(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

o T
I‘fQA)
Ao

(19) World Intellectual Property Organization
g B
s)

International Bureau

(43) International Publication Date (10) International Publication Number

7 March 2002 (07.03.2002) PCT WO 02/19132 A1l

(51) International Patent Classification’: GO6F 15/16, (74) Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,

11/32, 9/45, 3/00 Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th
Floor, Los Angeles, CA 90025 (US).

(21) International Application Number: PCT/US01/27279

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,

(22) International Filing Date: 31 August 2001 (31.08.2001)

(25) Filing Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,

(26) Publication Language: English SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, 7ZW.

30) Priority Data:
(30) Priority Data (84) Designated States (regional): ARIPO patent (GH, GM,

60/230,532 1 September 2000 (01.09.2000) US .
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Burasian
.) patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
(71) Applicant (for all designated States except US): TUT patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
SYSTEMS, INC. [US[US], 5964 West Los Positas Boule- IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
vard, Pleasanton, CA 94588 (US) CG, CL CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

TG).
(72) Inventor; and
(75) Inventor/Applicant (for US only): MOIR, Ian [GB/GB]; Published:

Quince House, Beckfords, Upper Basildon RG8 8PB (GB). — with international search report

[Continued on next page]

(54) Title: A METHOD AND SYSTEM TO PRE-COMPILE CONFIGURATION INFORMATION FOR A DATA COMMUNI-
CATIONS DEVICE

NETWORK CONNECTION DEVICE
(E.G., BRIDGE, ROUTER, SWITCH)

12

Classification

rules 2
18
— Instance 2 Instance 1
N —
e |
CIHEEE [
. = Instance 1 §
+ | Classifier ~— 20
u
10 » Flow Class 2

(57) Abstract: A method to pre-compile configuration information for a network connection device (12) includes receiving a rule
file (18) defining behavioral requirements for the network connection device. An operations file, describing operations supported by a
plurality of components of the network connection device, is received. A rule program, executable by the network connection device,
is generated utilizing the rule file and the operations file. The rule program comprises a set of operations, selected from operations
g supported by the plurality of components of the network connection device, for performance by the respective components of the
network connection device in accordance with the behavioral requirements defined by the rule file.

0 02/19132 Al

w0 02/19132 A1 WD 000000

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 02/19132 PCT/US01/27279

A METHOD AND SYSTEM TO PRE-COMPILE CONFIGURATION
INFORMATION FOR A DATA COMMUNICATIONS DEVICE

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No.

60/230,532, filed September 1, 2000.

FIELD OF THE INVENTION

The present invention relates to the field of network traffic management and,
more specifically, to implementing policy-based network traffic management based

upon rules.

BACKGROUND OF THE INVENTION

In today’s highly networked environment, it has become desirable to offer
varying levels of service (e.g., Quality-of-Service (QoS)) to various network entities.
For example, where multiple network devices (e.g., web stations, personal computers,
set-top boxes, etc.) are coupled to a network via a network connection device (e.g.; a
router, switch or bridge), the ability to provide differentiated QoS to such network
devices may be motivated by a number of factors, including a network operator’s
commercial objectives.

Environments in which a network manager may wish to provide differentiated
QoS include an office environment in which multiple users may access a single
connection and, more pertinently, where remote offices of an enterprise share network
resources. A further environment in which QoS differentiation may be particularly
desirable is within a Multi-Tenant Unit (MTU) (e.g., a high-rise apartment complex or
condominium development) where multiple users share a single network connection.

Further, within a business or MTU environment, service level agreements may
be in place between end users and a network service provider that guarantee certain
performance levels. _

The need to provide such differentiated services has become increasingly
apparent as the latest generation of copper-based Digital Subscriber Line (DSL)
transmission technologies have provided the opportunity to deliver multi-megabit

performance cost effectively to a MTU, remote office, kiosk, utility or retail location.
-1-

WO 02/19132 PCT/US01/27279

SUMMARY OF THE INVENTION

A method to pre-compile configuration information for a network connection

device includes receiving a rule file defining behavioral requirements for the network
connection device. An operations file, describing operations supported by a plurality of
components of the network connection device, is received. A rule program, executable
by the network connection device, is generated utilizing the rule file and the operations
file. The rule prdgram comprises a set of operations, selected from operations
supported by the plurality of components of the network connection device, for
performance by the respective components of the network connection device in
accordance with the behavioral requirements defined by the rule file. -

Other features of the present invention will be apparent from the accompanying

drawings and from the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the

figures of the accompanying drawings, in which like references indicate similar

elements and in which:

Figure 1 is a block diagram illustrating, at a high level, the operation of a
network traffic manager, according to an exemplary embodiment of the present

invention, in the exemplary form of a virtual machine.

Figure 2 is a block diagram illustrating an exemplary deployment of a network
connection device including the virtual machine that accesses a set of classification

rules utilized to make traffic classification decisions.

Figure 3 is a block diagram providing further details of the architecture of an

exemplary network traffic manager in the form of a virtual machine.

Figure 4 is a block diagram providing a conceptual depiction of the utilization
of a packet signature, extracted from an incoming packet, to identify a policy to be

applied with respect to the packet.
_2-

WO 02/19132 PCT/US01/27279

Figure S is a block diagram providing further details regarding the policy table,

according to an exemplary embodiment of the present invention.

Figure 6 is a flow chart depicting a reciprocal flow, where transactions 2 and 3

occur as a direct consequence of transaction 1.
Figure 7 illustrates the mapping of an ATM physical layer.

Figure 8 is a flow chart illustrating a method, according to an exemplary
embodiment of the present invention, of implementing policy-based network traffic

management.

Figure 9 is a block diagram providing a high level diagrammatic representation
of the operation of a virtual machine compiler, according to an exemplary embodiment

of the present invention.

Figure 10 is a block diagram illustrating a rule program as conceptually
comprising a number of rules that are utilized to bind process behavior definitions,
conveniently labeled operations, to contextual zed sets of data, conveniently labeled

registers.

Figure 11 is a flow chart illustrating a method, according to an exemplary
embodiment of the present invention, to pre-compile configuration information for a

network connection device.

Figure 12 is a diagrammatic representation of an exemplary deployment
scenario in which a VNIC client application is hosted on each of workstations coupled

to a network connection device via a local area network (LAN) 104.

Figure 13 diagrammatically represents classification rules utilizing both a

signature received from a packet and time of day information.

-3-

WO 02/19132 PCT/US01/27279

Figure 14 is a diagrammatic illustration of the communication of the VNIC

packets, from a VNIC client application, for contribution to an information profile.

Figure 15 is a block diagram illustrating replication of a registry 113 in each
workstation 102 or, in an alternative embodiment, management of a registry from a

domain server.

Figure 16 diagrammatically illustrates the communication of VNIC packets,
utilizing a VNIC protocol during a VNIC session, to establish and contribute to
information profiles utilized by a classification rule, in the exemplary form of a

bandwidth partitioning classification rule.

Figure 17 is a diagrammatic representation of a machine in the exemplary form
of computer system within which software, in the form of a series of machine-readable

instructions, for performing any one of the methods discussed above may be executed.

DETAILED DESCRIPTION

A method and system to pre-compile configuration information for a data
communications device are described. In the following description, for purposes of
explanation, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. It will be evident, however, to one skilled in the
art that the present invention may be practiced without these specific details.

Figure 1 is a block diagram illustrating, at a high level, the operation of a
network traffic manager, according to an exemplary embodiment of the present
invention, in the exemplary form of a virtual machine 10. Specifically, Figure 1
illustrates the virtual machine 10 has been hosted on a network connection (or data
communications) device 12 (e.g., a bridge, switch or router). The virtual machine 10 is
shown to include a classifier 14 that classifies incoming network traffic 16 in
accordance with a set of classification rules 18 provided by a network owner.
Specifically, each packet within the incoming network traffic 16 is classified by the
classifier 14 into one of several flow classes 20 and flow instances 22 by the
classification rules 18, the rules 18 defining how individual packets should be

discriminated from each other.
-4 -

WO 02/19132 PCT/US01/27279

Figure 2 is a block diagram illustrating an exemplary deployment of a network
connection device 12 including the virtual machine 10 that accesses a set of
classification rules 18 utilized to make traffic classification decisions. These
classification rules 18 may be as simple or as complex as required to make a
claséification, and may define a “signature” of a particular type of network traffic in
order to make a classification. For the purposes of the present location, the term
"signature" shall be taken to the information pertaining to network traffic, whether
extracted from the network traffic itself or not, that the utilized to characterize or
classify network traffic. Within the exemplary deployment shown in Figure 2, the
virtual machine 10 is shown to receive network traffic from a number of 10baseT
network connections via a number of ingress virtual interfaces 24, and to output
classified network traffic via a number of egress virtual interfaces 26 to an ATM or
ADSL network connection. In one embodiment, the virtual interfaces 24 and 26 may
constitute a physical port and/or a virtual channel. Network traffic entering one of the
ingress virtual interfaces 24 is operationally classified by the virtual machine 10
utilizing the classification rules 18. A packet, frame or cell is then routed, switched or
bridged to an appropriate egress virtual interface 26, as defined by the classification
rules 18.

For example, at layer-3, packets may be routed between virtual interfaces 24 and
26 based on criteria such as a source or destination Internet Protocol (IP) address, type
of service bits, and protocol type. If the egress virtual interface 26 is an ATM virtual
interface with multiple VCCs, the virtual machine 10 may operate to compute a quality-
of-service-based label with which to forward the relevant packet, as will be described in
further detail below. At layer-2, frames may be switched between virtual interfaces 24
and 26 utilizing source and destination MAC addresses, frame type, and encapsulation
arrangement. If the egress virtual interface 26 is an ATM virtual interface, then the
virtual machine 10 may select a channel, based on QoS requirements specified for the
particular layer-2 flow. In one embodiment, the network connection device 12 may be
based on a high performance ISE processor which supports dual-switched 10baseT
Ethernet ports, a 8Mbps ADS modem, ATM SAR processing, Ethernet bridging and IP
routing.

Figure 3 is a block diagram providing further details of the architecture of an

exemplary network traffic manager in the form of a virtual machine 10. The virtual
-5-

WO 02/19132 PCT/US01/27279

machine 10, in the exemplary embodiment, is shown to include both the classifier 14
and a labeler 15. Dealing first with classifier 14, as described above, the classifier 14
operates to classify a packet, for example, into one of several flow classes and flow
instances. To this end, the classifier 14 extracts from each packet a signature, which is
then parsed into two distinct fields, namely (1) a flow class discriminator (FCD), which
defines the class of the flow to which the packet belongs, and (2) a flow instance
discriminator (FID), which identifies to which instance of that flow class the packet
belongs. In general, the flow class is utilized to specify transmission control, while a
flow instance is utilized to specify admission control.

Figure 3 illustrates three discrete rules-based processes that may be
implemented autonomously. The first rules-based process is the classification process
performed by the classifier 14, as discussed above. In one embodiment, the
classification rules 18 are configurable via the Simple Network Management Protocol
(SNMP). Two further rules-based processes are performed utilizing the illustrated event
management rules 17 and label management rules 19. The event management rules 17
and label management rules 19 may, in one embodiment, be configured utilizing
compiled virtual machine rules, the compiling of which is further described in this
document. Dealing more specifically with event management, a compiled event
management rule 17 is associated with significant events in the life cycle of a flow class

20. Examples of such rules and events are provided below in Table 1:

Table 1
Event Management Rule | Event
OnCreate When a new instance of a flow is created,
OnDelete When an instance of a flow is deleted,
OnResourceConflict When a new instance causes a resource conflict,
OnThresholdPositive When the average data rate rises above the
configured threshold,
OnThreshodINegative When the average data rate falls below a configured
threshold.

Event management rules 17 may be utilized to tailor fine-grained behavior of
the network connection device 12 in support of admission control policies, and to
implement appropriate behavior in response to resource reservation protocols (e.g.,

RSVP). The label management rules 19 are utilized by the labeler 15 to invoke, and
-6-

WO 02/19132 PCT/US01/27279

respond to, peer-to-peer label exchange protocols (e.g., LDP). This allows dynamic
bonding of label spaces to occur between adjacent network devices.

A further discussion regarding an exemplary “signature” is now provided.
Figure 4 is a further block diagram providing a conceptual depiction of the utilization
of a packet signature 31, extracted from an incoming packet 29, to identify a policy to
be applied with respect to the relevant packet 29. The signature 31 is specified by the
classification rules 18, and may comprise any combination of fields and/or data within
the packet 29. The signature 31 is utilized as a tag to perform a lookup within a policy ‘
table (e.g., a MIB) 30 to locate a policy for handling of the relevant packet 29. The
policy may, as illustrated in Figure 4, specify various service parameters 32. In the
exemplary embodiment, the service parameters 32 relate to ATM traffic management,
and are provided to an ATM traffic management module 34 that applies the service
parameters 32 to various flows outputted via one or more egress virtual interfaces 26.
For example, the service parameters 32 may specify that a certain flow is provided with
a high QoS, while another flow is provided with low QoS.

The signature 31 of a packet 29 is utilized by the classifier 14 to differentiate the
packet 29 from other dissimilar packets. As stated above, sequences of packets (or
other network traffic units) bearing in the same signature are termed “flows”. A flow is
said to be instantiated when the classifier 14 recognizes a packet 29 bearing the flow’s
signature, and persists until the amount of time between packets 29 bearing the flow’s
signature exceeds a particular amount of time (e.g., a flow’s Interval Timeout).

The virtual machine 10 does not impose any structure on a signature 31 or a
packet 29. For example, in one context, the signature 31 may comprise merely the
destination IP address of a packet 29. In another context, the signature 31 may
comprise the destination IP address plus a source MAC address. The most appropriate
signature 31 for any given context is an engineering concern, and determined by the
given context.

The classifier 14 operates to determine the signature 31 of a packet 29 by
evaluating a classification rule 18. In one embodiment, a classification rule 18
comprises a Boolean expression involving one or more of the packet fields listed below
in Table 2:

WO 02/19132 PCT/US01/27279

Table 2

FIELD FIELD DESCRIPTION

NAME

SMA The source MAC address of the frame containing the packet

DMA The destination MAC address of the frame containing the
packet

SIP The source IP address of the packet

DIP The destination IP address of the packet

PRO The IP protocol field of the packet

TOS The IP Type Of Service field of the packet that is also used as
the DiffServ DS field.

SPO The source TCP or UDP port

DPO The destination TCP or UDP port

RXL The receive label of the packet. This is the label assigned to the
incoming packet (e.g. in the case of MPLS, 802.1q etc).

In addition; an ingress virtual interface 24 may also be considered an implicit
part of a packet signature 31.

Figure 5 is a block diagram providing further details regarding the policy table
30, according to an exemplary embodiment of the present invention. The classifier 14,
as described above, is configured by making associations between tags (e.g., the flow
class discriminators (FCDs)) and their corresponding policies (flow classes) in the
policy table 30. In one embodiment, each entry within the policy table 30 is a set ‘of
data items, amongst which are specified the fields of the packet signatures 31 to be
utilized for classification. Each field (except SMA and DMA) may be given a value
and a mask. The SMA and DMA fields each have a value, but no mask associated
therewith. Upon receipt of a packet 29, the classifier 14 searches the policy table 30 for
an entry that matches the signature 31 of the packet 29. To locate such a match, in one
embodiment, the classifier 14 first masks the packet signature 31 with a FCD mask, and
then compares it to the FCD value. If the match is successful, the packet 29 is processed
as a member of a corresponding flow class. The entries in the policy table 30 may be
ordered such that the best match is found first.

Figure 5 also illustrates a flow class table 36. Once a packet 29 has been
classified as a particular flow class, it is processed according to the specification in the
flow class table 36. Accordingly, the flow class table 36 should be seen as an

exemplary implementation of the policies discussed above with reference to Figure 4.

-8-

WO 02/19132 PCT/US01/27279

In one embodiment, the flow class table 36 is a sequence of data items that determine
how the relevant flow will behave.

In one embodiment, the flow class table 36 includes a number of fields, namely:
(1) an instance selector field, (2) an instance time-out field, (3) a maximum instances
field, (4) a transmit code point field, and a (5) reciprocal flow field.

The instance selector field of the class table 36 specifies which fields of a
signature 31 of a packet 29 should be utilized to distinguish between instances of a flow
class. If there is no instance selector specified within the tables 36, then all packets 29
classified within the relevant flow class are considered as belonging to the same
instance.

The instance time-out field specifies the longest inter-packet gap that instances
within a particular flow may exhibit. If two packets 29 of the relevant flow are longer
apart than this inter-packet gap, they are considered to be in different instances. For
example, as shown in Figure 1, the time between the first and second “A” packets in
flow class 1 is shown to exceed the instance time-out.

The maximum instances field specifies the maximum number of simultaneous
instances of a particular flow that can exist. In this field the value is set to “N”. A
packet 29 that attempts to create a “N+1” instance will be discarded. If a traffic pattern
attempts to create too many instances of a flow, the classifier 14 may generate a
resource conflict.

The transmit code point field, if specified, includes a value that will become a
so-called transmit “behavior code point” for an outgoing packet. The behavior code
point is a value that indicates how the virtual machine 10 should forward a flow (i.e., it
specifies algorithms that will be used to queue and forward the packet, etc.). Packet
forwarding processing is protocol specific, so the behavior code point is a
normalization of the semantics associated with packet forwarding. Once a forwarding
decision is made in a packet, an egress virtual interface 26 will map this value into it’s
own pier-to-pier protocol proprietary transmission.

Regarding the reciprocal flow field, a flow can be configured to identify its
reciprocal flow (i.e., any traffic in a reverse direction of the flow, which is generated as
a result of that flow). This is depicted in Figure 6, where transactions 2 and 3 occur as
a direct consequence of transaction 1. If a virtual interface is not configured to bind it’s

reciprocal flow, the virtual machine 10 may identify transaction 2 and 3 as two flows
-9._

WO 02/19132 PCT/US01/27279

(e.g., AB flow with a count of 1 packet and a B.A flow with a flow of 2 packets).
However, if the virtual interface is configured to bind its reciprocal flow, the virtual
machine 10 will recognize just a single flow (e.g., an A.B flow with a count of 3
packets).

Both ingress and egress virtual interfaces 24 and 26 are discussed below (e.g.,
with reference to Figure 2). In one embodiment, a virtual interface is a logical
description of a physical interface, which hides the details of any underlying
multiplexing. For example, an ATM physical layer may be mapped as illustrated iﬁ
Figure 7.

When the virtual machine 10 switches a packet to an egress virtual interface 26,
the flow class to which the relevant packet belongs provides a transmit code point (e.g.,
the behavior code point discussed above), which specifies the transmission
requirements of the relevant flow class. Each virtual interface is created to support a
specific network topology, and to specify now to map a packet to and from the external
network. Specifically, each virtual interface includes configuration to set the type of
underlying physical interface (e.g., Ethernet, VDSL, ADSL, etc.), assign a driver
instance (i.e., the realization of the physical layer), assign the label space of the physical
layer that the virtual interface can use, set the type of virtual interface (e.g., Ethernet,
RFC1483, PPPoverL2TP, etc.), enable disable DHCP, assign a MAC address, assign an
IP address and subnet mask (when routing), enable and disable IP multicasting, enable
and disable broadcasting to other virtual interfaces of a particular type, enable and
disable Network Address Translation, and enable and disable Spanning Tree and set
state (e.g., blocking, listening, forwarding, etc.) priority and cost.

In addition, a virtual interface, in one embodiment, contains the following
information: received unicast bytes and packets, received multicast bytes and packets,
received broadcast bytes and packets, receiver discarded bytes and packets, transmitted
bytes and packets, and transmitter discarded bytes and packets.

Figure 8 is a flow chart illustrating a method 40, according to an exemplary
embodiment of the present invention, of implementing policy-based network traffic
management. The method 40 commences at block 42, with the establishment of service
policies (e.g., specified within the policy and/or flow class tables 30 and 36). These

policies may be defined by uploading and/or defining multiple rules (e.g., classification

-10-

WO 02/19132 PCT/US01/27279

rules, 18, event management rules 17, and label management rules 19) on a network
connection device 12.

At block 44, a packet 29 is received at an ingress virtual interface 24 (e.g., via a
Ethernet port or via a PCI bus). The packet 29 is then IP routed to the virtual machine
10 at block 46. At block 48, the signature, as described above, for the packet 29 is
determined. At block 50, a policy to be applied in processing of the packet 29 is
identified by utilizing the signature to perform a lookup on the policy and/or flow class
tables 30 and 36.

The forwarding (and processing) processes (e.g., the identification of an ATM
channel), and service level parameters as specified by the identified policy are then
determined at block 52. At block 54, the relevant packet 29 is then transmitted,
according to the policy, via an egress virtual interface 26. The method 40 then

terminates at block 56.

The Virtual Machine Compiler

Many network devices incorporate a number of software and hardware
subcomponents (e.g., IP, PPP, ATM, etc.), each of which has individual characteristics
and parameters. The correct operation of the network devices depends on the correct
configuration of component parameters of these subcomponents, or of the network
architecture.

Component parameters are often dependent on each other, and may be mutually
exclusive. Correct configuration of a network device requires careful consideration of
these dependencies. Network management devices typically allow for the setting of
individual component parameters, but do not enforce a net result of a series of discrete
configuration operations. This may be due to the large amount of resources required in
both the managing and managed devices to perform such a task. The above problem of
configuring component parameters, which may be dependent upon each other, is
becoming more prevalent as network devices are becoming smaller, more numerous,
more functional, low cost, and more mission critical. Specifically, network devices are
being increasingly deployed (some in mission critical applications), and network
administration is becoming an increasing expense for organizations. The volume
deployment of broadband services is contributing towards the exasperation of the
above-identified problem.

-11 -

WO 02/19132 PCT/US01/27279

According to one embodiment of the present invention, a proposed solution to
address the above identified network management problems includes compiling the
outcome of a number of discrete configuration steps into an indivisible rule, which
instructs a network device how to behave. This result may provide the advantage of
allowing configuration tasks to be performed more reliably (and with a smaller code
footprint), and also provides a mechanism for increasing the resolution of configuration
without an adverse effect on the device’s MTEF. Increased management resolution
allows a network designer, for example, to safely exert control over very detailed
aspects of the behavior of a network device, such as flow classification and data path
features

Figure 9 is a block diagram providing a high level diagrammatic representation
of the operation of a virtual machine compiler 60, according to an éxemplary
embodiment of the present invention. The virtual machine compiler 60 is shown to
receive as inputs: (1) an operations file 62 that describes operations supported by
components of a particular network device (i.e., component behavior) and constraint
definitions, and (2) a rule rile 64 that specifies behavioral requirements of a specific
network device. In one embodiment, these behavioral requirements may be specified as
a textual representation in the form of a decision tree.

The virtual machine compiler 60 utilizes the operations file 62 and the rule file
64 to compile a rule program 66, which in one embodiment comprises a binary object
including a sequence of instructions suitable for the virtual machine 10, discussed
above. The rule program 66 comprises a set of operations, selected from operations
supported by components of the network connection device 12, for performance by the
respective components of the network connection device in accordance with the
behavioral requirements defined by the rule file 64. In one embodiment, the rule
program 66 may embody a number of sequences, these sequences constituting the
classification rules 18, the event management rules 17 and the label management rules
19 discussed above with reference to Figure 3.

The virtual machine compiler 60 is accordingly used to define the behavior of a
virtual machine 10 in a secure and performance-oriented manner by loading the rule
program 66 into the key locations of the virtual machine 10.

The virtual machine compiler 60, in one embodiment, presents a model to a rule

designer that consists of a number of abstract data processes and contexts, as illustrated
-12-

WO 02/19132 PCT/US01/27279

in Figure 10. Specifically, Figure 10 illustrates the rule program 66 as conceptually
comprising a number of rules 68 (i.e., instruction se(juences) that are utilized to bind
process behavior definitions, conveniently labeled operations 70, to contextual zed sets
of data, conveniently labeled registers 72. It will be appreciated that because a specific
network connection device 12 may be constituted by a number of smaller components,
the overall process and context for a network connection device 12 may similarly
viewed as constituting a number of corresponding components. As illustrated in
Figure 10, each component (e.g., the TCP protocol or an ATM device driver) that
wishes to contribute to a process (e.g., an abstract entity such as a data plane or the
management plane) can operate, via a rule 68 class on a new or existing register 72.

A particular component may together itself as multiple processes. For example,
a component TCP may provide operations in both a data plane process, and a
management plane process.

A rule 68 is declared to be for a specific process 73, hook 74 and context 75,
and the virtual machine compiler 60 operates to insure that all components and
operations used in a specific rule 68 are compatible with that declaration. A hook 74
may be regarded a location within a process to which a rule 68 may be addressed. Once
a rule program 66 is written and tested, it may completely describe the behavior of a
network connection device 12.

Dealing more specifically with the rule program 66, a rule program 66 may, in
one embodiment, comprise a formal, compiled set of operations that is checked for
consistency before being submitted to a network connection device 12. Discrete
management operations (e.g., SNMP sets for such checks) are mutually exclusive, and
may result in an inoperable network connection device 12 in the absence of such a
consistency check.

To this end, a rule 68 is authenticated by its author, and checked by the network
connection device 12 before execution. This provides security at a functional level,
whereas security at a protocol level (e.g., SNMP) only authenticates access to the
system, not the result of any operations performed.

The rule program 66 is furthermore compiled and loaded into a network
connection device 12 independent of any run-time management protocol, and in this
way so-called “unmanaged” systems can be configured which retain the ability to be

characterized.
-13-

WO 02/19132 PCT/US01/27279

Furthermore, as a rule program 66 is compiled, it executes relatively efficiently
and quickly from a processing standpoint. This allows the benefit of a consistent
approach and tool-set to be used to define data-path behavior (e.g., packet filtering and
policy configuration) and conventional configuration management (e.g., assignment of
IP addresses, etc.). Furthermore, a rule program 66, in one exemplary embodiment, is a
compiled binary object that can be “assigned” by an authenticating authority, and
distributed in the knowledge that it will only execute on applicable systems.

A further explanation of an exemplary embodiment of an operations file 62 will
now be provided. As described above, the operations from which the rule program 66
is built are contained in the operations file 62.

An exemplary implementation of the virtual machine 10 may be broken down
into a number of discrete and re-useable software parts, termed components, each of
which has as section within the operations file 62 that described the operations
supported by the respective component. A product model may be viewed as a specific
instance of a virtual machine 10, which has a defined set of components. The virtual
machine 10 described by a product model is only capable of executing the operations of
its constituent components. Each component is assigned a global identity, and has its
own operations namespace. At run time, the implementation of each component
registers its operation with the virtual machine compiler 60. When a new rule is
introduced into a network connection device 12 (e.g., via a network management or
from memory), the virtual machine compiler 60 checks for consistency between a new
rule and its registered implementation. An assigned identifier between 1 and 1216 -1
may identify components.

Referring again to Figure 10, rules 68 in the rule program 66 are associated
with abstract entities created by the virtual machine 10. These abstract entities are
defined in terms of their behavior and their data. A particular process 73 uniquely
identifies a particular behavior, and a context 75 uniquely identifies a particular data
environment. A process 73 and a context 75 required for correct operation of a rule
program 66 are coded into an instruction sequence of the relevant rule program 66. The
virtual machine 10 checks that the registered implementations supports the same
process 73 and context 75 as required by a specific rule 68. The grammar of an

exemplary operations file 62 is provided below:

-14-

WO 02/19132

<vopFile>
<vopFile>

<contextDeclarations>

<processDeclarations>

<processSchema>

<componentDeclaratio
ns>

<useDeclaration>

<operationDeclaration> :

where:

<number>

<ident>
<context-ident>

<context-number>

<process-ident>

<process-number>

<hook-ident>

<hook-number>

<component-ident>

<component-number>

<mnemonic-ident>

<function-ident>

<signature>

<op-number>

PCT/US01/27279

1:= <contextDeclarations>

<processDeclarations>
<componentDeclarations

i= ("CONTEXT" <context-ident> "=" <context-number>)+

("PROCESS" <process-ident> "=" <process-number>
<processSchema>)+

= “BEGIN” (<hook-ident> “=" <hook-number>) + “END”
= “COMPONENT” <component-ident> “=" <component-

number>
(<useDeclaration> (<operationDeclaration>)+)+

= “USES” <context-ident> (“,” <context-ident>)*

:= <operation-type> <mnemonic-ident> <function-ident>

n_.mn

<signature> "=" <op-number>

is any valid number between 0 and 65535 which forms the
high-order 16-bits of the 32-bit GOP.

is any valid identifier
is the <ident> which is the name of a context

is the <number> which is the global context identity of the
context named <context-ident>.

is the <ident> which is the name of a process

is the <number> which is the global process identity of the
process <process-ident>

is the <ident> which is the name of a hook within a process.

is the <number> which is the process scoped identity of the
hook <hook-ident>

is the <ident> which is the name of a component

is the <number> which is the global identity of the
component <component-ident>

is the <ident> which is the operation's mnemonic.

is the <ident> which is the name of the C function which
implements the operation.

is the signature of the operation as described below.

is the <number> which is the operation's identity which
forms the low-order 16-bits of the 32-bit GOP.

-15-

WO 02/19132 PCT/US01/27279

Furthermore, each operation 70 of a component may, in one exemplary

embodiment, be declared as one of three types:

<operation- = "ACTION"
type>
| "PREDICATE"
| "MONITOR"
where:

ACTION is an operation which attempts to changes the state of the
system and if successful will PASS, otherwise will FAIL. An
action is assured not to change the state of the system when it
fails.

PREDICATE is an operation which tests the state of the system. If the test
is true the operation will PASS. If the test is false the
operation will FAIL.

MONITOR is an operation which may or may not change the state of the

system and can neither PASS nor FAIL.

Operationally, the virtual machine compiler 60 insures that a rule program 66
does not execute a predicate operation after an action operation has been executed,
because the change of systems implied by the action precludes any backtracking. A
monitor operation (not shown) may change the state of a network connection device 12,
as long as it does so in a manner that is transparent to execution of the rule program 66.
For example, suppose a particular component provides an operation that looks for IP
addresses for a particular sub-net, and then sends such IP addresses to a cache. If the
presence of the IP address in the cache is still valid, even if the rule contains an
operation that subsequently fail, then the operation should be declared as a monitor,
otherwise it is declared as an action.

Turning now to the rule file 64, as stated above the rule file 64 is text that is
converted into a binary-form rule program 66. Within the rule file 64, in one exemplary
embodiment, a number of rules may be defined, each rule comprising a decision tree

having the general form:
IF <predicate> THEN <action> ELSE <action>

-16 -

WO 02/19132 PCT/US01/27279

It will be appreciated that complex decision trees may be built utilizing further
IF.. THEN..ELSE statements within the rule file 64. Both predicates and actions are
made up of sequences of operations, each of which can either PASS or FAIL when
executed. The THEN-part statement of a particular rule is executed if all the operations
of the IF-part pass. The ELSE-part statement of a particular rule is executed if any one
of the operations of the IF-part FAIL.

The grammar for an exemplary rule file 64 is provided below:

<rule>
<rule> == "RULE" <ident> <ruleHdr> "BEGIN" <ruleBody>
"END"
where:
<ident> is the name of the rule 68. The virtual machine compiler 60

will generate a warning if the name of the rule 68 does not
conform to the name of the input file (less the extension).

<ruleHdr>

The rule header contains information which pertains to all the whole rule 68.
The grammar of the rule header is:

<ruleHdr> = <processDecl> <contextDecl> [<keyDecl>]
(<constant>|<macro>)*

<processDecl >
The process of a rule 68 describes the behavioral environment in which the rule 68 is
expected to run. The process declaration includes the hook point to which the rule 68 is

targeted.

<processDecl> = <process-ident> “(* <hook-ident> “)”

The cont <contextDecl >
The context of a rule 68 describes the data environment in which the rule 68 is expected
to run. The environment includes the data areas the operations of the rule operate on,

and the revision of the operations to be used.

-17 -

WO 02/19132 PCT/US01/27279

<contextDecl> := "USES" <context-ident>
where:

<context-ident> is an <ident> which is the global name of a context
<keyDecl>

The key of a rule 68 is hexadecimal string which used to authenticating the rule’s origin.
When the virtual machine 10 loads a rule, it ensures that the key of the rule 68 is
compatible with a "shared secret” that has been assigned to the relevant network device.

<keyDecl> w= "KEY" "™ <key-hstring> """

where:
<key-hstring> is an <hstring> which forms the authentication key for this rule
<constant>

Constant data items are compiled into the heap-objects or inline-objects and can be
refereed to by use of an assigned identifiers.

<constant> = <heapObject>

| <inlineObject>

<heapObject>

A heap object is to be stored in an area of the rule 68 called the parameter heap. These
items are treated as contiguous, modulo 4 sequence of bytes. The first 2 bytes of the
heap object is the type field, the second 2 bytes of the heap object is the length field in
bytes, and the remaining bytes are the objects value followed possibly by padding.
Heap objects are declared in the rule using the following grammar:

<heapObject> = "STRING" <ident>"="""" <cstring> """
I "DATA" <ident> n_mn wm <hString> "ot

where:

<cstring> is any sequence of printable characters
<hstring> is any sequence of the characters "0".."9", "A".."F" and "a".."{"

-18-

WO 02/19132 PCT/US01/27279

e.g.
STRING CompanyName = "Xstreamis plc."
DATA macAddress =’1122AB33DA76’

In order to use a heap object an operation must be declared with an "o" in the
appropriate place in it’s signature.

<inlineObject>
An in-line constant object is declared using the following grammar:

<inlineObject> := “INTEGER” <ident>"=" <number>

Subsequent to the declaration of a constant, any use of <ident>in a rule 68 will result in
it being replaced by the value <number>.

Note that constants do not reside on the heap, but are placed in the instruction stream in
the same manner as an integer literal.

<macro>

A macro is a specification of a sequence of operations which can be referred to by a
given name. Wherever the given name appears in a rule 68, it is replaced with the
specified sequence of instructions.

<macro> = "DEFINE" <macro-ident> "{" <macroBody> "}"

where:
<macro-ident> is an <ident> which is used to identify the macro
<macroBody> is a sequence of operations assigned to the macro identifier.

The virtual machine compiler 60 will interpret any appearance of the <macro-ident> as
if it were an appearance of the <macroBody>.

<ruleBody>

-19-

WO 02/19132 PCT/US01/27279

The body of a rule 68 has the following grammar:

<ruleBody> = <clause>*
<clause> = <expression> *
| "IF" <clause> "THEN" <clause> "ELSE" <clause>
<expression> = <complexExpression> '
| <literal>
| <macro-ident>
| <operation>
| "(" <expression> ")"
where:

<complexExpression> is a complex in-fix, post-fix or pre-fix expression (this
grammar can be seen in more detail in http://vm.html).

<literal> is a hexadecimal or decimal constant.

<operation>

This is the invocation of an operation defined in the operations file 62. The name of an
operation is the mnemonic identifier assign to it in the operations file 62, qualified by
the types of the arguments in the argument list, and the rule’s context declarations.

A component may have multiple operations with the same mnemonic identifier, but
with different argument-type or in different contexts or packages.

<operation >

["NOT"] <mnemonic-ident> ["(" argList ")"]

mnn

<argList> [<expression>["," <expression>]]

where:

<mnemonic-ident> is an <ident> which is the mnemonic assigned to an
operation in the VOP file.

<argList> is a sequence of zero or more expressions which form the
arguments to the operation corresponding to
<mnemonic-ident>.

If the NOT key word precedes the operation then the negation-bit is set in the LOP code
of the operation causing the virtual machine 10 to invert the sense of the operation.

<literal>

-20-

WO 02/19132 PCT/US01/27279

A literal object is a 32-bit value stored in the instruction stream. When an operation is
called, the virtual machine’s instruction pointer points to the first literal value (if any)
and it is the responsibility of the function implementing the operation to advance the
instruction pointer beyond all the expected literal objects (i.e. leaving it pointing to the
next operation code).

<literal> = <number> | <heapObject-ident> | <const-ident>
where:
<number> is any decimal or hexadecimal value between 0 and 211,

<heapObject-ident> is an <ident> which is assigned to a <heapObject>

<const-ident> is an <ident> which is assigned to a <constant>

Turning now to the rule program 66, a rule program 66 may, in one exemplary
embodiment, be loaded into a virtual machine 10 as a sequence of 32-bit values stored
in a network endian (e.g., big-endian) type order. In one embodiment, rules within the
rule program 66 may be encoded as described below, with all links and indices are of

networked-entities:

-21 -

WO 02/19132 PCT/US01/27279

r=0: zzzz Magic number (0x52554c61)
1: pppp Process ID
2:hhhh Hook ID
3:cccc Context ID
4: -xx- Length everything except the first 3 fields
5: (1) Index to last valid opcode
6: f(n) Index to first GOP
KKKK (i.e. value equal to 5 means no TLVs)
KKKK
KKKK
op(1): GOP1 GOP of first operation
op(1)+1: LOP1 LOP of first operation
op(1)+2: LIT1 first argument to f1
op(1)+3: LIT2 second argument to f1
op(2)=op(1)+arity(1): GOP2 '
op(2)+1: LOP2 LOP of first operation
op(2)+2: LIT2 first argument to f2
op(2)+3: LIT2 second argument to f2
op(n)=op(n-1)+arity(n-1): GOP2
op(n)+1: LOP2 LOP of first operation
op(n)+2: LIT2 first argument to f2
op(n)+3: LIT2 second argument to f2
h(1)=op(n)+arity(n): -hl- The -hl- field describes the length of the
parameter heap.
h(1)+0: tlvl The tlv1 field describes the type and length
vvvv of the first parameter heap value.
VVVV
h(1)+tlvl.len: tlv2 The tlv2 field describes the type and length
vvvv of the second parameter heap value.
VVVV
h(1)+tlvl.len+tlv2.len: 777?
= r(1)+xx+1

1. Magic Number

Word 0 of the rule is a 32-bit number which identifies the word sequence as a valid rule
68.
Encoded within the number is the revision of the structure of the rule 68.

2. Rule Context

Words 1 and 2 of the rule indicate the context of the rule 68.

Word 1 is the virtual machine context, and

Word 2 is the component context.

The virtual machine compiler ensures that all the operations used in a rule 68 operate
only on one of these two contexts.

All context and operation associations are made in the operations file 62.

-22-

WO 02/19132 PCT/US01/27279

Rule length
Word 3 of the rule 68 is its length of the rule 68. The value encoded is the length of the
rule 68 from the current position, i.e.

<length of rule> - 3.

3. Last GOP index

Word 3 of the rule 68 is the Last GOP Index. This is the offset from start of the rule to
the last GOP of the operation sequence. The virtual machine uses this value to locate
the start of the heap.

4. First GOP index

Word 4 of the rule is the First GOP Index. This is the offset from the start of the rule 68
to the first GOP of the operation sequence. The virtual machine 10 uses this value to
locate presence of the authentication key and the start of the operation sequence.

4.1 Authentication Key

Word 5 contains the optional authentication key which occupies zero or more words
between the First GOP index and the first GOP of the operation sequence. If there is no
authentication key, then Word 5 contains the first GOP of the operation sequence.

5. Operation Sequence

Following the authentication key is a sequence of operations. Each operation consists of
a GOP, a LOP and zero or more literals.

5.1 Global Operation Code

The GOP is a 32-bit value which universally identifies an operation. The GOP is
formed by the concatenation of the 16-bit component identifier, and the 16-bit
operation identifier.

5.2 Local operation Code

The LOP identifies the numbers of arguments that an operation requires, and hence the
overall length of the encoded operation. The

virtual machine overwrites values in the LOP with certain run-time information during
the loading of the rule 68 into the virtual machine.

-23-

WO 02/19132 PCT/US01/27279

LOPs are structure as follows:
AAAA NFFF FFFE FFFF UUOO O0O00 0000 0000

where:

A , The arity of the operation (i.e. the number of literal
arguments it consumes from the instruction stream).

N Negative Sense - the virtual machine must invert sense of the
operation (i.e. an operation which PASSES will cause it’s
containing clause to FAIL).

F The fail offset (i.e. the number of operations to skip before
continuing in the event that this operation should FAIL)

U Unused

0] Operator function index. The VM overwrites this when it

binds the rule into the system.

5.3 Arguments

The operation arguments are values which are passed to the operation. The number of
arguments in the instruction stream are encoded in the LOP in the ’arity’ field. The value
of an argument is either a 32-bit literal value, or a 32-bit offset from the start of the rule
to a heap object.

6. Heap Objects

The heap contains constant data that is passed to operations as arguments. The first
word of each heap object is header containing a 16-bit object identifier and a 16-bit
object length. The object identifier has a value of 1 if the object is a character string,
and a value of 2 if the object is a hex string. The object length is in bytes.

Figure 11 is a flow chart illustrating a method 80, according to an exemplary
embodiment of the present invention, to pre-compile configuration information for a
network connection device 12. At block 82, the operations file 62 and the rule file 64
are received at the virtual machine compiler 60.

At block 84, the virtual machine compiler 60 compiles the rule program 66
utilizing the operations files 62 and the rule file 64, for example in the manner
described above.

At block 86, the rule program 66 is loaded into the network connection device

12, responsive to a user (or manager) request. For example, the rule program 66 may

-4 -

WO 02/19132 PCT/US01/27279

be loaded into the network connection device 12 from a remote location on demand
from a user or manager.

At block 88, the virtual machine 10, operating on the network connection device
12, performs a consistency check between registered operations of components, and
operations of the rule program 66.

At block 90, the rule program 66 is executed by the virtual machine 10 to
configure the network connection device 12 (and more specifically the components of
the network connection device 12) according to the rule program 66. The method 80

then ends at block 92.

Virtual Network Interface Card and Out-of-Band (OOB) Communications

According to a further aspect of the present invention, there is provided a client
application that executes on a network client device (e.g., a workstation 102) so as to
allow a network connection device 12 (e.g., a switch, bridge or router) to interact with a
network client device as though it were a host-coupled device. The client application
provides a number of functions, which will be described below. In the exemplary
embodiment described below, the client application has been conveniently labeled as a
virtual network interface (VNIC) client application 100. It will nonetheless be
appreciated that this is merely a convenient label for the exemplary embodiment.

Figure 12 is a diagrammatic representation of an exemplary deployment
scenario in which a VNIC client application 100 is hosted on each of workstations 102
coupled to a network connection device 12 via a local area network (LAN) 104. A user
106 is also associated with each of the workstations 102.

The VNIC client applications 100 each execute on a respective workstation 102

to provide services discussed below. The VNIC client applications 100 also optionally
-25-

WO 02/19132 PCT/US01/27279

each instali a small icon on the task bar of a user’s desktop to communicate status
information (e.g., QoS parameters, network traffic parameters, policy decision
information regarding policy decisions made by the virtual machine 10, etc.) to the
relevant user 106.

The network connection device 12, in one exemplary embodiment, hosts a
virtual machine 10, as described above, to implement policy-based network traffic
management. It should however be noted that the VNIC client applications 100 provide
optional functionality to the virtual machine 10, and are not required to enable the
virtual machine 10 to perform the above-described policy-based network traffic
management. In one embodiment, the VNIC client application 100 works in
conjunction with the virtual machine 10 to provide enhanced policy-based network
traffic management capabilities. For example, the VNIC client application 100 operates
to bring advantages typically associated with host-coupled devices (e.g., an Ethernet
card or a WAN adaptor) to the centrally positioned network connection device 12.
Such advantages include the ability of an administrator to alter the behavior of the
network connection device 12 on a user or work group basis, the ability to have one on
one interaction (e.g., via pop-up dialogs and selection menus) between a user and a
network connection device 12, the ability to interact with a user application to gain
insight into traffic requirements without the need for specific inband QoS signaling, the
ability for the network connection device 12 to participate in, and be subject to, a
network authentication mechanism, and the ability for client-site agents (e.g., Java
applets) to be deployed which can interact with a policy network traffic management
strategy implemented by a network connection device 12.

In order to provide these advantages, Figure 12 illustrates each VNIC client

application 100 contributing to an information profile 108, maintained by a profiler and
-26-

WO 02/19132 PCT/US01/27279

utilized by a network traffic management application, in the exemplary form of the
virtual machine 10, to perform policy-based network traffic management. In one
embodiment, the VNIC client application 100 utilizes out-of-band (OOB) signaling
between a respective workstation 102 and the virtual machine 10 to contribute to the
information profile 108 accessed by the virtual machine 10. The information
contributed to an information profile 108 may include, for example, data concerning
network access rights of a user, or associated with a particular workstation 102. The
network access rights may, for example, be specified as a particular bandwidth attention
to a particular user or workstation, as a community membership, etc.. The information
contributed to information profile 108 may also include information concerning
network access requirements of a user or workstation 102(e.g., bandwidth
requirements), data concerning network traffic conditions at a workstation 102, or a
data retrieved from a registry associated with a workstation (e.g., information indicating
membership of a workgroup).

An information profile 108 allows the virtual machine 10 to take into account
information beyond that contained in a packet when classifying traffic. Specifically,
information contained within an information profile 108 can be utilized by the virtual
machine 10 to supplement a policy-based network traffic network strategy. The VNIC
client application 100 may furthermore continually update the information profile 108.
For example, when a user 106 logs on to a workstation 102, and is authenﬁcated bya
network domain or a group, information regarding the user may be continually
forwarded by the VNIC client application 100 to the virtual machine 10. The virtual
machine 10 may respond with information indicating resources that are required by a
current traffic load of a user 106, and whether or not such resources are currently

available. Such an exchange may occur within the context of a “keep-alive transaction”
-27-

WO 02/19132 PCT/US01/27279

that delimits a user session. The “keep-alive transaction” also provides a discrete event
to the network connection device 12, which in turn allows it to more accurately manage
the resources at its disposal.

As described above, when a packet 29 is received at the virtual machine 10, it
may be classified by examining various parts of the packets structure, and assigning it
to a flow according to a set of rules that reflect a network administration policy.

According to one aspect of the present application, in addition to utilizing
information which may be present within the packet 29 itself, the classification rules 18
may also consider physical information (e.g., a receiving port) and contextual
information (e.g., time of day, the occurrence of a given event, the previous receipt of a
particular packet, the amount of time between packets as an indication of traffic
density). To this end, Figure 13 diagrammatically represents classification rules 18
utilizing both a signature 31 received from a packet 29 and time of day information
112. According to a further aspect of the present invention, the classification rules 18
utilizgs information concerning the physical characteristics of the netWork connection
device 12 (e.g., the port of the device 12 if Columbus thinking Congress thinking I was
going to get a good context of a check on which particular network traffic is received)
to implement a network traffic policy.

It will be appreciated that by utilizing the detailed information extracted from
the packet 29, and applying the classification rules 18, the virtual machine 10 is able to
discriminate flow classes 20 to a high resolution. However, the amount of information
that may be inferred by merely observing data passing through a network connection
device 12 is limited. The VNIC client application 100 operates to make additional
information available to the classification process implemented by the virtual machine

10 utilizing the classification rules 18.
-08 -

WO 02/19132 PCT/US01/27279

Figure 14 is a diagrammatic illustration of the communication of the VNIC
packets 114, from a VNIC client application 100, for contribution to an information
profile 108. The information profile 108 in turn constitutes input to the classification
rules 18 utilized by the virtual machine 10 to implement a policy-based network traffic
management scheme.

In one embodiment, a keep-alive transaction between an active user’s account
and the network connection device 12 establishes an association between a MAC
address of a workstation 102, for example, being used by the user, and an information
profile 108. The classification rules 18 (and other policy rules) illustrated in Figure 14,
now have access to additional criteria included within information profile 108 when
making policy decisions.

In one embodiment, information profiles 108 are not configured into a network
connection device 12, as this would result in an administrative burden, increase the cost
of the network connection device 12, and require the network connection device 12 to
scale to the size of a user community rather than I/O bandwidth. In one embodiment, a
VNIC protocol communicates an information profile 108 to the network connection
device 12, for utilization by the classification rules 18, during a keep-alive transaction.

In one embodiment, the information profile 108 may be derived from a registry
of a workstation 102 (or PC), and can include workgroup information, application
information, and user acknowledgments.

An exemplary use scenario of the VNIC client application 100, and a VNIC
protocol to communicate information profiles 108 to a network connection device 12,
will now be described. In the exemplary use scenario, a network administrator wishes
to partition bandwidth of a Wide Area Network (WAN) into three communities, namely

gold, silver and bronze communities. The bronze community is a default community to
-29.

WO 02/19132 PCT/US01/27279

which all users belong, while the gold and silver communities have explicit
membership. The deployment of this partitioning, in one exemplary embodiment,
includes three steps, namely: (1) providing wide area connectivity, (2) providing packet
classification, and (3) deploying the VNIC client application and profile.

Dealing with the first step of providing wide area connectivity, in the exemplary
embodiment three separate circuits are established across the WAN for each of the

communities. Table 3 below provides details of these circuits:

Table 3
Community VCC B/W
bronze 10 32 Kb/s
silver 20 128 Kb/s
old 30 | 256 Kb/s

It will be noted that the separate circuits may be static channels using permanent
virtual circuits or dynamic channels utilizing some combination of signaling (e.g., label
distribution or call set-up).

Moving on now to the second step of providing packet classification, a
classification rule 18 is introduced to the network connection device 12 for utilization
by a virtual machine 10, the classification rule 18 specifying a classification of packets
according to a community membership of a sender. An exemplary rule definition is

provided immediately below.

-30-

WO 02/19132 PCT/US01/27279

RULE BwPartition /I the name of the rule
PROCESS DATA_PLANE(LABEL) // rule is for the label hook of the data plane
USES Packet_Revision_1 // rule is written assuming packet revision 1

INTEGER GOLD =1 /I the gold community
INTEGER SILVER =2 /I the silver community
INTEGER BRONZE =3 /I the bronze community

INTEGER GOLD_VCC =30 // the gold channel
INTEGER SILVER_VCC = 20// the silver channel
INTEGER BRONZE_VCC =10 //the bronze channel

BEGIN
COMPONENT SIGS /I use the sig switch op-code set
IF
UserProfileIsKnown // is a V-NIC session active for this packet?
THEN
IF
UserCommunityls(GOLD) /I If the user in the gold community
THEN SetTxLabell(GOLD_VCC) // then use the gold VCC, else
ELSE
IF
UserCommunityIs(SILVER) // If the user in the silver community
THEN SetTxLabell(SILVER_VCC) // then use the silver VCC, else
ELSE
IF
UserCommunityls(BRONZE) /' If the user in the bronze community
THEN SetTxLabell(BRONZE_VCC) // then use the bronze VCC, else

ELSE DISCARD // it’s an invalid profile!
ELSE
SetTxLabel(BRONZE_VCC) // If the V-NIC is not running then default
END /I to the bronze community

As will be noted from the above classification rule 18, the rule 18 is declared as
being part of a process DATA_PLANE, and is targeted for a hook point LABEL. This
is the part of data plane is responsible for determining the correct transmission label to
be used for outgoing flows. The rule 18 defines three integer constants, each
representing a respective community, and three integer constants for each
corresponding VCC. When a packet 29 arrives and the LABEL rule is invoked, the rule
18 first calls the predicate “USERPROFILEISKNOWN”. This operation succeeds if
there is a current VNIC session for the relevant flow calls, otherwise it fails. If no
VNIC session is active, then the packet 29 is labeled with the default of the “bronze”

-31-

WO 02/19132 PCT/US01/27279

VCC. If a VNIC session is active however, the classification rule 18 systematically
checks the community attribute of a relative information profile 108 to determine the
community to which the profile belongs. If the relative attribute is located, the transmit
label is set to a corresponding VCC. If the community identifier is not valid, then the
relevant packet 29 is simply discarded because this implies a badly configured
information profile 108.

The third step in the exemplary user scenario is the deployment of the VNIC
client application 100. Specifically, for each workstation 102 participating in the
partitioned network at the SILVER or GOLD level, an administrator must install a
VNIC client application 100 (e.g., from a CD or a website containing the necessary
installation uploads). The administrator further assigns each network user (or logon
account) a VNIC attribute “COMMUNITY” with a community membership value of
GOLD, SILVER, or BRONZE. The attribute value corresponds with the definition of
gold, silver or bronze as declared in the classification rule 18 for.

A registry 113 may be replicated (and different) in each workstation 102 or, in
an alternative embodiment, may be managed from a domain server as illustrated in
Figure 15.

Figure 16 diagrammatically illustrates the communication of VNIC packets
114, utilizing a VNIC protocol during a VNIC session, to establish and contribute to
information profiles 108 utilized by a classification rule 18, in the exemplary form of a
bandwidth partitioning classification rule 18. As illustrated in Figure 16, a little
connection device receives data in the form of the VNIC packets 114 from VNIC client
applications 100 hosted on participating workstations 102. The VNIC packets 114
include additional information available for use during flow classification. Specifically,
if an administrator assigns user A to a SILVER community, when user A logs on to a
workstation 102 using an Ethernet card having a MAC address of 00:50:¢2:04:60:18,
the keep-alive transaction between a VNIC client application 100 executing on the
relevant workstation 102 and the network connection device 12 makes an association in
an information profile 108 cached by the network connection device 12 between the
relevant MAC address and the SILVER community. When the network connection
device 12 receives packets 12 from the relevant workstation 102, and the
DATA_PLANE (LABEL) is invoked, the exemplary bandwidth partition classification

rule 18, illustrated in Figure 16, switches an outgoing flow to VCC 20.
-32-

WO 02/19132 PCT/US01/27279

Computer System
Figure 17 is a diagrammatic representation of a machine in the exemplary form

of computer system 200 within which software, in the form of a series of machine-
readable instructions, for performing any one of the methods discussed above may be
executed. In alternative embodiments, the machine niay comprise any machine capable
of executing a sequence of instructions including, but not limited to, a personal digital
assistant (PDA), a mobile telephone, a network traffic device (e.g., router, bridge,
switch) or handheld computing device. The computer system 200 includes a processor
202, a main memory 204 and a static memory 206, which communicate via a bus 208.
The computer system 200 is further shown to include a video display unit 210 (e.g., a
liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 212 (e.g., a keyboard), a cursor control device 214 (e.g., a mouse), a disk drive
unit 216, a signal generation device 220 (e.g., a speaker) and a network interface device
222. The disk drive unit 216 accommodates a machine-readable medium 224 on which
software 226 embodying any one of the methods described above is stored. The
software 226 is shown to also reside, completely or at least partially, within the main
memory 204 and/or within the processor 202. The software 226 may furthermore be
transmitted or received by the network interface device 222. For the purposes of the
present specification, the term "machine-readable medium" shall be taken to include
any medium that is capable of storing or encoding a sequence of instructions for
execution by a machine, such as the computer system 200, and that causes the machine
to perform the methods described above. The term "machine-readable medium" shall
be taken to include, but not be limited to, solid-state memories, optical and magnetic
disks, and carrier wave signals.

If written in a programming language conforming to a recognized standard, the
software 226 can be executed on a variety of hardware platforms and for interface to a
variety of operating systems. In addition, the present invention is not described with
reference to any particular programming language. It will be appreciated that a variety
of programming languages may be used to implement the teachings of the invention as
described herein. Furthermore, it is common in the art to speak of software, in one
form or another (e.g., program, procedure, process, application, module, logic...), as

taking an action or causing a result. Such expressions are merely a shorthand way of
-33-

WO 02/19132 PCT/US01/27279

saying that execution of the software by a machine, such as the computer system 200,
the machine to perform an action or a produce a result.

Thus, a method and system to pre-compile configuration information for a data
communications device have been described. Although the present invention has been
described with reference to specific exemplary embodiments, it will be evident that
various modifications and changes may be made to these embodiments without
departing from the broader spirit and scope of the invention. Accordingly, the

specification and drawings are to be regarded in an illustrative rather than a restrictive

sense.

-34 -

WO 02/19132 PCT/US01/27279

CLAIMS

‘What is claimed is:

1. A method to pre-compile configuration information for a network

connection device, the method including:

receiving a rule file defining behavioral requirements for the network
connection device;

N
receiving an operations file describing operations supported by a

plurality of components of the network connection device; and

generating a rule program, executable by the network connection device,

utilizing the rule file and the operations file,

wherein the rule program comprises a set of operations, selected from
operations supported by the plurality of components of the network connection device,
for performance by the respective components of the network connection device in

accordance with the behavioral requirements defined by the rule file.

2. The method of claim 1 wherein the rule file comprises a decision tree
structure.
3. The method of claim 2 wherein the rule file comprises a sequence of

operations defined as IF THEN ELSE statements.
4. The method of claim 1 wherein the rule file comprises a text file.
5. The method of claim 1 wherein the operations file includes a plurality of

sections, each section of the plurality of sections describing operations supported by a

corresponding component of the plurality of components.

-35-

WO 02/19132 PCT/US01/27279

6. The method of claim 1 wherein the operations file specifies at least one
process to identify a behavior and at least one context to identify a data environment to

support execution of the rule program.

7. The method of claim 1 wherein the rule program is compiled as a binary

object.

8. The method of claim 7 wherein the compiled binary object comprises an
instruction sequence to be executed by a virtual machine hosted by the network

connection device.

9. The method of claim 1 wherein the set of operations that comprise the
rule program include configuration operations that determine functioning the plurality

of components of the network connection device.

10. The method of claim 1 wherein the rule program links an operation of a

component to a contextualized set of data.

11. The method of claim 1 wherein the rule program is authenticated by an

authentication authority.

12. The method of claim 1 wherein at least a portion of the rule program is
dedicated to a specific process and context, and wherein the generating of the rule
program includes performing a check to determine whether a component and an
operation associated with the portion of the rule program are compatible with a

declared process and context of the portion of the rule program.

13. The method of claim 1 wherein the generating of the rule program
includes compiling the rule program and loading the rule program into the network

connection device in a manner independent of a run-time management program.

14. The method of claim 1 including executing the rule program utilizing the

plurality of components of the network connection device.
-36-

WO 02/19132 PCT/US01/27279

15. The method of claim 14 wherein each component of the plurality of
components of the network connection device registers at least one operation, and the
method includes performing a consistency check between the set of operations and the

operations registered by the plurality of components.

16. A system to pre-compile configuration information for a network

connection device, the system including:

a rule file defining behavioral requirements for the network connection

device;

an operations file describing operations supported by a plurality of

components of the network connection device; and

a compiler to generate a rule program, executable by the network

connection device, utilizing the rule file and the operations file,

wherein the rule program comprises a set of operations, selected from
operations supported by the plurality of components of the network connection device,
for performance by the respective components of the network connection device in

accordance with the behavioral requirements defined by the rule file.

17. The system of claim 16 wherein the rule file comprises a decision tree

structure.

18. The system of claim 17 wherein the rule file comprises a sequence of

operations defined as IF THEN ELSE statements.
19. The system of claim 16 wherein the rule file comprises a text file.

20. The system of claim 16 wherein the operations file includes a plurality

of sections, each section of the plurality of sections describing operations supported by
-37-

WO 02/19132 . PCT/US01/27279

a corresponding component of the plurality of components of the network connection

device.

21. The system of claim 16 wherein the operations file specifies at least one
process to identify a behavior and at least one context to identify a data environment to

support execution of the rule program.

~ 22. The system of claim 16 wherein the compiler is to compile the rule

program as a compiled binary object.

23. The system of claim 22 wherein the compiled binary object comprises an
instruction sequence to be executed by a virtual machine hosted by the network

connection device.

24. The system of claim 16 wherein the set of operations that comprise the
rule program include configuration operations that determine functioning the plurality

of components of the network connection device.

25. The system of claim 16 wherein the rule program links an operation of a

component to a contextualized set of data.

26. The system of claim 16 wherein the rule program is authenticated by an

authentication authority.

27. The system of claim 16 wherein at least a portion of the rule program is
dedicated to a specific process and context, and wherein the compiler performs a check
to determine whether a component and an operation associated with the portion of the
rule program are compatible with a declared process and context of the portion of the

rule program.

28. The system of claim 16 wherein the compiler is to compile the rule
program and to load the rule program into the network connection device in a manner

independent of a run-time management program.
-38-

WO 02/19132 PCT/US01/27279

29. A system to pre-compile configuration information for a network

connection device, the system including:

first means for defining behavioral requirements for the network

connection device;

second means for describing operations supported by a plurality of

components of the network connection device; and

third means for generating a rule program, executable by the network

connection device, utilizing the first means and the second means,

wherein the rule program comprises a set of operations, selected from
operations supported by the plurality of components of the network connection device,
for performance by the respective components of the network connection device in

accordance with the behavioral requirements defined by the first means.

30. A machine-readable medium storing a sequence of instructions that,
when executed by a machine, cause the machine to perform the method for pre-pre-
compiling configuration information for a network connection device, the method

including:

accessing a rule file defining behavioral requirements for the network

connection device;

accessing an operations file describing operations supported by a

plurality of components of the network connection device; and

generating a rule program, executable by the network connection device,

utilizing the rule file and the operations file,

-39-

WO 02/19132 PCT/US01/27279

wherein the rule program comprises a set of operations, selected from operations
supported by the plurality of components of the network connection device, for
performance by the respective components of the network connection device in

accordance with the behavioral requirements defined by the rule file.

- 40 -

PCT/US01/27279

1/16

WO 02/19132

0l
Z SSe|) Mo <
w g119 v
0¢ N — Jalisse|] | [«
(| souejsul TS v
| SSB|) MO|d < INIHOVIN “ “
TYNALYIA A ARERRE: <<“
L T
v V({V
e N~
| 8ougjsy| Z souejsyj
N\, 8l
44 sa|ni
UONBOYISSE]D
<l
(HOLIMS ‘¥3LNOY ‘39aMg “9'3)
FOIA3A0 NOILOINNOOD ¥HOML3N

——— — — — — ——— — T — — —— — — —— — ———— ————— —— — —— —— — —— — w——

PCT/US01/27279

WO 02/19132

2/16

Z b4

A

[*T4
(SS34¥93)

3OV4H3INI
TYNLYIA

sav
LY ;

A

9
(SS3493)

JOV4HLNI
TVALHIA

ALITYNOSYH3d

ain
AJINOd

g1 s3Iy

ve

(SS3YONI)
JOV4YILNI
WNLYIA

9C
(NERRE)]

JOV4H3LNI
TVNLHIA

4 X

I INIHOVIN TVNLYIA

(74

(SSTHONI)
J0VILNI
WNLAIA

19seqQl

ol

(74
(SS3YONI)

JOV4H3LINI
VNLHIA

<

30IA3A NOILOINNOD YHOMLAN

i
-.,b/

o

f

\
-\

1 9seq 0}

19seqQl

PCT/US01/27279

WO 02/19132

3/16

¢ bi4

3 T 8r
SIny SII1NY S3TNY
INIWIDOVYNVYIN INIWIOVNYIN NOILVYOIFISSYT1D
138V IN3AT 1MOVd

5 e e Rt
I |
! “
__ — y : _
“ ST «— NSSYIDMOH) |
| |

WY3NLS m |

LINOVd «— ,

ONIODLNO | + ¢ SSY1O MO1d |~ 91
! | WY3ALS
| |
+ Y3IHISSY10 13xX0vd

! SEREIH AR | SSY10 MO m ONINODNI
| !
|
| — (4IOVYNVI OI144VHL YHOMLAN) |
I |
I |

0 ANIHOYIN TYNLYIA

e et R i el e g U VU U I SUU S S U U —

PCT/US01/27279

4/16

ALE e ——

N AJIMOd | OVL |«—

“ AONALYT-
! SSOT-
ALIMONd-
SAN-
¥ss-
¥0d-
Q0N

€ A0N0d | OVL [«—
ZA0INOd | OVL [«—

SY31INVYVd
“ J0IAY3S

' N

L AOITOd | OVL

(aw)
319vY1 AOIT0d A T

5 SOD-MOT1

(SS3Y93)
JOV4YILINI
IWNLYIA

74

(SSTHUONI)

JOV4HALNI
IVNLYHIA

’ 6¢

WO 02/19132

J1NAOW
INIWIFOVYNYIN
Old4vdl
WLV

|

|

|

|

|

I

“

1 13%0Vd
" o
I

|

|

|

|

L

145 Y3IHISSYTO

r—.——————l——

L—

PCT/US01/27279

WO 02/19132

5/16

G b4

¥ SSYTO MO

€ SSV1IO MO

¢ SSYTO MO14

| SSV10 MOT4

31gvl
SSVIO MO

% ZSSYIOMOTd N @04

|| zssyIOMOH e € 94

- LSSYIO MO e 204

—~] 1ssyomod ¢ L 304
3 T78YL AJIT0d

WO 02/19132

PCT/US01/27279
6/16
A B
SPO | DPO | SIP DIP
1234 80 A B
Transaction 1
DIP SIP | DPO | SPO
A B 1234 80
Transaction 2 Where is
Instance
Timeout
DIP SIP | DPO | SPO
A B 1234 80
Transaction3 ¢ .
Fig. 6
Virtual
Interface
Label 1 N Shvsical
ysica
Label 2 N\, Interface
N N A — VCC 1
I VCC 2
A VCC3
Virtual Interface .~ | |7 vee4
,/’, ’,” A T VCC5
Label 1 -------- g e e
Label 2 ~---- 4
Label 3 ----- d

Fig. 7

WO 02/19132 PCT/US01/27279

7/16

ESTABLISH SERVICE POLICIES BY UPLOADING/DEFINING —
MULTIPLE RULES ON NETWORK CONNECTION DEVICE

42

v

RECEIVE PACKET (E.G., VIAETHERNET
PORT OR VIA PCI BUS) AT INGRESS
VIRTUAL INTERFACE 44

A 4

IP ROUTE PACKET TO VIRTUAL MACHINE

46
DETERMINE SIGNATURE OF PACKET

48

DETERMINE POLICY TO BE APPLIED TO

PACKET UTILIZING SIGNATURE 5

50

POLICY DESCRIBES FORWARDING OF

PACKET (E.G. ATM, CHANNEL) AND SERVICE
LEVEL PARAMETERS 52
'
PACKET TRANSMITTED VIA

EGRESS VIRTUAL INTERFACE 54

l

% | Fig. 8

PCT/US01/27279

WO 02/19132

8/16

6 ‘b4

ANIHOVW
— WNRIA]
Ol

99

(Lo3rgo
AHVYNIE)

WYHO0Ud

ERlA.

A

09
Jajidwon
SUIYDBN [ENUIA

~__—

¥9
(yuswannbay
Joineyaq
waysAs)

314
ERip-|

,

A

(suoniuysp
JulesjSuod pue JoiAeyaq

Jusuodwo))

34
SNOILYYH3dO

PCT/US01/27279

WO 02/19132

9/16

01 b1

——— - —

vl
MOOH

v

NOILY¥3dO |

NOILYYH3dO

7
MOOH

NOILLYY3dO

N ININOdWOD

\4

[NOILY¥3dO | e
NOILYd3d0 vL
«H MOOH 1Ny
NOILY43dO
N ININOJWO9
— 89
Vi
«H MOOH TNy
l
— |
Zl
NETSGEN —
_ 89
NETSREN Vi
<! oo mo%xmm_@
NETTGEY
V ININOJWOD
|
S 1X3INOD 99 WYN90Yd 31N

171
MOOH

NOILYY3dO
NOILVYH3dO
NOILYY3dO

Y ININOdWNOD

$S300¥d

WO 02/19132

10/16.

RECEIVE RULE FILE AT COMPILER
AND
RECEIVE OPERATIONS FILE AT COMPILER

82

v

COMPILE RULE
PROGRAM FROM
RULE FILE USING COMPILER

v

LOAD RULE PROGRAM
INTO NETWORK CONNECTION
DEVICE RESPONSIVE TO
USER/MANAGER REQUEST
(PULLED DOWN ON DEMAND)

I

|

PERFORM CONSISTENCY CHECK BETWEEN
REGISTERED OPERATIONS
OF COMPONENTS AND OPERATIONS
OF RULE PROGRAM 88

EXECUTE RULE PROGRAM TO
CONFIGURE COMMUNICATIONS
DEVICE ACCORDING TO RULE PROGRAM

30

END
92

PCT/US01/27279

80

Fig. 11

PCT/US01/27279

WO 02/19132

11/16

21 b4

F1404d
NOILVIWHOANI V

A 4

A

4! 701
0Ll —
801
J40¥4d \ o] NOILYOITddY
NOILYWHOANI § IN3ITO
(QINN)
< .le q uoljeIsyIop
” NY1

—

A

00t
NOLLYOI'lddV

(M3LNOY ‘IOAINY
HOLIMS “9'3)
30IA3a
NOILOANNOD
MHOMLAN

0Ll

INTITO
(DINA)

>

0} V UOHEISHIOM

A

L

901
g 198

90l
v Jesn

PCT/US01/27279

WO 02/19132

12/16

¢} b4

Al
— M)
)
s3Iy [
g
ol
...... e OVW dl doL did 98
9)Joe ele
ANIHOVI mm\ AR
WNLYHIA

PCT/US01/27279

WO 02/19132

13/16

A
1
]

4
|

A
i
1

. AN "
Zl | "
P]
— <]
) !
STy f m
|
m
||||||| /ﬂ v Aﬁ \ 4 y m
e VW d dol di4 a0 m
..... i \ 19%0Ed ElEQ m
ANIHOYIN "
WNLYIA “
!
001
01 S uoijeoydde
saflold WoouoiNna e jusyo
NOLLYWYOANI DINA
19%0ed OINA

PCT/US01/27279

WO 02/19132

14/16

Gl ‘b1

“ AR E:
< T g ; 3DIA3A NOILOINNOD YHOMLAN
02:09:%0:¢J:05-00 81:09:¥0-:¢0:09:00
007 00t
NOLLYOITddV Lll\ll NOLLYOIddY
AIN3I70 - IN3INO
SINA di/ddl 0Z1 , IINA |dVdOL
plob=Ayunwiwod 9 ¥Isn
suoneolddy suoneoyddy
aAjIS=AJuNWILIo? 1y ¥3SN
70T | uoiesyIopm) 700 | uonesom
]

PCT/US01/27279

WO 02/19132

15/16

91 b4

8l

uoiiuedmd
il
|
01
“or=azNoNE | v
A}@.m..u EATS - 81:09-%0-¢0:05-00 viva rf 02:09:%0:20-05:00 vivd
B T T pepup g \‘\\ \
0€=01709 | ANIHOVIN 6¢ 6¢
IVNLHIA
R | S .
' 8 “
| US| | — —
m 81:09:%0-¢0:05:00| ! 142 vl
! — | YIS = Aunwwo) JZNOY4 = Alunwwo)
i) :09:¥0:29:05:00= 02:09:¥0:20-05-:00=0VN
“ 0Z.09:70:20:06:00 “ 81:09:¥0:¢0:05-00=0VIN

WO 02/19132

200 —__

PROCESSOR 292

INSTRUCTIONS ~

[~ 226

204
MAIN MEMORY

INSTRUCTIONS ~~— 926

STATIC MEMORY

N
»

NETWORK
INTERFACE

DEVICE 220

16/16

BUS

PCT/US01/27279

A

VIDEO DISPLAY

N
—_—
o

ALPHA-NUMERIC
INPUT
DEVICE 91

N

A4

CURSOR CONTROL
DEVICE

N
NN

1

226

»

DRIVE UNIT 216

I

MACHINE-READABLE
MEDIUM 24

— INSTRUCTIONS

v

SIGNAL
GENERATION

DEVICE 18

Fig. 17

INTERNATIONAL SEARCH REPORT Internauonal application No.
PCT/USo01/27279

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :GO6F 15/16, 11/32,, 9/45, 8/00;

US CL :709/217, 200.54; 864/491; 717/6; 345/385
According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. 709/217, 200.54; $64/491; T17/6; 845/835

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y,P US 6,292,827B1 (RAZ) 18 September 2001, abstract, figures 1, 2, [1-30
col. 1 lines 39-col. 2 lines 52, col. 3 lines 27-38, col. 5 lines 40-59,
col. 7 lines 39-65, col. 16 lines 14-34.

Y US 5,751,965A (MAYO et al) 12 May 1998, abstract, figures 1, 3, | 1-30
4,7, col. 2 lines 10-55, col. 3 lines 12-63, col. 5 lines 5-col. 6 lines
37, col. 7 lines 6-50, col. 10 lines 3-25, col. 11 lines 7-27.

Y US 5,471,399A (TANAKA et al) 28 November 1995, abstract, col. | 1-30
1 lines 6-11, lines 47-col. 2 lines 45.

Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited d ts o lator document published after the international filing date or priority

date and not in conflict with the application but cited to understand
"A" dooument degining the general state of the art which is not considered ihe principle or theory underlying {1?@ invention ¢ understan
to be of partionlar relevance
f— : s : N) X" document of partioular relevance; the claimed invention cannot be
B earlior dooument publistied on or after the international filing date congidered novel or cannot be unm'sidemd to involve an inventive step
L dooument which may throw doubts on priority olaim(s) or which is when the docnment s taken alone
cited to establish the publicati of another citation or other . i) i
apocial reason (as specified) ™ doou.ment of particular relevance; the claimed invention cannot be
considored to involve an inventive step when the dooument is combined
"o" document referring to an oral disclosmre, use, exhibition or other with one or more other such documents, such combination being
means obvions to a person skilled in the art
"pn doonment poblished prior to the international filing date but Jater rgn dooument member of the same patent family
than the priority date claimed
Date of the actual completion of the international search " | Date of mailing of the international search report

26 OCTOBER 2001 1 3 DEC 2001 ()WQ\,

1 Name and mailing address of the ISA/US Authorized officer /@k’ g
Commissioner of Patents and Trademarks %\ 17

Box PCT
Washington, D.C. 20231 AYAZ R. SHEIKH é‘fz{

Facsimile No, (708) 805-8280 Telephone No. (708) 305-9648

Form PCT/ISA/210 (second sheet) (July 1998)%

INTERNATIONAL SEARCH REPORT

. et . .
International application No.
PCT/US01/27279

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
gory pprop passag

lines 66-col. 9 lines 67, col. 17 lines 55-col. 18 lines 8.

Y US 6,078,321A (SIMONOFTF et al) 20 June 2000, abstract, figures 2, | 1-30
5, col. 2 lines 35-54, col. 3 lines 28-67, col. 5 lines 41-65, col. 8

AP TS 6,113,651A (SAKAT et al) 05 September 2000, abstract, col. 3 1-50
lines 65-col. 4 lines 59, col. 10 lines 30-41, col. 12 lines 23-39.

Form PCT/ISA/210 (continuation of second sheet) (July 1998)x

INTERNATIONAL SEARCH REPORT Inweruational application No.
PCT/US01/27279

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

EAST, WEST

Search terms: pre-compile configuration network, rule file, program policy, network connection operation, virtual
machine and compile program, computer network managing, computer network access regulating, plurality or multiple
network connection device and network connection operation.

Form PCT/ISA/210 (extra sheet) (July 1998)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

