we2013/@5615 AL [000000 O YO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(29) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
27 June 2013 (27.06.2013)

=

WIPO'pCT

0 0 DR 0 30 OO
(10) International Publication Number

WO 2013/095615 Al

(51) International Patent Classification:
HO3M 7/30 (2006.01)

(21) International Application Number:

PCT/US201 1/067092

(22) International Filing Date:

(74)

23 December 201 1(23.12.201 1)

(25
(26)

Filing Language:

Publication Language:

English
English

81)

(71) Applicant (for all designated Sates except US): INTEL

CORPORATION [US/US]; 2200

Mission College

Boulevard, MS: RNB-4-150, Santa Clara, California 95052

(US).

(72)
(79)

Inventors; and

Inventorg/Applicants (for US only): GOPAL, Vinodh

[US/IUS]; 15 West End Ave, Westborough, Massachusetts
01581 (US). GUILFORD, Jim, D. [US/US]; 17 Mashpee

Circle, Northborough,

Massachusetts

01532 (U9). (ga)

FEGHALI, Wajdi, K. [CA/US]; 199 Massachusetts, Apt.
206, Boston, Massachusetts 02115 (US). KARAKOY-
UNLU, Deniz [TR/US]; 15 Schusder Rd, Worcester, M as-
sachusetts 01609 (US). OZTURK, Erdnic [TR/US]; 19
Bronte Way, Apt 33L, Marlborough, Massachusetts 01752

(US). DIXON, Martin [USUS];

4005 NE Hazelfern

Place, Portland, Oregon 97232 (US). AKDEMIR, Kahra-

man, D. [TR/US]; 8 Independence Way, Apt # 211, Frank-
lin, Massachusetts 02038 (US). WOLRICH, Gilbert, M.
[US/IUS]; 1 Macomber Lane, Framingham, Massachusetts
01702 (US).

Agentss BURNETT, R., Alan e a; Law Office of R.
Alan Burnett, P.S., c/o CPA Global, P.O. Box 52050, Min-
neapolis, MN 55402 (US).

Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, Sz, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,

[Continued on next page]

(54) Title: BITSTREAM PROCESSING USING COALESCED BUFFERS AND DELAYED MATCHING AND ENHANCED

MEMORY WRITES

9K Hislory Look Ahead
<+ <l—’—l>
lafiyinul...[t]bcde..12]y] [[zlecde t2101JKs. .|
" T—
‘ L Yo L ~
0 100
[|
free 12 ™]
—fEdie
TIME . .
bede.12| Tu
£ No Match
Feae 120 T teds 2
) e 104
af!yl@ue..‘ Mndbgeo. Look-aside Buffer f
A, [bode..12y|
A u J
A M
Sce [blelde..12 neg Distance N
H_J
. 32K Max Fig_ i
102
zbede . .12

(57) Abstract: Methods and apparatus for processing bit-
streams and byte streams. According to one aspect, bit-
stream data is compressed using coalesced string match
tokens with delayed matching. A matcher is employed to
perform search string match operations using a shortened
maximum string length search criteria, resulting in genera-
tion of atoken stream having <len, distance> data and liter -
al data. A distance match operation is performed on se-
quentialy adjacent tokens to determine if they contain the
same distance data. If they do, the len values of the tokens
are added through use of a coalesce buffer. Upon detection
of a distance non-match, a final coalesced length of a
matching string is calculated and output along with the pri-
or matching distance as a coalesced token. Also disclosed is
a scheme for writing variable-length tokens into abitstream
under which token data is input into a bit accumulator and
written to memory (or cache to be subsequently written to
memory) as each token is processed in a manner that elim-
inates branch mispredict operations associated with detect-
ing whether the bit accumulator isfull or close to full.

WO 2013/095625 A1 Il A:Lst1l v 0N 0 00

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, ML, MR, NE, SN, TD, TG). — -with international search report (Art. 21(3))
Declarations under Rule 4.17:
— d inventorship (Rule 4.17(iv))

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

BITSTREAM PROCESSING USING COALESCED BUFFERS AND DELAYED MATCHING
AND ENHANCED MEMORY WRITES
FIELD OF THE INVENTION
The field of invention relates generally to bitstream and byte stream processing and, more
specifically but not exclusively relates to technique for improved writing, compression, and

decompression of bitstreams.

BACKGROUND INFORMATION

The amount of datathat is transferred via the Internet is staggering. Recent estimates project
that there will soon be more than one trillion web pages, and that more than half of the world's
population has access to the Internet. At the same time, the capacity of commodity storage devices
continues to increase while maintaining or even reducing their cost. For example, hard disc drives
of 2TB or even 3TB can be purchased under $100. Meanwhile, because of the cheap cost of
storage, there is often little motivation to implement space-efficient storage schemes for most types
of data.

This creates a dichotomy. On the one hand, you have an ever increasing number of users with
ever increasing access to storage. On the other hand, the increase in the number of users and their
increased appetites for downloaded content results in bandwidth capacities that are constantly being
pushed to their limits, leading Internet Service Providers to propose implementing tiered services,
while users argue for "Net Neutrality." This problem is even more exacerbated for wireless access,
as evidenced by more mobile carriers removing their limitless data plans in favor of tiered data
plans.

Data content is transferred over the Internet in one of several packet-based transmission
schemes, such as TCP/IP and UDP. This technique is commonly referred to as "streaming,” but in
reality the process involves partitioning a stream of bits (i.e., bitstream) comprising or otherwise
derived from an origina document, into a multitude of packets that are individually sent across the
Internet and assembled and processed a the receiver to extract the same stream of bits.
Furthermore, the processing may involve compression operations a the sender and decompression
operations at the receiver. Upon completion of the processing, a copy of the origina document is
obtained.

In order to squeeze the most out of available transfer bandwidth, data content is often streamed
in a compressed form. Some types of content are commonly stored in compressed formats based on
well-established standards, such as music and video content. Other content, including HTML and

1

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

general document content are generally not stored in compressed form. For example, the more
recent versions of Microsoft Office products store document content in an XML-based format.

One technique for enhancing bandwidth is to perform on-the-fly compression a a sending
entity and corresponding decompression a a receiving entity. Similar techniques may be used for
real-time or batch archival purposes. In the case of document compression or archival, a"lossless’
compression algorithm is typically used such that no data is lost when the compressed document
content is decompressed. There are various lossless compression techniques employed for such
purposes, including entropy encoding schemes such as Huffman coding, run-length encoding, and
dictionary coders such as Lempel-Ziv (e.g., LZ77) and Lempel-Ziv-Welch (LZW).

One commonly used compression/decompression scheme is called DEFLATE, which is a
variation on LZ that is uses a combination of the LZ77 algorithm and Huffman coding and is
optimized for decompression speed and compression ratio, but involves computationaly high
compression costs. DEFLATE isused by popular compression tools such as PKZIP, which archives
data in the ZIP format. DEFLATE is also used by GZIP compressed files and for PNG (Portable
Network Graphics) images. In accordance with the use of HTTP Compression defined by RFC
2616, a web server may send and respond to HTTP content that is compressed with GZIP
compression and decompressed using DEFLATE.

In view of the foregoing, it is projected that the use of lossless compression techniques in
combination with content streaming will become ever more prevalent. Accordingly, it would be
advantageous to provide enhanced generation and processing of bitstream content.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become
more readily appreciated as the same becomes better understood by reference to the following
detailed description, when taken in conjunction with the accompanying drawings, wherein like
reference numerals refer to like parts throughout the various views unless otherwise specified:

Figure 1 is a schematic diagram illustrating a dliding window-based string match search
scheme;

Figure 2 is a graph depicted a distribution of matched string lengths vs. percentage of
OCCurrences,

Figure 3 is a schematic diagram illustrating use of an LPM front-end matcher employing
conventional look-aside buffer width and distance register;

Figure 4 is a schematic diagram illustrating an LPM front-end matcher employing alook-aside

2

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

buffer having a shortened length in combination and a distance register, according to one
embodiment;

Figure 5 is a flowchart illustrated operations and logic for performing the token coalescing
scheme with delayed matching in accordance with the configuration of Figure 6 and pseudo-code
example in the specification;

Figure 6 is a combined schematic and time-flow diagram illustrating a token coaescing
scheme employing anew entry buffer and a coalesce buffer, according to one embodiment; and

Figures 7a and 7b are combined schematic diagram and time-flow diagrams illustrating a
scheme for writing variable-length tokens into a bitstream under which token data is entered into a

bit accumulator and iswritten to memory as each token is processed.

DETAILED DESCRIPTION

Embodiments of methods and apparatus for support enhanced bitstream generation and
processing are described herein. In the following description, numerous specific details are set forth
(such as use of the DEFLATE agorithm) to provide athorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize, however, that the invention can be
practiced without one or more of the specific details, or with other methods, components, materials,
etc. In other instances, well-known structures, materials, or operations are not shown or described in
detail to avoid obscuring aspects of the invention.

Reference throughout this specification to "one embodiment” or "an embodiment” means that
a particular feature, structure, or characteristic described in connection with the embodiment is
included in a least one embodiment of the present invention. Thus, the appearances of the phrases
"in one embodiment” or "in an embodiment” in various places throughout this specification are not
necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or
characteristics may be combined in any suitable manner in one or more embodiments.

In accordance with the teachings disclosed herein, a novel technique that accelerates Longest
Prefix Matching (LPM) algorithms for a class of sequential data compression algorithms and lookup
for IP/Routing applications is provided. The technique is implemented via an architecture that is
very scalable and flexible to suit a variety of compression applications that are based on diding-
window algorithms and is amenable to avery efficient hardware implementation.

In an exemplary implementation illustrated herein, the LPM technique is applied to use with
compression using the DEFLATE algorithm, which employs a sliding window matching scheme.

However, this is not meant to be limiting, as the technique can generally be applied to other

3

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

compression/decompression schemes in a similar manner. The DEFLATE algorithm encodes a
bitstream comprising a sequence of blocks. Each block is preceded by a 3-bit header that identifies
whether or not the block isthe last block in the stream and the type of encoding method used for the
block. Most blocks will end being encoded using dynamic Huffman encoding, while other blocks
may store a literal or string between 0 and 65,535 bytes in length. Static Huffman encoding may
also beused for some blocks.

Compression is achieved through two steps. In the first step comprises string matching and
replacement of duplicate strings with pointers. The second step comprises replacing symbols with
new, weighted symbols based on frequency of use. Within compressed blocks, if a duplicate series
of bytes (a repeated string) is detected, then a back-reference is inserted, linking to the previous
location of that identical string instead. An encoded match to an earlier string consists of a length L
(3-258 bhytes) and a distance D (1-32,768 bytes (32KB)). Relative back-references can be made
across any number of blocks, as long asthe distance appears within the last 32 KB of uncompressed
data decoded, which isreferred to as the sliding window.

The various operations performed during DEFLATE compression and decompression are
based on corresponding algorithms implemented via software. The algorithms are well-known, and
there are numerous software implementations written in various languages. C programs typically
use the zlib library. Similarly, Java includes support as part of the standard library (injava.util.zip).

Figure lillustrates an example of afinding a match of length L in accordance with a sliding
window match scheme. As bytes in a byte stream 100 are received, a match detection algorithm
employing a dliding window is employed to determine whether there is an identical byte pattern that
has been previously received and processed. The process stage shown in Figure 1 corresponds to a
state at which aprior portion of byte stream 100 has be received and processed, as illustrated by the
History arrow and data in a lookup cache 102 in which the dliding window portion of the byte
stream istemporally stored. Accordingly, once the lookup cache 102 isfilled to the 32KB limit, the
content of lookup cache 102 incrementally changes with each cycle, removing the oldest character
and adding the last character in byte stream 100 that was processed. For illustrative purposes, byte
stream 100 is depicted as a stream of alphanumeric characters, rather than individual bits, which
would be how the data would be encoded in an actual byte stream. Also for illustrative purposes, it
is presumed that the aphanumeric characters are encoded as ASCII characters, such that each
character is represented by 8 bits, or a single byte, thus the terminology "byte stream.” Other 8-bit
encodings could aso be employed.

The arrow depicting time To corresponds to the start of a processing cycle in which a byte

4

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

corresponding to a character 'z’ is evaluated for amatch. From a conceptual view, a pattern match
operation is performed evaluating character 'z’ against previously received characters (bitmap
patterns) in byte stream 100. In the case of DEFLATE, the size of the lookup cache is limited up to
the previous 32K bytes of bitstream content. To evaluate the 'z for a match, lookup cache 102 will
be searched for amatch (which in this case would be a single individual character 'z’ that may have
been previously received). In this particular example, a prior character 'z’ has not been received
such that there isno match. According, aliteral 'z will be forwarded for further processing, such as
to an entropy coder.

Next, a atime T, a character 'b' is encountered. At time Ti a search for character 'b' is
commenced.” In this case aprior 'b' has been received (within the 32KB dliding window), and thus
there is a match. In response to a match, further searching will be performed by adding one
additional character (in byte stream 100) at atime to create incrementally longer search strings with
evaluation continuing until a string match isnot found. During aprocessing cycle beginning at time
T,, asecond character 'c' is added to 'b' to create a search string 'b ¢, which is searched for in
lookup cache 102. In one embodiment, a hashing scheme is implemented to facilitate string match
searching. As before, a match is found, and the process is repeated again multiple times until we
reach a cycle corresponding to time T . At this point, the search string ‘bcde ... 12'is searched
for amatch. Since this same string has been previously retrieved, amatch is found.

In conjunction with the foregoing string search evaluation sequence, for every added character
to the string search window the corresponding character is added to a look-aside buffer 104 such
that the string in the look-aside buffer a a given point in time matches the current search string
window. Also, for each match result, data in a distance register 106 is updated to indicating the
distance in bytes to the nearest match.

At atime TL+l acharacter 'J is encountered, such that the match stringisnow '‘bcde... 12
J. Meanwhile the next character in the prior match string is'y" (and it is presumed that no other
strings 'b cd e ... 12 J where previoudy received within the 32K diding window. As aresullt,
there isamiss. At this point, data indicating the length of the longest matched string in look-aside
buffer 104 corresponding to the prior match (which can be obtained by removing the last added
character) and data in the distance register 106 identifying the distance to the matched string is
encoded as atoken comprising a<len, distance> pair.

Under DEFLATE there can be a matching string length of up to 258 bytes. Under a
conventional approach, a hardware look-aside buffer of at least 258 bytes would be used to ensure
that any match of 258 bytes or less (that is, any legal DEFLATE string match) could be buffered.

5

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

However, the frequency of encountering a string match of 258 bytes is extremely small. Moreover,
the frequency of finding string matches based on length can be approximated as an inverse
exponential equation under which the frequency falls off rapidly as the bit length increases. For
example, the graph 200 in Figure 2 is illustrative of the distribution of matching lengths as a
percentage of occurrences one might find for alarge corpus of files obtained, for example, from the
top 500 web sites.

In view of the graph 200, there is a good tradeoff point for lengths in the range of 8-24 bytes,
where the curve drops off steeply, which collectively represent close to 90% of the matches
statistically found. Therefore it is attractive to consider a smaller hardware look-aside buffer, such as
abuffer of size 24 bytes or less. For example, consider alook-aside buffer of 16 bytes. This would
[imit the front-end of the LPM machine to finding matches that are a most 16 bytes in length.

A small buffer of this size can be implemented to still support matches up to 256 bits by
employing a back-end coalesce buffer that holds (or otherwise equivalently implements) some
number of <len, distance> encodings and delays sending these to the entropy (e.g., Huffman) coder
block until they can be merged and combined into as large as matches as possible. For instance,
suppose we have a repeating substring of length 32 that appears at arelative distance of 100; the
front-end matcher would first find <len=16, d=100> and then move ahead 16 literals and initiate the
LPM search again & this current position. However, this will find the second 16 byte match at a
relative distance of 100, and the LPM front-end will emit the second pair as <len=16, d=100>. If a
coalesce unit or equivalent coalescing functionality is not employed, these LPM results would be
encoded as two separate symbols, thereby losing some compression ratio. However, in accordance
with aspects of teachings disclosed herein, a coalesce buffer is employed to effectively "hold on" to
the first entry and combine it with the second to create anew <len=32, d=100> entry. Note that this
delayed matching continues in the hope that there will be athird overlapping match that can increase
the length of this match. If a some point, aliteral or amatch a a different offset (i.e., not @ 100) is
received, then the previous match in the coalesce buffer isretired and a coalesced token is generated
and forwarded on to the entropy coder for further processing.

A comparison between the output of a LMP front-end (also referred to herein as a "matcher")
using a conventional configuration and one employing a small look-aside buffer having a length of
16 bytes are shown in Figures 3 and 4, respectively. Under the conventional approach illustrated in
Figure 3, alook-aside buffer with a length N isused, and thus LPM searches may be implemented
such that aLPM string match having a maximum length M that is equal to N may bereturned. For
example, when used for LMP front-end operations under DEFLATE, N and M = 258 bytes. Figure

6

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

3 aso depicts the use of a distance register 106 configured to store a maximum distance value of
32K bytes in accordance with the DEFLATE specification. However, this value is merely
exemplary, as various other values for a maximum distance may be implemented for different
matchers. As further shown in Figure 3, a byte stream 300 including a set of LPM matched
strings 302a and 302b having alength L and separated by a distance D isillustrated. The value of L
for matched strings 302a and 302b is 34 bytes. Toward the bottom of Figure 3 is an exemplary
matcher token output stream 310, including a sequence of {len, distance} and {literal} tokens.
Matcher token output stream 310 depicts aliteral encoding for the literal 'z’ as {lit 2=z} and a {len,
distance} token for the LPM matched strings 302a and 302b as {len5 = 34, D5 = D} for illustrative
purposes. The actual token contents for the literal 'z and the matched string would be {z} and {34,
D}.

Figure 4 depicts a similar LPM front-end match scheme as that shown in Figure 3; but
employs a look-aside buffer 404 having a shortened length of N = 16 bytes rather than a longer
value for N, such as 258 bytes. The scheme also uses a distance register 406 that is employed in a
similar manner to distance register 106 discussed above. Accordingly, for string matches up to 16
bytes, LPM processing of byte stream 300 yields the same results the conventional approach would
produce; however, for string matches having alength of greater than 16, multiple output tokens will
be generated, with the first token having a length of 16 and the length of one or more additional
tokens being a function of the length of a matching string as a factor of 16. In a more generalized
form, for an matching string of original length len orig a adistance D and an LPM front-end with a
maximum match search length of N, atoken for alen_orig > N will be encoded asint (len_orig/N)
tokens plus an additional token having a length equal to the remainder, with the distance value for
each token equal to D.

As example of this is detailed in Figure 4. As before, there is a matching string in byte
stream 300 having a length of 34 bytes at a distance D. However, rather than encoding a
corresponding token as {34, D}, three tokens are encoded: {16, D} {16, D}, {2, D} in the output
matcher token stream 410. This also would be the normal result obtained by the conventional LPM
front-end scheme when amaximum string match length of M=16 is used.

Under aspects of the teachings disclosed herein, a matcher token stream using a shortened
length look-aside buffer can be coalesced so asto convert it into an equivalent matcher token stream
that would be produced with a longer look-aside buffer. For example, a matcher token stream
corresponding to that produced under the conventiona DEFLATE LPM front-end approach could

be generated by performing atoken coalescing operation on a matcher token string using a look-

7

10

15

20

25

30

35

40

WO 2013/095615 PCT/US2011/067092

aside buffer with alength that is much shorter than 258 byte conventional maximum matching string
length.

In one embodiment, the foregoing token coalescing operation may be implemented using a
new entry buffer and a coalesce buffer (CB) and employing the following pseudo-code logic.

If (new entry == <len, distance>) {
If (CB is enpty) enqueue (new entry)
Else {
If (prev_entry .dist == distance &&
(prev_entry .len + len) <= MAXLEN) prev_entry .len
+= | en;
Else {

retire prev_entry via Huffrman coder
engueue (new entry)

} else {
If (CB is not enpty) {
retire prev _entry via Huffman coder

fetire new entry via Huffrman coder

}

Corresponding operations and logic for implementing this token coalescing functionality are
depicted in aflowchart 500 of Figure 5, and the timeline diagram of Figure 6.

In further detail, Figure 6 illustrates one embodiment of atoken coalescing scheme employing
a new entry buffer 600 and a coalesce buffer 602. As a matcher token stream such as token
stream 410 is processed (also referred to as an original token stream), the length (len) and distance
values for a given token are loaded into a len register 604 and a distance register 606. In the case of
atoken comprising aliteral, the literal may be loaded into len register 604, with the distance register
left empty, which will provide the processing logic with an indication that the data in new entry
buffer 600 corresponds to a literal rather than a <len, distance> token pair. Similarly, coalesce
buffer 602 includes aprevious len register 608 and a distance register 610.

Figure 6 further depicts the various data held in new entry buffer 600 and coalesce buffer 602
during processing an input original token stream 410 (which is the same token stream output by the
LMP front-end matcher of Figure 4). The various states of the processing of token stream 410 are
depicted as times T,. In general, the operations depicted a a given time T, corresponds to
operations that would be performed during a proximate time period, and the illustration of various
operations depicted at T, are not meant to be interpreted such that these operations are performed at
agiven singular point in time. In general, some operations may be performed concurrently or with

partial overlap, while other operations may be performed in a sequential order with optional

8

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

ordering.

With reference to flowchart 500 of Figure 5 and the time-flow diagram of Figure 6, the
processing of original token stream 410 begins & time Towith the processing of anew token {lend,
D4}. Asshown by a start block 502 labeled "New Token" in flowchart 500, the processing of each
new token commences with a determination in a decision block 504 to whether the token contains a
literal or a<len, distance> pair. In this instance, {lend, D4} is a<len, distance> pair, and the logic
proceeds to adecision block 506 in which a determination is made to whether coalesce buffer 602 is
empty. Inthe example illustrated, prior processing operations (not shown) have resulted in coalesce
buffer 602 being empty at time T, so the answer to decision block 506 is YES, and the new entry
data is enqueued to coalesce buffer 602 in accordance with the engueue new entry operation
depicted in a block 508. This operation is depicted in Figure 6 a atime time To,, with the "+"
indicating the operation is performed after the new token is input into new entry buffer 600.
Processing then returns to start block 502 to process the next token.

The next token, {lit2 = z} (which would actually be encoded as simply {z}), corresponds to a
literal. Accordingly, the logic would proceed aong the LITERAL branch from decision block 504
to a decision block 516 in which a determination is made to whether coalesce buffer 602 is empty.
Since the coalesce buffer contains data corresponding to the previous entry {lend, D4}, this entry is
"retired" (i.e., forwarded) to a Huffman coder in a block 518, and then the literal is retired to the
Huffman coder in a block 520. These operations result in the replication of the origina tokens
{lend, D4} {z} in an output coalesced token stream 612 depicted a the bottom of Figure 6, and the
process returns to start block 502.

The processing of the next token {len5 = 16, D5 =D} (which would be encoded as {16, D}) is
similar to the previously described for token {lend4, D4}, resulting in the token len and distance
values being input to new entry buffer 600 a time T, and enqueued into coalesced buffer 602 a
timeT,,.

The next token {len6 = 16, D6 = D} (which would be encoded as {16, D}) shares the same
distance value as the previous token (D5 = D6 = D). As discussed above, this is indicative of an
actual string match that is longer than the maximum string match length that is detected using the
shorted max_match len used by the LPM front-end matcher. As a result, the len values of the
tokens are to be coalesced, while preserving the distance value. The corresponding flowchart 500
logic is as follows. The answer to decision block 504 causes the <LEN, DIST> branch to be taken
to decision block 506, which outputs aNO because the coalesce buffer holds the previous token len,

distance values. A determination is made in a decision block 510 to whether the previous entry

9

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

distance and new distance match (YES), which is logically ANDed with a determination to whether
the coalesce buffer len value added to the new entry len value would exceed the MAXLEN
(maximum possible length of encoded string match) defined for the implementation of the
compression algorithm. As discussed above, for DEFLATE this value is 258. In this instance,
coalesce buffer len + new entry len = 32, so the answer to decision block 510 is YES, and the new
entry len is added to the existing len value in the coalesce buffer, as depicted by ablock 512 and a
time T,,. Meanwhile, the distance value D5 is maintained in coalesce buffer 602. This effectively
coalesces the lens values of the two tokens, indicating a string match condition of {32, D5};
however, this is not forwarded to the Huffman coder at this point, as it is possible that a longer
match was present in the original byte stream processed by the LPM front-end.

The next token {len7 = 2, D7 =D} (which would be encoded as {2, D}) has a distance value
that matches the previous token. More particularly, it also matches the distance from two tokens
prior, but this consideration is automatically handled by the coalescing scheme. As with the
previous token, the len value of the new entry is added to the existing len value in coalesce

buffer 602, as depicted at timetime T,_, resulting in atemporally stored value of {34, D}.

4+

The next token {len8, D8} has a distance that does not match the distance of its previous
token. This indicates that the string len in this token corresponds to the beginning of anew string
match and is not to be coalesced with the existing len value in the coalesce buffer. At the same
time, this also means that the existing values in the coalesce buffer are to beretired and forwarded to
the Huffman coder as anew token comprising a coalesced len value.

The operations and logic for performing these operations in accordance with flowchart 500 are
asfollows. The <LEN, DIST> branch istaken from decision block 504, and the answers to decision
block 506 and 510 are both NO. In particular, the previous and new distances do not match. This
causes the data in coalesce buffer 602 to be output as atoken with a coalesced len and forwarded to
the Huffman coder, as shown in a block 514. The logic then proceeds to block 508 in which the
new entry is enqueued in coalesce buffer 602, as depicted a time Ts,. Subsequent processing is
performed on remaining tokens (not shown) in token stream 410 until the end of the token stream is
reached.

The result of the foregoing processing is that string lens corresponding to adjacent tokens
having the same distance values are coalesced, thus generating coalesced tokens, while sequentially
adjacent tokens that have dissimilar distances and/or encode literals are essentially passed through in
their original form. This generates a token stream having the same content as the matcher token

stream generated using the conventional |ook-aside buffer length scheme for substantialy all string

10

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

match conditions, depending on the particular implementation.

For a DEFLATE implementation, there are a few corner cases where the results of the
coalesced token output under the foregoing scheme will differ from the conventional approach by a
small amount. These result from situations in which an LPM string match condition exists in the
original byte stream data that is greater than MAXLEN. For example, for DEFLATE if the original
byte stream has a string match with a length greater than 258 bytes, that string match will not be
detected since the longest string search will be MAXLEN (i.e., 258). The corresponding tokens for
this string match condition will be encoded as {258, D} {string_len - 258, D} (presuming the LPM
string match is less than 516). For instance, let's say there is a string match with a length of 270
bytes. Under the conventional approach, this will be encoded as {258, D} {12, D}. Under a
shortened max_match len of 16 bytes, this will be originally encoded as 16 tokens of {16, D}
followed by a token {14, D}, and thus the coalesced token output will be {256, D} {14, D}.
Although these results are different, any corresponding reduction in compression resulting from this
difference would be insignificant.

If it is desired to avoid the foregoing corner cases, additional logic may be implemented to
encode coalesced tokens of {258, D}, and {257, D} (in some instances). In one embodiment, a
check for amaximum multiple of the shortened max_match len that isless than 258 is detected, and
then if following token has a matching distance and a len that if coalesced with the token in the
coalesce buffer would exceed 258, it is split such that the first coalesce token is encoded as {258,
D}, with the following token being shortened based on how much was added to reach 258. For
example, if the max_match _len is 16, the maximum multiple of 16 that is less than 258 is 256.
Thus, once a coalesced length of 256 is detected, the logic would shorten the following token len
value by 2 if its distance matched, creating afirst coalesced token of {258, D} and a following token
of {Origina len- 2,D}.

In the foregoing example with a match length of 270 bytes, the coalesced tokens would be
encoded as {258, D} {12, D}, or exactly the same as using the conventional DEFLATE approach.
It is noted that {257, D} would never be encoded using amax_match len of 16 since the minimum
len for DEFLATE is 3. However, if a different max_match len value was used such that it
maximum multiple less than 258 was not 256, a coalesced string of {257, D} could be generated.
For example, if amax_match _len of 24 isused, the closest multiple of 24 to 258 is 240, and thus 10
tokens of {24, D} followed by atoken {17, D} would be encoded as a coalesced token {257, D}.

Another aspect of processing original bitstreams and derived tokens is generating a

compressed bitstream by writing tokens (derived from earlier processing operations, such as

11

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

Huffman coding) to memory. The conventional way to write tokens consisting of avariable number
of bits into abitstream isto use aregister as abit-accumulator, and then when it fills, write it out to
memory. This avoids having to do RMW (READ Memory WRITE) operations on memory, which is
slow.

The problem with this conventional approach isthat there isabranch in the instruction flow in
the processor pipeline to check for the register being full, which is relatively unpredictable. For
example, if the accumulator register is 64 bits wide, and the tokens average 13 bits in length, then
the branch istaken roughly 20% of the time, but in amanner that isnot predictable by hardware. On
modern "big core" processors, the pipeline isvery deep, and the penalty for abranch mispredict can
be quite high.

In accordance with aspects of embodiments disclosed herein, a novel approach to writing
tokens into bitstreams is provided that avoids the branch operation and associated branch
mispredicts. In one embodiment, the basic premise isto always write the accumulator register to
memory (or to cache, as applicable), rather than only when the accumulator isfull or projected to be
full. In another embodiment, the accumulator, maximum token match length, and memory segment
size are configured such that the accumulator is written to memory every n cycle in amanner that
guarantees the accumulator will never fill while advancing the memory write address to store a
contiguous bitstream in memory. Both of these approaches result in a stream of writes (but not
reads) to memory, a portion of which are "extra' and not needed. However, if the data buffer is
cacheable, these extra writes are relatively inexpensive. Even if the writes are non-temporal, awrite-
combining hardware buffer might end up merging some of the redundant writes together. The trade-
off with the conventional approach is that more work is performed for token writes, but the extra
processing time resulting from branch mispredicts is eliminated. This new approach has been
observed to improve performance during simulation testing.

The following respective sets of pseudo-code respectively illustrates logic for implementing
one version of the conventional approach and the new approach. It is noted that the code listing for
the conventional approach isillustrative of various logic that might be used on an implementation of
one example of the conventional approach, while noting all of the implementations of the

conventional approach would include some conditional branch.

1. Input: code, len
2. bits = bits | (code « bit_count)
3. bit_count = bit_count + len

12

10

15

20

25

30

35

WO 2013/095615 PCT/US2011/067092

if (bit_count >= 64)
*outbuf = bits
outbuf = outbuf + 8
bit_count = bit_count - 64
bits = code » (len- bit_count)

® N o oA

Listing 1- Conventional Approach

H

Input: code, len

bits = bits | (code « bit count)
*outbuf = bits

Tmp = bit_count/ 8

outbuf = outbuf + tmp
tmp=tmp * 8

bit_count = bit_count - tmp
bits = code » tmp

ONOOAWN

Listing 2- New Approach

In the conventional approach, the bit accumulator is only written to memory when the
accumulator is full or almost full. In the new approach, the bit accumulator is always written for
each cycle. Following awrite, the various pointers and the bit accumulator are adjusted based on the
number of byteswritten {i.e. the bit_count / 8).

The key points to this approach are:

There are no conditional branches

Each memory write isin general overlapping earlier writes, and in some cases may be to the
exact address of previous writes

The adjustments to addresses/counts/bit-accumulator may be O {i.e. nops) when a short token
iswritten.

Note that the above code performs writes to unaligned addresses. A variation, if the maximum
token size is <= 32 hits, isto change the divisor/multiplicand from 8 to 32, and do a 32-bit write.
Thiswould result in al of the 32-bit writes being to aligned 32-bit addresses (assuming that the first
32-bit write started aligned on a 32-bit address, and the bit accumulator is at |east 64 bits wide).

Figures 7a and 7b illustrate an exemplary embodiment for writing tokens into bitstreams
employing 32-bit writes on aligned 32-bit addresses. A token stream 700 of tokens 702 is depicted
as being processed with the front end of a sliding pointer (not shown) moving to the left, beginning
a atime T, and being processed through atime To. It will be understood that the difference

between time instances is variable, and the subscripts used to indicate the time instances are only

13

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

used to depict the order in which the processing is performed. The length of each token 702 is
depicted above the token, and each token is depicted to have a unique Crosshatch pattern to
distinguish the token from other tokens. For convenience, the tokens will be referred to by their
respective lengths rather than a separate reference number (in the case of tokens 5a and 5b, they
each have alength of 5). During the processing of token stream 700, token data is loaded into a 64-
bit bit accumulator 706 (data states of which are shown in Figure 7b) and written into a portion of
memory and/or cache comprising three 32-bit memory segments 704a, 704b, and 704c, beginning at
respective addresses 0, 32, and 64, as shown in Figure 7a. Figure 7a illustrates the content in
memory segments 704a, 704b, and 704c for each time T,, while Figure 7b illustrates the content in
bit accumulator 706 for eachtime T,,.

The processing begins at time T, a which point memory segments 704a, 704b, and 704c are
empty, or otherwise contain existing datathat isto be overwritten. During the time period from time
T,to Ti, 10 bits of data corresponding to token 10 are loaded into bit accumulator 706 and written to
memory segment 704a a memory address O as a 32-bit write, meaning the least 32-bits in bit
accumulator 706 are aways written to memory with each 32-bit write. The remaining 22 bits,
which are depicted as blank data, contain garbage (i.e., data that isirrelevant). In accordance with
Listing 2 above, the bit_count value that points to the bit write position in accumulator 706 (i.e., the
position a which the next token bits are to be added) is shifted left by the length of token 10, or 10
bits. During the time period fromtime Ti to T, 17 bits of data corresponding to tokens 10 and 7 are
written to memory segment 704a & memory address 0, along with the remaining 15 MSBs
comprising garbage. This effectively adds token 7 datato the token 10 datathat existed at time Ti;
however during the operation both of the token 7 and token 10 data (as well as the remaining 15
MSB of garbage data) iswritten to memory such that the previous 32 bits in memory segment 704a,
including the 10 bits of token 10 data, are overwritten. It is noted that awrite of data to a memory
segment always involves a write of applicable data to the memory segment at the address for the
memory segment such that existing datawill be overwritten.

During each cycle, code is executed to advance the address pointer (to the applicable memory
segment address) by floor(bit_count / mem seg size) to update the address pointer for the next
accumulator write operation. For example, in the embodiment illustrated in Figures 7a and 7b where
the maximum token size was 32, the memory segment size is 32, and the bit accumulator is 64-bits
wide, then the result of this division (actually implemented as a shift) will be either be 0 or 1, and
then the address pointer will be advanced by either O bytes (if bit count < mem seg size) or 1*

mem_seg_size (e.g., 32 bits) (if bit_count >= mem_seg size)). Thus, for conditions in which bit

14

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

accumulator 706 stores less than 32 bits of token data, the address pointer will not be advanced
(essentially a no-op), the contents of the memory segment will be overwritten with the 32 LSBs of
the accumulator data.

When the amount of token data in the bit accumulator reaches or exceeds the mem seg size, a
sequence of operations is performed. First, the mem seg size LSBs of the accumulator are written
to the memory segment at the current address pointer value. The address pointer is then advanced
by mem seg size, and now points to the adjacent memory segment. Also, the bit accumulator is
shifted by mem_seg size to flush the mem_seg size LSBs from the accumulator. (It is noted that
the ordering of these last two operations is irrelevant and may be reversed or performed
concurrently.) In embodiments employing smaller mem seg size, such as 16-bits or 8 hits, it is
possible to have the address pointer advance 0, 1, or more than 1 times the mem seg size,
depending on the mem seg size, the bit accumulator size and/or maximum token len, and the
applicable logic employed.

An example of these operations are illustrated during the next time period from time T, to T,
wherein token 17 data is added to tokens 10 and 7 data in bit accumulator 706 resulting in bit
accumulator 706 holding 34 bits of data. Asbefore, the 32 LSBs of the bit accumulator are written
to memory segment 704a a memory address 0. However, now bit_count (34) >= 32, causing the
address pointer to be advanced by 4 bytes. The datain bit accumulator 706 is then shifted 32-bits to
the right, thus flushing the 32 LSBs out of the bit accumulator. These operations are depicted in

Figure 7b astime T__, to indicate the shift operation follows the write to memory. The remaining

3+
two most significant bits of token 17 remain stored in bit accumulator 706.

The process continues in a manner similar to that above through the time period beginning at
time T, extending through time T. Except now the token data in accumulator 706 are written as 32-
bit writes to memory segment 704b at address 32. Asillustrated, the data for tokens 5a, 14, 5b, and
12 are effectively respectively added to memory segment 704b during successive time periods,
which each write cycle overwriting the prior data in memory segment 704b. This leads us to time
period between time T, and T, during which the processing of token 12 is performed. As shown,
this results in the 6 LSBs of token 12 (along with the 2 MSBs of token 17, 5 bits of token 5a, 14 bits
of token 14, and 5 bits of token 5b) being written to memory segment 704b, the memory address
pointer being advanced by 4 bytes to point to memory segment address 64, and the 6 MSBs of
token 12 remaining in bit accumulator 706 after it is shifted right 32 bits, as shown & time T, in
Figure 7b.

A's shown towards the bottom of Figures 7a and 7b, during the time period fromtime T, to Tg

15

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

data corresponding to the 6 MSBs of token 12 and token 15 are written to memory segment 704C
and memory address 64. Similarly, during the time period from time Tg to T, data corresponding to
the 6 MSBs of token 12, token 15, and token 11 are written to memory segment 704C and memory
address 64. This fills out the 32-bit of memory segment 704c, causing the write memory address
pointer to advance another 32 bits to a memory address 96, and bit accumulator 706 shifted 32-bits
a time To, in Figure 7b. Processing of portions of token stream 700 going forward (not shown)
would proceed in asimilar manner.

The process illustrated in Figures 7a and 7b could be implemented with shorter or longer
memory segments, such as 8 bit, 16 bit, 64, 128 bit, etc. In accordance with other embodiments, an
application wishing to write a series of tokens consisting of an arbitrary small number of bytes could
be implemented in a similar manner to that illustrated in Figures 7a and 7b and described above,
since this can be viewed asjust a special case of writing bits, where the number of bits is always a
multiple of 8. Moreover, if the tokens always consisted of an integral number of bytes, the code
could be further simplified.

If the memory buffer is cacheable, then the "multiple memory writes' trandlate into cache
writes, which can be handled efficiently. If the writes are done non-temporally, then in many cases,
if the writes are being generated too rapidly, then a write-combining hardware buffer will coalesce
them into fewer writes. However, even under this circumstance the savings in processor cycles due
to the elimination of branch mispredicts results in enhanced performance.

If the output buffer is not cacheable, and there is no write-combining buffer, and the
application is such that the writes are generating too much memory bandwidth, then this can be
addressed by writing instead to a small (one or two 64 byte cacheline) cacheable buffer. When this
buffer fills up, a conditional branch causes it to be copied to the non-cacheable real buffer. This
reintroduces the conditional, but in this case it only is taken every 64-128 bytes of output, rather
than every 4-8 bytes of output. This means that it can be predicted accurately, and the mispredict
happens much less often.

Another approach is to configure the size of the bit accumulator, maximum token match
length, and memory segment size such that the accumulator iswritten to memory every n'® cyclein a
manner that guarantees the accumulator will never fill while advancing the memory write address to
store a contiguous bitstream in memory. For example, under the forgoing example, if the bit
accumulator was 64 bits, the memory segment size was 32 bits, and the maximum token size was 16
bits or less, you could perform the accumulator to memory write every 2nd cycle and guarantee that

the accumulator would never overflow and memory writes and memory advances are performed

16

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

such that the bitstream would be written to a contiguous block of memory. (It is noted that in this
example the bit accumulator width would only need to be at least 47 bits.) This scheme would work
in asimilar manner if the memory segment size was 64 bits, the maximum token size was 32 bits or
less, and the accumulator was &t least 95 bits.

Various aspects of the foregoing embodiments may be combined in some implementations.
For example, aspects of token coalescing and efficient bitstream writing may be implemented in a
bitstream compressor. Accordingly, it may be advantageous to employ logic that matches the
maximum token length output by an entropy encoder used to the implementation to the memory
segment size that is used (or otherwise limit the maximum token length to a value that is less than
the memory segment size).

In general, aspects of the embodiments described herein may be implemented via programmed
logic, via software executing on a general purpose or specific purpose processor, or any combination
of the two. For example, logic for implementing various aspects of corresponding operations could
be implemented using programmed logic in an application specific integrated circuit (ASIC) or a
field programmable gate array (FPGA), or various other types of embedded circuitry. All or a
portion of the logic could be implemented via software executing on various types of genera
purpose or special purpose processors such as single-core and multi-core processors, Systems on a
Chip (SoCs), network processors, and other types of embedded processors. Additionally, software
comprising virtual machine language, byte code, interpreted language, etc., could be implemented
on avirtual machine running on a general purpose or special purpose processor.

Thus, embodiments of this invention may be used as or to support a software program or set of
software modules or components executed upon some form of processing core (such as the CPU of
a computer) or avirtual machine or otherwise implemented or realized upon or within a machine-
readable medium. A machine-readable medium includes any mechanism for storing or transmitting
information in a form readable by a machine {e.g., a computer). For example, a machine-readable
medium may include aread only memory (ROM); a random access memory (RAM); a magnetic
disk storage media; an optical storage media; and a flash memory device, etc.

The above description of illustrated embodiments of the invention, including what is described
in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms
disclosed. While specific embodiments of, and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are possible within the scope of the invention,
asthose skilled in the relevant art will recognize.

These modifications can be made to the invention in light of the above detailed description.

17

WO 2013/095615 PCT/US2011/067092

The terms used in the following claims should not be construed to limit the invention to the specific
embodiments disclosed in the specification and the drawings. Rather, the scope of the invention is
to be determined entirely by the following claims, which are to be construed in accordance with
established doctrines of claim interpretation.

18

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

CLAIMS
What isclaimed is:

1 A method, comprising:

receiving an origina token stream comprising aplurality of original tokens generated by a
dliding-window string match search scheme, the original tokens including tokens comprising
origina len and distance data; and

processing the original token stream to generate a coalesced token stream in which a portion

of the original tokens are replaced with coalesced tokens including coalesced len and distance data.

2. The method of claim 1, further comprising limiting a coalesced len value to amaximum len

that may be encoded in a coalesced token.

3. The method of claim 1, further comprising employing the method to generate a compressed
byte stream or document in accordance with the DEFLATE compression standard.

4, The method of claim 1, wherein the original token stream includes a plurality of tokens

encoded as literas, and the coalesced token includes the same tokens encoded as literals.

5. The method of claim 1, further comprising processing the coalesced token stream with an

entropy coder to generate compressed data.

6. The method of claim 1, further comprising:

receiving afirst original token having data comprising afirst len and afirst distance;

receiving a second original token immediately following the first original token having data
comprising asecond len and a second distance;

comparing the first and second distances for amatch; and in response to amatch,

temporally storing coalesced token datain a coaesce buffer comprising a len derived

from adding the first and second lens and a distance equal to the first distance;

receiving athird original token immediately following the second original token having data
comprising athird len and athird distance;

comparing the first and third distances for amatch; and in response to the first and third

19

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

distances not matching,
generating a coalesced token from the coalesced token data in the coalesce buffer and adding

the coalesced token to the coalesced token data stream.

7. The method of claim 6, further comprising:
determining that first and third distances match; and in response to amatch,
temporally storing coalesced token datain the coalesce buffer comprising alen derived from

adding the first, second, and third lens and a distance equal to the first distance.

8. A method, comprising:
performing string match detection on data in abitstream using a sliding window-based
search scheme including amaximum matched string length that is searched and outputting atoken
stream comprising aplurality of tokens, each encoded as len and distance data or literal data;
processing the token stream to generate a coal esced token stream in which aportion of the
tokens are replaced with coalesced tokens including coalesced len and distance data; and
processing the coalesced token stream with an entropy encoder to generate compressed data
comprising aplurality of variable-length tokens.

9. The method of claim 8, wherein the entropy encoder is a Huffman coder and the compressed
datais compliant with the DEFLATE compression standard.

10. The method of claim 8, further comprising writing the variable-length tokens to memory by
inputting token data corresponding to the tokens into abit accumulator and writing datain the bit
accumulator to memory without employing any conditional branch operations to check if the bit
accumulator is full or close to full throughout processing of the compressed data.

11. A method, comprising:
writing variable-length tokens received in an input token stream to abit stream stored in a
plurality of memory segments having amemory segment size by performing acyclical set of
operations for each token that isreceived, including,
inputting data bits of the token into abit-accumulator register a alocation defined by
abit accumulator pointer; and
writing aportion of datain the bit accumulator into one of amemory segment or a

20

10

15

20

25

30

WO 2013/095615 PCT/US2011/067092

cache to be subsequently written to the memory segment.

12. The method of claim 11, wherein the cyclical set of operations further include updating the
location of the bit accumulator pointer based on aprior location of the pointer, the length of the

token, and the memory segment size.

13. The method of claim 11, wherein the cyclical set of operations further include performing a
memory address advance calculation to determine amemory address of the memory segment to
which the portion of data in the bit accumulator iswritten.

14. The method of claim 11, further comprising writing the portion of the data in the bit

accumulator to a cacheable buffer.

15. A method, comprising:

writing variable-length tokens received in an input token stream to abit stream stored in
memory by inputting token data corresponding to the tokens into abit accumulator and writing data
in the bit accumulator to memory without employing any conditional branch operations to check if

the accumulator isfull or close to full throughout processing of the bit stream.

16. The method of claim 15, further comprising, for a cycle performed to process each variable-
length token, inputting token data into the bit accumulator and writing out at least aportion of the

contents of the bit accumulator to one of memory or a cache.

17. The method of claim 15, wherein during each cyclethe at least aportion of the contents of
the bit accumulator are written to a cacheable buffer.

18. A tangible machine readable medium having instructions stored thereon configured to be
executed on amachine to cause the machine to perform operations, comprising:

receiving an origina token stream comprising aplurality of original tokens generated by a
dliding-window string match search scheme, the original tokens including tokens comprising
origina len and distance data; and

processing the original token stream to generate a coalesced token stream in which a portion

of the original tokens are replaced with coalesced tokens including coalesced len and distance data.

21

10

15

WO 2013/095615 PCT/US2011/067092

19. The machine readable medium of claim 18, wherein execution of the instructions perform
further operations comprising,

receiving afirst original token having data comprising afirst len and afirst distance;

receiving a second original token immediately following the first original token having data
comprising asecond len and a second distance;

comparing the first and second distances for amatch; and in response to amatch,

temporally storing coalesced token data in a coalesce buffer comprising a len derived

from adding the first and second lens and a distance equal to the first distance;

receiving athird original token immediately following the second original token having data
comprising athird len and athird distance;

comparing the first and third distances for amatch; and in response to the first and third
distances not matching,

generating a coalesced token from the coalesced token data in the coalesce buffer and adding

the coalesced token to the coalesced token data stream.

20. The machine readable medium of claim 18, wherein the coal esced token stream comprises a

token stream in accordance with the DEFLATE compression standard.

22

WO 2013/095615 PCT/US2011/067092
1/6
32 K History Look Ahead
<+ <+
afiylhu| «..|t|bcde...12]y]| | |z]bcde. 12]d[JKs. .|
\ y A
L To L ~
- B > 100
vdae 2] T,
TIME .
bede .. 12| TL bcde ... 12
‘E No Match v
v bede .. 12p T [bede .. 1 2]
Lock-aside Buff 104
aftyiblue Mndbgeo. OCK-asiae buter f
y | bode ...12y|
QR v - y
I8 A N Y
zCc8e ‘EOS'\|’ Dl
H_J
v 32K Max ﬁggg ¥
102
zbcde .12
Distribution of Lengths
80% -
w o %S
©
- § A% o
S :‘\ N
%é 0% Figo 2
0 5 ;
58 ol S
go 20% 4
@ '
o L e e
Length Bin

WO 2013/095615 PCT/US2011/067092

2/6
WK History Look Ahead 300
A e— V/
302a 302b
[]--f{cabi...wibcde .12JKJ&] |R]caci..wibcde. 12“{[@ |
Y 7 Y /
L =34 L=34
B .
Look-aside Buffer 104 e 106
| cabi.. wibcde . 12JKs| Toy | D]
AN J
L v J R
v 32K Max
N
Quiput > 'im
r N

[flent, D1} {len2, D2} {lit1} {lend, D3} {lend, D4} {2 = z} {len5 = 34, D5 = D} {lend, D6} ..

& igw 3 (Prior Art)

32 K History Look Ahsad 3j0
<t L =34 v’

Y r 7

A
[]- Mcab; wt|bode.. 12|JK[{§3|%§cabs w1|bcde...12|JK[§§|

_____________________.

A A_ .)R(‘\
Y Y Y
16 \ 16 2 16 \ 18 ‘\ 2
412a 414a| 416a f 412b 4414b 4160
-l) -
l) 0 // l P
L.ook-aside Buffer < D]

g |
%(_J

N=18
Distance

406~y D|
H_J

32K Max

Qutput >
N/ N 7

[{lend, D4} (it2 = 2} {Eenﬁ“ 16, D5 = D} {len6 = 16, D6 = D} {len7 = 2, D7 = D} {len8, D&} |

Fig. 4

WO 2013/095615

3/6

502

NEXT

NEXT

NEXT

) 4

New Token

504

Literal

PCT/US2011/067092

500

or <len, dist>?

<LEN, DiST>

5
C. Buffer empty?

YES
v T
Enqueue new eniry

o 508

NQ

Frav and new distance match &
CB lan + len<= MAXLEN?

YES

¥ 512

Add len to Coalesos Buffer len

/-514

Retirs prior entry via Huffman coder Ili

510

LITERAL

L. Buffer not empiy’

YES
v /518

Retire prior entry via Huffman coder I

y

Refire ngw entry via Huffman coder 'Iv 520

Fig. 5§

NO

WO 2013/095615 PCT/US2011/067092

4/6
Look Ahead 410
[{len4, D4} {iie2 = 2} {len5 = 16, D5 = D} {lend = 16, D6 = D} {len7 = 2, D7 = D} {lens, D8}|
TO T1 Tz Tg T4 Ts T{g
408~ 408 408 408~ 48 408
' fen D D (new} len {prev) s ;.4 (prev)
New Entry Buffer (New) Coalesce Buffer (CB)
{lend, D4}
Ta lend| | D4 B
,]
New Entry Buffer yeeie lend] [D4] CB Ty
{lite = z} ———— TOCODER +»
T z lend| |D4] [{iend, D4 | (]
New Entry Buffer Coalesce Buffer —TO CODER»>
|{lens = 16, D5 = D}
T2 Len5 = 16| | D5 | || | cB
|
New Enfry Bulfer kol eue—» ens| [D5]| CB To.
|{lend = 18, D5 = D} MATCH
T3 Lens = 18 | D6 | lens| | D5 cB
New Entry Buffer | oo,] len5+ilen6| |D5] CB Tas
|{ien? =2,D7 = D} | MATCH
Ta Len7 =2 | D7 || Lenb+leng| | D5 || CB
New Entry Bufler |y = S envieon7] [D5] CB Tas
{lens, D8} NO MATCH s TO CODER »
Ts len8| | D8 | len5+lené+ien?| | D5| CB |{len5+len6+len7, D5}
|
New Entry Bufer eyoieuE—» eng| [D8] CB Ts,
£y} 7
Te 7] | en8] | D8] Fig. 6
New Entry Buffer Coalesce Buffer

Look Ahead
I~ 612
CUTPUT V/

l.. {lend, D4} {2 = 2z} flenS+lenB+len? = 34, D5 =D} ... |

Ff 1

T'}«:- T1++ T5+

i

WO 2013/095615 PCT/US2011/067092
5/6

700 Time

\‘ 702 (TYP) \ <F—
17

11 15

tog Lo 32 Lo

10
| N
7 10

| Y, ™

15 7 10

: iﬂE!m&!!QﬁEﬁ%E

£o5 54
15 8 ADVANGE + 32| Tos

Fig. 7a

WO 2013/095615 PCT/US2011/067092

6/6
700 Time
N 702 (TYP) |
11 15 12 &b 14 Sa\ 17 7 10
: : S NN -
To Ts T7 Ts Ts Tg T3 To T4 To
708
. .
254 L) 2o
10
NN
L84 32 LX¢
325 7 10
Aza ‘E“iw_/% A
2 15 710
L 64 M
L 64
L84
Lg4
Lga
284
L4
L 84
“os
T9+
g4 230 L0

Fig. 7b :

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2011/067092

A. CLASSIFICATION OF SUBJECT MATTER

HO3M 7/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
HO3M 7/30; GO6T 1/6/0; GO6F 11/34; HO3M 7/34; GO6F 13/16; HO3M 7/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: "token, stream, memory, sliding, window"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 05493689A A (JOHN G. WACLAWSKY et al.) 20 February 1996 1-20
See the Abstract, Fig. lo, Claim |

A US 06070003A A (GOVE ROBERT J. et al.) 30 May 2000 1-20
See the Abstract, Fig. 1, Claim 1-6

A US 05903282A A (BRIAN SCHONER et al .) 11 May 1999 1-20
See the Abstract, Fig. 8, Caim 1

A US 2005- 0104753 Al (ITAl DROR et al.) 19 May 2005 1-20
See the Abstract, Fig. 1A Caim 6-9

|:| Further documents are listed in the continuation of Box C. & See patent family annex.
* Specia categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which isnot considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier gpplication or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document istaken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to aperson skilled in the art
"P' document published prior tothe international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
26 SEPTEMBER 2012 (26.09.2012) 27 SEPTEMBER 2012 (27.09.2012)
Name and mailing address of the ISA/KR Authorized officer -

Korean Intellectual Property Office
, 189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan Jang Seok Hwan
H City, 302-701, Republic of Korea

Facsi mie No. 82-42-472-7140 Telephone No. 82-42-481-8250
Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US201 1/067092

Patent document Publication Patent family Publication

cited in search report date member(s) date

Us 05493689A A 20.02. 1996 JP 02-644180 B2 02.05. 1997
JP 06-276193 A 30.09. 1994

us 06070003A A 30.05.2000 us 05768609 A 16 .06 . 1998
Us 6260088 B 10.07.2001
Us 6948050 Bfi 20.09.2005

Us 05903282A A 11.05. 1999 None

Us 2005-0 104753 At 19 .05.2005 Us 6903668 Bi 07.06.2005

Form PCT/ISA/210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

