal (C_1-C_4) alkoxide to provide 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3-amine (9a)

b) treating the 1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazol-3amine (9a) with an oxidant in an organic solvent at a temperature of about 25° C. to about 100° C. to provide 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a)

$$NH_{2};$$

$$NH_{$$

c) treating the 3-(3-amino-1H-pyrazol-1-yl)pyridine (8a) in aqueous hydrochloric acid with sodium nitrite at a temperature of about 0° C. to about 25° C. to provide the diazonium salt (8b)

8

7

$$N_{2}^{+} \text{ CI}^{-};$$

and

d) treating the diazonium salt (8b) with copper chloride at a temperature of about $0^{\rm o}$ C. to about $25^{\rm o}$ C.

2. The process of claim 1 in which the oxidant is manganese(IV) oxide, potassium ferricyanide (III), copper(I) chloride in the presence of oxygen, or iron(III) chloride in the presence of oxygen.

3. The process of claim 2 in which the oxidant is manganese(IV) oxide.

4. The process of claim **1** in which a water immiscible organic solvent is added in step d) to suppress foaming.

* * * * *