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BITSTREAM PROCESSING USING COALESCED BUFFERS AND DELAYED MATCHING

AND ENHANCED MEMORY WRITES

FIELD OF THE INVENTION

The field of invention relates generally to bitstream and byte stream processing and, more

specifically but not exclusively relates to technique for improved writing, compression, and

decompression of bitstreams.

BACKGROUND INFORMATION

The amount of data that is transferred via the Internet is staggering. Recent estimates project

that there will soon be more than one trillion web pages, and that more than half of the world's

population has access to the Internet. At the same time, the capacity of commodity storage devices

continues to increase while maintaining or even reducing their cost. For example, hard disc drives

of 2TB or even 3TB can be purchased under $100. Meanwhile, because of the cheap cost of

storage, there is often little motivation to implement space-efficient storage schemes for most types

of data.

This creates a dichotomy. On the one hand, you have an ever increasing number of users with

ever increasing access to storage. On the other hand, the increase in the number of users and their

increased appetites for downloaded content results in bandwidth capacities that are constantly being

pushed to their limits, leading Internet Service Providers to propose implementing tiered services,

while users argue for "Net Neutrality." This problem is even more exacerbated for wireless access,

as evidenced by more mobile carriers removing their limitless data plans in favor of tiered data

plans.

Data content is transferred over the Internet in one of several packet-based transmission

schemes, such as TCP/IP and UDP. This technique is commonly referred to as "streaming," but in

reality the process involves partitioning a stream of bits (i.e., bitstream) comprising or otherwise

derived from an original document, into a multitude of packets that are individually sent across the

Internet and assembled and processed at the receiver to extract the same stream of bits.

Furthermore, the processing may involve compression operations at the sender and decompression

operations at the receiver. Upon completion of the processing, a copy of the original document is

obtained.

In order to squeeze the most out of available transfer bandwidth, data content is often streamed

in a compressed form. Some types of content are commonly stored in compressed formats based on

well-established standards, such as music and video content. Other content, including HTML and



general document content are generally not stored in compressed form. For example, the more

recent versions of Microsoft Office products store document content in an XML-based format.

One technique for enhancing bandwidth is to perform on-the-fly compression at a sending

entity and corresponding decompression at a receiving entity. Similar techniques may be used for

real-time or batch archival purposes. In the case of document compression or archival, a "lossless"

compression algorithm is typically used such that no data is lost when the compressed document

content is decompressed. There are various lossless compression techniques employed for such

purposes, including entropy encoding schemes such as Huffman coding, run-length encoding, and

dictionary coders such as Lempel-Ziv (e.g., LZ77) and Lempel-Ziv-Welch (LZW).

One commonly used compression/decompression scheme is called DEFLATE, which is a

variation on LZ that is uses a combination of the LZ77 algorithm and Huffman coding and is

optimized for decompression speed and compression ratio, but involves computationally high

compression costs. DEFLATE is used by popular compression tools such as PKZIP, which archives

data in the ZIP format. DEFLATE is also used by GZIP compressed files and for PNG (Portable

Network Graphics) images. In accordance with the use of HTTP Compression defined by RFC

2616, a web server may send and respond to HTTP content that is compressed with GZIP

compression and decompressed using DEFLATE.

In view of the foregoing, it is projected that the use of lossless compression techniques in

combination with content streaming will become ever more prevalent. Accordingly, it would be

advantageous to provide enhanced generation and processing of bitstream content.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become

more readily appreciated as the same becomes better understood by reference to the following

detailed description, when taken in conjunction with the accompanying drawings, wherein like

reference numerals refer to like parts throughout the various views unless otherwise specified:

Figure 1 is a schematic diagram illustrating a sliding window-based string match search

scheme;

Figure 2 is a graph depicted a distribution of matched string lengths vs. percentage of

occurrences;

Figure 3 is a schematic diagram illustrating use of an LPM front-end matcher employing

conventional look-aside buffer width and distance register;

Figure 4 is a schematic diagram illustrating an LPM front-end matcher employing a look-aside



buffer having a shortened length in combination and a distance register, according to one

embodiment;

Figure 5 is a flowchart illustrated operations and logic for performing the token coalescing

scheme with delayed matching in accordance with the configuration of Figure 6 and pseudo-code

example in the specification;

Figure 6 is a combined schematic and time-flow diagram illustrating a token coalescing

scheme employing a new entry buffer and a coalesce buffer, according to one embodiment; and

Figures 7a and 7b are combined schematic diagram and time-flow diagrams illustrating a

scheme for writing variable-length tokens into a bitstream under which token data is entered into a

bit accumulator and is written to memory as each token is processed.

DETAILED DESCRIPTION

Embodiments of methods and apparatus for support enhanced bitstream generation and

processing are described herein. In the following description, numerous specific details are set forth

(such as use of the DEFLATE algorithm) to provide a thorough understanding of embodiments of

the invention. One skilled in the relevant art will recognize, however, that the invention can be

practiced without one or more of the specific details, or with other methods, components, materials,

etc. In other instances, well-known structures, materials, or operations are not shown or described in

detail to avoid obscuring aspects of the invention.

Reference throughout this specification to "one embodiment" or "an embodiment" means that

a particular feature, structure, or characteristic described in connection with the embodiment is

included in at least one embodiment of the present invention. Thus, the appearances of the phrases

"in one embodiment" or "in an embodiment" in various places throughout this specification are not

necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or

characteristics may be combined in any suitable manner in one or more embodiments.

In accordance with the teachings disclosed herein, a novel technique that accelerates Longest

Prefix Matching (LPM) algorithms for a class of sequential data compression algorithms and lookup

for IP/Routing applications is provided. The technique is implemented via an architecture that is

very scalable and flexible to suit a variety of compression applications that are based on sliding-

window algorithms and is amenable to a very efficient hardware implementation.

In an exemplary implementation illustrated herein, the LPM technique is applied to use with

compression using the DEFLATE algorithm, which employs a sliding window matching scheme.

However, this is not meant to be limiting, as the technique can generally be applied to other



compression/decompression schemes in a similar manner. The DEFLATE algorithm encodes a

bitstream comprising a sequence of blocks. Each block is preceded by a 3-bit header that identifies

whether or not the block is the last block in the stream and the type of encoding method used for the

block. Most blocks will end being encoded using dynamic Huffman encoding, while other blocks

may store a literal or string between 0 and 65,535 bytes in length. Static Huffman encoding may

also be used for some blocks.

Compression is achieved through two steps. In the first step comprises string matching and

replacement of duplicate strings with pointers. The second step comprises replacing symbols with

new, weighted symbols based on frequency of use. Within compressed blocks, if a duplicate series

of bytes (a repeated string) is detected, then a back-reference is inserted, linking to the previous

location of that identical string instead. An encoded match to an earlier string consists of a length L

(3-258 bytes) and a distance D (1-32,768 bytes (32KB)). Relative back-references can be made

across any number of blocks, as long as the distance appears within the last 32 KB of uncompressed

data decoded, which is referred to as the sliding window.

The various operations performed during DEFLATE compression and decompression are

based on corresponding algorithms implemented via software. The algorithms are well-known, and

there are numerous software implementations written in various languages. C programs typically

use the zlib library. Similarly, Java includes support as part of the standard library (injava.util.zip).

Figure 1 illustrates an example of a finding a match of length L in accordance with a sliding

window match scheme. As bytes in a byte stream 100 are received, a match detection algorithm

employing a sliding window is employed to determine whether there is an identical byte pattern that

has been previously received and processed. The process stage shown in Figure 1 corresponds to a

state at which a prior portion of byte stream 100 has be received and processed, as illustrated by the

History arrow and data in a lookup cache 102 in which the sliding window portion of the byte

stream is temporally stored. Accordingly, once the lookup cache 102 is filled to the 32KB limit, the

content of lookup cache 102 incrementally changes with each cycle, removing the oldest character

and adding the last character in byte stream 100 that was processed. For illustrative purposes, byte

stream 100 is depicted as a stream of alphanumeric characters, rather than individual bits, which

would be how the data would be encoded in an actual byte stream. Also for illustrative purposes, it

is presumed that the alphanumeric characters are encoded as ASCII characters, such that each

character is represented by 8 bits, or a single byte, thus the terminology "byte stream." Other 8-bit

encodings could also be employed.

The arrow depicting time To corresponds to the start of a processing cycle in which a byte



corresponding to a character 'z' is evaluated for a match. From a conceptual view, a pattern match

operation is performed evaluating character 'z' against previously received characters (bitmap

patterns) in byte stream 100. In the case of DEFLATE, the size of the lookup cache is limited up to

the previous 32K bytes of bitstream content. To evaluate the 'z' for a match, lookup cache 102 will

be searched for a match (which in this case would be a single individual character 'z' that may have

been previously received). In this particular example, a prior character 'z' has not been received

such that there is no match. According, a literal 'z' will be forwarded for further processing, such as

to an entropy coder.

Next, at a time T l a character 'b' is encountered. At time Ti a search for character 'b' is

commenced." In this case a prior 'b' has been received (within the 32KB sliding window), and thus

there is a match. In response to a match, further searching will be performed by adding one

additional character (in byte stream 100) at a time to create incrementally longer search strings with

evaluation continuing until a string match is not found. During a processing cycle beginning at time

T2, a second character 'c' is added to 'b' to create a search string 'b c', which is searched for in

lookup cache 102. In one embodiment, a hashing scheme is implemented to facilitate string match

searching. As before, a match is found, and the process is repeated again multiple times until we

reach a cycle corresponding to time TL. At this point, the search string 'b c d e . . . 1 2 ' is searched

for a match. Since this same string has been previously retrieved, a match is found.

In conjunction with the foregoing string search evaluation sequence, for every added character

to the string search window the corresponding character is added to a look-aside buffer 104 such

that the string in the look-aside buffer at a given point in time matches the current search string

window. Also, for each match result, data in a distance register 106 is updated to indicating the

distance in bytes to the nearest match.

At a time TL+I a character 'J' is encountered, such that the match string is now 'b c d e . . . 1 2

J'. Meanwhile the next character in the prior match string is 'y' (and it is presumed that no other

strings 'b c d e . . . 1 2 J' where previously received within the 32K sliding window. As a result,

there is a miss. At this point, data indicating the length of the longest matched string in look-aside

buffer 104 corresponding to the prior match (which can be obtained by removing the last added

character) and data in the distance register 106 identifying the distance to the matched string is

encoded as a token comprising a <len, distance> pair.

Under DEFLATE there can be a matching string length of up to 258 bytes. Under a

conventional approach, a hardware look-aside buffer of at least 258 bytes would be used to ensure

that any match of 258 bytes or less (that is, any legal DEFLATE string match) could be buffered.



However, the frequency of encountering a string match of 258 bytes is extremely small. Moreover,

the frequency of finding string matches based on length can be approximated as an inverse

exponential equation under which the frequency falls off rapidly as the bit length increases. For

example, the graph 200 in Figure 2 is illustrative of the distribution of matching lengths as a

percentage of occurrences one might find for a large corpus of files obtained, for example, from the

top 500 web sites.

In view of the graph 200, there is a good tradeoff point for lengths in the range of 8-24 bytes,

where the curve drops off steeply, which collectively represent close to 90% of the matches

statistically found. Therefore it is attractive to consider a smaller hardware look-aside buffer, such as

a buffer of size 24 bytes or less. For example, consider a look-aside buffer of 16 bytes. This would

limit the front-end of the LPM machine to finding matches that are at most 16 bytes in length.

A small buffer of this size can be implemented to still support matches up to 256 bits by

employing a back-end coalesce buffer that holds (or otherwise equivalently implements) some

number of <len, distance> encodings and delays sending these to the entropy (e.g., Huffman) coder

block until they can be merged and combined into as large as matches as possible. For instance,

suppose we have a repeating substring of length 32 that appears at a relative distance of 100; the

front-end matcher would first find <len=16, d=100> and then move ahead 16 literals and initiate the

LPM search again at this current position. However, this will find the second 16 byte match at a

relative distance of 100, and the LPM front-end will emit the second pair as <len=16, d=100>. If a

coalesce unit or equivalent coalescing functionality is not employed, these LPM results would be

encoded as two separate symbols, thereby losing some compression ratio. However, in accordance

with aspects of teachings disclosed herein, a coalesce buffer is employed to effectively "hold on" to

the first entry and combine it with the second to create a new <len=32, d=100> entry. Note that this

delayed matching continues in the hope that there will be a third overlapping match that can increase

the length of this match. If at some point, a literal or a match at a different offset (i.e., not @ 100) is

received, then the previous match in the coalesce buffer is retired and a coalesced token is generated

and forwarded on to the entropy coder for further processing.

A comparison between the output of a LMP front-end (also referred to herein as a "matcher")

using a conventional configuration and one employing a small look-aside buffer having a length of

16 bytes are shown in Figures 3 and 4, respectively. Under the conventional approach illustrated in

Figure 3, a look-aside buffer with a length N is used, and thus LPM searches may be implemented

such that a LPM string match having a maximum length M that is equal to N may be returned. For

example, when used for LMP front-end operations under DEFLATE, N and M = 258 bytes. Figure



3 also depicts the use of a distance register 106 configured to store a maximum distance value of

32K bytes in accordance with the DEFLATE specification. However, this value is merely

exemplary, as various other values for a maximum distance may be implemented for different

matchers. As further shown in Figure 3, a byte stream 300 including a set of LPM matched

strings 302a and 302b having a length L and separated by a distance D is illustrated. The value of L

for matched strings 302a and 302b is 34 bytes. Toward the bottom of Figure 3 is an exemplary

matcher token output stream 310, including a sequence of {len, distance} and {literal} tokens.

Matcher token output stream 310 depicts a literal encoding for the literal 'z' as {lit 2 = z } and a {len,

distance} token for the LPM matched strings 302a and 302b as {len5 = 34, D5 = D } for illustrative

purposes. The actual token contents for the literal 'z' and the matched string would be {z} and {34,

D}.

Figure 4 depicts a similar LPM front-end match scheme as that shown in Figure 3; but

employs a look-aside buffer 404 having a shortened length of N = 16 bytes rather than a longer

value for N, such as 258 bytes. The scheme also uses a distance register 406 that is employed in a

similar manner to distance register 106 discussed above. Accordingly, for string matches up to 16

bytes, LPM processing of byte stream 300 yields the same results the conventional approach would

produce; however, for string matches having a length of greater than 16, multiple output tokens will

be generated, with the first token having a length of 16 and the length of one or more additional

tokens being a function of the length of a matching string as a factor of 16. In a more generalized

form, for an matching string of original length len orig at a distance D and an LPM front-end with a

maximum match search length of N, a token for a len_orig > N will be encoded as int (len_orig/N)

tokens plus an additional token having a length equal to the remainder, with the distance value for

each token equal to D.

As example of this is detailed in Figure 4 . As before, there is a matching string in byte

stream 300 having a length of 34 bytes at a distance D. However, rather than encoding a

corresponding token as {34, D}, three tokens are encoded: {16, D } {16, D}, {2, D } in the output

matcher token stream 410. This also would be the normal result obtained by the conventional LPM

front-end scheme when a maximum string match length of M=16 is used.

Under aspects of the teachings disclosed herein, a matcher token stream using a shortened

length look-aside buffer can be coalesced so as to convert it into an equivalent matcher token stream

that would be produced with a longer look-aside buffer. For example, a matcher token stream

corresponding to that produced under the conventional DEFLATE LPM front-end approach could

be generated by performing a token coalescing operation on a matcher token string using a look-



aside buffer with a length that is much shorter than 258 byte conventional maximum matching string

length.

In one embodiment, the foregoing token coalescing operation may be implemented using a

new entry buffer and a coalesce buffer (CB) and employing the following pseudo-code logic.

If (new entry == <len, distance>) {
If (CB is empty) enqueue (new entry)
Else {

If (prev_entry .dist == distance &&
(prev_entry .len + len) <= MAXLEN) prev_entry .len
+= len;
Else {

retire prev_entry via Huffman coder
enqueue (new entry)

} else {
If (CB is not empty) {

retire prev entry via Huffman coder

}
retire new entry via Huffman coder

}

Corresponding operations and logic for implementing this token coalescing functionality are

depicted in a flowchart 500 of Figure 5, and the timeline diagram of Figure 6 .

In further detail, Figure 6 illustrates one embodiment of a token coalescing scheme employing

a new entry buffer 600 and a coalesce buffer 602. As a matcher token stream such as token

stream 410 is processed (also referred to as an original token stream), the length (len) and distance

values for a given token are loaded into a len register 604 and a distance register 606. In the case of

a token comprising a literal, the literal may be loaded into len register 604, with the distance register

left empty, which will provide the processing logic with an indication that the data in new entry

buffer 600 corresponds to a literal rather than a <len, distance> token pair. Similarly, coalesce

buffer 602 includes a previous len register 608 and a distance register 610.

Figure 6 further depicts the various data held in new entry buffer 600 and coalesce buffer 602

during processing an input original token stream 410 (which is the same token stream output by the

LMP front-end matcher of Figure 4). The various states of the processing of token stream 410 are

depicted as times T„. In general, the operations depicted at a given time T „ corresponds to

operations that would be performed during a proximate time period, and the illustration of various

operations depicted at T„ are not meant to be interpreted such that these operations are performed at

a given singular point in time. In general, some operations may be performed concurrently or with

partial overlap, while other operations may be performed in a sequential order with optional



ordering.

With reference to flowchart 500 of Figure 5 and the time-flow diagram of Figure 6, the

processing of original token stream 410 begins at time To with the processing of a new token {len4,

D4}. As shown by a start block 502 labeled "New Token" in flowchart 500, the processing of each

new token commences with a determination in a decision block 504 to whether the token contains a

literal or a <len, distance> pair. In this instance, {len4, D4} is a <len, distance> pair, and the logic

proceeds to a decision block 506 in which a determination is made to whether coalesce buffer 602 is

empty. In the example illustrated, prior processing operations (not shown) have resulted in coalesce

buffer 602 being empty at time T0, so the answer to decision block 506 is YES, and the new entry

data is enqueued to coalesce buffer 602 in accordance with the enqueue new entry operation

depicted in a block 508. This operation is depicted in Figure 6 at a time time To+, with the "+"

indicating the operation is performed after the new token is input into new entry buffer 600.

Processing then returns to start block 502 to process the next token.

The next token, {lit2 = z } (which would actually be encoded as simply {z}), corresponds to a

literal. Accordingly, the logic would proceed along the LITERAL branch from decision block 504

to a decision block 516 in which a determination is made to whether coalesce buffer 602 is empty.

Since the coalesce buffer contains data corresponding to the previous entry {len4, D4}, this entry is

"retired" (i.e., forwarded) to a Huffman coder in a block 518, and then the literal is retired to the

Huffman coder in a block 520. These operations result in the replication of the original tokens

{len4, D4} {z} in an output coalesced token stream 612 depicted at the bottom of Figure 6, and the

process returns to start block 502.

The processing of the next token {len5 = 16, D5 = D } (which would be encoded as {16, D}) is

similar to the previously described for token {len4, D4}, resulting in the token len and distance

values being input to new entry buffer 600 at time T2 and enqueued into coalesced buffer 602 at

time T2+.

The next token {len6 = 16, D6 = D } (which would be encoded as {16, D}) shares the same

distance value as the previous token (D5 = D6 = D). As discussed above, this is indicative of an

actual string match that is longer than the maximum string match length that is detected using the

shorted max match len used by the LPM front-end matcher. As a result, the len values of the

tokens are to be coalesced, while preserving the distance value. The corresponding flowchart 500

logic is as follows. The answer to decision block 504 causes the <LEN, DIST> branch to be taken

to decision block 506, which outputs a NO because the coalesce buffer holds the previous token len,

distance values. A determination is made in a decision block 510 to whether the previous entry



distance and new distance match (YES), which is logically ANDed with a determination to whether

the coalesce buffer len value added to the new entry len value would exceed the MAXLEN

(maximum possible length of encoded string match) defined for the implementation of the

compression algorithm. As discussed above, for DEFLATE this value is 258. In this instance,

coalesce buffer len + new entry len = 32, so the answer to decision block 510 is YES, and the new

entry len is added to the existing len value in the coalesce buffer, as depicted by a block 512 and at

time T3+. Meanwhile, the distance value D5 is maintained in coalesce buffer 602. This effectively

coalesces the lens values of the two tokens, indicating a string match condition of {32, D5};

however, this is not forwarded to the Huffman coder at this point, as it is possible that a longer

match was present in the original byte stream processed by the LPM front-end.

The next token {len7 = 2, D7 =D} (which would be encoded as {2, D}) has a distance value

that matches the previous token. More particularly, it also matches the distance from two tokens

prior, but this consideration is automatically handled by the coalescing scheme. As with the

previous token, the len value of the new entry is added to the existing len value in coalesce

buffer 602, as depicted at time time T4+, resulting in a temporally stored value of {34, D }.

The next token {len8, D8} has a distance that does not match the distance of its previous

token. This indicates that the string len in this token corresponds to the beginning of a new string

match and is not to be coalesced with the existing len value in the coalesce buffer. At the same

time, this also means that the existing values in the coalesce buffer are to be retired and forwarded to

the Huffman coder as a new token comprising a coalesced len value.

The operations and logic for performing these operations in accordance with flowchart 500 are

as follows. The <LEN, DIST> branch is taken from decision block 504, and the answers to decision

block 506 and 510 are both NO. In particular, the previous and new distances do not match. This

causes the data in coalesce buffer 602 to be output as a token with a coalesced len and forwarded to

the Huffman coder, as shown in a block 514. The logic then proceeds to block 508 in which the

new entry is enqueued in coalesce buffer 602, as depicted at time T + . Subsequent processing is

performed on remaining tokens (not shown) in token stream 410 until the end of the token stream is

reached.

The result of the foregoing processing is that string lens corresponding to adjacent tokens

having the same distance values are coalesced, thus generating coalesced tokens, while sequentially

adjacent tokens that have dissimilar distances and/or encode literals are essentially passed through in

their original form. This generates a token stream having the same content as the matcher token

stream generated using the conventional look-aside buffer length scheme for substantially all string



match conditions, depending on the particular implementation.

For a DEFLATE implementation, there are a few corner cases where the results of the

coalesced token output under the foregoing scheme will differ from the conventional approach by a

small amount. These result from situations in which an LPM string match condition exists in the

original byte stream data that is greater than MAXLEN. For example, for DEFLATE if the original

byte stream has a string match with a length greater than 258 bytes, that string match will not be

detected since the longest string search will be MAXLEN (i.e., 258). The corresponding tokens for

this string match condition will be encoded as {258, D } {string_len - 258, D } (presuming the LPM

string match is less than 516). For instance, let's say there is a string match with a length of 270

bytes. Under the conventional approach, this will be encoded as {258, D } {12, D}. Under a

shortened max match len of 16 bytes, this will be originally encoded as 16 tokens of {16, D }

followed by a token {14, D}, and thus the coalesced token output will be {256, D } {14, D}.

Although these results are different, any corresponding reduction in compression resulting from this

difference would be insignificant.

If it is desired to avoid the foregoing corner cases, additional logic may be implemented to

encode coalesced tokens of {258, D}, and {257, D } (in some instances). In one embodiment, a

check for a maximum multiple of the shortened max match len that is less than 258 is detected, and

then if following token has a matching distance and a len that if coalesced with the token in the

coalesce buffer would exceed 258, it is split such that the first coalesce token is encoded as {258,

D}, with the following token being shortened based on how much was added to reach 258. For

example, if the max match len is 16, the maximum multiple of 16 that is less than 258 is 256.

Thus, once a coalesced length of 256 is detected, the logic would shorten the following token len

value by 2 if its distance matched, creating a first coalesced token of {258, D } and a following token

of {Original len - 2, D }.

In the foregoing example with a match length of 270 bytes, the coalesced tokens would be

encoded as {258, D } {12, D}, or exactly the same as using the conventional DEFLATE approach.

It is noted that {257, D } would never be encoded using a max match len of 16 since the minimum

len for DEFLATE is 3 . However, if a different max match len value was used such that it

maximum multiple less than 258 was not 256, a coalesced string of {257, D } could be generated.

For example, if a max match len of 24 is used, the closest multiple of 24 to 258 is 240, and thus 10

tokens of {24, D } followed by a token {17, D } would be encoded as a coalesced token {257, D}.

Another aspect of processing original bitstreams and derived tokens is generating a

compressed bitstream by writing tokens (derived from earlier processing operations, such as



Huffman coding) to memory. The conventional way to write tokens consisting of a variable number

of bits into a bitstream is to use a register as a bit-accumulator, and then when it fills, write it out to

memory. This avoids having to do RMW (READ Memory WRITE) operations on memory, which is

slow.

The problem with this conventional approach is that there is a branch in the instruction flow in

the processor pipeline to check for the register being full, which is relatively unpredictable. For

example, if the accumulator register is 64 bits wide, and the tokens average 13 bits in length, then

the branch is taken roughly 20% of the time, but in a manner that is not predictable by hardware. On

modern "big core" processors, the pipeline is very deep, and the penalty for a branch mispredict can

be quite high.

In accordance with aspects of embodiments disclosed herein, a novel approach to writing

tokens into bitstreams is provided that avoids the branch operation and associated branch

mispredicts. In one embodiment, the basic premise is to always write the accumulator register to

memory (or to cache, as applicable), rather than only when the accumulator is full or projected to be

full. In another embodiment, the accumulator, maximum token match length, and memory segment

size are configured such that the accumulator is written to memory every cycle in a manner that

guarantees the accumulator will never fill while advancing the memory write address to store a

contiguous bitstream in memory. Both of these approaches result in a stream of writes (but not

reads) to memory, a portion of which are "extra" and not needed. However, if the data buffer is

cacheable, these extra writes are relatively inexpensive. Even if the writes are non-temporal, a write -

combining hardware buffer might end up merging some of the redundant writes together. The trade

off with the conventional approach is that more work is performed for token writes, but the extra

processing time resulting from branch mispredicts is eliminated. This new approach has been

observed to improve performance during simulation testing.

The following respective sets of pseudo-code respectively illustrates logic for implementing

one version of the conventional approach and the new approach. It is noted that the code listing for

the conventional approach is illustrative of various logic that might be used on an implementation of

one example of the conventional approach, while noting all of the implementations of the

conventional approach would include some conditional branch.

1. Input: code, len

2 . bits = bits I(code « bit count)
3 . bit count = bit count + len



4 . if (bit count >= 64)
5 . *outbuf = bits
6 . outbuf = outbuf + 8
7 . bit count = bit count - 64
8. bits = code » (len - bit count)

Listing 1 - Conventional Approach

1 Input: code, len

2 bits = bits I(code « bit count)
3 *outbuf = bits
4 Tmp = bit count / 8
5 outbuf = outbuf + tmp
6 tmp = tmp * 8
7 bit count = bit count - tmp
8 bits = code » tmp

Listing 2 - New Approach

In the conventional approach, the bit accumulator is only written to memory when the

accumulator is full or almost full. In the new approach, the bit accumulator is always written for

each cycle. Following a write, the various pointers and the bit accumulator are adjusted based on the

number of bytes written {i.e. the bit_count / 8).

The key points to this approach are:

There are no conditional branches

Each memory write is in general overlapping earlier writes, and in some cases may be to the

exact address of previous writes

The adjustments to addresses/counts/bit-accumulator may be 0 {i.e. nops) when a short token

is written.

Note that the above code performs writes to unaligned addresses. A variation, if the maximum

token size is <= 32 bits, is to change the divisor/multiplicand from 8 to 32, and do a 32-bit write.

This would result in all of the 32-bit writes being to aligned 32-bit addresses (assuming that the first

32-bit write started aligned on a 32-bit address, and the bit accumulator is at least 64 bits wide).

Figures 7a and 7b illustrate an exemplary embodiment for writing tokens into bitstreams

employing 32-bit writes on aligned 32-bit addresses. A token stream 700 of tokens 702 is depicted

as being processed with the front end of a sliding pointer (not shown) moving to the left, beginning

at a time T0 and being processed through a time T . It will be understood that the difference

between time instances is variable, and the subscripts used to indicate the time instances are only



used to depict the order in which the processing is performed. The length of each token 702 is

depicted above the token, and each token is depicted to have a unique Crosshatch pattern to

distinguish the token from other tokens. For convenience, the tokens will be referred to by their

respective lengths rather than a separate reference number (in the case of tokens 5a and 5b, they

each have a length of 5). During the processing of token stream 700, token data is loaded into a 64-

bit bit accumulator 706 (data states of which are shown in Figure 7b) and written into a portion of

memory and/or cache comprising three 32-bit memory segments 704a, 704b, and 704c, beginning at

respective addresses 0, 32, and 64, as shown in Figure 7a. Figure 7a illustrates the content in

memory segments 704a, 704b, and 704c for each time T„, while Figure 7b illustrates the content in

bit accumulator 706 for each time T„.

The processing begins at time T0, at which point memory segments 704a, 704b, and 704c are

empty, or otherwise contain existing data that is to be overwritten. During the time period from time

T0 to Ti, 10 bits of data corresponding to token 10 are loaded into bit accumulator 706 and written to

memory segment 704a at memory address 0 as a 32-bit write, meaning the least 32-bits in bit

accumulator 706 are always written to memory with each 32-bit write. The remaining 22 bits,

which are depicted as blank data, contain garbage (i.e., data that is irrelevant). In accordance with

Listing 2 above, the bit count value that points to the bit write position in accumulator 706 (i.e., the

position at which the next token bits are to be added) is shifted left by the length of token 10, or 10

bits. During the time period from time Ti to T2, 17 bits of data corresponding to tokens 10 and 7 are

written to memory segment 704a at memory address 0, along with the remaining 15 MSBs

comprising garbage. This effectively adds token 7 data to the token 10 data that existed at time Ti;

however during the operation both of the token 7 and token 10 data (as well as the remaining 15

MSB of garbage data) is written to memory such that the previous 32 bits in memory segment 704a,

including the 10 bits of token 10 data, are overwritten. It is noted that a write of data to a memory

segment always involves a write of applicable data to the memory segment at the address for the

memory segment such that existing data will be overwritten.

During each cycle, code is executed to advance the address pointer (to the applicable memory

segment address) by floor(bit_count / mem seg size) to update the address pointer for the next

accumulator write operation. For example, in the embodiment illustrated in Figures 7a and 7b where

the maximum token size was 32, the memory segment size is 32, and the bit accumulator is 64-bits

wide, then the result of this division (actually implemented as a shift) will be either be 0 or 1, and

then the address pointer will be advanced by either 0 bytes (if bit count < mem seg size) or 1 *

mem seg size (e.g., 32 bits) (if bit count >= mem seg size)). Thus, for conditions in which bit



accumulator 706 stores less than 32 bits of token data, the address pointer will not be advanced

(essentially a no-op), the contents of the memory segment will be overwritten with the 32 LSBs of

the accumulator data.

When the amount of token data in the bit accumulator reaches or exceeds the mem seg size, a

sequence of operations is performed. First, the mem seg size LSBs of the accumulator are written

to the memory segment at the current address pointer value. The address pointer is then advanced

by mem seg size, and now points to the adjacent memory segment. Also, the bit accumulator is

shifted by mem seg size to flush the mem seg size LSBs from the accumulator. (It is noted that

the ordering of these last two operations is irrelevant and may be reversed or performed

concurrently.) In embodiments employing smaller mem seg size, such as 16-bits or 8 bits, it is

possible to have the address pointer advance 0, 1, or more than 1 times the mem seg size,

depending on the mem seg size, the bit accumulator size and/or maximum token len, and the

applicable logic employed.

An example of these operations are illustrated during the next time period from time T2 to T3,

wherein token 17 data is added to tokens 10 and 7 data in bit accumulator 706 resulting in bit

accumulator 706 holding 34 bits of data. As before, the 32 LSBs of the bit accumulator are written

to memory segment 704a at memory address 0 . However, now bit count (34) >= 32, causing the

address pointer to be advanced by 4 bytes. The data in bit accumulator 706 is then shifted 32-bits to

the right, thus flushing the 32 LSBs out of the bit accumulator. These operations are depicted in

Figure 7b as time T3+, to indicate the shift operation follows the write to memory. The remaining

two most significant bits of token 17 remain stored in bit accumulator 706.

The process continues in a manner similar to that above through the time period beginning at

time T3 extending through time T . Except now the token data in accumulator 706 are written as 32-

bit writes to memory segment 704b at address 32. As illustrated, the data for tokens 5a, 14, 5b, and

12 are effectively respectively added to memory segment 704b during successive time periods,

which each write cycle overwriting the prior data in memory segment 704b. This leads us to time

period between time T and T during which the processing of token 12 is performed. As shown,

this results in the 6 LSBs of token 12 (along with the 2 MSBs of token 17, 5 bits of token 5a, 14 bits

of token 14, and 5 bits of token 5b) being written to memory segment 704b, the memory address

pointer being advanced by 4 bytes to point to memory segment address 64, and the 6 MSBs of

token 12 remaining in bit accumulator 706 after it is shifted right 32 bits, as shown at time T7+ in

Figure 7b.

As shown towards the bottom of Figures 7a and 7b, during the time period from time T to T8



data corresponding to the 6 MSBs of token 12 and token 15 are written to memory segment 704C

and memory address 64. Similarly, during the time period from time T to T data corresponding to

the 6 MSBs of token 12, token 15, and token 11 are written to memory segment 704C and memory

address 64. This fills out the 32-bit of memory segment 704c, causing the write memory address

pointer to advance another 32 bits to a memory address 96, and bit accumulator 706 shifted 32-bits

at time T + in Figure 7b. Processing of portions of token stream 700 going forward (not shown)

would proceed in a similar manner.

The process illustrated in Figures 7a and 7b could be implemented with shorter or longer

memory segments, such as 8 bit, 16 bit, 64, 128 bit, etc. In accordance with other embodiments, an

application wishing to write a series of tokens consisting of an arbitrary small number of bytes could

be implemented in a similar manner to that illustrated in Figures 7a and 7b and described above,

since this can be viewed as just a special case of writing bits, where the number of bits is always a

multiple of 8. Moreover, if the tokens always consisted of an integral number of bytes, the code

could be further simplified.

If the memory buffer is cacheable, then the "multiple memory writes" translate into cache

writes, which can be handled efficiently. If the writes are done non-temporally, then in many cases,

if the writes are being generated too rapidly, then a write-combining hardware buffer will coalesce

them into fewer writes. However, even under this circumstance the savings in processor cycles due

to the elimination of branch mispredicts results in enhanced performance.

If the output buffer is not cacheable, and there is no write-combining buffer, and the

application is such that the writes are generating too much memory bandwidth, then this can be

addressed by writing instead to a small (one or two 64 byte cacheline) cacheable buffer. When this

buffer fills up, a conditional branch causes it to be copied to the non-cacheable real buffer. This

reintroduces the conditional, but in this case it only is taken every 64-128 bytes of output, rather

than every 4-8 bytes of output. This means that it can be predicted accurately, and the mispredict

happens much less often.

Another approach is to configure the size of the bit accumulator, maximum token match

length, and memory segment size such that the accumulator is written to memory every n cycle in a

manner that guarantees the accumulator will never fill while advancing the memory write address to

store a contiguous bitstream in memory. For example, under the forgoing example, if the bit

accumulator was 64 bits, the memory segment size was 32 bits, and the maximum token size was 16

bits or less, you could perform the accumulator to memory write every 2nd cycle and guarantee that

the accumulator would never overflow and memory writes and memory advances are performed



such that the bitstream would be written to a contiguous block of memory. (It is noted that in this

example the bit accumulator width would only need to be at least 47 bits.) This scheme would work

in a similar manner if the memory segment size was 64 bits, the maximum token size was 32 bits or

less, and the accumulator was at least 95 bits.

Various aspects of the foregoing embodiments may be combined in some implementations.

For example, aspects of token coalescing and efficient bitstream writing may be implemented in a

bitstream compressor. Accordingly, it may be advantageous to employ logic that matches the

maximum token length output by an entropy encoder used to the implementation to the memory

segment size that is used (or otherwise limit the maximum token length to a value that is less than

the memory segment size).

In general, aspects of the embodiments described herein may be implemented via programmed

logic, via software executing on a general purpose or specific purpose processor, or any combination

of the two. For example, logic for implementing various aspects of corresponding operations could

be implemented using programmed logic in an application specific integrated circuit (ASIC) or a

field programmable gate array (FPGA), or various other types of embedded circuitry. All or a

portion of the logic could be implemented via software executing on various types of general

purpose or special purpose processors such as single-core and multi-core processors, Systems on a

Chip (SoCs), network processors, and other types of embedded processors. Additionally, software

comprising virtual machine language, byte code, interpreted language, etc., could be implemented

on a virtual machine running on a general purpose or special purpose processor.

Thus, embodiments of this invention may be used as or to support a software program or set of

software modules or components executed upon some form of processing core (such as the CPU of

a computer) or a virtual machine or otherwise implemented or realized upon or within a machine-

readable medium. A machine-readable medium includes any mechanism for storing or transmitting

information in a form readable by a machine {e.g., a computer). For example, a machine-readable

medium may include a read only memory (ROM); a random access memory (RAM); a magnetic

disk storage media; an optical storage media; and a flash memory device, etc.

The above description of illustrated embodiments of the invention, including what is described

in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms

disclosed. While specific embodiments of, and examples for, the invention are described herein for

illustrative purposes, various equivalent modifications are possible within the scope of the invention,

as those skilled in the relevant art will recognize.

These modifications can be made to the invention in light of the above detailed description.



The terms used in the following claims should not be construed to limit the invention to the specific

embodiments disclosed in the specification and the drawings. Rather, the scope of the invention is

to be determined entirely by the following claims, which are to be construed in accordance with

established doctrines of claim interpretation.



CLAIMS

What is claimed is:

1. A method, comprising:

receiving an original token stream comprising a plurality of original tokens generated by a

sliding-window string match search scheme, the original tokens including tokens comprising

original len and distance data; and

processing the original token stream to generate a coalesced token stream in which a portion

of the original tokens are replaced with coalesced tokens including coalesced len and distance data.

2 . The method of claim 1, further comprising limiting a coalesced len value to a maximum len

that may be encoded in a coalesced token.

3 . The method of claim 1, further comprising employing the method to generate a compressed

byte stream or document in accordance with the DEFLATE compression standard.

4 . The method of claim 1, wherein the original token stream includes a plurality of tokens

encoded as literals, and the coalesced token includes the same tokens encoded as literals.

5 . The method of claim 1, further comprising processing the coalesced token stream with an

entropy coder to generate compressed data.

6 . The method of claim 1, further comprising:

receiving a first original token having data comprising a first len and a first distance;

receiving a second original token immediately following the first original token having data

comprising a second len and a second distance;

comparing the first and second distances for a match; and in response to a match,

temporally storing coalesced token data in a coalesce buffer comprising a len derived

from adding the first and second lens and a distance equal to the first distance;

receiving a third original token immediately following the second original token having data

comprising a third len and a third distance;

comparing the first and third distances for a match; and in response to the first and third



distances not matching,

generating a coalesced token from the coalesced token data in the coalesce buffer and adding

the coalesced token to the coalesced token data stream.

7 . The method of claim 6, further comprising:

determining that first and third distances match; and in response to a match,

temporally storing coalesced token data in the coalesce buffer comprising a len derived from

adding the first, second, and third lens and a distance equal to the first distance.

8. A method, comprising:

performing string match detection on data in a bitstream using a sliding window-based

search scheme including a maximum matched string length that is searched and outputting a token

stream comprising a plurality of tokens, each encoded as len and distance data or literal data;

processing the token stream to generate a coalesced token stream in which a portion of the

tokens are replaced with coalesced tokens including coalesced len and distance data; and

processing the coalesced token stream with an entropy encoder to generate compressed data

comprising a plurality of variable-length tokens.

9 . The method of claim 8, wherein the entropy encoder is a Huffman coder and the compressed

data is compliant with the DEFLATE compression standard.

10. The method of claim 8, further comprising writing the variable-length tokens to memory by

inputting token data corresponding to the tokens into a bit accumulator and writing data in the bit

accumulator to memory without employing any conditional branch operations to check if the bit

accumulator is full or close to full throughout processing of the compressed data.

11. A method, comprising:

writing variable-length tokens received in an input token stream to a bit stream stored in a

plurality of memory segments having a memory segment size by performing a cyclical set of

operations for each token that is received, including,

inputting data bits of the token into a bit-accumulator register at a location defined by

a bit accumulator pointer; and

writing a portion of data in the bit accumulator into one of a memory segment or a



cache to be subsequently written to the memory segment.

12. The method of claim 11, wherein the cyclical set of operations further include updating the

location of the bit accumulator pointer based on a prior location of the pointer, the length of the

token, and the memory segment size.

13. The method of claim 11, wherein the cyclical set of operations further include performing a

memory address advance calculation to determine a memory address of the memory segment to

which the portion of data in the bit accumulator is written.

14. The method of claim 11, further comprising writing the portion of the data in the bit

accumulator to a cacheable buffer.

15. A method, comprising :

writing variable-length tokens received in an input token stream to a bit stream stored in

memory by inputting token data corresponding to the tokens into a bit accumulator and writing data

in the bit accumulator to memory without employing any conditional branch operations to check if

the accumulator is full or close to full throughout processing of the bit stream.

16. The method of claim 15, further comprising, for a cycle performed to process each variable-

length token, inputting token data into the bit accumulator and writing out at least a portion of the

contents of the bit accumulator to one of memory or a cache.

17. The method of claim 15, wherein during each cycle the at least a portion of the contents of

the bit accumulator are written to a cacheable buffer.

18. A tangible machine readable medium having instructions stored thereon configured to be

executed on a machine to cause the machine to perform operations, comprising:

receiving an original token stream comprising a plurality of original tokens generated by a

sliding-window string match search scheme, the original tokens including tokens comprising

original len and distance data; and

processing the original token stream to generate a coalesced token stream in which a portion

of the original tokens are replaced with coalesced tokens including coalesced len and distance data.



19. The machine readable medium of claim 18, wherein execution of the instructions perform

further operations comprising,

receiving a first original token having data comprising a first len and a first distance;

receiving a second original token immediately following the first original token having data

comprising a second len and a second distance;

comparing the first and second distances for a match; and in response to a match,

temporally storing coalesced token data in a coalesce buffer comprising a len derived

from adding the first and second lens and a distance equal to the first distance;

receiving a third original token immediately following the second original token having data

comprising a third len and a third distance;

comparing the first and third distances for a match; and in response to the first and third

distances not matching,

generating a coalesced token from the coalesced token data in the coalesce buffer and adding

the coalesced token to the coalesced token data stream.

20. The machine readable medium of claim 18, wherein the coalesced token stream comprises a

token stream in accordance with the DEFLATE compression standard.
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