

DOMANDA DI INVENZIONE NUMERO	102021000028979
Data Deposito	16/11/2021
Data Pubblicazione	16/05/2023

Classifiche IPC

Titolo

PROCEDIMENTO E DISPOSITIVO PER L'ALLINEAMENTO DI ELEMENTI CONDUTTORI DI AVVOLGIMENTI INDUTTIVI. TITOLO: PROCEDIMENTO E DISPOSITIVO PER
L'ALLINEAMENTO DI ELEMENTI CONDUTTORI DI
AVVOLGIMENTI INDUTTIVI

A NOME: ATOP SPA

CON SEDE A: BARBERINO TAVARNELLE (FI)

CLASSE: H02K15/00

* * * *

DESCRIZIONE

Il presente trovato oggetto ha come un procedimento ed un dispositivo per l'allineamento di elementi conduttori di avvolgimenti induttivi: in particolare il dispositivo risulta idoneo per eseguire operazioni di allineamento su elementi (conduttori di conduttori elettricità, conducibili elettricamente) costituenti qli avvolgimenti (o bobine) induttivi di macchine elettriche, quali motori, generatori e, generale, qualsiasi altra tipologia di macchina elettrica.

Il dispositivo secondo il trovato sarà idoneo ad essere utilizzato in un impianto che attua processi di accoppiamento stabile (ad esempio

attraverso la reciproca saldatura) delle estremità di coppie di elementi conduttori in cui ciascun elemento conduttore farà parte di una bobina induttiva e sarà conformato come una forcella. Tali elementi conduttori sono inseriti nelle cave di nucleo di una macchina elettrica, un normalmente sono denominati "hairpin" secondo la dizione Anglosassone del settore. La forcella diritti presenta due gambi reciprocamente collegati da una parte trasversale а Complessivamente la forcella ha una conformazione approssimativamente ad U rovesciata con il ponte sagomato secondo una forma a cuspide. Ciascun gambo ha una estremità libera per l'inserimento della forcella nelle cave di un nucleo come uno induttore o un indotto di una macchina elettrica. L'inserimento avviene inserendo le estremità degli elementi libere conduttori attraverso longitudinali delle cave e facendole aperture scorrere fino a farle sbucare dalla parte opposta del nucleo ferromagnetico, fino a raggiungere una sporgenza esterna dei gambi predefinita. Quindi da

una parte del nucleo ferromagnetico restano esterni i ponti delle forcelle, mentre dall'altra parte del nucleo ferromagnetico restano esterne le estremità libere.

Dopo l'inserimento, le estremità libere vengono disposte in posizioni piegate per essere predeterminate in corrispondenza delle avvengono dei collegamenti con altre estremità libere di altri elementi conduttori (forcelle) mediante saldatura. L'operazione di saldatura può avvenire mediante riscaldamento a resistenza oppure con un fascio laser che colpisce le teste di due estremità libere posizionate adiacenti per essere collegate: la fusione del materiale delle due teste genera un giunto di collegamento caratteristiche conforme alle meccaniche elettriche richieste, e quindi chiude il circuito dell'avvolgimento induttivo secondo uno elettrico prestabilito. Le estremità libere distinti elementi conduttori dovranno essere disposte secondo criteri di allineamento reciproco che rendano semplici le operazioni di

saldatura e che garantiscano una elevata stabilità dell'accoppiamento. Per la realizzazione di avvolgimenti induttivi delle macchine elettriche di recente concezione (sempre più ottimizzate) si è reso necessario rivedere le apparecchiature e i processi che realizzano l'allineamento delle estremità libere, in quanto è richiesto un elevato livello di precisione di posizionamento delle estremità libere richiesta per la loro corretta saldatura.

Per l'allineamento delle estremità libere degli elementi conduttori è noto il ricorso ad un apparecchio (e procedimento) secondo gli insegnamenti del brevetto n° EP2684283.

Tale apparecchio consente di realizzare un ottimale allineamento delle estremità libere degli elementi conduttori, per mezzo di rispettivi organi di serraggio che li serrano allineandoli e compattandoli vicendevolmente (serraggio secondo una corsa tangenziale e serraggio secondo una corsa radiale).

Al fine di consentire il corretto accoppiamento

delle estremità libere, queste sono normalmente realizzate di lunghezza tale da sporgere dagli organi di serraggio dell'apparecchio descritto nel brevetto n° EP2684283, così da poter essere vincolate reciprocamente (ad esempio attraverso l saldatura reciproca).

Ciò determina quindi la necessità di incrementare gli ingombri complessivi degli avvolgimenti induttivi (in virtù della necessaria sporgenza delle estremità libere dagli organi di serraggio), in contrasto con le esigenze degli utilizzatori finali che necessitano della migliore ottimizzazione degli spazi.

Il contenimento degli ingombri può eventualmente essere ottenuto minimizzando gli spessori degli organi di serraggio (ad esempio del tipo descritto nel brevetto n° EP2684283), ma ciò rende tali componenti più delicati, con conseguente aumento dell'insorgenza di relativi guasti e malfunzionamenti.

Compito principale del presente trovato è quello di risolvere i problemi sopra esposti, proponendo

un procedimento per l'allineamento di elementi conduttori di avvolgimenti induttivi che faciliti le successive operazioni di accoppiamento delle testate delle estremità libere degli elementi conduttori.

Nell'ambito di questo compito, uno scopo del trovato è quello di proporre un procedimento ed un dispositivo per l'allineamento di elementi conduttori di avvolgimenti induttivi che possano operare su estremità libere degli elementi conduttori di lunghezza contenuta.

Altro scopo del presente trovato è quello di proporre un dispositivo per l'allineamento di elementi conduttori di avvolgimenti induttivi provvisto di organi di serraggio aventi buona resistenza meccanica.

Un altro scopo del trovato è quello di proporre un dispositivo per l'allineamento di elementi conduttori di avvolgimenti induttivi provvisto di organi di serraggio poco soggetti a guasti e malfunzionamenti.

Un altro scopo del trovato è quello di proporre un

procedimento ed un dispositivo per l'allineamento di elementi conduttori di avvolgimenti induttivi che garantiscano di realizzare avvolgimenti di ingombri contenuti.

Un altro scopo del trovato è quello di proporre un procedimento ed un dispositivo per l'allineamento di elementi conduttori di avvolgimenti induttivi che garantiscano di poter procedere agevolmente alla saldatura reciproca delle testate terminali delle estremità libere degli elementi conduttori, mentre le estremità libere sono bloccate in una predefinita configurazione di allineamento reciproco.

Ulteriore scopo del presente trovato è quello di realizzare un procedimento ed un dispositivo per l'allineamento di elementi conduttori di avvolgimenti induttivi di costi contenuti relativamente semplice realizzazione pratica e di sicura applicazione.

Questo compito e questi scopi vengono raggiunti da un procedimento di accoppiamento di elementi conduttori di avvolgimenti induttivi di un nucleo ferromagnetico in cui è previsto un preventivo alloggiamento di gruppi di elementi conduttori in rispettive cave di un nucleo ferromagnetico, mantenendo sporgenti da una apertura terminale di ciascuna cava corrispondenti prime estremità degli elementi, che consiste nel

- serrare ciascun gruppo mediante primi mezzi di allineamento tangenziale, operanti secondo una corsa angolare e giacenti su un piano ortogonale agli assi longitudinali delle testate di dette estremità libere di ciascun gruppo;
- serrare ciascun gruppo mediante secondi mezzi di allineamento radiale, operanti secondo una direzione radiale, cioè direzionata radialmente rispetto alla sagoma del nucleo ferromagnetico da cui sporgono tali estremità libere, agendo su un piano ortogonale agli assi longitudinali delle testate;
- rimuovere uno dei mezzi di allineamento, mantenendo i gruppi serrati mediante solo l'altro mezzo di allineamento;
- accoppiare reciprocamente le testate delle

estremità libere di ciascun gruppo sporgenti rispetto all'unico mezzo di allineamento che le serra.

Tale compito e tali scopi sono altresì raggiunti per mezzo di un dispositivo per l'allineamento di conduttori di avvolgimenti induttivi, elementi elementi conduttori provvisti di estremità libere sporgenti da un nucleo ferromagnetico e riuniti in gruppi, dispositivo comprendente primi mezzi di serraggio tangenziale configurati l'allineamento secondo una rispettiva direzione radiale delle estremità libere formanti ogni gruppo e secondi mezzi di serraggio radiale configurati per la compattazione delle estremità libere formanti ogni gruppo e la rispettiva giustapposizione delle loro superfici affacciate e prossime, caratterizzato dal fatto che comprende almeno un organo di movimentazione per almeno un componente scelto tra detti primi mezzi di serraggio tangenziale e detti secondi mezzi serraggio radiale, per lo spostamento di detto componente tra una prima disposizione di

sostanziale sovrapposizione all'altro componente, detti scelto tra secondi mezzi di serraggio radiale е detti primi mezzi di serraggio tangenziale, ad una seconda disposizione distanza predefinita da detto secondo componente. Ulteriori caratteristiche e vantaggi del trovato risulteranno maggiormente dalla descrizione di una forma di esecuzione preferita, ma non esclusiva, del procedimento e del dispositivo l'allineamento di elementi conduttori di avvolgimenti induttivi, illustrata a titolo indicativo e non limitativo, negli uniti disegni, in cui:

la fig.1 rappresenta, in vista assonometrica schematica, una forma di un elemento conduttore di un avvolgimento induttivo di un nucleo ferromagnetico;

la fig.2 rappresenta, in vista assonometrica schematica, estremità libere di elementi conduttori reciprocamente saldate;

la fig.3 rappresenta, in vista dall'alto schematica, un dispositivo secondo il trovato in una prima fase operativa;

la fig.4 rappresenta il particolare IV evidenziato
in figura 3;

la fig.5 rappresenta, in vista dall'alto schematica, un dispositivo secondo il trovato in una seconda fase operativa;

la fig.6 rappresenta il particolare VI
evidenziato in figura 5;

la fig.7 rappresenta, in vista dall'alto schematica, un dispositivo secondo il trovato in una terza fase operativa;

la fig.8 rappresenta il particolare VIII
evidenziatoin figura 7;

la fig.9 rappresenta, in vista dall'alto schematica, un dispositivo secondo il trovato in una quarta fase operativa.

particolare riferimento a tali figure indicato globalmente con 1 un dispositivo per di elementi l'allineamento conduttori Α di avvolgimenti induttivi B. Con la definizione elementi conduttori A nella presente trattazione si intende ricomprendere qualsiasi componente realizzato in materiale conducibile elettricamente, quali, ad esempio, il l'alluminio ed altri metalli e loro leghe.

In particolare gli elementi conduttori A potranno essere conformati come rappresentato in figura 1, assumendo cioè la conformazione cui corrisponde la denominazione anglosassone "hairpin".

Gli elementi conduttori A sono alloggiati almeno parzialmente nelle cave di un nucleo ferromagnetico (ad esempio lo statore o il rotore di una macchina elettrica): rispetto al nucleo ferromagnetico sporgeranno le estremità libere B degli elementi conduttori A, da una parte, ed un tratto di raccordo centrale C, dall'altra.

L'avvolgimento induttivo sarà completato attraverso l'accoppiamento reciproco delle testate

delle estremità libere В deqli elementi D conduttori A: tale accoppiamento potrà essere realizzato attraverso diverse tecniche (come sarà illustrato in seguito). In figura 2 titolo rappresentate, а esclusivamente esemplificativo e non limitativo, due testate D saldate tra loro: in tal caso si potrà ricorrere a qualsiasi tipo di saldatura; è stato rilevato sperimentalmente che ottimi risultati di accoppiamento possono essere ottenuti attraverso la saldatura laser (in particolare con laser a fibra), sebbene, come indicato in precedenza, non si escluda l'adozione di anche diverse tecniche di saldatura.

Il procedimento di accoppiamento si applica ad un nucleo ferromagnetico (ad esempio lo statore o il rotore di una macchina elettrica) in cui è previsto un preventivo alloggiamento di gruppi (ad esempio coppie, in conformità con quanto rappresentato a titolo esemplificativo e non limitativo in figura 2) elementi conduttori A in rispettive cave, mantenendo sporgenti, da una

apertura terminale di ciascuna cava, corrispondenti prime estremità B degli elementi A. Il procedimento secondo il trovato prevede una prima fase di serraggio di ciascun gruppo di prime estremità B mediante primi mezzi di allineamento tangenziale 2. Tali primi mezzi di allineamento tangenziale 2 opereranno il loro serraggio secondo una corsa angolare predefinita, su un piano ortogonale agli assi longitudinali delle testate D delle estremità libere B di ciascun gruppo.

Nel corso di una ulteriore fase si procederà al serraggio di ciascun gruppo mediante secondi mezzi di allineamento radiale 3.

Tali secondi mezzi di allineamento radiale 3 eseguiranno il serraggio delle prime estremità B di ciascun gruppo secondo una direzione radiale, cioè direzionata radialmente rispetto alla sagoma del nucleo ferromagnetico da cui sporgono tali estremità libere, agendo su un piano ortogonale agli assi longitudinali delle testate D.

Il procedimento secondo il trovato potrà indifferentemente essere applicato realizzando

prima il serraggio con i primi mezzi di allineamento tangenziale 2 e poi con i secondi mezzi di allineamento radiale 3 o viceversa.

punto di vista pratico sarà opportuno prevedere un primo serraggio non completo con uno qualsiasi dei mezzi di allineamento, cui sequire il successivo serraggio parziale dell'altro fino ad una ideale compattazione delle testate A delle estremità libere B di ciascun gruppo, allo scopo di evitare che il serraggio di di allineamento primi mezzi possa impedire l'esecuzione di un allineamento attraverso l'altro mezzo di allineamento.

La sequenza ideale di serraggio dei gruppi di prime estremità B degli elementi conduttori A attraverso i primi mezzi di allineamento tangenziale 2 ed i secondi mezzi di allineamento radiale 3 è esaustivamente descritto nel brevetto n° EP2684283 della stessa richiedente.

Si procederà quindi alla rimozione di uno dei citati mezzi di allineamento, mantenendo i gruppi serrati mediante solo l'altro mezzo di allineamento.

In particolare si potrà quindi procedere alla rimozione dei primi mezzi di allineamento lasciando tangenziale 2, che ciascun rimanga serrato dai secondi mezzi di allineamento radiale 3, oppure si potrà quindi procedere alla rimozione dei secondi mezzi di allineamento radiale 3, lasciando che ciascun gruppo rimanga serrato dai primi mezzi di allineamento tangenziale 2.

Secondo il trovato sarà quindi possibile accoppiare reciprocamente le testate D delle estremità libere B di ciascun gruppo, visto che le stesse risulteranno sporgenti rispetto all'unico mezzo di allineamento che le serra.

Più in particolare, ad esempio, la rimozione dei primi mezzi di allineamento tangenziale 2 garantirà che le testate D sporgano dai secondi mezzi di allineamento radiale 3, che li serrano, di una lunghezza almeno pari allo spessore dei primi mezzi di allineamento tangenziale 2. Viceversa, invece, la rimozione dei secondi mezzi

di allineamento radiale 3 garantirà che le testate D sporgano dai primi mezzi di allineamento tangenziale 2, che li serrano, di una lunghezza almeno pari allo spessore dei secondi mezzi di allineamento radiale 3.

specifica che la fase Si di accoppiamento reciproco delle testate D delle estremità libere B di gruppi di elementi conduttori Α prevede vantaggiosamente una tecnica scelta tra saldatura, serraggio con un morsetto, serraggio con rivetto, serraggio con mezzi filettati, serraggio con un anello perimetrale.

Il vincolo reciproco delle testate D deve essere tale da garantire l'ottimale accoppiamento elettrico tra di esse (così da consentire la libera circolazione di una corrente elettrica attraverso si esso) ed anche una buona resistenza e stabilità meccaniche dello stesso (ad esempio elevata resistenza allo strappo).

L'utilizzo di morsetti, rivetti, mezzi filettati ed anelli di serraggio è riservato a soluzioni realizzative specifiche.

Nella grande maggioranza dei casi si ricorrerà alla saldatura reciproca delle testate D, la quale potrà essere eseguita in varie modalità, tra le quali si cita a titolo esemplificativo e non limitativo la saldatura laser (in particolare la saldatura con laser a fibra).

Si specifica che la fase di rimozione di uno dei mezzi di allineamento (sia esso quello tangenziale 2 o quello radiale 3), per la liberazione delle testate D delle estremità libere B dei gruppi di elementi conduttori A, implica uno spostamento del mezzo di allineamento ad una distanza dal nucleo ferromagnetico maggiore degli ingombri operativi degli apparati utilizzati nel corso della fase di accoppiamento di testate D.

Si specifica che, con particolare riferimento ad una possibile forma di attuazione del procedimento secondo il trovato, la fase di rimozione potrà vantaggiosamente consistere nello spostamento dei primi mezzi di allineamento tangenziale 2 ad una distanza dal nucleo ferromagnetico maggiore degli ingombri operativi degli apparati utilizzati nel

corso della fase di accoppiamento delle testate D delle prime estremità B, mentre i secondi mezzi di allineamento radiale 3 serreranno positivamente tali estremità terminali B degli elementi conduttori A del rispettivo gruppo a valle delle citate testate D.

Con riferimento, invece, ad una ulteriore forma di attuazione del procedimento secondo il trovato, la fase di rimozione potrà convenientemente consistere nello spostamento dei secondi mezzi di allineamento radiale 3 ad una distanza dal nucleo ferromagnetico maggiore degli ingombri operativi degli apparati utilizzati nel corso della fase di accoppiamento delle testate D delle estremità B, mentre i primi mezzi di allineamento tangenziale 2 serreranno proficuamente estremità terminali B degli elementi conduttori A del rispettivo gruppo a valle delle citate testate D.

Il presente trovato estende la propria tutela anche ad un dispositivo 1 per l'allineamento di elementi conduttori A di avvolgimenti induttivi.

dispositivo 1 secondo il trovato comprende primi mezzi di allineamento tangenziale configurati l'allineamento secondo per una rispettiva direzione radiale delle estremità libere B formanti ogni gruppo e secondi mezzi di radiale configurati allineamento 3 per la compattazione delle estremità libere B formanti ogni gruppo e la rispettiva giustapposizione delle loro superfici affacciate e prossime.

Una possibile forma di descrizione di un dispositivo di questa tipologia è illustrato nel brevetto n° EP2684283 della stessa richiedente.

Il dispositivo 1 secondo il trovato comprende almeno un organo di movimentazione per almeno un componente scelto tra i primi mezzi di allineamento tangenziale 2 ed i secondi mezzi di allineamento radiale 3.

Tale organo di movimentazione sarà preposto allo spostamento di tale componente tra una prima disposizione di sostanziale sovrapposizione all'altro componente, scelto tra i secondi mezzi di allineamento radiale 3 e i primi mezzi di

allineamento tangenziale 2, ad una seconda disposizione a distanza predefinita da secondo componente.

Il dispositivo 1 secondo il trovato sarà quindi idoneo ad attuare il procedimento descritto in precedenza (ed in seguito rivendicato rivendicazione 1 e sue rivendicazioni dipendenti). L'organo di movimentazione potrà vantaggiosamente essere costituito da qualsiasi attuatore idoneo alla rimozione del componente cui è associato (sia esso costituito dai primi mezzi di allineamento tangenziale 2 o dai secondo mezzi di allineamento radiale 3). Il percorso di rimozione (spostamento) del componente potrà essere qualsiasi (in funzione delle specifiche esigenze operative): per tale ragione non si esclude neppure la possibilità di ricorrere а movimentatori complessi (quali manipolatori cartesiani o antropomorfi) in caso di applicazioni particolarmente complesse.

Con particolare riferimento ad una prima forma di realizzazione del dispositivo 1 secondo il trovato, l'almeno un organo di movimentazione

potrà favorevolmente essere associato ai primi mezzi di allineamento tangenziale 2.

I primi mezzi di allineamento tangenziale 2 potranno convenientemente comprendere una coppia di piastre 4, 5 sovrapposte provviste di asole 6, 7 coniugate per l'alloggiamento temporaneo di gruppi di estremità libere B di elementi conduttori A.

rotazione reciproca delle piastre 4, La determinerà proficuamente il passaggio da configurazione di allineamento delle asole 6, 7 coniugate (rappresentata a titolo esemplificativo e non limitativo nelle allegate figure 3 e 4), corrispondente ad un alloggiamento con gioco del rispettivo gruppo di estremità libere B, ad una configurazione di sfalsamento di tali 6**,** 7 coniugate (rappresentata a titolo esemplificativo e non limitativo nelle allegate figure 7, 8), corrispondente ad un sostanziale immorsamento del rispettivo gruppo di estremità libere B. Tra le due configurazioni limite citate, saranno previste configurazioni intermedie (una di

queste è rappresentata a titolo esemplificativo e non limitativo nelle allegate figure 5, 6) corrispondenti a fasi successive di progressivo allineamento reciproco delle testate D delle estremità libere B di ogni singolo gruppo.

Le piastre 4, 5 potranno vantaggiosamente essere associate all'almeno un organo di movimentazione per il loro allontanamento dai gruppi delle estremità libere B degli elementi conduttori A: tale spostamento (rimozione) delle piastre 4, 5 renderà liberamente accessibili dall'esterno le testate D delle estremità libere B degli elementi conduttori A, rendendo possibili le successive operazioni necessarie al loro accoppiamento.

Con particolare riferimento ad una soluzione realizzativa alternativa, l'almeno un organo di movimentazione potrà essere validamente associato a secondi mezzi di allineamento radiale 3.

I secondi mezzi di allineamento radiale 3 potranno utilmente comprendere spintori radiali 8 disposti lungo la sagoma di ingombro delle estremità libere B.

particolare tali estremità libere B degli elementi conduttori A sporgenti dal nucleo ferromagnetico (ad esempio dallo statore o dal rotore di una macchina elettrica) saranno cinte dagli spintori 8, i quali risulteranno mobili tra una prima disposizione in cui sono affacciati e prossimi a rispettive estremità libere B di almeno un rispettivo gruppo di elementi conduttori A ed una seconda configurazione in cui riscontreranno sulle estremità libere B, di almeno un gruppo, forzandole, determinando una loro deformazione, le une in riscontro sulle altre.

In particolare, nel caso in cui il nucleo abbia una sezione circolare, gli spintori 8 saranno disposti radialmente attorno alla sagoma circolare definita dalle d'ingombro estremità libere B e, nel passaggio dalla prima alla seconda configurazione, arriveranno a riscontrare superfici esterne della sagoma di ingombro di tali estremità libere B spingendole con una centripeta le une contro le altre (portando in contatto le rispettive testate D).

esclusivo titolo esemplificativo Ad е limitativo, si specifica che gli spintori 8 potranno essere costituiti da steli 9 radiali provvisti, ad una prima estremità esterna, di un cursore 10 scorrevole entro una rispettiva asola inclinata 11 realizzata su un disco di supporto 12: una rotazione del disco 12, determinerà uno spostamento del cursore 10 lungo l'asola 11 questo implicherà una traslazione in direzione radiale di ciascuno stelo 9. In questo modo sarà possibile azionare contemporaneamente tutti gli spintori 8 per determinare la compattazione delle testate D delle prime stremità B degli elementi conduttori A di ciascun gruppo.

Sono previste ulteriori e distinte modalità realizzative per gli spintori 3.

Non si esclude, ad esempio, la presenza di ulteriori tessere di spinta 13 idonee ad agire in contrapposizione agli spintori 8 o in maniera indipendente.

Le tessere di spinta 13 potrebbero trovarsi (in conformità con quanto rappresentato a titolo

esemplificativo e non limitativo in figura 9) in corrispondenza della superficie interna sagoma che delimita le prime estremità B, essere vincolate in maniera da poter unicamente in direzione radiale. Attraverso scorrere il passaggio di un opportuno apparato di azionamento esempio un manicotto tronco-conico) sarà possibile forzare in direzione radiale in direzione centrifuga le tessere di spinta 13, portandole a riscontrare sulle estremità libere B per compattarle e portare così le testate D in contatto reciproco.

Grazie al dispositivo 1, quindi, è possibile asportare uno dei mezzi di allineamento 2, utilizzando il rispettivo organo di movimentazione, liberando una porzione terminale estremità libere B corrispondente delle testata D. Su tale porzione terminale corrispondente alla testata D potranno essere eseguite le operazioni di accoppiamento reciproco, ad esempio la saldatura, per la chiusura del circuito costituente gli avvolgimenti induttivi.

Ciò permetterà di ricorrere di а mezzi allineamento 2, 3 di spessore standard o anche maggiorato e/o di prevedere avvolgimenti induttivi estremità libere (sporgenti dal di lunghezza ferromagnetico) contenuta consequente riduzione degli ingombri complessivi, come richiesto in genere dagli utilizzatori finali).

Tali aspetti sono particolarmente rilevanti negli statori di motori elettrici (0 generatori elettrici) in quanto gli ingombri assiali devono essere necessariamente contenuti entro predefiniti а dei limitati spazi di causa installazione: ad esempio nei motori autotrazione gli spazi disponibili sono limitati e rigidamente definiti.

Vantaggiosamente il presente trovato risolve i problemi esposti in precedenza, proponendo un procedimento per l'allineamento di elementi conduttori A di avvolgimenti induttivi che facilita le successive operazioni di accoppiamento delle testate D delle estremità libere B di tali

elementi conduttori A. Infatti la porzione terminale delle estremità libere B, sporgente rispetto all'unico mezzo di allineamento (2 o 3) che la serrerà durante le operazioni accoppiamento, sarà facilmente accessibile sebbene la sua distanza rispetto al nucleo ferromagnetico limitata sia (in conformità con le esigenze dell'utilizzatore finale del componente costruzione).

Convenientemente il procedimento ed il dispositivo 1 secondo il trovato possano operare su estremità libere B degli elementi conduttori A di lunghezza contenuta, questo perché, grazie alla rimozione di uno dei mezzi di allineamento 2, 3 (ed al bloccaggio del gruppo di estremità libere B con l'altro mezzo di allineamento 3, 2) il tratto di testata D inizialmente serrato dai primi mezzi di allineamento 2, 3 risulterà libero ed accessibile durante le successive operazioni di accoppiamento delle testate D.

Positivamente il dispositivo 1 secondo il trovato è provvisto di organi di serraggio aventi buona

resistenza meccanica. La rimozione di uno dei mezzi di allineamento 2, 3 consente infatti realizzarli di spessori generosi, visto che tali spessori imporranno di comunque non incrementare la lunghezza delle estremità libere B in considerazione del fatto che uno dei mezzi di allineamento 2, 3 sarà rimosso per consentire le operazioni di accoppiamento (ed il suo spessore corrisponderà alla lunghezza del tratto di testata D che risulterà libera dopo la rimozione del mezzo di allineamento 2, 3 stesso).

Utilmente il dispositivo 1 secondo il trovato è provvisto di organi di serraggio poco soggetti a guasti e malfunzionamenti. La possibilità di prevedere un dimensionamento generoso (spessori standard o anche superiori, anziché gli spessori ridotti previsti in alcune soluzioni realizzative di tipo noto) dei mezzi di allineamento 2, 3 garantisce che gli stessi siano meno soggetti a quasti ed a malfunzionamenti.

Favorevolmente il procedimento ed il dispositivo 1 secondo il trovato garantiscono di realizzare

avvolgimenti di ingombri contenuti (in ragione del fatto che non risulterà necessario ricorrere a lunghezze elevate delle estremità libere B per consentire l'accoppiamento delle testate D).

Efficientemente il procedimento ed il dispositivo secondo il trovato garantiscono di poter procedere agevolmente alla saldatura reciproca delle testate terminali D delle estremità libere B degli elementi conduttori A, mentre le estremità libere В sono bloccate in predefinita una configurazione di allineamento reciproco. Ciò è permesso grazie al fatto che durante le operazioni saldatura (o qualsiasi altra operazione di di accoppiamento) le estremità libere В serrate unicamente da uno dei mezzi di allineamento 2, 3, mentre l'altro (il mezzo allineamento 3, 2) sarà stato rimosso.

Validamente il procedimento ed il dispositivo 1 secondo il trovato risultano essere di relativamente semplice realizzazione pratica e di costi contenuti: tali caratteristiche rendono il procedimento ed il dispositivo 1 secondo

l'invenzione delle innovazioni di sicura applicazione.

Il trovato, così concepito, è suscettibile di numerose modifiche e varianti tutte rientranti nell'ambito del concetto inventivo; inoltre, tutti i dettagli potranno essere sostituiti da altri elementi tecnicamente equivalenti.

Negli esempi di realizzazione illustrati singole caratteristiche, riportate in relazione a specifici esempi, potranno essere in realtà intercambiate con altre diverse caratteristiche, esistenti in altri esempi di realizzazione.

In pratica i materiali impiegati, nonché le dimensioni, potranno essere qualsiasi secondo le esigenze e lo stato della tecnica.

RIVENDICAZIONI

- 1.Procedimento di accoppiamento di elementi conduttori (A) di avvolgimenti induttivi di un nucleo ferromagnetico in cui è previsto un preventivo alloggiamento di gruppi di elementi conduttori (A) in rispettive cave di un nucleo ferromagnetico, mantenendo sporgenti da una apertura terminale di ciascuna cava corrispondenti prime estremità (B) degli elementi (A), che consiste nel
- serrare ciascun gruppo mediante primi mezzi di allineamento tangenziale (2), operanti secondo una corsa angolare e giacenti su un piano ortogonale agli assi longitudinali delle testate (D) di dette estremità libere (B) di ciascun gruppo;
- serrare ciascun gruppo mediante secondi mezzi di allineamento radiale (3), operanti secondo una direzione radiale, cioè direzionata radialmente rispetto alla sagoma del nucleo ferromagnetico da cui sporgono tali estremità libere (B), agendo su un piano ortogonale agli assi longitudinali delle testate (D);

- rimuovere uno dei mezzi di allineamento (2, 3), mantenendo i gruppi serrati mediante solo l'altro mezzo di allineamento (3, 2);
- accoppiare reciprocamente le testate (D) delle estremità libere di ciascun gruppo sporgenti rispetto all'unico mezzo di allineamento (3, 2) che le serra.
- 2. Procedimento, secondo la rivendicazione 1, caratterizzato dal fatto che detta fase di accoppiamento reciproco di dette testate (D) delle estremità libere di detti gruppi di elementi conduttori (A) comprende una tecnica scelta tra saldatura, serraggio con un morsetto, serraggio con un rivetto, serraggio con mezzi filettati, serraggio con un anello perimetrale.
- 3. Procedimento, secondo almeno una tra le rivendicazioni 1 e 2, caratterizzato dal fatto che detta fase di rimozione di uno dei mezzi di allineamento (2, 3), per la liberazione delle testate (D) delle estremità libere (B) di detti gruppi di elementi conduttori (A), implica uno spostamento del detto mezzo di allineamento (2, 3)

ad una distanza dal nucleo ferromagnetico maggiore degli ingombri operativi degli apparati utilizzati nel corso della fase di accoppiamento di dette testate (D).

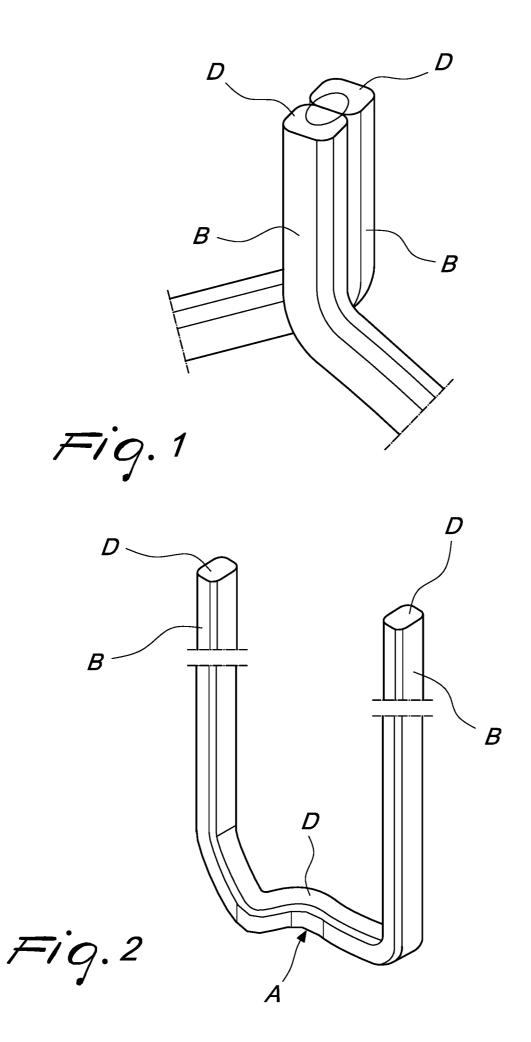
4. Procedimento, secondo la rivendicazione precedente, caratterizzato dal fatto che detta fase di rimozione consiste nello spostamento di detti primi mezzi di allineamento tangenziale (2) ad una distanza dal nucleo ferromagnetico maggiore degli ingombri operativi degli apparati utilizzati nel corso della fase di accoppiamento di dette testate (D), mentre i secondi mezzi di allineamento radiale (3) serrano le estremità terminali (B) degli elementi conduttori (A) del rispettivo gruppo a valle delle dette testate (D). 5. Procedimento, secondo la rivendicazione 3 ed in alternativa alla rivendicazione 4, caratterizzato dal fatto che detta fase di rimozione consiste spostamento di detti secondi mezzi nello di allineamento radiale (3) ad una distanza nucleo ferromagnetico maggiore degli operativi degli apparati utilizzati nel

della fase di accoppiamento di dette testate (D), mentre i primi mezzi di allineamento tangenziale (2) serrano le estremità terminali (B) degli elementi conduttori (A) del rispettivo gruppo a valle delle dette testate (D).

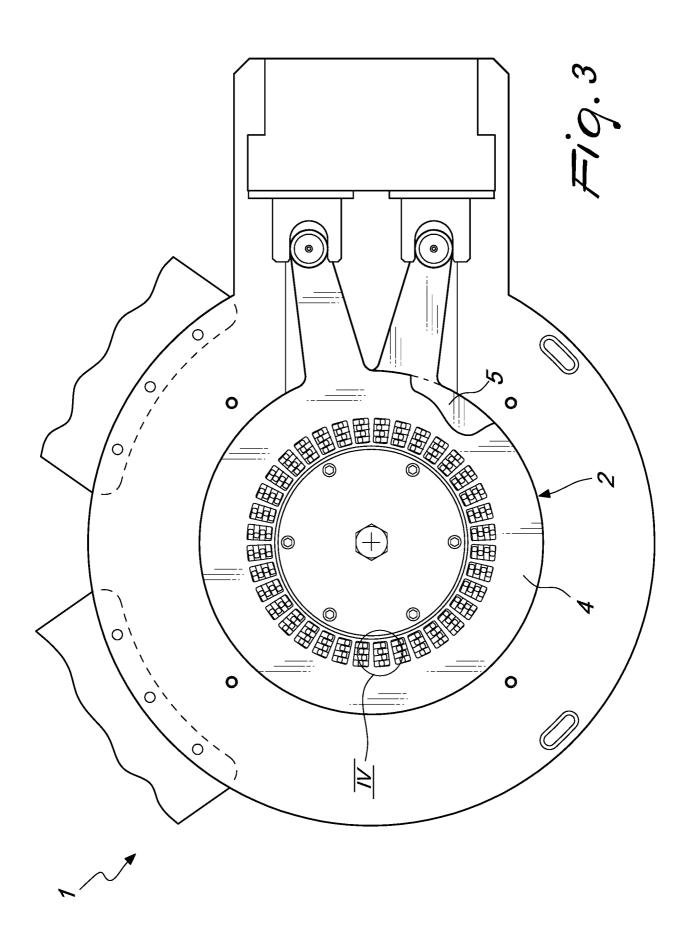
6.Dispositivo per l'allineamento di elementi conduttori (A) di avvolgimenti induttivi, elementi conduttori (A) provvisti di estremità libere sporgenti da un nucleo ferromagnetico e riuniti in gruppi, dispositivo (1) comprendente primi mezzi allineamento tangenziale (2) configurati per l'allineamento secondo una rispettiva direzione radiale delle estremità libere (B) formanti ogni gruppo e secondi mezzi di allineamento radiale (3) configurati per la compattazione delle estremità libere (B) formanti ogni gruppo e la rispettiva giustapposizione delle loro superfici affacciate e prossime, caratterizzato dal fatto che comprende almeno un organo di movimentazione per almeno un componente (2, 3) scelto tra detti primi mezzi di allineamento tangenziale (2) e detti secondi mezzi di allineamento radiale (3), per lo spostamento di

detto componente (2, 3) tra una prima disposizione di sostanziale sovrapposizione all'altro componente (3, 2), scelto tra detti secondi mezzi di allineamento radiale (3) e detti primi mezzi di allineamento tangenziale (2), ad una seconda disposizione a distanza predefinita da detto secondo componente (3, 2).

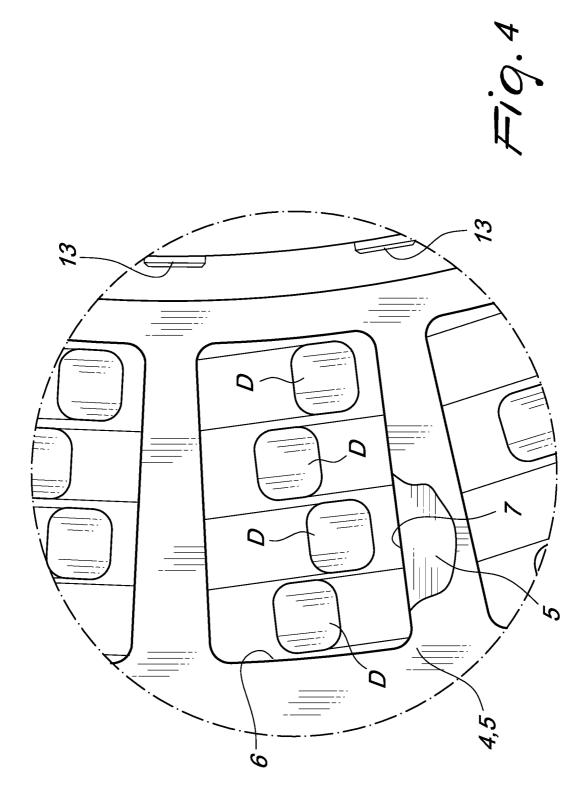
7. Dispositivo, secondo la rivendicazione precedente, caratterizzato dal fatto che detto almeno un organo di movimentazione è associato a detti primi mezzi di allineamento tangenziale (2). 8. Dispositivo, secondo una 0 più delle rivendicazioni 6 e 7, caratterizzato dal fatto che detti primi mezzi di allineamento tangenziale (2) comprendono una coppia di piastre (4, 5) sovrapposte provviste di asole coniugate (6, 7) per l'alloggiamento temporaneo di gruppi di dette estremità libere (B) di detti elementi conduttori (A), la rotazione reciproca di dette piastre (4, 5) determinando il passaggio da una configurazione di allineamento di dette asole coniugate (6, 7), corrispondente ad un alloggiamento con gioco del

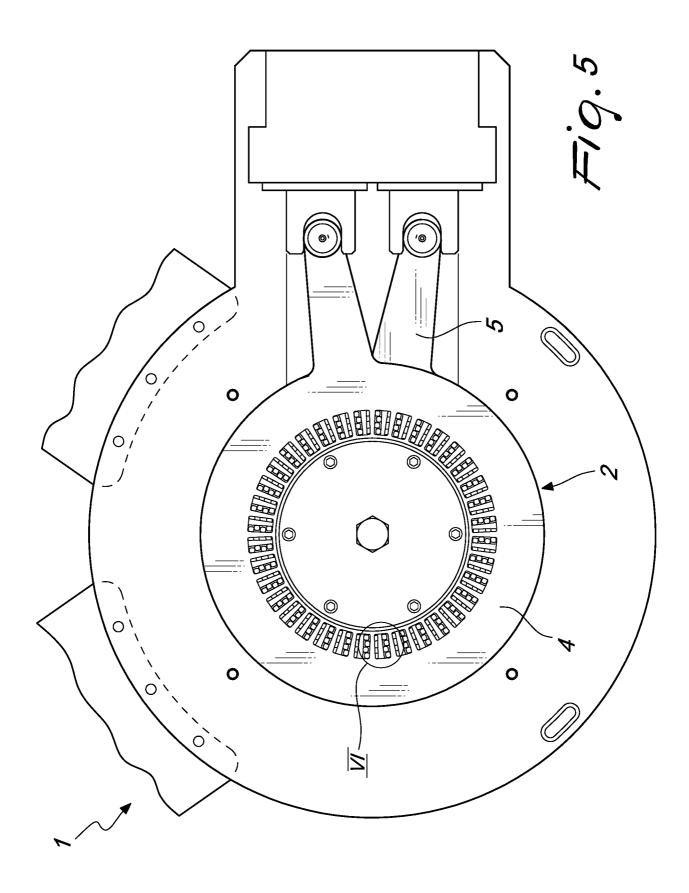

rispettivo gruppo di estremità libere (B), ad una configurazione di sfalsamento di dette asole coniugate (6, 7), corrispondente ad un sostanziale immorsamento del rispettivo gruppo di estremità libere (B).

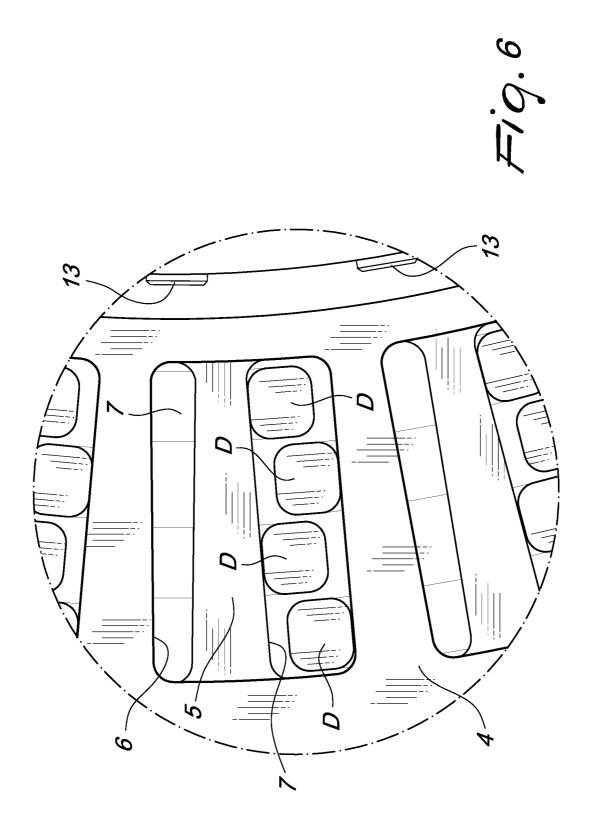
- 9. Dispositivo, secondo una o più delle rivendicazioni 6, 7 e 8, caratterizzato dal fatto che dette piastre (4, 5) sono associate a detto almeno un organo di movimentazione per il loro allontanamento da detti gruppi di dette estremità libere (B) di detti elementi conduttori (A), rendendo liberamente accessibili dall'esterno le testate (D) di dette estremità libere (B) di detti elementi conduttori (A).
- 10. Dispositivo, secondo la rivendicazione 6 ed in alternativa alla rivendicazione 7, caratterizzato dal fatto che detto almeno un organo di movimentazione è associato a detti secondi mezzi di allineamento radiale (3).
- 11. Dispositivo, secondo la rivendicazione precedente, caratterizzato dal fatto che detti secondi mezzi di allineamento radiale (3)

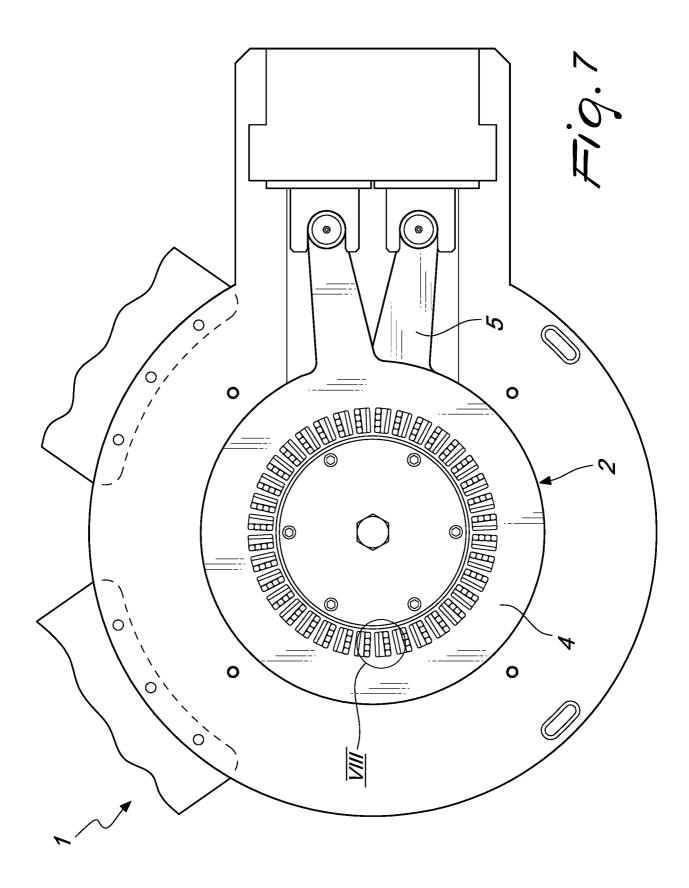

comprendono spintori radiali (8) disposti lungo la sagoma di ingombro di dette estremità libere (B), di detti elementi conduttori (A), sporgenti detto nucleo ferromagnetico, detti spintori (8) essendo mobili tra una prima disposizione in cui sono affacciati e prossimi a rispettive estremità un rispettivo gruppo libere (B) di almeno elementi conduttori (A) ed una seconda configurazione in cui riscontrano su dette estremità libere (B), di detto almeno un gruppo, forzandole le une in riscontro sulle altre e determinando una loro deformazione.

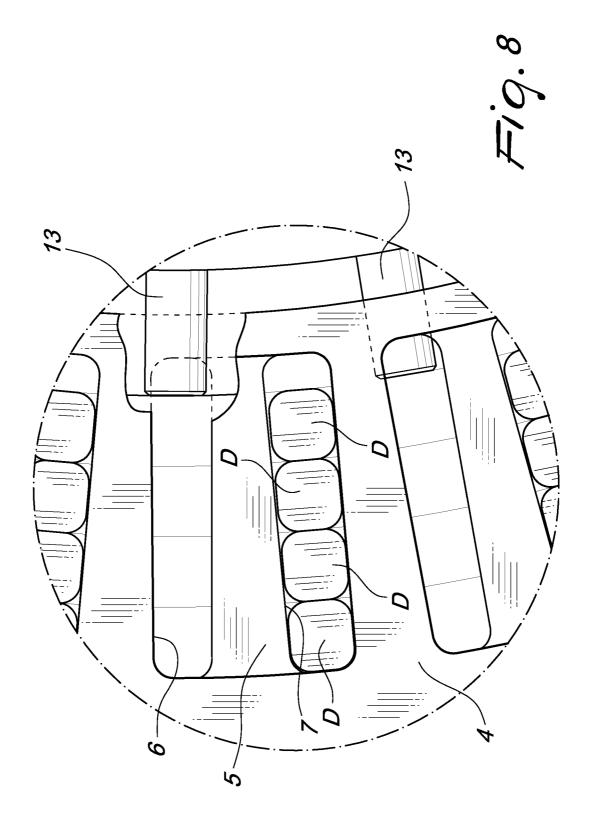
12. Dispositivo, secondo una o più delle rivendicazioni 10 e 11, caratterizzato dal fatto che detti spintori radiali (8) sono associati a detto almeno un organo di movimentazione per il loro allontanamento da detti gruppi di dette estremità libere (B) di detti elementi conduttori (A), rendendo liberamente accessibili dall'esterno le testate (D) di dette estremità libere (B) di detti elementi conduttori (A).

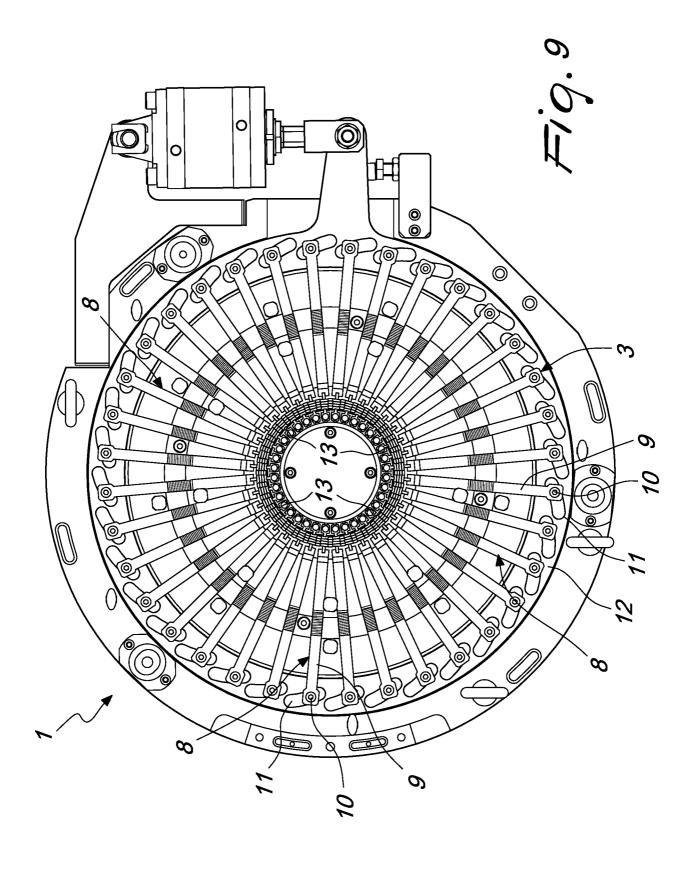

M901206 TAV.I


M901206 TAV.II


M901206 TAV.III


M901206 TAV.IV


M901206 TAV.V


M901206 TAV.VI

M901206 TAV. VII

M901206 TAV.VIII

