An accessory for laptops, tablets or other electronic devices which has an upper section assembled with a flap opening comprising of a polymer vinyl transparent element joined to a fabric element. The upper section is positioned around the top edge the of the display assembly allowing display visibility via approximately a small width of the vinyl transparent element. The fabric element hangs behind the electronic device. The fabric’s lower section is configured into approximately two pocket indentations with external side seams that have partial openings in each seam. The pockets conveniently and safely hold objects, such as portable/external memory hard drives with USB cables, flash drives, mice, CDs or DVDs, mobile internet devices, power adaptors and cords, small notepads, writing instruments or other objects that are light to medium weight or not too weighted. The side seam openings allow insertion/extraction locations for USB cables or other apparatus.
EPOCKET (ELECTRONIC POCKET)

CROSS-REFERENCE TO RELATED APPLICATION

[0001] Provisional application No. 62/165,418, filed on May 22, 2015.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable

THE NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENT

[0003] Not Applicable

REFERENCE TO A “SEQUENCE LISTING”

[0004] Not Applicable

STATEMENT REGARDING PRIOR DISCLOSURE BY THE INVENTOR

[0005] Not Applicable

BACKGROUND OF THE INVENTION

[0006] The present invention relates to ‘Subclass 725 . . . Pockets for plural articles’, which is a subclass indented under subclass 722. Henceforth, the present invention relates to a container for holding one or more articles in position in more than one hollow indentation, more particularly is directed toward a receptacle with pockets which attaches to electronic devices and holds objects and/or articles.

[0007] The ePocket, electronic pocket, submitted for the Provisional patent illustrated an accessory with curved corners on the top section. The illustrations for this Nonprovisional patent request, herewith, illustrates a modified ePocket with open angular corners in the upper section in lieu of curved corners.

[0008] The ePocket is an accessory invented for electronic devices, for example, laptops, tablets, and flat-screen desktop monitors, and is designed to hang from and around the top lid edge of electronic devices. It is an invention with one or more pockets that may conveniently and safely hold and carry one or more external devices or articles, for example, portable/external hard drives with USB cables flash drives, mice, discs (CD or DVD), mobile internet devices, power adaptor and cord, small notepads, writing instruments or other devices and objects that may be light to medium weight or not too weighted. The ePocket is positioned around the top section of the lid of host devices, for example, a laptop or a tablet device frame enclosure assembly, with a flexible transparent polymer plastic vinyl flap partially over the top front viewing section of the display and a fabric element construction with approximately two pockets hanging behind the lid/enclosure assembly. The transparency of the flap allows for visibility and optional touchscreen capability of the display and the pockets may hold devices or articles of a user’s choice that may be light to medium weight or not too weighted.

[0011] The ePocket is reversible. It is made with a transparent vinyl flap and pockets on one side, which may be hung on a device with the pockets facing the lid. It may also be hung on a device with the pockets facing outward from the lid. The method for reversal is by flipping the vinyl flap to the opposite side of the pockets. Again, the transparent vinyl flap is placed over the top of the display viewing section. The versatility selection is of a user’s choice.

[0012] The ePocket may comprise of a fabric element, a polymer plastic transparent vinyl element, and bias tape element. The fabric element and vinyl element are measured to the width of an electronic device, such as a laptop. Seam allowance is added to ensure the proper fitting around a device’s lid. The vinyl serves as the flap and may be shorter in length than the fabric. The fabric is longer than the vinyl. It is joined to the vinyl and assembled in the upper section. Further, the fabric element serves as a mid-section and leer section which comprises of a back panel and pockets. A bias tape element may be used to encase edges and provide a professional finish and aesthetic appearance.

[0013] The vinyl element and fabric element are rectangular shapes with the upper corners trimmed to form angular corners. The vinyl may be joined to the fabric at approximately three locations, forming a top section of the ePocket. The vinyl elementary be joined to the fabric element across the top edge and on either side of the fabric at equivalent lengths of the vinyl. The angular corners remain un-joined to form openings. The openings allow the corners of an electronic device to project through; thus enabling, a secure fit around device corners and around the top of the lid. The bias tape element may be used to encase the angled edges of the vinyl and the fabric and it also may be used to encase the lower horizontal edge of the fabric. The remaining raw edges of the fabric may be re-enforced with additional processing. The un-joined horizontal edge of the vinyl element remains uncovered (as-is) and slips over the viewing section of the lid in front of the display, while the fabric construction hangs behind the lid.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

[0014] FIG. 1 is an illustration of a first side of one embodiment of an ePocket.

[0015] FIG. 2 is an illustration of a second side of one embodiment of an ePocket.

[0016] FIG. 3 is an illustration of a flap of one embodiment of an ePocket.

[0017] FIG. 4 is an illustration of a top side and pockets of one embodiment of an ePocket.

[0018] FIG. 5 is an illustration of a first back side view of one embodiment of an ePocket.
FIG. 6 is an illustration of a second back side view of one embodiment of an ePocket with the flap moved/reversed to the back.

FIG. 7 is an illustration of a front side of one embodiment of an ePocket with the flap moved to the inside.

FIG. 8 is an illustration of the openings of one embodiment of an ePocket.

FIG. 9 is a perspective view of an ePocket attached to a host device (laptop) with the pockets facing the lid; perspective external memory devices placed in pockets horizontally.

FIG. 10 is a perspective view of an ePocket attached to a host device (laptop) with the pockets facing away from the lid; perspective external memory devices placed in pockets, one vertical and one horizontal.

FIG. 11 is an illustration of one embodiment of a piece of material that may be utilized to form the ePocket illustrated in FIGS. 1-10.

FIG. 12 is an illustration of one embodiment of a piece of material that may be utilized to form the ePocket illustrated in FIGS. 1-10.

FIG. 13 is an illustration of one embodiment of a piece of material that may be utilized to form the ePocket illustrated in FIGS. 1-10.

FIG. 14 is an illustration of one embodiment of an assembly of a piece of material shown in FIG. 13, that may be joined to the angular corners and lower horizontal edge of a piece of material shown in FIG. 11.

FIG. 15 is an illustration of one embodiment of an assembly of a piece of material shown in FIG. 13, that may be joined to the angular corners of a piece of material shown in FIG. 12.

FIG. 16 is an illustration of one embodiment of an upper section view of ePocket assemblies FIGS. 14 and 15 that may be joined at a top seam and on exterior sides sea.

FIG. 17 is an illustration of one embodiment of a method, of joining and processing the assemblies shown in FIGS. 14 and 15.

FIG. 18 is an illustration of one embodiment of a method of forming the lower section of an ePocket.

FIG. 19 is an illustration of one embodiment of a method of joining the lower section exterior vertical side seam sectional closures and leaving partial side seam openings; as visually illustrated in FIGS. 1 and 2.

FIG. 20 is an illustration of one embodiment of a method of joining the center of the lower section to form pocket indentations for the ePocket; as visually illustrated in FIG. 3.

DETAILED DESCRIPTION OF THE INVENTION

As disclosed herein, the ePocket (electronic pocket), an accessory for electronic devices, such as laptops, tablets, or other electronic devices that may benefit from its use, is provided. For ease of understanding, the laptop will be the preferred referenced electronic device.

The ePocket is an accessory for hanging from and around the top lid edge of a laptop with a polymer plastic transparent vinyl flap over the top front viewing section of the display, and a fabric construction with pockets behind the lid. The transparency of the flap allows for visibility and optional touchscreen capability of the display and the pockets may hold devices, articles and objects of users' choice that may be light to medium weight or not too weighted.

The ePocket is an accessory that provides a convenient and safe receptacle to hold and carry one or more external devices, articles and objects, for example, portable external memory hard drives with USB cables, flash drives, mice, discs (CD or DVD), mobile internet devices, power adaptor and cord, small notepads, writing instruments or other articles that may be light to medium weight or not too weighted. In addition, the user may stow a disconnected USB cable by looping its connector towards the center of the accessory and conveniently inserting it inside the pocket adjacent to its respective host external memory hard drive component.

The ePocket is reversible. In one embodiment it is made with a polymer transparent plastic vinyl flap and pockets on one viewing side, which may be hung on a laptop with the pockets facing the lid. It may also be hung on a laptop with pockets facing outward from the lid. The method for reversal is by flipping the vinyl flap to the opposite side of the pockets. Again, the transparent vinyl flap is placed over the top of the display's viewing section. Therefore the user may select whether to have the openings of the pockets facing the lid or facing outward from the lid.

FIGS. 1-8 illustrate one exemplary embodiment of an ePocket. More particularly, an accessory for electronic devices such as laptops or other electronic devices. FIGS. 100 is shown from a first side in FIG. 1 and an opposing side in FIG. 2. FIGS. 3 and 4 illustrate a flat/flush view and top view of the ePocket 100. FIGS. 5 and 6 illustrate two views of the reverse side of the ePocket 100; one view without the flap and one view with the flap 103. FIG. 7 illustrates the front view with the flap 103 moved to the reverse side of the ePocket 100. FIG. 8 illustrate the approximate open sections of the ePocket 100. FIGS. 9 and 10 illustrate the placement of ePocket 100 on perspective laptop devices. FIG. 9 illustrating the placer placement with the pockets facing the device and FIG. 10 illustrating the placement with the pockets facing away or outward from the device.

As shown, in FIG. 8, the ePocket may comprise of approximately seven openings. A first opening 101 and a second opening 102 are provided through which the upper corners of a laptop lid may project through. As shown in FIGS. 1-3 and 8, the corners which form the first and second openings are angled in a manner that may secure around the laptop's upper corners. FIG. 8 illustrates a third opening 103 which may be placed over the top edge of a laptop lid, with the narrow width and the long or horizontal section over the frame and viewing portion of the display. As shown in FIG. 3, the opening 103 may serve as a flap that may slip over the top and in front of the laptop viewing display. The flap allows the ePocket 100 to be reversible; it may be in the front of the accessory or flipped to the back of the accessory.

FIG. 8 illustrates a fourth opening 104 and a fifth opening 105 through which apparatus or cables, for example external memory hard drives with USB cables, may insert through either opening and may make connections to a laptop. As shown in FIGS. 1 and 2 the lower exterior vertical seams may have openings on either side to allow cables or other apparatus insertion or extraction. A sixth opening 106 and a seventh opening 107 are provided through which external devices, for example external memory hard drives,
may be placed. As shown in FIG. 4, the openings 106 and 107 form hollow pocket indentations for holding one or more article.

[0041] The fabric element of the ePocket 100 may be made from any of a wide range, of colors and any of a wide range of material or combinations thereof, such as knit material, stretch knits, polyesters, athletic mesh with a variation of hole sizes and textures, sport mesh with a variation of hole sizes and textures, nylon, lycra, heat resistant material, breathable fabrics, synthetic, netting material, or a type of element that will achieve the benefits of the ePocket 100. In one embodiment, the ePocket may be fabricated of athletic mesh fabric comprising of small open holes. The polymer element may be fabricated from transparent vinyl that is clear and resists cold and hot temperatures ranges, and a range of gages from medium, deluxe to premium. In one embodiment, the ePocket may be made with double polished clear vinyl media that is flexible yet durable. The bias, tape element that may encase several edges of the ePocket may be of a wide range of colors, widths, and may be made from any range of a wide range of material or combinations thereof, polyester, cotton, knit, lycra, nylon, synthetic or any type that may be used to encase edges. In one embodiment, the angled edges may be encased with a double fold fabric bias tape element, 0.25 inches wide. The lower horizontal fabric edge may be encased with a double fold fabric bias tape element, 0.5 inches wide. The lower horizontal fabric edge encased with bias tape may be positioned to become the upper horizontal edge of the pockets as illustrated in FIG. 4. The bias tape element may be obtained commercially machine made, tool made or handmade. The concept disclosed herein are not limited to a particular material and it will be recognized that many different materials and combinations of material may be utilized. The ePocket preferred fabric element may be athletic mesh fabric with or without stretch comprising of small open holes to allow air circulation that may allow external components, such as external memory hard drives, if utilized, to dissipate heat, if any.

[0042] The ePocket of FIGS. 1-5 is conveniently configured in a manner such that the accessory may be constructed to fit a range of device sizes. For example, a single pocket ePocket accessory may be constructed for smaller devices such as small notebooks, tablets, or smartphones. Whereas a two or more pocket ePocket accessory may be constructed for larger devices, such as larger laptops or flat screen monitors.

[0043] The ePocket 100 of FIGS. 1-4 is conveniently configured in a manner such that the flap 103 may be positioned in the front of the accessory. The flap 103 may also be moved to the back of the accessory as illustrated in FIGS. 6-7. Thus, the ePocket is reversible. With the flap 103 in the front of the accessory the pockets may face its host device as illustrated in one embodiment, FIG. 9. External devices, such as external memory hard drives with USB cables, may be positioned horizontally with the USB cables extending from either side seam openings 104 and 105. With the flap 103 moved to the back of the accessory the pockets face away from the host device as illustrated in one embodiment FIG. 10. In one embodiment, external memory devices with USB cables, may be positioned either horizontally with the cable extending from a side opening, 105; or an external memory device may be positioned vertically with the upper portion and cable extending above and beyond the pocket 106 as illustrated in FIG. 10.

[0044] The construction of the ePocket shown in FIGS. 1-10 is also advantageous in that it may be made from small amounts of material and from three of less elements thus providing a desirable ease of manufacturing. For example, in one illustrative embodiment as shown in FIG. 11, a rectangular piece of fabric 200 is provided having short sides 202 and 204, upper edge 206, lower horizontal edge 208, and upper angular corners 210 and 212. In another illustrative embodiment, shown in FIG. 12, a rectangular piece of vinyl 300 is provided having short sides 302 and 304, upper edge 306, lower horizontal 308 and upper angular corners 310 and 312. A third illustrative embodiment, as shown in FIG. 13, bias tape element 400, may be measured to fit and encase the angular corners, 210, 212, 310 and 312 and the horizontal edge 208. The use of bias tape is optional hence, three or less elements may construct the ePocket.

[0045] In order to form the ePocket 100 of FIGS. 1-10, 400 may be attached to 200. FIG. 14 illustrates the assembly 200A where 400 may be attached to the fabric 200 creating bias tape encased angular corners 210A and 212A and an encased lower horizontal edge 208A. 400 may be attached to 300. FIG. 15 illustrates the assembly 300A where 400 may be attached to the vinyl 300 creating bias tape encased angular corners 310A and 312A. The vinyl’s lower horizontal edge may remain uncovered (as-is) in order to allow screen display visibility. The bias tape element 400 may be attached by standard stitching, serge/overlock technique, permanent tapes, fabric glues, or any other joining technique.

[0046] The upper section 103A. FIG. 16 of the ePocket 100 of FIGS. 1-10 may be constructed by joining assembly 200A. FIG. 14, and assembly 300A. FIG. 15. The joined assemblies form assembly 500 as illustrated in FIG. 17. The top section of 200A, may be joined to 300A between location points 502 and 504 as illustrated in FIG. 17 to form top seam location 506. Assembly 200A may also be joined to assembly 300A at the exterior location points between 508 and 510 and between location points 514 and 516 as illustrated in FIG. 17. The section between 502 and 508 may represent opening 101 and the section between 504 and 514 may represent opening 102. The upper section 103A may be attached by standard stitching, serge/overlock technique, permanent tape, fabric glues, or any other joining technique. The remaining vertical fabric edges of assembly 500 between points 510 and 512 and between points 516 and 518 of FIG. 17, may be finished using standard stitching, serge/overlock technique, bias tape techniques, liquid fray stopping technique, or any other technique to finish fabric edges.

[0047] The lower section 530 of ePocket 100 of FIGS. 1-10 may be constructed by folding the edge 208A upwards as illustrated in FIG. 18. The mid-section 520 may remain visible between the lower edge of flap 103 and the upper horizontal edge of 208A as illustrated in FIG. 19. In one embodiment one exterior side seam of the folded area 530 may be joined above and below the opening 104 between points 202A and 202B and between points 202B and 202D. In one embodiment the other exterior side seam of the folded area 530 may be joined above and below the opening 105 between points 204A and 204D and between points 204C and 204D as illustrated in FIG. 19. Openings 104 and 105 may allow for perspective USB cables or other apparatus to
be inserted or extracted through the exterior side openings in order for connection/disconnection to a laptop. The joined exterior side seam locations may be joined using standard stitching, serger/overlock techniques, bias tape techniques, fabric glues, permanent tapes, or any other joining technique.

[0048] The indentations for the pockets 530C and 530D of ePocket 100 of FIGS. 1-10 may be formed in the center of the lower section 530 via stitching or any other joining technique between location points 503A and 503B to form a vertical joining line 503. To assure a secure joining, an additional stitching or a reinforced stitch, for example stretch stitch, may be utilized at location 503.

[0049] It will be recognized that the methods of forming the ePocket as shown in FIGS. 1-10 and 20 are exemplary and other methods of forming the ePocket from one or more pieces of material may be utilized. Further, other starting points and techniques as shown in FIG. 14 may be utilized to obtain the beneficial ePocket structure described herein.

[0050] In one illustrative embodiment the ePocket 100 may vary in sizes. The sizes of the fabric element 200, vinyl element 300 and bias tape element 400 may be varied so as to create different sizes of the ePocket 100. A range of material sizes may be used to accommodate perspective host electronic devices ranging in sizes from 10 inches or less to those 17 inches or more.

[0051] In one illustrative embodiment fabric 200 may be measured to the width of a 15.6 inch laptop. Fabric 200 may be measured to include the width of the device plus an additional amount to allow for seam allowance, such as one half inch to allow one quarter inch for each side. Likewise, vinyl 300 may be measured to the width of a 15.6 inch laptop, plus an additional amount to allow for seam allowance, such as one half inch to allow one quarter inch for each side. It will be recognized that the width of materials may be a range of dimensions, to accommodate the range of width dimensions of host electronic devices. In one illustrative embodiment fabric 200 may be of a length that is 11 inches to enable upper section 103A construction, midsection allowance 520 and lower section 530 construction as illustrated in FIG. 20. It will be recognized that the length of the fabric element may be a range of dimensions to accommodate the range of length dimensions of host electronic devices. Smaller devices may require less width and length fabric 100 dimensions, whereas larger devices may require more width and length fabric 100 dimensions. In another illustrative embodiment vinyl 300 may be of length of 2.25 inches to enable the construction of the upper section 103A as illustrated in FIG. 20. It will be recognized that the length of vinyl 300 may be a range of dimensions; however, a preferred length would be a length that may provide a secure and stable fit in the front of the laptop lid that may have sufficient coverage over the frame and over the display. It may also be recognized that vinyl 300 may be a range of gauges, (medium to premium) and a range of transparencies. Preferably, double polished clear vinyl of a sturdy gauge may be utilized in order to have optimum clarity to view display images and allow unobstructed display viewing; in addition to having durability to help support the ePocket if articles are placed within the pockets.

[0052] In one illustrative embodiment bias tape element 400 may be of a type that is double fold fabric and 0.5 inches wide and may be measured to the length of 16.1 (15.6 inches plus 0.5 inches) or enough to encase and be joined to the fabric edge 208. FIG. 14 illustrates the encased fabric edge 208A. In one illustrative embodiment fabric 200 and in another illustrative embodiment vinyl 300 may have angular corners 210, 212, 310 and 312 that may be configured at approximately 45 degrees as illustrated in FIGS. 11-12. Bias tape element 400 may be of a type that is double fold fabric and 0.25 inch wide and may be measured to the length of and joined to the angular corners 210A, 212A, 310A and 312A as illustrated in FIGS. 14-15. It will be recognized by those in the art that the use of bias tape may be optional; if utilized, it may be of any type and width and may be obtained commercially, machine made, tool made or handmade.

[0053] In one illustrative embodiment FIG. 18, the lower pocket section 530 that may form the initial construction of the pockets of ePocket 100 may measure 4.0 inches between points 530A and 530B. The measurement may begin at the lower edge 208A and measured upward approximately 4.0 inches. The exterior vertical seam edges, of the lower section 530 may be joined to have seams measuring 0.25 inch. As illustrated in FIG. 19: one seam joining between points 202A and 202B may measure 1.5 inches; a second seam joining between points 202C and 202D may measure 1.5 inches; a third seam joining between points 204A and 204B may measure 1.5 inches; and a fourth seam joining between points 204C and 204D may measure 1.5 inches. The area between points 202A and 202C may remain open and may preferably represent opening 104. The area between points 204A and 204C may remain open and measure 1.0 inch and may preferably opening 105. Openings 104 and 105 may allow insertion/extraction of USB cables or other apparatus.

[0054] In one illustrative embodiment the ePocket may be constructed with approximately two pockets to accommodate laptops measuring 15.6 inches. The width of the pockets may range approximately from 7.5 to 7.8, depending on allowed seam allowance. The preferred measurements are to achieve width that are approximately equivalent to one another as illustrated in FIG. 20. In addition, the flexibility of the fabric element may allow ease of insertion and extraction of articles.

[0055] Although FIGS. 11-20 illustrate exemplary methods of forming the ePocket of FIGS. 1-10, the ePocket disclosed herein is not limited to such methods of forming the accessory. Other techniques for manufacturing the ePocket may be utilized while still gaining the benefits of the ePocket disclosed herein. For example, instead of utilizing a clear transparent vinyl for the flap 103, another type of transparent or sheer material, fabric or synthetic, may be utilized. A material that may be sturdy and allow visibility and optional touchscreen capability. It may be flexible or rigid. Instead of clear transparent vinyl, additional fabric, such as may be used for the fabric construction, may be utilized. Steps may be taken as to not obscure the upper visual section of the host electronic display. Further, sewing elastic or stretch material may be utilized to join to the upper section of the ePocket as illustrated in FIG. 16. The elastic or stretch material may be joined to the fabric in such a way as to not obscure the upper visual section of the host electronic display, yet be positioned above the visual portion of the laptop display and adjacent with the frame. The elastic or stretch material may be measured to stretch the width of the laptop lid, yet snug enough to stabilize the ePocket and support the weight of external devices that may be placed in
the pockets. In one embodiment the upper corners of the fabric may be squared at approximately 90 degree angles and elastic or stretch material may be joined to the fabric at the corners. In one embodiment the corners of the upper section of the fabricated elements may be rounded at a circumference that may allow a snug fit onto the host electronic device lid.

Rather than having one piece of fabric element that may be folded and joined in sections on the sides and stitched in the center to form pockets, two or more pieces of fabric element may be utilized; for example, one larger piece for the back panel and two smaller pieces for the pockets. The two smaller pieces may be stitched together on one edge to form a center seam and then joined to the larger piece on the lower exterior vertical side seams, and joined in the center in a similar manner as illustrated in FIG. 20. In addition, different color fabric pieces may be used to create two-tone, three-tone or multi-tone embodiments. To those skilled in the art, in view of this description, alternate embodiments and modifications of this invention will be apparent. Therefore, the present invention is not limited by these example arrangements. To those skilled in the art, the manner of carrying out the invention may recognize that this description is to be interpreted as illustrative only and is for the purpose of teaching. It is to be understood that the forms of the invention shown herein and described are to be taken as the presently preferred embodiments. However, the implementations and structures may take on various changes. For example, one skilled in the art, would discern that equivalent examples may be substituted for those illustrated and described herein and certain features may be utilized independently in lieu of other features.

The invention claimed is:

1. An electronic pocket accessory for laptops or other electronic devices comprising: a fabric element sized and shaped, a polymer element sized and shaped, and a bias tape element measured to encase edges, constructed into an accessory with approximately three sections, an upper section, a mid-section and a lower section with approximately seven openings, a first opening, a second opening and a third opening in the upper section, and a fourth opening, a fifth opening, a sixth opening and a seventh opening in the lower section:

 the upper section portion comprising of portion of the fabric element, the polymer element and the bias tape element; said fabric element and said polymer element sized and shaped rectangular and joined in approximately three locations;

 the upper section portion comprises of the first and the second openings on the upper corners comprising of shaped open angular edges encased in said bias tape element;

 the upper section comprises of the third opening of said polymer element configured a short length rectangular shaped horizontal flap opening opposite of said fabric element; upper section for hanging from and around the top lid edge of a laptop or encasement of other electronic devices with its corners projected through said first and second, openings; said third opening polymer element portion for hanging in front of and across the top viewing section of the display of a laptop or other electronic device, while the fabric element is positioned behind the lid or encasement;

 the mid-section portion comprising of portion of the fabric element;

 the mid-section portion comprises as spacing between the upper section portion and the lower section portion; said mid-section portion for hanging behind lid of an electronic device;

 the lower section portion comprising of portion of the fabric element and bias tape element;

 the lower section portion comprising of a folded area comprising of a top horizontal edge encased in said bias tape element;

 the lower section portion comprising of said folded area joined in upper and lower sections on either exterior vertical side seam edges comprising of the fourth and fifth openings midway between the joined seam sections providing insertion/extraction locations for USB cables or other apparatus;

 the lower section portion comprising of said folded area comprises of vertical joining line midway between the exterior vertical side seam edges, extending from the top edge of the horizontal edge encased in the bias tape element to the bottom of the fold edge; said vertical joining line defining the sixth and seventh openings for pockets on either side of the vertical line comprising of approximately equally sized indentations; pocket openings for insertion/extraction of external memory devices or other articles that are light to medium weight or too weighted; said lower section portion for hanging behind the lid or encasement of a laptop or other electronic device.

2. The accessory of claim 1, wherein the fabric element is fabricated of an athletic mesh material comprising of small holes.

3. The accessory of claim 1, wherein the polymer element is fabricated of a transparent plastic vinyl material comprising of flexible double polished clear medium gauge material.

4. The accessory of claim 1, wherein the bias tape element is fabricated of a cloth material, double fold type.

5. An electronic pocket accessory for laptops or other electronic devices comprising: of a cloth element sized and shaped, a polymer element sized and shaped, and a bias tape element measured to encase edges, assembled into an accessory with approximately three sections, an upper section portion, a mid-section portion and a lower section portion with approximately seven openings, a first opening, a second opening and a third opening in the upper section, and a fourth opening, a fifth opening, a sixth opening and a seventh opening in the lower section:

 said upper section assembly comprising of portion of the cloth element, polymer element and bias tape element; said fabric element and said polymer element sized and shaped and joined in approximately three locations;

 said upper section assembly comprises of the first and the second openings on the upper corners comprising of shaped open angular edges encased in said bias tape element;

 said upper section assembly comprises of the third opening of said polymer element configured into a short length rectangular shaped horizontal flap opening opposite of said cloth element; upper section assembly for hanging from and around the top lid edge of a laptop or other electronic device with its corners projected through said first and second openings; said third opening for hanging in front of and across the top viewing section of the display of a laptop or other electronic device, while the fabric element is positioned behind the lid or encasement;
top viewing section of the display while the cloth element is positioned behind the lid;
said upper section assembly having selective positioning of said polymer element from one side of the fabric element to the other side;
said mid-section portion comprising of portion of the cloth element;
said mid-section portion comprises as spacing between upper section assembly and lower section assembly;
said mid-section portion for hanging behind lid of an electronic device;
said lower section assembly comprising of portion of the cloth element and bias tape element;
said lower section assembly comprising therein of a folded area having the upper horizontal edge encased in said bias tape element;
said lower section assembly comprising of a folded area joined in sections on either exterior seam edge comprising of the fourth and fifth openings centered between joined seam sections providing insertion/extraction locations for USB cables or other apparatus;
said lower section portion comprising of said folded area comprises of a vertical joining line in the center between the exterior side seam edges, extending from the top edge of the horizontal edge encased in the bias tape element to the bottom of the fold edge; said vertical joining line defining the sixth and seventh openings for pockets on either side of the vertical line comprising of approximately equal sized indentations; pocket openings for insertion/extraction of external memory devices or articles that are light to medium weight or not too weighted; said lower section portion for hanging behind lid of a laptop or other electronic devices.

6. The accessory of claim 5, wherein the cloth element is fabricated of an athletic mesh material comprising of small holes.

7. The accessory of claim 5, wherein the polymer element is fabricated of a transparent plastic vinyl material comprising of flexible double polished clear comprising of medium gauge.

8. The accessory of claim 5, wherein the bias tape element is fabricated of a cloth material, double fold type.

9. The accessory of claim 5, wherein the accessory being reversible.

10. The accessory of claim 9, wherein the upper section assembly having selective positioning of said polymer element from one side of the fabric element to the other side or repositioning thereof.

* * * * *