asy United States

a2 Reissued Patent
Matsuo et al.

USOORE38679E

(10) Patent Number:

US RE38,679 E

(54) DATA PROCESSOR AND METHOD OF
PROCESSING DATA
(75) Inventors: Masahito Matsuo, Tokyo (JP);
Toyohiko Yoshida, Toyko (JP)
(73) Assignee: Mitsubishi Denki Kabushiki Kaisha,
Tokyo (JP)
(*) Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
(21) Appl. No.: 09/848,253
(22) Filed: May 4, 2001
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,901,301
Issued: May 4, 1999
Appl. No.: 08/699,944
Filed: Aug. 20, 1996
(30) Foreign Application Priority Data
Feb. 7, 1996 (JP) .oovvviiiviiiiiiiiiiiiicicciieee e, 8-021453
(51) Int. CL7 oo GO6F 9/30
(52) US.CL .o 712/212; 710/7; 712/24,
712/1

(58) Field of Search 712/212, 24, 225,
712/221, 215, 1; 710/7, 21, 22; 711/100

References Cited
U.S. PATENT DOCUMENTS

(56)

@5) Date of Reissued Patent: *Dec. 28, 2004
5,630,083 A * 5/1997 Carbine 712/212
5,664,136 A * 9/1997 Witt ... 712/208
5,761,470 A 6/1998 Yoshida ... 712/210
5,812,810 A * 9/1998 Sager .. 712/216
5,881,312 A * 3/1999 Dulongcoovvvviiiinnnnnnn. 710/7

FOREIGN PATENT DOCUMENTS

EP 427245 A * 5/1991
JpP 53-44130 * 4/1978
JpP 57-113144 * 771982
JpP 60-134938 * 7/1985
JpP 60-138640 * 7/1985
JpP 7 176 380 7/1995

OTHER PUBLICATIONS

Lewis C. Eggebrecht, SAMS, pp. 59 to 62 and 67 to 68,
Interfacing to the IBM Personal Computer, 1990.*

Kouhei Nadahara, Ichiro Kuroda, Masayuji Daito, Taka-
hashi Nakayama, NEC Corporation Low—Power Multime-
dia RISC 8207 IEEE Micro, 15(1995) Dec., No. 6 Los
Alamito, CA US pp. 20-29.*

Erdem Hokenek, member IEEE, Robert K. Motoye, member
IEEE, and Peter W. Cook, member IEEE Second—Genera-
tion RISC Floating Point with Multiply—Add Fused 8107
IEEE Journal of Solid-State Circuits, 25(1990)Oct., No. 5,
New York, US pp. 1207-1212.*

(List continued on next page.)

Primary Examiner—Eric Coleman
(74) Antorney, Agent, or Firm—Oblon, Spivak, McClelland,
Maier & Neustadt, P.C.

(7) ABSTRACT

A second decoder (114) of an instruction decode unit (119)
decodes an operation code for a multiply-add operation, and
a second operation unit (117) receives two data stored in a
register file (115) to perform the multiply-add operation. In
parallel with the operations of the second decoder (114) and
the second operation unit (117), a first decoder (113) of the
instruction decode unit (119) decodes an operation code for
2 data load, and an operand access unit (104) causes two data

4819152 A * 4/1989 Deerfield 711/217 (e.g., n bits each) stored in an internal data memory (105) to
5134711 A * 7/1992 Asthana 712/17 be transferred in parallel in the form of combined 2n-bit data
5,201,039 A * 4/1993 Sakamura 711,201 to a first operation unit (116). Then, two predetermined
5299321 A * 3/1994 lizuka 712/212 registers of the register file (115) store the respective n-bit
5,481,734 A * 1/1996 Yoshida ... 712/225 data from the first operation unit (116).
5485620 A * 1/1996 Dulong 712/24
5,530,817 A * 6/1996 Masabuchic.......... 712/24 48 Claims, 44 Drawing Sheets
100
DATA PROCESSCR 101
R e T T

| CONTROL UNIT [

119

| _INSTRUCTION bECoDE UNIT

114

[_secann

FIRST DECODER
7

DEGODER —i

CONTROL
SIGNAL

[S -
D [AT
INSTRUCTION INTERNAL OPERAND [A.0 | INTERNAL
FETCH | INSTRUCTION ACCESS [—=1 ‘;?gg:&
UNIT 1 MEMORY UNIT m MEMORY
alpl f 02 103 _adp-ofti04 105
| EXTERNAL BUS INTERFACE UNIT
f 108

EXTERNAL
ADDRESS
8US

EXTERNAL
DATA

8US

CONTROL
SIGNALS

US RE38,679 E
Page 2

OTHER PUBLICATIONS

Atsuchi Inoue and Kenji Takeda, Toshiba Corporation R&D
of Superscalar Processors 8345 Computer Architecture
News 21(1993) Mar., No. 1, New York US pp. 4-11.*
Brad Burgess et al., Digest of Papers, COMPCON 94, pp.
300-306, 1994, The Power PC™ 603 Microprocessor: A
High Performance, Low Power, Superscalar RISC Micro-
Processor.

M68HC16 Family, CPU16, Central Processor Unit, Refer-
ence Manual, pp. 3—-1-3-7, 6-178-6-181, 6-286—6-287,
11-8-11-11, 1993, Motorola Inc.

DSP 56000 Digital Signal Processor Family Manual, pp.
2-2-5-9; MAC, X:Y, REP instructions; 1992 Motorola, Inc.
Power PC™ 603, RISC Microprocessor User’s Manual, pp.
1-1, 11-175, 1994 IBM Microelectronics and Motorola, Inc.
M. Nakajima, etal , Semiconductor Research Ctr, Matsushita
elec. Ind. Co., Ltd. OHMEGA: A VLSI Superscalar Proces-
sor Architecture for Numerical Applications 8345 Computer
News 187 Ann. Int. Symp. Comp.. Arch. 19(1991)May No.
3, NY US. pp. 160-168.*

* cited by examiner

U.S. Patent

Dec. 28, 2004 Sheet 1 of 44 US RE38,679 E
FIG. 1A FIG. 1B
BIT NUMBER BIT NUMBER
0 15 0 15 21
RO [1! cro[_Psw oo
R1 [12 CRi] 5PSW__ 1 4
Re [13 crz[PC 1 o4
rR3 [4 Ccr3| BFC
R4 | 9
RS [6
R6 [7 FIG.1C .
R7 | 18 CR7[_RPT C }/26
R8 | 9 CR8 | RPT S]/27
R9 [}/10 CR9 | RPT E }/28
R10 [111 CR10[__Mob S)/29
R11 [12 Ccr1I[_ _MopE L
R12 | 13
R13 [LINK —14
R14 |]—15
s
BIT NUMBER FI6. 1D
0 7 8 23 24 39
AO [AOG | AOH [AOL |~/31
N31g N3 31c
Al [a6 | AlH l AlL 1-/32
N32q “32b 32¢
FIG.2
BIT NUMBER
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SM{O|O |O |O |IEIRPIMD|O O |O|O|FO]OlO]|C
41 %243 44 45 ‘46

U.S. Patent Dec. 28, 2004

FIG.3

BIT NUMBER
012

Sheet 2 of 44

16 17 -

US RE38,679 E

31

LEFT—HAND

FM| CONTAINER

RIGHT—HAND
CONTAINER

\51 \52

FI1G.4

BIT NUMBER

0 5 6

\53

910 13 14

\

62\

\61

FI1G.5

BIT NUMBER

0 6 7

63 \64

14

\71
FIG.6

BIT NUMBER
0 5 6 910 13 14

72

29

\ \go \

81 82 °83

FI1G.7

BIT NUMBER

012 14 15

84

20 21 24 25 2829

o1

91

\

) %6

\
4 95

U.S. Patent Dec. 28, 2004 Sheet 3 of 44 US RE38,679 E

FIG.8
100
- _
| DATA PROCESSOR 101 |
r---——" -"—"—“"—"“—" """~ - - - T T T T 1
| MPU CORE 11 |
| —>|___ INSTRUCTION QUEUE | 1o |
l — / |
| CONTROL UNIT 119 |
l 13 INSTRUCTION DECODE UNIT 14 |
| [FIRST DECODER | | seconp pecoper ||| !
| Z 1 |
%
| conTROL [|MMEDIATE [[L1 |mmeoiatel |
| SIGNAL [| VALE [] [] | VALLE | |
| @ T 7 ‘—@ |
| oC FIRST REGISTER SECOND |
| UNIT UNIT I
| ‘ } ! |
118 116 115 117
e - - T —a]]
0.1 |AI Aol |o.o
Y
INSTRUCTION INTERNAL OPERAND [A_Q| INTERNAL
FETCH [2=>1 INSTRUCTION ACCESS DATA [CONTROU
UNIT < MEMORY UNIT [531 MEMORY |[SIGNALS
anp-l A Njgp -Njo3 agpofhiog NMOS5
EXTERNAL BUS INTERFACE UNIT
7 1
106/
L J
Y \] /
EXTERNAL EXTERNAL CONTROL

ADDRESS DATA SIGNALS
8uUs BUS :

US RE38,679 E

Sheet 4 of 44

Dec. 28, 2004

U.S. Patent

LINN SS33JV ONVY3IdO

— . } sng vo
cle POl] __
9|
\ple } v L1g~ snaig §]
V1 snezmhyl Q‘ sn8 ao N,n’ sna vr / [
- ~ 4 GGl A
| aw:m ol COl cct lce| S|y § il h
i L] e | G2 G 96|
LINo¥
E R Lnouy \ ! sll3
ST]! M LINN
ik gy | 7 wsen | [|5 >
2SIt gt | 86l w[W g
29l |G
‘ 49l ol [avhH[W 9G|1 LGl .
1 v ool ENER IR
GLif ol snd €S ¢ g’ /9
~ w./— Sng ¢s NOMw LINN
I N /
_.Nl ol sne _m|5|m|. MOS0 |
ol 211~ [\m::z: _lkt;&mh_]
69/ T0YLNOD

US RE38,679 E

Sheet 5 of 44

Dec. 28, 2004

U.S. Patent

LINN HJI134 NOILINYLSNI

S $S34AQV
) cOl a NOLLONYLSNI
94
Z\m sng aa
7 sna vr
Y 9 A a
mm_i(ﬂw e
— — £6l ¢ 8l 1 /8l y o6l
~ b
ON 0
S)
3714 LINN I] e | 3 g 3 _ _
NOILY¥3dO g g d| | v Ll LY y
¥3LS193Y LSl | N ~ g m m
Y
) ~ 28l 68l
b6l [/ /
- mm_mm_ 26l 16l 181 981| v8ll 88l
sy ot}
sng €S \

¢0¢
8ll

Vzo;mom Jd

ol 914

US RE38,679 E

Sheet 6 of 44

Dec. 28, 2004

U.S. Patent

lllllllllllllllllllllllllll J
) o 7 onaca |
! qlg |
602, ? 802y 9l) Num snaz2a |
_
1In9YI

Loz zo:§2<m// HO1YINWNIIY _
G - |

[40103735 1 Y5 Ll _ L
INId \ / Y31dIHS “
RENY _

¥3dILINA i A \mom t Gle oyl | | 34
N - . of | v ¥31SI193Y
L \> [n/ 2 " ot | - as N RERLE |
o1z ae o c0e del 7 AR " /
9502 Ip02 de| gz | sl
W 902 Al |
. -
SCESP w_) e “
~ N |
i S8YS o¢ ol LINN NOILYY¥3dO GN023S |9 L_
T T T _
L1 | | —1_¥300030 ONOOTS
(RO N |

U.S. Patent Dec. 28, 2004 Sheet 7 of 44 US RE38,679 E

FIG. 12
IF STAGE D STAGE E STAGE M STAGE W STAGE
DATA
WRITE
> MEMORY | 5|
1 ACCESS BACK
INSTRUCTION INSTRUCTION INSTRUCTION X \
FETCH > DECODE EXECUTION 404 405
INSTRUCTION
b EXECUTION
N401 Nao2 N403 N406

FIG. 13

LOAD INSTRUCTION IF D E M w

MULTIPLY—-ADD

OPERATION F |l D ke E [E2
INSTRUCTION STALL
FI/G. 14
MULTIPLY—ADD
OPERATION F | o | e [|e2
INSTRUCTION
oo
INSTRUCTION IF| D | E |E2
ROUNDING
nsTRucton | F | D = E

STALL

U.S. Patent

Dec. 28, 2004

FIG. 15

; initia
1di

1d2w
ld2w
ld2w
1d2w

repi #42, loopend

l1d2w
ldaw
ld2w
1d2w
ld2w
loopend:
1d2w

mac
mac
mac
mac
rachi

lize

riz2, #h*2400
1di rid4, #h’2000

ro,eri12+
re, erl4+
r2, eriz2+
rg, eri4+

r4,

rig,erid+

ro,
re,
re.

rs8,

ao,
ao,
ao,
ao,
ro,

arl12+

8ri12+
arl4+
arl1z2+

erli4+

ro, r6
rt,r7
r2, r8
r3, r9
ao, #1

l
I

.
’

Sheet 8 of 44

US RE38,679 E

start address of data

start address of coef

nop
clra

mac
mac
mac
mac

mac

mac

ao,
ao,
ao,
ao,

ao,

ago,

501
ro, rt6
ri,r7
r2, r8
r3, r9 502
r4,rl10
rs,ritt

503

US RE38,679 E

Sheet 9 of 44

Dec. 28, 2004

U.S. Patent

626 826 LCS 9¢§ GZG ¥c§ A A 12§
)) /) /] / /) \
PY |<23dSY>|<TIJSY>|TOTOTO0|T|<3dSY>|<3S8PY>|100011]00
1€ 0€ L2 9¢ g€¢ ¢¢ LT 91 GI ¢l 11 8 L ¢ 10

20JSY ‘13JSY ‘1Sapy JVHW

+3JSYye “1S3aPy Mcd1 Y3IHWNN LI8

91914

US RE38,679 E

Sheet 10 of 44

Dec. 28, 2004

U.S. Patent

91671 TTJd°‘Gd ‘o DeRUW +y1d® ‘84 MZPI 00 G001
GI6—] 01d ‘yd ‘0 Ooeu +c1de ‘2d MZpI 00 AN
y16-1 6d ‘€4 ‘0 Deuw +y1de ‘gd MZpT 00 €001
€164 B8dJd ‘¢d ‘0B OBU +2T7d® ‘0d MZPT 00 c00T
¢l LJdTJd 0B DeW |[+pyTJd8 ‘0TdJd MEPI 00 1001
164 9d°0d ‘0 2eUW +2l1de ‘vd McPI 00 000T

It L1 91 ¢t 0

(9) (B) W4

SS3400dVY NOILINYLISNI

21914

L Cc C - C C

91
G1I
VI
€1
cl
11

U.S. Patent Dec. 28, 2004 Sheet 11 of 44 US RE38,679 E
FIG. 18

ADDRESS[14:15] 0 1 2 3

FIRST ADDRESS 0 15 16 31
h'2000 571— ALO] | Al1] |-572
h* 2004 H713— AL2] @ AL3] 574
h’2008 H75— Al4] AlS] 576
h’200c 577— AlB] Al7] 578
h'2lfc Hh79— A[254] Al255] (580
h’2400 581 — DI0] DI1] }-H82
h'2404 583— D[2] D[3] 584
h’2408 585— D[4] DI5] }-586
h’'240c H87— DL6] D[7] 588
h'25fc h83— DI[254] E D(255] (590

U.S. Patent Dec. 28, 2004 Sheet 12 of 44 US RE38,679 E

FIG.19

FIG. 19A

FIG. 198

FIG. 19C

US RE38,679 E

Sheet 13 of 44

Dec. 28, 2004

U.S. Patent

(d=+0¥)Q0Y | [(T1T4+GY=d) ATdILTNM
-COSTIINIIXT) | <1991 31n93X3 |
mag%ﬂgum Ll
494 OINI . 300030| |21 HO134
ONYY3d0 Y01 ILTYA mﬂgmm%z%%mm m&m&_@wzﬁ%«ﬁ ¢l
e -~
IS CEIL] 101 Badsnnel
057 6557 T 165 9eg” 1+ Y
(d=+0¥)00Y | [(0T¥.b¥=d)ATdILTINK
LA UELE I 1991 31093X9 |
(=+C1Y) qg] ‘eg]
1404 0LNI §S3Y00Y 3LYadn 300030| |11 HoL34] | M
ONYY3d0 0Y0T ILTYA M:Dmngz%mﬁm m&%o%zxﬂ%«ﬁ
e -
G1AYd JLTHR ‘86T 31n93X3
GEG~ 765~ €667 285 TS
A 23:43M07 (LINN NOILYY3HO QNOJIS)
W:Yd3ddn J:43IH0 T a 41 3JWIL
(LINN NOILYH3dO 1SY14)
3:¥3ddn
V6l 9/ 4

31343 X3013 1

US RE38,679 E

Sheet 14 of 44

Dec. 28, 2004

U.S. Patent

BYG BYG~, LN 95, T
__ (d=+0Y)00Y (LY J¥=d) ATdILINK
AN e Q1T 3IN9AXd)) +1 el 31n93xX3 |
wwuzg%%wﬂammm 16l eel
6Y ‘84 OLNI . 300930] |1 HIL34
ONYY3d0 QY07 ILIHA mﬁfmm%ﬁwmwmm ww@@qucﬁmMML«nw Wl
‘e -
91 Xvg 3L TyM ey 3100 3%3
PHG~ £YG~ 4EN ey, T
_ (d=+0V)00Y (94.04=d) A TdTLINK
AR R ELE] B A R EIRE e
(=+2T1Y) 921 ‘ee]
eY ‘24 0INI | $53400v 31vadn 300030 |€1HJL34 el
ANYY3d0 QY07 ILIYM m@fmm%J%Mwmm mm@ﬂwm&JFMML«DW
e -
I XOYg JLTYN RETTHLTE
g6 *9/ 4

US RE38,679 E

Sheet 15 of 44

Dec. 28, 2004

U.S. Patent

655~ BGG L85 956y T
o [d=+0Y)00Y| | (64+E¥=d) ATdILINN
095~ MALEEELE] B R [N EVE
(F=+¥TY) qG[‘eq]
T4 074 OINI S53400Y 31¥0dn 100030| (91 HILA4| | g
ONV43d0 0v01 31 TaA mmfmmﬁﬁwmmmm mmwmwﬂaﬂmwmm«bw
tRCL NOVE ILTUN e
PG~ B5G < ¢56 186y T
_ (d=+0V)00Y| | (8Y.2¥=d) ATdILINK
SALID SR IERINELE) I 1 S| HELE
(V=+CTH) qy1 ‘ey]
GY ‘74 OLNI 553400V 31yadn 300030f |STHOL34| | GL
ONYY3d0 QY07 3L TYN mmfﬂm%J%mwmm wwwmwm0ﬂmumm«bw
0 -
P XOVE JLTYN eI
261 914

US RE38,679 E

Sheet 16 of 44

Dec. 28, 2004

U.S. Patent

1Nnd1ino

cub

{up

Quo

0c 914

U.S. Patent Dec. 28, 2004 Sheet 17 of 44 US RE38,679 E

FIG.21

1di riz, #h°2400 ; start address of datsa
1di rid4, #h*2000 ; start address of coef

ld2w ré,er14+ 1 mv ri3,r12
l1d2w r4,erl2+
l1d2w rig,ert4+

mulx a0, r0,r6 506
mv rl,r4

ld2w r6,er14+ I mac a0, r4,r10

ld2w r8,ert14+ b mac ad, rb5,r11

1d2w rio,erl4d+ I mvaw r2, r4

l1d2w r4,erl1z2- I rachi ro, ao, #1

repi #n, loopend

st2w ro,er12+ [l mulx a0, r0,r8
add r12, #4 b mac ad,r2,r8
mv ri,r4 I mac ao, r3,rg
1d2w r6,ert4+ L mac a0, r4,r10 607
ld2w r8.,eri4+ Pl mac ad,rb5,rt11
ld2w r10,er14+ || mv2w r2, r4
loopend:
1d2w r4,e6r12- I rachi ro, ao, #1
st2w ro,erl2+ I mulx ald, ro0, rg
add riz2, #4 I mac ao,r2,rs8
mv ri, r4 Pl mac at, r3,r9
ld2w r6, erl4d+ [mac a0, r4,r10 608
l1d2w rg,erl4 b mac ad, r5,r11
rachi ro0, a0, #1
st2w ro0,eri2 [mulx a0, r0,r6
mac a0, r4,r8
mac a0, r5,r9

rachi ro0, a0, #1

US RE38,679 E

Sheet 18 of 44

Dec. 28, 2004

U.S. Patent

L1971 T#°'0B°0dJd TYOE -cldJe ‘vd Mcpl 00 9007
9797 yd'cd MZAW [+PTJd®‘0TJd MCPT 00 G001
G194 T1d°Ggd Qe Jeu +yT7de ‘8d MCZPI 00 v001T
7191 0TJd *ydJd QB Jeuw +7T1d® ‘3d MZPT 00 €001
€18~ ©B6d‘gd ‘0e Jeuw pd T d AW 1 00 c00T
¢i9~y 8d ‘2d Qe Jeuw v# ‘2ld PPER [00 10071
1194 9J ‘0d 0B XTNnUuw +c1d® ‘0d M23s | 00 0001
1€ LT 91 ¢t 0
(q) ()

W4 SS3400Y NOILJINYLSNI

AN |

L]

¢

L C C £ C C O

L1
91
61
VI
- E1
:c1
11

U.S. Patent Dec. 28, 2004 Sheet 19 of 44 US RE38,679 E

FIG.23
ADDRESS[14:15] 0 1 2 3
FIRST ADDRESS 0 15 16 31
h'2000 621~ Ai P 522
h'2004 623~ b1l | b12 624
h'2008 625~ al0 | - 626
h'200c 627~ all | al2 628
h'2014 b2t i b22
h'2018 a2l | -
h'201c a2l i azce
bni | bn2
an0 -
ani § ane
;:L» § -~
— ; ~
h'2400 629~ D11 | D12 1630
h'2404 D21 | D22
589~ Dnt | Dn?

U.S. Patent Dec. 28, 2004 Sheet 20 of 44 US RE38,679 E

FIG.24

FIG.24A

FI1G.248B

FIG.24C

US RE38,679 E

Sheet 21 of 44

Dec. 28, 2004

U.S. Patent

64 ‘84 0LNI
ONYY3d0 QY01 JLTYM
YGT AYE JLTYN

Y91 40 ONYY¥3d0
d40K-¢ Qv

((1>>0Y)Punod=0y)
Y34SNVYL ONY ONNOY
1 841 31nJ3X3

(F=-c1¥)
$S3400Y 3Lvadn
(CTYNT INTVA)

$S3Y00Y Y34SNYYL
YLT 31n33X3

¢l HI134 21

059”7

6v9”

8y9”

9y9”

£4 94 OINI
UNYYId0 QY01 FLTYN
SYPI XOVE 3L TYN

(d=+0Y) 00V
:¢ 861 31n33X3

llllllllllllllllllllll 4

VGI 40 ONVY3dO
QyoM-¢ 0y

(GY=EY "vY=cy)
STYO0M ¢ YIISNYYL
-1 891 31n33X3

(P=+714)

SS3400aY 31vadn
(PTYNT INTVA)
$S3400Y ¥434SNYdL
-¥91 31nJ3X3

8LI'VLI
300340

11 HI134 I

Gy9~
A

@\

o ~r

V
¢3:43M07
W:d3ddf

€9

(LINN NOILYYIO (N0DIS)

ERRELIVE

(LINN NOILYY3LO [SHI4)

3+43ddn

¢y’
Q

ﬁvw\ L[

41 3JKWII

Ve 914

31043 X303 1

US RE38,679 E

Sheet 22 of 44

Dec. 28, 2004

U.S. Patent

2L 8G9~ 59 959, T
(8Y.c¥=d) ATdILI0N
LA ISR) S (1 CYLELE
gel 'vel
GY ‘7Y OLNI 300030| |VIHILHA| |y
ONYY3d0 Y07 ILTUM f&% gmzwmw%m wﬁggkmmﬁmw
tYLI YOYE ILTUN - SEETETS
769 899~ 259 199, T
(94.,04=0Y) A1dILINH
................................... RIUECUELES
59N (7=+21d)
§S3yaay 1vadn 921 ‘vel
(14 08)
TTY 074 OINI V1VO 34015 ¥34SNYAL | | 300030| |e1HOId| | B
NVY3dO QYO ILTYA | VLI &oaJ%mwmm m&%ﬁ@%&ﬂmwmm«bw
1Y91 V8 ILTuN QYOA- 10y uane
gvc 9ld

US RE38,679 E

Sheet 23 of 44

Dec. 28, 2004

U.S. Patent

19~ 0£8~ 699~ 899
(d=+0V)0AY | HTTYG8=d) ATdILTINK
R LAYEN LN EEL I A) A ELE
(7=+714) 91 VI
mwNWmm%WWMqu 300030 |TIHIL3A
V¥ 1 40 ONVY3d0 .
quON-2 0Y3Y §S340aY ¥434SNYYL
+YGI 31n23X3
[99~ 998 G99~ 798y
(d=+0Y)QAY | [(0TY «Fd=d) ATdIL NN
SAENINELE) B I N2 E T IHELE N
(F=t¥TY) aG1 ‘veI
§53300Y 31v0dn 300030 ({91 HIL34
(PTY NI AnVA)
SSIH0QY 43ISNYY)
Y¥131003X3
€99~ ¢98 ~ 199 098
(d=+0Y)0QY (64 +E8=d) AdILINK
:c8el3lnadxd) | -1 8e131n33xd
gyl ‘yrl
300030 |91 HIL34

(Yd=T4) Y34SNYYL
YET 31NJ3X3

ove "9l d

U.S. Patent Dec. 28, 2004 Sheet 24 of 44 US RE38,679 E

FIG.25
A B
I1: sub r3, r7/ mulx a0, r4,r10
I2: add r8,rb6 mulx al,r4,r11
13: add ro, r7 msu a0, rb5,rt11l
14: st2w erl12+,nr2 mac al,rb5,r10
I15: st2w er14+,r8 mvew r8, ra

I16: 1d2w r4,er1l4
17: 1d2w r2,erlz2

I

|

|

I

I

I rachi r6g, a0, #1
[rachi r7,al, #1
I sub ri,r7
I

I

I

I

I

I

I

18: sub ro, r6

19: add rg, rb mu l X al,r4,r10
I110: add rga, r’/ mulx al,r4,rtl1l
I11: st2w er12+,r0 msu a0, rb,ri1
I12: st2w erl14+,r8 mac al,rb5,r10
113: 1d2w r4,erl4 mvew rg8, re

I14: 1d2w ro,eri1?2
I15: sub r2, rt

rachi re, ald, #1
rachi r7,al, #1

FIG.26

A B
I1: sub ri,rb I sub ro, r4
I2: 1d2w r4,erl4d+ [absadd a0, ro0
I3: 1d2w ro,erl12+ [absadd ao, rl
I4: sub r3,r’7 | sub r2,r6
I5: 1d2w re, earl4+ | absadd a0, r2
I6: 1d2w re,earl2+ [absadd a0, r3

U.S. Patent Dec. 28, 2004 Sheet 25 of 44 US RE38,679 E

FIG.27

FIG.27A

FIG.27B

FIG.27C

US RE38,679 E

Sheet 26 of 44

Dec. 28, 2004

U.S. Patent

(16d1= +0V)
aay-3iniosay
-1 891 31n33X3

(F=-¢1d)

§53400Y 31vadn
(CTYNT ANTVA)
$S3400Y Y34SNYYL
Y91 31n33X3

VGI 40 ONYY3d0
040K-¢ QY3

grL Vil
300930

¢l HaL34 21
3730 X301 1

1Y 04 OLNI
ONYY3d0 AY0T AL THA
'YED XIVE ILTAN

708”7
M

808’ 1087

908”7

G087 T

(1¢Y41= +0V)
agy-31n10S4y
11 861 310333

(p=ty14)
$S3400V 3Lvddn
((PTANT 3NTVA)

$S34a0Y ¥IASNYYL
-¥GI 31n33X3

891 'v91
300330

11 HI134 !

£08”
(LINN NOILYY3dO ON0J3S)
3:43401

(LINN NOILYY3dO 1SY14)
3:4¥3ddn

[a o
e
-oJ

o=
ao

208’
a

«om\ LI.

41 3WIL

Vic 914

US RE38,679 E

Sheet 27 of 44

Dec. 28, 2004

U.S. Patent

L18

64 "¢t 0INI
ONYY3d0 QY01 JLTHM
YOI XOVE JLTUM

£18.

i
918~ G18+ 718
(10Y1= +0VY)
aay-31n10s4y
..+18e131nJ3xg |
(b=+T14) ae1'vel

§S340ay 3Lvadn
(VTYNL ANTVA)

300030 [vIHLI| |y

Y494 OINI
UNVYId0 QY01 11N
YGI MOVE ILTUA

$534Q0Y ¥3JSNYYL
el 31n23x3
218 118~ 018 608, T
(73=-0¥) L0YY16NS
IR B WA 11 & FUELER
821 ‘vel

V91 40 ONYYdd0
040M-2 OY3Y

(GY=-T4)1Jvy418NS
Y1131n33X3

300030| €1 Hd134 El

g2¢ 914

US RE38,679 E

Sheet 28 of 44

Dec. 28, 2004

U.S. Patent

mmm// vmm,/ 6¢8 NN@/, T
(94=-2Y)
L1avyLans
e~] | 2R EPTAINO3XT |
861 ‘VGI
GY 'FY OLNI 300930| {9 HoL13d 91
Dz<ﬂmama<oqm_Hmz <mfmw%J%mwmm Mmﬂmwmmw
JYCT NIVE L THM AL E
o8~ omm// 6518 mﬁm/ T
(1T41= +0Y)
aay-3Lniosay
N N A A1 2 SN EVE
(P=+2TY) av1‘vrl

v¢l 40 ONYY3d0
(40M-¢ OV

$533400Y 31vyadn
(CTYNT ANTYA)
SS3M0QY YIJSNYYL
A IAEIURENE

300230| |SI HO134 Gl

942914

US RE38,679 E

Sheet 29 of 44

Dec. 28, 2004

U.S. Patent

- - — - = — — - — — — — — —— —— — — — — 7
“ o |} cle”/ sneca |
| 602, 1, 802\ o / ‘— sneza |
1In9¥Iy / 0LV INWNIOY] clE |
_ NONV NOILYYNLYS AN _A%Smdm —tv22 |
R 9 ¥
| [¥010313S] onv \mmmNm |
| pie P [oig ThAgce VAR "
| _HM_H_ ON3d y3agav nwv \ _
] 3714
" ¥3MdILINA 12 0y , “w”u\“ | | warsioay
| AL X { ; g /L _\ v ct _INNM—_ 31 VIGINNI “
AN
| AW voz cz2 | Gl
| Gee | |
_ snass O\m a 902 " |
_ snavs / x {1
L “voe Y LINN NOLLVY3dO GNO335 —_ [®
0cl pl|— Y¥300230 aNOD3S

XA N |

U.S. Patent

.
1 4

Dec. 28, 2004

FIG.29

initialize

1di R12, #h*2000
1di R14, #h"2400

pre-processing of loop

1d2w
1d2w
ld2w
1d2w

loop
repl
sub
1d2w
ld2w
sub
ld2w

repend:

ld2w

ro,erl12+
r4, 8R14+
r2,erlz2+
re, eR14+

#n, repend
ro, r4
r4, eR14+
ro,erl2+
r2,r6
re, eR14+

re.erlz+

Sheet 30 of 44

nop

clra

sub
mac
mac
sub

mac

mac

post-processing of loop

sub
sub
sub
mac
mac

rachi

ro,r4
r2,r6
r3,r7
a0, r2,r2
a0, r3,r3
r0, a0, #1

bl
[
!

sub
mac

mac

ao

ri,
ao,
ao,
r3.
aol,

ago,

ri,

ao,
ago,

US RE38,679 E

rs
ro.r0
ri,ri
r7
re, r2

r3,r3

rs

r0,r0
ri,rl

/01

702

/03

US RE38,679 E

Sheet 31 of 44

Dec. 28, 2004

U.S. Patent

GooT.4 QI
vo00lT.4 <GI
€001 .4 VI
c0o0t.4 €I
100T .4 <21
000T .4 <11

60, €dJd‘gd‘pe oJeu +2Td® ‘2d M2ZPT | 00
80L~] Z2dJd ‘2gd ok Jeu +y 748 ‘9d MZ2PT | 00
LOL [Jd'ed gns gJd ‘2d ans 00
90 Td ‘7408 DeUW +27de ‘0d MZPT 00
GOL 0d ‘0d ‘0B JRUW +y 1748 ‘vd M2ZPI 00
70L~ GJd ‘TJd gns ¥d°‘0d qgns | 00
1€ LV 91 ¢ 1
(8) (V) W4

S$S340AY NOILJNYLSNI

oc°9/d

U.S. Patent Dec. 28, 2004 Sheet 32 of 44 US RE38,679 E

FIG.31

ADDRESS[14:15] 0 1 2 3

FIRST ADDRESS 0 15 16 31
h'2000 711~ D1[0] | DLil1] 712
h'2004 713~ D1[2] D1[3] —714
h'2008 715~ D1[4] D1L5] 716
h'200c 717~ D1[6] D171 718

L ~
h'2400 721~ D200] D211 722
h'2404 723~ D2[2] D213] 724
h'2408 725~ D2[4] D2[5] 726
h'240c 727~ D2[6] D271 728

U.S. Patent Dec. 28, 2004 Sheet 33 of 44 US RE38,679 E

FIG.32

FIG.32A

FIG.32B

FIG.32C

US RE38,679 E

Sheet 34 of 44

Dec. 28, 2004

U.S. Patent

(d=+0Y)QQY
¢ 861 31nJ33X3

¥GI 40 ONYY3dO0
JYOM-¢ 0Y3Y

4

(€Y E¥=d) ATdILINK
1 491 31NJ3X3

(y=+c1¥)

§53400Y 31v0dn
((CTYNT ANTVA)
§S3400Y ¥34SNYYL
*¥91 31n33X3

ar1yIl
300230

dIHL| |3

14 ‘04 0INI
ONYY3d0 QY01 ILTHA
"YEI AIVE JLTYA

¥eL”
A

8g(”

ad
Ll
o0
|NE|EW

a>=
Q.o
o Y

Y4

9g/”

e/ T

(¢Y.cY=d) ATdILINK
1461 31nJ3X3

(P=+1d)
$S3400Y 31¥0dNn
((PTY NI INTYA)

SSIYAAY Y44SNYYL
“YGI 31N33X3

891 'val
300934

11 HOL3 1

£EL

(LINN NOILYYH3dO (N0JSS)

ERRELIN

(1INN NOILYY3dO [SYI4)

3:43ddn

el
a

ler” -
41 3NWII

Vee "9/ 4

31949 %2019 1

US RE38,679 E

Sheet 35 of 44

Dec. 28, 2004

U.S. Patent

-
9y L~ GhL VoL
(04 +0¥=d) ATdTLINK
Lyl | +18e131ndaxd |
mmumDmQMH«mmy ael el
eY ‘24 OINI . 300030| [#1HIL3S vl
ONVY§3d0 0Y01 ILTUN wwwﬂmﬂvﬂrwmm«ww
‘Y91 XOVE JLTUN R
478 L~ 0%L 6eLy T
(d=+0Y)00Y| [(GH-T¥=T¥)1avyLANS
BVL 1 8913Iny3xd) | T 8I131NJ3Kd |
AR
Y94 OINI 300030 |€1HOL3d €l
ONYY3d0 V0T ILTHA | |V9T 40 ONYY3dO
u -2 (v4-04=04) 1241808
YGI XovYg ILTHM 040N-2 0y S LITHLEnS
gc¢ "9l 4

US RE38,679 E

Sheet 36 of 44

Dec. 28, 2004

U.S. Patent

650~ LT 850~ ¢Sl T
(L4-£Y=£Y) |
(d=+0Y)00Y 19vy418n3
950~ :C 8613UN03X3) | -1 81 3INJ3Xd |
g1 'vs1
GY ‘7Y OINI 300030 9T HOL34| | g
ONVY3dO QY01 ILIYN | |VEI mmojwmwmm AmﬂWWMHmmw
'Y2I Xove J1TYN 040M- el
161~ 06L~ BYL 81l T
(d=+0V)00Y | | (T¥.J¥=d)ATdILINK
¢ 8el3IN3x3) | 1661 3LNI3XT
(p=+c1d) TARNAA
SNV V0N || 300030| ST HIL3S 5l
Y21 40 ONYY3dO :
. $$3400Y ¥IISNYYL
040 -c Y tYE1 31n93X3
22¢ 914

US RE38,679 E

Sheet 37 of 44

Dec. 28, 2004

U.S. Patent

99/ J1J‘GJd‘pE ppeep +774Y8 ‘84 MZPT | 00 Gootl.Y 91
G9.4 01dJd‘'yd ‘0B ppeEEp +21d® ‘¢d MZpT | 00 00T .4 G1
7L 6J ‘ed ‘0B ppeEp +y 748 ‘9d MZPT | 00 €007T .4 v 1
€9.~ gd ‘cd ‘0B ppeep +271dJ@ ‘04 MZPT | 00 20071 .Y €1
¢9L~ [JdTJd 0 ppeep | +¥T4® ‘0TJd MZPT | 00 1007 .Y ¢l
191~ 9Jd ‘0J ‘0B ppeEEPp +2lde ‘yd MZPT | 00 0007.H4 11
1€ LT 91 ¢ 1 0
(4) (V) W $S340aY NOILONYLISNI

ce9ld

U.S. Patent Dec. 28, 2004 Sheet 38 of 44 US RE38,679 E

FIG.34

FIG.34A

FIG.348B

FIG.34C

US RE38,679 E

Sheet 39 of 44

Dec. 28, 2004

U.S. Patent

T A
(10ATY1=+0Y) (174-GY4=0N1Y)
gay-3Lniosay 13v414nS
2¢95131N03x3) | 199131NJ3X3 |
mmuzaa%wH«muy L
LY'9Y OINI . 300930(|21 HI134 21
ANYYId0 0Y0T LT YA mmfmm%J%mwmw mmwﬂmm¢JWMML«ww
‘e -
AB R LEINE] oHETTuE
08 6L 8LL” Y . + "
(10NTV1=40Y) (014-74=0N1Y)
1Qy-31n10S9y 1avy14ns
2 0¥ 1 31n93X3 7967 31n93X3
e ememmcmcmmmmmamm e 4 b T T DT 4
(b=+21Y) qg] ‘eg]
1404 OINT §S3400v 31Y0dn 300030| |v1wWor34| | M
ONYYId0 QY07 ILTYA mvf%m%J%mwmm wmwﬂmmcﬂmumm«bw
B -
eI M9V M_H¢= st
GLL” Tk eLL” oLl i -
M ¢3-43M01 (LINN NOILYY3dO (N0DIS)
W:Yyd3ddn J:Y3IN0T d 1 JWIL
(LINN NOILYY3dO 1SHI4)
3:43ddn
Ve 9o/l 4

JTIAINI013 1

US RE38,679 E

Sheet 40 of 44

Dec. 28, 2004

U.S. Patent

68L ~ 88L~, [8L 8Ly T
(10NTY1=+0Y) (L4-T¥=0N1Y)
aay-31n10s4y 1avy14ns
08L < A UNELE | I A S (4 = U NEVE
wm%%ﬁﬁ% el o]
6Y ‘84 OINI ; 300230} |¥1HIL3
oS30 0YOT LAY | oL D ownado | LR A
‘D -
9 XOY4 ILTHA TR
V8L~ 881~ ¢8L\ 8L, T
(10NTY1=+0Y) (9¥-04=0N71Y)
aay-3Ln1088y 1av414ns
681\ ¢ 89131093x3f | *¥ 811310333 |
(F=tZTY) AR
gy ‘2Y OLNI §s3yaay 31vadn 100930| |erHaL3d| | El
ONY¥3d0 QY07 ILIYM mfgmngz%%mm mw.mrmgfz<zmﬂ£«ﬁ
e -
GI X0V ILTHM TEThE
gr¢ "9/ 4

US RE38,679 E

Sheet 41 of 44

Dec. 28, 2004

U.S. Patent

B6L~ 861 LBL~ 96l T
(1ONTYI=+0Y) (6Y-£Y=0N1TV)
aay-31n1088y [avy14ns
008~ R NE I INELE Y I A | U KELE
wa%%ﬁ«m% hal ol
TTY0TH OINI) 3003301 |91 HIL34
ONYY3d0 Y0 JLTHN maammzmz%%mm ww.umgﬁzmﬂﬁ«ﬁ I
‘o -
AR LENL] MEutE
V6L~ B6L ¢BL ~ 6y T
(1ONTY1=+0Y) (8Y-24=0N1Y)
aav-31niosay 13vy14ns
560~ RRAELUKELE B A L) EITRELE
(F=+21Y) Q4] ‘eyI
G4 TY 0N $83900Y 31Y0dn | | 300030| [SIHoL3d| |Gl
ONYY3d0 QY01 ILTYHN mﬁ__mm:azwmﬁm mm.u,mmgﬁ%,\zmﬂwh«ﬁ
‘® -
AR LTENE B8 31PN
ovge *old

U.S. Patent

Dec. 28, 2004

Sheet 42 of 44

US RE38,679 E

FIG.35
DATA PROCESSOR 8150
- T T T s T T T T T T SE T T T T T]
MPU CORE 851 |
1 — INSTRUCTION QUEUE _|852 |
L |
| CONTROL
| UNIT 85’3 :
: INSTRUCTION
: v 8/’54 895 y DECODE UNIT ¥ 8/56 y8/57 |
FIRST SECOND THIRD FOURTH |
| DECODER DECODER DECODER DECODER |
I 0] e : 4 N |
‘ ;\ é N \4'_‘/ : |
% L N % |
| | IMMEDIATE| [“{CONTROL [4{ |IMMEDIATE 4 | MMEDIATE
| VALUE | [4 SIGNAL [1 | VALUE ¢ VALUE |
[oL o :
FIRST THIRD FOURTH
|| | oPERATION | | oPERATION REGISIER OPERATION | | OPERATION |
| UNIT UNIT UNIT UNIT l
| 858 T 859 \g60 | 861 862 |
| |
[S B R _
o1 | Al A0| [bB-O
863 864
e \ yd
INSTRUCTION OPERAND
FETCH ACCESS
UNIT UNIT
FIG. 36
BIT NUMBER
0O 34 18 19 33 34 48 49 63
FM FIRST SECOND THIRD FOURTH
CONTAINER | CONTAINER | CONTAINER | CONTAINER
\871 \872 \873 \874 \875

US RE38,679 E

Sheet 43 of 44

Dec. 28, 2004

U.S. Patent

- - - - - - - - - - —- -0 - J
_ , oI 8167 Snesa |
_ \ N 67 X

o ol6” Snasa |
| hm/m ; ? o) m_m\ , sn8zq “
| 9¢6 [100910 NolLYYnLYS "\ mm/m |
| AN L 11w [voromas | RER

_ Y0103 13S | ve6 |ala | Y7
| b e A Hlﬁ 126 |
| _HW/ N3 ¥3L3HS L A
_ 143 13UV £ RET
| NEREIRN - HOLY | | ¥3Ls193y
| AT X _ Jiviaanm | |
~Z \Ov6
| 6€6 8¢6 \Ibldﬁ 24 v |] A W\
/

“ ! Wmmmmm, b 06
4_ sngss vl6~ _ ‘
| snavs ¢16”7 [
_ snass 216”7 |
] sngss | |g” ol LINN NOILVY3dO ONOD3S ,,m__

€914

4300330 ANOJ3S

U.S. Patent Dec. 28, 2004 Sheet 44 of 44 US RE38,679 E

FIG.38

BIT NUMBER

0 12 32 33 63
FM{| LEFT—HAND CONTAINER | RIGHT—HAND CONTAINER

\941 \942 \943

FIG.39

BIT NUMBER

0 12 13 18 19 24 25 30
Rdest Rsrc! | Rsrc2

944 ‘945 ‘946 ‘947

\

FIG.40

ld2w r4,@r14+ Il mac r12,ro,ré

ld2w r10,@r15+ || mac ri2,ri,r7

ld2w rQ,@r14+ Il mac ri2,r2,r8

ld2w r6,@er15+ ' mac r12,r3,r9

ld2w r2,@r14+ | mac r12,r4,r10
]

ld2w r8,@r15+ mac ri2,rs5,ri

US RE38,679 E

1

DATA PROCESSOR AND METHOD OF
PROCESSING DATA

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a data processor for
high-speed digital signal processing and a method of pro-
cessing data for high-speed digital signal processing.

2. Description of the Background Art

Digital signal processors (DSPs) having an architecture
suitable for signal processing have been used as data pro-
cessors designed specifically for high-speed digital signal
processing. These DSPs execute processing frequently used
in signal processing such as a multiply-add operation at high
speeds. An example of a DSP is Motorola DSP56000. The
DSP56000 includes two address pointers, two data
memories, and a multiply-add operation unit. Parallel load-
ing of data (e.g., the load of coefficients and data) from two
1-word memories specified respectively by the address
pointers, updating of the two address pointers, and the
execution of the combined multiply-add operation allows
the multiply-add operation to be executed with a high
throughput (See DSP56000 Digital Signal Processor Family
Manual, 1992). In this manner, the DSP normally has two
memories. Data are distributed to either of the memories.
Some DSPs use a 2-port RAM for efficient data transfer.

An example of microprocessors incorporating the DSP
function includes Motorola CPU16. The CPU16 may repeat-
edly perform the multiply-add operation and 2-word load in
response to one RMAC instruction. However, the CPU16
wherein one multiply-add operation requires 12 cycles is
difficult to achieve the performance competing with the
DSPs (CPU16 Reference Manual, 1993).

In recent years, some microprocessors have been intended
for implementing signal processing by means of software as
the operating frequency improves. To improve the arithmetic
performance, some of the microprocessors additionally pro-
vide the multiply-add operation instructions and make the
most of sophisticated parallel processing techniques such as
superpipeline and superscalar to achieve DSP-level perfor-
mance. For example, PowerPC603 (Motorola and IBM) may
execute a single-precision floating-point multiply-add
operation with one clock cycle throughput by using 3-stage
pipeline processing. This requires the amount of hardware
and significantly complicated control. To perform one
multiply-add operation for each clock cycle, one clock cycle
requires 2-word data. The PowerPC603 may load a maxi-
mum of one word for each clock cycle, resulting in an
insufficient supply of operands (Proceedings of COMPCON
1994: “The PowerPC603 Microprocessor: A High
Performance, Low Power, Superscalar RISC
Microprocessor”, PowerPC603 RISC Microprocessor
User’s Manual, 1994).

The DSPs which must include two memories have a
complicated memory construction and require very cumber-
some data management for distribution of data between the
two memories. The use of a 2-port RAM adds to the area and
costs of the data processor. Additionally, the DSP is in
general an accumulator machine and is difficult to execute
complicated data processing.

The microprocessors which require one memory have a
relatively simple memory construction. However, the micro-

10

15

20

25

30

35

40

45

50

55

60

65

2

processors are not efficient in signal processing unlike the
DSPs wherein hardware directly represents the flow of
signal processing. To achieve the DSP-level performance,
the state-of-the art microprocessors require an increased
amount of hardware, adding to the costs of the data proces-
sor. Further, the microprocessors are difficult to reduce
power consumption because of the need for operation at
high frequencies.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention, a data
processor comprises: a first memory portion for storing an
instruction including a first operation code and a second
operation code; a second memory portion for storing data;
an instruction decode unit for receiving the instruction
stored in the first memory portion, the instruction decode
unit including first and second decoders for decoding the
first and second operation codes in parallel, respectively; a
register file portion including a plurality of registers for
storing data to transfer data from and to the second memory
portion; an operation unit for receiving first data stored in a
first register of the register file portion to perform an
arithmetic operation using the first data in response to a
control signal, the control signal being the first operation
code decoded by the first decoder of the instruction decode
unit; and an operand access unit operated in parallel with the
operation unit for causing second and third data stored in the
second memory portion to be transferred in parallel and
stored in second and third registers of the register file
portion, respectively, in response to a control signal, the
control signal being the second operation code decoded by
the second decoder of the instruction decode unit.

Preferably, according to a second aspect of the present
invention, the second and third data each are n bit (n is a
natural number) in length, and the second and third data are
combined together into 2n-bit data when the second and
third data are transferred to the register file portion.

According to a third aspect of the present invention, a data
processor comprises: a first memory portion for storing an
instruction including a first operation code and a second
operation code; a second memory portion for storing data;
an instruction decode unit for receiving the instruction
stored in the first memory portion, the instruction decode
unit including first and second decoders for decoding the
first and second operation codes in parallel, respectively; a
register file portion including a plurality of registers for
storing data to transfer data from and to the second memory
portion; an operation unit for receiving first data stored in a
first register of the register file portion to perform an
arithmetic operation using the first data in response to a
control signal, the control signal being the first operation
code decoded by the first decoder of the instruction decode
unit; and an operand access unit operated in parallel with the
operation unit for causing second and third data stored
respectively in second and third registers of the register file
portion to be transferred in parallel and stored in the second
memory portion in response to a control signal, the control
signal being the second operation code decoded by the
second decoder of the instruction decode unit.

Preferably, according to a fourth aspect of the present
invention, the second and third data each are n bit (n is a
natural number) in length, and the second and third data are
combined together into 2n-bit data when the second and
third data are transferred to the second memory.

Preferably, according to a fifth aspect of the present
invention, the operation unit includes a multiplier for mul-

US RE38,679 E

3

tiplying together the first data and fourth data stored in a
fourth register of the register file portion, and an adder for
adding at least two data together, the adder adding together
the result of multiplication of the multiplier and data stored
in a register of the register file portion to cause a register of
the register file portion to store the result of addition.

Preferably, according to a sixth aspect of the present
invention, the operation unit includes a multiplier for mul-
tiplying together the first data and fourth data stored in a
fourth register of the register file portion, and an adder for
adding at least two data together, the adder adding together
the result of multiplication of the multiplier and data stored
in a register of the register file portion to cause a register of
the register file portion to store the result of addition.

Preferably, according to a seventh aspect of the present
invention, the operation unit includes a multiplier for mul-
tiplying together the first data and fourth data stored in a
fourth register of the register file portion, an adder for adding
at least two data together, and an accumulator for holding a
result of an operation, the adder adding together the result of
multiplication of the multiplier and the data held in the
accumulator to cause the accumulator to hold the result of
addition.

Preferably, according to an eighth aspect of the present
invention, the operation unit includes a multiplier for mul-
tiplying together the first data and fourth data stored in a
fourth register of the register file portion, an adder for adding
at least two data together, and an accumulator for holding a
result of an operation, the adder adding together the result of
multiplication of the multiplier and the data held in the
accumulator to cause the accumulator to hold the result of
addition.

According to a ninth aspect of the present invention, a
data processor comprises: a memory portion for storing data;
an instruction decode unit for receiving a first instruction
including first and second operation codes and a second
instruction including third and fourth operation codes and to
be processed after the first instruction to decode the first and
second operation codes and the third and fourth operation
codes in parallel; a register file portion connected to the
memory portion and including a plurality of registers each
for storing data or an operand address; an operation unit for
performing an arithmetic operation of the data stored in the
register file portion; and a memory access portion operated
in parallel with the operation unit for causing the operand
address stored in the register file portion to be applied to the
memory portion and for updating the operand address,
wherein, in a first processing, the instruction decode unit
receives the first instruction, and executed is parallel pro-
cessing of (a) the operation unit to receive first data stored
in a first register of the register file portion to perform an
arithmetic operation in response to a control signal which is
outputted from the instruction decode unit decoding the first
operation code, and (b) the memory access portion to cause
a first operand address stored in a second register of the
register file portion to be applied to the memory portion to
cause second data stored in the memory portion to be
transferred to a third register of the register file portion in
response to a control signal which is outputted from the
instruction decoded unit decoding the second operation code
and to update the first operand address to write a second
operand address into the second register in response to the
control signal, and wherein, in a second processing, the
instruction decode unit receives the second instruction, and
executed is parallel processing of (¢) the operation unit to
receive the second data stored in the third register of the
register file portion to perform an arithmetic operation in

10

15

20

25

30

35

40

45

50

55

60

65

4

response to a control signal which is outputted from the
instruction decode unit decoding the third operation code,
and (d) the memory access portion to cause the second
operand address stored in the second register of the register
file portion to be applied to the memory portion to cause
third data stored in the memory portion to be transferred to
a fourth register of the register file portion in response to a
control signal which is outputted from the instruction decode
unit decoding the fourth operation code and to update the
second operand address to write a third operand address into
the second register in response to the control signal, the first
processing and the second processing being executed by
pipeline control.

A tenth aspect of the present invention is intended for a
method of processing data by a data processor which
includes a memory portion for storing data, a register file
portion connected to the memory portion and including a
plurality of registers each for storing data or an operand
address, an operation unit for receiving the data stored in the
register file portion to perform an arithmetic operation, and
a memory access portion for causing the operand address
stored in the register file portion to be applied to the memory
portion. According to the present invention, the method
comprises the steps of: (a) transferring first and second data
stored in a first area of the memory portion in parallel to
write the first and second data into first and second registers
of the register file portion, respectively; (b) transferring third
and fourth data stored in a second area of the memory
portion in parallel to write the third and fourth data into third
and fourth registers of the register file portion, respectively;
(c) applying the first data stored in the first register and the
third data stored in the third register to the operation unit to
perform an arithmetic operation of the first and third data by
the operation unit; and (d) applying the second data stored
in the second register and the fourth data stored in the fourth
register to the operation unit to perform an arithmetic
operation of the second and fourth data by the operation unit.

Preferably, according to an eleventh aspect of the present
invention, the method further comprises the steps of: (e)
transferring fifth and sixth data stored in a third area of the
memory portion in parallel to write the firth and sixth data
into fifth and sixth registers of the register file portion,
respectively; and (f) transferring seventh and eighth data
stored in a fourth area of the memory portion in parallel to
write the seventh and eighth data into seventh and eighth
registers of the register file portion, respectively, wherein
one of the steps (c) and (d) is executed in parallel with at
least one of the steps (e) and (f).

Preferably, according to a twelfth aspect of the present
invention, the third area is the same as the first area, and the
fourth area is the same as the second area.

Preferably, according to a thirteenth aspect of the present
invention, the first and second data each are n bits (n is a
natural number) in length, and the first and second data are
combined together into 2n-bit data when the first and second
data are transferred to the register file portion.

Preferably, according to a fourteenth aspect of the present
invention, the step (c) comprises the steps of: multiplying
the first and third data together; and adding data stored in a
ninth register to the result of multiplication to store the result
of addition as ninth data in the ninth register, and the step (d)
comprises the steps of: multiplying the first and fourth data
together; and adding the ninth data stored in the ninth
register to the result of multiplication to store the result of
addition in the ninth register.

In accordance with the first aspect of the present
invention, the data processor comprises the instruction

US RE38,679 E

5

decode unit including the first and second decoders, the
register file, the operation unit, and the operand access unit.
The first and second operation codes are decoded and
executed in parallel, and the arithmetic operation and the
access of two data to the memory are executed in parallel,
achieving high-speed data processing. In particular, a DSP-
level signal processing performance of a microprocessor is
implemented.

The simple construction may reduce the costs of the data
Processor.

The parallel processing of the multiply-add operation
instruction and the access of two data to the memory allows
one multiply-add operation to be performed per clock cycle.

In accordance with the data processor of the ninth aspect
of the present invention, a plurality of instructions including
the operation code for specifying the application of a
memory operand to the register file while updating an
address by using the register contents as the address, and the
operation code for specifying the execution of the arithmetic
operation with reference to the register value are processed
by means of pipeline processing technique. This permits the
arithmetic operations to be executed without operand inter-
ference by means of software, improving the processing
performance.

In accordance with the tenth aspect of the present
invention, the method of processing data comprises loading
the first and second data in parallel from the memory to the
register, loading the third and fourth data in parallel from the
memory to the register, performing the arithmetic operation
of the first and third data, and performing the arithmetic
operation of the second and fourth data. The access to the
memory and the arithmetic operation are executed efficiently
by using one memory, improving the performance of the
data processor. In particular, digital signal processing per-
formance is greatly improved under simple control.

It is therefore an object of the present invention to provide
an inexpensive high-performance microprocessor-type data
processor which readily reduces power consumption under
relatively simple control.

It is another object of the present invention to provide a
data processor having DSP-level digital signal processing
performance.

It is still another object of the present invention to provide
a method of processing data which may achieve high-
performance data processing control.

These and other objects, features, aspects and advantages
of the present invention will become more apparent from the
following detailed description of the present invention when
taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[FIG. 1 illustrates a set] FIGS. 1A through 1D illustrate
sets of registers for a data processor according to a first
preferred embodiment of the present invention;

FIG. 2 illustrates a processor status word for the data
processor according to the first preferred embodiment of the
present invention;

FIG. 3 illustrates an instruction format for the data pro-
cessor according to the first preferred embodiment of the
present invention;

FIG. 4 illustrates a short format of a 2-operand instruction
for the data processor according to the first preferred
embodiment of the present invention;

FIG. 5 illustrates a short format of a branch instruction for
the data processor according to the first preferred embodi-
ment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 6 illustrates a long format of a 3-operand instruction
or a load/store instruction for the data processor according to
the first preferred embodiment of the present invention;

FIG. 7 illustrates a format of an instruction having an
operation code in its left-hand container for the data pro-
cessor according to the first preferred embodiment of the
present invention;

FIG. 8 is a functional block diagram of the data processor
according to the first preferred embodiment of the present
invention;

FIG. 9 is a detailed block diagram of a first operation unit
for the data processor according to the first preferred
embodiment of the present invention;

FIG. 10 is a detailed block diagram of a PC unit for the
data processor according to the first preferred embodiment
of the present invention;

FIG. 11 is a detailed block diagram of a second operation
unit for the data processor according to the first preferred
embodiment of the present invention;

FIG. 12 illustrates pipeline processing for the data pro-
cessor according to the first preferred embodiment of the
present invention;

FIG. 13 illustrates a pipeline state when a load operand
interference occurs in the data processor according to the
first preferred embodiment of the present invention;

FIG. 14 illustrates a pipeline state when an arithmetic
hardware interference occurs in the data processor according
to the first preferred embodiment of the present invention;

FIG. 15 illustrates a program of a 256 tap FIR filter for the
data processor according to the first preferred embodiment
of the present invention;

FIG. 16 illustrates a bit pattern when a 2-word load
instruction and a multiply-add operation instruction are
executed in parallel in the data processor according to the
first preferred embodiment of the present invention;

FIG. 17 illustrates the contents of an internal instruction
memory corresponding to a loop part of the program of the
FIR filter for the data processor according to the first
preferred embodiment of the present invention;

FIG. 18 illustrates mapping of an internal data memory in
relation to coefficients and data in the program of the FIR
filter for the data processor according to the first preferred
embodiment of the present invention;

FIG. 19 shows respective positions of FIGS. 19A to 19C;

FIGS. 19A to 19C illustrate a flow of processing in a loop
of the program of the FIR filter for the data processor
according to the first preferred embodiment of the present
invention;

FIG. 20 illustrates signal lines of an n-stage secondary
direct-form type-II IIR filter;

FIG. 21 illustrates a program of the IIR filter for the data
processor according to the first preferred embodiment of the
present invention;

FIG. 22 illustrates the contents of the internal instruction
memory corresponding to a loop part of the program of the
IIR filter for the data processor according to the first pre-
ferred embodiment of the present invention;

FIG. 23 illustrates mapping of the internal data memory
in relation to coefficients and data in the program of the IIR
filter for the data processor according to the first preferred
embodiment of the present invention;

FIG. 24 shows respective positions of FIGS. 24A to 24C;

FIGS. 24A to 24C illustrate a flow of processing in a loop
of the program of the IIR filter for the data processor
according to the first preferred embodiment of the present
invention;

US RE38,679 E

7

FIG. 25 illustrates a loop part of a program of an IFFT for
the data processor according to the first preferred embodi-
ment of the present invention;

FIG. 26 illustrates a loop part of a program of a subtract-
absolute-add operation for the data processor according to
the first preferred embodiment of the present invention;

FIG. 27 shows respective positions of FIGS. 27A to 27C;

FIGS. 27A to 27C illustrate a flow of processing in the
loop of the program of the ubtract-absolute-add operation
for the data processor according to the first preferred
embodiment of the present invention;

FIG. 28 is a detailed block diagram of the second opera-
tion unit for the data processor according to a second
preferred embodiment of the present invention;

FIG. 29 illustrates a program of a subtract-square-add
operation for the data processor according to the second
preferred embodiment of the present invention;

FIG. 30 illustrates the contents of the internal instruction
memory corresponding to a loop part of the program of the
subtract-square-add operation for the data processor accord-
ing to the second preferred embodiment of the present
invention;

FIG. 31 illustrates mapping of the internal data memory
in relation to data in the program of the subtract-square-add
operation for the data processor according to the second
preferred embodiment of the present invention;

FIG. 32 shows respective positions of FIGS. 32A to 32C;

FIGS. 32A to 32C illustrate a flow of processing in the
loop of the program of the subtract-square-add operation for
the data processor according to the second preferred
embodiment of the present invention;

FIG. 33 illustrates the contents of the internal instruction
memory corresponding to the loop part of the program of the
subtract-absolute-add operation for the data processor
according to the second preferred embodiment of the present
invention;

FIG. 34 shows respective positions of FIGS. 34A to 34C;

FIGS. 34A to 34C illustrate a flow of processing in the
loop of the program of the subtract-absolute-add operation
for the data processor according to the second preferred
embodiment of the present invention;

FIG. 35 is a functional block diagram of the data proces-
sor according to a third referred embodiment of the present
invention;

FIG. 36 illustrates an instruction format for the data
processor according to the third preferred embodiment of the
present invention;

FIG. 37 is a block diagram of the second operation unit for
the data processor according to a fourth preferred embodi-
ment of the present invention;

FIG. 38 illustrates an instruction format for the data
processor according to the fourth preferred embodiment of
the present invention;

FIG. 39 illustrates a basic format of containers of an
instruction for the data processor according to the fourth
preferred embodiment of the present invention; and

FIG. 40 illustrates a loop part of the program of the FIR
filter for the data processor according to the fourth preferred
embodiment of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

First Preferred Embodiment

A data processor according to a first preferred embodi-
ment of the present invention will be described below. The

10

15

20

25

30

35

40

45

50

55

60

65

8

data processor of the first preferred embodiment is a 16-bit
processor whose addresses and data are 16 bits in length.

FIG. 1 illustrates a set of registers for the data processor
of this preferred embodiment. The data processor employs
big endian bit and byte ordering wherein the most significant
bit is the bit 0.

Sixteen general-purpose registers R0 to R15 are provided
for storing data and address values therein. The general-
purpose registers R0 to R14 are designated by the numerals
1 to 15 in FIG. 1, respectively. The general-purpose register
R13 (designated at 14 in FIG. 1) is allocated as a link
(LINK) register for storing a return address for a subroutine
jump. The general-purpose register R15 is a register for a
stack pointer (SP) including an interruption stack pointer
(SPD) 16 and a user stack pointer (SPU) 17. A processor
status word (PSW) to be described later switches between
the interruption stack pointer (SPI) 16 and the user stack
pointer (SPU) 17. The SPI 16 and the SPU 17 are generically
referred to as an SP hereinafter. The number of each of the
registers is specified in a 4-bit register specification field
unless otherwise specified. The data processor of this pre-
ferred embodiment includes an instruction for processing a
pair of registers, e.g. RO and R1. In this case, the pair of
registers are specified in such a manner that an even-
numbered register is specified thereby to indirectly specify
the corresponding register having the odd number which
equals the even number plus one.

The reference numerals 21 to 29 designate 16-bit control
registers. The number of each of the control registers is
represented by 4 bits, similar to those of the general-purpose
registers. The control register CRO designated at 21 is a
register for the processor status word (PSW) including a bit
for specifying the operating mode of the data processor and
a flag indicative of the result of operations. FIG. 2 illustrates
the construction of the PSW 21. The reference numeral 41
designates an SM bit (bit 0) indicative of a stack mode for
specifying the corresponding relationship when the general-
purpose register R15 is specified as above described. The
SM bit 41 indicates an interruption mode when it is “0”.
Then, the SPI is used as the general-purpose register RIS.
The SM bit 41 indicates a user mode when it is “1”. Then,
the SPU is used as the general purpose-register R15. The
reference numeral 42 designates an IE bit (bit 5) for speci-
fying an interruption enable state. When the IE bit is “0”, the
interruption is masked (ignored if asserted). When the IE bit
is “17, the interruption is accepted. A repeat function for
achieving zero-overhead loop processing is implemented in
the data processor of this preferred embodiment. The refer-
ence numeral 43 designates an RP bit (bit 6) indicative of a
repeat state. The RP bit indicates no repeat being executed
when it is “0”. The RP bit indicates a repeat being executed
when it is “1”. A modulo addressing function which is
addressing for accessing a circular buffer is implemented in
the data processor of this preferred embodiment. The refer-
ence numeral 44 designates an MD bit (bit 7) for specifying
a modulo enable state. When the MD bit is “0”, the modulo
addressing is disabled. When the MD bit is “1”, the modulo
addressing is enabled. The reference numeral 45 designates
an execution control flag (bit 12) to which the result of a
comparison instruction or the like is set. The reference
numeral 46 designates a carry flag (bit 15) to which a carry
is set when addition and subtraction instructions are
executed.

The control register CR2 designated at 23 in FIG. 1 is a
register for a program counter (PC) indicative of the instruc-
tion address being executed. The length of the instruction
processed by the data processor of this preferred embodi-

US RE38,679 E

9

ment is basically fixed at 32 bits. The program counter 23
holds a word address wherein 32 bits make up one word.

The control register CR1 designated at 22 in FIG. 1 is a
register for a backup processor status word (BPSW), and the
control register CR3 designated at 24 in FIG. 1 is a register
for a backup program counter (BPC). The control registers
CR1 and CR3 are registers for saving and holding the values
of the PSW 21 and PC 23 being executed if an exception or
an interruption is detected, respectively.

The control registers 25 to 27 are repeat-associated reg-
isters which allow a user to read and write the values thereof
so that an interruption is accepted during a repeat. The
control register CR7 designated at 25 in FIG. 1 is a register
for a repeat counter (RPT__C) for holding the count value
indicative of the subsequent repeat count. The control reg-
ister CR8 designated at 26 in FIG. 1 is a register for a repeat
start address (RPT_S) for holding the first instruction
address in the block to be repeated. The control register CR9
designated at 27 in FIG. 1 is a register for a repeat end
address (RPT__E) for holding the last instruction address in
the block to be repeated.

The control registers 28 and 29 are provided to execute
modulo addressing. The control register CR10 designated at
28 in FIG. 1 holds a modulo start address (MOD__S), and the
control register CR11 designated at 29 in FIG. 1 holds a
modulo end address (MOD__E). Both of the control registers
CR10 and CRI1 hold the first and last word (16 bits)
addresses. When the modulo addressing is used during an
increment, the lower address is set to the MOD__S 28, and
the higher address is set to the MOD__E 29. If the initial
value held in the register to be incremented coincides with
the address held in the MOD__E 29, the value held in the
MOD__S 28 is written back to the register as an incremented
result.

The reference numerals 31 and 32 designate 40-bit accu-
mulators A0 and Al for holding the result of a multiply-add
operation in an integer format. The accumulators A0 and Al
designated at 31 and 32 in FIG. 1 comprise areas AOH (31b)
and A1H (32b) for holding the high-order 16 bits of the
result of the multiply-add operation, areas AOL (31c) and
A1L (32c) for holding the low-order 16 bits of the result of
the multiply-add operation, and 8 guard bit areas AOG (31a)
and A1G (32a) for holding bits overflown out of the high
order bit of the result of the multiply-add operation, respec-
tively.

The data processor of the first preferred embodiment
processes a 2-way VLIW (very long instruction word)
instruction set. FIG. 3 illustrates an instruction format for the
data processor of the first preferred embodiment. The length
of the instruction is basically fixed at 32 bits, and the
instruction is aligned in 4-byte (32-bit) boundary. Each
32-bit instruction code comprises 2 format specification bits
(FM bits) 51 indicative of the format of the instruction, a
15-bit left-hand container 52, and a 15-bit right-hand con-
tainer 53. Each of the containers 52 and 53 may store therein
a 15-bit short-format sub-instruction. Further, the containers
52 and 53 together may store therein a 30-bit long-format
sub-instruction. For purposes of simplification, the short-
format sub-instruction and long-format sub-instruction are
referred to hereinafter as a short instruction and a long
instruction, respectively.

The FM bits 51 may specify the format of the instruction
and the order of two short instructions to be executed. If the
FM bits 51 are “11”, the FM bits 51 indicate that the
containers 52 and 53 hold the long instruction. If they are not
“11”, the FM bits 51 indicate that each of the containers 52

10

15

20

30

35

45

50

55

60

65

10

and 53 holds the short instruction. If the indication is that
two short instructions are held, the FM bits 51 specify the
order of execution. If the FM bits 51 are “00”, the FM bits
51 indicate that two short instructions are executed in
parallel. If they are “01”, the FM bits 51 indicate that the
short instruction held in the right-hand container 53 is
executed after the short instruction held in the left-hand
container 52 is executed. If they are “10”, the FM bits 51
indicate that the short instruction held in the left-hand
container 52 is executed after the short instruction held in the
right-hand container 53 is executed. In this manner, the first
preferred embodiment allows encoding into one 32-bit
instruction including two short instructions to be executed
sequentially, improving encoding efficiency.

FIGS. 4 to 7 illustrate typical instruction encodings. FIG.
4 shows the instruction encoding of a short instruction
having two operands. Fields 61 and 64 are operation code
fields. The field 64 specifies an accumulator number in some
cases. Fields 62 and 63 specify the positions to hold the
operand value by using a register number or an accumulator
number. The field 63 specifies a 4-bit short immediate value
in some cases. FIG. 5 shows the instruction encoding of a
short-format branch instruction including an operation code
field 71 and an 8-bit branch displacement field 72. The
branch displacement is specified by a word (32 bits) offset,
like the PC value. FIG. 6 shows a format of a 3-operand
instruction having a 16-bit displacement or immediate value
or a load/store instruction which includes an operation code
field 81, fields 82 and 83 for specifying a register number
like the short format, and an extended data field 84 for
specifying the 16-bit displacement or immediate value. FIG.
7 shows a format of an instruction having an operation code
in its right-hand container 53 wherein a 2-bit field 91
indicates “01”. The reference numerals 93 and 96 designate
operation code fields, and 94 and 95 designate fields for
specifying a register number or the like. The reference
numeral 92 designates reserved bits used for the operation
code or register number as required.

Further, there are provided some operations having spe-
cial instruction encodings, for example, an instruction
wherein all 15 bits constitute an operation code such as a
NOP (no operation) instruction, and a one-operand instruc-
tion.

Sub-instructions for the data processor of this preferred
embodiment are a RISC-like instruction set. Only the load/
store instruction accesses the memory data, and the opera-
tion instruction performs an arithmetic operation on an
operand in the register/accumulator or using an immediate
operand. There are five operand data addressing modes: a
register indirect mode, a register indirect mode with post-
increment, a register indirect mode with post-decrement, a
push mode, and a register relative indirect mode whose
mnemonics are “@Rsrc”, “@Rsre+”, “@Rsrc-", “@-SP”,
“@(displ6, Rsrc)”, respectively, when Rsrc is a register
number for specifying a base address, and displ6 is the
16-bit displacement value. The address of the operand is
specified by a byte address.

All of the modes except the register relative indirect mode
have the instruction format shown in FIG. 4. The field 63
specifies a base register number, and the field 62 specifies
the number of a register into which a value loaded from the
memory is written or the number of a register for holding the
value to be stored. In the register indirect mode, the value of
the register specified as the base register serves as the
operand address. In the register indirect mode with post-
decrement, the value of the register specified as the base
register serves as the operand address, and the value in the

US RE38,679 E

11

base register is post-incremented by the size (the number of
bytes) of the operand and written back. In the register
indirect mode with post-decrement, the value of the register
specified as the base register serves as the operand address,
and the value in the base register is post-decremented by the
size (the number of bytes) of the operand and written back.
The push mode is usable only when the store instruction is
provided and the base register is the register R15. In the push
mode, the stack pointer (SP) value pre-decremented by the
size (the number of bytes) of the operand serves as the
operand address, and the decremented value is written back
to the SP.

The register relative indirect mode has the instruction
format shown in FIG. 6. The field 83 specifies a base register
number, and the field 82 specifies the number of a register
into which the value loaded from the memory is written or
the number of a register for holding the value to be stored.
The field 84 specifies a displacement value for the position
at which the operand is stored from the base address. In the
register relative indirect mode, the 16-bit displacement value
added to the value in the register specified as the base
register serves as the operand address.

The post-increment type register indirect mode and the
post-decrement type register indirect mode may use a
modulo addressing mode by setting the MD bit 44 in the
PSW 21 to “17.

Jump target addressing of a jump instruction includes
register indirect addressing for specifying the jump target
address by using a register value, and PC relative indirect
addressing for specifying the jump target address by using a
branch displacement of the jump instruction from the PC.
PC relative indirect addressing includes short format
addressing for specifying the branch displacement when
using 8 bits, and long format addressing for specifying the
branch displacement when using 16 bits. Further, the data
processor has a repeat instruction which achieves loop
processing without overhead.

FIG. 8 is a functional block diagram of a data processor
100 according to the first preferred embodiment of the
present invention. The data processor 100 comprises an
MPU core 101, an instruction fetch unit 102 for accessing
instruction data in response to a request from the MPU core
101, an internal instruction memory 103, an operand access
unit 104 for accessing operand data in response to a request
from the MPU core 101, an internal data memory 105, and
an external bus interface unit 106 for arbitrating external
memory requests from the instruction fetch unit 102 and
operand access unit 104, where the external memory
requests access a memory external to the data processor 100.

The MPU core 101 includes an instruction queue 111, a
control unit 112, a register file 115, a first operation unit 116,
a second operation unit 117, and a PC unit 118.

The instruction queue 111 holds 2 entries of 32-bit
instruction codes and a valid bit, and is controlled in a FIFO
(first-in first-out) order. The instruction queue 111 tempo-
rarily holds instruction data fetched by the instruction fetch
unit 102 to transmit the instruction data to the control unit
112.

The control unit 112 performs all control of the MPU core
101, for example, control of the instruction queue 111,
pipeline control, execution of instructions, and interface
with the instruction fetch unit 102 and operand access unit
104. The control unit 112 includes an instruction decode unit
119 for decoding an instruction code transmitted from the
instruction queue 111. The instruction decode unit 119
includes two decoders, that is, first and second decoders 113

10

15

20

25

30

35

40

45

50

55

60

65

12

and 114. The first decoder 113 decodes the instruction to be
executed in the first operation unit 116, and the second
decoder 114 decodes the instruction to be executed in the
second operation unit 117. In a first cycle of decoding of a
32-bit instruction, the first decoder 113 analyzes an instruc-
tion code in the left-hand container 52, and the second
decoder 114 analyzes an instruction code in the right-hand
container 53. The data in the FM bits 51, and the bit 0 and
bit 1 of the left-hand container 52 are analyzed by both of the
first and second decoder 113 and 114. The data in right-hand
container 53 is sent to the first decoder 113 to extract the
extended data but is not analyzed. Thus, the instruction to be
executed first must be located in a position corresponding to
a operation unit for executing the instruction. If two short
instructions are executed in sequential order, the instruction
to be executed later is transmitted to both of the first and
second decoders 113 and 114, and an executable decode
result becomes valid. If an instruction is executable by both
of the first and second decoders 113 and 114, only the
decoded result in the first decoder 113 is validated, and the
decoded result in the second decoder 114 is invalidated.

The register file 115 includes the registers 1 to 17 and is
connected to the first operation unit 116, second operation
unit 117, and PC unit 118 by a plurality of buses.

FIG. 9 is a detailed block diagram of the first operation
unit 116. The first operation unit 116 is connected to the
register file 115 by an S1 bus 301, an S2 bus 302, and an S3
bus 303 to read data from the registers through the three
buses 301, 302 and 303. The S2 bus 302 is connected to only
odd-numbered registers, and the S1 bus 301 and S2 bus 302
together may transmit 2-word data from the pair of registers
in parallel. The first operation unit 116 is also connected to
the register file 115 through a D1 bus 311, a W1 bus 314, and
a W2 bus 315 to write data into the registers through the
three buses 311, 314 and 315. The W1 bus 314 is connected
to only the even-numbered registers, and the W2 bus 315 is
connected to only the odd-numbered registers. The W1 bus
314 and W2 bus 315 together may transmit 2-word data to
the pair of registers in parallel.

An AAlatch 151 and an AB latch 152 are input latches for
an ALU 153. The AA latch 151 receives a register value read
through the S1 bus 301 or S3 bus 303 and has a zero clear
function. The AB latch 152 receives a register value read
through the S3 bus 303 or a 16-bit immediate value gener-
ated by decoding in the first decoder 113, and has a zero
clear function. The ALU 153 mainly performs transfer,
comparison, arithmetic and logic operations, calculation/
transfer of operand addresses, increment/decrement of the
base address values of the operand addresses, and
calculation/transfer of the jump target addresses. The results
of operations and address modifications are written back to
the register specified by the instruction in the register file 115
through a selector 155 and the D1 bus 311. An AO latch 154
is a latch for holding operand addresses, and selectively
holds and outputs the result of address calculation in the
ALU 153 or the base address value held in the AA latch 151
to the operand access unit 104 through an OA bus 321. For
calculation or transfer of the jump target address, the output
from the ALU 153 is transferred to the PC unit 118 through
a JA bus 323.

An MOD__ S 156 and an MOD__E 157 are control regis-
ters corresponding to the control registers CR10 (28) and
CR11 (29) of FIG. 1, respectively. A comparator 158 com-
pares the value in the MOD__E 157 with the base address
value on the S3 bus 303. With the modulo addressing
enabled in the register indirect mode with post-increment/
decrement, the value in the MOD__S 156 which is held in the

US RE38,679 E

13

latch 159 is written back to the base address register in the
register file 115 through the selector 155 and the D1 bus 311.

A store data (SD) register 160 includes two 16-bit regis-
ters and temporarily holds store data outputted to the S1 bus
301 or to both of the S1 bus 301 and S2 bus 302. Data held
in the SD register 160 is transferred to an alignment circuit
162 through a latch 161. The alignment circuit 162 aligns the
data into 32-bit form in accordance with the operand address
to output the data to the operand access unit 104 through a
latch 163 and an OD bus 322.

The data loaded by the operand access unit 104 is applied
to a load data (LD) register 164 including two 16-bit
registers through the OD bus 322. The value in the LD
register 164 is transferred to an alignment circuit 166
through a latch 165. The alignment circuit 166 aligns the
data to output data to be transferred to the even-numbered
registers to the W1 bus 314 and data to be transferred to the
odd-numbered registers to the W2 bus 315. When 1-word
data are loaded, load data are outputted to one of the W1 bus
314 and the W2 bus 315. When 2-word data are loaded, the
load data are outputted to both of the W1 bus 314 and the W2
bus 315. The outputted data are written into the specified
register in the register file 1185.

APSW 171 in the control unit 112 is a register for holding
the value in the control register CRO (21) of FIG. 1. APSW
updating unit 172, including a latch, updates the value in the
PSW 171 in response to the result of an operation or by the
execution of an instruction. To transfer a value to the PSW
171, only assigned bits are transferred from the AB latch 152
to the control unit 112. To read a value from the PSW 171,
the value is outputted from the PSW updating unit 172 to the
D1 bus 311 and is written to the register file 115. A BPSW
167 is a register corresponding to the control register CR1
(22) of FIG. 1. During exception processing, the value in the
PSW 21 outputted to the D1 bus 311 is written to the BPSW
167. The value in the BPSW 167 is read to the S3 bus 303
and transferred to the PSW 171 or the register file 115.

FIG. 10 is a detailed block diagram of the PC unit 118. An
instruction address (IA) register 181 holds the address of the
next instruction to be fetched and outputs the address of the
next instruction to the instruction fetch unit 102. When a
subsequent instruction is to be fetched, the address value
transferred from the IA register 181 through a latch 182 is
incremented by 1 in an incrementor 183 and then written
back to the IA register 181. If the sequence is changed by a
jump or repeat, the IA register 181 receives the jump target
address transferred by the JA bus 323.

RPT S 184, RPT _E 186, and RPT C 188 are repeat
control registers and correspond to the control registers CR8
(26), CR9Y (27), and CR7 (25) in the register set of FIG. 1,
respectively. RPT_E 186 holds the address of the last
instruction in the block to be repeated. The last address is
calculated in the first operation unit 116 during repeat
instruction processing and applied to RPT__E 186 through
the JA bus 323. A comparator 187 compares the value the
value of the end address in the repeat block held in RPT_E
with the value of a fetch address held in the IA register 181.
If the value in RPT__C 188 for holding a repeat count is not
“1” during repeat processing and the two addresses coincide
with each other, a start address of the block to be repeated
which is held in RPT__S 184 is transferred to the IA register
181 through a latch 185 and the JA bus 323. Each time the
instruction at the last address of the block to be repeated is
executed, the value in RPT__C 188 is decremented by 1 by
a decrementor 190 through a latch 189. If the result of
decrement equals zero, the RP bit 43 in the PSW 21 is

10

15

20

25

30

35

40

45

50

55

60

65

14

cleared and the repeat processing is terminated. RPT__S 184,
RPT E 186, and RPT _C 188 have an input port from the
D1 bus 311 and an output port to the S3 bus 303. By using
these buses, initialization caused by repeat instruction
processing, and saving and returning operations are per-
formed.

An execution stage PC (EPC) 194 holds the PC value of
the instruction being executed, and a next instruction PC
(NPC) 191 calculates the PC value of the instruction to be
executed next. If a jump occurs during execution, the NPC
191 receives the value on the JA bus 323 to which the jump
target address is transferred. If a branch occurs during a
repeat, the NPC 191 receives the first address in the block to
be repeated from the latch 185. In other cases, the value in
the NPC 191 transferred through a latch 192 is incremented
by an incrementor 193 and then written back to the NPC
191. In the case of a subroutine jump instruction, the value
in the latch 192 is outputted as a return address to the D1 bus
311 and then written back to the register R13 defined as the
link register in the register file 115. If the next instruction is
to be executed, the value in the latch 192 is transferred to the
EPC 194. If the PC value of the instruction being executed
is to be referred to, the value in the EPC 194 is outputted to
the S3 bus 303 and transferred to the first operation unit 116.
A BPC 196 corresponds to the control register CR3 (23) in
the register set of FIG. 1. If an exception or interruption is
detected, the value in the EPC 194 is transferred to the BPC
196 through a latch 195. The BPC 196 has an input port from
the D1 bus 311 and an output port to the S3 bus 303, and
transfer to/from the register file 115 is performed.

FIG. 11 is a detailed block diagram of the second opera-
tion unit 117. The second operation unit 117 is connected to
the register file 115 by an S4 bus 304 and an S5 bus 305 to
read data from the registers through the two buses 304 and
305. The S4 bus 304 and S5 bus 305 together may transfer
2-word data from the pair of registers in parallel. The second
operation unit 117 is also connected to the register file 115
by a D2 bus 312 and a D3 bus 313 to write data into the
registers through the two buses 312 and 313. The D2 bus 312
is connected to all registers, but the D3 bus 313 is connected
to only the odd-numbered registers. The D2 bus 312 and D3
bus 313 together may transfer 2-word data to the pair of
registers in parallel.

Accumulators 208 correspond to the two 40-bit accumu-
lators A0 and Al designated as 31 and 32 in FIG. 1.

The reference numeral 201 designates a 40-bit ALU
including a guard bit adder for the accumulator which is 8
bits long (bit 0 to bit 7), an arithmetic and logic unit which
is 16 bits long (bit 8 to bit 23), and an adder for adding the
low-order 16 bits of the accumulator which is 16 bits long
(bit 24 to bit 39). The ALU 201 performs addition and
subtraction of up to 40 bits and a logic operation of 16 bits.

An Alatch 202 and a B latch 203 are input latches for the
ALU 201. The A latch 202 receives the data on the S4 bus
304 at the bit 8 to bit 23 positions, receives the value in the
accumulator 208 intactly through a shifter 204, or receives
the value in the accumulator 208 arithmetically 16 bits
right-shifted through the shifter 204. A shifter 205 receives
the value in the accumulator 208 through an interconnecting
line 206 (8 guard bits), the S4 bus 304 (high-order 16 bits)
and the S5 bus 305 (low-order 16 bits) or receives the value
in the register subjected to sign extension into 40 bits
through only the S5 bus 305 or through the S4 and S5 buses
304 and 305. Then, the shifter 205 receives the value
arithmetically shifted by any amount ranging from 3 bits
left-shift to 1 bit right-shift. The B latch 203 receives the

US RE38,679 E

15

data on the S5 bus 305 at the bit 8 to bit 23 positions or
receives the output from a multiplier 211 through the P latch
214 or the output from the shifter 205. The A latch 202 and
the B latch 203 have the function to clear the data therein to
zero and to set the data therein to a constant value.

If a destination operand indicates the accumulator 208,
the output from the ALU 201 is written into the accumulator
208 through a selector 207. If the designation operand
indicates the register, the output from the ALU 201 is written
into the register file 115 through the selector 207 and either
the D2 bus 312 only (1-word data) or both of the D2 bus 312
and D3 bus 313 (2-word data). A saturation circuit 209
receives the output from the ALU 201 and has the function
of clipping its output to a maximum or minimum value
expressible as 16 bits or 32 bits with reference to the guard
bits to output data containing high-order 16 bits or both
high-order and low-order 32 bits. The output from the
saturation circuit 209 may be written into the register file 115
through only the D2 bus 312 (1-word data) or through both
of the D2 bus 312 and D3 bus 313 (2-word data). For
calculation of absolute values and execution of maximum
and minimum value setting instructions, the outputs of the A
latch 202 and the B latch 203 are connected to the input of
the selector 207.

A priority encoder (PENC) 210 receives the value in the
B latch 203. The PENC 210 generates the shift count value
required to normalize the input data as fixed point format,
and outputs the results to the register file 115 through the D2
bus 312.

An X latch 212 and a Y latch 213 receive 16-bit values on
the S4 bus 304 and S5 bus 305, respectively, and have the
function of zero extension or sign extension of the 16-bit
values to 17 bits.

The multiplier 211 is a 17-bitx17-bit multiplier for mul-
tiplying the value stored in the X latch 212 by the value
stored in the Y latch 213. If the multiplier 211 receives a
multiply-add instruction or a multiply-subtract instruction,
the result of multiplication is applied to a P latch 214 and
transmitted to the B latch 203. If the multiplier 211 receives
a multiply instruction and the destination operand is the
accumulator 208, the result of multiplication is written into
the accumulator 208 through the selector 207.

Abarrel shifter 215 may perform an up-to-16-bits left and
right arithmetic/logic shift on 40-bit or 16-bit data. A shift
data (SD) latch 217 receives as shift data the value in the
accumulator 208 or the value in the register applied through
the S4 bus 304. A shift count (SC) latch 216 receives as a
shift count the immediate value of the register value through
the S5 bus 305. The barrel shifter 215 performs a shift
specified by the operation code on the data in the SD latch
217 by the shift count specified by the SC latch 216. The
result of the shift operation is written back to the accumu-
lator 208 or to the register file through the D2 bus 312. The
shifter 215 has a 2-word transfer function. Specifically, the
shifter 215 outputs the 2-word data received through the S4
bus 304 and S5 bus 305 to the D2 bus 312 and D3 bus 313
through the SD latch 217 and shifter 215 to write back the
2-word data into the register file 115. The shifter 215 may
perform 1-word transfer.

An immediate value latch 218 extends a 6-bit immediate
value generated by the second decoder 114 into a 16-bit
value and then holds the 16-bit value to transfer the 16-bit
value to an arithmetic unit through the S5 bus 30S.

Pipeline processing in the data processor will be described
below according to the first preferred embodiment of the
present invention. FIG. 12 illustrates the pipeline process-

10

15

20

25

30

40

45

50

55

60

65

16

ing. The data processor of the first preferred embodiment
performs 5-stage pipeline processing including an instruc-
tion fetch (IF) stage 401 for fetching instruction data, an
instruction decode (D) stage 402 for analyzing instructions;
an instruction execution stage (E) 403 for executing opera-
tions; a memory access (M) stage 404 for accessing a data
memory, and a write back (W) stage 405 for writing oper-
ands loaded from a memory into a register. For multiply-
add/multiply-subtract operations, further 2-stage pipeline
including multiplication and addition is used to execute
instructions. The latter stage processing is referred to as an
instruction execution 2 (E2) stage 406.

At the IF stage 401, a fetch of instructions, management
of the instruction queue 111, and repeat control mainly are
performed. The IF stage 401 controls the operations of the
instruction fetch unit 102, the internal instruction memory
103, the external bus interface unit 106, the instruction
queue 111, the IA register 181, latch 182, incrementor 183
and comparator 187 in the PC unit 118, and units for
performing the stage control, the instruction fetch control,
control of PC unit 118 and control of the instruction queue
11 in the control unit 113. The IF stage 401 is initialized by
a jump at the E stage 403.

The fetch address is held in the IA register 181. If a jump
occurs at the E stage 403, the 1A register 181 receives the
jump target address through the JA bus 323 to perform
initialization. When the instruction data are fetched
sequentially, the incrementor 182 increments the address.
The sequence switching control is performed if the com-
parator 187 detects a coincidence between the value in the
IA register 181 and the value in the RPT _E 186 during
repeat processing and the value in the RPT C 188 is not
“1”. Then, the value held in the RPT_S 184 is transferred
to the IA register 181 through the latch 185 and JA bus 323.

The value in the IA register 181 is sent to the instruction
fetch unit 102 which in turn fetches the instruction data. If
the corresponding instruction data are stored in the internal
instruction memory 103, an instruction code is read from the
internal instruction memory 103. In this case, the instruction
fetch is completed within one clock cycle. If the correspond-
ing instruction data are not stored in the internal instruction
memory 103, an instruction fetch request is sent to the
external bus interface unit 106. The external bus interface
unit 106 arbitrates between the instruction fetch request and
a request from the operand access unit 104. When the
external bus interface unit 106 accepts the instruction fetch
request from the instruction fetch unit 102, the external bus
interface unit 106 reads out the instruction data from an
external memory, and transmits the fetched instruction to the
instruction fetch unit 102. The external bus interface unit
106 requires a minimum of 2 clock cycles to access the
external memory. The instruction fetch unit 102 transfers the
received instruction to the instruction queue 111. The
instruction queue 111 is a 2-entry queue and outputs the
instruction code received under FIFO control to the instruc-
tion decoders 113 and 114.

At the D stage 402, the instruction decode unit 119
analyzes operation code and generates execution control
signals to control the first operation unit 116, the second
operation unit 117, and the PC unit 188 to execute instruc-
tions. The D stage 402 is initialized by a jump at the E stage
403. If the instruction code sent from the instruction queue
111 is invalid, the D stage 402 is placed in an idle cycle and
waits for an valid instruction code to be received. If the E
stage 403 is not permitted to start the next processing, the
execution control signals are invalidated, and the D stage
403 waits for the termination of processing of the preceding

US RE38,679 E

17

instruction at the E stage 403. For example, such a condition
occurs when the instruction being executed at the E stage
403 is a memory access instruction and the preceding
memory access is not terminated at the M stage 404.

The D stage 402 also performs division of two instruc-
tions to be sequentially executed, sequence control of a
2-cycle execution instruction, a conflict check on a load
operand using a scoreboard register (not shown), and a
conflict check on a operation unit in the second operation
unit 117. If any of these conflicts are detected, the output of
the control signal is inhibited until the conflict is cancelled.
FIG. 13 illustrates an example of the load operand conflict.
If immediately after a load instruction a multiply-add opera-
tion refers to an operand to be loaded by the load instruction,
the start of execution of the multiply-add operation instruc-
tion is inhibited until the load to the register is completed. In
this case, a 2-clock-cycle stall occurs if the memory access
is terminated within one clock cycle. FIG. 14 illustrates an
example of an hardware resource conflict on the second
operation. If a rounding instruction which uses an adder is
immediately after a multiply-add operation instruction, the
start of execution of the rounding instruction is inhibited
until the operation of the preceding instruction is terminated.
In this case, a 1-clock-cycle stall occurs. No stalls occur if
the multiply-add operation instructions are executed succes-
sively.

The first decoder 113 mainly generates operation control
signals for control of the: first operation unit 116, control of
parts of the PC unit 118 which are not controlled by the IF
stage 401, read control of the register file 115 to the S1 bus
301, S2 bus 302, and S3 bus 303, and write control thereof
from the D1 bus 311. The first decoder 113 also generates the
instruction-dependent information to be used in the M stage
404 and the W stage 405, and this control information is sent
through the pipeline. The second decoder 114 mainly gen-
erates an execution control signals in the second operation
unit 117.

The E stage 403 performs processing of almost all instruc-
tion executions except the memory access and addition of
the multiply-add/multiply-subtract operation instructions,
such as an arithmetic operation, comparison, data transfer
between registers including control registers, operand
address calculation of the load/store instructions, calculation
of the jump target address of the jump instruction, jump
processing, EIT (exception, interruption, trap) detection, and
jump to an EIT vector table.

With interrupts enables, an interrupt is detected at the end
of a 32-bit instruction without fail. No interrupt is serviced
between two short instructions to be sequentially executed in
the 32-bit instruction.

The completion of the execution of the E stage 403 must
stall when the instruction being processed at the E stage 403
is an operand access instruction and a preceding memory
access at the M stage 404 has not completed. Stage control
is performed in the control unit 112.

At the E stage 403, the first operation unit 116 performs
arithmetic and logic operations, comparison, and transfer.
The ALU 153 calculates the address of the memory operand
including modulo control and a branch target address. The
value in the register specified as the operand by an instruc-
tion is transferred to the first operation unit 116. Extended
data, such as an immediate or displacement value, is also
transferred to the first operation unit 116 from the first
decoder 113 if necessary. Arithmetic and logical operations
are performed by ALU 153, and an operation result is
written back to the register file 115 through the D1 bus 311.

10

15

20

25

35

45

50

55

60

65

18

If the load/store instruction is provided, the result of the
arithmetic operation is transmitted to the operand access unit
104 through the AO latch 154 and OA bus 321. If the jump
instruction is provided, the jump target address is transmit-
ted to the respective units through the JA bus 323. The store
data are read from the register file 115 through the S1 bus
301 and S2 bus 302 and are held and aligned. Then, the store
data are transferred to the operand access unit 104 through
the OD bus 322. The PC unit 118 manages the PC value of
the instruction being executed and calculates the next
instruction address. Data transfer between the control reg-
ister (except the accumulator) and the register file 115 is
carried out by both of the first operation unit 116 and the PC
unit 118.

At the E stage 403, the second operation unit 116 executes
all operations except addition of the multiply-add operation,
such as arithmetic and logic operations, comparison,
transfer, and shift. The value of an operand is transferred
from the register file 115, immediate value register 218, and
accumulator 208 to respective operation units through the S4
bus 304, S5 bus 305 and other exclusive paths, and is
subjected to a specified operation. The result of the operation
is written back to the accumulator 208, or to the register file
115 through the D2 bus 312 and the D3 bus 313.

The control signal generated in the second decoder 114
for execution of the addition and subtraction of the multiply-
add/multiply-subtract operation is held under control of the
E stage 403.

In the M stage 404, operand memory access is performed
according to the address sent from the first operation unit
116. The operand access unit 104 reads/writes data from/to
the internal data memory 105 or an on-chip 10 (not shown)
in one clock cycle if the operand is in the internal data
memory 105 or the on-chip 10. The operand access unit 104
outputs a data access request to the external bus interface
unit 106 if the operand is not in the internal data memory 105
or the on-chip IO (not shown). The external bus interface
unit 106 accesses data in the external memory, and transfers
the read data to the operand access unit 104 if a load
instruction is executed. The external bus interface unit 106
requires a minimum of two clock cycles to access the
external memory. If the load instruction is executed, the
operand access unit 104 transfers the read data to the LD
register 164 through the OD bus 322. The M stage 404
control is performed in the control unit 112.

In the W stage, alignment of loaded operands, zero/sign
extension of byte data, and writing to the register file 115 are
performed.

At the E2 stage 406, the ALU 201 executes the addition
and subtraction of the multiply-add/multiply-subtract opera-
tion.

The data processor of this preferred embodiment uses for
internal control an a clock signal generated by multiplying
an input clock signal by four for an internal clock signal.
Each of the pipeline stage requires a minimum of one
internal clock cycle to terminate processing thereof. The
details of the clock control are not directly related to the
present invention and hence are not described.

An example of processing of the respective sub-
instructions is discussed below. The processing of operation
instructions such as addition, subtraction, logic operation,
and comparison, and register-to-register transfer instructions
is terminated in three stages: the IF stage 401, the D stage
402, and the E stage 403. The operations and data transfer
are executed at the E stage 403.

The multiply-add/multiply-subtract instruction requires 2
clock cycles for execution of multiplication at the E stage

US RE38,679 E

19

403 and addition and subtraction at the E2 stage 406, that is,
substantially 4-stage processing.

The load instruction requires five stages: the IF stage 401,
the D stage 402, the E stage 403, the M stage 404, and the
W stage 405 to terminate the processing. The store instruc-
tion requires four stages: the IF stage 401, the D stage 402,
the E stage 403, and the M stage 404 to terminate the
processing.

An instruction which requires 2 cycles for execution
directs that the first and second instruction decoders 113 and
114 perform the processing in two cycles. Each of the first
and second instruction decoders 113 and 114 outputs an
execution control signal for each cycle, and executes the
operation in two cycles.

One long instruction performs the above described pro-
cessing. Two instructions to be executed in parallel perform
the above described processing in accordance with the
instruction that takes a greater number of clock cycles to
execute the instruction in the E stage 403. For example, a
combination of the instruction to be executed in two cycles
and the instruction to be executed in one cycle requires two
cycles. Two short instructions to be executed sequentially
are decoded sequentially in the D stage 402 and executed
sequentially in the E stage 403. For example, two addition
instructions to be terminated at the E stage 403 are divided
into respective instruction processes at the D stage 402 and
executed over 2 cycles at the E stage 403.

An example of processing is described below on the basis
of some programs.

FIG. 15 illustrates an exemplary program of a 256-tap FIR
(finite impulse response) filter (frame processing) of the data
processor according to the first preferred embodiment. The
symbol “| |” in FIG. 15 indicates that two short instructions
are executed in parallel. The FIR filter executes the follow-
ing calculation:

255

> (Ali]+DEiD)
i=0

where A[i] is a coefficient array and D[1] is a data array. This
calculation includes 256 multiply-add operations. The coef-
ficient and the data each are 16 bits in length.

In FIG. 15, initialization is designated at 501, loop pro-
cessing at 502, and post-processing at 503. The loop pro-
cessing without overhead is implemented by a repeat (repi)
instruction. A block of 6 instructions between the instruction
next to the repi instruction and the instruction specified by
the label “loopend” is executed 42 times. The repi instruc-
tion is a long instruction including an operation code, a
16-bit displacement for specifying the last address of the
repeat block in the PC relative mode, and an 8-bit immediate
value for specifying the repeat count, and requires two clock
cycles for execution. In the first cycle, the instruction
address next to the repi instruction is transferred from the
latch 192 to RPT_S 184 and the latch 185 through the D1
bus 311. The address of the repi instruction is transferred
from the EPC 194 through the S3 bus 303 to the AA latch
151, and the displacement value specified by the instruction
is applied from the first decoder 113 to the AB latch 152. The
ALU 153 adds the data in the AA latch 151 and AB latch 152
together to transfer the result of the addition which is the last
instruction address of the block to be repeated to RPT_E
186 through the JA bus 323. In the second cycle, the 8-bit
immediate value which is zero-extended into 16 bits is
applied from the first decoder 113 to the AB latch 152 and

10

15

20

25

30

35

40

45

50

55

60

65

20

is then transferred to RPT__C 188 through the ALU 153 and
D1 bus 311. The RP bit 43 in the PSW 21 is set to “1”. In
this manner, initialization required for repeat processing is
terminated. The registers R0 to RS are used as a buffer for
data; the registers R6 to R11 are used as a buffer for
coefficients; the register R12 is used as a data pointer; and
the register R14 is used as a pointer for coefficients.

The processing in the loop is described in detail herein-
after. Each instruction includes the load instruction and the
multiply-add operation instruction, and the two short
instructions are executed in parallel. In FIG. 15, the “LD2W
Rdest, @Rsrc+” indicates that 2-word (32-bit) data are
fetched using the contents of the register specified by Rsrc
as an operand address, and the fetched operand value is
written to a pair of registers specified by Rdest (e.g., a pair
of registers R0 and R1 when Rdest indicates R0). The value
of Rsrc plus 4 (byte size of the operand) is written back.
“MAC Adest, Rsrcl, Rsrc2” indicates the multiply-add
operation instruction. The value in the register specified by
Rsrcl and the value in the register specified by Rsrc2 are
multiplied together as signed values, and the result of
multiplication is added to the value in the accumulator
specified by Adest. The result of the addition is written back
to the accumulator. FIG. 16 illustrates a bit pattern when
these two instructions are executed in parallel. These
instructions are allocated as instructions corresponding to
the bit allocation of the short instruction having two oper-
ands of FIG. 4. The reference numeral 521 designates FM
bits which are “00” since two instructions are executed in
parallel. The reference numerals 522 and 525 designate
operation codes of an LD2W instruction with post-
increment, and 526 designates an operation code of a MAC
instruction. The reference numerals 523, 524, 527, and 528
designate areas for specifying the register numbers of Rdest,
Rsre, Rsrel, and Rsre2 for holding operands, respectively.
Rdest may specify only even-numbered registers. The ref-
erence numeral 529 designates an area Ad for specifying the
accumulator number of Adest. FIG. 17 illustrates the con-
tents of the internal instruction memory corresponding to the
loop part. For simplicity, the contents of the memory are
expressed as mnemonics. The 32-bit instructions are
referred to as I1 (511), 12 (512) and the like, and the short
instructions are referred to as I1a (512(a)), I1b (512(b)) and
the like. The six instructions I1 (511) to 16 (516) are
repeatedly executed 42 times in the loop.

FIG. 18 illustrates mapping of the internal data memory
with respect to the coefficients A[i] and data D[i]. Each area
of the internal data memory holds 256 data entries. For the
coefficients A[i], 16-bit data are held in 256-word (512-byte)
areas at the addresses 2000 to 21ff in hexadecimal. For the
data D[i], 16-bit data are held in 256-word (512-byte) areas
at the addresses 2400 to 25ff in hexadecimal.

FIG. 19 (FIGS. 19A to 19C) illustrates a flow of process-
ing in the loop wherein the pipeline stages are depicted as
the abscissa with time as the ordinate. All instructions are
stored in the internal instruction memory 103, and all
operand data are stored in the internal data memory 105.
One clock cycle is required to complete the processing at
one stage. When repeating the processing continued, T1
follows T6.

An example is given below based on the processing of 11
(511). At the IF stage 401, 11 (511) is fetched during T1
period (531). The contents of the IA register 181 are trans-
ferred to the instruction fetch unit 102. The comparator 187
compares the value in the IA register 181 with the value in
the RPT__E 186. Since a mismatch occurs, the value in the
IA register 181 is incremented by the incrementor 182 and

US RE38,679 E

21

written back. The instruction fetch unit 102 accesses the
internal instruction memory 103 to transmit the read 32-bit
instruction data to the instruction queue 111. The instruction
queue 111 transmits the instruction data transferred thereto
within the same cycle to the first decoder 113 and the second
decoder 114.

At the D stage 402, 11 (511) is decoded during T2 period
(537). The first decoder 113 decodes the LD2W instruction
of I1a (511(a)) to produce the control signal, and the second
decoder 114 decodes the MAC instruction of I1b (511(b)) to
produce the control signal. The control signals from the first
and second decoders 113 and 114 are outputted to the first
and second operation units 116 and 117, respectively. The
immediate value which is “4” is transmitted to the first
operation unit 116. At the D stage 401, a conflict check is
performed on the operands and arithmetic units, but no
interference occurs. The value of the read operand of the
MAUC instruction has already been loaded. The MAC
instruction of I1b (511(b)) is executed during T3 period
(543). Writing a value to the register R0 has been completed
during T1 period (535), and writing a value to the register R6
has been completed during T2 period (540).

At the E stage 403, 11 (511) is executed during T3 period
(543). The first operation unit 116 produces the operand
address of the LD2W instruction of I1a (511(a)) and updates
the value of the address pointer. The value in the register
R12 of the register file 115 which is the operand address is
transferred through the S3 bus 303 to the AA latch 151. The
value in the AA latch 151 is intactly outputted to the operand
access unit 104 through the AO latch 154 and OA bus 321.
The immediate value outputted form the first decoder 113 is
transferred to the AB latch 152. The ALU 153 performs
addition to write back the result of addition to the register
R12 of the register file 115 through the selector 155 and D1
bus 311. The second operation unit 117 performs multipli-
cation of the MAC instruction of I1b (511(b)). The value in
the register RO of the register file 115 is applied to the X
register 212 through the S4 bus 304, and the value in the
register R6 of the register file 115 is applied to the Y register
213 through the S5 bus 305. Both of the values are handled
as signed values and multiplied together. The result of
multiplication is applied to the P register 214.

At the M and E2 stages 404 and 406, 11 (511) is subjected
to memory access and addition during T4 period (549),
respectively. The operand access unit 104 loads the 4-byte
data from the internal data memory 105 at the address
transmitted from the first operation unit 116 to transfer the
fetched value to the LD register 164 through the OD bus
322. The second operation unit 117 performs addition of the
MAC instruction of 11b (511(b)). The value in the accumu-
lator 208 (A0) is not shifted by the shifter 204 but is applied
to the A latch 202. The value in the P register 214 is
subjected to sign extension into 40 bits and applied to the B
latch 203. The ALU 201 adds the values in the A and B
latches 202 and 203 together to write back the result of
addition to the accumulator 208 (A0).

At the W stage 405, writing back to the register is
performed during T5 period (555). The first operation unit
116 outputs the data held in the LD register 164 to the W1
bus 314 and W2 bus 315 through the latch 161 and align-
ment circuit 166. Since the operand is aligned in 4 bytes, the
high-order 2 bytes are outputted to the W1 bus 314, and the
low-order 2 bytes are outputted to the W2 bus 315. The data
on the W1 bus 314 are written into the register R4 of the
register file 115, and the data on the W2 bus 315 are written
into the register RS of the register file 115.

The pipeline processing of one 32-bit instruction for each
clock cycle achieved one multiply-add operation for each

15

20

25

30

35

40

45

50

55

60

65

22

clock cycle. In this manner, the loaded data value is written
two words at a time into the registers RO and R1 of the
register file 115 during T1 period 535 at the W stage 405, and
the loaded coefficient value is written two words at a time
into the registers R6 and R7 of the register file 115 during T2
period 540 at the W stage 405. The value in the register R0
of the register file 115 for holding the data and the value in
the register R6 of the register file 115 for holding the
corresponding coefficient are referred to and multiplied
together during T3 period 543 at the E stage 403. The value
in the register R1 of the register file 115 for holding the data
and the value in the register R7 of the register file 115 for
holding the corresponding coefficient are referred to and
multiplied together during T4 period 548 at the E stage 403.
Such pipeline processing by means of software without
operand interference improves efficiency.

The repeat processing is not illustrated in detail in FIG.
19, but is described below briefly. At the IF stage 401, the
fetch address is compared with the last address of the repeat
block. A match occurs during T6 period 556 at the IF stage
401. The counter value of RPT C 188 which is not “1”
indicates further repetition of the processing, and the pro-
cessing sequence is changed. The value in the latch 185
which is the start address of the block to be repeated is
transferred to the IA register 181 through the JA bus 323.
The instruction at the start address of the block to be
repeated is fetched during T7 (not shown) period corre-
sponding to T1 period 531 at the IF stage 401. The last
instruction address match detection result of the repeat block
is transferred through the pipeline. During T2 period 538 at
the E stage 403 wherein 16 is executed, the decrementor 190
decrements the value in the repeat counter RPT _C 188 by
one independently of the instruction to be executed. If the
value in RPT__C 188 before decrement is “1”, the RP bit in
the PSW is cleared to zero, and the repeat is disabled.

An n-stage second-order direct-form type II (n biquad)
IR (infinite impulse response) filter is described below. FIG.
20 illustrates the signal flow graph of the filter. In FIG. 20,
601 represents the multiplication of coefficients, 602 repre-
sents the addition of input data, and 603 represents a unit
delay. Five multiply-add operations are executed within the
loop. In this case, it is necessary to write the data of last two
operations into the memory during the loop period. The data
and coefficient each are 16 bits in length. FIG. 21 illustrates
an example of a program of the IIR filter for the data
processor of the first preferred embodiment. Initialization is
performed at 606, the loop processing at 607, and the
post-processing at 608. The loop processing without over-
head is implemented by the repeat instruction.

Processing in the loop is described in detail herein. FIG.
22 illustrates the contents of the internal instruction memory
corresponding to the loop part. Six instructions I1 (611) to
17 (617) are executed repeatedly 42 times within the loop.
An ST2W ipstruction at 611(a) directs that the memory
stores the values in the two registers RO and R1. The value
in the register R12 serving as the base address is post-
incremented. An MULX instruction at 611(b) directs that the
values in the two registers RO and Ré as signed values are
multiplied together and the result of multiplication is written
back into the accumulator. The result of multiplication is
written back into the accumulator 208 within the same cycle
through the selector 207. An ADD instruction at 612(a)
directs that the ALU 201 adds 4 to the contents of the register
R12. An MV instruction at 613(b) directs that the value of
4 is copied to r1. An MV2W instruction at 616(b) transfers
two words, that is, transfers the values in the registers R4
and RS to the registers R2 and R3, respectively. Since the

US RE38,679 E

23

data are transferred through the barrel shifter 215 in this
case, a hardware resource does not interfere with the imme-
diately preceding multiply-add operation instruction. An
RACHTI instruction at 617(b) directs that the value in the
accumulator A0 is 1 bit left-shifted, rounded to upper 16 bits,
limited on the basis of the value of the guard bits to a
maximum value h’7fff expressible in 16 bits if an overflow
occurs and to a minimum value h’8000 expressible in 16 bits
if an underflow occurs, and written back to the register RO.
This operation is executed by using the ALU 201 and
saturation circuit 209.

The register RO holds input data to the next stage. The
register R1 is used as update data Dil (i is an integer not
more than n). The registers R2 to RS are used as a buffer for
holding the data. The registers R6, and R8 to R11 are used
as a buffer for coefficients. The register R12 is used as a data
pointer. The register R14 is used as a pointer for coefficients.
The register R7 holds invalid data to maintain 32-bit align-
ment of the coefficient data.

FIG. 23 illustrates mapping of the internal data memory
with respect to the coefficients and data. The respective data
are 16 bits in length. Five coefficients are provided per stage
and two data are provided per stage in the arrangement of
FIG. 20. A coeflicient Ai (621) is to be multiplied by an input
value. The reference numerals 622 and 626 designate
dummy areas for efficient access to the coefficients.

FIG. 24 (FIGS. 24A to 24C) illustrates a flow of process-
ing within the loop wherein the pipeline stages are depicted
as the abscissa with time as the ordinate. All instructions are
stored in the internal instruction memory 103, and all
operand data are stored in the internal data memory 105.
One clock cycle is required to complete the processing at
one stage. During the repeat processing continued, T1 fol-
lows T7. As is the case with the above described FIR filter,
the fetched data are referred to at least 2 cycles later. The
instruction at 611 directs that multiplication is executed
simultaneously as two words are stored for data updating.
The MV2W instruction directs that the contents of data are
transferred every two word at a time (at 643) so that the same
register number is used each time the loop is repeated. The
value in the register R4 loaded at 659 during T4 period and
the value in the register R10 loaded at 655 during T3 period
are multiplied together at 666 during T6 period, and the
value in the register RS loaded at 659 during T4 period and
the value in the register R11 loaded at 655 during T3 period
are multiplied together at 670 during T7 period. Such
processing allows 7 cycles to be required to implement the
processing of the second-order direct-form type-II IIR filter
at one stage.

An example of IFFT (inverse fast Fourier transform) is
described below. Unit processing is as follows:

tmp_r=(b_r * ¢c_1r)-(b_i * c_i);
tmp_i=(b_r * c_D+(b_i * c_r1);
A_r=a_r-tmp_r;
A_i=a_i-tmp_ i
B_r=a r+tmp_1;
B_r=a_i+tmp_i;

where a and b are complex variables of input data, A and B
are complex variables of output data (update data), tmp is a
temporary complex variable, ¢ is a complex constant, “_ r”
is a real part, and “_i” is an imaginary part.

FIG. 25 illustrates an example of a program in a loop part
when two unit processings of the IFFT form one loop. The

10

15

20

25

30

35

40

45

50

55

60

65

24

registers R0, R1, and R2, R3 hold a and A. The registers R4
and RS hold b. The registers R6 and R7 hold tmp. The
registers R8 and R9 hold a and B. The registers R10 and R11
hold ¢. The even-numbered registers hold the real part, and
the odd-numbered registers hold the imaginary part. The
register R12 holds the address of a. The register R14 holds
the address of b.

The symbol “msu” indicates the multiply-subtract instruc-
tion which directs that the result of multiplication is sub-
tracted from the accumulator. This is because the square of
i (complex number) equals -1.

In this case, 15 cycles are required to implement two unit
processings with respect to two pairs of complex numbers.
The thirty sub-instructions include four 2-word load
instructions, four 2-word store instructions, four additions,
four subtractions, four multiplications, two multiply-add
operations, two multiply-subtract operations, four rounding
instructions, and two 2-word transfer instructions, providing
very high efficiency of operations.

FIG. 26 illustrates an example of a program in a loop part
of a subtract-absolute-add operation. An absadd instruction
directs that the specified register value is applied from the
register file 115 to the low-order positions of the shifter 205
through the S5 bus 30S5. The shifter 205 performs sign
extension on the value into 40 bits but does not shift the
value to apply the value to the B latch 203. The value is
subjected to the operation with the value in the accumulator
208 specified by the ALU 201, and the result of the operation
is written back to the accumulator 208. The ALU 201
performs addition when the value in the B latch 203 is
positive, and performs subtraction when the value is nega-
tive. The subtraction is implemented by inverting the data
and providing a carry to the least significant bit. In this
manner, one clock cycle is required to implement the
absolute-add operation.

FIG. 27 (FIGS. 27A to 27C) illustrates a flow of process-
ing in the loop. The 2-word load instruction is executed in
parallel with the absolute-add instruction of the result of
subtraction. During T3 cycle, data are loaded to the registers
R6 and R7 in response to the LD2W instruction of I5a (813).
Then, during T4 cycle, data are loaded to the registers R2
and R3 in response to the LD2W instruction of I6a (817).
During T6 cycle, the value in the register R7 is subtracted
form the value in the register R3 in response to the instruc-
tion indicated by I4a, and the result of subtraction is written
back to the register R3. Further, the value in the register R6
is subtracted from the value in the register R2 in parallel in
response to the instruction indicated by 14b, and the result of
subtraction is written back to the register R2 (824). In this
manner, four subtract-absolute-add operations are imple-
mented in 6 cycles.

Second Preferred Embodiment

FIG. 28 is a block diagram of a second operation unit 120
for the data processor according to a second preferred
embodiment of the present invention corresponding to the
second operation unit 117 of the first preferred embodiment.
Other units of the data processor of the second preferred
embodiment are similar in construction to those of the first
preferred embodiment. The second operation unit 120 differs
from the second operation unit 117 of the first preferred
embodiment in that it includes an ALU 221 operable inde-
pendently of an adder 231 for performing the multiply-add
operation. This allows the execution of the addition and
subtraction of the multiply-add/multiply-subtract instruc-
tions and other arithmetic and logic operations without
interference of hardware.

US RE38,679 E

25

The ALU 221 performs a 16-bit arithmetic and logic
operation. An A2 latch 222 connected to the S4 bus 304 and
a B2 latch 223 connected to the S5 bus 305 are input latches
for the ALU 221. An ALUO latch 225 is an output latch for
the ALU 221. Aselector 224 selects the output from the ALU
221, the value in the A2 latch 222, or the value in the B2
latch 223 to write back the selected value to the register file
115 through the D2 bus 312. The output from the ALUO
latch 225 may be set to the low-order positions and subjected
to sign extension by a shifter 235. A B latch 233 selectively
receives the output from the shifter 235 or the value in the
P latch 214 serving as the output latch of the multiplier 211.
An A latch 232 receives data from the accumulator 208
through the shifter 204. Other elements of the second
operation unit 120 are substantially identical with those of
the second operation unit 117 of the first preferred embodi-
ment.

An example of processing is described below. FIG. 29
illustrates an exemplary program of a subtract-square-add
operation. Initialization is performed at 701, the loop pro-
cessing at 702, and the post-processing at 703. FIG. 30
illustrates the contents of the internal instruction memory
corresponding to the loop part. The subtract-square-add
operation of D1[i] and D2[i] is performed. The register R12
holds the address of D1[i], and the register R14 holds the
address of D2[i]. The registers R0 to R3 hold the data D1[i],
and the registers R4 to R7 hold the data D2[i]. All instruc-
tions are executed in parallel. Six cycles are required to
execute the processing four times. FIG. 31 illustrates map-
ping of the internal data memory with respect to the data.
The respective data are 16 bits in length. The data D1[i] and
D2[i] are stored in different areas.

FIG. 32 (FIGS. 32A to 32C), illustrates a flow of pro-
cessing in the loop. For example, the adder 231 and the ALU
221 execute the addition (746) of the multiply-add operation
and the subtraction (745) for determining the difference in
parallel during T6é period.

The data processor of the second preferred embodiment
may more efficiently process the subtract-absolute-add
operation described in the first preferred embodiment. FIG.
33 illustrates the contents of the internal instruction memory
corresponding to the loop part. The register R12 holds the
address of a first data array, and the registers R0 to RS hold
the data thereof. The register R14 holds the address of a
second data array, and the registers R6 to R11 hold the data
thereof. An daadd instruction is an instruction for determin-
ing the subtract-absolute-add operation, and the result of the
operation is held in the accumulator. This instruction, like
the multiply-add operation instruction, directs that two-stage
pipeline processing is executed.

FIG. 34 (FIGS. 34A to 34C) illustrates a flow of process-
ing in the loop. The processing conditions in FIG. 34 are
substantially similar to those in the case of the FIR filter
described in the first preferred embodiment. The subtract-
absolute-add operation is executed in FIG. 34 in place of the
multiply-add operation. That is, multiplication is replaced
with subtraction, and the addition is replaced with the
absolute-add operation. In this manner, the throughput of the
processing is such that one subtract-absolute-add operation
is executed per cycle.

Third Preferred Embodiment

FIG. 35 is a functional block diagram of the data proces-
sor according to a third preferred embodiment of the present
invention. An MPU 850 is an MPU core. An instruction
fetch unit 863 and an operand access unit 864 are substan-

10

20

25

30

35

40

45

50

55

60

65

26

tially similar to the instruction fetch unit 102 and operand
access unit 104 of the data processor of the first preferred
embodiment. The instruction data which are 64 bits in length
are applied to the instruction fetch unit 863. The bus
interface unit and the like are not shown in FIG. 35.

The MPU core 850 comprises an instruction queue 851,
a control unit 852, a register file 860, a first operation unit
858, a second operation unit 859, a third operation unit 861,
and a fourth operation unit 862. The instruction queue 851
is an FIFO-controlled instruction buffer for holding a maxi-
mum of two 64-bit instructions. The first operation unit 858
includes an incrementor, a decrementor, and an adder and
performs management of the PC value, calculation of the
branch target address, and repeat control. The second opera-
tion unit 859 includes an ALU and an alignment circuit and
performs operand address generation, updating of the
pointer, arithmetic and logic operations, transfer,
comparison, holding and alignment of loaded data, and
holding and alignment of data to be stored. The third
operation unit 861 includes an ALU and a shifter, and
performs operation processing such as arithmetic and logic
operations, transfer, comparison and shift. The fourth opera-
tion unit 862 includes a multiply-add operation unit, a
shifter, and an accumulator, and mainly performs the
multiply-add and multiply-subtract operations and accumu-
lator shift. In this manner, the MPU core 850 has the four
independent [arithmetic] operation units connected to the
register file.

The control unit 852 includes an instruction decode unit
853. The instruction decode unit 853 has four decoders. FIG.
36 illustrates an instruction format processed by the data
processor of the third preferred embodiment. FM bits 871
having a 4-bit format are divided into two 2 bits for
specifying the formats of the combination of first and second
containers 872 and 873 and the combination of third and
fourth containers 874 and 875 in the same manner as in the
data processor of the first preferred embodiment. Each of the
first to fourth containers 872 and 875 is expressed in 15 bits.

The first decoder 854 mainly decodes the operation code
of the first container 872 to produce control signals for the
register file 860 and first operation unit 858. The branch
instruction is mainly specified in the field of the first
container 872. The second decoder 855 mainly decodes the
operation code of the second container 873 to produce
control signals for the register file 860 and second operation
unit 859. The load/store instruction, arithmetic and logic
operation instruction, transfer instruction, and comparison
instruction are mainly specified in the field of the second
container 873. The third decoder 856 mainly decodes the
operation code of the third container 874 to produce control
signals for the register file 860 and third operation unit 861.
The arithmetic and logic operation instruction, transfer
instruction, comparison instruction, and shift instruction are
mainly specified in the field of the third container 874. The
fourth decoder 857 mainly decodes the operation code of the
fourth container 875 to produce control signals for the
register file 860 and fourth operation unit 862. The multiply-
add operation instruction is mainly specified in the field of
the fourth container 875.

Such an arrangement allows greatly sophisticated parallel
processing. The present invention is applicable also in such
a case. For example, to execute the subtract-square-add
operation, the second, third, and fourth operation units 859,
861, 862 may execute the load, subtraction, and absolute-
add operation in parallel, respectively, to provide the
throughput of processing such that one subtract-square-add
operation is executed per cycle. Similarly, the IFFT process-

US RE38,679 E

27

ing is also executed at high speeds. According to the present
invention, the number of arithmetic units is not limited but
may be determined on the basis of a trade-off between
required performance and costs. If the throughput of data
transfer is insufficient, four words should be transferred in
parallel. If the number of registers is insufficient, the number
of registers should be increased which requires the increase
in bit length.

For improvement in the throughput of the multiply-add
operation, a plurality of operation units should have
multiply-add operation units to increase the number of
operands to be transferred. The present invention is also
applicable in this case.

Fourth Preferred Embodiment

FIG. 37 is a block diagram of the second operation unit
120 of the data processor according to a fourth preferred
embodiment of the present invention corresponding to the
second operation unit 117 of the data processor of the first
preferred embodiment. Other units of the data processor of
the fourth preferred embodiment are substantially identical
in construction with those of the first preferred embodiment.

In the fourth preferred embodiment, the result of the
multiply-add operation is stored in the register for each
operation, and no guard bits are provided. Additional guard
bits may be provided if required in terms of operation
accuracy.

FIG. 38 illustrates an instruction format for the data
processor of the fourth preferred embodiment wherein the
instruction is 64 bits in length. The instruction comprises 2
FM bits 941, a 31-bit left-hand container 942, and a 31-bit
right-hand container 943. FIG. 39 illustrates a basic format
of each container which is basically a 3-operand format
including three fields: two source register number specifi-
cation fields 946 and 947, and one destination register
number specification field 945. There are provided 64
registers, and the register number is specified in a 6-bit field.

The basic pipeline processing of the fourth preferred
embodiment is similar to that of the first preferred
embodiment, and the description thereof will be dispensed
with. An 84 bus 913, an S5 bus 914, a D2 bus 915, and a D3
bus 916 operate at the E stage 403. These buses mainly
transfer operand values of an ordinary integer operation
instruction and the like. An S6 bus 911, an S7 bus 912, a D4
bus 917, and a D5 bus 918 operate at the E2 stage 406. These
buses mainly transfer accumulated value. An adder 934 and
its input and output units operate at the E stage 403 and E2
stage 406, but other arithmetic units and latches operate at
the E stage 403.

A “mac” instruction for multiply-add operation is a
3-operand instruction. The processing specifications of “mac
Rdest, Rsrcl, Rsrc2” are such that the register value speci-
fied by Rsrcl and the register value specified by Rsrc2 are
multiplied together and the result of multiplication is added
to the value in the pair of registers specified by Rdest. The
hardware processing is described in detail. First, at the E
stage 403, the register values specified by Rsrcl and Rsrc2
are transferred from a register file 903 through the S4 bus
913 and S5 bus 914 to an X latch 938 and a Y latch 939,
respectively. A multiplier 940 performs multiplication, and
the P register 941 holds the result of multiplication. Then, at
the E2 stage 406, the values in the pair of registers specified
by Rdest is applied to an A latch 931 from the register file
903 through the S6 bus 911, the S7 bus 912, and the shifter
930. The value in the P register 941 is applied to a B latch
933. The adder 934 adds the values in the A latch 931 and

10

15

25

30

35

40

45

50

55

60

65

28

B latch 933 together. The result of addition is outputted
through a saturation circuit 937 to the D4 bus 917 and DS
bus 918, and written back to the pair of registers specified by
Rdest in the register file 903.

FIG. 40 illustrates an example of the program in a loop
part of the FIR filter. The 2-word load instruction and the
multiply-add operation instruction are decoded in parallel
and executed in parallel. This achieves one multiply-add
operation per cycle in the same manner as in the data
processor of the first preferred embodiment except that the
result of the multiply-add operation is written back to the
register file for each operation.

In this manner, the technique of the present invention is
also effective when the cumulative result of the multiply-add
operations is held in the register. The operands are not
bypassed herein, but a bypass path may be provided as
required.

Fifth Preferred Embodiment

In the data processor of the above described preferred
embodiments, one word is assumed to be 16 bits in length.
However, one word may be any number of bits in length. For
example, audio processing requires about 24 bits in length,
and one word may be 24 bits in length. One word may be 32
bits long in terms of alignment with a processor. In this case,
the multiplier may not necessarily be of 1-word by 1-word
form, but a multiplier of a size essential in terms of the
accuracy of an application to be processed should be
selected and implemented.

Sixth Preferred Embodiment

In the data processor of the above described preferred
embodiments, the multiply-add operation is subjected to
two-stage pipeline processing. However, the last addition
stage of the multiplier and the adder for addition may be
merged to execute the multiply-add operation in one cycle.
Additionally, for high-speed operation, the multiplication
may be performed by 2-stage pipeline to permit the
multiply-add operation to be performed by 3-stage pipeline.
Other pipelines may be freely selectable. For instance, the E
stage 403 and M stage 404 may be merged into one pipeline
stage for processing. Further, to improve the operating
frequency, write back operation to the register may be
performed in the different pipeline stage from E stage. In
addition, data may be bypassed from the write path to the
register, which is effective for high-speed processing.

Seventh Preferred Embodiment

In the above described preferred embodiments of the
present invention, the microprocessor of VLIW architecture
is illustrated as an example. However, the technique of the
present invention is also applicable to a superscalar RISC
processor and the like programmed if the details of hardware
are noted and the conditions for parallel processing are
seized. The difference is that the parallel execution is
encoded in the program or the hardware determines whether
or not the parallel execution is permitted. The FM bits may
be absent in the VLIW architecture. The instructions may be
always executed in parallel. In this case, the operation which
is not executed in parallel should be set to NOP.

While the invention has been described in detail, the
foregoing description is in all aspects illustrative and not
restrictive. It is understood that numerous other modifica-
tions and variations can be devised without departing from
the scope of the invention.

US RE38,679 E

29

We claim:

1. A data processor comprising:

a first memory for storing an instruction including a first
operation code and a second operation code;

a second memory for storing data values;

a first decoder receiving said first operation code from
said first memory for decoding said first operation
code;

a second decoder receiving said second operation code
from said first memory for decoding said second opera-
tion code, said first and second operation codes being
decoded in parallel;

a register file including a plurality of registers for storing
data values to be transferred from and to said second
memory;

an operation unit for receiving a first data value stored in
a first register of said register file to perform an
arithmetic operation using said first data value in
response to a first control signal, said first control signal
being a decoded result of said first operation code
output from said first decoder; and

an operand access unit for performing a memory access to
transfer in parallel second and third data values stored
in said second memory to second and third registers of
said register file, respectively, in response to a second
control signal, said second control signal being a
decoded result of said second operation code output
from said second decoder, said memory access of said
operand access unit and said arithmetic operation of
said operation unit are performed in parallel.

2. The data processor of claim 1,

wherein said second and third data values each are n bits
in length, where n is an integral number, and said
second and third data values are combined together into
a 2n-bits data value when said second and third data
values are transferred to said register file.

3. The data processor of claim 1, wherein said operation

unit comprises:

a multiplier for multiplying together a fourth data value
stored in a fourth register of said register file and said
first data value; and

an adder for adding together at least a result from said
multiplier and a value stored in said register file to
cause said register file to store a result from said adder.

4. The data processor of claim 1, wherein said operation

unit comprises:

a multiplier for multiplying together a fourth data value
stored in a fourth register of said register file and said
first data value,

an accumulator for holding an accumulated data value
which is a result of an operation, and

an adder for adding together at least a result from said
multiplier and the accumulated data value held in said
accumulator to cause said accumulator to hold a result
from said adder.

5. The data processor of claim 1,

wherein said operation unit receives a fourth data value
stored in a fourth register of said register file, said
arithmetic operation in said operation unit including a
multiplying operation of said first and fourth data
values and an adding operation at least on a result of
said multiplying operation and a fifth data stored in said
register file or an accumulator provided with said
operation unit;

said operand access unit causes an operand address to be
applied to said second memory simultaneously with the

30

multiplying operation of said operation unit in a first

period, and causes said second and third data values to

be transferred from said second memory in response to

the operand address simultaneously with the adding

5 operation of said operation unit in a second period
following said first period.

6. The data processor of claim 5,

wherein said operand address is stored in a fifth register
of said register file and operand access unit causes said
fifth register to be updated into another operand address
in said first period.

7. A data processor comprising:

a first memory for storing an instruction including a first
operation code and a second operation code;

a second memory for storing data values;

a first decoder receiving said first operation code from
said first memory, for decoding said first operation
code;

a second decoder receiving said second operation code
from said first memory, for decoding said second
operation code, said first and second operation codes
being decoded in parallel;

a register file including a plurality of registers for storing
data values to be transferred from and to said second
memory;

an operation unit for receiving a first data value stored in
a first register of said register file to perform an
arithmetic operation using said first data value in
response to a first control signal, said first control signal
being a decoded result of said first operation code
output from said first decoder; and

an operand access unit for performing a memory access to
transfer in parallel second and third data values stored
respectively in second and third registers of said reg-
ister file to said second memory in response to a second
control signal, said second control signal being a
decoded result of said second operation code output
from said second decoder, said memory access of said
operand access unit and said arithmetic operation of
said operation unit are performed in parallel.

8. The data processor of claim 7,

wherein said second and third data values each are n bits
in length, where n is an integral number, and said
second and third data values are combined together into
a 2n-bits data value when said second and third data
values are transferred to said second memory.

9. The data processor of claim 7, wherein said operation

unit comprises:

a multiplier for multiplying together a fourth data value
stored in a fourth register of said register file and said
first data value, and

an adder for adding together at least a result from said
multiplier and a value stored in said register file to
cause said register file to store a result from said adder.

10. The data processor of claim 7, wherein said operation

unit includes

a multiplier for multiplying together a fourth data value
stored in a fourth register of said register file and said
first data value,

an accumulator for holding an accumulated data value
which is a result of an operation, and

an adder for adding together at least a result from said
multiplier and the accumulated data value held in said
accumulator to cause said accumulator to hold a result
from said adder.

10

15

20

25

30

35

40

45

55

60

65

US RE38,679 E

31

11. A data processor comprising:

a memory for storing data;

a first instruction decoder receiving first and second
operation codes, for decoding said first and second
operation codes to output first and second control
signals respectively;

a second instruction decoder receiving third and fourth
operation codes, for decoding said third and fourth
operation codes to output third and fourth control
signals, respectively, said first and third operation codes
being decoded in parallel and said second and fourth
operation codes being decoded in parallel;

a register file connected to said memory and including a
plurality of registers each for storing at least one of data
and an operand address;

an operation unit for performing an arithmetic operation
on the data stored in said register file; and

a memory access device operated in parallel with said
operation unit for causing said operand address stored
in said register file to be applied to said memory and for
updating said operand address,

wherein, in a first processing, first and second decoders
receive said first and third operation codes respectively,
and executed in parallel are processing of:

(a) said operation unit to receive first data stored in a first
register of said register file to perform an arithmetic
operation in response to said first control signal, and

(b) said memory access device to cause a first operand
address stored in a second register of said register file
to be applied to said memory to cause second data
stored in said memory to be transferred to a third
register of said register file and to update said first
operand address to write a second operand address into
said second register in response to said third control
signal, and

wherein, in a second processing, said first and second
decoders receive said second and fourth operations
codes respectively, and executed in parallel are pro-
cessing of:

(c) said operation unit to receive said second data stored
in said third register of said register file to perform an
arithmetic operation in response to said second control
signal, and

(d) said memory access device to cause said second
operand address stored in said second register of said
register file to be applied to said memory to cause third
data stored in said memory to be transferred to a fourth
register of said register file and to update said second
operand address to write a third operand address into
said second register in response to said fourth control
signal,

said first processing and said second processing being
executed by pipeline control.

12. A method of processing data by a data processor
which includes a memory for storing data, a register file
connected to said memory and including a plurality of
registers each for storing at least one of data and an operand
address, an operation unit for receiving the data stored in
said register file to perform an arithmetic operation, and a
memory access device for causing the operand address
stored in said register file to be applied to said memory, said
method comprising the steps of:

(a) transferring, in parallel, first and second data stored in

a first area of said memory to first and second registers
of said register file, respectively;

20

25

30

40

45

50

55

60

65

32

(b) transferring, in parallel, third and fourth data stored in
a second area of said memory to third and fourth
registers of said register file, respectively;

(c) applying said first data stored in said first register and
said third data stored in said third register to said
operation unit to perform an arithmetic operation of
said first and third data by said operation unit; and

(d) applying said second data stored in said second
register and said fourth data stored in said fourth
register to said operation unit to perform an arithmetic
operation of said second and fourth data by said opera-
tion unit.

13. The method of claim 12, further comprising the steps

of:

(e) transferring, in parallel, fifth and sixth data stored in a
third area of said memory to fifth and sixth registers of
said register file, respectively; and

(f) transferring, in parallel, seventh and eighth data stored
in a fourth area of said memory to seventh and eighth
registers of said register file, respectively,

wherein one of the steps (¢) and (d) is executed in parallel
with at least one of the steps (e) and (f).

14. The method of claim 13,

wherein said third area is the same as said first area, and
said fourth area is the same as said second area.

15. The method of claim 12,

wherein said first and second data each are n bits in length,
where n is an integral number, and wherein said first
and second data are combined together into 2n-bit data
when said first and second data are transferred to said
register file.

16. The method of claim 12,

wherein the step (c) comprises the sub-steps of:

multiplying said first and third data together; and

adding data stored in a ninth register to the result of
multiplication to store the result of addition as ninth
data in said ninth register, and

wherein the step (d) comprises the sub-steps of:

multiplying said second and fourth data together; and

adding said ninth data stored in said ninth register to the
result of multiplication to store the result of addition in
said ninth register.

17. A data processor comprising:

an instruction decoder for decoding first and second
operation codes to output first and second control
signals, respectively;

a register file including a plurality of registers;

a memory for storing data;

an operand access unit for performing a first memory
access to transfer first and second data in parallel from
a first area of said memory to said register file in
response to said first control signal, and performing a
second memory access to transfer third and fourth data
in parallel from a second area of said memory to said
register file in response to said second control signal;
and

an operation unit receiving said first to fourth data from
said register file, for performing a first arithmetic
operation on said first and third data and a second
arithmetic operation on said second and fourth data.

18. The data processor of claim 17,

wherein said first arithmetic operation is a multiplying
operation on said first and third data and said second
arithmetic operation is multiplying operation on said
second and fourth data, and

US RE38,679 E

33

said operation unit generates a value which is a result of
adding a result of said first arithmetic operation, a result
of said second arithmetic operation and fifth data in
said register file or an accumulator provided with said
operation unit.

19. The data processor of claim 17,

wherein said instruction decoder decodes third and fourth
operation codes to output third and fourth control
signals, respectively;

said operation unit performs said first arithmetic operation
in response to said third control signal and performs
said second arithmetic operation in response to said
fourth control signal.

20. The data processor of claim 17,

wherein said first to fourth data have the same data
lengths.

21. The data processor of claim 17,

a first operand address is stored in a register of said
register file,

said operand access unit causes said first operand address
to be applied to said memory and said register to be
updated into a second operand address in response to
said first control signal, and causes said second operand
address stored in said register to be applied to said
memory in response to said second control signal.

22. The data processor of claim 17, wherein:

a first operand address is stored in a first register of said
register file, and a second operand address is stored in
a second register of said register file, and

said operand access unit causes said first operand address
to be applied to said memory and said first register to
be updated into a third operand address in response to
said first control signal, and causes said second operand
address to be applied to said memory and said second
register to be updated into a fourth operand address in
response to said second control signal.

23. A data processor comprising:

a first decoder for decoding operation codes including first
and second operation codes;

an operand access unit for outputting a first address to
receive in parallel first and second data values included
in a first area of a memory in accordance with decoding
the first operation code by said first decoder, and for
outputting a second address to receive in parallel third
and fourth data values included in a second area of the
memory in accordance with decoding the second opera-
tion code by said first decoder; and

an operation unit coupled to said operand access unit and
receiving said first to fourth data values, for calculating
a first product of said first and third data values, and a
second product of said second and fourth data values.

24. The data processor of claim 23, further comprising:

a first register for storing the first address and outputting
the first address to said operand access unit;

a second register for storing the second address and
outputting the second address to said operand access
unit; and

an address calculator, for calculating a third address on the
basis of the first address in a first period in accordance
with decoding the first operation code by said first
decoder to write back the third address to said first
register, and calculating a fourth address on the basis of
the second address in a second period following the
first period in accordance with decoding the second
operation code by said first decoder to write back the
fourth address to said second register.

10

15

25

30

40

45

50

55

60

65

34

25. The data processor of claim 24, wherein:

said address calculator calculates the third address by
adding the first address with a predetermined value and
calculates the fourth address by adding the second
address with the same value as the predetermined
value.

26. The data processor of claim 23, wherein:

said operation unit includes an accumulator, said opera-
tion unit calculating a sum of a value stored in said
accumulator, the first product and the second product.

27. The data processor of claim 23, further comprising:

a second decoder operative in parallel with said first
decoder, for decoding operation codes, wherein

an operation unit calculates the first product in accordance
with decoding [the] a third operation code by said
second decoder, and the second product of said second
and fourth data values in accordance with decoding
[the] a fourth operation code by said second decoder.

28. A method of processing data by a data processor

connected to a memory and executing instructions described
in a program, said method comprising the steps of:
transferring in parallel first and second data values
included in a first area of the memory to said data
processor;

transferring in parallel third and fourth data value
included in a second area of the memory to said data
processor;

calculating a product of the first and third data values in
the data processor; and

calculating a product of the second and fourth data values
in the data processor.

29. A data processor comprising:

a first decoder configured to receive a decode a first
operation code specifving a data load operation;

a second decoder configured to receive and decode a
second operation code specifving a multiply-add
operation;

a first operation unit configured to provide a memory with
an operand address of said first operation code, at least
one said operand address configured to cause plural
operand data to be loaded in parallel from the memory
in response to a first control signal being a decoded
result of said first operation code output from said first
decoder;

a plurality of registers configured to receive and store
data values included in operand data loaded from the
memory; and

a second operation unit configured fo receive data values
from said registers, and to perform the multiply-add
operation in response fo a second control signal being
a decoded result of said second operation code output
from said second decoder;

wherein said multiply-add operation includes a multiply-
ing operation of one by another of the data values
received by the second operation unit, and an adding
operation utilizing a result of said multiplying opera-
tion.

30. A data processor comprising:

a first decoder configured to receive and decode a first
operation code specifving a data load operation;

a second decoder configured to receive and decode a
second operation code specifving a multiply-add
operation;

a plurality of registers including a register configured fo
store an operand address of said first operation code

US RE38,679 E

35

and to output the operand address fo a memory to
cause, for at least one said operand address, plural
operand data to be loaded in parallel from the memory,
said plurality of registers including different two reg-
isters configured to receive and store first and second
data values, respectively, included in the plural oper-
and data loaded in parallel from the memory;

an arithmetic unit configured to generate a new operand
address using the operand address and to update
contents of the register storing the operand address
into the new operand address in response to a first
control signal being a decoded result of the first opera-
tion code output from said first decoder; and

an operation unit configured to receive third and fourth
data values stored in different two of said plurality of
registers, respectively, and to perform the multiply-add
operation in response fo a second control signal being
a decoded result of said second operation code output
from said second decoder;

wherein said multiply-add operation includes a multiply-
ing operation of the third data value by the fourth data
value and an adding operation utilizing a result of said
multiplying operation.

31. A data processor comprising:

a first decoder configured to receive and decode a first
operation code specifving a data load operation;

a second decoder configured to receive and decode a
second operation code specifving a multiply-add
operation;

a first operation unit configured to provide a memory with
an operand address of said first operation code to
cause, for at least one said operand address, plural
operand data to be loaded in parallel from the memory
in response to a first control signal being a decoded
result of said first operation code output from said first
decoder;

a register file configured to store first and second data
values which are included in the plural operand data
loaded in parallel from the memory; and

a second operation unit configured fo receive third and
fourth data values stored in said register file and ro
perform the multiply-add operation in response to a
second control signal being a decoded result of said
second operation code output from said second
decoder;

wherein said multiply-add operation includes a multiply-
ing operation of the third data value by the fourth data
value and an adding operation utilizing a result of said
multiplying operation; and

wherein said second operation code has an operand
specifying field capable of specifving one of the first
and second data values as the third data value, and a
data value different from said first and second data
values as the fourth data value.

32. A data processor comprising:

a first decoder configured to receive and decode a first
operation code specifving a data load operation;

a second decoder configured to receive and decode a
second operation code specifving a multiply-add
operation;

a register file configured to store an operand address of
said first operation code and fo output the operand
address to a memory fo cause, for at least one said
operand address, plural operand data to be loaded in
parallel from the memory, said register file further

10

15

20

25

30

35

40

45

50

55

60

65

36

configured to store first and second data values which
are included in the operand data loaded in parallel
from the memory;

an arithmetic unit configured fo generate a new operand
address using the operand address and to update the
operand address stored in said register file into the new
operand address in response to a first control signal
being a decoded result of the first operation code output
from said first decoder; and

an operation unit configured to receive third and fourth
data values stored in said register file and to perform
the multiply-add operation in response to a second
control signal being a decoded result of said second
operation code output from said second decoder;

wherein said multiply-add operation includes a multiply-
ing operation of the third data value by the fourth data
value and an adding operation utilizing a result of said
multiplying operation; and

wherein said second operation code has an operand
specifying field capable of specifving one of the first
and second data values as the third data value, and a
data value different from said first and second data
values as the fourth data value.

33. The data processor according fo claim 29, wherein:

said first decoder sequentially decodes operation codes
including said first operation code and specifying
operations to be executed; and

said second decoder, operative in parallel with said first
decoder, sequentially decodes operation codes includ-
ing said second operation code and specifying opera-
tions fo be executed.

34. The data processor according fo claim 29, wherein:

said plurality of registers have a same bit length; and

said second operation code is capable of specifving each
of said plurality of registers as an operand of said
second operation code.

35. The data processor according fo claim 29, wherein:

said data load operation is a plural-operand data load
operation; and

each operand address of said first operation code is
configured to cause plural operand data to be loaded in
parallel from the memory.

36. The data processor according fo claim 29, wherein:

data values included in the plural operand data loaded
from the memory are stored in different respective
registers in the plurality of registers.

37. The data processor according fo claim 30, wherein:

said data load operation is a plural-operand data load
operation; and

each operand address of said first operation code is
configured to cause plural operand data to be loaded in
parallel from the memory.

38. The data processor according fo claim 31, wherein:

said first decoder sequentially decodes operation codes
including said first operation code and specifying
operations to be executed; and

said second decoder, operative in parallel with said first
decoder, sequentially decodes operation codes includ-
ing said second operation code and specifying opera-
tions fo be executed.

39. The data processor according fo claim 31, wherein:

said data load operation is a plural-operand data load
operation; and

each operand address of said first operation code is
configured to cause plural operand data to be loaded in
parallel from the memory.

US RE38,679 E

37

40. The data processor according to claim 31, wherein:

data values included in the plural operand data loaded
from the memory are stored in different respective
registers in the register file.

41. The data processor according to claim 32, wherein:

said data load operation is a plural-operand data load
operation; and

each operand address of said first operation code is
configured to cause plural operand data to be loaded in
parallel from the memory.

42. The data processor according to claim 32, wherein:

data values included in the plural operand data loaded
from the memory are stored in different respective
registers in the register file.

43. A data processor for loading values Al to Am and

values D1 to Dm, and for performing a calculation:

m
Z Ai-Di
t=1

in accordance with a program having a plurality of opera-
tion codes, wherein i and m are positive integers, said data
processor Comprising:

a first decoder configured to decode a first operation code
in the program;
a second decoder configured to decode a second opera-

tion code in the program in parallel with the decoding
of the first operation code by said first decoder;

a first operation unit configured fo output an operand

address to a memory in response to a decoded result of

the first operation code, the first operation unit config-
ured to load values Ah and Aj in parallel from the
memory for at least one said operand address, wherein
h and j are different integers among 1 to m; and

a second operation unit configured to perform a multiply-
add operation in response to a decoded result of the
second operation code output from said second
decoder, the multiply-add operation including a multi-
ply operation of a value Ak by a value Dk, wherein k is
an integer among 1 fo m other than h and j, and an
adding operation of a result of the multiply operation
to a value held in a register or in an accumulator.

44. The data processor according to claim 43, wherein:

said first operation code specifies a plural-operand data
load operation; and

each operand address of said first operation code is
configured to cause plural operand data to be loaded in
parallel from the memory.
45. A data processor for loading values Al to Am and
values D1 to Dm, and for performing a calculation:

10

15

20

25

30

35

40

45

50

38

m
Z Ai-Di
i=1

in accordance with a program having a plurality of opera-
tion codes, wherein i and m are positive integers, said data

processor Comprising:

a first arithmetic operation circuit configured fo multiply
a value Aj by a value Dj and to multiply a value Ak by
a value Dk, wherein j and k are integers;

a second arithmetic operation circuit configured fo add a
value Pk=Ak Dk to a value held in a register or in an
accumulator; and

an operand access unit configured to output an operand
address to a memory, and to load a value Ah and a
value An in parallel in accordance with at least one
said operand address, wherein h and n are integers;
and

a control unit configured to control said first and second
arithmetic operation circuits and said operand access
unit in accordance with the program so that the mul-
tiplication of Aj-Dj, the addition of the value Pk to the
value held in the register or in the accumulator, and the
loading of the values Ah and An, are performed in
parallel.

46. The data processor according fo claim 45, wherein:

each operand address is configured to cause plural oper-

and data to be loaded in parallel from a memory.
47. A data processor for executing a program, the data

processor Comprising:

storage devices configured to store data values;

a first arithmetic operation unit configured to perform a
multiplying operation utilizing data values stored in
said storage devices;

a second arithmetic operation unit configured to perform
an adding operation utilizing data values stored in said
storage devices;

an operand access unit configured to output an operand
address to a memory and to load plural operand data
in parallel for at least one said operand address; and

a control unit configured to control said first and second
arithmetic operation units and said operand access
unit, depending on said program, so that a result of the
multiplying operation, a result of the adding operation
unit, and the loaded plural operand data, are stored in
parallel in said storage devices.

48. The data processor according fo claim 47, wherein:

data values included in the plural operand data loaded by

the operand access unit are stored in different respec-
tive registers in said storage devices.

