woO 2007/120391 A1 |10 0 0000 0 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [.
International Bureau

(43) International Publication Date
25 October 2007 (25.10.2007)

) IO O O O

(10) International Publication Number

WO 2007/120391 Al

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2007/004642 (81)

(22) International Filing Date:
21 February 2007 (21.02.2007)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

11/393,093 30 March 2006 (30.03.2006) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: SHUKILA, Dharma; One Microsoft Way,
Redmond, WA 98052-6399 (US). SCHMIDT, Bob;
One Microsoft Way, Redmond, WA 98052-6399 (US).
MEHTA, Mayank; One Microsoft Way, Redmond, WA
98052-6399 (US). TALBERT, Nathan; One Microsoft
Way, Redmond, WA 98052-6399 (US). SAGAR, Akash,

(34)

J.; One Microsoft Way, Redmond, WA 98052-6399 (US).
RAMAN, Karthik; One Microsoft Way, Redmond, WA
98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ASYNCHRONOUS FAULT HANDLING IN PROCESS-CENTRIC PROGRAMS

(57) Abstract: Asynchronous
fault handling for a workflow. A
state automaton for an activity

in the workflow is defined. The
state automaton includes at least

710
EXECUTING STATE
// 708 ~ 708
3AND 4
HANDLEFAULT
702 « .
FAULTING
EVENT
ACTIVITY_1 %

an executing state, a faulting
state, and a closed state and
classifies an execution lifetime
of the activity. The activity
is defined to include work
items and includes an execution

hierarchy for the work items.
Each work item includes an
operation for executing a portion
of the activity. Each work item
is transitioned to the executing

720

state. The included operation
of transitioned work items is
executed in the executing state.
One or more of the transitioned
work items are identified in
response to the faulting event
as a function of the execution
hierarchy and the included
operation. The faulting event
is asynchronously handled by
transitioning the one or more
identified work items to the
faulting state while executing
the included operation of the
remaining transitioned work
items.

WO 2007/120391 A1 | NI D000 0T 00000 00 0

Declarations under Rule 4.17: For two-letter codes and other abbreviations, refer to the "Guid-
— as to applicant’s entitlement to apply for and be granted a ance Notes on Codes and Abbreviations” appearing at the begin-
patent (Rule 4.17(ii)) ning of each regular issue of the PCT Gagzette.

— asto the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report

10

15

20

25

WO 2007/120391 PCT/US2007/004642

ASYNCHRONOUS FAULT HANDLING IN PROCESS-CENTRIC PROGRAMS

BACKGROUND

[0001] Process-oriented or process-centric programs have evolved tc; enable processing
of complex instructions modeling real-world events. Process-centric programs mirror
real-world processes and mirror interactions between real-world entities. Existing systems
attempt to map business problems to high-level workflows by modeling the business
problem. However, real world workflows vary in a variety of dimensions such as (a)
execution and modeling complexity, (b) knowledge of the structure of the flow at design
time, (c) statically defined or ad-hoc/dynamic, (d) ease of authoring and editing the flow at
varjous points in its lifecycle, and (e) weak or strong association of business logic with the
core workflow process. Existing models fail to accommodate all these factors.

[0002] Further, most existing workflow models are based on either language-based
approaches (e.g., BPELAWS, XLANG/S, and WSFL) or application based approaches.
Language based approaches are high-level workflow languages with a closed set éf pre-
defined constructs which help model the workflow process to the user/programmer. The
workflow languages carry all of the semantic information for the closed set of constructs
to enable the user to build a workflow model. However, the languages are not extensible
by the developers and represent a closed set of primitives that constitute the workflow
model. The languages are tied to the language compiler shipped by the workflow system
vendor. Only the workflow system product vendor may extend the model by extending
the language with a new set of constructs in a future version of the product. This often
requires upgrading the compiler associated with the language. In addition, the languages
usually do not declaratively expose or define functions or operations that can be readily

and efficiently used by other programs.

10

15

20

25

WO 2007/120391 PCT/US2007/004642

[0003] Application based approaches are applications which have the workflow
capabilities within the application to solve a domain specific problem. These applications
are not truly extensible nor do they have a programmable model.

[0004] In addition, with the existing approaches, the issues of complexity,
foreknowledge, dynamic workflows, authoring ease, and strength of associations with
business logic and core workflows are not adequately addressed. There are no extensible,
customizable, and re-hostable workflow designer frameworks available to build visual
workflow designers to model different classes of workflows. Existing systems lack a
rapid application development (RAD) style workflow desi gn experience which allows
users to graphically design the workflow process and associate the business logicina
prograniming language of developer’s choice.

[0005] Also, workflow processes deal with cross cutting orthogonal and tangled
concerns that span multiple steps of a workflow process model. For example, while parts
of the workflow proces;s, are designed to participate in long running transactions, other
parts of the same process are designed for concurrent execution or for accessing a shared
resource. Due to design shortcomings, existing systems fail to provide interleaving of
execution threads which enable users to design synchronous or interleaved execution of
activities. Still other portions of the same workflow process require tracking, while other
portions handle business or application lével exce;ptions. There is a need to apply certain
behaviors to one or more portions of a workflow process.

[0006] Some workflow modeling approaches are impractical as they requir¢ a comple‘ge
flow-based description of an entire business process including all exceptions and human
interventions. Some of these approaches provide additional functionality as exceptions
arise, while other approaches exclusively employ a constraint-based approach instead of a

flow-based approach to modeling a business process. Existing systems implement either

10

15

20

25

WO 2007/120391 PCT/US2007/004642

the flow-based or constraint-based approach. Such systems are too inflexible to model
many common business situations. These systems also lack the capability to

asynchronously handle exceptions or cancellations.

SUMMARY

[0007] Embodiments of the invention enable asynchronous fault or exception handling
by having a faulting state in a state automaton defining execution lifetime of an activity in
the workflow. By having the faulting state, aspects of the invention enable developers or
programs to declaratively dc?sign programs for exception or fault handling such that
portions of the program or the activity may be in fault handling in the faulting state while
other portions of the program or the activity may be unaffected by the exception or the
faulting event.

[0008] Alternative embodiments of the invention enable propagation or transmission of
a notification of fault handling. In yet another alternative embodiment, such propagation
or transmission of the notification may be suppressed or inhibited. In addition, a further
alternative embodiment responds to input from a user for handling post-faulting or post-
exception operations.

[0009] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This'Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.

[0010] Other features will be in part apparent and in part pointed out hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a block diagram illustrating an existing programming paradigm.

10

15

20

25

WO 2007/120391 PCT/US2007/004642

[0012] FIG. 2 is an exemplary block diagram illustrating a virtualization of a workflow
design framework according to an embodiment of the invention.

[0013] FIG. 3 is an exemplary diagram illustrating an exemplary workflow according
to an embodiment of the invention.

[0014] FIG. 4 is a diagram illustrating an exemplary computing environment of a
system for processing workflow activities according to an embodiment of the invention,
[0015] FIG. 5 is a diagram illustrating a hierarchical structure of a workflow activity
according to an embodiment of the invention.

[0016] FIG. 6 is a diagram illustrating an exemplary state automaton describing
execution lifetime of an activity according to an embodiment of the invention.

[0017] FIGS. 7A to 7E are block diagrams illustrating an asynchronous handling of
faulting events of a workflow according to an embodiment of the invention.

[0018] FIG. 8is a flow diagram illustrating a method for asynchronously handling of a
faulting event for an activity of a workflow according to an embodiment of the invention.
{0019] FIG. 9is a block diagram i11u§trating an exemplary computer-readable medium
on which aspects of the invention may be stored.

[0020] Appendix A illustrates an exemplary implementation of declaratively raising of
an exception according to an embodiment of the invention.

[0021] Corresponding reference characters indicate corresponding parts throughout the

drawings.

DETAILED DESCRIPTION
[0022] Referring first to FIG. 1, a block diagram illustrates an existing programming
paradigm for designing programs for process-centric activities, such as a workflow. For

example, the diagram shows a three-level virtualization model of existing program

10

15

20

25

WO 2007/120391 PCT/US2007/004642

paradigm with a level of a managed execution environment being the highest level and a
processing unit being the lowest level. In this programming design system, even at the
managed execution environment level, programs, especially process-centric programs
handling workflow processes, lack the ability and efficiency to accommodate complex
interactions between processes in a workflow.

[0023] Itis known by those skilled in the art that certain constraints are associated with
designing software or api:nlication programs. In this example, in writing an operating
system software program 104, the programming codes or routines are dependent on the
type or configuration of processing units 102, being specific to the type of computing
architecture (e.g., IBM® compatible, APPLE® computers, or other systems), or other
constraints. In addition, programming languages typically need to accurately identify and
utilize data structures such as stacks, heap, thread base, or other hardware-specific
structures for the operating system 104 to function properly.

[0024] In dealing with complex workflow processes, existing applications use a
concept of a managed execution environment 106 (e.g., a runtime environment where
programs may share functions or common object-oriented classes) in which programs
written one programming language may call functions in other programs written in a
different programming language. In sucﬁ execution environment, these programs in
different programming langnages are compiled to an intermediate language such that the
managed execution environment 106 may expose parameters, arguments, or schemas or
functions to the different programs so that the programs may interact with one another.

[0025] While this execution environmcﬂt 106 creates a common conmmunication
environment between programs, the execution environment 106 includes various strict
requirements that may not be suitable for handling the complexity and capability of

process-centric programs. For example, the execution environment 106 requires programs

10

15

20

WO 2007/120391 PCT/US2007/004642

be confirmed to a specific file format. The execution environment 106 also requires that
funqtions or operations in the programs use a fixed set of functions or a class of functions

defined by the execution environment 106.

[0026] Embodiments of the im_/ention build on an extensible foundation or framework
202 in FIG. 2 to overcome the shortcomings of existing programming model. By allowing
programs written in any programming language and composed in any file format, aspects
of the invention enable program developers to design programs with specific functions
without compromising its functionalities and specifics. By defining activities, such as
workflow tasks or processes, as the base class to be executed in the workflow framework,
developers can easily and efficiently build domain specific (e.g., specific execution
environments such as programs in the héalthcare industrial, financial industry, or the like)
operation codes (hereinafter "op-code") without adhering to the rigid, hard-coded,
inflexible, and the fixed set of functions or activities classes in the existing execution
environment. In addition, the workflow foundation embodying aspects of tthe invention is
a continuation based runtime layered on top of any existing framework (e.g., either a
managed execution environment, operating system environment, or hardware processing
unit level).

[0027] Aspects of the invention free the constraint of defining activities in a particular .
ﬁle format by enabling workflow designs in any fashion or representation (e.g., a flow
chart, a diagram, a numbered descﬂptiog, or the like) as long as activities in the workflow
can be constructed from the representation of the workflow designs.

[0028] In addition, the workflow framework or foundation is able to handle fault or
exception raised from a lower level (e.g., OS) or exception raising functions written in

other formats (e.g., intermediate language).

10

15

20

25

WO 2007/120391 PCT/US2007/004642

[0029] FIG. 3 illustrates a simplistic view of a workflow 300 according to an
embodiment of the invention. For example, the workflow 300 may be a workflow for
processing a purchase order, and this purchase order workflow 300 may include processes
or activities such as receive a purchase order, send confirmation to a customer, approve
the purchase order by a manager, or the like.

[0030] The workflow 300 may start from a starting point 302. For example, the
starting point 302 for a purchase-order workflow may be receiving an order from a
customer. The workflow 300 may also include a conditional statement 304 (such as an "IF
statement"” or a "WHILE statement"), and it can be subdivided into additional conditional
statements 306 and 308. The workflow 300 may also include a parallel structure 310,
which further includes one or more sequences or activities 312. For example, the parallel
structure 310 includes activities, such as checking the inventory and updating the available
shippers, be processed in parallel. In the example shown, activities such as "Send E-mail"
and "Get Approval" may be processed 1n parallel. At "drop activities here" 316, a user
may further add or supplement more activities into the workflow 300. To complete the
workflow 300, the processes or activities will conclude in a complete step or point 314.

[0031] In one embodiment, the activities may be arranged hierarchically in a tree
structure (see FIG. 5) 500 or other execution sequences. For example, an activity may be
a composite activity in which the activity includes more than one work item associated
therewith. In another embodiment, a collection of activities may be a composite activity.
An activity method or operation may be in a root node 502 with two children or leaf nodes
504 and 506. The activity methods or operations in the children nodes 504 and 506 (e.g.,
work item_1 and work item_2, respectively) may be executed according to the hierarchical
structure. In addition, the children nodes 504 and 506 may also include other children

nodes having respective work items to be executed.

10

15

20

WO 2007/120391 PCT/US2007/004642

[0032] In another embodiment, activities include one or more of the following types: a
simple activity, container activity and root activity. In this embodiment, there is one root
activity in the model, and none or any quantity of simple activities or container activities
inside the root activity. A container activity may include simple or container activities.
The entire workflow process may be used as an activity to build higher-order workflow
processes. Further, an activity may be interruptible or non-interruptible. A non-
interruptible composite activity does not.include interruptible activities. A non-
interruptible activity lacks services that would cause the activity to block.

[0033] Moreover, in executing activities and the work items included in the activities,
the workflow framework or an execution context or environment defines a scope or
boundary for each of the work items. This scope or boundary includes and exposes
information (e.g., in t.;he form of data, metadata, or the like) such as the shared data or
resources to be accessed by the work items, associated properties, handlers, constraints
and interactions between autonomous agents. Also, each activity may be configured by a
user code in any programming language. For example, the user code may represent
business or application logic or rules wﬁﬁen in a specific domain or execu;tion
environment. Each activity may support pre-interception hooks and post-interception
hooks into execution in the user code. Each activity has associated runtime execution
semantics and behavior (e.g., state management, transactions, event handling and
exception handling). Activities may share state or resources with other activities. In
addition, activities may be primitive activities or grouped into a composite activity. A
primitive or basic activity has no substructure (e.g., child activities), and thus is a leaf node
in a tree structure. A composite activity contains substructure (e.g., it is the parent of one

or more child activities).

10

15

20

25

WO 2007/120391 PCT/US2007/004642

[0034] FIG. 4is a diagram illustrating a system 400 for processing wérkﬂow activities
according to an embodiment of the invention. The system 400 includes a processor 402,
which may be a processing unit or a collection of processing units. The system 400 also
includes a storage or memory area 404 for storing data accessible by the processor 402. In
one embodiment, the system 400 may be a computer having one or more processors or
processing units (e.g., processor 402) and a system memory (e.g., memory area 404)
having other components to couple various system components including the system
memory to the processor 402.

[0035] In one example, the memory area 404 may include computer readable media,

either volatile, nonvolatile, removable, or non-removable media, implemented in any

"method or technology for storage of information such as computer readable instructions,

data structures, program modules or other data. For example, computer storage media
include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other opticé.l disk storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium that
may be used to store the desired information and that may be accessed by the system 400.
The memory 404 may also include communication media embodying cbmputer readable
instructions, data structures, program modules, or other data in a modulated data si gnal
such as a carrier wave or other transport mechanism and include any information delivery
media. Those skilled in the art are familiar with the modulated data signal, which has one
or more of its characteristics set or changed in such a manner as to encode information in
the signal. Wired media, such as a wired network or direct-wired connection, and wireless
media, such as acoustic, RF, infrare;l, and other wireless media, are examples of
communication media. Combinations of any of the above are also included within the

scope of computer readable media.

10

15

20

25

WO 2007/120391 PCT/US2007/004642

[0036] For example, the memory area 404 stores a plurality of activities 406 for
processing in a workflow (e.g., the workflow 300). Each of the pluralit};' of activities 406
includes one or more work items, and thé work items may be organized in a hierarchical
structure such as a tree structure (see FIG. 5). In processing the plurality of activities 406,
the processor 402 accesses or executes a scheduler 408, which is configured to set up an
organized set of activities.

[0037] For example, the processor 408 accesses the work items in thc;: plurality of

activities 406 via a component or a set of computer-executable instructions such as the

_ scheduler 408 to enqueue or to store the work items 422 to a queue 410. A dispatcher 412,

accessible by the processor 402, dispatches the work items 422 for execution. For
example, a work item 422-1 may include an activity method or an activity operation 424,
routine, or a collection of codes for performing a function of ."requesting input from a
user”. One or more other activity methods, activity operations, routines, or codes may be
included in each of the work items 422 without departing from the scope of the invention.
[0038] Once the work items 422 are dispatched by the dispatcher 412, the processor
402 executes each of the methods 424 in the work items 422 at 414. In the example of
work item 422-1, the processor 402 may provide a user via a user interface (UI) to input
the requested information or data. In another embodiment, the processor 402 may connect
to or access an external data source for requesting input from the user. Upon completion
of the activity method or activity operation 424, the processor 402 concludes execution of
the work items 422 at 416. In one embodiment, the processor 402 passivates the executing
state of work items at 418 to a data store 420.

[0039] In another embodiment, the processor 402 executes the work items 422
according to a state automaton, such as the automaton shown in FIG. 6, which is a diagram

illustrating an exemplary state automaton 600 describing processing states of work items

10

10

15

20

WO 2007/120391 PCT/US2007/004642

associated with an activity according to an embodiment of the invention. In one
embodiment, the state automaton 600 defines an execution lifetime of an activity. In one

example, the state automaton 600 may include an initialized state, an executing state, and a
closed state (as shown in FIG. 4). In another embodiment, the state automaton 600
includes an initialized state 602, an executing state 604, a canceling state 606, a faulting
state 608, a compensating state 610, and.a closed state 612.

[0040] For example, the state automaton 600 describes a process flow of execution of
work items (e.g., work items 422) in a workflow activity. The work item 422-1, as
illustrated in FIG. 4, is first initialized when it is enqueued in the queue 410. The work
item 422-1 is next dequeued or removed from the queue 410 to the dispatcher 412 before
being executed in the executing state (e.g., the exer;uting state 604 in FIG. 6). Depending
on the parameters or conditions during the execution of the work item 422-1, the work
item 422-1 may proceed to the canceling state 606 (e.g., the canceling state 426 in FIG. 4)
or the faulting state 608. In one embodiment, the work item 422-1 may proceed from the
canceling state 606 to the faulting state 608. In an alternative embodiment, the
compensating state 610 describes a set of operations or functions to be performed when
faulting or exception has occurred.

[0041] For example, suppose an exception occurs during the execution of a work item.
(e.g., work item 422-1), such as a parameter for a function is missing. The system 400
transitions the work item 422-1 to the faulting state 608. In doing so, the system 400 also
performs garbage collection (e.g., removing previously executed portion of the operations
from cache or memory, reset parameter values, or the like) operations in the compensating
state 610 before transitioning the work item 422-1 to the closed state 612. For example,

work items in the compensating state 610 may trigger operations such as recovering data

11

10

15

20

25

WO 2007/120391 PCT/US2007/004642

that was previously used for executing other work items. The closed state 612 indicates
that the execution of the activity (e.g., activity 500 in FIG. 5) has completed.

[0042] In one embodiment, the state automaton 600 establishes relationship between
work items in a composite activity. For example, one of the relationship rules may include
that, before transitioning to the closed state 612 methods or work items in the root node of
the activity tree, all of the work items in the children nodes should be in the initialized
state 602 or the closed state 612. Another rule may require that, in order to transition the
work items in the children node of the activity tree to the executing state 604, the work
item in the root node must already be in fhe executing state 604.

[0043] In another embodiment, one or more additional states may be defined in the
state automaton 600 without departing from the scope of embodiments of the invention.

[0044] Referriﬁg next to FIGS. 7A and 7E, block diagrams illustrate asynchronous
handling of faulting events in a workflow according to an embodiment of the invention.
For simplistic purposes only and without limitations, FIG. 7A shows a composite activity
702 which includes three children work items organized in a tree structure: transaction_1
704, transaction_2 706, and transaction_3 708. As illustrated, the root activity 702
includes a method to “write text on display.” Activity methods or operations for the work
items above also include the following:

transaction_1 704:

{ INSERT TEXT (“1 AND 2%);
HANDLEFAULT();

}

transaction_2 706:

{ INSERT TEXT (*“3 AND 47);

HANDLEFAULT();

12

10

15

20

WO 2007/120391 PCT/US2007/004642

}

transaction_3 768:

{ INSERT TEXT(*5 AND 6”);
PAUSE 1380 SECONDS;
INSERT TEXT (“END™);

}

[0045] InFIG. 7B, the transaction_1 704, the transaction_2 706, and the transaction_3
708 are transitioned to the executing state 710. As illustrated, the transaction_1 704
executes the included operations by inserting texts (“1 and 2”) on the display (e.g., a user
interface 428) to a user 430.

[0046] While in the executing state 710, a fanlting event 722 or an exception has
occurred. The faulting event 722 may include a warning notification for missing data, an
execution fault, an inaccurate access to a data store, or the like. In this example, the
transaction_1 704 includes a handleFault() function 716 for handling the faulting event
722. In one embodiment, the handleFault function 716 resembles a “catch” function for
fault handling in other execution environments, such as an operating system or a managed
execution environment. As such, the fault propagation or dispatch to the handleFault
function 716 or the “catch™ handler is asynchronous.

[0047] Upon the occurrence of the faulting event 722, the transaction_1 704 transitions
to a faulting state 712, and the transaction_1 704 is transitioned to a closed state 714. In
one embodiment, in responding to the faulting event 722, the handleFault() function 716 is
called and is placed in a queue (not shown) for processing.

[0048] With this well-defined protocol for exception propagation and handling,

alternative embodiments may handle multiple exceptions, and multiple exceptions may be

13

10

15

20

2s

WO 2007/120391 PCT/US2007/004642

scheduled while the propagation of exceptions may be interleaved with the normal
program execution.

[0049] InFIG. 7C, the transaction 2 706 and the transaction 708 are in the executing
state 710. Similar to executing the transaction_1 704, the transaction_2 706 executes the
included operations. In this example, the texts (3 and 4”) are inserted on the display. In
addition, the transac;tion_Z 706 also includes a similar handleFault() function as the
handleFault() function 716 in the transaction_1 704 for handling the faulting event 722.

[0050] Im an alternative embodiment, the handleFanlt() function 716 may propagate or
transmit a notification 720 to the remaining work items in the executing state 710 as a
function of the execution hierarchy or the execution hierarchical structure of the activity.
For example, while the transaction_1 704 is in faulting state 712, the handleFault() .
function 716 may propagate the notification 720 (e.g., a “throw” function) so that the
handleFault() function of the parent Activity 1 702 may handle it as if the notification 720
i;', a faulting event or an exception. In one embodiment, a child activity may limit the
target of the throw function to its parent in the activity tree. In another embodiment,
exception handling may be highly associated with or tied to the tree like structure of
activities.

[0051] By establishing the faulting state 712 for handling faulting events, embodiments
of the invention enable asynchronous faulting handling or exception handling, and the
remaining work items or activities in the executing state 710 continue to be executed. In
addition, another alternative embodiment enables scheduling of handling faulting events.
For example, upon responding to the notification 720, the transaction_2 706 may be
placed in a scheduler queue 718 before being transitioned to the faulting state 712. In
another embodiment, the notification 720 may be suppressed such that other work items or

activities in the executing state 710 continue to be executed. In one embodiment, the

14

10

15

20

25

WO 2007/120391 PCT/US2007/004642

transaction_1 704 transitions to a closed state 714 after propagating or transmitting the
notification 720. In yet another embodiment, fault propagation and handling survive and
span across passivation cycles.

[0052] In FIG. 7D, the transaction_3 708 is being executed in the executing state 710.
For example, the included operations of the transaction_3 708 insert the texts “(5 and 6”)
and pause 180 seconds before inserting the text (“END”) on the display. The included
operations, however, do not include functions for faulting handling. As such, upon
completion of the included operations, the transaction_3 708 is transitioned to the c;losed
state 714 in FIG. 7E. In addition, the transaction_2 706 also transitions to the closed state
714 after being dequeued from the scheduler queue 718 to the faulting state 712.

[0053] Without limitations, Appendix A illustrates an exemplary implementation of
declaratively raising of an exception according to an embodiment of the invention. In one
embodiment, programmers or developers may design a fault handler for handling a
particular type of faulting events or exceptions. In yet another embodiment, work items or
activities in the workflow may not include a function or incapable to handle faulting
events. In this embodiment, the workflow execution environment handles the faulting
events. In yet another embodiment, one or more post-fault-handling operations may be
provided to the user via the UI 428 to the user 430 in FIG. 4.

[0054] While FIGS. 7A to 7E illustrate snapshots of the executing state or parts of the
state automaton sequentially (e.g., transactions are executed sequentially), work items in
the executing state may be processed simultaneously or substantially simultaneously
without departing from the scope of the invention.

[0055] FIG.8isa ﬂow diagram illustrating a method for asynchronously handling of a
faulting event for an activity of a workflow according to an embodiment of the invention.

For example, the method illustrated in FIG. 8 may be represented as computer-executable

15

10

15

20

25

WO 2007/120391 PCT/US2007/004642

instructions to be stored in a computer-readable medium as shown in FIG. 9. For
example, a state machine 902 defines a state automaton (e.g., state automaton .600) for an
activity at 802, and the state automaton includes at least an executing state, a faulting state,
and a closed state. An activity component 904 defines the activity to include a plurality of
work items at 804. The defined activity has an execution hierarchy or an exécution
sequence (e.g., a tree structure) for the plurality of work items. Each of the work items
including an operation for executing a poﬁion of the activity.

[0056] A scheduler component 906 transitions each of the work items to the executing
state at 806. An execution component 908 execu.tes the included operation of transitioned
work items in the executing state at 808. At 810, an identification component 910
identifies one or more of the transitioned work items in response to the faulting event
based on the execution hierarchy and the included operation. At 812, a fault handler 912
asynchronously handles the faulting event by invoking a fault handling operation (e.g., the
handleFault() function 716) in th; one or more identified work items to transition the one
or more identified work items to the faulting state while executing the included operation
of the remai'ning transitioned work items not identified in response to the faulting event by
the identification component. In one embodiment, the fault handler 912 asynchronously
handles the faulting event by transitioning the one or more identified work items to the
faulting state. In yet another embodiment, the fault handler 912 asynchronously handles
the faulting event by enqueuing the one or more identified work items in a scheduler
queue (e.g., scheduler queue 718).

[0057]1 In an alternative embodiment, the computer-readable medium 900 further
includes a fault propagation component 914 for transmitting a notification from the one or
more identified work items to the remaining transitioned work items as a function of the |

execution hierarchy of the activity. The notification 720 indicates that the identified one

16

10

15

20

25

WO 2007/120391 PCT/US2007/004642

or more work items are in the faulting state. In a further embodiment, the computer-
readable medium 960 further includes a transition component 916 for tfansitioning the
remaining transitioned work items from the executing state to the faulting state in response
to the transmitted notification.

[0058] The computer-readable medium may also include a compensation component
918 for recovering or compensating data associated with the activity as a function of the
asynchronously handling the faulting event in yet another alternative embodiment. An
inhibition component may also be pa;rt of the computer-readable medium 900 for
suppressing the transmission of the notification to the remaining transitioned work items.
[0059] Although described in connection with an exemplary computing'system
environment, such as the system 400 in FIG. 4, embodiments of the invention are
operational with numerous other general purpose or special purpose computing system
environments o‘r configurations. The computing system environment is not intended to
suggest any limitation as to the scope of use or functionality of any aspect of the invention.
Moreover, the computing system environment should not be interpreted as having any
dependency or requirement relating to any one or combination of components illustrated
in the exemplary operating environment. Examples of well known computing systems,
environments, and/or configurations that may be suitable for use with aspects of the
invention include, but are not limited to, personal computers, server computers, hand-held
or laptop de'vices, multiprocessor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, mobile telephones, network PCs, minicomputérs,
mainframe computers, distributed computing environments that include any of the above
systems or devices, and the like.

[0060] Embodiments of the invention may be described in the general context of

computer-executable instructions, such as program modules, executed by one or more

17

10

15

20

25

WO 2007/120391 PCT/US2007/004642

computers or other devices. Generally, program modules include, but are not limited to,
routines, programs, objects, components, and data structures that perform particular tasks
or implement particular abstract data types. Aspects of the invention may also be
practiced in distributed computing environments where tasks are performed by remote
processing devices that are linked through a communications network. .In a distributed
computing environment, program modules may be located in both local and remote
computer storage media including memory storage devices.

[0061] In operation, the system 400 executes computer-executable instructions such as
those illustrated in the figures, such as FIG. 8, to implement aspects of the invention.

[0062] The order of execution or performance of the operations in embodiments of the
invention illustrated and described herein is not essential, unless otherwise specified. That
is, the operatiops may be performed in any order, unless otherwise specified, and
embodiments of the invention may include additional or fewer operations than those
disclosed herein. For example, it is contemplated that executing or performing a particular
operation before, contemporaneously with, or after another operation is within the scope
of aspects of the invention.

[0063] Embodiments of the invention may be implemented with computer-executable
instructions. The computer-executable instructions may be organized into one or more
computer-executable components or modules. Aspects of the invention may be
implemented with any number and organization of such components or modules. For
example, aspects of the invention are not limited to the specific com;;uter-executable
instructions or the specific components or modules illustrated in the figures and described
herein. Other embodiments of the invention may include different computer-executable

instructions or components having more or less functionality than illustrated and described

herein.

18

10

WO 2007/120391 PCT/US2007/004642

[0064]1 When introducing elements of aspects of the invention or the embodiments
thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or
more of the elements. The terms “comprising,” “including,” and “having” are intended to
be inclﬁsive and mean that there may be additional elements other than the listed elements.

[0065] Having described aspects of the invention in detail, it will be apparent that
modifications and variations are possible without departing from the scope of aspects of
the invention as defined in the appended claims. As various changes could be made in the
above constructions, products, and methods without departing from the‘scope of aspects of
the invention, it is intended that ali matter contained in the above description and shown in

the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

19

10

15

20

25

WO 2007/120391 PCT/US2007/004642

APPENDIX A
[0066] <myActivities:Sequence x:Name="myWorkflow"
x:Class="myApp.myWorkflow"
xmlns:myActivities="http://scﬁemas.com/myActiviti es"
xmins:x="http://schemas.microsoft.com/winfx/2006/xam]"
xmins="http://schemas.microsoft.com/winfx/2006/xam}/workflow">
<myActivities: WriteLine Text="One"/>
<myActivities: WriteLine Text="Two"/>
<ThrowActivity ‘FaultTyp e="{x:Type InvalidOperationException}"/>
<myActivities:WriteLine Text="Unreachable code"/>
<FaultHandlersActivity>
<FaultHandlerActivity FaultType="{x:Type
InvalidOperationException} ">
<myActivities: WriteLine Text="Three"/>
</FaultHandlerActivity>
<FaultHandlerActivity FaultType="{x:Type
AppDomainUnloadedException}">
<myActivities:WriteLine Text="Four"/>
</FaultHandlerActivity>
</FaultHandlersActivity>
</myActivities:Sequence>
<myActivities:Sequence x:Name="myWorkflow" x:Class="myApp.myWorkflow"
xmlns:myActivities="http://schemas.com/myActivities”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmIns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">

20

WO 2007/120391 PCT/US2007/004642

<myActivities:WriteLine Text="Hello World"/>
<ThrowActivity FaultType="{x:Type InvalidOperationException}" />
<myActivities: WriteLine Text="Unreachable Code"/>

</myActivities:Sequence>

21

10

15

20

25

WO 2007/120391 PCT/US2007/004642

CLAIMS
What is claimed is:
1. A method for asynchronous handling a faulting event (722) for an activity of a
workflow, said method comprising:
defining a state automaton (600) for an activity (702), said state automaton (600)
including at least an executing state (604), a faulting state (608), and a closed state (612),
said state automaton (600) classifying an execution lifetime of the activity (702);
defining the activity (702) to include a plurality of work items (422), said defined
activity (702) having an execution hiera:rphy (500) for the plurality of work items (422),

each of the work items (422) including an operation for executing a portion of the activity

(702);

transitioning each of the work items (422) to the executing state (604);

executing the included operation of transitioned work items (422) in the executing
state (604);

identifying one or more of the transitioned work items in response to the faulting
event (722) as a function of the execution hierarchy (500) and the included operation; and

asynchronously handling the faulting event (722) by transitioning the one or more
identified work items (422) to the faulting state (608) while executing the included
operation of the remaining transitioned work items not identified in response to the

faulting event (608).
2. The method of claim 1, wherein asynchronously handling the faulting event (722)

comprises invoking a fault handling operation in the one or more identified work items

(422).

22

10

15

20

25

WO 2007/120391 PCT/US2007/004642

3. The method of claim 2, wherein invoking the fault handling operation comprises

enqueuing the one or more identified work items in a scheduler queue (718).

4. The method of claim 1, further comprising propagating a notification (720) from the
one or more identified work items (422) to the remaining transitioned work items 422) as
a function of the execution hierarchy (500) of the activity (702), said notification (720)
indicating that the identified one or more work items (422) being in the faulting state

(608).
5. The method of claim 4, further comprising transitioning the remainihg transitioned
work items (422) from the executing state (604) to the faulting state (608) in response to

the propagated notification (720).

6. The method of claim 4, further comprising suppressing the propagation of the

notification (720) to the remaining transitioned work items (422).

7. The method of claim 1, further comprising providing operations to a user for post-
faulting handling in response to the one or more identified work items (422) being

transitioned to the faulting state (608).

8. The method of claim 1, wherein one or more computer-readable media have computer-

executable instructions for performing the method of claim 1.

9. A system (400) for asynchronously handling faulting events (722) in a workflow, said

system (400) comprising:

23

10

15

20

25

WO 2007/120391 PCT/US2007/004642

a storage (404) for storing data associated with work items of an activity (406) in
the workflow, said activity (406) having an execution hierarchy (500) for the work items
(422), each of the work items (422) including an operation for execuﬁng a portion of the
activity (406);

a processor (402) configured to executing computer-executable instructions for:

defining a state automaton (600) for the activity (406), said state automaton
(600) including at least an executing state (604), a faulting state (608), and a closed state
(612), said state automaton (600) classifying an execution lifetime of the activity (406);

transitioning each of the work items (422) to the executing state (604);

executing the included operation of transitioned work items (422) in the
executing state (604);

identifying one or more of the transitioned work items (422) in response to
a faulting event (608) based on the execution hierarchy (500) and the included operation;
and

asynchronously handling the faulting event (722) by transitioning the one
or more identified work items (422) to the faulﬁng state (608) while executing the
included operation of the remaining transitioned work items (422) not identified in

response to the faulting event (722).

10. The system (400) of claim 9, wherein the processor (402) is configured to
asynchronously handle the faulting event (722) using one or more of the following
method: by invoking a fault handling operation in the one or more identified work items
(422), and by enqueuing the one or more identified work items (422) in a scheduler queue

(718).

24

10

15

20

WO 2007/120391 PCT/US2007/004642

¥
’

11. The system (600) of claim 9, further comprising a component for propagating a
notification (720) from the one or more identified work items to the remaining transitioned
work items (422) as a function of the execution hierarchy (500) of the activity (406), said
notification (720) indicating that the identified one or more work items (422) being in the

faulting state (608).

12. The system (400) of claim 11, further comprising a component for transitioning the
remaining transitioned work items from the executing state (604) to the faulting state (608)

in response to the propagated notification (720).

13. The system (400) of claim 9, further comprising a component for compensating for .
recovering data associated with the activity from the storage (404) as a function of the

asynchronously handling the faulting event (722) by the processor (402).

14. The system (400) of claim 9, further comprising a component for suppressing the
propagation of the notification (720) to the remaining transitioned work items (422).
15. One or more computer-readable media (9005 having computer-executable components
for asynchronously handling a faulting event (722) in a workflow, said computer-
executable components comi:rising:

a state machine (902) for defining a state automaton (600) for an activity (406),
said state automaton (600) including at least an executing state (604), a faulting state

(608), and a closed state (612), said state automaton (600) classifying an execution

lifetime of the activity (406);

25

10

15

20

WO 2007/120391 PCT/US2007/004642

an activity component (904) for defining the activity (406) to include a plurality of
work items (422), said defined activity (406) having an execution hierarchy (500) for the
plurality of work items (422), each of the work items (422) including an dperation for
executing a portion of the activity (406);

a scheduler component (906) for transitioning each of the work items (422) to the
executing state (604);

an execution component (908) for executing the included operation of transitioned
work items (422) in the executing state (604);

an identification component (910) for identifying one or more of the transitioned
work items in response to the fauiting event (722) based on the execution hierarchy (500)
and the included opergtion; and

a fault handler (912) for asynchronously handling the faulting event (722) by
invoking a fault handling operation in the one or more identified work items (422) to
transition the one or more identified work items (422) to the faulting state (608) while
executing the included operation of the remaining transitioned work items (422) not

identified in response to the faulting event (722) by the identification component (910).

16. The computer-readable media (900) of claim 15, wherein the fault handler (912)
enqueues the one or more identified work items (422) in a scheduler queue (718) to

transition the one or more identified work items to the faulting state (608).
17. The computer-readable media (900) of claim 15, further comprising a fault

propagation component (914) for transmitting a notification (720) from the one or more

identified work items (422) to the remaining transitioned work items (422) as a function of

26

10

15

WO 2007/120391 PCT/US2007/004642

the execution hierarchy (500) of the activity (406), said notification (720) indicating that

the identified one or more work items (422) being in the faulting state (608).

18. The computer-readable media (900) of claim 17, further comprising a transition
component (916) for transitioning the remaining transitioned work items from the
executing state (604) to the faulting state (608) in response to the transmitted notification

(720).

19. The computer-readable media (900) of claim 15, further comprising a compensation
component (918) for recovering data associated with the activity (406) as a function of the

asynchronously handling the faulting event (608).
20. The computer-readable media (900) of claim 15, further comprising an inhibition

component (920) for suppressing the transmission of the notification (720) to the

remaining transitioned work items.

27

WO 2007/120391 PCT/US2007/004642

113

FIG. 1

MANAGED EXECUTION * HIGHER LEVEL

ENVIRONMENT

106 INTERMEDIATE LANGUAGE
Y FIXED SET OF ACTIVITY CLASS
SPECIFIC FILE FORMAT
- THREAD
HEAP

OPERATING SYSTEM

PROCESSING UNIT DEPENDENT
104 -\ TARGET SPECIFIC MACHINE
ARCHITECTURE

PORTABLE EXECUTABLE FILES
STACKS

HEAP

THREAD BASE

VIRTUALIZATION

PROCESSING UNIT

LOWER LEVEL

WO 2007/120391

FIG. 2

2/13

WORKFLOW FRAMEWORK

ANY FILE FORMAT
CAN DESIGN ARBITRARY
DOMAIN SPECIFIC OP-CODE

DEFINE ACTIVITY AS OP-CODE

WF THREAD
CONTINUATION-BASED
RUNTIME

MANAGED EXECUTION
ENVIRONMENT
INTERMEDIATE LANGUAGE
FIXED SET OF ACTIVITY CLASS
SPECIFIC FILE FORMAT
THREAD
HEAP

OPERATING SYSTEM

PROCESSING UNIT DEPENDENT
TARGET SPECIFIC MACHINE
ARCHITECTURE

PORTABLE EXECUTABLE FILES
STACKS

HEAP

THREAD BASE

PROCESSING UNIT

PCT/US2007/004642

A

VIRTUALIZATION

HIGHER LEVEL

LOWER LEVEL

WO 2007/120391

3/13

FIG. 3

START WORKFLOW

302

l

[=1- CONDITIONAL STMT 1

?_L{j\ 304

AN

PCT/US2007/004642

)
o

{ N
CONDITIONAL STMT 2

TSN 306

[F]-PARALLEL1
0
4
| 310
| | R
SEQUENCE1 SEQUENCE2
< &

| |

>312
[SEND@MAIL J (GET_AE{OVALJ

.)
N

)

|
CONDITIONAL STMT 3

Té|

~— 308

316
DROP ACTIVITIES
HERE

314
COMPLETE

WO 2007/120391 PCT/US2007/004642

4/13
FIG. 4 - s
-
MEMORY AREA
400 PROCESSOR |¢——»

/

j 408
. SCHEDULEJ
422-N

714222 [422:3je e RUNTIME STATE

418
/,

INITIALIZED
STATE ﬁ

- 406 \{ ACTIVITIES
g
§

DISPATCHER
ACTIVITY_1: WORK ITEM-1 412
~ a4 | ¢

INVOKE ACTIVITY METHOD;
{ REQUEST INPUT FROM USER;

*
L

EXECUTING) | .
STATE J
414
EXECUTE ACTIVITY METHOD
— , PASSIVATE
| 416
CLOSED CONCLUDE EXECUTION DATA

STATE 420\ STORE

WO 2007/120391

5113

PCT/US2007/004642

f 500
ACTIVITY
/-502
ACTIVITY_1
1
[s] 506
WORK ITEM 1 WORK ITEM_2
|
Y l A
WORK ITEM_3 WORK ITEM_4 WORK ITEM_5
' [] ®
WORK ITEM_6 . :
|
WORK ITEM 7 WORK ITEM_8

PCT/US2007/004642

WO 2007/120391

6/13 -

0L9

rA%e

¥09

- ONILLNO3X3

¢09

ONILYSNIdINOD e e
809 ‘ 909 ‘

009 \

9 Old

WO 2007/120391 PCT/US2007/004642

7113
FIG. 7A
COMPOSITE :
ACTIVITY /- 702

ACTIVITY_1: {WRITE TEXT ON DISPLAY}

{ /— 704! ¢ /- 706 i / 708

TRANSACTION_1 TRANSACTION_ | [TRANSACTION_3
{ INSERT TEXT (1 2 { INSERT TEXT
116 |AND 2) {INSERT TEXT ||(“5 AND 6");
N HANDLEFAULT();)| |("3 AND 4°; PAUSE 180
HANDLEFAULT(); | [SECONDS;
INSERT TEXT
} } g‘END");

WO 2007/120391 PCT/US2007/004642

8/13

FIG. 7B

710
r

([EXECUTING STATE

704 706 708
[- -

1 AND 2

HANDLEFAULT
(

722 FAULTING
EVENT

)

712

WO 2007/120391 PCT/US2007/004642

9/13
FIG. 7C
710
e
EXECUTING STATE
706 ' 708
" 4
3 AND 4
HANDLEFAULT
702 (.
/ FAULTING
EVENT
ACTIVITY _1);

FAULTING

70

WO 2007/120391 PCT/US2007/004642

10/13

FIG. 7D

710
/‘ .

[EXECUTING STATE

708
/.

5 AND 6

END

712

70

714

FAULTING

CLOSED
706

WO 2007/120391 PCT/US2007/004642

FIG. 7E 1113
710
—
[EXECUTING STATE
708
-~
5AND 6
END
712
714
CLOSED
7086

|

WO 2007/120391 PCT/US2007/004642

12/13

FIG. 8

DEFINE A STATE AUTOMATON FOR AN 802

ACTIVITY

i

DEFINE THE ACTIVITY TO INCLUDE A
PLURALITY OF WORK ITEMS

l

[TRANSITION EACH OF THE WORK ITEMS

804

—~ Y

806
TO THE EXECUTING STATE

|

EXECUTE THE INCLUDED METHOD OF
TRANSITIONED WORK ITEMS IN THE
EXECUTING STATE

l

IDENTIFY ONE OR MORE OF THE
EXECUTING WORK ITEMS IN RESPONSE TO
THE FAULTING EVENT AS A FUNCTION OF
THE EXECUTION HIERARCHY AND THE

INCLUDED OPERATION -

|

ASYNCHRONOUSLY HANDLING THE |
FAULTING EVENT BY TRANSITIONING THE | _ g1
ONE OR MORE IDENTIFIED EXECUTING [~
WORK ITEMS TO THE FAULTING STATE
WITHOUT AFFECTING THE REMAINING
EXECUTING WORK ITEMS

L_TJ

808

Y

810

=

PCT/US2007/004642

WO 2007/120391

13/13

—

006

1NINOdNOD 1NINOdINOD HITANVH ININOdWOD szzoas_oﬁ
NOILIFIHNI | g1 NOILISNVAL 11nvd - NOILNO3X3 ALINILOV
0Z6 . Z18 / gm
ININOJNOD ININOJWOO LNINOJINOD szzon_s_oop INIHOYW
_/|NOILYSNIdNOD NOILYOVdOYd NOILYOIdIINTal| . | ¥3INA3IHOS 31VLS
816 16 1Inv4
8@.\ mcm

6 Ol

International application No.

PCT/US2007/004642

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC08: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models since 1975
Japanese utility models and applications for utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKIPASS(Kipo Internal), Google, YesKisti

keyword: workflow , fault, faulty, fail, failure, exception, state activity, event, asynchronous, parallel

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to ¢laim No.

A HAGEN, C. et al. Exception Handling in Workflow Management Systems. IEEE Transactions On
Software Engineering. October 2000, Vol. 26, No.10, pages 943-958.

See sections 5~7.

A US 2004/0153350 A1 (KIM, Y .H. et al.) 05 AUGUST 2004

See figures 4,5,7 and their descriptions.

A EP 0697652 A1 INTERNATIONAL BUSINESS MACHINES CORPORATION)

21 FEBULARY 1996
See claim 1.

A BRAMBILLA, M. et al. 'Exception Handling within Workflow-based Web Applications.' In: Web
Engineering, 4th International Conference. Munich: LNCS Springer, 2004.
(http://www.webml.org/webml/upload/ent5/1/213 brambilla_icwe2004.pdf)

See sections 4.1~4.3.

A US 2005/0193286 A1 (THATTE, S.R. et al.) 01 SEPTEMBER 2005

See figure 3 and its description.

1-20

1-20

1-20

1-20

1-20

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of citation or other

special reason (as specified)

document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later
than the priority date claimed

Q"

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

e

yn

ng"

Date of the actual completion of the international search

03 AUGUST 2007 (03.08.2007)

Date of mailing of the international search report

03 AUGUST 2007 (03.08.2007)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701,
Republic of Korea

Faé“simile No. 82-42-472-7140

Authorized officer

YOON, Hye Sook

Telephone No. 82-42-481-8370

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2007/004642

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

US 2004/0153350 A1

EP 00697652 A1

US 2005/0193286 A1

05.08.2004

21.02.1996

01.09.2005

WO 2004/070527

JP 08161161 A2
US 05819022 A

NONE

AZ 19.08.2004

21.06.199%6
06.10.1998

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report

