

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2018374176 B2

(54) Title
Detecting breast cancer

(51) International Patent Classification(s)
C12N 15/09 (2006.01) **C40B 30/04** (2006.01)
C12Q 1/68 (2018.01)

(21) Application No: **2018374176** (22) Date of Filing: **2018.11.28**

(87) WIPO No: **WO19/108626**

(30) Priority Data

(31) Number **62/592,828** (32) Date **2017.11.30** (33) Country **US**

(43) Publication Date: **2019.06.06**
(44) Accepted Journal Date: **2024.12.12**

(71) Applicant(s)
Exact Sciences Corporation;Mayo Foundation for Medical Education and Research

(72) Inventor(s)
AHLQUIST, David A.;TAYLOR, William R.;MAHONEY, Douglas W.;YAB, Tracy C.;KISIEL, John B.;ALLAWI, Hatim T.;LIDGARD, Graham P.;KAISER, Michael W.

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
WO 2016/041010 A1
Bediaga et al. SpringerPlus (2016) 5:623 DOI 10.1186/s40064-016-2235-0
PLoS ONE, vol. 9, no. 1, 9 January 2014, page e81843, DOI: 10.1371/journal.pone.0081843
Clare Stirzaker, et al., NATURE COMMUNICATIONS | 6:5899 | DOI: 10.1038/ncomms6899 | www.nature.com/naturecommunications
BEDIAGA NAIARA G ET AL: "DNA methylation epigenotypes in breast cancer molecular subtypes", BREAST CANCER RESEARCH, vol. 12, no. 5, 29 September 2010 (2010-09-29), pages R77, XP021085389, ISSN: 1465-5411, DOI: 10.1186/BCR2721
MATAHI MOARII ET AL: "Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype", HUMAN GENOMICS, vol. 9, no. 1, 2015-10-13, p 26, DOI: 10.1186/S40246-015-0048-9

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(10) International Publication Number

WO 2019/108626 A1

(43) International Publication Date
06 June 2019 (06.06.2019)

(51) International Patent Classification:

CI2N 15/09 (2006.01) *C40B 30/04* (2006.01)
CI2Q 1/68 (2018.01)

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2018/062809

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:

28 November 2018 (28.11.2018)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/592,828 30 November 2017 (30.11.2017) US

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(71) **Applicants:** **MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH** [US/US]; 200 First Street S.W., Rochester, Minnesota 55905 (US). **EXACT SCIENCES DEVELOPMENT COMPANY, LLC** [US/US]; 441 Charmany Drive, Madison, Wisconsin 53719 (US).

(72) **Inventors:** **AHLQUIST, David A.**; c/o Mayo Foundation for Medical Education and Research, 200 First Street S.W., Rochester, Minnesota 55905 (US). **TAYLOR, William R.**; c/o Mayo Foundation for Medical Education and Research, 200 First Street S.W., Rochester, Minnesota 55905 (US). **MAHONEY, Douglas W.**; c/o Mayo Foundation for Medical Education and Research, 200 First Street S.W., Rochester, Minnesota 55905 (US). **YAB, Tracy C.**; c/o Mayo Foundation for Medical Education and Research, 200 First Street S.W., Rochester, Minnesota 55905 (US). **KISIEL, John B.**; c/o Mayo Foundation for Medical Education and Research, 200 First Street S.W., Rochester, Minnesota 55905 (US). **ALLAWI, Hatim T.**; c/o Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, Wisconsin 53719 (US). **LIDGARD, Graham P.**; c/o Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, Wisconsin 53719 (US). **KAISER, Michael W.**; c/o Exact Sciences Development Company, LLC, 441 Charmany Drive, Rochester, Minnesota 55905 (US).

(74) **Agent:** **GOETZ, Robert, A.**; Casimir Jones, S.C., 2275 Deming Way, Ste 310, Middleton, Wisconsin 53562 (US).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(54) **Title:** DETECTING BREAST CANCER

(57) **Abstract:** Provided herein is technology for breast cancer screening and particularly, but not exclusively, to methods, compositions, and related uses for detecting the presence of breast cancer.

DETECTING BREAST CANCER

CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit of U.S. Provisional Application No. 5 62/592,828, filed November 30, 2017, the content of which is hereby incorporated by reference in its entirety.

FIELD OF INVENTION

Provided herein is technology for breast cancer screening and particularly, but not 10 exclusively, to methods, compositions, and related uses for detecting the presence of breast cancer.

BACKGROUND

Breast cancer affects approximately 230,000 US women per year and claims about 15 40,000 lives every year. Although carriers of germline mutations in BRCA1 and BRCA2 genes are known to be at high risk of breast cancer, most women who get breast cancer do not have a mutation in one of these genes and there is limited ability to accurately identify women at increased risk of breast cancer. Effective prevention therapies exist, but current risk prediction models do not accurately identify the majority of women at increased risk of 20 breast cancer (see, e.g., Pankratz VS, et al., J Clin Oncol 2008 Nov 20; 26(33):5374-9).

Improved methods for detecting breast cancer are needed.

The present invention addresses these needs.

SUMMARY

25 Methylated DNA has been studied as a potential class of biomarkers in the tissues of most tumor types. In many instances, DNA methyltransferases add a methyl group to DNA at cytosine-phosphate-guanine (CpG) island sites as an epigenetic control of gene expression. In a biologically attractive mechanism, acquired methylation events in promoter regions of tumor suppressor genes are thought to silence expression, thus contributing to oncogenesis. 30 DNA methylation may be a more chemically and biologically stable diagnostic tool than RNA or protein expression (Laird (2010) Nat Rev Genet 11: 191–203). Furthermore, in other cancers like sporadic colon cancer, methylation markers offer excellent specificity and are

more broadly informative and sensitive than are individual DNA mutations (Zou et al (2007) *Cancer Epidemiol Biomarkers Prev* 16: 2686–96).

Analysis of CpG islands has yielded important findings when applied to animal models and human cell lines. For example, Zhang and colleagues found that amplicons from 5 different parts of the same CpG island may have different levels of methylation (Zhang et al. (2009) *PLoS Genet* 5: e1000438). Further, methylation levels were distributed bi-modally between highly methylated and unmethylated sequences, further supporting the binary switch-like pattern of DNA methyltransferase activity (Zhang et al. (2009) *PLoS Genet* 5: e1000438). Analysis of murine tissues *in vivo* and cell lines *in vitro* demonstrated that only 10 about 0.3% of high CpG density promoters (HCP, defined as having >7% CpG sequence within a 300 base pair region) were methylated, whereas areas of low CpG density (LCP, defined as having <5% CpG sequence within a 300 base pair region) tended to be frequently methylated in a dynamic tissue-specific pattern (Meissner et al. (2008) *Nature* 454: 766–70). HCPs include promoters for ubiquitous housekeeping genes and highly regulated 15 developmental genes. Among the HCP sites methylated at >50% were several established markers such as Wnt 2, NDRG2, SFRP2, and BMP3 (Meissner et al. (2008) *Nature* 454: 766–70).

Epigenetic methylation of DNA at cytosine-phosphate-guanine (CpG) island sites by 20 DNA methyltransferases has been studied as a potential class of biomarkers in the tissues of most tumor types. In a biologically attractive mechanism, acquired methylation events in promotor regions of tumor suppressor genes are thought to silence expression, contributing to oncogenesis. DNA methylation may be a more chemically and biologically stable diagnostic tool than RNA or protein expression. Furthermore, in other cancers like sporadic colon 25 cancer, aberrant methylation markers are more broadly informative and sensitive than are individual DNA mutations and offer excellent specificity.

Several methods are available to search for novel methylation markers. While microarray based interrogation of CpG methylation is a reasonable, high-throughput approach, this strategy is biased towards known regions of interest, mainly established tumor suppressor 30 promoters. Alternative methods for genome-wide analysis of DNA methylation have been developed in the last decade. There are three basic approaches. The first employs digestion of DNA by restriction enzymes which recognize specific methylated sites, followed by several possible analytic techniques which provide methylation data limited to the enzyme recognition site or the primers used to amplify the DNA in quantification steps (such as

methylation-specific PCR; MSP). A second approach enriches methylated fractions of genomic DNA using anti-bodies directed to methyl-cytosine or other methylation-specific binding domains followed by microarray analysis or sequencing to map the fragment to a reference genome. This approach does not provide single nucleotide resolution of all 5 methylated sites within the fragment. A third approach begins with bisulfite treatment of the DNA to convert all unmethylated cytosines to uracil, followed by restriction enzyme digestion and complete sequencing of all fragments after coupling to an adapter ligand. The choice of restriction enzymes can enrich the fragments for CpG dense regions, reducing the number of redundant sequences which may map to multiple gene positions during analysis.

10 RRBS yields CpG methylation status data at single nucleotide resolution of 80-90% of all CpG islands and a majority of tumor suppressor promoters at medium to high read coverage. In cancer case - control studies, analysis of these reads results in the identification of differentially methylated regions (DMRs). In previous RRBS analysis of pancreatic cancer specimens, hundreds of DMRs were uncovered, many of which had never been associated 15 with carcinogenesis and many of which were unannotated. Further validation studies on independent tissue samples sets confirmed marker CpGs which were 100% sensitive and specific in terms of performance.

20 Provided herein is technology for breast cancer screening and particularly, but not exclusively, to methods, compositions, and related uses for detecting the presence of breast cancer.

Indeed, as described in Examples I, II and III, experiments conducted during the course for identifying embodiments for the present invention identified a novel set of differentially methylated regions (DMRs) for discriminating cancer of the breast derived DNA from non-neoplastic control DNA.

25 Such experiments list and describe 375 novel DNA methylation markers distinguishing breast cancer tissue from benign breast tissue (see, Tables 2 and 18, Examples I, II and III).

30 From these 375 novel DNA methylation markers, further experiments identified the following markers and/or panels of markers capable of distinguishing breast cancer tissue from benign breast tissue:

- ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B,

MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and ABLIM1 (see, Table 16E, Example II); and

- ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B, BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN_1B, CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316, CHST2_9470, CLIC6_B, CXCL12_B, DLX4_B, DNM3_D, EMX1_A, ESPN_B, FAM59B_7764, FOXP4_B, GP5, HOXA1_C, IGF2BP3_C, ITPRIPL1_1138, ITPRIPL1_1200, KCNK9_B, KCNK17_C, LAYN_B, LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br, MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A, OTX1_B, PLXNC1_B, PRKCB_7570, SCRT2_C, SLC30A10, SPHK2_B, ST8SIA4_B, STX16_C, TRH_A, and TRIM67_B (see, Table 22, Example III).

From these 375 novel DNA methylation markers, further experiments identified the following markers and/or panels of markers for detecting breast cancer in blood samples (e.g., plasma samples, whole blood samples, serum samples):

- CD1D, ITPRIPL1, FAM59B, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B (see, Table 27, Example III).

From these 375 novel DNA methylation markers, further experiments identified the following markers and/or panels of markers capable of distinguishing triple negative breast cancer tissue from benign breast tissue:

- ABLIM1, AJAP1_B, ASCL2, ATP6V1B1, BANK1, CALN1_A, CALN1_B, CLIC6, DSCR6, FOXP4, GAD2, GCGR, GP5, GRASP, HBM, HNF1B_B, KLF16, MAGI2, MAX.chr11.14926602-14927148, MAX.chr12.4273906-4274012, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr2.97193478-97193562, MAX.chr22.42679578-42679917, MAX.chr4.8859253-8859329, MAX.chr4.8859602-8859669, MAX.chr4.8860002-

8860038, MAX.chr5.145725410-145725459, MAX.chr6.157557371-157557657, MPZ, NKX2-6, PDX1, PLXNC1_A, PPARG, PRKCB, PTPRN2, RBFOX_A, SCRT2_A, SLC7A4, STAC2_B, STX16_A, STX16_B, TBX1, TRH_A, VSTM2B_A, ZBTB16, ZNF132, and ZSCAN23 (see, Table 3, Example I);

5 • CALN1_A, LOC100132891, NACAD, TRIM67, ATP6V1B1, DLX4, GP5, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ST8SIA4, STX16_B ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, KCNK9, SCRT2_B, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, and DSCR6 (see, Table 11, Example I);

10 • ATP6V1B1, MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012, MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4 (see, 15 BHLHE23_D, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4 (see, Table 16A, Example II).

From these 375 novel DNA methylation markers, further experiments identified the following markers and/or panels of markers capable of distinguishing HER2⁺ breast cancer 20 tissue from benign breast tissue:

• ABLIM1, AFAP1L1, AKR1B1, ALOX5, AMN, ARL5C, BANK1, BCAT1, BEGAIN, BEST4, BHLHE23_B, BHLHE23_C, C17orf64, C1QL2, C7orf52, CALN1_B, CAV2, CD8A, CDH4_A, CDH4_B, CDH4_C, CDH4_D, CDH4_E, CDH4_F, CHST2_B, CLIP4, CR1, DLK1, DNAJC6, DNM3_A, EMX1_A, ESPN, FABP5, FAM150A, FLJ42875, GLP1R, GNG4, GYPC_A, HAND2, HES5, HNF1B_A, HNF1B_B, HOXA1_A, HOXA1_B, HOXA7_A, HOXA7_B, HOXA7_C, HOXD9, IGF2BP3_A, IGF2BP3_B, IGSF9B_A, IL15RA, INSM1, ITPKA_B, ITPRIPL1, KCNE3, KCNK17_B, LIME1, LOC100132891, LOC283999, LY6H, MAST1, MAX.chr1.158083198-158083476, MAX.chr1.228074764-228074977, MAX.chr1.46913931-46913950, MAX.chr10.130085265-130085312, MAX.chr11.68622869-68622968, MAX.chr14.101176106-101176260, MAX.chr15.96889069-96889128, MAX.chr17.8230197-8230314, MAX.chr19.46379903-46380197, MAX.chr2.97193163-97193287,

MAX.chr2.97193478-97193562, MAX.chr20.1784209-1784461,
MAX.chr21.44782441-44782498, MAX.chr22.23908718-23908782,
MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598,
MAX.chr5.180101084-180101094, MAX.chr5.42952185-42952280,
5 MAX.chr5.42994866-42994936, MAX.chr6.27064703-27064783,
MAX.chr7.152622607-152622638, MAX.chr8.145104132-145104218,
MAX.chr9.136474504-136474527, MCF2L2, MSX2P1, NACAD, NID2_B, NID2_C,
ODC1, OSR2_B, PAQR6, PCDH8, PIF1, PPARA, PPP2R5C, PRDM13_A,
PRHOXNB, PRKCB, RBFOX3_A, RBFOX3_B, RFX8, SNCA, STAC2_A,
10 STAC2_B, STX16_B SYT5, TIMP2, TMEFF2, TNFRSF10D, TRH_B, TRIM67,
TRIM71_C, USP44_A, USP44_B, UTF1, UTS2R, VSTM2B_A, VSTM2B_B,
ZFP64, and ZNF132 (see, Table 4, Example I);

- BHLHE23_C, CALN1_A, CD1D, CHST2_A, FMN2, HOXA1_A, HOXA7_A,
KCNH8, LOC100132891, MAX.chr15.96889013-96889128, NACAD, TRIM67,
15 ATP6V1B1, C17orf64, CHST2_B, DLX4, DNM3_A, EMX1_A, IGF2BP3_A,
IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148,
MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1,
PLXNC1_A, PRKCB, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr12.4273906-
4274012, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, COL23A1,
20 KCNK9, LAYN, PLXNC1_A, RIC3, SCRT2_B, ALOX5, CDH4_E, HNF1B_B,
TRH_A, MAST1, ASCL2, MAX.chr20.1784209-1784461, RBFOX_A,
MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459,
MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4,
AJAP1_B, DSCR6, and MAX.chr11.68622869-68622968 (see, Table 11, Example I);
- ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF,
PRKCB, TRH_A, MPZ, GP5, DNM3_A, TRIM67, PLXNC1_A,
MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-
4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B,
MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968,
25 MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891,
BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A,
MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, DSCR6,

ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1, BHLHE23_D, ZSCAN12, GRASP, C10orf125 (see, Table 16B, Example II).

From these 375 novel DNA methylation markers, further experiments identified the
5 following markers and/or panels of markers capable of distinguishing Luminal A breast
cancer tissue from benign breast tissue:

- ARL5C, BHLHE23_C, BMP6, C10orf125, C17orf64, C19orf66, CAMKV, CD1D, CDH4_E, CDH4_F, CHST2_A, CRHBP, DLX6, DNM3_A, DNM3_B, DNM3_C, ESYT3, ETS1_A, ETS1_B, FAM126A, FAM189A1, FAM20A, FAM59B, FBN1, FLRT2, FMN2, FOXP4, GAS7, GYPC_A, GYPC_B, HAND2, HES5, HMGA2, HNF1B_B, IGF2BP3_A, IGF2BP3_B, KCNH8, KCNK17_A, KCNQ2, KLHDC7B, LOC100132891, MAX.chr1.46913931-46913950, MAX.chr11.68622869-68622968, MAX.chr12.4273906-4274012, MAX.chr12.59990591-59990895, MAX.chr17.73073682-73073814, MAX.chr20.1783841-1784054, MAX.chr21.47063802-47063851, MAX.chr4.8860002-8860038, MAX.chr5.172234248-172234494, MAX.chr5.178957564-178957598, MAX.chr6.130686865-130686985, MAX.chr8.687688-687736, MAX.chr8.688863-688924, MAX.chr9.114010-114207, MPZ, NID2_A, NKX2-6, ODC1, OSR2_A, POU4F1, PRDM13_B, PRKCB, RASGRF2, RIPPLY2, SLC30A10, ST8SIA4, SYN2, TRIM71_A, TRIM71_B, TRIM71_C, UBTF, ULBP1, USP44_B, and VSTM2B_A (see, Table 5, Example I);
- BHLHE23_C, CD1D, CHST2_A, FAM126A, FMN2, HOXA1_A, HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, SLC30A10, TRIM67, ATP6V1B1, BANK1, C10orf125, C17orf64, CHST2_B, DNM3_A, EMX1_A, GP5, IGF2BP3_A, IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1, PLXNC1_A, PRKCB, ST8SIA4, STX16_B UBTF, LOC100132891, ITPRIPL1, MAX.chr12.4273906-4274012, MAX.chr12.59990671-59990859, BHLHE23_D, COL23A1, KCNK9, OTX1, PLXNC1_A, HNF1B_B, MAST1, ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4, DSCR6, MAX.chr11.68622869-68622968 (see, Table 11, Example I);

- ATP6V1B1, LMX1B_A, BANK1, OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B, CDH4_E, ABLIM1, SLC30A10, C10orf125 (see, Table 16C, Example II).

From these 375 novel DNA methylation markers, further experiments identified the following markers and/or panels of markers capable of distinguishing Luminal B breast cancer tissue from benign breast tissue:

- ACCN1, AJAP1_A, AJAP1_B, BEST4, CALN1_B, CBLN1_B, CDH4_E, DLX4, FOXP4, IGSF9B_B, ITPRIPL1, KCNA1, KLF16, LMX1B_A, MAST1, MAX.chr11.14926602-14927148, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, MAX.chr19.30719261-30719354, MAX.chr22.42679578-42679917, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr8.124173128-124173268, MPZ, PPARA, PRMT1, RBFOX3_B, RYR2_A, SALL3, SCRT2_A, SPHK2, STX16_B, SYNJ2, TMEM176A, TSHZ3, and VIPR2 (see, Table 6, Example I);
- CALN1_A, LOC100132891, MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, DLX4, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, MAX.chr19.46379903-46380197, BHLHE23_D, HNF1B_B, TRH_A, ASCL2, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, AJAP1_B, and DSCR6 (see, Table 11, Example I);

- ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D (see, Table 16D, Example II).

10

From these 375 novel DNA methylation markers, further experiments identified the following markers and/or panels of markers capable of distinguishing BRCA1 breast cancer tissue from benign breast tissue:

- C10orf93, C20orf195_A, C20orf195_B, CALN1_B, CBLN1_A, CBLN1_B, CCDC61, CCND2_A, CCND2_B, CCND2_C, EMX1_B, FAM150B, GRASP, HBM, ITPRIPL1, KCNK17_A, KIAA1949, LOC100131176, MAST1, MAX.chr1.8277285-8277316, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr18.5629721-5629791, MAX.chr19.30719261-30719354, MAX.chr22.42679767-42679917, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr6.157556793-157556856, MAX.chr8.124173030-124173395, MN1, MPZ, NR2F6, PDXK_A, PDXK_B, PTPRM, RYR2_B, SERPINB9_A, SERPINB9_B, SLC8A3, STX16_B TEPP, TOX, VIPR2, VSTM2B_A, ZNF486, ZNF626, and ZNF671 (see, Table 7, Example I);
- BHLHE23_C, CALN1_A, CD1D, HOXA7_A, LOC100132891, MAX.chr1.8277479-8277527, MAX.chr15.96889013-96889128, NACAD, ATP6V1B1, BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, CXCL12, KCNK9, OTX1, RIC3, SCRT2_B, MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461,

MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, and DSCR6 (see, Table 11, Example I);

From these 375 novel DNA methylation markers, further experiments identified the
5 following markers and/or panels of markers capable of distinguishing BRCA2 breast cancer
tissue from benign breast tissue:

- ANTXR2, B3GNT5, BHLHE23_C, BMP4, CHRNA7, EPHA4, FAM171A1, FAM20A, FMNL2, FSCN1, GSTP1, HBM, IGFBP5, IL17REL, ITGA9, ITPRIPL1, KIRREL2, LRRC34, MAX.chr1.239549742-239549886, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr2.238864674-238864735, MAX.chr5.81148300-81148332, MAX.chr7.151145632-151145743, MAX.chr8.124173030-124173395, MAX.chr8.143533298-143533558, MERTK, MPZ, NID2_C, NTRK3, OLIG3_A, OLIG3_B, OSR2_C, PROM1, RGS17, SBNO2, STX16_B TBKBP1, TLX1NB, VIPR2, VN1R2, VSNL1, and ZFP64 (see, Table 8, Example I);
- MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, COL23A1, LAYN, OTX1, TRH_A, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968 (see, Table 11, Example I).

From these 375 novel DNA methylation markers, further experiments identified the
25 following markers and/or panels of markers capable of distinguishing invasive breast cancer
tissue from benign breast tissue:

- CDH4_E, FLJ42875, GAD2, GRASP, ITPRIPL1, KCNA1, MAX.chr12.4273906-4274012, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, MAX.chr19.30719261-30719354, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MPZ, NKX2-6, PRKCB, RBFOX3_B, SALL3, and VSTM2B_A (see, Table 2, Example I).

From these 375 novel DNA methylation markers, further experiments identified the following markers and/or panels of markers capable of distinguishing ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue:

- 5 • SCRT2_B, MPZ, MAX.chr8.124173030-124173395, ITPRIPL1, ITPRIPL1, DLX4, CALN1_A, and IGF2BP3_B (see, Table 15, Example I);
- SCRT2_B, ITPRIPL1, and MAX.chr8.124173030-12417339 (100% sensitive at 91% specificity) (see, Table 15, Example I),
- DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, and ITPRIPL1 (see, Table 17, Example II).

As described herein, the technology provides a number of methylated DNA markers and subsets thereof (e.g., sets of 2, 3, 4, 5, 6, 7, or 8 markers) with high discrimination for breast cancer overall and various types of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer). Experiments applied a selection filter to candidate markers to identify markers that provide a high signal to noise ratio and a low background level to provide high specificity for purposes of breast cancer screening or diagnosis.

20 In some embodiments, the technology is related to assessing the presence of and methylation state of one or more of the markers identified herein in a biological sample (e.g., breast tissue, plasma sample). These markers comprise one or more differentially methylated regions (DMR) as discussed herein, e.g., as provided in Tables 2 and 18. Methylation state is assessed in embodiments of the technology. As such, the technology provided herein is not restricted in the method by which a gene's methylation state is measured. For example, in some embodiments the methylation state is measured by a genome scanning method. For example, one method involves restriction landmark genomic scanning (Kawai et al. (1994) *Mol. Cell. Biol.* 14: 7421-7427) and another example involves methylation-sensitive arbitrarily primed PCR (Gonzalgo et al. (1997) *Cancer Res.* 57: 594-599). In some embodiments, changes in methylation patterns at specific CpG sites are monitored by digestion of genomic DNA with methylation-sensitive restriction enzymes followed by Southern analysis of the regions of interest (digestion-Southern method). In some embodiments, analyzing changes in methylation patterns involves a PCR-based process that

involves digestion of genomic DNA with methylation-sensitive restriction enzymes or methylation-dependent restriction enzymes prior to PCR amplification (Singer-Sam et al. (1990) *Nucl. Acids Res.* 18: 687). In addition, other techniques have been reported that utilize bisulfite treatment of DNA as a starting point for methylation analysis. These include 5 methylation-specific PCR (MSP) (Herman et al. (1992) *Proc. Natl. Acad. Sci. USA* 93: 9821–9826) and restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA (Sadri and Hornsby (1996) *Nucl. Acids Res.* 24: 5058–5059; and Xiong and Laird (1997) *Nucl. Acids Res.* 25: 2532–2534). PCR techniques have been developed for detection 10 of gene mutations (Kuppuswamy et al. (1991) *Proc. Natl. Acad. Sci. USA* 88: 1143–1147) and quantification of allelic-specific expression (Szabo and Mann (1995) *Genes Dev.* 9: 3097–3108; and Singer-Sam et al. (1992) *PCR Methods Appl.* 1: 160–163). Such techniques use internal primers, which anneal to a PCR-generated template and terminate immediately 5' of the single nucleotide to be assayed. Methods using a “quantitative Ms-SNuPE assay” as 15 described in U.S. Pat. No. 7,037,650 are used in some embodiments.

Upon evaluating a methylation state, the methylation state is often expressed as the fraction or percentage of individual strands of DNA that is methylated at a particular site (e.g., at a single nucleotide, at a particular region or locus, at a longer sequence of interest, e.g., up to a ~100-bp, 200-bp, 500-bp, 1000-bp subsequence of a DNA or longer) relative to the total population of DNA in the sample comprising that particular site. Traditionally, the 20 amount of the unmethylated nucleic acid is determined by PCR using calibrators. Then, a known amount of DNA is bisulfite treated and the resulting methylation-specific sequence is determined using either a real-time PCR or other exponential amplification, e.g., a QuARTS assay (e.g., as provided by U.S. Pat. No. 8,361,720; and U.S. Pat. Appl. Pub. Nos. 2012/0122088 and 2012/0122106, incorporated herein by reference).

For example, in some embodiments methods comprise generating a standard curve for the unmethylated target by using external standards. The standard curve is constructed from 25 at least two points and relates the real-time Ct value for unmethylated DNA to known quantitative standards. Then, a second standard curve for the methylated target is constructed from at least two points and external standards. This second standard curve relates the Ct for 30 methylated DNA to known quantitative standards. Next, the test sample Ct values are determined for the methylated and unmethylated populations and the genomic equivalents of DNA are calculated from the standard curves produced by the first two steps. The percentage of methylation at the site of interest is calculated from the amount of methylated DNAs

relative to the total amount of DNAs in the population, e.g., (number of methylated DNAs) / (the number of methylated DNAs + number of unmethylated DNAs) × 100.

Also provided herein are compositions and kits for practicing the methods. For example, in some embodiments, reagents (e.g., primers, probes) specific for one or more markers are provided alone or in sets (e.g., sets of primers pairs for amplifying a plurality of markers). Additional reagents for conducting a detection assay may also be provided (e.g., enzymes, buffers, positive and negative controls for conducting QuARTS, PCR, sequencing, bisulfite, or other assays). In some embodiments, the kits contain a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent). In some embodiments, the kits containing one or more reagent necessary, sufficient, or useful for conducting a method are provided. Also provided are reactions mixtures containing the reagents. Further provided are master mix reagent sets containing a plurality of reagents that may be added to each other and/or to a test sample to complete a reaction mixture.

In some embodiments, the technology described herein is associated with a programmable machine designed to perform a sequence of arithmetic or logical operations as provided by the methods described herein. For example, some embodiments of the technology are associated with (e.g., implemented in) computer software and/or computer hardware. In one aspect, the technology relates to a computer comprising a form of memory, an element for performing arithmetic and logical operations, and a processing element (e.g., a microprocessor) for executing a series of instructions (e.g., a method as provided herein) to read, manipulate, and store data. In some embodiments, a microprocessor is part of a system for determining a methylation state (e.g., of one or more DMR, e.g., DMR 1-375 as provided in Tables 2 and 18); comparing methylation states (e.g., of one or more DMR, e.g., DMR 1-375 as provided in Tables 2 and 18); generating standard curves; determining a Ct value; calculating a fraction, frequency, or percentage of methylation (e.g., of one or more DMR, e.g., DMR 1-375 as provided in Tables 2 and 18); identifying a CpG island; determining a specificity and/or sensitivity of an assay or marker; calculating an ROC curve and an associated AUC; sequence analysis; all as described herein or is known in the art.

In some embodiments, a microprocessor or computer uses methylation state data in an algorithm to predict a site of a cancer.

In some embodiments, a software or hardware component receives the results of multiple assays and determines a single value result to report to a user that indicates a cancer

risk based on the results of the multiple assays (e.g., determining the methylation state of multiple DMR, e.g., as provided in Tables 2 and 18). Related embodiments calculate a risk factor based on a mathematical combination (e.g., a weighted combination, a linear combination) of the results from multiple assays, e.g., determining the methylation states of 5 multiple markers (such as multiple DMR, e.g., as provided in Tables 2 and 18). In some embodiments, the methylation state of a DMR defines a dimension and may have values in a multidimensional space and the coordinate defined by the methylation states of multiple DMR is a result, e.g., to report to a user, e.g., related to a cancer risk.

Some embodiments comprise a storage medium and memory components. Memory 10 components (e.g., volatile and/or nonvolatile memory) find use in storing instructions (e.g., an embodiment of a process as provided herein) and/or data (e.g., a work piece such as methylation measurements, sequences, and statistical descriptions associated therewith). Some embodiments relate to systems also comprising one or more of a CPU, a graphics card, and a user interface (e.g., comprising an output device such as display and an input device 15 such as a keyboard).

Programmable machines associated with the technology comprise conventional extant technologies and technologies in development or yet to be developed (e.g., a quantum computer, a chemical computer, a DNA computer, an optical computer, a spintronics based computer, etc.).

20 In some embodiments, the technology comprises a wired (e.g., metallic cable, fiber optic) or wireless transmission medium for transmitting data. For example, some embodiments relate to data transmission over a network (e.g., a local area network (LAN), a wide area network (WAN), an ad-hoc network, the internet, etc.). In some embodiments, programmable machines are present on such a network as peers and in some embodiments 25 the programmable machines have a client/server relationship.

In some embodiments, data are stored on a computer-readable storage medium such as a hard disk, flash memory, optical media, a floppy disk, etc.

30 In some embodiments, the technology provided herein is associated with a plurality of programmable devices that operate in concert to perform a method as described herein. For example, in some embodiments, a plurality of computers (e.g., connected by a network) may work in parallel to collect and process data, e.g., in an implementation of cluster computing or grid computing or some other distributed computer architecture that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected

to a network (private, public, or the internet) by a conventional network interface, such as Ethernet, fiber optic, or by a wireless network technology.

For example, some embodiments provide a computer that includes a computer-readable medium. The embodiment includes a random access memory (RAM) coupled to a processor. The processor executes computer-executable program instructions stored in memory. Such processors may include a microprocessor, an ASIC, a state machine, or other processor, and can be any of a number of computer processors, such as processors from Intel Corporation of Santa Clara, California and Motorola Corporation of Schaumburg, Illinois. Such processors include, or may be in communication with, media, for example computer-readable media, which stores instructions that, when executed by the processor, cause the processor to perform the steps described herein.

Embodiments of computer-readable media include, but are not limited to, an electronic, optical, magnetic, or other storage or transmission device capable of providing a processor with computer-readable instructions. Other examples of suitable media include, but are not limited to, a floppy disk, CD-ROM, DVD, magnetic disk, memory chip, ROM, RAM, an ASIC, a configured processor, all optical media, all magnetic tape or other magnetic media, or any other medium from which a computer processor can read instructions. Also, various other forms of computer-readable media may transmit or carry instructions to a computer, including a router, private or public network, or other transmission device or channel, both wired and wireless. The instructions may comprise code from any suitable computer-programming language, including, for example, C, C++, C#, Visual Basic, Java, Python, Perl, and JavaScript.

Computers are connected in some embodiments to a network. Computers may also include a number of external or internal devices such as a mouse, a CD-ROM, DVD, a keyboard, a display, or other input or output devices. Examples of computers are personal computers, digital assistants, personal digital assistants, cellular phones, mobile phones, smart phones, pagers, digital tablets, laptop computers, internet appliances, and other processor-based devices. In general, the computers related to aspects of the technology provided herein may be any type of processor-based platform that operates on any operating system, such as Microsoft Windows, Linux, UNIX, Mac OS X, etc., capable of supporting one or more programs comprising the technology provided herein. Some embodiments comprise a personal computer executing other application programs (e.g., applications). The applications can be contained in memory and can include, for example, a word processing

application, a spreadsheet application, an email application, an instant messenger application, a presentation application, an Internet browser application, a calendar/organizer application, and any other application capable of being executed by a client device.

5 All such components, computers, and systems described herein as associated with the technology may be logical or virtual.

Accordingly, provided herein is technology related to a method of screening for breast cancer and/or various forms of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer) in a sample obtained from a subject, the method comprising assaying a 10 methylation state of a marker in a sample obtained from a subject (e.g., breast tissue) (e.g., plasma sample) and identifying the subject as having breast cancer and/or a specific form of breast cancer when the methylation state of the marker is different than a methylation state of the marker assayed in a subject that does not have breast cancer, wherein the marker comprises a base in a differentially methylated region (DMR) selected from a group 15 consisting of DMR 1–375 as provided in Tables 2 and 18.

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has breast cancer: ATP6V1B1, LMX1B_A, BANK1, OTX1, 20 MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, MAX.chr19.46379903-25 46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and ABLIM1 (see, Table 16E, Example II).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast 30 cancer indicates the subject has breast cancer: ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B, BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN_1B, CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316, CHST2_9470, CLIC6_B, CXCL12_B, DLX4_B, DNM3_D, EMX1_A, ESPN_B,

FAM59B_7764, FOXP4_B, GP5, HOXA1_C, IGF2BP3_C, ITPRIPL1_1138, ITPRIPL1_1200, KCNK9_B, KCNK17_C, LAYN_B, LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br, MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A, OTX1_B, PLXNC1_B, PRKCB_7570, 5 SCRT2_C, SLC30A10, SPHK2_B, ST8SIA4_B, STX16_C, TRH_A, and TRIM67_B (see, Table 22, Example III).

In some embodiments wherein the sample obtained from the subject is a blood sample (e.g., plasma, serum, whole blood) and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject 10 that does not have breast cancer indicates the subject has breast cancer: CD1D, ITPRIPL1, FAM59B, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B (see, Table 27, Example III).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a 15 methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has triple negative breast cancer: ABLIM1, AJAP1_B, ASCL2, ATP6V1B1, BANK1, CALN1_A, CALN1_B, CLIC6, DSCR6, FOXP4, GAD2, GCGR, GP5, GRASP, HBM, HNF1B_B, KLF16, MAGI2, MAX.chr11.14926602-14927148, MAX.chr12.4273906-4274012, MAX.chr17.73073682-73073814, MAX.chr18.76734362- 20 76734370, MAX.chr2.97193478-97193562, MAX.chr22.42679578-42679917, MAX.chr4.8859253-8859329, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr6.157557371-157557657, MPZ, NKX2-6, PDX1, PLXNC1_A, PPARG, PRKCB, PTPRN2, RBFOX_A, SCRT2_A, SLC7A4, STAC2_B, STX16_A, STX16_B, TBX1, TRH_A, VSTM2B_A, ZBTB16, ZNF132, and 25 ZSCAN23 (see, Table 3, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has triple negative breast cancer: CALN1_A, LOC100132891, 30 NACAD, TRIM67, ATP6V1B1, DLX4, GP5, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ST8SIA4, STX16_B ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, KCNK9, SCRT2_B, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461,

MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, and DSCR6 (see, Table 11, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a 5 methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has triple negative breast cancer: ATP6V1B1,

MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67,

MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012,

MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459,

10 BHLHE23_D, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4 (see, Table 16A, Example II).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a 15 methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has HER2⁺ breast cancer: ABLIM1, AFAP1L1, AKR1B1,

ALOX5, AMN, ARL5C, BANK1, BCAT1, BEGAIN, BEST4, BHLHE23_B, BHLHE23_C,

C17orf64, C1QL2, C7orf52, CALN1_B, CAV2, CD8A, CDH4_A, CDH4_B, CDH4_C,

CDH4_D, CDH4_E, CDH4_F, CHST2_B, CLIP4, CR1, DLK1, DNAJC6, DNM3_A,

EMX1_A, ESPN, FABP5, FAM150A, FLJ42875, GLP1R, GNG4, GYPC_A, HAND2,

20 HES5, HNF1B_A, HNF1B_B, HOXA1_A, HOXA1_B, HOXA7_A, HOXA7_B, HOXA7_C, HOXD9, IGF2BP3_A, IGF2BP3_B, IGSF9B_A, IL15RA, INSM1, ITPKA_B, ITPRIPL1, KCNE3, KCNK17_B, LIME1, LOC100132891, LOC283999, LY6H, MAST1,

MAX.chr1.158083198-158083476, MAX.chr1.228074764-228074977,

MAX.chr1.46913931-46913950, MAX.chr10.130085265-130085312,

25 MAX.chr11.68622869-68622968, MAX.chr14.101176106-101176260, MAX.chr15.96889069-96889128, MAX.chr17.8230197-8230314, MAX.chr19.46379903-46380197, MAX.chr2.97193163-97193287, MAX.chr2.97193478-97193562, MAX.chr20.1784209-1784461, MAX.chr21.44782441-44782498, MAX.chr22.23908718-23908782, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598,

30 MAX.chr5.180101084-180101094, MAX.chr5.42952185-42952280, MAX.chr5.42994866-42994936, MAX.chr6.27064703-27064783, MAX.chr7.152622607-152622638, MAX.chr8.145104132-145104218, MAX.chr9.136474504-136474527, MCF2L2, MSX2P1, NACAD, NID2_B, NID2_C, ODC1, OSR2_B, PAQR6, PCDH8, PIF1, PPARA, PPP2R5C,

PRDM13_A, PRHOXNB, PRKCB, RBFOX3_A, RBFOX3_B, RFX8, SNCA, STAC2_A, STAC2_B, STX16_B SYT5, TIMP2, TMEFF2, TNFRSF10D, TRH_B, TRIM67, TRIM71_C, USP44_A, USP44_B, UTF1, UTS2R, VSTM2B_A, VSTM2B_B, ZFP64, and ZNF132 (see, Table 4, Example I).

5 In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has HER2⁺ breast cancer: BHLHE23_C, CALN1_A, CD1D, CHST2_A, FMN2, HOXA1_A, HOXA7_A, KCNH8, LOC100132891,

10 MAX.chr15.96889013-96889128, NACAD, TRIM67, ATP6V1B1, C17orf64, CHST2_B, DLX4, DNM3_A, EMX1_A, IGF2BP3_A, IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1, PLXNC1_A, PRKCB, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr12.4273906-4274012, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D,

15 COL23A1, KCNK9, LAYN, PLXNC1_A, RIC3, SCRT2_B, ALOX5, CDH4_E, HNF1B_B, TRH_A, MAST1, ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4, AJAP1_B, DSCR6, and MAX.chr11.68622869-68622968 (see, Table 11, Example I).

20 In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has HER2⁺ breast cancer: ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, GP5, DNM3_A,

25 TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A,

30 MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1, BHLHE23_D, ZSCAN12, GRASP, C10orf125 (see, Table 16B, Example II).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has Luminal A breast cancer: ARL5C, BHLHE23_C, BMP6, 5 C10orf125, C17orf64, C19orf66, CAMKV, CD1D, CDH4_E, CDH4_F, CHST2_A, CRHBP, DLX6, DNM3_A, DNM3_B, DNM3_C, ESYT3, ETS1_A, ETS1_B, FAM126A, FAM189A1, FAM20A, FAM59B, FBN1, FLRT2, FMN2, FOXP4, GAS7, GYPC_A, GYPC_B, HAND2, HES5, HMGA2, HNF1B_B, IGF2BP3_A, IGF2BP3_B, KCNH8, KCNK17_A, KCNQ2, KLHDC7B, LOC100132891, MAX.chr1.46913931-46913950, 10 MAX.chr11.68622869-68622968, MAX.chr12.4273906-4274012, MAX.chr12.59990591-59990895, MAX.chr17.73073682-73073814, MAX.chr20.1783841-1784054, MAX.chr21.47063802-47063851, MAX.chr4.8860002-8860038, MAX.chr5.172234248-172234494, MAX.chr5.178957564-178957598, MAX.chr6.130686865-130686985, MAX.chr8.687688-687736, MAX.chr8.688863-688924, MAX.chr9.114010-114207, MPZ, 15 NID2_A, NKX2-6, ODC1, OSR2_A, POU4F1, PRDM13_B, PRKCB, RASGRF2, RIPPLY2, SLC30A10, ST8SIA4, SYN2, TRIM71_A, TRIM71_B, TRIM71_C, UBTF, ULBP1, USP44_B, and VSTM2B_A (see, Table 5, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has Luminal A breast cancer: BHLHE23_C, CD1D, CHST2_A, 20 FAM126A, FMN2, HOXA1_A, HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, SLC30A10, TRIM67, ATP6V1B1, BANK1, C10orf125, C17orf64, CHST2_B, DNM3_A, EMX1_A, GP5, IGF2BP3_A, IGF2BP3_B, ITPRIPL1, 25 LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1, PLXNC1_A, PRKCB, ST8SIA4, STX16_B UBTF, LOC100132891, ITPRIPL1, MAX.chr12.4273906-4274012, MAX.chr12.59990671-59990859, BHLHE23_D, COL23A1, KCNK9, OTX1, PLXNC1_A, HNF1B_B, MAST1, ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, 30 MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4, DSCR6, MAX.chr11.68622869-68622968 (see, Table 11, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has Luminal A breast cancer: ATP6V1B1, LMX1B_A, BANK1,

5 OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891,

10 BHLHE23_D, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B, CDH4_E, ABLIM1, SLC30A10, C10orf125 (see, Table 16C, Example II).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a

15 methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has Luminal B breast cancer: ACCN1, AJAP1_A, AJAP1_B, BEST4, CALN1_B, CBLN1_B, CDH4_E, DLX4, FOXP4, IGSF9B_B, ITPRIPL1, KCNA1, KLF16, LMX1B_A, MAST1, MAX.chr11.14926602-14927148, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476,

20 MAX.chr19.30719261-30719354, MAX.chr22.42679578-42679917, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr8.124173128-124173268, MPZ, PPARA, PRMT1, RBFOX3_B, RYR2_A, SALL3, SCRT2_A, SPHK2, STX16_B, SYNJ2, TMEM176A, TSHZ3, and VIPR2 (see, Table 6, Example I).

25 In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has Luminal B breast cancer: CALN1_A, LOC100132891, MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, DLX4, ITPRIPL1,

30 MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, MAX.chr19.46379903-46380197, BHLHE23_D, HNF1B_B, TRH_A, ASCL2, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-

145725459, MAX.chr5.77268672-77268725, BEST4, AJAP1_B, and DSCR6 (see, Table 11, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a
5 methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has Luminal B breast cancer: ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, 10 SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D (see, Table 16D, Example II).

15 In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has BRCA1 breast cancer: C10orf93, C20orf195_A, C20orf195_B, CALN1_B, CBLN1_A, CBLN1_B, CCDC61, CCND2_A, CCND2_B, 20 CCND2_C, EMX1_B, FAM150B, GRASP, HBM, ITPRIPL1, KCNK17_A, KIAA1949, LOC100131176, MAST1, MAX.chr1.8277285-8277316, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr18.5629721-5629791, MAX.chr19.30719261-30719354, MAX.chr22.42679767-42679917, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr6.157556793-157556856, MAX.chr8.124173030-124173395, MN1, MPZ, NR2F6, PDXK_A, PDXK_B, PTPRM, RYR2_B, SERPINB9_A, SERPINB9_B, SLC8A3, STX16_B TEPP, TOX, VIPR2, VSTM2B_A, ZNF486, ZNF626, and ZNF671 (see, Table 7, Example I).

30 In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has BRCA1 breast cancer: BHLHE23_C, CALN1_A, CD1D, HOXA7_A, LOC100132891, MAX.chr1.8277479-8277527, MAX.chr15.96889013-

96889128, NACAD, ATP6V1B1, BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, CXCL12, 5 KCNK9, OTX1, RIC3, SCRT2_B, MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, and DSCR6 (see, Table 11, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a 10 methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has BRCA2 breast cancer: ANTXR2, B3GNT5, BHLHE23_C, BMP4, CHRNA7, EPHA4, FAM171A1, FAM20A, FMNL2, FSCN1, GSTP1, HBM, IGFBP5, IL17REL, ITGA9, ITPRIPL1, KIRREL2, LRRC34, MAX.chr1.239549742-239549886, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, 15 MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr2.238864674-238864735, MAX.chr5.81148300-81148332, MAX.chr7.151145632-151145743, MAX.chr8.124173030-124173395, MAX.chr8.143533298-143533558, MERTK, MPZ, NID2_C, NTRK3, OLIG3_A, OLIG3_B, OSR2_C, PROM1, RGS17, SBNO2, STX16_B TBKBP1, TLX1NB, VIPR2, VN1R2, VSNL1, and ZFP64 (see, Table 8, Example I).

20 In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has BRCA2 breast cancer: MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, 25 COL23A1, LAYN, OTX1, TRH_A, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968 (see, Table 11, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a 30 methylation state of the one or more markers assayed in a subject that does not have breast cancer indicates the subject has invasive breast cancer: CDH4_E, FLJ42875, GAD2, GRASP, ITPRIPL1, KCNA1, MAX.chr12.4273906-4274012, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, MAX.chr19.30719261-30719354, MAX.chr4.8859602-

8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MPZ, NKX2-6, PRKCB, RBFOX3_B, SALL3, and VSTM2B_A (see, Table 9, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue
5 and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer distinguishes between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue: SCRT2_B, MPZ, MAX.chr8.124173030-124173395, ITPRIPL1, ITPRIPL1, DLX4, CALN1_A, and
10 IGF2BP3_B (see, Table 15, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a methylation state of the one or more markers assayed in a subject that does not have breast cancer distinguishes between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue: SCRT2_B, ITPRIPL1, and MAX.chr8.124173030-12417339 (100% sensitive at 91% specificity) (see, Table 15, Example I).

In some embodiments wherein the sample obtained from the subject is breast tissue and the methylation state of one or more of the following markers is different than a
20 methylation state of the one or more markers assayed in a subject that does not have breast cancer distinguishes between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue: DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, and ITPRIPL1 (see, Table 17, 25 Example II).

The technology is related to identifying and discriminating breast cancer and/or various forms of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer). Some embodiments provide methods comprising assaying a plurality of markers, 30 e.g., comprising assaying 2 to 11 to 100 or 120 or 375 markers.

The technology is not limited in the methylation state assessed. In some embodiments assessing the methylation state of the marker in the sample comprises determining the methylation state of one base. In some embodiments, assaying the methylation state of the

marker in the sample comprises determining the extent of methylation at a plurality of bases. Moreover, in some embodiments the methylation state of the marker comprises an increased methylation of the marker relative to a normal methylation state of the marker. In some embodiments, the methylation state of the marker comprises a decreased methylation of the marker relative to a normal methylation state of the marker.

5 marker relative to a normal methylation state of the marker. In some embodiments the methylation state of the marker comprises a different pattern of methylation of the marker relative to a normal methylation state of the marker.

Furthermore, in some embodiments the marker is a region of 100 or fewer bases, the marker is a region of 500 or fewer bases, the marker is a region of 1000 or fewer bases, the
10 marker is a region of 5000 or fewer bases, or, in some embodiments, the marker is one base. In some embodiments the marker is in a high CpG density promoter.

The technology is not limited by sample type. For example, in some embodiments the sample is a stool sample, a tissue sample (e.g., breast tissue sample), a blood sample (e.g., plasma, serum, whole blood), an excretion, or a urine sample.

15 Furthermore, the technology is not limited in the method used to determine methylation state. In some embodiments the assaying comprises using methylation specific polymerase chain reaction, nucleic acid sequencing, mass spectrometry, methylation specific nuclease, mass-based separation, or target capture. In some embodiments, the assaying comprises use of a methylation specific oligonucleotide. In some embodiments, the technology uses massively parallel sequencing (e.g., next-generation sequencing) to determine methylation state, e.g., sequencing-by-synthesis, real-time (e.g., single-molecule) sequencing, bead emulsion sequencing, nanopore sequencing, etc.

20

The technology provides reagents for detecting a DMR, e.g., in some embodiments are provided a set of oligonucleotides comprising the sequences provided by SEQ ID NO: 1–
25 422 (see, Tables 10, 19 and 20). In some embodiments are provided an oligonucleotide comprising a sequence complementary to a chromosomal region having a base in a DMR, e.g., an oligonucleotide sensitive to methylation state of a DMR.

The technology provides various panels of markers use for identifying breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPR1PL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968,

MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and ABLIM1 (see, Table 16E, Example II).

5 The technology provides various panels of markers use for identifying breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B, BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN1_B, CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316, CHST2_9470, CLIC6_B, CXCL12_B, 10 DLX4_B, DNM3_D, EMX1_A, ESPN_B, FAM59B_7764, FOXP4_B, GP5, HOXA1_C, IGF2BP3_C, ITPRIPL1_1138, ITPRIPL1_1200, KCNK9_B, KCNK17_C, LAYN_B, LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br, MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A, OTX1_B, PLXNC1_B, PRKCB_7570, SCRT2_C, SLC30A10, SPHK2_B, ST8SIA4_B, STX16_C, 15 TRH_A, and TRIM67_B (see, Table 22, Example III).

The technology provides various panels of markers use for identifying breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is CD1D, ITPRIPL1, FAM59B, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B (see, Table 27, Example 20 III).

The technology provides various panels of markers use for identifying triple negative breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ABLIM1, AJAP1_B, ASCL2, ATP6V1B1, BANK1, CALN1_A, CALN1_B, CLIC6, DSCR6, FOXP4, GAD2, GCGR, GP5, GRASP, HBM, HNF1B_B, 25 KLF16, MAGI2, MAX.chr11.14926602-14927148, MAX.chr12.4273906-4274012, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr2.97193478-97193562, MAX.chr22.42679578-42679917, MAX.chr4.8859253-8859329, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr6.157557371-157557657, MPZ, NKX2-6, PDX1, PLXNC1_A, 30 PPARG, PRKCB, PTPRN2, RBFOX_A, SCRT2_A, SLC7A4, STAC2_B, STX16_A, STX16_B, TBX1, TRH_A, VSTM2B_A, ZBTB16, ZNF132, and ZSCAN23 (see, Table 3, Example I).

The technology provides various panels of markers use for identifying triple negative breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is CALN1_A, LOC100132891, NACAD, TRIM67, ATP6V1B1, DLX4, GP5, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, 5 MAX.chr8.124173030-124173395, MPZ, PRKCB, ST8SIA4, STX16_B ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, KCNK9, SCRT2_B, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, and DSCR6 (see, Table 11, Example I).

The technology provides various panels of markers use for identifying triple negative 10 breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ATP6V1B1, MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012, MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459, BHLHE23_D, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4 (see, Table 15 16A, Example II).

The technology provides various panels of markers use for identifying HER2⁺ breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ABLIM1, AFAP1L1, AKR1B1, ALOX5, AMN, ARL5C, BANK1, BCAT1, BEGAIN, BEST4, BHLHE23_B, BHLHE23_C, C17orf64, C1QL2, C7orf52, 20 CALN1_B, CAV2, CD8A, CDH4_A, CDH4_B, CDH4_C, CDH4_D, CDH4_E, CDH4_F, CHST2_B, CLIP4, CR1, DLK1, DNAJC6, DNM3_A, EMX1_A, ESPN, FABP5, FAM150A, FLJ42875, GLP1R, GNG4, GYPC_A, HAND2, HES5, HNF1B_A, HNF1B_B, HOXA1_A, HOXA1_B, HOXA7_A, HOXA7_B, HOXA7_C, HOXD9, IGF2BP3_A, IGF2BP3_B, IGSF9B_A, IL15RA, INSM1, ITPKA_B, ITPRIPL1, KCNE3, KCNK17_B, LIME1, 25 LOC100132891, LOC283999, LY6H, MAST1, MAX.chr1.158083198-158083476, MAX.chr1.228074764-228074977, MAX.chr1.46913931-46913950, MAX.chr10.130085265-130085312, MAX.chr11.68622869-68622968, MAX.chr14.101176106-101176260, MAX.chr15.96889069-96889128, MAX.chr17.8230197-8230314, MAX.chr19.46379903-46380197, MAX.chr2.97193163- 30 97193287, MAX.chr2.97193478-97193562, MAX.chr20.1784209-1784461, MAX.chr21.44782441-44782498, MAX.chr22.23908718-23908782, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.180101084-180101094, MAX.chr5.42952185-42952280, MAX.chr5.42994866-42994936, MAX.chr6.27064703-

27064783, MAX.chr7.152622607-152622638, MAX.chr8.145104132-145104218,
MAX.chr9.136474504-136474527, MCF2L2, MSX2P1, NACAD, NID2_B, NID2_C,
ODC1, OSR2_B, PAQR6, PCDH8, PIF1, PPARA, PPP2R5C, PRDM13_A, PRHOXNB,
PRKCB, RBFOX3_A, RBFOX3_B, RFX8, SNCA, STAC2_A, STAC2_B, STX16_B SYT5,
5 TIMP2, TMEFF2, TNFRSF10D, TRH_B, TRIM67, TRIM71_C, USP44_A, USP44_B,
UTF1, UTS2R, VSTM2B_A, VSTM2B_B, ZFP64, and ZNF132 (see, Table 4, Example I).

The technology provides various panels of markers use for identifying HER2⁺ breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is BHLHE23_C, CALN1_A, CD1D, CHST2_A, FMN2, HOXA1_A,

10 HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, NACAD,
TRIM67, ATP6V1B1, C17orf64, CHST2_B, DLX4, DNM3_A, EMX1_A, IGF2BP3_A,
IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148,
MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1,
PLXNC1_A, PRKCB, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr12.4273906-
15 4274012, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, COL23A1, KCNK9,
LAYN, PLXNC1_A, RIC3, SCRT2_B, ALOX5, CDH4_E, HNF1B_B, TRH_A, MAST1,
ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, MAX.chr12.4273906-4274012, GAS7,
MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6,
FBN1, OSR2_A, BEST4, AJAP1_B, DSCR6, and MAX.chr11.68622869-68622968 (see,
20 Table 11, Example I).

The technology provides various panels of markers use for identifying HER2⁺ breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-
14927148, UBTF, PRKCB, TRH_A, MPZ, GP5, DNM3_A, TRIM67, PLXNC1_A,

25 MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012,
GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-
145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395,
MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5,
MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725,
30 C17orf64, EMX1_A, CHST2_B, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1,
BHLHE23_D, ZSCAN12, GRASP, C10orf125 (see, Table 16B, Example II).

The technology provides various panels of markers use for identifying Luminal A breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having

an annotation that is ARL5C, BHLHE23_C, BMP6, C10orf125, C17orf64, C19orf66, CAMKV, CD1D, CDH4_E, CDH4_F, CHST2_A, CRHBP, DLX6, DNM3_A, DNM3_B, DNM3_C, ESYT3, ETS1_A, ETS1_B, FAM126A, FAM189A1, FAM20A, FAM59B, FBN1, FLRT2, FMN2, FOXP4, GAS7, GYPC_A, GYPC_B, HAND2, HES5, HMGA2,

5 HNF1B_B, IGF2BP3_A, IGF2BP3_B, KCNH8, KCNK17_A, KCNQ2, KLHDC7B, LOC100132891, MAX.chr1.46913931-46913950, MAX.chr11.68622869-68622968, MAX.chr12.4273906-4274012, MAX.chr12.59990591-59990895, MAX.chr17.73073682-73073814, MAX.chr20.1783841-1784054, MAX.chr21.47063802-47063851, MAX.chr4.8860002-8860038, MAX.chr5.172234248-172234494, MAX.chr5.178957564-10 178957598, MAX.chr6.130686865-130686985, MAX.chr8.687688-687736, MAX.chr8.688863-688924, MAX.chr9.114010-114207, MPZ, NID2_A, NKX2-6, ODC1, OSR2_A, POU4F1, PRDM13_B, PRKCB, RASGRF2, RIPPLY2, SLC30A10, ST8SIA4, SYN2, TRIM71_A, TRIM71_B, TRIM71_C, UBTF, ULBP1, USP44_B, and VSTM2B_A (see, Table 5, Example I).

15 The technology provides various panels of markers use for identifying Luminal A breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is BHLHE23_C, CD1D, CHST2_A, FAM126A, FMN2, HOXA1_A, HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, SLC30A10, TRIM67, ATP6V1B1, BANK1, C10orf125, C17orf64, CHST2_B, DNM3_A, EMX1_A, 20 GP5, IGF2BP3_A, IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1, PLXNC1_A, PRKCB, ST8SIA4, STX16_B UBTF, LOC100132891, ITPRIPL1, MAX.chr12.4273906-4274012, MAX.chr12.59990671-59990859, BHLHE23_D, COL23A1, KCNK9, OTX1, PLXNC1_A, HNF1B_B, MAST1, ASCL2, MAX.chr20.1784209-1784461, 25 RBFOX_A, MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4, DSCR6, MAX.chr11.68622869-68622968 (see, Table 11, Example I).

30 The technology provides various panels of markers use for identifying Luminal A breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ATP6V1B1, LMX1B_A, BANK1, OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B,

MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968,
MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891,
BHLHE23_D, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A,
MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B,
5 CDH4_E, ABLIM1, SLC30A10, C10orf125 (see, Table 16C, Example II).

The technology provides various panels of markers use for identifying Luminal B breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ACCN1, AJAP1_A, AJAP1_B, BEST4, CALN1_B, CBLN1_B, CDH4_E, DLX4, FOXP4, IGSF9B_B, ITPRIPL1, KCNA1, KLF16, LMX1B_A, MAST1,
10 MAX.chr11.14926602-14927148, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, MAX.chr19.30719261-30719354, MAX.chr22.42679578-42679917, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr8.124173128-124173268, MPZ, PPARA, PRMT1, RBFOX3_B, RYR2_A, SALL3,
15 SCRT2_A, SPHK2, STX16_B, SYNJ2, TMEM176A, TSHZ3, and VIPR2 (see, Table 6, Example I).

The technology provides various panels of markers use for identifying Luminal B breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is CALN1_A, LOC100132891, MAX.chr15.96889013-96889128,
20 ATP6V1B1, C17orf64, DLX4, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, MAX.chr19.46379903-46380197, BHLHE23_D, HNF1B_B, TRH_A, ASCL2, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, AJAP1_B, and DSCR6 (see, Table 11, Example I).

The technology provides various panels of markers use for identifying Luminal B breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A,
30 MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5,

MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D (see, Table 16D, Example II).

The technology provides various panels of markers use for identifying BRCA1 breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is C10orf93, C20orf195_A, C20orf195_B, CALN1_B, CBLN1_A, CBLN1_B, CCDC61, CCND2_A, CCND2_B, CCND2_C, EMX1_B, FAM150B, GRASP, HBM, ITPRIPL1, KCNK17_A, KIAA1949, LOC100131176, MAST1, MAX.chr1.8277285-8277316, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, 5 MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr18.5629721-5629791, MAX.chr19.30719261-30719354, MAX.chr22.42679767-42679917, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr6.157556793-157556856, MAX.chr8.124173030-124173395, MN1, MPZ, NR2F6, PDXK_A, PDXK_B, PTPRM, RYR2_B, SERPINB9_A, SERPINB9_B, SLC8A3, STX16_B TEPP, TOX, VIPR2, 10 VSTM2B_A, ZNF486, ZNF626, and ZNF671 (see, Table 7, Example I).

The technology provides various panels of markers use for identifying BRCA1 breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is BHLHE23_C, CALN1_A, CD1D, HOXA7_A, LOC100132891, MAX.chr1.8277479-8277527, MAX.chr15.96889013-96889128, NACAD, ATP6V1B1, 15 BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, CXCL12, KCNK9, OTX1, RIC3, SCRT2_B, MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A, 20 MAX.chr20.1784209-1784461, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, and DSCR6 (see, Table 11, Example I).

The technology provides various panels of markers use for identifying BRCA2 breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is ANTXR2, B3GNT5, BHLHE23_C, BMP4, CHRNA7, EPHA4, 30 FAM171A1, FAM20A, FMNL2, FSCN1, GSTP1, HBM, IGFBP5, IL17REL, ITGA9, ITPRIPL1, KIRREL2, LRRC34, MAX.chr1.239549742-239549886, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr2.238864674-238864735, MAX.chr5.81148300-

81148332, MAX.chr7.151145632-151145743, MAX.chr8.124173030-124173395, MAX.chr8.143533298-143533558, MERTK, MPZ, NID2_C, NTRK3, OLIG3_A, OLIG3_B, OSR2_C, PROM1, RGS17, SBNO2, STX16_B TBKBP1, TLX1NB, VIPR2, VN1R2, VSNL1, and ZFP64 (see, Table 8, Example I).

5 The technology provides various panels of markers use for identifying BRCA2 breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, COL23A1, LAYN, OTX1, TRH_A, 10 MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968 (see, Table 11, Example I).

The technology provides various panels of markers use for identifying invasive breast cancer, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is CDH4_E, FLJ42875, GAD2, GRASP, ITPRIPL1, KCNA1, 15 MAX.chr12.4273906-4274012, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, MAX.chr19.30719261-30719354, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MPZ, NKX2-6, PRKCB, RBFOX3_B, SALL3, and VSTM2B_A (see, Table 9, Example I).

20 The technology provides various panels of markers use for distinguishing between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is SCRT2_B, MPZ, MAX.chr8.124173030-124173395, ITPRIPL1, ITPRIPL1, DLX4, CALN1_A, and IGF2BP3_B (see, Table 15, 25 Example I).

The technology provides various panels of markers use for distinguishing between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is SCRT2_B, ITPRIPL1, and 30 MAX.chr8.124173030-12417339 (100% sensitive at 91% specificity) (see, Table 15, Example I).

The technology provides various panels of markers use for distinguishing between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in

situ low grade (DCIS-LG) breast tissue, e.g., in some embodiments the marker comprises a chromosomal region having an annotation that is DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, and ITPRIPL1 (see, Table 17, Example 5 II).

Kit embodiments are provided, e.g., a kit comprising a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent); and a control nucleic acid comprising a sequence from a DMR selected from a group consisting of DMR 1-375 (from Tables 2 and 18) and having a methylation state associated with a subject who does not have breast cancer. In some embodiments, kits comprise a bisulfite reagent and an oligonucleotide as described herein. In some embodiments, kits comprise a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent); and a control nucleic acid comprising a sequence from a DMR selected from a group consisting of DMR 1-375 (from Tables 2 and 18) and having a methylation state associated with a subject who has breast cancer. Some kit embodiments comprise a sample collector for obtaining a sample from a subject (e.g., a stool sample; breast tissue sample; plasma sample, serum sample, whole blood sample); a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent); and an oligonucleotide as described herein.

The technology is related to embodiments of compositions (e.g., reaction mixtures). In some embodiments are provided a composition comprising a nucleic acid comprising a DMR and a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent). Some embodiments provide a composition comprising a nucleic acid comprising a DMR and an oligonucleotide as described herein. Some embodiments provide a composition comprising a nucleic acid comprising a DMR and a methylation-sensitive restriction enzyme. Some embodiments provide a composition comprising a nucleic acid comprising a DMR and a polymerase.

Additional related method embodiments are provided for screening for breast cancer and/or various forms of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2

breast cancer) in a sample obtained from a subject (e.g., breast tissue sample; plasma sample; stool sample), e.g., a method comprising determining a methylation state of a marker in the sample comprising a base in a DMR that is one or more of DMR 1–375 (from Tables 2 and 18); comparing the methylation state of the marker from the subject sample to a methylation state of the marker from a normal control sample from a subject who does not have breast cancer (e.g., breast cancer and/or a form of breast cancer: triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer); and determining a confidence interval and/or a p value of the difference in the methylation state of the subject sample and the normal control sample. In some embodiments, the confidence interval is 90%, 95%, 97.5%, 98%, 99%, 99.5%, 99.9% or 99.99% and the p value is 0.1, 0.05, 0.025, 0.02, 0.01, 0.005, 0.001, or 0.0001. Some embodiments of methods provide steps of reacting a nucleic acid comprising a DMR with a reagent capable of modifying nucleic acid in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent) to produce, for example, nucleic acid modified in a methylation-specific manner; sequencing the nucleic acid modified in a methylation-specific manner to provide a nucleotide sequence of the nucleic acid modified in a methylation-specific manner; comparing the nucleotide sequence of the nucleic acid modified in a methylation-specific manner with a nucleotide sequence of a nucleic acid comprising the DMR from a subject who does not have breast cancer and/or a form of breast cancer to identify differences in the two sequences; and identifying the subject as having breast cancer (e.g., breast cancer and/or a form of breast cancer: triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer) when a difference is present.

Systems for screening for breast cancer in a sample obtained from a subject are provided by the technology. Exemplary embodiments of systems include, e.g., a system for screening for breast cancer and/or types of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer) in a sample obtained from a subject (e.g., breast tissue sample; plasma sample; stool sample), the system comprising an analysis component configured to determine the methylation state of a sample, a software component configured to compare the methylation state of the sample with a control sample or a reference sample methylation state recorded in a database, and an alert component configured to alert a user of a breast-cancer-

associated methylation state. An alert is determined in some embodiments by a software component that receives the results from multiple assays (e.g., determining the methylation states of multiple markers, e.g., DMR, e.g., as provided in Tables 2 and 18) and calculating a value or result to report based on the multiple results. Some embodiments provide a database 5 of weighted parameters associated with each DMR provided herein for use in calculating a value or result and/or an alert to report to a user (e.g., such as a physician, nurse, clinician, etc.). In some embodiments all results from multiple assays are reported and in some embodiments one or more results are used to provide a score, value, or result based on a composite of one or more results from multiple assays that is indicative of a cancer risk in a 10 subject.

In some embodiments of systems, a sample comprises a nucleic acid comprising a DMR. In some embodiments the system further comprises a component for isolating a nucleic acid, a component for collecting a sample such as a component for collecting a stool sample. In some embodiments, the system comprises nucleic acid sequences comprising a 15 DMR. In some embodiments the database comprises nucleic acid sequences from subjects who do not have breast cancer and/or specific types of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer). Also provided are nucleic acids, e.g., a set of nucleic acids, each nucleic acid having a sequence comprising a DMR. In some embodiments 20 the set of nucleic acids wherein each nucleic acid has a sequence from a subject who does not have breast cancer and/or specific types of breast cancer. Related system embodiments comprise a set of nucleic acids as described and a database of nucleic acid sequences associated with the set of nucleic acids. Some embodiments further comprise a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive 25 restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent). And, some embodiments further comprise a nucleic acid sequencer.

In certain embodiments, methods for characterizing a sample (e.g., breast tissue sample; plasma sample; whole blood sample; serum sample; stool sample) from a human patient are provided. For example, in some embodiments such embodiments comprise 30 obtaining DNA from a sample of a human patient; assaying a methylation state of a DNA methylation marker comprising a base in a differentially methylated region (DMR) selected from a group consisting of DMR 1-375 from Tables 2 and 18; and comparing the assayed methylation state of the one or more DNA methylation markers with methylation level

references for the one or more DNA methylation markers for human patients not having breast cancer and/or specific types of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer).

5 Such methods are not limited to a particular type of sample from a human patient. In some embodiments, the sample is a breast tissue sample. In some embodiments, the sample is a plasma sample. In some embodiments, the sample is a stool sample, a tissue sample, a breast tissue sample, a blood sample (e.g., plasma sample, whole blood sample, serum sample), or a urine sample.

10 In some embodiments, such methods comprise assaying a plurality of DNA methylation markers. In some embodiments, such methods comprise assaying 2 to 11 DNA methylation markers. In some embodiments, such methods comprise assaying 12 to 120 DNA methylation markers. In some embodiments, such methods comprise assaying 2 to 375 DNA methylation markers. In some embodiments, such methods comprise assaying the 15 methylation state of the one or more DNA methylation markers in the sample comprises determining the methylation state of one base. In some embodiments, such methods comprise assaying the methylation state of the one or more DNA methylation markers in the sample comprises determining the extent of methylation at a plurality of bases. In some embodiments, such methods comprise assaying a methylation state of a forward strand or 20 assaying a methylation state of a reverse strand.

In some embodiments, the DNA methylation marker is a region of 100 or fewer bases. In some embodiments, the DNA methylation marker is a region of 500 or fewer bases. In some embodiments, the DNA methylation marker is a region of 1000 or fewer bases. In some 25 embodiments, the DNA methylation marker is a region of 5000 or fewer bases. In some embodiments, the DNA methylation marker is one base. In some embodiments, the DNA methylation marker is in a high CpG density promoter.

In some embodiments, the assaying comprises using methylation specific polymerase chain reaction, nucleic acid sequencing, mass spectrometry, methylation specific nuclease, mass-based separation, or target capture.

30 In some embodiments, the assaying comprises use of a methylation specific oligonucleotide. In some embodiments, the methylation specific oligonucleotide is selected from the group consisting of SEQ ID NO: 1-422 (Tables 10, 19 and 20).

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B,
5 MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and ABLIM1 (see, Table 16E, Example II) comprises the DNA methylation marker.

10 In some embodiments, a chromosomal region having an annotation selected from the group consisting of ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B, BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN_1B, CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316, CHST2_9470, CLIC6_B, CXCL12_B, DLX4_B, DNM3_D, EMX1_A, ESPN_B, FAM59B_7764, FOXP4_B, GP5,
15 HOXA1_C, IGF2BP3_C, ITPRIPL1_1138, ITPRIPL1_1200, KCNK9_B, KCNK17_C, LAYN_B, LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br, MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A, OTX1_B, PLXNC1_B, PRKCB_7570, SCRT2_C, SLC30A10, SPHK2_B, ST8SIA4_B, STX16_C, TRH_A, and TRIM67_B (see, Table 22, Example III) comprises the DNA methylation marker.
20

In some embodiments, a chromosomal region having an annotation selected from the group consisting of CD1D, ITPRIPL1, FAM59B, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B (see, Table 27, Example III) comprises the DNA methylation marker.

25 In some embodiments, a chromosomal region having an annotation selected from the group consisting of ABLIM1, AJAP1_B, ASCL2, ATP6V1B1, BANK1, CALN1_A, CALN1_B, CLIC6, DSCR6, FOXP4, GAD2, GCGR, GP5, GRASP, HBM, HNF1B_B, KLF16, MAGI2, MAX.chr11.14926602-14927148, MAX.chr12.4273906-4274012, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr2.97193478-30 97193562, MAX.chr22.42679578-42679917, MAX.chr4.8859253-8859329, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr6.157557371-157557657, MPZ, NKX2-6, PDX1, PLXNC1_A, PPARG, PRKCB, PTPRN2, RBFOX_A, SCRT2_A, SLC7A4, STAC2_B, STX16_A,

STX16_B, TBX1, TRH_A, VSTM2B_A, ZBTB16, ZNF132, and ZSCAN23 (see, Table 3, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of CALN1_A, LOC100132891, NACAD, TRIM67, ATP6V1B1, DLX4,

5 GP5, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ST8SIA4, STX16_B ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, KCNK9, SCRT2_B, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, and DSCR6 (see, Table 11, Example I)

10 comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012, MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459,

15 BHLHE23_D, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4 (see, Table 16A, Example II) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ABLIM1, AFAP1L1, AKR1B1, ALOX5, AMN, ARL5C, BANK1, BCAT1, BEGAIN, BEST4, BHLHE23_B, BHLHE23_C, C17orf64, C1QL2, C7orf52,

20 CALN1_B, CAV2, CD8A, CDH4_A, CDH4_B, CDH4_C, CDH4_D, CDH4_E, CDH4_F, CHST2_B, CLIP4, CR1, DLK1, DNAJC6, DNM3_A, EMX1_A, ESPN, FABP5, FAM150A, FLJ42875, GLP1R, GNG4, GYPC_A, HAND2, HES5, HNF1B_A, HNF1B_B, HOXA1_A, HOXA1_B, HOXA7_A, HOXA7_B, HOXA7_C, HOXD9, IGF2BP3_A, IGF2BP3_B, IGSF9B_A, IL15RA, INSM1, ITPKA_B, ITPRIPL1, KCNE3, KCNK17_B, LIME1,

25 LOC100132891, LOC283999, LY6H, MAST1, MAX.chr1.158083198-158083476, MAX.chr1.228074764-228074977, MAX.chr1.46913931-46913950, MAX.chr10.130085265-130085312, MAX.chr11.68622869-68622968, MAX.chr14.101176106-101176260, MAX.chr15.96889069-96889128, MAX.chr17.8230197-8230314, MAX.chr19.46379903-46380197, MAX.chr2.97193163-30 97193287, MAX.chr2.97193478-97193562, MAX.chr20.1784209-1784461, MAX.chr21.44782441-44782498, MAX.chr22.23908718-23908782, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.180101084-180101094, MAX.chr5.42952185-42952280, MAX.chr5.42994866-42994936, MAX.chr6.27064703-

27064783, MAX.chr7.152622607-152622638, MAX.chr8.145104132-145104218,
MAX.chr9.136474504-136474527, MCF2L2, MSX2P1, NACAD, NID2_B, NID2_C,
ODC1, OSR2_B, PAQR6, PCDH8, PIF1, PPARA, PPP2R5C, PRDM13_A, PRHOXNB,
PRKCB, RBFOX3_A, RBFOX3_B, RFX8, SNCA, STAC2_A, STAC2_B, STX16_B SYT5,
5 TIMP2, TMEFF2, TNFRSF10D, TRH_B, TRIM67, TRIM71_C, USP44_A, USP44_B,
UTF1, UTS2R, VSTM2B_A, VSTM2B_B, ZFP64, and ZNF132 (see, Table 4, Example I)
comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of BHLHE23_C, CALN1_A, CD1D, CHST2_A, FMN2, HOXA1_A,
10 HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, NACAD,
TRIM67, ATP6V1B1, C17orf64, CHST2_B, DLX4, DNM3_A, EMX1_A, IGF2BP3_A,
IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148,
MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1,
PLXNC1_A, PRKCB, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr12.4273906-
15 4274012, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, COL23A1, KCNK9,
LAYN, PLXNC1_A, RIC3, SCRT2_B, ALOX5, CDH4_E, HNF1B_B, TRH_A, MAST1,
ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, MAX.chr12.4273906-4274012, GAS7,
MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6,
FBN1, OSR2_A, BEST4, AJAP1_B, DSCR6, and MAX.chr11.68622869-68622968 (see,
20 Table 11, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-
14927148, UBTF, PRKCB, TRH_A, MPZ, GP5, DNM3_A, TRIM67, PLXNC1_A,
MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012,
25 GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-
145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395,
MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5,
MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725,
C17orf64, EMX1_A, CHST2_B, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1,
30 BHLHE23_D, ZSCAN12, GRASP, C10orf125 (see, Table 16B, Example II) comprises the
DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ARL5C, BHLHE23_C, BMP6, C10orf125, C17orf64, C19orf66,

CAMKV, CD1D, CDH4_E, CDH4_F, CHST2_A, CRHBP, DLX6, DNM3_A, DNM3_B, DNM3_C, ESYT3, ETS1_A, ETS1_B, FAM126A, FAM189A1, FAM20A, FAM59B, FBN1, FLRT2, FMN2, FOXP4, GAS7, GYPC_A, GYPC_B, HAND2, HES5, HMGA2, HNF1B_B, IGF2BP3_A, IGF2BP3_B, KCNH8, KCNK17_A, KCNQ2, KLHDC7B,

5 LOC100132891, MAX.chr1.46913931-46913950, MAX.chr11.68622869-68622968, MAX.chr12.4273906-4274012, MAX.chr12.59990591-59990895, MAX.chr17.73073682-73073814, MAX.chr20.1783841-1784054, MAX.chr21.47063802-47063851, MAX.chr4.8860002-8860038, MAX.chr5.172234248-172234494, MAX.chr5.178957564-178957598, MAX.chr6.130686865-130686985, MAX.chr8.687688-687736,

10 MAX.chr8.688863-688924, MAX.chr9.114010-114207, MPZ, NID2_A, NKX2-6, ODC1, OSR2_A, POU4F1, PRDM13_B, PRKCB, RASGRF2, RIPPLY2, SLC30A10, ST8SIA4, SYN2, TRIM71_A, TRIM71_B, TRIM71_C, UBTF, ULBP1, USP44_B, and VSTM2B_A (see, Table 5, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of BHLHE23_C, CD1D, CHST2_A, FAM126A, FMN2, HOXA1_A, HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, SLC30A10, TRIM67, ATP6V1B1, BANK1, C10orf125, C17orf64, CHST2_B, DNM3_A, EMX1_A, GP5, IGF2BP3_A, IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1, PLXNC1_A, PRKCB, ST8SIA4, STX16_B UBTF, LOC100132891, ITPRIPL1, MAX.chr12.4273906-4274012, MAX.chr12.59990671-59990859, BHLHE23_D, COL23A1, KCNK9, OTX1, PLXNC1_A, HNF1B_B, MAST1, ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4, DSCR6,

20 MAX.chr11.68622869-68622968 (see, Table 11, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891,

BHLHE23_D, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B, CDH4_E, ABLIM1, SLC30A10, C10orf125 (see, Table 16C, Example II) comprises the DNA methylation marker.

5 In some embodiments, a chromosomal region having an annotation selected from the group consisting of ACCN1, AJAP1_A, AJAP1_B, BEST4, CALN1_B, CBLN1_B, CDH4_E, DLX4, FOXP4, IGSF9B_B, ITPRIPL1, KCNA1, KLF16, LMX1B_A, MAST1, MAX.chr11.14926602-14927148, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, MAX.chr19.30719261-30719354,

10 MAX.chr22.42679578-42679917, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr8.124173128-124173268, MPZ, PPARA, PRMT1, RBFOX3_B, RYR2_A, SALL3, SCRT2_A, SPHK2, STX16_B, SYNJ2, TMEM176A, TSHZ3, and VIPR2 (see, Table 6, Example I) comprises the DNA methylation marker.

15 In some embodiments, a chromosomal region having an annotation selected from the group consisting of CALN1_A, LOC100132891, MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, DLX4, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, MAX.chr19.46379903-46380197,

20 BHLHE23_D, HNF1B_B, TRH_A, ASCL2, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, AJAP1_B, and DSCR6 (see, Table 11, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395,

30 MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D (see, Table 16D, Example II) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting C10orf93, C20orf195_A, C20orf195_B, CALN1_B, CBLN1_A, CBLN1_B, CCDC61, CCND2_A, CCND2_B, CCND2_C, EMX1_B, FAM150B, GRASP, HBM, ITPRIPL1, KCNK17_A, KIAA1949, LOC100131176, MAST1, MAX.chr1.8277285-5 8277316, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr18.5629721-5629791, MAX.chr19.30719261-30719354, MAX.chr22.42679767-42679917, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr6.157556793-157556856, MAX.chr8.124173030-124173395, MN1, MPZ, NR2F6, PDXK_A, PDXK_B, 10 PTPRM, RYR2_B, SERPINB9_A, SERPINB9_B, SLC8A3, STX16_B TEPP, TOX, VIPR2, VSTM2B_A, ZNF486, ZNF626, and ZNF671 (see, Table 7, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of BHLHE23_C, CALN1_A, CD1D, HOXA7_A, LOC100132891, 15 MAX.chr1.8277479-8277527, MAX.chr15.96889013-96889128, NACAD, ATP6V1B1, BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, CXCL12, KCNK9, OTX1, 20 RIC3, SCRT2_B, MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, and DSCR6 (see, Table 11, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of ANTXR2, B3GNT5, BHLHE23_C, BMP4, CHRNA7, EPHA4, 25 FAM171A1, FAM20A, FMNL2, FSCN1, GSTP1, HBM, IGFBP5, IL17REL, ITGA9, ITPRIPL1, KIRREL2, LRRC34, MAX.chr1.239549742-239549886, MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr2.238864674-238864735, MAX.chr5.81148300-30 81148332, MAX.chr7.151145632-151145743, MAX.chr8.124173030-124173395, MAX.chr8.143533298-143533558, MERTK, MPZ, NID2_C, NTRK3, OLIG3_A, OLIG3_B, OSR2_C, PROM1, RGS17, SBNO2, STX16_B TBKBP1, TLX1NB, VIPR2, VN1R2, VSNL1, and ZFP64 (see, Table 8, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, COL23A1, LAYN, OTX1, TRH_A, 5 MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968 (see, Table 11, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of CDH4_E, FLJ42875, GAD2, GRASP, ITPRIPL1, KCNA1, MAX.chr12.4273906-4274012, MAX.chr18.76734362-76734370, MAX.chr18.76734423-10 76734476, MAX.chr19.30719261-30719354, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MPZ, NKX2-6, PRKCB, RBFOX3_B, SALL3, and VSTM2B_A (see, Table 9, Example I) comprises the DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of SCRT2_B, MPZ, MAX.chr8.124173030-124173395, ITPRIPL1, ITPRIPL1, DLX4, CALN1_A, and IGF2BP3_B (see, Table 15, Example I) comprises the 15 DNA methylation marker.

In some embodiments, a chromosomal region having an annotation selected from the group consisting of DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, 20 MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, and ITPRIPL1 (see, Table 17, Example II) comprises the DNA methylation marker.

In some embodiments, such methods comprise determining the methylation state of two DNA methylation markers. In some embodiments, such methods comprise determining 25 the methylation state of a pair of DNA methylation markers provided in a row of Tables 2 and/or 18.

In certain embodiments, the technology provides methods for characterizing a sample (e.g., breast tissue sample; plasma sample; whole blood sample; serum sample; stool sample) obtained from a human patient. In some embodiments, such methods comprise determining a 30 methylation state of a DNA methylation marker in the sample comprising a base in a DMR selected from a group consisting of DMR 1-375 from Tables 2 and 18; comparing the methylation state of the DNA methylation marker from the patient sample to a methylation state of the DNA methylation marker from a normal control sample from a human subject

who does not have a breast cancer and/or a specific form of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer); and determining a confidence interval and/or a *p* value of the difference in the methylation state of the human patient and the normal control sample. In some embodiments, the confidence interval is 90%, 95%, 97.5%, 98%, 99%, 99.5%, 99.9% or 99.99% and the *p* value is 0.1, 0.05, 0.025, 0.02, 0.01, 0.005, 0.001, or 0.0001.

In certain embodiments, the technology provides methods for characterizing a sample obtained from a human subject (e.g., breast tissue sample; plasma sample; whole blood sample; serum sample; stool sample), the method comprising reacting a nucleic acid comprising a DMR with a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent) to produce nucleic acid modified in a methylation-specific manner; sequencing the nucleic acid modified in a methylation-specific manner to provide a nucleotide sequence of the nucleic acid modified in a methylation-specific manner; comparing the nucleotide sequence of the nucleic acid modified in a methylation-specific manner with a nucleotide sequence of a nucleic acid comprising the DMR from a subject who does not have breast cancer to identify differences in the two sequences.

In certain embodiments, the technology provides systems for characterizing a sample obtained from a human subject (e.g., breast tissue sample; plasma sample; stool sample), the system comprising an analysis component configured to determine the methylation state of a sample, a software component configured to compare the methylation state of the sample with a control sample or a reference sample methylation state recorded in a database, and an alert component configured to determine a single value based on a combination of methylation states and alert a user of a breast cancer-associated methylation state. In some embodiments, the sample comprises a nucleic acid comprising a DMR.

In some embodiments, such systems further comprise a component for isolating a nucleic acid. In some embodiments, such systems further comprise a component for collecting a sample.

In some embodiments, the sample is a stool sample, a tissue sample, a breast tissue sample, a blood sample (e.g., plasma sample, whole blood sample, serum sample), or a urine sample.

In some embodiments, the database comprises nucleic acid sequences comprising a DMR. In some embodiments, the database comprises nucleic acid sequences from subjects who do not have a breast cancer.

Additional embodiments will be apparent to persons skilled in the relevant art based
5 on the teachings contained herein.

DEFINITIONS

To facilitate an understanding of the present technology, a number of terms and
phrases are defined below. Additional definitions are set forth throughout the detailed
10 description.

Throughout the specification and claims, the following terms take the meanings
explicitly associated herein, unless the context clearly dictates otherwise. The phrase “in one
embodiment” as used herein does not necessarily refer to the same embodiment, though it
may. Furthermore, the phrase “in another embodiment” as used herein does not necessarily
15 refer to a different embodiment, although it may. Thus, as described below, various
embodiments of the invention may be readily combined, without departing from the scope or
spirit of the invention.

In addition, as used herein, the term “or” is an inclusive “or” operator and is
equivalent to the term “and/or” unless the context clearly dictates otherwise. The term “based
20 on” is not exclusive and allows for being based on additional factors not described, unless the
context clearly dictates otherwise. In addition, throughout the specification, the meaning of
“a”, “an”, and “the” include plural references. The meaning of “in” includes “in” and “on.”

The transitional phrase “consisting essentially of” as used in claims in the present
application limits the scope of a claim to the specified materials or steps “and those that do
25 not materially affect the basic and novel characteristic(s)” of the claimed invention, as
discussed in *In re Herz*, 537 F.2d 549, 551-52, 190 USPQ 461, 463 (CCPA 1976). For
example, a composition “consisting essentially of” recited elements may contain an unrecited
contaminant at a level such that, though present, the contaminant does not alter the function
30 of the recited composition as compared to a pure composition, *i.e.*, a composition “consisting
of” the recited components.

As used herein, a “nucleic acid” or “nucleic acid molecule” generally refers to any
ribonucleic acid or deoxyribonucleic acid, which may be unmodified or modified DNA or
RNA. “Nucleic acids” include, without limitation, single- and double-stranded nucleic acids.

As used herein, the term “nucleic acid” also includes DNA as described above that contains one or more modified bases. Thus, DNA with a backbone modified for stability or for other reasons is a “nucleic acid”. The term “nucleic acid” as it is used herein embraces such chemically, enzymatically, or metabolically modified forms of nucleic acids, as well as the 5 chemical forms of DNA characteristic of viruses and cells, including for example, simple and complex cells.

The terms “oligonucleotide” or “polynucleotide” or “nucleotide” or “nucleic acid” refer to a molecule having two or more deoxyribonucleotides or ribonucleotides, preferably more than three, and usually more than ten. The exact size will depend on many factors,

10 which in turn depends on the ultimate function or use of the oligonucleotide. The oligonucleotide may be generated in any manner, including chemical synthesis, DNA replication, reverse transcription, or a combination thereof. Typical deoxyribonucleotides for DNA are thymine, adenine, cytosine, and guanine. Typical ribonucleotides for RNA are uracil, adenine, cytosine, and guanine.

15 As used herein, the terms “locus” or “region” of a nucleic acid refer to a subregion of a nucleic acid, e.g., a gene on a chromosome, a single nucleotide, a CpG island, etc.

The terms “complementary” and “complementarity” refer to nucleotides (e.g., 1 nucleotide) or polynucleotides (e.g., a sequence of nucleotides) related by the base-pairing rules. For example, the sequence 5'-A-G-T-3' is complementary to the sequence 3'-T-C-A-5'.

20 Complementarity may be “partial,” in which only some of the nucleic acids’ bases are matched according to the base pairing rules. Or, there may be “complete” or “total” complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands effects the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions and in detection methods that 25 depend upon binding between nucleic acids.

The term “gene” refers to a nucleic acid (e.g., DNA or RNA) sequence that comprises coding sequences necessary for the production of an RNA, or of a polypeptide or its precursor. A functional polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence as long as the desired activity or functional properties 30 (e.g., enzymatic activity, ligand binding, signal transduction, etc.) of the polypeptide are retained. The term “portion” when used in reference to a gene refers to fragments of that gene. The fragments may range in size from a few nucleotides to the entire gene sequence

minus one nucleotide. Thus, “a nucleotide comprising at least a portion of a gene” may comprise fragments of the gene or the entire gene.

The term “gene” also encompasses the coding regions of a structural gene and includes sequences located adjacent to the coding region on both the 5' and 3' ends, e.g., for a 5 distance of about 1 kb on either end, such that the gene corresponds to the length of the full-length mRNA (e.g., comprising coding, regulatory, structural and other sequences). The sequences that are located 5' of the coding region and that are present on the mRNA are referred to as 5' non-translated or untranslated sequences. The sequences that are located 3' or downstream of the coding region and that are present on the mRNA are referred to as 3' non- 10 translated or 3' untranslated sequences. The term “gene” encompasses both cDNA and genomic forms of a gene. In some organisms (e.g., eukaryotes), a genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed “introns” or “intervening regions” or “intervening sequences.” Introns are segments of a gene that are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as 15 enhancers. Introns are removed or “spliced out” from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.

In addition to containing introns, genomic forms of a gene may also include 20 sequences located on both the 5' and 3' ends of the sequences that are present on the RNA transcript. These sequences are referred to as “flanking” sequences or regions (these flanking sequences are located 5' or 3' to the non-translated sequences present on the mRNA transcript). The 5' flanking region may contain regulatory sequences such as promoters and 25 enhancers that control or influence the transcription of the gene. The 3' flanking region may contain sequences that direct the termination of transcription, posttranscriptional cleavage, and polyadenylation.

The term “wild-type” when made in reference to a gene refers to a gene that has the characteristics of a gene isolated from a naturally occurring source. The term “wild-type” when made in reference to a gene product refers to a gene product that has the characteristics of a gene product isolated from a naturally occurring source. The term “naturally-occurring” 30 as applied to an object refers to the fact that an object can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by the hand of a person in the laboratory is naturally-occurring. A wild-type gene is often that gene

or allele that is most frequently observed in a population and is thus arbitrarily designated the “normal” or “wild-type” form of the gene. In contrast, the term “modified” or “mutant” when made in reference to a gene or to a gene product refers, respectively, to a gene or to a gene product that displays modifications in sequence and/or functional properties (e.g., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are identified by the fact that they have altered characteristics when compared to the wild-type gene or gene product.

5 The term “allele” refers to a variation of a gene; the variations include but are not limited to variants and mutants, polymorphic loci, and single nucleotide polymorphic loci, frameshift, and splice mutations. An allele may occur naturally in a population or it might 10 arise during the lifetime of any particular individual of the population.

10 Thus, the terms “variant” and “mutant” when used in reference to a nucleotide sequence refer to a nucleic acid sequence that differs by one or more nucleotides from another, usually related, nucleotide acid sequence. A “variation” is a difference between two 15 different nucleotide sequences; typically, one sequence is a reference sequence.

15 “Amplification” is a special case of nucleic acid replication involving template specificity. It is to be contrasted with non-specific template replication (e.g., replication that is template-dependent but not dependent on a specific template). Template specificity is here distinguished from fidelity of replication (e.g., synthesis of the proper polynucleotide 20 sequence) and nucleotide (ribo- or deoxyribo-) specificity. Template specificity is frequently described in terms of “target” specificity. Target sequences are “targets” in the sense that they are sought to be sorted out from other nucleic acid. Amplification techniques have been 25 designed primarily for this sorting out.

25 The term “amplifying” or “amplification” in the context of nucleic acids refers to the production of multiple copies of a polynucleotide, or a portion of the polynucleotide, typically starting from a small amount of the polynucleotide (e.g., a single polynucleotide molecule), where the amplification products or amplicons are generally detectable. Amplification of polynucleotides encompasses a variety of chemical and enzymatic 30 processes. The generation of multiple DNA copies from one or a few copies of a target or template DNA molecule during a polymerase chain reaction (PCR) or a ligase chain reaction (LCR; see, e.g., U.S. Patent No. 5,494,810; herein incorporated by reference in its entirety) are forms of amplification. Additional types of amplification include, but are not limited to, allele-specific PCR (see, e.g., U.S. Patent No. 5,639,611; herein incorporated by reference in

its entirety), assembly PCR (see, *e.g.*, U.S. Patent No. 5,965,408; herein incorporated by reference in its entirety), helicase-dependent amplification (see, *e.g.*, U.S. Patent No. 7,662,594; herein incorporated by reference in its entirety), hot-start PCR (see, *e.g.*, U.S. Patent Nos. 5,773,258 and 5,338,671; each herein incorporated by reference in their entireties), intersequence-specific PCR, inverse PCR (see, *e.g.*, Triglia, *et al.* (1988) *Nucleic Acids Res.*, 16:8186; herein incorporated by reference in its entirety), ligation-mediated PCR (see, *e.g.*, Guilfoyle, R. *et al.*, *Nucleic Acids Research*, 25:1854-1858 (1997); U.S. Patent No. 5,508,169; each of which are herein incorporated by reference in their entireties), methylation-specific PCR (see, *e.g.*, Herman, *et al.*, (1996) *PNAS* 93(13) 9821-9826; herein incorporated by reference in its entirety), miniprimer PCR, multiplex ligation-dependent probe amplification (see, *e.g.*, Schouten, *et al.*, (2002) *Nucleic Acids Research* 30(12): e57; herein incorporated by reference in its entirety), multiplex PCR (see, *e.g.*, Chamberlain, *et al.*, (1988) *Nucleic Acids Research* 16(23) 11141-11156; Ballabio, *et al.*, (1990) *Human Genetics* 84(6) 571-573; Hayden, *et al.*, (2008) *BMC Genetics* 9:80; each of which are herein incorporated by reference in their entireties), nested PCR, overlap-extension PCR (see, *e.g.*, Higuchi, *et al.*, (1988) *Nucleic Acids Research* 16(15) 7351-7367; herein incorporated by reference in its entirety), real time PCR (see, *e.g.*, Higuchi, *et al.*, (1992) *Biotechnology* 10:413-417; Higuchi, *et al.*, (1993) *Biotechnology* 11:1026-1030; each of which are herein incorporated by reference in their entireties), reverse transcription PCR (see, *e.g.*, Bustin, S.A. (2000) *J. Molecular Endocrinology* 25:169-193; herein incorporated by reference in its entirety), solid phase PCR, thermal asymmetric interlaced PCR, and Touchdown PCR (see, *e.g.*, Don, *et al.*, *Nucleic Acids Research* (1991) 19(14) 4008; Roux, K. (1994) *Biotechniques* 16(5) 812-814; Hecker, *et al.*, (1996) *Biotechniques* 20(3) 478-485; each of which are herein incorporated by reference in their entireties). Polynucleotide amplification also can be accomplished using digital PCR (see, *e.g.*, Kalinina, *et al.*, *Nucleic Acids Research*. 25; 1999-2004, (1997); Vogelstein and Kinzler, *Proc Natl Acad Sci USA*. 96; 9236-41, (1999); International Patent Publication No. WO05023091A2; US Patent Application Publication No. 20070202525; each of which are incorporated herein by reference in their entireties).

The term “polymerase chain reaction” (“PCR”) refers to the method of K.B. Mullis U.S. Patent Nos. 4,683,195, 4,683,202, and 4,965,188, that describe a method for increasing the concentration of a segment of a target sequence in a mixture of genomic or other DNA or RNA, without cloning or purification. This process for amplifying the target sequence consists of introducing a large excess of two oligonucleotide primers to the DNA mixture

containing the desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The two primers are complementary to their respective strands of the double stranded target sequence. To effect amplification, the mixture is denatured and the primers then annealed to their complementary sequences within the target 5 molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer annealing, and polymerase extension can be repeated many times (*i.e.*, denaturation, annealing and extension constitute one “cycle”; there can be numerous “cycles”) to obtain a high concentration of an amplified segment of the desired target sequence. The length of the amplified segment of the 10 desired target sequence is determined by the relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. By virtue of the repeating aspect of the process, the method is referred to as the “polymerase chain reaction” (“PCR”). Because the desired amplified segments of the target sequence become the predominant 15 sequences (in terms of concentration) in the mixture, they are said to be “PCR amplified” and are “PCR products” or “amplicons.” Those of skill in the art will understand the term “PCR” encompasses many variants of the originally described method using, *e.g.*, real time PCR, nested PCR, reverse transcription PCR (RT-PCR), single primer and arbitrarily primed PCR, *etc.*

Template specificity is achieved in most amplification techniques by the choice of 20 enzyme. Amplification enzymes are enzymes that, under conditions they are used, will process only specific sequences of nucleic acid in a heterogeneous mixture of nucleic acid. For example, in the case of Q-beta replicase, MDV-1 RNA is the specific template for the replicase (Kacian et al., Proc. Natl. Acad. Sci. USA, 69:3038 [1972]). Other nucleic acid will not be replicated by this amplification enzyme. Similarly, in the case of T7 RNA polymerase, 25 this amplification enzyme has a stringent specificity for its own promoters (Chamberlin et al, Nature, 228:227 [1970]). In the case of T4 DNA ligase, the enzyme will not ligate the two oligonucleotides or polynucleotides, where there is a mismatch between the oligonucleotide or polynucleotide substrate and the template at the ligation junction (Wu and Wallace (1989) Genomics 4:560). Finally, thermostable template-dependant DNA polymerases (*e.g.*, Taq and 30 Pfu DNA polymerases), by virtue of their ability to function at high temperature, are found to display high specificity for the sequences bounded and thus defined by the primers; the high temperature results in thermodynamic conditions that favor primer hybridization with the

target sequences and not hybridization with non-target sequences (H. A. Erlich (ed.), PCR Technology, Stockton Press [1989]).

As used herein, the term “nucleic acid detection assay” refers to any method of determining the nucleotide composition of a nucleic acid of interest. Nucleic acid detection assay include but are not limited to, DNA sequencing methods, probe hybridization methods, structure specific cleavage assays (e.g., the INVADER assay, (Hologic, Inc.) and are described, e.g., in U.S. Patent Nos. 5,846,717, 5,985,557, 5,994,069, 6,001,567, 6,090,543, and 6,872,816; Lyamichev et al., Nat. Biotech., 17:292 (1999), Hall et al., PNAS, USA, 97:8272 (2000), and US Pat. No. 9,096,893, each of which is herein incorporated by reference in its entirety for all purposes); enzyme mismatch cleavage methods (e.g., Variagenics, U.S. Pat. Nos. 6,110,684, 5,958,692, 5,851,770, herein incorporated by reference in their entireties); polymerase chain reaction (PCR), described above; branched hybridization methods (e.g., Chiron, U.S. Pat. Nos. 5,849,481, 5,710,264, 5,124,246, and 5,624,802, herein incorporated by reference in their entireties); rolling circle replication (e.g., U.S. Pat. Nos. 6,210,884, 6,183,960 and 6,235,502, herein incorporated by reference in their entireties); NASBA (e.g., U.S. Pat. No. 5,409,818, herein incorporated by reference in its entirety); molecular beacon technology (e.g., U.S. Pat. No. 6,150,097, herein incorporated by reference in its entirety); E-sensor technology (Motorola, U.S. Pat. Nos. 6,248,229, 6,221,583, 6,013,170, and 6,063,573, herein incorporated by reference in their entireties); cycling probe technology (e.g., U.S. Pat. Nos. 5,403,711, 5,011,769, and 5,660,988, herein incorporated by reference in their entireties); Dade Behring signal amplification methods (e.g., U.S. Pat. Nos. 6,121,001, 6,110,677, 5,914,230, 5,882,867, and 5,792,614, herein incorporated by reference in their entireties); ligase chain reaction (e.g., Baranay Proc. Natl. Acad. Sci USA 88, 189-93 (1991)); and sandwich hybridization methods (e.g., U.S. Pat. No. 5,288,609, herein incorporated by reference in its entirety).

The term “amplifiable nucleic acid” refers to a nucleic acid that may be amplified by any amplification method. It is contemplated that “amplifiable nucleic acid” will usually comprise “sample template.”

The term “sample template” refers to nucleic acid originating from a sample that is analyzed for the presence of “target” (defined below). In contrast, “background template” is used in reference to nucleic acid other than sample template that may or may not be present in a sample. Background template is most often inadvertent. It may be the result of carryover or it may be due to the presence of nucleic acid contaminants sought to be purified away from

the sample. For example, nucleic acids from organisms other than those to be detected may be present as background in a test sample.

The term “primer” refers to an oligonucleotide, whether occurring naturally as, *e.g.*, a nucleic acid fragment from a restriction digest, or produced synthetically, that is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product that is complementary to a nucleic acid template strand is induced, (*e.g.*, in the presence of nucleotides and an inducing agent such as a DNA polymerase, and at a suitable temperature and pH). The primer is preferably single stranded for maximum efficiency in amplification, but may alternatively be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. Preferably, the primer is an oligodeoxyribonucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent. The exact lengths of the primers will depend on many factors, including temperature, source of primer, and the use of the method.

The term “probe” refers to an oligonucleotide (*e.g.*, a sequence of nucleotides), whether occurring naturally as in a purified restriction digest or produced synthetically, recombinantly, or by PCR amplification, that is capable of hybridizing to another oligonucleotide of interest. A probe may be single-stranded or double-stranded. Probes are useful in the detection, identification, and isolation of particular gene sequences (*e.g.*, a “capture probe”). It is contemplated that any probe used in the present invention may, in some embodiments, be labeled with any “reporter molecule,” so that is detectable in any detection system, including, but not limited to enzyme (*e.g.*, ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems. It is not intended that the present invention be limited to any particular detection system or label.

The term “target,” as used herein refers to a nucleic acid sought to be sorted out from other nucleic acids, *e.g.*, by probe binding, amplification, isolation, capture, *etc.* For example, when used in reference to the polymerase chain reaction, “target” refers to the region of nucleic acid bounded by the primers used for polymerase chain reaction, while when used in an assay in which target DNA is not amplified, *e.g.*, in some embodiments of an invasive cleavage assay, a target comprises the site at which a probe and invasive oligonucleotides (*e.g.*, INVADER oligonucleotide) bind to form an invasive cleavage structure, such that the presence of the target nucleic acid can be detected. A “segment” is defined as a region of nucleic acid within the target sequence.

As used herein, “methylation” refers to cytosine methylation at positions C5 or N4 of cytosine, the N6 position of adenine, or other types of nucleic acid methylation. In vitro amplified DNA is usually unmethylated because typical in vitro DNA amplification methods do not retain the methylation pattern of the amplification template. However, “unmethylated DNA” or “methylated DNA” can also refer to amplified DNA whose original template was unmethylated or methylated, respectively.

Accordingly, as used herein a “methylated nucleotide” or a “methylated nucleotide base” refers to the presence of a methyl moiety on a nucleotide base, where the methyl moiety is not present in a recognized typical nucleotide base. For example, cytosine does not contain a methyl moiety on its pyrimidine ring, but 5-methylcytosine contains a methyl moiety at position 5 of its pyrimidine ring. Therefore, cytosine is not a methylated nucleotide and 5-methylcytosine is a methylated nucleotide. In another example, thymine contains a methyl moiety at position 5 of its pyrimidine ring; however, for purposes herein, thymine is not considered a methylated nucleotide when present in DNA since thymine is a typical nucleotide base of DNA.

As used herein, a “methylated nucleic acid molecule” refers to a nucleic acid molecule that contains one or more methylated nucleotides.

As used herein, a “methylation state”, “methylation profile”, and “methylation status” of a nucleic acid molecule refers to the presence of absence of one or more methylated nucleotide bases in the nucleic acid molecule. For example, a nucleic acid molecule containing a methylated cytosine is considered methylated (e.g., the methylation state of the nucleic acid molecule is methylated). A nucleic acid molecule that does not contain any methylated nucleotides is considered unmethylated.

The methylation state of a particular nucleic acid sequence (e.g., a gene marker or DNA region as described herein) can indicate the methylation state of every base in the sequence or can indicate the methylation state of a subset of the bases (e.g., of one or more cytosines) within the sequence, or can indicate information regarding regional methylation density within the sequence with or without providing precise information of the locations within the sequence the methylation occurs.

The methylation state of a nucleotide locus in a nucleic acid molecule refers to the presence or absence of a methylated nucleotide at a particular locus in the nucleic acid molecule. For example, the methylation state of a cytosine at the 7th nucleotide in a nucleic acid molecule is methylated when the nucleotide present at the 7th nucleotide in the nucleic

acid molecule is 5-methylcytosine. Similarly, the methylation state of a cytosine at the 7th nucleotide in a nucleic acid molecule is unmethylated when the nucleotide present at the 7th nucleotide in the nucleic acid molecule is cytosine (and not 5-methylcytosine).

The methylation status can optionally be represented or indicated by a “methylation value” (e.g., representing a methylation frequency, fraction, ratio, percent, etc.) A methylation value can be generated, for example, by quantifying the amount of intact nucleic acid present following restriction digestion with a methylation dependent restriction enzyme or by comparing amplification profiles after bisulfite reaction or by comparing sequences of bisulfite-treated and untreated nucleic acids. Accordingly, a value, e.g., a methylation value, represents the methylation status and can thus be used as a quantitative indicator of methylation status across multiple copies of a locus. This is of particular use when it is desirable to compare the methylation status of a sequence in a sample to a threshold or reference value.

As used herein, “methylation frequency” or “methylation percent (%)” refer to the number of instances in which a molecule or locus is methylated relative to the number of instances the molecule or locus is unmethylated.

As such, the methylation state describes the state of methylation of a nucleic acid (e.g., a genomic sequence). In addition, the methylation state refers to the characteristics of a nucleic acid segment at a particular genomic locus relevant to methylation. Such characteristics include, but are not limited to, whether any of the cytosine (C) residues within this DNA sequence are methylated, the location of methylated C residue(s), the frequency or percentage of methylated C throughout any particular region of a nucleic acid, and allelic differences in methylation due to, e.g., difference in the origin of the alleles. The terms “methylation state”, “methylation profile”, and “methylation status” also refer to the relative concentration, absolute concentration, or pattern of methylated C or unmethylated C throughout any particular region of a nucleic acid in a biological sample. For example, if the cytosine (C) residue(s) within a nucleic acid sequence are methylated it may be referred to as “hypermethylated” or having “increased methylation”, whereas if the cytosine (C) residue(s) within a DNA sequence are not methylated it may be referred to as “hypomethylated” or having “decreased methylation”. Likewise, if the cytosine (C) residue(s) within a nucleic acid sequence are methylated as compared to another nucleic acid sequence (e.g., from a different region or from a different individual, etc.) that sequence is considered hypermethylated or having increased methylation compared to the other nucleic acid sequence. Alternatively, if

the cytosine (C) residue(s) within a DNA sequence are not methylated as compared to another nucleic acid sequence (e.g., from a different region or from a different individual, etc.) that sequence is considered hypomethylated or having decreased methylation compared to the other nucleic acid sequence. Additionally, the term “methylation pattern” as used

5 herein refers to the collective sites of methylated and unmethylated nucleotides over a region of a nucleic acid. Two nucleic acids may have the same or similar methylation frequency or methylation percent but have different methylation patterns when the number of methylated and unmethylated nucleotides are the same or similar throughout the region but the locations of methylated and unmethylated nucleotides are different. Sequences are said to be
10 “differentially methylated” or as having a “difference in methylation” or having a “different methylation state” when they differ in the extent (e.g., one has increased or decreased methylation relative to the other), frequency, or pattern of methylation. The term “differential methylation” refers to a difference in the level or pattern of nucleic acid methylation in a cancer positive sample as compared with the level or pattern of nucleic acid methylation in a
15 cancer negative sample. It may also refer to the difference in levels or patterns between patients that have recurrence of cancer after surgery versus patients who not have recurrence. Differential methylation and specific levels or patterns of DNA methylation are prognostic and predictive biomarkers, e.g., once the correct cut-off or predictive characteristics have been defined.

20 Methylation state frequency can be used to describe a population of individuals or a sample from a single individual. For example, a nucleotide locus having a methylation state frequency of 50% is methylated in 50% of instances and unmethylated in 50% of instances. Such a frequency can be used, for example, to describe the degree to which a nucleotide locus or nucleic acid region is methylated in a population of individuals or a collection of nucleic
25 acids. Thus, when methylation in a first population or pool of nucleic acid molecules is different from methylation in a second population or pool of nucleic acid molecules, the methylation state frequency of the first population or pool will be different from the methylation state frequency of the second population or pool. Such a frequency also can be used, for example, to describe the degree to which a nucleotide locus or nucleic acid region is methylated in a single individual. For example, such a frequency can be used to describe the degree to which a group of cells from a tissue sample are methylated or unmethylated at a
30 nucleotide locus or nucleic acid region.

As used herein a “nucleotide locus” refers to the location of a nucleotide in a nucleic acid molecule. A nucleotide locus of a methylated nucleotide refers to the location of a methylated nucleotide in a nucleic acid molecule.

Typically, methylation of human DNA occurs on a dinucleotide sequence including 5 an adjacent guanine and cytosine where the cytosine is located 5' of the guanine (also termed CpG dinucleotide sequences). Most cytosines within the CpG dinucleotides are methylated in the human genome, however some remain unmethylated in specific CpG dinucleotide rich genomic regions, known as CpG islands (see, e.g, Antequera et al. (1990) *Cell* **62**: 503–514).

As used herein, a “CpG island” refers to a G:C-rich region of genomic DNA 10 containing an increased number of CpG dinucleotides relative to total genomic DNA. A CpG island can be at least 100, 200, or more base pairs in length, where the G:C content of the region is at least 50% and the ratio of observed CpG frequency over expected frequency is 0.6; in some instances, a CpG island can be at least 500 base pairs in length, where the G:C content of the region is at least 55%) and the ratio of observed CpG frequency over expected 15 frequency is 0.65. The observed CpG frequency over expected frequency can be calculated according to the method provided in Gardiner-Garden et al (1987) *J. Mol. Biol.* **196**: 261–281. For example, the observed CpG frequency over expected frequency can be calculated according to the formula $R = (A \times B) / (C \times D)$, where R is the ratio of observed CpG frequency over expected frequency, A is the number of CpG dinucleotides in an analyzed 20 sequence, B is the total number of nucleotides in the analyzed sequence, C is the total number of C nucleotides in the analyzed sequence, and D is the total number of G nucleotides in the analyzed sequence. Methylation state is typically determined in CpG islands, e.g., at 25 promoter regions. It will be appreciated though that other sequences in the human genome are prone to DNA methylation such as CpA and CpT (see Ramsahoye (2000) *Proc. Natl. Acad. Sci. USA* **97**: 5237–5242; Salmon and Kaye (1970) *Biochim. Biophys. Acta* **204**: 340–351; Grafstrom (1985) *Nucleic Acids Res.* **13**: 2827–2842; Nyce (1986) *Nucleic Acids Res.* **14**: 4353–4367; Woodcock (1987) *Biochem. Biophys. Res. Commun.* **145**: 888-894).

As used herein, a “methylation-specific reagent” refers to a reagent that modifies a nucleotide of the nucleic acid molecule as a function of the methylation state of the nucleic 30 acid molecule, or a methylation-specific reagent, refers to a compound or composition or other agent that can change the nucleotide sequence of a nucleic acid molecule in a manner that reflects the methylation state of the nucleic acid molecule. Methods of treating a nucleic acid molecule with such a reagent can include contacting the nucleic acid molecule with the

reagent, coupled with additional steps, if desired, to accomplish the desired change of nucleotide sequence. Such methods can be applied in a manner in which unmethylated nucleotides (e.g., each unmethylated cytosine) is modified to a different nucleotide. For example, in some embodiments, such a reagent can deaminate unmethylated cytosine 5 nucleotides to produce deoxy uracil residues. Examples of such reagents include, but are not limited to, a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent.

A change in the nucleic acid nucleotide sequence by a methylation –specific reagent can also result in a nucleic acid molecule in which each methylated nucleotide is modified to 10 a different nucleotide.

The term “methylation assay” refers to any assay for determining the methylation state of one or more CpG dinucleotide sequences within a sequence of a nucleic acid.

The term “MS AP-PCR” (Methylation-Sensitive Arbitrarily-Primed Polymerase 15 Chain Reaction) refers to the art-recognized technology that allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides, and described by Gonzalgo et al. (1997) *Cancer Research* **57**: 594–599.

The term “MethyLight™” refers to the art-recognized fluorescence-based real-time PCR technique described by Eads et al. (1999) *Cancer Res.* **59**: 2302–2306.

The term “HeavyMethyl™” refers to an assay wherein methylation specific blocking 20 probes (also referred to herein as blockers) covering CpG positions between, or covered by, the amplification primers enable methylation-specific selective amplification of a nucleic acid sample.

The term “HeavyMethyl™ MethyLight™” assay refers to a HeavyMethyl™ 25 MethyLight™ assay, which is a variation of the MethyLight™ assay, wherein the MethyLight™ assay is combined with methylation specific blocking probes covering CpG positions between the amplification primers.

The term “Ms-SNuPE” (Methylation-sensitive Single Nucleotide Primer Extension) refers to the art-recognized assay described by Gonzalgo & Jones (1997) *Nucleic Acids Res.* 25: 2529–2531.

The term “MSP” (Methylation-specific PCR) refers to the art-recognized methylation assay described by Herman et al. (1996) *Proc. Natl. Acad. Sci. USA* **93**: 9821–9826, and by 30 U.S. Pat. No. 5,786,146.

The term “COBRA” (Combined Bisulfite Restriction Analysis) refers to the art-recognized methylation assay described by Xiong & Laird (1997) *Nucleic Acids Res.* **25**: 2532–2534.

5 The term “MCA” (Methylated CpG Island Amplification) refers to the methylation assay described by Toyota et al. (1999) *Cancer Res.* **59**: 2307–12, and in WO 00/26401A1.

As used herein, a “selected nucleotide” refers to one nucleotide of the four typically occurring nucleotides in a nucleic acid molecule (C, G, T, and A for DNA and C, G, U, and A for RNA), and can include methylated derivatives of the typically occurring nucleotides (e.g., when C is the selected nucleotide, both methylated and unmethylated C are included 10 within the meaning of a selected nucleotide), whereas a methylated selected nucleotide refers specifically to a methylated typically occurring nucleotide and an unmethylated selected nucleotides refers specifically to an unmethylated typically occurring nucleotide.

15 The term “methylation-specific restriction enzyme” refers to a restriction enzyme that selectively digests a nucleic acid dependent on the methylation state of its recognition site. In the case of a restriction enzyme that specifically cuts if the recognition site is not methylated or is hemi-methylated (a methylation-sensitive enzyme), the cut will not take place (or will take place with a significantly reduced efficiency) if the recognition site is methylated on one or both strands. In the case of a restriction enzyme that specifically cuts only if the 20 recognition site is methylated (a methylation-dependent enzyme), the cut will not take place (or will take place with a significantly reduced efficiency) if the recognition site is not methylated. Preferred are methylation-specific restriction enzymes, the recognition sequence of which contains a CG dinucleotide (for instance a recognition sequence such as CGCG or CCCGGG). Further preferred for some embodiments are restriction enzymes that do not cut if the cytosine in this dinucleotide is methylated at the carbon atom C5.

25 As used herein, a “different nucleotide” refers to a nucleotide that is chemically different from a selected nucleotide, typically such that the different nucleotide has Watson-Crick base-pairing properties that differ from the selected nucleotide, whereby the typically occurring nucleotide that is complementary to the selected nucleotide is not the same as the typically occurring nucleotide that is complementary to the different nucleotide. For example, 30 when C is the selected nucleotide, U or T can be the different nucleotide, which is exemplified by the complementarity of C to G and the complementarity of U or T to A. As used herein, a nucleotide that is complementary to the selected nucleotide or that is complementary to the different nucleotide refers to a nucleotide that base-pairs, under high

stringency conditions, with the selected nucleotide or different nucleotide with higher affinity than the complementary nucleotide's base-pairing with three of the four typically occurring nucleotides. An example of complementarity is Watson-Crick base pairing in DNA (e.g., A-T and C-G) and RNA (e.g., A-U and C-G). Thus, for example, G base-pairs, under high 5 stringency conditions, with higher affinity to C than G base-pairs to G, A, or T and, therefore, when C is the selected nucleotide, G is a nucleotide complementary to the selected nucleotide.

As used herein, the “sensitivity” of a given marker (or set of markers used together) refers to the percentage of samples that report a DNA methylation value above a threshold 10 value that distinguishes between neoplastic and non-neoplastic samples. In some embodiments, a positive is defined as a histology-confirmed neoplasia that reports a DNA methylation value above a threshold value (e.g., the range associated with disease), and a false negative is defined as a histology-confirmed neoplasia that reports a DNA methylation value below the threshold value (e.g., the range associated with no disease). The value of 15 sensitivity, therefore, reflects the probability that a DNA methylation measurement for a given marker obtained from a known diseased sample will be in the range of disease-associated measurements. As defined here, the clinical relevance of the calculated sensitivity value represents an estimation of the probability that a given marker would detect the presence of a clinical condition when applied to a subject with that condition.

As used herein, the “specificity” of a given marker (or set of markers used together) refers to the percentage of non-neoplastic samples that report a DNA methylation value below a threshold value that distinguishes between neoplastic and non-neoplastic samples. In some embodiments, a negative is defined as a histology-confirmed non-neoplastic sample 20 that reports a DNA methylation value below the threshold value (e.g., the range associated with no disease) and a false positive is defined as a histology-confirmed non-neoplastic sample that reports a DNA methylation value above the threshold value (e.g., the range associated with disease). The value of specificity, therefore, reflects the probability that a DNA methylation measurement for a given marker obtained from a known non-neoplastic sample will be in the range of non-disease associated measurements. As defined here, the 25 clinical relevance of the calculated specificity value represents an estimation of the probability that a given marker would detect the absence of a clinical condition when applied to a patient without that condition.

The term "AUC" as used herein is an abbreviation for the "area under a curve". In particular it refers to the area under a Receiver Operating Characteristic (ROC) curve. The ROC curve is a plot of the true positive rate against the false positive rate for the different possible cut points of a diagnostic test. It shows the trade-off between sensitivity and specificity depending on the selected cut point (any increase in sensitivity will be accompanied by a decrease in specificity). The area under an ROC curve (AUC) is a measure for the accuracy of a diagnostic test (the larger the area the better; the optimum is 1; a random test would have a ROC curve lying on the diagonal with an area of 0.5; for reference: J. P. Egan. (1975) *Signal Detection Theory and ROC Analysis*, Academic Press, New York).

10 The term "neoplasm" as used herein refers to any new and abnormal growth of tissue. Thus, a neoplasm can be a premalignant neoplasm or a malignant neoplasm.

15 The term "neoplasm-specific marker," as used herein, refers to any biological material or element that can be used to indicate the presence of a neoplasm. Examples of biological materials include, without limitation, nucleic acids, polypeptides, carbohydrates, fatty acids, cellular components (e.g., cell membranes and mitochondria), and whole cells. In some instances, markers are particular nucleic acid regions (e.g., genes, intragenic regions, specific loci, etc.). Regions of nucleic acid that are markers may be referred to, e.g., as "marker genes," "marker regions," "marker sequences," "marker loci," etc.

20 As used herein, the term "adenoma" refers to a benign tumor of glandular origin. Although these growths are benign, over time they may progress to become malignant.

The term "pre-cancerous" or "pre-neoplastic" and equivalents thereof refer to any cellular proliferative disorder that is undergoing malignant transformation.

25 A "site" of a neoplasm, adenoma, cancer, etc. is the tissue, organ, cell type, anatomical area, body part, etc. in a subject's body where the neoplasm, adenoma, cancer, etc. is located.

30 As used herein, a "diagnostic" test application includes the detection or identification of a disease state or condition of a subject, determining the likelihood that a subject will contract a given disease or condition, determining the likelihood that a subject with a disease or condition will respond to therapy, determining the prognosis of a subject with a disease or condition (or its likely progression or regression), and determining the effect of a treatment on a subject with a disease or condition. For example, a diagnostic can be used for detecting the presence or likelihood of a subject contracting a neoplasm or the likelihood that such a

subject will respond favorably to a compound (e.g., a pharmaceutical, e.g., a drug) or other treatment.

The term “isolated” when used in relation to a nucleic acid, as in “an isolated oligonucleotide” refers to a nucleic acid sequence that is identified and separated from at least one contaminant nucleic acid with which it is ordinarily associated in its natural source.

Isolated nucleic acid is present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids, such as DNA and RNA, are found in the state they exist in nature. Examples of non-isolated nucleic acids include: a given DNA sequence (e.g., a gene) found on the host cell chromosome in proximity to neighboring genes;

RNA sequences, such as a specific mRNA sequence encoding a specific protein, found in the cell as a mixture with numerous other mRNAs which encode a multitude of proteins.

However, isolated nucleic acid encoding a particular protein includes, by way of example, such nucleic acid in cells ordinarily expressing the protein, where the nucleic acid is in a chromosomal location different from that of natural cells, or is otherwise flanked by a

different nucleic acid sequence than that found in nature. The isolated nucleic acid or oligonucleotide may be present in single-stranded or double-stranded form. When an isolated nucleic acid or oligonucleotide is to be utilized to express a protein, the oligonucleotide will contain at a minimum the sense or coding strand (i.e., the oligonucleotide may be single-stranded), but may contain both the sense and anti-sense strands (i.e., the oligonucleotide may be double-stranded). An isolated nucleic acid may, after isolation from its natural or typical environment, be combined with other nucleic acids or molecules. For example, an isolated nucleic acid may be present in a host cell in which into which it has been placed, e.g., for heterologous expression.

The term “purified” refers to molecules, either nucleic acid or amino acid sequences that are removed from their natural environment, isolated, or separated. An “isolated nucleic acid sequence” may therefore be a purified nucleic acid sequence. “Substantially purified” molecules are at least 60% free, preferably at least 75% free, and more preferably at least 90% free from other components with which they are naturally associated. As used herein, the terms “purified” or “to purify” also refer to the removal of contaminants from a sample.

The removal of contaminating proteins results in an increase in the percent of polypeptide or nucleic acid of interest in the sample. In another example, recombinant polypeptides are expressed in plant, bacterial, yeast, or mammalian host cells and the polypeptides are purified

by the removal of host cell proteins; the percent of recombinant polypeptides is thereby increased in the sample.

The term “composition comprising” a given polynucleotide sequence or polypeptide refers broadly to any composition containing the given polynucleotide sequence or 5 polypeptide. The composition may comprise an aqueous solution containing salts (e.g., NaCl), detergents (e.g., SDS), and other components (e.g., Denhardt’s solution, dry milk, salmon sperm DNA, etc.).

The term “sample” is used in its broadest sense. In one sense it can refer to an animal cell or tissue. In another sense, it refers to a specimen or culture obtained from any source, as 10 well as biological and environmental samples. Biological samples may be obtained from plants or animals (including humans) and encompass fluids, solids, tissues, and gases. Environmental samples include environmental material such as surface matter, soil, water, and industrial samples. These examples are not to be construed as limiting the sample types applicable to the present invention.

15 As used herein, a “remote sample” as used in some contexts relates to a sample indirectly collected from a site that is not the cell, tissue, or organ source of the sample. For instance, when sample material originating from the pancreas is assessed in a stool sample (e.g., not from a sample taken directly from a breast), the sample is a remote sample.

As used herein, the terms “patient” or “subject” refer to organisms to be subject to 20 various tests provided by the technology. The term “subject” includes animals, preferably mammals, including humans. In a preferred embodiment, the subject is a primate. In an even more preferred embodiment, the subject is a human. Further with respect to diagnostic methods, a preferred subject is a vertebrate subject. A preferred vertebrate is warm-blooded; a preferred warm-blooded vertebrate is a mammal. A preferred mammal is most preferably a 25 human. As used herein, the term “subject” includes both human and animal subjects. Thus, veterinary therapeutic uses are provided herein. As such, the present technology provides for the diagnosis of mammals such as humans, as well as those mammals of importance due to being endangered, such as Siberian tigers; of economic importance, such as animals raised on farms for consumption by humans; and/or animals of social importance to humans, such as 30 animals kept as pets or in zoos. Examples of such animals include but are not limited to: carnivores such as cats and dogs; swine, including pigs, hogs, and wild boars; ruminants and/or ungulates such as cattle, oxen, sheep, giraffes, deer, goats, bison, and camels; pinnipeds; and horses. Thus, also provided is the diagnosis and treatment of livestock,

including, but not limited to, domesticated swine, ruminants, ungulates, horses (including race horses), and the like. The presently-disclosed subject matter further includes a system for diagnosing a lung cancer in a subject. The system can be provided, for example, as a commercial kit that can be used to screen for a risk of lung cancer or diagnose a lung cancer 5 in a subject from whom a biological sample has been collected. An exemplary system provided in accordance with the present technology includes assessing the methylation state of a marker described herein.

As used herein, the term "kit" refers to any delivery system for delivering materials. In the context of reaction assays, such delivery systems include systems that allow for the 10 storage, transport, or delivery of reaction reagents (e.g., oligonucleotides, enzymes, etc. in the appropriate containers) and/or supporting materials (e.g., buffers, written instructions for performing the assay etc.) from one location to another. For example, kits include one or more enclosures (e.g., boxes) containing the relevant reaction reagents and/or supporting materials. As used herein, the term "fragmented kit" refers to delivery systems comprising 15 two or more separate containers that each contain a subportion of the total kit components. The containers may be delivered to the intended recipient together or separately. For example, a first container may contain an enzyme for use in an assay, while a second container contains oligonucleotides. The term "fragmented kit" is intended to encompass kits containing Analyte specific reagents (ASR's) regulated under section 520(e) of the Federal 20 Food, Drug, and Cosmetic Act, but are not limited thereto. Indeed, any delivery system comprising two or more separate containers that each contains a subportion of the total kit components are included in the term "fragmented kit." In contrast, a "combined kit" refers to a delivery system containing all of the components of a reaction assay in a single container (e.g., in a single box housing each of the desired components). The term "kit" includes both 25 fragmented and combined kits.

As used herein, the term "breast cancer" refers generally to the uncontrolled growth of breast tissue and, more specifically, to a condition characterized by anomalous rapid proliferation of abnormal cells in one or both breasts of a subject. The abnormal cells often are referred to as malignant or "neoplastic cells," which are transformed cells that can form a 30 solid tumor. The term "tumor" refers to an abnormal mass or population of cells (i.e., two or more cells) that result from excessive or abnormal cell division, whether malignant or benign, and pre-cancerous and cancerous cells. Malignant tumors are distinguished from benign

growths or tumors in that, in addition to uncontrolled cellular proliferation, they can invade surrounding tissues and can metastasize.

As used herein, the term “HER2⁺ breast cancer” refers to breast cancers wherein at least a portion of the cancer cells express elevated levels of HER2 protein (HER2 (from 5 human epidermal growth factor receptor 2) or HER2/neu) which promotes rapid growth of cells.

As used herein, the term “Luminal A breast cancer” refers to breast cancers wherein at least a portion of the cancer cells are estrogen receptor (ER) positive and progesterone receptor (PR) positive, but negative for HER2.

10 As used herein, the term “Luminal B breast cancer” refers to breast cancers wherein at least a portion of the cancer cells are ER positive, HER2 positive, and negative for PR.

As used herein, the term “triple negative breast cancer” refers to breast cancers wherein at least a portion of the cancer cells are negative for ER, HER2, and PR.

15 As used herein, the term “HER2⁺ breast cancer” refers to breast cancers wherein at least a portion of the cancer cells are negative for ER and PR, but positive for HER2.

As used herein, the term “BRCA1 breast cancer” refers to breast cancers wherein at least a portion of the cancer cells are characterized with a mutation in the BRCA1 gene and/or reduced wild type BRCA1 expression.

20 As used herein, the term “BRCA2 breast cancer” refers to breast cancers wherein at least a portion of the cancer cells are characterized with a mutation in the BRCA2 gene and/or reduced wild type BRCA2 expression.

As used herein the term “ductal carcinoma in situ” (DCIS) refers to a non-invasive cancer where abnormal cells are found in the lining of the breast milk duct. “Low grade” DCIS refers to a DCIS that is nuclear grade 1 or has a low mitotic rate. “High grade” DCIS 25 refers to a DCIS that nuclear grade 3 or has a high mitotic rate. “Invasive” DCIS refers to a ductal carcinoma that has spread to non-ductal tissue.

As used herein, the term “information” refers to any collection of facts or data. In reference to information stored or processed using a computer system(s), including but not limited to internets, the term refers to any data stored in any format (e.g., analog, digital, 30 optical, etc.). As used herein, the term “information related to a subject” refers to facts or data pertaining to a subject (e.g., a human, plant, or animal). The term “genomic information” refers to information pertaining to a genome including, but not limited to, nucleic acid sequences, genes, percentage methylation, allele frequencies, RNA expression levels, protein

expression, phenotypes correlating to genotypes, *etc.* “Allele frequency information” refers to facts or data pertaining to allele frequencies, including, but not limited to, allele identities, statistical correlations between the presence of an allele and a characteristic of a subject (*e.g.*, a human subject), the presence or absence of an allele in an individual or population, the 5 percentage likelihood of an allele being present in an individual having one or more particular characteristics, *etc.*

DETAILED DESCRIPTION

In this detailed description of the various embodiments, for purposes of explanation, 10 numerous specific details are set forth to provide a thorough understanding of the embodiments disclosed. One skilled in the art will appreciate, however, that these various embodiments may be practiced with or without these specific details. In other instances, structures and devices are shown in block diagram form. Furthermore, one skilled in the art can readily appreciate that the specific sequences in which methods are presented and 15 performed are illustrative and it is contemplated that the sequences can be varied and still remain within the spirit and scope of the various embodiments disclosed herein.

Provided herein is technology for breast cancer screening and particularly, but not exclusively, to methods, compositions, and related uses for detecting the presence of breast cancer and/or specific forms of breast cancer (*e.g.*, triple negative breast cancer, HER2⁺ 20 breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer). As the technology is described herein, the section headings used are for organizational purposes only and are not to be construed as limiting the subject matter in any way.

Indeed, as described in Examples I, II and III, experiments conducted during the 25 course for identifying embodiments for the present invention identified a novel set of 375 differentially methylated regions (DMRs) for discriminating cancer of the breast derived DNA from non-neoplastic control DNA. From these 375 novel DNA methylation markers, further experiments identified markers capable of distinguishing different types of breast cancer from normal breast tissue. For example, separate sets of DMRs were identified 30 capable of distinguishing 1) triple negative breast cancer tissue from normal breast tissue, 2) HER2⁺ breast cancer tissue from normal breast tissue, 3) Luminal A breast cancer tissue from normal breast tissue, 4) Luminal B breast cancer tissue from normal breast tissue, 5) BRCA1 breast cancer tissue from normal breast tissue, 6) BRCA2 breast cancer tissue from normal

breast tissue, and 7) invasive breast cancer tissue from normal breast tissue. In addition, DMRs were identified capable of distinguishing between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue. In addition, DMRs were identified capable of plasma from subjects having breast cancer from plasma from subjects not having breast cancer.

5 Although the disclosure herein refers to certain illustrated embodiments, it is to be understood that these embodiments are presented by way of example and not by way of limitation.

In particular aspects, the present technology provides compositions and methods for 10 identifying, determining, and/or classifying a cancer such as breast cancer. The methods comprise determining the methylation status of at least one methylation marker in a biological sample isolated from a subject (e.g., stool sample, breast tissue sample, plasma sample), wherein a change in the methylation state of the marker is indicative of the presence, 15 class, or site of a breast cancer. Particular embodiments relate to markers comprising a differentially methylated region (DMR, e.g., DMR 1-375, see Tables 2 and 18) that are used for diagnosis (e.g., screening) of breast cancer and various types of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer).

In addition to embodiments wherein the methylation analysis of at least one marker, a 20 region of a marker, or a base of a marker comprising a DMR (e.g., DMR, e.g., DMR 1-375) provided herein and listed in Tables 2 and 18 is analyzed, the technology also provides panels of markers comprising at least one marker, region of a marker, or base of a marker comprising a DMR with utility for the detection of cancers, in particular breast cancer.

Some embodiments of the technology are based upon the analysis of the CpG 25 methylation status of at least one marker, region of a marker, or base of a marker comprising a DMR.

In some embodiments, the present technology provides for the use of a reagent that 30 modifies DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent) in combination with one or more methylation assays to determine the methylation status of CpG dinucleotide sequences within at least one marker comprising a DMR (e.g., DMR 1-375, see Tables 2 and 18). Genomic CpG dinucleotides can be methylated or unmethylated (alternatively known as up- and down-methylated respectively). However the methods of the present invention are

suitable for the analysis of biological samples of a heterogeneous nature, e.g., a low concentration of tumor cells, or biological materials therefrom, within a background of a remote sample (e.g., blood, organ effluent, or stool). Accordingly, when analyzing the methylation status of a CpG position within such a sample one may use a quantitative assay 5 for determining the level (e.g., percent, fraction, ratio, proportion, or degree) of methylation at a particular CpG position.

According to the present technology, determination of the methylation status of CpG dinucleotide sequences in markers comprising a DMR has utility both in the diagnosis and characterization of cancers such as breast cancer.

10

Combinations of markers

In some embodiments, the technology relates to assessing the methylation state of combinations of markers comprising a DMR from Tables 2 and 18 (e.g., DMR Nos. 1-375). In some embodiments, assessing the methylation state of more than one marker increases the 15 specificity and/or sensitivity of a screen or diagnostic for identifying a neoplasm in a subject (e.g., breast cancer).

Various cancers are predicted by various combinations of markers, e.g., as identified by statistical techniques related to specificity and sensitivity of prediction. The technology provides methods for identifying predictive combinations and validated predictive 20 combinations for some cancers.

Methods for assaying methylation state

In certain embodiments, methods for analyzing a nucleic acid for the presence of 5-methylcytosine involves treatment of DNA with a reagent that modifies DNA in a 25 methylation-specific manner. Examples of such reagents include, but are not limited to, a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent.

A frequently used method for analyzing a nucleic acid for the presence of 5-methylcytosine is based upon the bisulfite method described by Frommer, et al. for the 30 detection of 5-methylcytosines in DNA (Frommer et al. (1992) *Proc. Natl. Acad. Sci. USA* 89: 1827-31 explicitly incorporated herein by reference in its entirety for all purposes) or variations thereof. The bisulfite method of mapping 5-methylcytosines is based on the observation that cytosine, but not 5-methylcytosine, reacts with hydrogen sulfite ion (also

known as bisulfite). The reaction is usually performed according to the following steps: first, cytosine reacts with hydrogen sulfite to form a sulfonated cytosine. Next, spontaneous deamination of the sulfonated reaction intermediate results in a sulfonated uracil. Finally, the sulfonated uracil is desulfonated under alkaline conditions to form uracil. Detection is 5 possible because uracil base pairs with adenine (thus behaving like thymine), whereas 5-methylcytosine base pairs with guanine (thus behaving like cytosine). This makes the discrimination of methylated cytosines from non-methylated cytosines possible by, e.g., bisulfite genomic sequencing (Grigg G, & Clark S, *Bioessays* (1994) 16: 431–36; Grigg G, *DNA Seq.* (1996) 6: 189–98), methylation-specific PCR (MSP) as is disclosed, e.g., in U.S. 10 Patent No. 5,786,146, or using an assay comprising sequence-specific probe cleavage, e.g., a QuARTS flap endonuclease assay (see, e.g., Zou et al. (2010) “Sensitive quantification of methylated markers with a novel methylation specific technology” *Clin Chem* 56: A199; and in U.S. Pat. Nos. 8,361,720; 8,715,937; 8,916,344; and 9,212,392.

Some conventional technologies are related to methods comprising enclosing the 15 DNA to be analyzed in an agarose matrix, thereby preventing the diffusion and renaturation of the DNA (bisulfite only reacts with single-stranded DNA), and replacing precipitation and purification steps with a fast dialysis (Olek A, et al. (1996) “A modified and improved method for bisulfite based cytosine methylation analysis” *Nucleic Acids Res.* 24: 5064-6). It is thus possible to analyze individual cells for methylation status, illustrating the utility and 20 sensitivity of the method. An overview of conventional methods for detecting 5-methylcytosine is provided by Rein, T., et al. (1998) *Nucleic Acids Res.* 26: 2255.

The bisulfite technique typically involves amplifying short, specific fragments of a known nucleic acid subsequent to a bisulfite treatment, then either assaying the product by sequencing (Olek & Walter (1997) *Nat. Genet.* 17: 275–6) or a primer extension reaction 25 (Gonzalgo & Jones (1997) *Nucleic Acids Res.* 25: 2529–31; WO 95/00669; U.S. Pat. No. 6,251,594) to analyze individual cytosine positions. Some methods use enzymatic digestion (Xiong & Laird (1997) *Nucleic Acids Res.* 25: 2532–4). Detection by hybridization has also been described in the art (Olek et al., WO 99/28498). Additionally, use of the bisulfite technique for methylation detection with respect to individual genes has been described 30 (Grigg & Clark (1994) *Bioessays* 16: 431–6; Zeschnigk et al. (1997) *Hum Mol Genet.* 6: 387–95; Feil et al. (1994) *Nucleic Acids Res.* 22: 695; Martin et al. (1995) *Gene* 157: 261–4; WO 9746705; WO 9515373).

Various methylation assay procedures can be used in conjunction with bisulfite treatment according to the present technology. These assays allow for determination of the methylation state of one or a plurality of CpG dinucleotides (e.g., CpG islands) within a nucleic acid sequence. Such assays involve, among other techniques, sequencing of bisulfite-treated nucleic acid, PCR (for sequence-specific amplification), Southern blot analysis, and use of methylation-specific restriction enzymes, e.g., methylation-sensitive or methylation-dependent enzymes.

For example, genomic sequencing has been simplified for analysis of methylation patterns and 5-methylcytosine distributions by using bisulfite treatment (Frommer et al. 10 (1992) *Proc. Natl. Acad. Sci. USA* 89: 1827–1831). Additionally, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA finds use in assessing methylation state, e.g., as described by Sadri & Hornsby (1997) *Nucl. Acids Res.* 24: 5058–5059 or as embodied in the method known as COBRA (Combined Bisulfite Restriction Analysis) (Xiong & Laird (1997) *Nucleic Acids Res.* 25: 2532–2534).

COBRA™ analysis is a quantitative methylation assay useful for determining DNA methylation levels at specific loci in small amounts of genomic DNA (Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997). Briefly, restriction enzyme digestion is used to reveal methylation-dependent sequence differences in PCR products of sodium bisulfite-treated DNA. Methylation-dependent sequence differences are first introduced into the genomic DNA by standard bisulfite treatment according to the procedure described by Frommer et al. (*Proc. Natl. Acad. Sci. USA* 89:1827-1831, 1992). PCR amplification of the bisulfite converted DNA is then performed using primers specific for the CpG islands of interest, followed by restriction endonuclease digestion, gel electrophoresis, and detection using specific, labeled hybridization probes. Methylation levels in the original DNA sample 20 are represented by the relative amounts of digested and undigested PCR product in a linearly quantitative fashion across a wide spectrum of DNA methylation levels. In addition, this technique can be reliably applied to DNA obtained from microdissected paraffin-embedded tissue samples.

Typical reagents (e.g., as might be found in a typical COBRA™-based kit) for 30 COBRA™ analysis may include, but are not limited to: PCR primers for specific loci (e.g., specific genes, markers, DMR, regions of genes, regions of markers, bisulfite treated DNA sequence, CpG island, etc.); restriction enzyme and appropriate buffer; gene-hybridization oligonucleotide; control hybridization oligonucleotide; kinase labeling kit for oligonucleotide

probe; and labeled nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery reagents or kits (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

Assays such as “MethyLight™” (a fluorescence-based real-time PCR technique) (Eads et al.,

5 Cancer Res. 59:2302-2306, 1999), Ms-SNuPE™ (Methylation-sensitive Single Nucleotide Primer Extension) reactions (Gonzalgo & Jones, Nucleic Acids Res. 25:2529-2531, 1997), methylation-specific PCR (“MSP”; Herman et al., Proc. Natl. Acad. Sci. USA 93:9821-9826, 1996; U.S. Pat. No. 5,786,146), and methylated CpG island amplification (“MCA”; Toyota et al., Cancer Res. 59:2307-12, 1999) are used alone or in combination with one or more of

10 these methods.

The “HeavyMethyl™” assay, technique is a quantitative method for assessing methylation differences based on methylation-specific amplification of bisulfite-treated DNA. Methylation-specific blocking probes (“blockers”) covering CpG positions between, or covered by, the amplification primers enable methylation-specific selective amplification of a

15 nucleic acid sample.

The term “HeavyMethyl™ MethyLight™” assay refers to a HeavyMethyl™ MethyLight™ assay, which is a variation of the MethyLight™ assay, wherein the MethyLight™ assay is combined with methylation specific blocking probes covering CpG positions between the amplification primers. The HeavyMethyl™ assay may also be used in combination with methylation specific amplification primers.

Typical reagents (e.g., as might be found in a typical MethyLight™-based kit) for HeavyMethyl™ analysis may include, but are not limited to: PCR primers for specific loci (e.g., specific genes, markers, regions of genes, regions of markers, bisulfite treated DNA sequence, CpG island, or bisulfite treated DNA sequence or CpG island, etc.); blocking

25 oligonucleotides; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

MSP (methylation-specific PCR) allows for assessing the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes (Herman et al. Proc. Natl. Acad. Sci. USA 93:9821-9826, 1996; U.S. Pat. No. 5,786,146). Briefly, DNA is modified by sodium bisulfite, which converts unmethylated, but not methylated cytosines, to uracil, and the products are subsequently amplified with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. Typical reagents (e.g.,

as might be found in a typical MSP-based kit) for MSP analysis may include, but are not limited to: methylated and unmethylated PCR primers for specific loci (e.g., specific genes, markers, regions of genes, regions of markers, bisulfite treated DNA sequence, CpG island, etc.); optimized PCR buffers and deoxynucleotides, and specific probes.

5 The MethyLight™ assay is a high-throughput quantitative methylation assay that utilizes fluorescence-based real-time PCR (e.g., TaqMan®) that requires no further manipulations after the PCR step (Eads et al., Cancer Res. 59:2302-2306, 1999). Briefly, the MethyLight™ process begins with a mixed sample of genomic DNA that is converted, in a sodium bisulfite reaction, to a mixed pool of methylation-dependent sequence differences
10 according to standard procedures (the bisulfite process converts unmethylated cytosine residues to uracil). Fluorescence-based PCR is then performed in a “biased” reaction, e.g., with PCR primers that overlap known CpG dinucleotides. Sequence discrimination occurs both at the level of the amplification process and at the level of the fluorescence detection process.

15 The MethyLight™ assay is used as a quantitative test for methylation patterns in a nucleic acid, e.g., a genomic DNA sample, wherein sequence discrimination occurs at the level of probe hybridization. In a quantitative version, the PCR reaction provides for a methylation specific amplification in the presence of a fluorescent probe that overlaps a particular putative methylation site. An unbiased control for the amount of input DNA is
20 provided by a reaction in which neither the primers, nor the probe, overlie any CpG dinucleotides. Alternatively, a qualitative test for genomic methylation is achieved by probing the biased PCR pool with either control oligonucleotides that do not cover known methylation sites (e.g., a fluorescence-based version of the HeavyMethyl™ and MSP techniques) or with oligonucleotides covering potential methylation sites.

25 The MethyLight™ process is used with any suitable probe (e.g. a “TaqMan®” probe, a Lightcycler® probe, etc.) For example, in some applications double-stranded genomic DNA is treated with sodium bisulfite and subjected to one of two sets of PCR reactions using TaqMan® probes, e.g., with MSP primers and/or HeavyMethyl blocker oligonucleotides and a TaqMan® probe. The TaqMan® probe is dual-labeled with fluorescent “reporter” and
30 “quencher” molecules and is designed to be specific for a relatively high GC content region so that it melts at about a 10°C higher temperature in the PCR cycle than the forward or reverse primers. This allows the TaqMan® probe to remain fully hybridized during the PCR annealing/extension step. As the Taq polymerase enzymatically synthesizes a new strand

during PCR, it will eventually reach the annealed TaqMan® probe. The Taq polymerase 5' to 3' endonuclease activity will then displace the TaqMan® probe by digesting it to release the fluorescent reporter molecule for quantitative detection of its now unquenched signal using a real-time fluorescent detection system.

5 Typical reagents (*e.g.*, as might be found in a typical MethylLight™-based kit) for MethylLight™ analysis may include, but are not limited to: PCR primers for specific loci (*e.g.*, specific genes, markers, regions of genes, regions of markers, bisulfite treated DNA sequence, CpG island, *etc.*); TaqMan® or Lightcycler® probes; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

10 The QM™ (quantitative methylation) assay is an alternative quantitative test for methylation patterns in genomic DNA samples, wherein sequence discrimination occurs at the level of probe hybridization. In this quantitative version, the PCR reaction provides for unbiased amplification in the presence of a fluorescent probe that overlaps a particular putative methylation site. An unbiased control for the amount of input DNA is provided by a

15 reaction in which neither the primers, nor the probe, overlie any CpG dinucleotides.

Alternatively, a qualitative test for genomic methylation is achieved by probing the biased PCR pool with either control oligonucleotides that do not cover known methylation sites (a fluorescence-based version of the HeavyMethyl™ and MSP techniques) or with oligonucleotides covering potential methylation sites.

20 The QM™ process can be used with any suitable probe, *e.g.*, “TaqMan®” probes, Lightcycler® probes, in the amplification process. For example, double-stranded genomic DNA is treated with sodium bisulfite and subjected to unbiased primers and the TaqMan® probe. The TaqMan® probe is dual-labeled with fluorescent “reporter” and “quencher” molecules, and is designed to be specific for a relatively high GC content region so that it

25 melts out at about a 10°C higher temperature in the PCR cycle than the forward or reverse primers. This allows the TaqMan® probe to remain fully hybridized during the PCR annealing/extension step. As the Taq polymerase enzymatically synthesizes a new strand

30 during PCR, it will eventually reach the annealed TaqMan® probe. The Taq polymerase 5' to 3' endonuclease activity will then displace the TaqMan® probe by digesting it to release the fluorescent reporter molecule for quantitative detection of its now unquenched signal using a real-time fluorescent detection system. Typical reagents (*e.g.*, as might be found in a typical QM™-based kit) for QM™ analysis may include, but are not limited to: PCR primers for specific loci (*e.g.*, specific genes, markers, regions of genes, regions of markers, bisulfite

treated DNA sequence, CpG island, *etc.*); TaqMan® or Lightcycler® probes; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

The Ms-SNuPE™ technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension (Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997).
5 Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site of
10 interest. Small amounts of DNA can be analyzed (*e.g.*, microdissected pathology sections) and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites.

Typical reagents (*e.g.*, as might be found in a typical Ms-SNuPE™-based kit) for Ms-SNuPE™ analysis may include, but are not limited to: PCR primers for specific loci (*e.g.*,
15 specific genes, markers, regions of genes, regions of markers, bisulfite treated DNA sequence, CpG island, *etc.*); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE™ primers for specific loci; reaction buffer (for the Ms-SNuPE reaction); and labeled nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery reagents or kit (*e.g.*,
20 precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

Reduced Representation Bisulfite Sequencing (RRBS) begins with bisulfite treatment of nucleic acid to convert all unmethylated cytosines to uracil, followed by restriction enzyme digestion (*e.g.*, by an enzyme that recognizes a site including a CG sequence such as MspI)
25 and complete sequencing of fragments after coupling to an adapter ligand. The choice of restriction enzyme enriches the fragments for CpG dense regions, reducing the number of redundant sequences that may map to multiple gene positions during analysis. As such, RRBS reduces the complexity of the nucleic acid sample by selecting a subset (*e.g.*, by size selection using preparative gel electrophoresis) of restriction fragments for sequencing. As
30 opposed to whole-genome bisulfite sequencing, every fragment produced by the restriction enzyme digestion contains DNA methylation information for at least one CpG dinucleotide. As such, RRBS enriches the sample for promoters, CpG islands, and other genomic features

with a high frequency of restriction enzyme cut sites in these regions and thus provides an assay to assess the methylation state of one or more genomic loci.

A typical protocol for RRBS comprises the steps of digesting a nucleic acid sample with a restriction enzyme such as MspI, filling in overhangs and A-tailing, ligating adaptors,

5 bisulfite conversion, and PCR. See, *e.g.*, et al. (2005) “Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution” *Nat Methods* **7**: 133–6; Meissner et al. (2005) “Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis” *Nucleic Acids Res.* **33**: 5868–77.

In some embodiments, a quantitative allele-specific real-time target and signal 10 amplification (QuARTS) assay is used to evaluate methylation state. Three reactions sequentially occur in each QuARTS assay, including amplification (reaction 1) and target probe cleavage (reaction 2) in the primary reaction; and FRET cleavage and fluorescent signal generation (reaction 3) in the secondary reaction. When target nucleic acid is amplified with specific primers, a specific detection probe with a flap sequence loosely binds to the 15 amplicon. The presence of the specific invasive oligonucleotide at the target binding site causes a 5' nuclease, *e.g.*, a FEN-1 endonuclease, to release the flap sequence by cutting between the detection probe and the flap sequence. The flap sequence is complementary to a non-hairpin portion of a corresponding FRET cassette. Accordingly, the flap sequence functions as an invasive oligonucleotide on the FRET cassette and effects a cleavage between 20 the FRET cassette fluorophore and a quencher, which produces a fluorescent signal. The cleavage reaction can cut multiple probes per target and thus release multiple fluorophore per flap, providing exponential signal amplification. QuARTS can detect multiple targets in a single reaction well by using FRET cassettes with different dyes. See, *e.g.*, in Zou et al. 25 (2010) “Sensitive quantification of methylated markers with a novel methylation specific technology” *Clin Chem* **56**: A199), and U.S. Pat. Nos. 8,361,720; 8,715,937; 8,916,344; and 9,212,392, each of which is incorporated herein by reference for all purposes.

The term “bisulfite reagent” refers to a reagent comprising bisulfite, disulfite, 30 hydrogen sulfite, or combinations thereof, useful as disclosed herein to distinguish between methylated and unmethylated CpG dinucleotide sequences. Methods of said treatment are known in the art (*e.g.*, PCT/EP2004/011715 and WO 2013/116375, each of which is incorporated by reference in its entirety). In some embodiments, bisulfite treatment is conducted in the presence of denaturing solvents such as but not limited to n-alkyleneglycol or diethylene glycol dimethyl ether (DME), or in the presence of dioxane or dioxane

derivatives. In some embodiments the denaturing solvents are used in concentrations between 1% and 35% (v/v). In some embodiments, the bisulfite reaction is carried out in the presence of scavengers such as but not limited to chromane derivatives, *e.g.*, 6-hydroxy-2,5,7,8,-tetramethylchromane 2-carboxylic acid or trihydroxybenzone acid and derivatives thereof, *e.g.*, 5 Gallic acid (see: PCT/EP2004/011715, which is incorporated by reference in its entirety). In certain preferred embodiments, the bisulfite reaction comprises treatment with ammonium hydrogen sulfite, *e.g.*, as described in WO 2013/116375.

In some embodiments, fragments of the treated DNA are amplified using sets of primer oligonucleotides according to the present invention (*e.g.*, see Tables 10, 19 and 20) 10 and an amplification enzyme. The amplification of several DNA segments can be carried out simultaneously in one and the same reaction vessel. Typically, the amplification is carried out using a polymerase chain reaction (PCR). Amplicons are typically 100 to 2000 base pairs in length.

In another embodiment of the method, the methylation status of CpG positions within 15 or near a marker comprising a DMR (*e.g.*, DMR 1-375, Tables 2 and 18) may be detected by use of methylation-specific primer oligonucleotides. This technique (MSP) has been described in U.S. Pat. No. 6,265,171 to Herman. The use of methylation status specific primers for the amplification of bisulfite treated DNA allows the differentiation between methylated and unmethylated nucleic acids. MSP primer pairs contain at least one primer that 20 hybridizes to a bisulfite treated CpG dinucleotide. Therefore, the sequence of said primers comprises at least one CpG dinucleotide. MSP primers specific for non-methylated DNA contain a “T” at the position of the C position in the CpG.

The fragments obtained by means of the amplification can carry a directly or 25 indirectly detectable label. In some embodiments, the labels are fluorescent labels, radionuclides, or detachable molecule fragments having a typical mass that can be detected in a mass spectrometer. Where said labels are mass labels, some embodiments provide that the labeled amplicons have a single positive or negative net charge, allowing for better detectability in the mass spectrometer. The detection may be carried out and visualized by means of, *e.g.*, matrix assisted laser desorption/ionization mass spectrometry (MALDI) or 30 using electron spray mass spectrometry (ESI).

Methods for isolating DNA suitable for these assay technologies are known in the art. In particular, some embodiments comprise isolation of nucleic acids as described in U.S. Pat.

Appl. Ser. No. 13/470,251 ("Isolation of Nucleic Acids"), incorporated herein by reference in its entirety.

In some embodiments, the markers described herein find use in QUARTS assays performed on stool samples. In some embodiments, methods for producing DNA samples and, in particular, to methods for producing DNA samples that comprise highly purified, low-abundance nucleic acids in a small volume (*e.g.*, less than 100, less than 60 microliters) and that are substantially and/or effectively free of substances that inhibit assays used to test the DNA samples (*e.g.*, PCR, INVADER, QuARTS assays, *etc.*) are provided. Such DNA samples find use in diagnostic assays that qualitatively detect the presence of, or 5 quantitatively measure the activity, expression, or amount of, a gene, a gene variant (*e.g.*, an allele), or a gene modification (*e.g.*, methylation) present in a sample taken from a patient. For example, some cancers are correlated with the presence of particular mutant alleles or particular methylation states, and thus detecting and/or quantifying such mutant alleles or 10 methylation states has predictive value in the diagnosis and treatment of cancer.

15 Many valuable genetic markers are present in extremely low amounts in samples and many of the events that produce such markers are rare. Consequently, even sensitive detection methods such as PCR require a large amount of DNA to provide enough of a low-abundance target to meet or supersede the detection threshold of the assay. Moreover, the presence of even low amounts of inhibitory substances compromise the accuracy and precision of these 20 assays directed to detecting such low amounts of a target. Accordingly, provided herein are methods providing the requisite management of volume and concentration to produce such DNA samples.

In some embodiments, the sample comprises blood, serum, plasma, or saliva. In some embodiments, the subject is human. Such samples can be obtained by any number of means 25 known in the art, such as will be apparent to the skilled person. Cell free or substantially cell free samples can be obtained by subjecting the sample to various techniques known to those of skill in the art which include, but are not limited to, centrifugation and filtration. Although it is generally preferred that no invasive techniques are used to obtain the sample, it still may be preferable to obtain samples such as tissue homogenates, tissue sections, and biopsy 30 specimens. The technology is not limited in the methods used to prepare the samples and provide a nucleic acid for testing. For example, in some embodiments, a DNA is isolated from a stool sample or from blood or from a plasma sample using direct gene capture, *e.g.*, as

detailed in U.S. Pat. Nos. 8,808,990 and 9,169,511, and in WO 2012/155072, or by a related method.

The analysis of markers can be carried out separately or simultaneously with additional markers within one test sample. For example, several markers can be combined 5 into one test for efficient processing of multiple samples and for potentially providing greater diagnostic and/or prognostic accuracy. In addition, one skilled in the art would recognize the value of testing multiple samples (for example, at successive time points) from the same subject. Such testing of serial samples can allow the identification of changes in marker methylation states over time. Changes in methylation state, as well as the absence of change 10 in methylation state, can provide useful information about the disease status that includes, but is not limited to, identifying the approximate time from onset of the event, the presence and amount of salvageable tissue, the appropriateness of drug therapies, the effectiveness of various therapies, and identification of the subject's outcome, including risk of future events. The analysis of biomarkers can be carried out in a variety of physical formats. For example, 15 the use of microtiter plates or automation can be used to facilitate the processing of large numbers of test samples. Alternatively, single sample formats could be developed to facilitate immediate treatment and diagnosis in a timely fashion, for example, in ambulatory transport or emergency room settings.

It is contemplated that embodiments of the technology are provided in the form of a 20 kit. The kits comprise embodiments of the compositions, devices, apparatuses, *etc.* described herein, and instructions for use of the kit. Such instructions describe appropriate methods for preparing an analyte from a sample, *e.g.*, for collecting a sample and preparing a nucleic acid from the sample. Individual components of the kit are packaged in appropriate containers and packaging (*e.g.*, vials, boxes, blister packs, ampules, jars, bottles, tubes, and the like) and the 25 components are packaged together in an appropriate container (*e.g.*, a box or boxes) for convenient storage, shipping, and/or use by the user of the kit. It is understood that liquid components (*e.g.*, a buffer) may be provided in a lyophilized form to be reconstituted by the user. Kits may include a control or reference for assessing, validating, and/or assuring the performance of the kit. For example, a kit for assaying the amount of a nucleic acid present in 30 a sample may include a control comprising a known concentration of the same or another nucleic acid for comparison and, in some embodiments, a detection reagent (*e.g.*, a primer) specific for the control nucleic acid. The kits are appropriate for use in a clinical setting and, in some embodiments, for use in a user's home. The components of a kit, in some

embodiments, provide the functionalities of a system for preparing a nucleic acid solution from a sample. In some embodiments, certain components of the system are provided by the user.

5 Methods

In some embodiments of the technology, methods are provided that comprise the following steps:

- 10 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker comprising a DMR (e.g., DMR 1-375 e.g., as provided in Tables 2 and 18) and
- 15 2) detecting breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the following steps:

- 20 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and ABLIM1, and

2) detecting breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

5 In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B, BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN_1B, CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316, CHST2_9470, CLIC6_B, CXCL12_B, DLX4_B, DNM3_D, EMX1_A, ESPN_B, FAM59B_7764, FOXP4_B, GP5, HOXA1_C, IGF2BP3_C, IPTRIPL1_1138, IPTRIPL1_1200, KCNK9_B, KCNK17_C, KLHDC7B_B, LAYN_B, LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br, MAX.chr17.73073682-73073814, MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A, OTX1_B, PLXNC1_B, PRKCB_7570, SCRT2_C, SLC30A10, SPHK2_B, ST8SIA4_B, STX16_C, TBX1_B, TRH_A, and TRIM67_B, and
- 2) detecting breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

25 In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of CD1D, IPTRIPL1, FAM59B,

C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B, and

- 2) detecting breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

5

In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ABLIM1, AJAP1_B, ASCL2, ATP6V1B1, BANK1, CALN1_A, CALN1_B, CLIC6, DSCR6, FOXP4, GAD2, GCGR, GP5, GRASP, HBM, HNF1B_B, KLF16, MAGI2, MAX.chr11.14926602-14927148, MAX.chr12.4273906-4274012, MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr2.97193478-97193562, MAX.chr22.42679578-42679917, MAX.chr4.8859253-8859329, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr6.157557371-157557657, MPZ, NKX2-6, PDX1, PLXNC1_A, PPARG, PRKCB, PTPRN2, RBFOX_A, SCRT2_A, SLC7A4, STAC2_B, STX16_A, STX16_B, TBX1, TRH_A, VSTM2B_A, ZBTB16, ZNF132, and ZSCAN23, and
- 2) detecting triple negative breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

25

In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of CALN1_A, LOC100132891,

NACAD, TRIM67, ATP6V1B1, DLX4, GP5, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ST8SIA4, STX16_B ITPRIPL1, KLF16, MAX.chr12.4273906-4274012, KCNK9, SCRT2_B, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, and DSCR6, and

5 2) detecting triple negative breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

10 In some embodiments of the technology, methods are provided that comprise the following steps:

15 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012, MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459, BHLHE23_D, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4, and

20 2) detecting triple negative breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

25 In some embodiments of the technology, methods are provided that comprise the following steps:

30 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ABLIM1, AFAP1L1, AKR1B1, ALOX5, AMN, ARL5C, BANK1, BCAT1, BEGAIN, BEST4, BHLHE23_B,

BHLHE23_C, C17orf64, C1QL2, C7orf52, CALN1_B, CAV2, CD8A, CDH4_A,
CDH4_B, CDH4_C, CDH4_D, CDH4_E, CDH4_F, CHST2_B, CLIP4, CR1, DLK1,
DNAJC6, DNM3_A, EMX1_A, ESPN, FABP5, FAM150A, FLJ42875, GLP1R,
GNG4, GYPC_A, HAND2, HES5, HNF1B_A, HNF1B_B, HOXA1_A, HOXA1_B,
5 HOXA7_A, HOXA7_B, HOXA7_C, HOXD9, IGF2BP3_A, IGF2BP3_B,
IGSF9B_A, IL15RA, INSM1, ITPKA_B, ITPRIPL1, KCNE3, KCNK17_B, LIME1,
LOC100132891, LOC283999, LY6H, MAST1, MAX.chr1.158083198-158083476,
MAX.chr1.228074764-228074977, MAX.chr1.46913931-46913950,
MAX.chr10.130085265-130085312, MAX.chr11.68622869-68622968,
10 MAX.chr14.101176106-101176260, MAX.chr15.96889069-96889128,
MAX.chr17.8230197-8230314, MAX.chr19.46379903-46380197,
MAX.chr2.97193163-97193287, MAX.chr2.97193478-97193562,
MAX.chr20.1784209-1784461, MAX.chr21.44782441-44782498,
MAX.chr22.23908718-23908782, MAX.chr5.145725410-145725459,
15 MAX.chr5.178957564-178957598, MAX.chr5.180101084-180101094,
MAX.chr5.42952185-42952280, MAX.chr5.42994866-42994936,
MAX.chr6.27064703-27064783, MAX.chr7.152622607-152622638,
MAX.chr8.145104132-145104218, MAX.chr9.136474504-136474527, MCF2L2,
MSX2P1, NACAD, NID2_B, NID2_C, ODC1, OSR2_B, PAQR6, PCDH8, PIF1,
20 PPARA, PPP2R5C, PRDM13_A, PRHOXNB, PRKCB, RBFOX3_A, RBFOX3_B,
RFX8, SNCA, STAC2_A, STAC2_B, STX16_B SYT5, TIMP2, TMEFF2,
TNFRSF10D, TRH_B, TRIM67, TRIM71_C, USP44_A, USP44_B, UTF1, UTS2R,
VSTM2B_A, VSTM2B_B, ZFP64, and ZNF132, and
25 2) detecting HER2⁺ breast cancer (e.g., afforded with a sensitivity of greater than or
equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the following steps:

30 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as
blood or plasma or breast tissue) obtained from the subject with at least one reagent or
series of reagents that distinguishes between methylated and non-methylated CpG
dinucleotides within at least one marker selected from a chromosomal region having

an annotation selected from the group consisting of BHLHE23_C, CALN1_A, CD1D, CHST2_A, FMN2, HOXA1_A, HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, NACAD, TRIM67, ATP6V1B1, C17orf64, CHST2_B, DLX4, DNM3_A, EMX1_A, IGF2BP3_A, IGF2BP3_B, ITPRIPL1, 5 LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1, PLXNC1_A, PRKCB, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr12.4273906-4274012, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, COL23A1, KCNK9, 10 LAYN, PLXNC1_A, RIC3, SCRT2_B, ALOX5, CDH4_E, HNF1B_B, TRH_A, MAST1, ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4, AJAP1_B, DSCR6, and 15 MAX.chr11.68622869-68622968, and

- 2) detecting HER2⁺ breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the following steps:

20 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, 25 GP5, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, 30 MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1, BHLHE23_D, ZSCAN12, GRASP, C10orf125, and

- 2) detecting HER2⁺ breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

5 In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ARL5C, BHLHE23_C, BMP6, C10orf125, C17orf64, C19orf66, CAMKV, CD1D, CDH4_E, CDH4_F, CHST2_A, CRHBP, DLX6, DNM3_A, DNM3_B, DNM3_C, ESYT3, ETS1_A, ETS1_B, FAM126A, FAM189A1, FAM20A, FAM59B, FBN1, FLRT2, FMN2, FOXP4, GAS7, GYPC_A, GYPC_B, HAND2, HES5, HMGA2, HNF1B_B, IGF2BP3_A, IGF2BP3_B, KCNH8, KCNK17_A, KCNQ2, KLHDC7B, LOC100132891, MAX.chr1.46913931-46913950, MAX.chr11.68622869-68622968, MAX.chr12.4273906-4274012, MAX.chr12.59990591-59990895, MAX.chr17.73073682-73073814, MAX.chr20.1783841-1784054, MAX.chr21.47063802-47063851, MAX.chr4.8860002-8860038, MAX.chr5.172234248-172234494, MAX.chr5.178957564-178957598, MAX.chr6.130686865-130686985, MAX.chr8.687688-687736, MAX.chr8.688863-688924, MAX.chr9.114010-114207, MPZ, NID2_A, NKX2-6, ODC1, OSR2_A, POU4F1, PRDM13_B, PRKCB, RASGRF2, RIPPLY2, SLC30A10, ST8SIA4, SYN2, TRIM71_A, TRIM71_B, TRIM71_C, UBTF, ULBP1, USP44_B, and VSTM2B_A, and
- 2) detecting Luminal A breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

30 In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of BHLHE23_C, CD1D, CHST2_A, FAM126A, FMN2, HOXA1_A, HOXA7_A, KCNH8, LOC100132891, MAX.chr15.96889013-96889128, SLC30A10, TRIM67, ATP6V1B1, BANK1, C10orf125, C17orf64, CHST2_B, DNM3_A, EMX1_A, GP5, IGF2BP3_A, IGF2BP3_B, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, ODC1, PLXNC1_A, PRKCB, ST8SIA4, STX16_B UBTF, LOC100132891, ITPRIPL1, MAX.chr12.4273906-4274012, MAX.chr12.59990671-59990859, BHLHE23_D, COL23A1, KCNK9, OTX1, PLXNC1_A, HNF1B_B, MAST1, ASCL2, MAX.chr20.1784209-1784461, RBFOX_A, MAX.chr12.4273906-4274012, GAS7, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, GYPC_B, DLX6, FBN1, OSR2_A, BEST4, DSCR6, MAX.chr11.68622869-68622968, and
- 2) detecting Luminal A breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

20 In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, ALOX5,

MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B, CDH4_E, ABLIM1, SLC30A10, C10orf125, and

2) detecting Luminal A breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

5 In some embodiments of the technology, methods are provided that comprise the following steps:

10 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ACCN1, AJAP1_A, AJAP1_B, BEST4, CALN1_B, CBLN1_B, CDH4_E, DLX4, FOXP4, IGSF9B_B, ITPRIPL1, KCNA1, KLF16, LMX1B_A, MAST1, MAX.chr11.14926602-14927148,

15 MAX.chr17.73073682-73073814, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, MAX.chr19.30719261-30719354, MAX.chr22.42679578-42679917, MAX.chr4.8860002-8860038,

20 MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598,

MAX.chr5.77268672-77268725, MAX.chr8.124173128-124173268, MPZ, PPARA, PRMT1, RBFOX3_B, RYR2_A, SALL3, SCRT2_A, SPHK2, STX16_B, SYNJ2, TMEM176A, TSHZ3, and VIPR2, and

25 2) detecting Luminal B breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the following steps:

30 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having

an annotation selected from the group consisting of CALN1_A, LOC100132891, MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, DLX4, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, ITPRIPL1, KLF16, 5 MAX.chr12.4273906-4274012, MAX.chr19.46379903-46380197, BHLHE23_D, HNF1B_B, TRH_A, ASCL2, MAX.chr20.1784209-1784461, MAX.chr12.4273906-4274012, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, AJAP1_B, and DSCR6, and

2) detecting Luminal B breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

10

In some embodiments of the technology, methods are provided that comprise the following steps:

15 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, 20 C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D, and

25 2) detecting Luminal B breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

30

In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of C10orf93, C20orf195_A, 5 C20orf195_B, CALN1_B, CBLN1_A, CBLN1_B, CCDC61, CCND2_A, CCND2_B, CCND2_C, EMX1_B, FAM150B, GRASP, HBM, ITPRIPL1, KCNK17_A, KIAA1949, LOC100131176, MAST1, MAX.chr1.8277285-8277316, 10 MAX.chr1.8277479-8277527, MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148, MAX.chr15.96889013-96889128, MAX.chr18.5629721-5629791, MAX.chr19.30719261-30719354, MAX.chr22.42679767-42679917, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MAX.chr6.157556793-157556856, 15 MAX.chr8.124173030-124173395, MN1, MPZ, NR2F6, PDXK_A, PDXK_B, PTPRM, RYR2_B, SERPINB9_A, SERPINB9_B, SLC8A3, STX16_B TEPP, TOX, VIPR2, VSTM2B_A, ZNF486, ZNF626, and ZNF671, and
- 2) detecting BRCA1 breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

20

In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of BHLHE23_C, CALN1_A, CD1D, 25 HOXA7_A, LOC100132891, MAX.chr1.8277479-8277527, MAX.chr15.96889013-96889128, NACAD, ATP6V1B1, BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, 30 MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-

46380197, ZSCAN12, BHLHE23_D, CXCL12, KCNK9, OTX1, RIC3, SCRT2_B,
MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A,
MAX.chr20.1784209-1784461, MAX.chr5.145725410-145725459,
MAX.chr5.77268672-77268725, BEST4, and DSCR6, and
5 2) detecting BRCA1 breast cancer (e.g., afforded with a sensitivity of greater
than or equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the following steps:

10 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as
blood or plasma or breast tissue) obtained from the subject with at least one reagent or
series of reagents that distinguishes between methylated and non-methylated CpG
dinucleotides within at least one marker selected from a chromosomal region having
15 an annotation selected from the group consisting of ANTXR2, B3GNT5,
BHLHE23_C, BMP4, CHRNA7, EPHA4, FAM171A1, FAM20A, FMNL2, FSCN1,
GSTP1, HBM, IGFBP5, IL17REL, ITGA9, ITPRIPL1, KIRREL2, LRRC34,
MAX.chr1.239549742-239549886, MAX.chr1.8277479-8277527,
MAX.chr11.14926602-14926729, MAX.chr11.14926860-14927148,
20 MAX.chr15.96889013-96889128, MAX.chr2.238864674-238864735,
MAX.chr5.81148300-81148332, MAX.chr7.151145632-151145743,
MAX.chr8.124173030-124173395, MAX.chr8.143533298-143533558, MERTK,
MPZ, NID2_C, NTRK3, OLIG3_A, OLIG3_B, OSR2_C, PROM1, RGS17, SBNO2,
25 STX16_B TBKBP1, TLX1NB, VIPR2, VN1R2, VSNL1, and ZFP64, and
2) detecting BRCA2 breast cancer (e.g., afforded with a sensitivity of greater
than or equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the following steps:

30 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids
such as blood or plasma or breast tissue) obtained from the subject with at least one
reagent or series of reagents that distinguishes between methylated and non-

methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891, 5 ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, COL23A1, LAYN, OTX1, TRH_A, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, and 2) detecting BRCA2 breast cancer (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

10 In some embodiments of the technology, methods are provided that comprise the following steps:

15 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non- methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of CDH4_E, FLJ42875, GAD2, GRASP, ITPRIPL1, KCNA1, MAX.chr12.4273906- 4274012, MAX.chr18.76734362-76734370, MAX.chr18.76734423-76734476, 20 MAX.chr19.30719261-30719354, MAX.chr4.8859602-8859669, MAX.chr4.8860002-8860038, MAX.chr5.145725410-145725459, MAX.chr5.178957564-178957598, MAX.chr5.77268672-77268725, MPZ, NKX2-6, PRKCB, RBFOX3_B, SALL3, and VSTM2B_A, and 2) detecting invasive breast cancer (e.g., afforded with a sensitivity of greater 25 than or equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the following steps:

30 1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non- methylated CpG dinucleotides within at least one marker selected from a

chromosomal region having an annotation selected from the group consisting of SCRT2_B, MPZ, MAX.chr8.124173030-124173395, ITPRIPL1, ITPRIPL1, DLX4, CALN1_A, and IGF2BP3_B, and

2) distinguishing between ductal carcinoma in situ high grade (DCIS-HG) breast
5 cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

In some embodiments of the technology, methods are provided that comprise the

10 following steps:

1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-

15 methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of SCRT2_B, ITPRIPL1, and MAX.chr8.124173030-12417339, and

2) distinguishing between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue (e.g., afforded 20 with a sensitivity of greater than or equal to 100% and a specificity of greater than or equal to 91%).

In some embodiments of the technology, methods are provided that comprise the

following steps:

25

1) contacting a nucleic acid (e.g., genomic DNA, e.g., isolated from body fluids such as blood or plasma or breast tissue) obtained from the subject with at least one reagent or series of reagents that distinguishes between methylated and non-

30 methylated CpG dinucleotides within at least one marker selected from a chromosomal region having an annotation selected from the group consisting of DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, and ITPRIPL1, and

2) distinguishing between ductal carcinoma in situ high grade (DCIS-HG) breast cancer tissue from ductal carcinoma in situ low grade (DCIS-LG) breast tissue (e.g., afforded with a sensitivity of greater than or equal to 80% and a specificity of greater than or equal to 80%).

5

In some embodiments of the technology, methods are provided that comprise the following steps:

10 1) measuring a methylation level for one or more genes in a biological sample of a human individual through treating genomic DNA in the biological sample with a reagent that modifies DNA in a methylation-specific manner (e.g., wherein the reagent is a bisulfite reagent, a methylation-sensitive restriction enzyme, or a methylation-dependent restriction enzyme), wherein the one or more genes is selected from one of the following groups:

15 (i) ATP6V1B1, LMX1B_A, BANK1, OTX1,

MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A,

TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1,

MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936,

OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459,

MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395,

MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D,

MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-

20 77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and

ABLIM1;

25 (ii) ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B,

BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN_1B,

CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316,

CHST2_9470, CLIC6_B, CXCL12_B, DLX4_B, DNM3_D, EMX1_A,

ESPN_B, FAM59B_7764, FOXP4_B, GP5, HOXA1_C, IGF2BP3_C,

IPTRIPL1_1138, IPTRIPL1_1200, KCNK9_B, KCNK17_C, LAYN_B,

LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br,

30 MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A,

OTX1_B, PLXNC1_B, PRKCB_7570, SCRT2_C, SLC30A10, SPHK2_B,

ST8SIA4_B, STX16_C, TRH_A, and TRIM67_B; and

(iii) CD1D, ITPRIPL1, FAM59B, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B;

2) amplifying the treated genomic DNA using a set of primers for the selected 5 one or more genes; and

3) determining the methylation level of the one or more genes by polymerase chain reaction, nucleic acid sequencing, mass spectrometry, methylation-specific nuclease, mass-based separation, and target capture.

10 In some embodiments of the technology, methods are provided that comprise the following steps:

1) measuring an amount of at least one methylated marker gene in DNA from the sample, wherein the one or more genes is selected from one of the following groups:

(i) ATP6V1B1, LMX1B_A, BANK1, OTX1,

15 MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and ABLIM1;

(ii) ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B,

25 BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN_1B, CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316, CHST2_9470, CLIC6_B, CXCL12_B, DLX4_B, DNM3_D, EMX1_A, ESPN_B, FAM59B_7764, FOXP4_B, GP5, HOXA1_C, IGF2BP3_C, ITPRIPL1_1138, ITPRIPL1_1200, KCNK9_B, KCNK17_C, LAYN_B, LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br, MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A, OTX1_B, PLXNC1_B, PRKCB_7570, SCRT2_C, SLC30A10, SPHK2_B, ST8SIA4_B, STX16_C, TRH_A, and TRIM67_B; and

(iii) CD1D, ITPRIPL1, FAM59B, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B;

2) measuring the amount of at least one reference marker in the DNA; and

5 3) calculating a value for the amount of the at least one methylated marker gene measured in the DNA as a percentage of the amount of the reference marker gene measured in the DNA, wherein the value indicates the amount of the at least one methylated marker DNA measured in the sample.

10 In some embodiments of the technology, methods are provided that comprise the following steps:

15 1) measuring a methylation level of a CpG site for one or more genes in a biological sample of a human individual through treating genomic DNA in the biological sample with bisulfite a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent);

2) amplifying the modified genomic DNA using a set of primers for the selected one or more genes; and

20 3) determining the methylation level of the CpG site by methylation-specific PCR, quantitative methylation-specific PCR, methylation-sensitive DNA restriction enzyme analysis, quantitative bisulfite pyrosequencing, or bisulfite genomic sequencing PCR; wherein the one or more genes is selected from one of the following groups:

25 (i) ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, and ABLIM1;

(ii) ABLIM1_B, AJAP1_C, ALOX5_B, ASCL2_B, BANK1_B, BHLHE23_E, C10orf125_B, C17orf64_B, CALN1_1520, CALN_1B, CD1D_1058, CDH4_7890, CHST2_8128, CHST2_8384, CHST2_9316, CHST2_9470, CLIC6_B, CXCL12_B, DLX4_B, DNM3_D, EMX1_A, ESPN_B, FAM59B_7764, FOXP4_B, GP5, HOXA1_C, IGF2BP3_C, ITPRIPL1_1138, ITPRIPL1_1200, KCNK9_B, KCNK17_C, LAYN_B, LIME1_B, LMX1B_D, LOC100132891_B, MAST1_B, MAX.chr12.427.br, MAX.chr20.4422, MPZ_5742, MPZ_5554, MSX2P1_B, ODC1_B, OSR2_A, OTX1_B, PLXNC1_B, PRKCB_7570, SCRT2_C, SLC30A10, SPHK2_B, ST8SIA4_B, STX16_C, TRH_A, and TRIM67_B; and

(iii) CD1D, ITPRIPL1, FAM59B, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and C17orf64_B.

15 In some embodiments of the technology, methods are provided that comprise the following steps:

1) measuring a methylation level for one or more genes in a biological sample of a human individual through treating genomic DNA in the biological sample with a reagent that modifies DNA in a methylation-specific manner (e.g., wherein the reagent is a bisulfite reagent, a methylation-sensitive restriction enzyme, or a methylation-dependent restriction enzyme), wherein the one or more genes is selected from one of the following groups:

(i) BHLHE23_C, CALN1_A, CD1D, HOXA7_A, LOC100132891, MAX.chr1.8277479-8277527, MAX.chr15.96889013-96889128, NACAD, ATP6V1B1, BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, CXCL12, KCNK9, OTX1, RIC3, SCRT2_B, MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, and DSCR6;

(ii) MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891,

ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, COL23A1, LAYN, OTX1, TRH_A, MAX.chr5.145725410-145725459, and MAX.chr11.68622869-68622968;

5 (iii) ATP6V1B1, MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012, MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459, BHLHE23_D, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4;

10 (iv) ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, GP5, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1, BHLHE23_D, ZSCAN12, GRASP, and C10orf125;

15 (v) ATP6V1B1, LMX1B_A, BANK1, OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B, CDH4_E, ABLIM1, SLC30A10, C10orf125;

20 (vi) ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, 30 MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D; and

(vii) DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, ITPRIPL1;

2) amplifying the treated genomic DNA using a set of primers for the selected
5 one or more genes; and

3) determining the methylation level of the one or more genes by polymerase chain reaction, nucleic acid sequencing, mass spectrometry, methylation-specific nuclease, mass-based separation, and target capture.

10 In some embodiments of the technology, methods are provided that comprise the following steps:

1) measuring an amount of at least one methylated marker gene in DNA from the sample, wherein the one or more genes is selected from one of the following groups:

15 (i) BHLHE23_C, CALN1_A, CD1D, HOXA7_A, LOC100132891, MAX.chr1.8277479-8277527, MAX.chr15.96889013-96889128, NACAD, ATP6V1B1, BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, CXCL12, KCNK9, OTX1, RIC3, SCRT2_B, MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, and DSCR6;

25 (ii) MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, COL23A1, LAYN, OTX1, TRH_A, MAX.chr5.145725410-145725459, and MAX.chr11.68622869-68622968;

30 (iii) ATP6V1B1, MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012, MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459, BHLHE23_D, MAX.chr5.77268672-77268725, EMX1_A, DSCR6, and DLX4;

(iv) ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, GP5, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, 5 MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, DSCR6, ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1, BHLHE23_D, ZSCAN12, GRASP, and 10 C10orf125;

(v) ATP6V1B1, LMX1B_A, BANK1, OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, 15 MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B, CDH4_E, ABLIM1, SLC30A10, C10orf125;

(vi) ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, 20 MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D; and 25

(vii) DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, ITPRIPL1;

2) measuring the amount of at least one reference marker in the DNA; and

3) calculating a value for the amount of the at least one methylated marker gene measured in the DNA as a percentage of the amount of the reference marker gene measured in the DNA, wherein the value indicates the amount of the at least one methylated marker DNA measured in the sample.

5

In some embodiments of the technology, methods are provided that comprise the following steps:

- 1) measuring a methylation level of a CpG site for one or more genes in a biological sample of a human individual through treating genomic DNA in the biological sample with bisulfite a reagent capable of modifying DNA in a methylation-specific manner (e.g., a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and a bisulfite reagent);
- 10 2) amplifying the modified genomic DNA using a set of primers for the selected one or more genes; and
- 15 3) determining the methylation level of the CpG site by methylation-specific PCR, quantitative methylation-specific PCR, methylation-sensitive DNA restriction enzyme analysis, quantitative bisulfite pyrosequencing, or bisulfite genomic sequencing PCR; wherein the one or more genes is selected from one of the following groups:
 - (i) BHLHE23_C, CALN1_A, CD1D, HOXA7_A, LOC100132891, MAX.chr1.8277479-8277527, MAX.chr15.96889013-96889128, NACAD, ATP6V1B1, BANK1, C17orf64, DLX4, EMX1_A, FOXP4, GP5, ITPRIPL1, LMX1B_A, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, MAX.chr8.124173030-124173395, MPZ, PRKCB, STX16_B UBTF, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, ZSCAN12, BHLHE23_D, CXCL12, KCNK9, OTX1, RIC3, SCRT2_B, MAX.chr17.73073682-73073814, CDH4_E, HNF1B_B, TRH_A, MAX.chr20.1784209-1784461, MAX.chr5.145725410-145725459, MAX.chr5.77268672-77268725, BEST4, and DSCR6;
 - (ii) MAX.chr15.96889013-96889128, ATP6V1B1, C17orf64, ITPRIPL1, MAX.chr11.14926602-14927148, MAX.chr5.42994866-42994936, LOC100132891, ITPRIPL1, ABLIM1, MAX.chr19.46379903-46380197, COL23A1, LAYN, OTX1, TRH_A, MAX.chr5.145725410-145725459, and MAX.chr11.68622869-68622968;

(iii) ATP6V1B1, MAX.chr11.14926602-14927148, PRKCB, TRH_A, MPZ, GP5, TRIM67, MAX.chr12.4273906-4274012, CALN1_A, MAX.chr12.4273906-4274012, MAX.chr5.42994866-42994936, SCRT2_B, MAX.chr5.145725410-145725459, BHLHE23_D, MAX.chr5.77268672-77268725, 5 EMX1_A, DSCR6, and DLX4;

(iv) ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, GP5, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, 10 MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, DSCR6, 15 ITPRIPL1, IGF2BP3_B, DLX4, ABLIM1, BHLHE23_D, ZSCAN12, GRASP, and C10orf125;

(v) ATP6V1B1, LMX1B_A, BANK1, OTX1, ST8SIA4, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, 20 OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_D, ALOX5, MAX.chr19.46379903-46380197, ODC1, CHST2_A, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, CHST2_B, ITPRIPL1, IGF2BP3_B, CDH4_E, ABLIM1, SLC30A10, C10orf125; 25

(vi) ATP6V1B1, LMX1B_A, BANK1, OTX1, MAX.chr11.14926602-14927148, UBTF, PRKCB, TRH_A, MPZ, DNM3_A, TRIM67, PLXNC1_A, MAX.chr12.4273906-4274012, CALN1_A, ITPRIPL1, MAX.chr12.4273906-4274012, GYPC_B, MAX.chr5.42994866-42994936, OSR2_A, SCRT2_B, MAX.chr5.145725410-145725459, MAX.chr11.68622869-68622968, 30 MAX.chr8.124173030-124173395, MAX.chr20.1784209-1784461, LOC100132891, BHLHE23_C, ALOX5, MAX.chr19.46379903-46380197, CHST2_B, MAX.chr5.77268672-77268725, C17orf64, EMX1_A, DSCR6, ITPRIPL1, IGF2BP3_B, CDH4_E, DLX4, ABLIM1, BHLHE23_D; and

(vii) DSCR6, SCRT2_B, MPZ, MAX.chr8.124173030-124173395, OSR2_A, MAX.chr11.68622869-68622968, ITPRIPL1, MAX.chr5.145725410-145725459, BHLHE23_C, ITPRIPL1.

5 Preferably, the sensitivity for such methods is from about 70% to about 100%, or from about 80% to about 90%, or from about 80% to about 85%. Preferably, the specificity is from about 70% to about 100%, or from about 80% to about 90%, or from about 80% to about 85%.

10 Genomic DNA may be isolated by any means, including the use of commercially available kits. Briefly, wherein the DNA of interest is encapsulated in by a cellular membrane the biological sample must be disrupted and lysed by enzymatic, chemical or mechanical means. The DNA solution may then be cleared of proteins and other contaminants, e.g., by digestion with proteinase K. The genomic DNA is then recovered from the solution. This may be carried out by means of a variety of methods including salting out, organic extraction, 15 or binding of the DNA to a solid phase support. The choice of method will be affected by several factors including time, expense, and required quantity of DNA. All clinical sample types comprising neoplastic matter or pre-neoplastic matter are suitable for use in the present method, e.g., cell lines, histological slides, biopsies, paraffin-embedded tissue, body fluids, stool, breast tissue, colonic effluent, urine, blood plasma, blood serum, whole blood, isolated 20 blood cells, cells isolated from the blood, and combinations thereof.

The technology is not limited in the methods used to prepare the samples and provide a nucleic acid for testing. For example, in some embodiments, a DNA is isolated from a stool sample or from blood or from a plasma sample using direct gene capture, e.g., as detailed in U.S. Pat. Appl. Ser. No. 61/485386 or by a related method.

25 The genomic DNA sample is then treated with at least one reagent, or series of reagents, that distinguishes between methylated and non-methylated CpG dinucleotides within at least one marker comprising a DMR (e.g., DMR 1-375, e.g., as provided by Tables 2 and 18).

30 In some embodiments, the reagent converts cytosine bases which are unmethylated at the 5'-position to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior. However in some embodiments, the reagent may be a methylation sensitive restriction enzyme.

In some embodiments, the genomic DNA sample is treated in such a manner that cytosine bases that are unmethylated at the 5' position are converted to uracil, thymine, or another base that is dissimilar to cytosine in terms of hybridization behavior. In some embodiments, this treatment is carried out with bisulfite (hydrogen sulfite, disulfite) followed by alkaline hydrolysis.

5 The treated nucleic acid is then analyzed to determine the methylation state of the target gene sequences (at least one gene, genomic sequence, or nucleotide from a marker comprising a DMR, e.g., at least one DMR chosen from DMR 1–375, e.g., as provided in Tables 2 and 18). The method of analysis may be selected from those known in the art, 10 including those listed herein, e.g., QuARTS and MSP as described herein.

Aberrant methylation, more specifically hypermethylation of a marker comprising a DMR (e.g., DMR 1–375, e.g., as provided by Tables 2 and 18) is associated with a breast cancer.

15 The technology relates to the analysis of any sample associated with a breast cancer. For example, in some embodiments the sample comprises a tissue and/or biological fluid obtained from a patient. In some embodiments, the sample comprises a secretion. In some embodiments, the sample comprises blood, serum, plasma, gastric secretions, pancreatic juice, a gastrointestinal biopsy sample, microdissected cells from a breast biopsy, and/or cells recovered from stool. In some embodiments, the sample comprises breast tissue. In some 20 embodiments, the subject is human. The sample may include cells, secretions, or tissues from the breast, liver, bile ducts, pancreas, stomach, colon, rectum, esophagus, small intestine, appendix, duodenum, polyps, gall bladder, anus, and/or peritoneum. In some embodiments, the sample comprises cellular fluid, ascites, urine, feces, pancreatic fluid, fluid obtained during endoscopy, blood, mucus, or saliva. In some embodiments, the sample is a stool 25 sample. In some embodiments, the sample is a breast tissue sample.

Such samples can be obtained by any number of means known in the art, such as will be apparent to the skilled person. For instance, urine and fecal samples are easily attainable, while blood, ascites, serum, or pancreatic fluid samples can be obtained parenterally by using a needle and syringe, for instance. Cell free or substantially cell free samples can be obtained 30 by subjecting the sample to various techniques known to those of skill in the art which include, but are not limited to, centrifugation and filtration. Although it is generally preferred that no invasive techniques are used to obtain the sample, it still may be preferable to obtain samples such as tissue homogenates, tissue sections, and biopsy specimens

In some embodiments, the technology relates to a method for treating a patient (e.g., a patient with breast cancer, with early stage breast cancer, or who may develop breast cancer) (e.g., a patient with one or more of triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast 5 cancer), the method comprising determining the methylation state of one or more DMR as provided herein and administering a treatment to the patient based on the results of determining the methylation state. The treatment may be administration of a pharmaceutical compound, a vaccine, performing a surgery, imaging the patient, performing another test. Preferably, said use is in a method of clinical screening, a method of prognosis assessment, a 10 method of monitoring the results of therapy, a method to identify patients most likely to respond to a particular therapeutic treatment, a method of imaging a patient or subject, and a method for drug screening and development.

In some embodiments of the technology, a method for diagnosing a breast cancer in a subject is provided. The terms “diagnosing” and “diagnosis” as used herein refer to methods 15 by which the skilled artisan can estimate and even determine whether or not a subject is suffering from a given disease or condition or may develop a given disease or condition in the future. The skilled artisan often makes a diagnosis on the basis of one or more diagnostic indicators, such as for example a biomarker (e.g., a DMR as disclosed herein), the methylation state of which is indicative of the presence, severity, or absence of the condition.

20 Along with diagnosis, clinical cancer prognosis relates to determining the aggressiveness of the cancer and the likelihood of tumor recurrence to plan the most effective therapy. If a more accurate prognosis can be made or even a potential risk for developing the cancer can be assessed, appropriate therapy, and in some instances less severe therapy for the patient can be chosen. Assessment (e.g., determining methylation state) of cancer biomarkers 25 is useful to separate subjects with good prognosis and/or low risk of developing cancer who will need no therapy or limited therapy from those more likely to develop cancer or suffer a recurrence of cancer who might benefit from more intensive treatments.

As such, “making a diagnosis” or “diagnosing”, as used herein, is further inclusive of determining a risk of developing cancer or determining a prognosis, which can provide for 30 predicting a clinical outcome (with or without medical treatment), selecting an appropriate treatment (or whether treatment would be effective), or monitoring a current treatment and potentially changing the treatment, based on the measure of the diagnostic biomarkers (e.g., DMR) disclosed herein. Further, in some embodiments of the presently disclosed subject

matter, multiple determination of the biomarkers over time can be made to facilitate diagnosis and/or prognosis. A temporal change in the biomarker can be used to predict a clinical outcome, monitor the progression of breast cancer, and/or monitor the efficacy of appropriate therapies directed against the cancer. In such an embodiment for example, one might expect 5 to see a change in the methylation state of one or more biomarkers (e.g., DMR) disclosed herein (and potentially one or more additional biomarker(s), if monitored) in a biological sample over time during the course of an effective therapy.

The presently disclosed subject matter further provides in some embodiments a method for determining whether to initiate or continue prophylaxis or treatment of a cancer in 10 a subject. In some embodiments, the method comprises providing a series of biological samples over a time period from the subject; analyzing the series of biological samples to determine a methylation state of at least one biomarker disclosed herein in each of the biological samples; and comparing any measurable change in the methylation states of one or more of the biomarkers in each of the biological samples. Any changes in the methylation 15 states of biomarkers over the time period can be used to predict risk of developing cancer, predict clinical outcome, determine whether to initiate or continue the prophylaxis or therapy of the cancer, and whether a current therapy is effectively treating the cancer. For example, a first time point can be selected prior to initiation of a treatment and a second time point can be selected at some time after initiation of the treatment. Methylation states can be measured 20 in each of the samples taken from different time points and qualitative and/or quantitative differences noted. A change in the methylation states of the biomarker levels from the different samples can be correlated with breast cancer risk, prognosis, determining treatment efficacy, and/or progression of the cancer in the subject.

In preferred embodiments, the methods and compositions of the invention are for 25 treatment or diagnosis of disease at an early stage, for example, before symptoms of the disease appear. In some embodiments, the methods and compositions of the invention are for treatment or diagnosis of disease at a clinical stage.

As noted, in some embodiments, multiple determinations of one or more diagnostic or 30 prognostic biomarkers can be made, and a temporal change in the marker can be used to determine a diagnosis or prognosis. For example, a diagnostic marker can be determined at an initial time, and again at a second time. In such embodiments, an increase in the marker from the initial time to the second time can be diagnostic of a particular type or severity of cancer, or a given prognosis. Likewise, a decrease in the marker from the initial time to the second

time can be indicative of a particular type or severity of cancer, or a given prognosis. Furthermore, the degree of change of one or more markers can be related to the severity of the cancer and future adverse events. The skilled artisan will understand that, while in certain embodiments comparative measurements can be made of the same biomarker at multiple time 5 points, one can also measure a given biomarker at one time point, and a second biomarker at a second time point, and a comparison of these markers can provide diagnostic information.

As used herein, the phrase “determining the prognosis” refers to methods by which the skilled artisan can predict the course or outcome of a condition in a subject. The term “prognosis” does not refer to the ability to predict the course or outcome of a condition with 10 100% accuracy, or even that a given course or outcome is predictably more or less likely to occur based on the methylation state of a biomarker (e.g., a DMR). Instead, the skilled artisan will understand that the term “prognosis” refers to an increased probability that a certain course or outcome will occur; that is, that a course or outcome is more likely to occur in a subject exhibiting a given condition, when compared to those individuals not exhibiting the 15 condition. For example, in individuals not exhibiting the condition (e.g., having a normal methylation state of one or more DMR), the chance of a given outcome (e.g., suffering from a breast cancer) may be very low.

In some embodiments, a statistical analysis associates a prognostic indicator with a predisposition to an adverse outcome. For example, in some embodiments, a methylation 20 state different from that in a normal control sample obtained from a patient who does not have a cancer can signal that a subject is more likely to suffer from a cancer than subjects with a level that is more similar to the methylation state in the control sample, as determined by a level of statistical significance. Additionally, a change in methylation state from a baseline (e.g., “normal”) level can be reflective of subject prognosis, and the degree of 25 change in methylation state can be related to the severity of adverse events. Statistical significance is often determined by comparing two or more populations and determining a confidence interval and/or a *p* value. See, e.g., Dowdy and Wearden, *Statistics for Research*, John Wiley & Sons, New York, 1983, incorporated herein by reference in its entirety. Exemplary confidence intervals of the present subject matter are 90%, 95%, 97.5%, 98%, 30 99%, 99.5%, 99.9% and 99.99%, while exemplary *p* values are 0.1, 0.05, 0.025, 0.02, 0.01, 0.005, 0.001, and 0.0001.

In other embodiments, a threshold degree of change in the methylation state of a prognostic or diagnostic biomarker disclosed herein (e.g., a DMR) can be established, and the

degree of change in the methylation state of the biomarker in a biological sample is simply compared to the threshold degree of change in the methylation state. A preferred threshold change in the methylation state for biomarkers provided herein is about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 50%, about 75%, about 100%, and 5 about 150%. In yet other embodiments, a “nomogram” can be established, by which a methylation state of a prognostic or diagnostic indicator (biomarker or combination of biomarkers) is directly related to an associated disposition towards a given outcome. The skilled artisan is acquainted with the use of such nomograms to relate two numeric values with the understanding that the uncertainty in this measurement is the same as the uncertainty 10 in the marker concentration because individual sample measurements are referenced, not population averages.

In some embodiments, a control sample is analyzed concurrently with the biological sample, such that the results obtained from the biological sample can be compared to the results obtained from the control sample. Additionally, it is contemplated that standard curves 15 can be provided, with which assay results for the biological sample may be compared. Such standard curves present methylation states of a biomarker as a function of assay units, e.g., fluorescent signal intensity, if a fluorescent label is used. Using samples taken from multiple donors, standard curves can be provided for control methylation states of the one or more biomarkers in normal tissue, as well as for “at-risk” levels of the one or more biomarkers in 20 tissue taken from donors with metaplasia or from donors with a breast cancer. In certain embodiments of the method, a subject is identified as having metaplasia upon identifying an aberrant methylation state of one or more DMR provided herein in a biological sample obtained from the subject. In other embodiments of the method, the detection of an aberrant methylation state of one or more of such biomarkers in a biological sample obtained from the 25 subject results in the subject being identified as having cancer.

The analysis of markers can be carried out separately or simultaneously with additional markers within one test sample. For example, several markers can be combined into one test for efficient processing of a multiple of samples and for potentially providing greater diagnostic and/or prognostic accuracy. In addition, one skilled in the art would 30 recognize the value of testing multiple samples (for example, at successive time points) from the same subject. Such testing of serial samples can allow the identification of changes in marker methylation states over time. Changes in methylation state, as well as the absence of change in methylation state, can provide useful information about the disease status that

includes, but is not limited to, identifying the approximate time from onset of the event, the presence and amount of salvageable tissue, the appropriateness of drug therapies, the effectiveness of various therapies, and identification of the subject's outcome, including risk of future events.

5 The analysis of biomarkers can be carried out in a variety of physical formats. For example, the use of microtiter plates or automation can be used to facilitate the processing of large numbers of test samples. Alternatively, single sample formats could be developed to facilitate immediate treatment and diagnosis in a timely fashion, for example, in ambulatory transport or emergency room settings.

10 In some embodiments, the subject is diagnosed as having a breast cancer if, when compared to a control methylation state, there is a measurable difference in the methylation state of at least one biomarker in the sample. Conversely, when no change in methylation state is identified in the biological sample, the subject can be identified as not having breast cancer, not being at risk for the cancer, or as having a low risk of the cancer. In this regard, 15 subjects having the cancer or risk thereof can be differentiated from subjects having low to substantially no cancer or risk thereof. Those subjects having a risk of developing a breast cancer can be placed on a more intensive and/or regular screening schedule, including endoscopic surveillance. On the other hand, those subjects having low to substantially no risk may avoid being subjected to additional testing for breast cancer (e.g., invasive procedure), 20 until such time as a future screening, for example, a screening conducted in accordance with the present technology, indicates that a risk of breast cancer has appeared in those subjects.

As mentioned above, depending on the embodiment of the method of the present technology, detecting a change in methylation state of the one or more biomarkers can be a qualitative determination or it can be a quantitative determination. As such, the step of 25 diagnosing a subject as having, or at risk of developing, a breast cancer indicates that certain threshold measurements are made, e.g., the methylation state of the one or more biomarkers in the biological sample varies from a predetermined control methylation state. In some embodiments of the method, the control methylation state is any detectable methylation state of the biomarker. In other embodiments of the method where a control sample is tested 30 concurrently with the biological sample, the predetermined methylation state is the methylation state in the control sample. In other embodiments of the method, the predetermined methylation state is based upon and/or identified by a standard curve. In other embodiments of the method, the predetermined methylation state is a specifically state or

range of state. As such, the predetermined methylation state can be chosen, within acceptable limits that will be apparent to those skilled in the art, based in part on the embodiment of the method being practiced and the desired specificity, etc.

Further with respect to diagnostic methods, a preferred subject is a vertebrate subject.

5 A preferred vertebrate is warm-blooded; a preferred warm-blooded vertebrate is a mammal. A preferred mammal is most preferably a human. As used herein, the term “subject” includes both human and animal subjects. Thus, veterinary therapeutic uses are provided herein. As such, the present technology provides for the diagnosis of mammals such as humans, as well as those mammals of importance due to being endangered, such as Siberian tigers; of

10 economic importance, such as animals raised on farms for consumption by humans; and/or animals of social importance to humans, such as animals kept as pets or in zoos. Examples of such animals include but are not limited to: carnivores such as cats and dogs; swine, including pigs, hogs, and wild boars; ruminants and/or ungulates such as cattle, oxen, sheep, giraffes, deer, goats, bison, and camels; and horses. Thus, also provided is the diagnosis and

15 treatment of livestock, including, but not limited to, domesticated swine, ruminants, ungulates, horses (including race horses), and the like.

The presently-disclosed subject matter further includes a system for diagnosing a breast cancer and/or a specific form of breast cancer (e.g., triple negative breast cancer, HER2⁺ breast cancer, Luminal A breast cancer, Luminal B breast cancer, BRCA1 breast cancer, BRCA2 breast cancer) in a subject. The system can be provided, for example, as a commercial kit that can be used to screen for a risk of breast cancer or diagnose a breast cancer in a subject from whom a biological sample has been collected. An exemplary system provided in accordance with the present technology includes assessing the methylation state of a DMR as provided in Tables 2 and 18.

25

EXAMPLES

Example I.

This example describes the discovery and tissue validation of breast-cancer specific markers.

30 Table 1 shows the number of tissue samples for each subtype of breast cancer used in the discovery of breast cancer specific markers.

Table 1.

Breast Cancer Subtype	Number of Subjects	Total
Basal-like / Triple Negative	18	18
HER2 ⁺	18	18
Luminal A	18	18
Luminal B	18	18
BRCA 1	6	15
BRCA 2	9	
Normal Breast	18	45
Normal Breast + BRCA	9	
Normal Buffy Coat	18	

For discovery of methylation markers by RRBS, frozen tissue samples were obtained from 72 invasive breast cancer cases (18 luminal A, 18 luminal B, 18 basal-like/triple negative, and 18 HER2+), 15 invasive breast cancer from BRCA germline mutation patients (6 BRCA1, 9 BRCA2), and 45 controls (18 normal breast (reduction mammoplasty or prophylactic mastectomy, 9 histologically normal breast in germline BRCA carriers (prophylactic mastectomy), and 18 normal buffy coat)). Tumor and breast tissue sections were reviewed by an expert GI pathologist to confirm diagnosis and estimate abnormal cellularity. Sections were then macro-dissected. Genomic DNA was purified using the QiaAmp Mini kit (Qiagen, Valencia CA). DNA (300 ng) was fragmented by digestion with 10 Units of MspI. Digested fragments were end-repaired and A-tailed with 5 Units of Klenow fragment (3'-5' exo-), and ligated overnight to methylated TruSeq adapters (Illumina, San Diego CA) containing barcode sequences (to link each fragment to its sample ID.) Reactions were purified using AMPure XP SPRI beads/buffer (Beckman Coulter, Brea CA).

Tissue samples then underwent bisulfite conversion (twice) using a modified EpiTect protocol (Qiagen). qPCR (LightCycler 480 – Roche, Mannheim Germany) was used to determine the optimal enrichment Ct. The following conditions were used for final enrichment PCR: Each 50uL reaction contained 5uL of 10X buffer, 1.25uL of 10 mM each deoxyribonucleotide triphosphate (dNTP), 5uL primer cocktail (~5uM), 15uL template (sample), 1uL PfuTurbo Cx hotstart (Agilent, Santa Clara CA) and 22.75 water; temperatures and times were 95C-5min; 98C-30sec; 16 cycles of 98C-10sec, 65C-30sec, 72C-30sec, 72C-5min and 4C hold, respectively. Samples were SPRI bead purified and then tested on the Bioanalyzer 2100 (Agilent) to assess the DNA size distribution of the enrichment. Size

selection of 160-520bp fragments (40-400 bp inserts) was performed using AMPure XP SPRI beads/buffer (Beckman Coulter, Brea CA). Buffer cutoffs were 0.7X - 1.1X sample volumes. Samples were combined (equimolar) into 4-plex libraries based on the randomization scheme and tested with the bioanalyzer for final size and concentration verification, and with qPCR

5 (KAPA Library Quantification Kit – KAPA Biosystems, Cape Town South Africa).

Tissue samples were loaded onto single read flow cells according to a randomized lane assignment and sequencing was performed by the Next Generation Sequencing Core at the Mayo Clinic Medical Genome Facility on the Illumina HiSeq 2000 platform. Reads were unidirectional for 101 cycles. The standard Illumina pipeline was run for the primary

10 analysis. SAAP-RRBS (streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing) was used for quality scoring, sequence alignment, annotation, and methylation extraction.

Breast cancer tissue yielded large numbers of discriminate DMRs, many of which had not been identified before. Comparing the methylation of breast cancer tissue samples to

15 normal breast tissue, 327 methylated regions were identified (see, Table 2) that distinguished breast cancer tissue from normal breast tissue (the genomic coordinates for the regions shown in Table 2 are based on the Human Feb. 2009 (GRCh37/hg19) Assembly). Table 3 shows 48 methylated regions that distinguished triple negative breast cancer tissue from normal breast tissue. Table 4 shows 122 methylated regions that distinguished HER2⁺ breast cancer tissue

20 from normal breast tissue. Table 5 shows 75 methylated regions that distinguished Luminal A breast cancer tissue from normal breast tissue. Table 6 shows 39 methylated regions that distinguished Luminal B breast cancer tissue from normal breast tissue. Table 7 shows 49 methylated regions that distinguished BRCA1 breast cancer tissue from normal breast tissue. Table 8 shows 45 methylated regions that distinguished BRCA2 breast cancer tissue from

25 normal breast tissue. Table 9 shows 21 methylated regions that distinguished invasive breast cancer tissue from normal breast tissue.

Table 2. Identified methylated regions distinguishing breast cancer tissue from normal breast tissue.

DMR No.	Gene Annotation	Region on Chromosome (starting base-ending base)
1	ZSCAN23	chr6:28411152-28411272

2	AADAT.R	chr4:171010951-171010991
3	ABLIM1	chr10:116391588-116391793
4	ACCN1	chr17:31620207-31620314
5	AFAP1L1	chr5:148651161-148651242
6	AJAP1_A	chr1:4715535-4715646
7	AJAP1_B	chr1:4715931-4716021
8	AKR1B1	chr7:134143171-134143684
9	ALOX5	chr10:45914840-45914949
10	AMN	chr14:103394920-103395019
11	ANPEP	chr15:90358420-90358514
12	ANTXR2	chr4:80993475-80993634
13	ARL5C	chr17:37321515-37321626
14	ASCL2	chr11:2292240-2292361
15	ATP6V1B1	chr2:71192354-71192453
16	B3GNT5	chr3:182971589-182971825
17	BANK1	chr4:102711871-102712076
18	BCAT1	chr12:25055906-25055975
19	BEGAIN	chr14:101033665-101033813
20	BEST4	chr1:45251853-45252029
21	BHLHE23_A	chr20:61637950-61637986
22	BHLHE23_B	chr20:61638020-61638083
23	BHLHE23_C	chr20:61638088-61638565
24	BHLHE23_D	chr20:61638244-61638301
25	BMP4	chr14:54421578-54421916
26	BMP6	chr6:7727566-7727907
27	C10orf125	chr10:135171410-135171504
28	C10orf93	chr10:134756078-134756167
29	C17orf64	chr17:58499095-58499190
30	C19orf35	chr19:2282568-2282640
31	C19orf66	chr19:10197688-10197823
32	C1QL2	chr2:119916511-119916572
33	C20orf195_A	chr20:62185293-62185364

34	C20orf195_B	chr20:62185418-62185546
35	C7orf52	chr7:100823483-100823514
36	CALN1_A	chr7:71801486-71801594
37	CALN1_B	chr7:71801741-71801800
38	CAMKV	chr3:49907259-49907298
39	CAPN2.FR	chr1:223900347-223900405
40	CAV2	chr7:116140205-116140342
41	CBLN1_A	chr16:49315588-49315691
42	CBLN1_B	chr16:49316198-49316258
43	CCDC61	chr19:46519467-46519536
44	CCND2_A	chr12:4378317-4378375
45	CCND2_B	chr12:4380560-4380681
46	CCND2_C	chr12:4384096-4384146
47	CD1D	chr1:158150864-158151129
48	CD8A	chr2:87017780-87017917
49	CDH4_A	chr20:59827230-59827285
50	CDH4_B	chr20:59827762-59827776
51	CDH4_C	chr20:59827794-59827868
52	CDH4_D	chr20:59828193-59828258
53	CDH4_E	chr20:59828479-59828729
54	CDH4_F	chr20:59828778-59828814
55	CHRNA7	chr15:32322830-32322897
56	CHST2_A	chr3:142838025-142838494
57	CHST2_B	chr3:142839223-142839568
58	CLIC6	chr21:36042025-36042131
59	CLIP4	chr2:29338109-29338339
60	COL23A1.R	chr5:178017669-178017854
61	CR1	chr1:207669481-207669639
62	CRHBP	chr5:76249939-76249997
63	CXCL12.F	chr10:44881210-44881300
64	DBNDD1.FR	chr16:90085625-90085681
65	DLK1	chr14:101193295-101193318

66	DLX4	chr17:48042562-48042606
67	DLX6	chr7:96635255-96635475
68	DNAJC6	chr1:65731412-65731507
69	DNM3_A	chr1:171810393-171810575
70	DNM3_B	chr1:171810648-171810702
71	DNM3_C	chr1:171810806-171810920
72	DSCR6	chr21:38378540-38378601
73	DTX1	chr12:113515535-113515637
74	EMX1_A	chr2:73151498-73151578
75	EMX1_B	chr2:73151663-73151756
76	EPHA4	chr2:222436217-222436320
77	ESPN	chr1:6508784-6509175
78	ESYT3	chr3:138153979-138154071
79	ETS1_A	chr11:128391809-128391908
80	ETS1_B	chr11:128392062-128392309
81	FABP5	chr8:82192605-82192921
82	FAIM2	chr12:50297863-50297988
83	FAM126A	chr7:23053941-23054066
84	FAM129C.F	chr19:17650551-17650610
85	FAM150A	chr8:53478266-53478416
86	FAM150B	chr2:287868-287919
87	FAM171A1	chr10:15412558-15412652
88	FAM189A1	chr15:29862130-29862169
89	FAM20A	chr17:66597237-66597326
90	FAM59B	chr2:26407713-26407972
91	FBN1	chr15:48937412-48937541
92	FLJ42875	chr1:2987037-2987116
93	FLRT2	chr14:85998469-85998535
94	FMN2	chr1:240255171-240255253
95	FMNL2	chr2:153192734-153192836
96	FOXP4	chr6:41528816-41528958
97	FSCN1	chr7:5633506-5633615

98	GAD2	chr10:26505066-26505385
99	GAS7	chr17:10101325-10101397
100	GCGR	chr17:79761970-79762088
101	GLI3	chr7:42267808-42267899
102	GLP1R	chr6:39016381-39016421
103	GNG4	chr1:235813658-235813798
104	GP5	chr3:194118738-194118924
105	GRASP	chr12:52400919-52401166
106	GRM7	chr3:6902873-6902931
107	GSTP1	chr11:67350986-67351055
108	GYPC_A	chr2:127413505-127413678
109	GYPC_B	chr2:127414096-127414189
110	HAND2	chr4:174450452-174450478
111	HBM	chr16:216426-216451
112	HES5	chr1:2461823-2461915
113	HHEX.F	chr10:94449486-94449597
114	HMGA2	chr12:66219385-66219487
115	HNF1B_A	chr17:36103713-36103793
116	HNF1B_B	chr17:36105390-36105448
117	HOXA1_A	chr7:27135603-27135889
118	HOXA1_B	chr7:27136191-27136244
119	HOXA7_A	chr7:27195742-27195895
120	HOXA7_B	chr7:27196032-27196190
121	HOXA7_C	chr7:27196441-27196531
122	HOXD9	chr2:176987716-176987739
123	IGF2BP3_A	chr7:23508901-23509225
124	IGF2BP3_B	chr7:23513817-23514114
125	IGFBP5	chr2:217559103-217559244
126	IGSF9B_A	chr11:133825409-133825476
127	IGSF9B_B	chr11:133825491-133825530
128	IL15RA	chr10:6018610-6018848
129	IL17REL	chr22:50453462-50453555

130	INSM1	chr20:20348140-20348182
131	ITGA9	chr3:37493895-37493994
132	ITPKA_A	chr15:41787438-41787784
133	ITPKA_B	chr15:41793928-41794003
134	ITPRIPL1	chr2:96990968-96991328
135	JSRP1	chr19:2253163-2253376
136	KCNA1	chr12:5019401-5019633
137	KCNE3	chr11:74178260-74178346
138	KCNH8	chr3:19189837-19189897
139	KCNK17_A	chr6:39281195-39281282
140	KCNK17_B	chr6:39281408-39281478
141	KCNK9.FR	chr8:140715096-140715164
142	KCNQ2	chr20:62103558-62103625
143	KIAA1949	chr6:30646976-30647084
144	KIRREL2	chr19:36347825-36347863
145	KLF16	chr19:1857330-1857476
146	KLHDC7B	chr22:50987219-50987304
147	LAYN.R	chr11:111412023-111412074
148	LIME1	chr20:62369116-62369393
149	LMX1B_A	chr9:129388175-129388223
150	LMX1B_B	chr9:129388231-129388495
151	LMX1B_C	chr9:129445588-129445603
152	LOC100131176	chr7:151106986-151107060
153	LOC100132891	chr8:72755897-72756295
154	LOC100302401.R	chr1:178063509-178063567
155	LOC283999	chr17:76227905-76227960
156	LRRC34	chr3:169530006-169530139
157	LSS.F	chr21:47649525-47649615
158	LY6H	chr8:144241547-144241557
159	MAGI2	chr7:79083359-79083600
160	MAST1	chr19:12978399-12978642
161	MAX.chr1.158083198-158083476	chr1:158083198-158083476

162	MAX.chr1.228074764-228074977	chr1:228074764-228074977
163	MAX.chr1.239549742-239549886	chr1:239549742-239549886
164	MAX.chr1.46913931-46913950	chr1:46913931-46913950
165	MAX.chr1.8277285-8277316	chr1:8277285-8277316
166	MAX.chr1.8277479-8277527	chr1:8277479-8277527
167	MAX.chr10.130085265-130085312	chr10:130085265-130085312
168	MAX.chr11.14926602-14927148	chr11:14926602-14927148
169	MAX.chr11.68622869-68622968	chr11:68622869-68622968
170	MAX.chr12.4273906-4274012	chr12:4273906-4274012
171	MAX.chr12.59990591-59990895	chr12:59990591-59990895
172	MAX.chr14.101176106-101176260	chr14:101176106-101176260
173	MAX.chr15.96889013-96889128	chr15:96889013-96889128
174	MAX.chr17.73073682-73073814	chr17:73073682-73073814
175	MAX.chr17.8230197-8230314	chr17:8230197-8230314
176	MAX.chr18.5629721-5629791	chr18:5629721-5629791
177	MAX.chr18.76734362-76734476	chr18:76734362-76734476
178	MAX.chr19.30719261-30719354	chr19:30719261-30719354
179	MAX.chr19.46379903-46380197	chr19:46379903-46380197
180	MAX.chr2.223183057-223183114.FR	chr2:223183057-223183114
181	MAX.chr2.238864674-238864735	chr2:238864674-238864735
182	MAX.chr2.97193163-97193287	chr2:97193163-97193287
183	MAX.chr2.97193478-97193562	chr2:97193478-97193562
184	MAX.chr20.1783841-1784054	chr20:1783841-1784054
185	MAX.chr20.1784209-1784461	chr20:1784209-1784461
186	MAX.chr21.44782441-44782498	chr21:44782441-44782498
187	MAX.chr21.47063802-47063851	chr21:47063802-47063851
188	MAX.chr22.23908718-23908782	chr22:23908718-23908782
189	MAX.chr22.42679578-42679917	chr22:42679578-42679917
190	MAX.chr4.8859253-8859329	chr4:8859253-8859329
191	MAX.chr4.8859602-8859669	chr4:8859602-8859669
192	MAX.chr4.8860002-8860038	chr4:8860002-8860038
193	MAX.chr5.145725410-145725459	chr5:145725410-145725459

194	MAX.chr5.172234248-172234494	chr5:172234248-172234494
195	MAX.chr5.178957564-178957598	chr5:178957564-178957598
196	MAX.chr5.180101084-180101094	chr5:180101084-180101094
197	MAX.chr5.42952185-42952280	chr5:42952185-42952280
198	MAX.chr5.42994866-42994936	chr5:42994866-42994936
199	MAX.chr5.77268672-77268725	chr5:77268672-77268725
200	MAX.chr5.81148300-81148332	chr5:81148300-81148332
201	MAX.chr6.108440684-108440788	chr6:108440684-108440788
202	MAX.chr6.130686865-130686985	chr6:130686865-130686985
203	MAX.chr6.157556793-157556856	chr6:157556793-157556856
204	MAX.chr6.157557371-157557657	chr6:157557371-157557657
205	MAX.chr6.27064703-27064783	chr6:27064703-27064783
206	MAX.chr7.151145632-151145743	chr7:151145632-151145743
207	MAX.chr7.152622607-152622638	chr7:152622607-152622638
208	MAX.chr8.124173030-124173395	chr8:124173030-124173395
209	MAX.chr8.124173128-124173268	chr8:124173128-124173268
210	MAX.chr8.143533298-143533558	chr8:143533298-143533558
211	MAX.chr8.145104132-145104218	chr8:145104132-145104218
212	MAX.chr8.687688-687736	chr8:687688-687736
213	MAX.chr8.688863-688924	chr8:688863-688924
214	MAX.chr9.114010-114207	chr9:114010-114207
215	MAX.chr9.136474504-136474527	chr9:136474504-136474527
216	MCF2L2	chr3:182896930-182897245
217	MERTK	chr2:112656676-112656744
218	MGAT1	chr5:180230434-180230767
219	MIB2	chr1:1565891-1565987
220	MN1	chr22:28197962-28198388
221	MPZ	chr1:161275561-161275996
222	MSX2P1	chr17:56234436-56234516
223	NACAD	chr7:45128502-45128717
224	NID2_A	chr14:52535260-52535353
225	NID2_B	chr14:52535974-52536161

226	NID2_C	chr14:52536192-52536328
227	NKX2-6	chr8:23564115-23564146
228	NR2F6	chr19:17346428-17346459
229	NTRK3	chr15:88800287-88800414
230	NXPH4	chr12:57618904-57618944
231	ODC1	chr2:10589075-10589243
232	OLIG3_A	chr6:137818896-137818917
233	OLIG3_B	chr6:137818978-137818988
234	OSR2_A	chr8:99952233-99952366
235	OSR2_B	chr8:99952801-99952919
236	OSR2_C	chr8:99960580-99960630
237	OTX1.R	chr2:63281481-63281599
238	PAQR6	chr1:156215470-156215739
239	PCDH8	chr13:53421299-53421322
240	PDX1	chr13:28498503-28498544
241	PDXK_A	chr21:45148429-45148556
242	PDXK_B	chr21:45148575-45148681
243	PEAR1	chr1:156863318-156863493
244	PIF1	chr15:65116285-65116597
245	PLXNC1_A	chr12:94544327-94544503
246	PLXNC1_B	chr12:94544333-94544426
247	POU4F1	chr13:79177505-79177532
248	PPARA	chr22:46545328-46545457
249	PPARG	chr3:12330042-12330152
250	PPP1R16B_A	chr20:37435507-37435716
251	PPP1R16B_B	chr20:37435738-37435836
252	PPP2R5C	chr14:102247681-102247929
253	PRDM13_A	chr6:100061616-100061742
254	PRDM13_B	chr6:100061748-100061792
255	PRHOXNB	chr13:28552424-28552562
256	PRKCB	chr16:23847575-23847699
257	PRMT1	chr19:50179501-50179635

258	PROM1	chr4:16084793-16085112
259	PTPRM	chr18:7568565-7568808
260	PTPRN2	chr7:157483341-157483429
261	RASGRF2	chr5:80256117-80256162
262	RBFOX3_A	chr17:77179579-77179752
263	RBFOX3_B	chr17:77179778-77180064
264	RFX8	chr2:102090934-102091130
265	RGS17	chr6:153452120-153452393
266	RIC3.F	chr11:8190622-8190711
267	RIPPLY2	chr6:84563228-84563287
268	RYR2_A	chr1:237205369-237205428
269	RYR2_B	chr1:237205619-237205640
270	SALL3	chr18:76739321-76739404
271	SBNO2	chr19:1131795-1131992
272	SCRT2_A	chr20:644533-644618
273	SCRT2_B	chr20:644573-644618
274	SERPINB9_A	chr6:2902941-2902998
275	SERPINB9_B	chr6:2903031-2903143
276	SLC16A3.F	chr17:80189895-80189962
277	SLC22A20.FR	chr11:64993239-64993292
278	SLC2A2	chr3:170746149-170746208
279	SLC30A10	chr1:220101458-220101634
280	SLC7A4	chr22:21386780-21386831
281	SLC8A3	chr14:70654596-70654640
282	SLITRK5.R	chr13:88329960-88330076
283	SNCA	chr4:90758071-90758118
284	SPHK2	chr19:49127580-49127683
285	ST8SIA4	chr5:100240059-100240276
286	STAC2_A	chr17:37381217-37381303
287	STAC2_B	chr17:37381689-37381795
288	STX16_A	chr20:57224798-57224975
289	STX16_B	chr20:57225077-57225227

290	SYN2	chr3:12045894-12045967
291	SYNJ2	chr6:158402213-158402536
292	SYT5	chr19:55690401-55690496
293	TAL1	chr1:47697702-47697882
294	TBKBP1	chr17:45772630-45772726
295	TBX1	chr22:19754257-19754550
296	TEPP	chr16:58018790-58018831
297	TIMP2	chr17:76921762-76921779
298	TLX1NB	chr10:102881178-102881198
299	TMEFF2	chr2:193060012-193060126
300	TMEM176A	chr7:150497411-150497535
301	TNFRSF10D	chr8:23020896-23021114
302	TOX	chr8:60030723-60030754
303	TRH_A	chr3:129693484-129693575
304	TRH_B	chr3:129694457-129694501
305	TRIM67	chr1:231297047-231297159
306	TRIM71_A	chr3:32858861-32858897
307	TRIM71_B	chr3:32859445-32859559
308	TRIM71_C	chr3:32860020-32860090
309	TSHZ3	chr19:31839809-31840038
310	UBTF	chr17:42287924-42288018
311	ULBP1	chr6:150285563-150285661
312	USP44_A	chr12:95942148-95942178
313	USP44_B	chr12:95942519-95942558
314	UTF1	chr10:135044125-135044171
315	UTS2R	chr17:80329497-80329534
316	VIPR2	chr7:158937370-158937481
317	VN1R2	chr19:53758121-53758147
318	VSNL1	chr2:17720216-17720257
319	VSTM2B_A	chr19:30016283-30016357
320	VSTM2B_B	chr19:30017789-30018165
321	ZBTB16	chr11:113929882-113930166

322	ZFP64	chr20:50721057-50721235
323	ZNF132	chr19:58951402-58951775
324	ZNF486	chr19:20278004-20278145
325	ZNF626	chr19:20844070-20844199
326	ZNF671	chr19:58238810-58238955
327	ZSCAN12	chr6:28367128-28367509

Table 3. Table 3 shows 1) area under the curve for identified methylated regions distinguishing triple negative breast cancer tissue from normal breast tissue, 2) the Fold Change (FC) for triple negative breast cancer tissue vs. normal breast tissue, and 3) the Fold Change (FC) for triple negative breast cancer tissue vs. buffy coat (normal).

5

Gene Annotation	Region on Chromosome (starting base-ending base)	AUC	FC Tissue	FC Buffy	DMR
ABLIM1	chr10:116391588-116391793	0.821	9.187127	6.095762	3
AJAP1_B	chr1:4715931-4716021	0.9358	33.64347	55.12195	7
ASCL2	chr11:2292240-2292361	0.9479	21.93763	13.66322	14
ATP6V1B1	chr2:71192354-71192453	1	2.711325	92.96954	15
BANK1	chr4:102711871-102712076	1	1.43525	61.96732	17
CALN1_A	chr7:71801486-71801594	0.9346	17.12541	17.09291	36
CALN1_B	chr7:71801741-71801800	0.8742	19.87087	36.73595	37
CLIC6	chr21:36042025-36042131	1	3.059621	93.40228	58
DSCR6	chr21:38378540-38378601	0.9641	16.80192	23.82779	72
FOXP4	chr6:41528816-41528958	1	1.645757	>1x10 ⁶	96
GAD2	chr10:26505066-26505385	0.9134	29.30865	44.14014	98
GCGR	chr17:79761970-79762088	0.9506	15.57835	9.860312	100
GP5	chr3:194118738-194118924	0.9961	1.942734	122.3962	104
GRASP	chr12:52400919-52401166	0.9506	34.60851	58.57791	105
HBM	chr16:216426-216451	0.9389	28.44886	28.4872	111
HNF1B_B	chr17:36105390-36105448	1	2.492725	20.57995	116
KLF16	chr19:1857330-1857476	0.8785	19.65243	148.6852	145
MAGI2	chr7:79083359-79083600	0.9306	16.79564	5.734084	159
MAX.chr11.14926 602-14927148	chr11:14926602-14927148	1	3.891519	87.49446	168
MAX.chr12.42739 06-4274012	chr12:4273906-4274012	0.9815	20.08783	149.5817	170
MAX.chr17.73073	chr17:73073682-73073814	0.9883	1.679173	72.85714	174

682-73073814					
MAX.chr18.76734 362-76734370	chr18:76734362-76734370	0.9641	24.69328	77.26996	177
MAX.chr2.971934 78-97193562	chr2:97193478-97193562	0.9167	22.01754	119.8408	183
MAX.chr22.42679 578-42679917	chr22:42679578-42679917	0.9375	27.34823	20.78761	189
MAX.chr4.885925 3-8859329	chr4:8859253-8859329	0.9346	13.7246	93.86646	190
MAX.chr4.885960 2-8859669	chr4:8859602-8859669	0.9632	11.5	27.44798	191
MAX.chr4.886000 2-8860038	chr4:8860002-8860038	0.9491	20.16179	84.79759	192
MAX.chr5.145725 410-145725459	chr5:145725410-145725459	0.933	12.88169	25.65149	193
MAX.chr6.157557 371-157557657	chr6:157557371-157557657	1	6.19614	35.10826	204
MPZ	chr1:161275561-161275996	0.9504	20.73901	191.2216	221
NKX2-6	chr8:23564115-23564146	0.9583	18.63167	38.06928	227
PDX1	chr13:28498503-28498544	0.9657	18.77193	64.6598	240
PLXNC1_A	chr12:94544327-94544503	0.9449	4.617089	38.86521	245
PPARG	chr3:12330042-12330152	0.9259	30.22681	10.42603	249
PRKCB	chr16:23847575-23847699	0.9281	20.45208	295.1076	256
PTPRN2	chr7:157483341-157483429	0.9281	12.35294	32.67167	260
RBFOX3_A	chr17:77179579-77179752	0.9074	19.19924	18.24275	262
SCRT2_A	chr20:644533-644618	0.9321	18.30644	7.92126	272
SLC7A4	chr22:21386780-21386831	0.9792	17.60673	23.649	280
STAC2_B	chr17:37381689-37381795	0.9074	26.95157	73.07841	287
STX16_A	chr20:57224798-57224975	1	1.36278	106.6599	288
STX16_B	chr20:57225077-57225227	1	1.593456	198.3707	289
TBX1	chr22:19754257-19754550	0.8676	1.385844	35.45752	295
TRH_A	chr3:129693484-129693575	1	3.188452	67.015	303
VSTM2B_A	chr19:30016283-30016357	0.9246	27.51997	28.83311	319
ZBTB16	chr11:113929882-113930166	0.9003	18.82877	26.23126	321
ZNF132	chr19:58951402-58951775	0.9062	33.99015	85.56548	323
ZSCAN23	chr6:28411152-28411272	0.9163	20.33657	59.21927	1

Table 4. Table 4 shows 1) area under the curve for identified methylated regions distinguishing HER2⁺ breast cancer tissue from normal breast tissue, 2) the Fold Change (FC) for HER2⁺ breast cancer tissue vs. normal breast tissue, and 3) the Fold Change (FC) for HER2⁺ breast cancer tissue vs. buffy coat (normal).

Gene Annotation	Region on Chromosome (starting base-ending base)	AUC	FC Tissue	FC Buffy	DMR
ABLIM1	chr10:116391588-116391793	0.9846	20.96881	13.91304	3
AFAP1L1	chr5:148651161-148651242	0.9902	19.53202	21.58802	5
AKR1B1	chr7:134143171-134143684	0.9537	31.02981	91.43744	8
ALOX5	chr10:45914840-45914949	0.9522	30.50987	110.198	9
AMN	chr14:103394920-103395019	0.951	23.99824	172.1942	10
ARL5C	chr17:37321515-37321626	0.9526	23.90438	76.38447	13
BANK1	chr4:102711871-102712076	1	1.178479	50.88113	17
BCAT1	chr12:25055906-25055975	0.9641	17.75806	73.18046	18
BEGAIN	chr14:101033665-101033813	1	25.33593	29.59147	19
BEST4	chr1:45251853-45252029	0.9753	40.07491	76.68804	20
BHLHE23_B	chr20:61638020-61638083	0.9765	33.01942	26.19353	22
BHLHE23_C	chr20:61638088-61638565	0.9938	37.3359	51.54664	23
C17orf64	chr17:58499095-58499190	0.9583	19.9771	281.2989	29
C1QL2	chr2:119916511-119916572	1	20.92054	20.81967	32
C7orf52	chr7:100823483-100823514	0.9967	34.66759	20.82363	35

CALN1_B	chr7:71801741-71801800	0.9444	17.5999	32.5375	37
CAV2	chr7:116140205-116140342	0.9506	21.22966	20.87111	40
CD8A	chr2:87017780-87017917	0.9907	20	21.32184	48
CDH4_A	chr20:59827230-59827285	1	37.02782	42.86441	49
CDH4_B	chr20:59827762-59827776	0.9907	22.76012	30.46422	50
CDH4_C	chr20:59827794-59827868	1	24.72984	23.55503	51
CDH4_D	chr20:59828193-59828258	0.9958	25.09787	28.16619	52
CDH4_E	chr20:59828479-59828729	1	28.97206	36.79341	53
CDH4_F	chr20:59828778-59828814	0.9969	36.81109	34.35411	54
CHST2_B	chr3:142839223-142839568	1	34.72482	117.3308	57
CLIP4	chr2:29338109-29338339	0.9739	20.94282	46.96947	59
CR1	chr1:207669481-207669639	0.9691	28.25359	42.1256	61
DLK1	chr14:101193295-101193318	0.9692	31.7083	30.33924	65
DNAJC6	chr1:65731412-65731507	0.9691	35.40474	85.64082	68
DNM3_A	chr1:171810393-171810575	0.9506	16.78657	101.8429	69
EMX1_A	chr2:73151498-73151578	0.9923	14.73071	31.60031	74
ESPN	chr1:6508784-6509175	1	7.096692	53.37799	77
FABP5	chr8:82192605-82192921	0.9475	18.49851	297.5222	81
FAM150A	chr8:53478266-53478416	1	26.83744	30.32598	85
FLJ42875	chr1:2987037-2987116	0.9667	40.47655	36.2069	92
GLP1R	chr6:39016381-	0.9725	22.49606	24.93019	102

	39016421				
GNG4	chr1:235813658-235813798	0.9771	30.92768	28.97404	103
GYPC_A	chr2:127413505-127413678	0.9568	20.44592	91.04351	108
HAND2	chr4:174450452-174450478	0.9804	15.73026	23.81474	110
HES5	chr1:2461823-2461915	0.9383	31.91815	23.13591	112
HNF1B_A	chr17:36103713-36103793	0.963	29.18949	39.45301	115
HNF1B_B	chr17:36105390-36105448	1	3.593578	29.6686	116
HOXA1_A	chr7:27135603-27135889	0.966	38.04738	137.2168	117
HOXA1_B	chr7:27136191-27136244	0.9522	33.78035	144.6796	118
HOXA7_A	chr7:27195742-27195895	0.9784	22.8203	34.64696	119
HOXA7_B	chr7:27196032-27196190	1	27.92413	23.54393	120
HOXA7_C	chr7:27196441-27196531	0.9896	20.14606	27.05282	121
HOXD9	chr2:176987716-176987739	0.9926	21.14973	31.76069	122
IGF2BP3_A	chr7:23508901-23509225	0.9599	22.75591	108.9025	123
IGF2BP3_B	chr7:23513817-23514114	0.9853	8.970018	75.12555	124
IGSF9B_A	chr11:133825409-133825476	0.9691	13.84201	22.99205	126
IL15RA	chr10:6018610-6018848	0.941	6.854012	58.47407	128
INSM1	chr20:20348140-20348182	0.9542	25.90248	26.65219	130
ITPKA_B	chr15:41793928-41794003	0.9686	21.34743	23.96879	133
ITPRIPL1	chr2:96990968-96991328	0.963	31.10465	280.3382	134
KCNE3	chr11:74178260-	0.9529	37.65937	30.48685	137

	74178346				
KCNK17_B	chr6:39281408-39281478	0.966	31.5971	104.6458	140
LIME1	chr20:62369116-62369393	1	3.213465	75.53068	148
LOC100132891	chr8:72755897-72756295	0.9691	33.07259	53.92857	153
LOC283999	chr17:76227905-76227960	0.9837	14.82154	37.5134	155
LY6H	chr8:144241547-144241557	0.9722	14.69706	28.21535	158
MAST1	chr19:12978399-12978642	0.9654	26.7166	37.34729	160
MAX.chr1.158083198-158083476	chr1:158083198-158083476	0.9907	35.99869	32.08705	161
MAX.chr1.228074764-228074977	chr1:228074764-228074977	0.9846	33.58852	37.24138	162
MAX.chr1.46913931-46913950	chr1:46913931-46913950	0.9784	27.23106	24.5654	164
MAX.chr10.130085265-130085312	chr10:130085265-130085312	1	23.65531	23.42432	167
MAX.chr11.68622869-68622968	chr11:68622869-68622968	1	72.19153	99.26843	169
MAX.chr14.101176106-101176260	chr14:101176106-101176260	0.9771	19.13125	42.66797	172
MAX.chr15.96889013-96889128	chr15:96889069-96889128	0.9882	16.95179	32.0494	173
MAX.chr17.8230197-8230314	chr17:8230197-8230314	0.966	17.19388	40.39153	175
MAX.chr19.46379903-46380197	chr19:46379903-46380197	0.9902	32.1749	31.74585	179
MAX.chr2.97193163-97193287	chr2:97193163-97193287	0.9522	25.05757	666.7396	182
MAX.chr2.97193478-97193562	chr2:97193478-97193562	0.9549	29.12281	158.5146	183
MAX.chr20.1784209-1784461	chr20:1784209-1784461	0.9784	60.31305	39.01045	185
MAX.chr21.44782441-44782498	chr21:44782441-44782498	0.9688	16.58956	71.97633	186

MAX.chr22.23908718-23908782	chr22:23908718-23908782	1	25.82947	20.84453	188
MAX.chr5.145725410-145725459	chr5:145725410-145725459	0.9969	14.69927	29.27086	193
MAX.chr5.178957564-178957598	chr5:178957564-178957598	0.9614	16.46627	42.22336	195
MAX.chr5.180101084-180101094	chr5:180101084-180101094	1	23.37255	25.00699	196
MAX.chr5.42952185-42952280	chr5:42952185-42952280	0.966	16.77837	67.63893	197
MAX.chr5.42994866-42994936	chr5:42994866-42994936	0.9112	4.703287	161.8831	198
MAX.chr6.27064703-27064783	chr6:27064703-27064783	0.9537	20.54983	23.77734	205
MAX.chr7.152622607-152622638	chr7:152622607-152622638	0.9522	24.6674	20.98723	207
MAX.chr8.145104132-145104218	chr8:145104132-145104218	0.9641	23.94389	106.2614	211
MAX.chr9.136474504-136474527	chr9:136474504-136474527	0.951	20.88926	25.01507	215
MCF2L2	chr3:182896930-182897245	0.9753	20.09711	22.94148	216
MSX2P1	chr17:56234436-56234516	0.9105	20.25101	185.2593	222
NACAD	chr7:45128502-45128717	0.9583	24.13599	24.56509	223
NID2_B	chr14:52535974-52536161	0.966	21.89118	30.61013	225
NID2_C	chr14:52536192-52536328	0.9846	21.19688	35.70811	226
ODC1	chr2:10589075-10589243	0.9896	5.239957	199.2568	231
OSR2_B	chr8:99952801-99952919	0.9599	24.39913	21.91589	235
PAQR6	chr1:156215470-156215739	0.9965	1.875785	35.09138	238
PCDH8	chr13:53421299-53421322	0.9907	14.32	28.05643	239
PIF1	chr15:65116285-	0.9537	43.87855	44.78209	244

	65116597				
PPARA	chr22:46545328-46545457	0.9896	1.934821	27.81555	248
PPP2R5C	chr14:102247681-102247929	0.9969	40.41616	21.95545	252
PRDM13_A	chr6:100061616-100061742	0.9537	24.24062	61.61066	253
PRHOXNB	chr13:28552424-28552562	1	32.97143	25.41024	255
PRKCB	chr16:23847575-23847699	0.9537	30.71429	443.1833	256
RBFOX3_A	chr17:77179579-77179752	0.9846	21.15348	20.09964	262
RBFOX3_B	chr17:77179778-77180064	0.9784	22.97297	38.87734	263
RFX8	chr2:102090934-102091130	0.9475	14.08461	61.73279	264
SNCA	chr4:90758071-90758118	0.9622	14.42541	42.52051	283
STAC2_A	chr17:37381217-37381303	0.9815	43.97999	23.61791	286
STAC2_B	chr17:37381689-37381795	0.9938	59.47293	161.2592	287
STX16_B	chr20:57225077-57225227	0.989	1.467485	182.6884	289
SYT5	chr19:55690401-55690496	0.9938	16.49149	33.17451	292
TIMP2	chr17:76921762-76921779	0.9568	17.75848	42.58231	297
TMEFF2	chr2:193060012-193060126	0.9753	17.97114	35.24222	299
TNFRSF10D	chr8:23020896-23021114	0.9475	22.13556	107.3874	301
TRH_B	chr3:129694457-129694501	1	18.95629	21.0275	304
TRIM67	chr1:231297047-231297159	1	23.47643	15.57769	305
TRIM71_C	chr3:32860020-32860090	0.9826	28.31276	43.84559	308

USP44_A	chr12:95942148-95942178	0.9722	25.33383	22.23173	312
USP44_B	chr12:95942519-95942558	0.9688	29.71223	20.72773	313
UTF1	chr10:135044125-135044171	0.9935	24.15274	23.83046	314
UTS2R	chr17:80329497-80329534	0.9896	37.98289	25.32411	315
VSTM2B_A	chr19:30016283-30016357	0.9654	57.09044	59.81456	319
VSTM2B_B	chr19:30017789-30018165	0.9673	32.07169	27.33698	320
ZFP64	chr20:50721057-50721235	0.9506	27.53052	22.5886	322
ZNF132	chr19:58951402-58951775	0.9804	39.76355	100.0992	323

Table 5. Table 5 shows 1) area under the curve for identified methylated regions distinguishing Luminal A breast cancer tissue from normal breast tissue, 2) the Fold Change (FC) for Luminal A breast cancer tissue vs. normal breast tissue, and 3) the Fold Change (FC) for Luminal A breast cancer tissue vs. buffy coat (normal).

Gene Annotation	Region on Chromosome (starting base-ending base)	AUC	FC Tissue	FC Buffy	DMR
ARL5C	chr17:37321515-37321626	0.9083	10.00664	31.97539	13
BHLHE23_C	chr20:61638088-61638565	0.9184	31.17451	43.04012	23
BMP6	chr6:7727566-7727907	0.9248	33.44248	32.18487	26
C10orf125	chr10:135171410-135171661	0.9816	5.951195	52.52747	27
C17orf64	chr17:58499095-58499190	0.9414	9.129866	128.5583	29
C19orf66	chr19:10197688-10197823	0.9288	3.629997	23.26103	31
CAMKV	chr3:49907259-	0.9265	31.61795	34.87738	38

	49907298				
CD1D	chr1:158150864-158151129	0.9575	26.85386	35.71281	47
CDH4_E	chr20:59828479-59828729	0.9575	19.38124	24.61343	53
CDH4_F	chr20:59828778-59828814	0.9167	27.70653	25.85724	54
CHST2_A	chr3:142838025-142838494	0.9167	47.12016	106.0335	56
CRHBP	chr5:76249939-76249997	0.9294	14.22073	22.1281	62
DLX6	chr7:96635255-96635475	0.9622	13.78623	28.53928	67
DNM3_B	chr1:171810648-171810702	0.9087	29.14931	295.5986	70
DNM3_C	chr1:171810806-171810920	0.9753	23.67912	99.77376	71
DNM3_A	chr1:171810393-171810575	0.9134	21.31894	129.3404	69
ESYT3	chr3:138153979-138154071	0.9479	39.19083	37.19512	78
ETS1_A	chr11:128391809-128391908	0.9089	40.45139	159.0444	79
ETS1_B	chr11:128392062-128392309	0.8872	34.63309	188.3098	80
FAM126A	chr7:23053941-23054066	0.9706	57.86891	65.82935	83
FAM189A1	chr15:29862130-29862169	0.9757	18.04237	28.53505	88
FAM20A	chr17:66597237-66597326	0.9019	35.24514	24.36451	89
FAM59B	chr2:26407713-26407972	0.9479	1.945513	103.9384	90
FBN1	chr15:48937412-48937541	0.9599	31.33933	27.92071	91
FLRT2	chr14:85998469-85998535	0.9428	15.80425	20.40157	93
FMN2	chr1:240255171-240255253	0.9294	27.79887	61.08723	94

FOXP4	chr6:41528816-41528958	1	1.388687	#DIV/0!	96
GAS7	chr17:10101325-10101397	0.9282	39.97585	23.28643	99
GYPC_A	chr2:127413505-127413678	0.9379	16.91651	75.32742	108
GYPC_B	chr2:127414096-127414189	0.9727	15.16704	832.1792	109
HAND2	chr4:174450452-174450478	0.9583	13.64474	20.65737	110
HES5	chr1:2461823-2461915	0.9111	21.96548	15.9217	112
HMGA2	chr12:66219385-66219487	0.9314	46.53533	21.43751	114
HNF1B_B	chr17:36105390-36105448	0.9926	2.464626	20.34797	116
IGF2BP3_B	chr7:23513817-2351411	0.969	15.15625	99.58003	124
IGF2BP3_A	chr7:23508901-23509225	0.9167	18.96654	90.76778	123
KCNH8	chr3:19189837-19189897	0.9821	26.86423	11.12219	138
KCNK17_A	chr6:39281195-39281282	0.9111	64.74638	44.94467	139
KCNQ2	chr20:62103558-62103625	0.9379	15.9322	58.35214	142
KLHDC7B	chr22:50987219-50987304	1	1.458785	126.5684	146
LOC100132891	chr8:72755897-72756295	0.9477	21.07843	34.37075	153
MAX.chr1.46913931-46913950	chr1:46913931-46913950	0.9074	23.06829	20.81013	164
MAX.chr11.68622869-68622968	chr11:68622869-68622968	0.9395	46.67485	64.1812	169
MAX.chr12.4273906-4274012	chr12:4273906-4274012	0.9379	20.87418	155.4373	170
MAX.chr12.59990591-59990895	chr12:59990591-59990895	0.8807	14.01947	21.10553	171
MAX.chr17.73073682-	chr17:73073682-	0.9449	1.052067	45.64784	174

73073814	73073814				
MAX.chr20.1783841-1784054	chr20:1783841-1784054	0.9074	27.09573	22.06724	184
MAX.chr21.47063802-47063851	chr21:47063802-47063851	0.9757	16.51515	79.7561	187
MAX.chr4.8860002-8860038	chr4:8860002-8860038	0.9363	16.17858	68.04479	192
MAX.chr5.172234248-172234494	chr5:172234248-172234494	0.9201	1.531023	83.07827	194
MAX.chr5.178957564-178957598	chr5:178957564-178957598	0.9392	11.40949	29.25659	195
MAX.chr6.130686865-130686985	chr6:130686865-130686985	0.9583	39.03866	37.31522	202
MAX.chr8.687688-687736	chr8:687688-687736	0.9286	24.48762	22.46817	212
MAX.chr8.688863-688924	chr8:688863-688924	0.9303	15.25862	30.30423	213
MAX.chr9.114010-114207	chr9:114010-114207	0.9085	25.1809	34.53142	214
MPZ	chr1:161275561-161275996	0.933	36.3026	503.8832	221
NID2_A	chr14:52535260-52535353	0.9316	29.32631	35.83691	224
NKX2-6	chr8:23564115-23564146	0.908	15.67986	32.03798	227
ODC1	chr2:10589075-10589243	1	5.298588	201.4864	231
OSR2_A	chr8:99952233-99952366	0.951	17.65456	23.40924	234
POU4F1	chr13:79177505-79177532	0.9241	14.6281	25.83187	247
PRDM13_B	chr6:100061748-100061792	0.9549	22.67697	52.7912	254
PRKCB	chr16:23847575-23847699	0.9248	26.98915	389.4325	256
RASGRF2	chr5:80256117-80256162	0.9327	24.29321	45.671	261
RIPPLY2	chr6:84563228-84563287	0.9216	20.4497	24	267

SLC30A10	chr1:220101458-220101634	0.9346	21.20187	19.7307	279
ST8SIA4	chr5:100240059-100240276	1	1.754394	257.6766	285
SYN2	chr3:12045894-12045967	0.9232	22.95533	31.86263	290
TRIM71_A	chr3:32858861-32858897	0.9184	15.38071	50.65283	306
TRIM71_B	chr3:32859445-32859559	0.9375	15.41597	43.92036	307
TRIM71_C	chr3:32860020-32860090	0.9115	25.64374	39.71231	308
UBTF	chr17:42287924-42288018	1	2.648869	421.8795	310
ULBP1	chr6:150285563-150285661	0.902	16.53425	26.75089	311
USP44_B	chr12:95942519-95942558	0.975	29.4964	20.57716	313
VSTM2B_A	chr19:30016283-30016357	0.9283	34.40535	36.04704	319

Table 6. Table 6 shows 1) area under the curve for identified methylated regions distinguishing Luminal B breast cancer tissue from normal breast tissue, 2) the Fold Change (FC) for Luminal B breast cancer tissue vs. normal breast tissue, and 3) the Fold Change (FC) for Luminal B breast cancer tissue vs. buffy coat (normal).

Gene Annotation	Region on Chromosome (starting base-ending base)	AUC	FC Tissue	FC Buffy	DMR
ACCN1	chr17:31620207-31620314	0.9198	23.85808	9.167347	4
AJAP1_A	chr1:4715535-4715646	0.9815	24.85037	23.66546	6
AJAP1_B	chr1:4715931-4716021	0.9491	33.32713	54.60366	7
BEST4	chr1:45251853-45252029	0.9059	32.89966	62.95737	20

CALN1_B	chr7:71801741-71801800	0.9059	16.99878	31.42622	37
CBLN1_B	chr16:49316198-49316258	0.933	15.66904	39.58407	42
CDH4_E	chr20:59828479-59828729	0.9259	17.19561	21.83777	53
DLX4	chr17:48042562-48042606	1	3.346919	60.11236	66
FOXP4	chr6:41528816-41528958	1	1.056007	#DIV/0!	96
IGSF9B_B	chr11:133825491-133825530	0.9815	21.1913	21.56637	127
ITPRIPL1	chr2:96990968-96991328	0.9074	21.92125	197.5706	134
KCNA1	chr12:5019401-5019633	0.9414	53.02013	39.91732	136
KLF16	chr19:1857330-1857476	0.8791	12.18471	92.18633	145
LMX1B_A	chr9:129388175-129388223	0.9965	2.639923	62.01749	149
MAST1	chr19:12978399-12978642	0.9706	16.13892	22.56069	160
MAX.chr11.14926602-14927148	chr11:14926602-14927148	1	3.646943	81.99557	168
MAX.chr17.73073682-73073814	chr17:73073682-73073814	0.9514	1.236217	53.63787	174
MAX.chr18.76734362-76734476	chr18:76734362-76734476	0.9414	15.62804	48.90311	177
MAX.chr19.30719261-30719354	chr19:30719261-30719354	0.9101	23.15574	21.34761	178
MAX.chr22.42679578-42679917	chr22:42679578-42679917	0.963	28.63358	21.76462	189
MAX.chr4.8860002-8860038	chr4:8860002-8860038	0.9259	17.90907	75.323	192
MAX.chr5.145725410-145725459	chr5:145725410-145725459	0.9012	10.81956	21.54514	193
MAX.chr5.178957564-178957598	chr5:178957564-178957598	0.9028	14.08818	36.12539	195
MAX.chr5.77268672-	chr5:77268672-	0.9228	16.4233	39.91228	199

77268725	77268725				
MAX.chr8.124173128-124173268	chr8:124173128-124173268	0.9105	12.93676	45.59879	209
MPZ	chr1:161275561-161275996	0.9653	19.98003	184.2234	221
PPARA	chr22:46545328-46545457	0.9931	1.592475	22.89388	248
PRMT1	chr19:50179501-50179635	0.8837	11.53981	25.86275	257
RBFOX3_B	chr17:77179778-77180064	0.9012	18.327	31.01493	263
RYR2_A	chr1:237205369-237205428	0.9392	21.32044	25	268
SALL3	chr18:76739321-76739404	0.96	58.85028	60.07958	270
SCRT2_A	chr20:644533-644618	0.9871	19.11925	8.272966	272
SPHK2	chr19:49127580-49127683	0.9753	38.67547	42.87091	284
STX16_B	chr20:57225077-57225227	1	1.503476	187.169	289
SYNJ2	chr6:158402213-158402536	1	1.81213	79.15141	291
TMEM176A	chr7:150497411-150497535	0.8719	18.02734	13.07736	300
TSHZ3	chr19:31839809-31840038	0.9475	19.63569	29.13422	309
VIPR2	chr7:158937370-158937481	0.9537	28.49829	22.56321	316

Table 7. Table 7 shows 1) area under the curve for identified methylated regions distinguishing BRCA1 breast cancer tissue from normal breast tissue, 2) the Fold Change (FC) for BRCA1 breast cancer tissue vs. normal breast tissue, and 3) the Fold Change (FC) for BRCA1 breast cancer tissue vs. buffy coat (normal).

Gene Annotation	Region on Chromosome (starting base-ending base)	AUC	FC Tissue	FC Buffy	DMR No.

C10orf93	chr10:134756078-134756167	1	35.64082278	21.3938	28
C20orf195_A	chr20:62185293-62185364	0.9537	25.6624628	88.34146	33
C20orf195_B	chr20:62185418-62185546	0.9537	31.08894431	47.34177	34
CALN1_B	chr7:71801741-71801800	1	22.4757876	41.55176	37
CBLN1_A	chr16:49315588-49315691	1	23.38948327	22.60229	41
CBLN1_B	chr16:49316198-49316258	0.9815	27.353707	71.4388	42
CCDC61	chr19:46519467-46519536	0.9667	48.80498092	67.25713	43
CCND2	chr12:4378317-4378375	0.9333	16.28123545	100.7685	44
CCND2	chr12:4380560-4380681	0.951	10.56487202	70.74468	45
CCND2	chr12:4384096-4384146	0.9907	25.60667341	76.22272	46
EMX1_B	chr2:73151663-73151756	0.9833	13.75989446	30.57754	75
FAM150B	chr2:287868-287919	0.9306	32.67264761	21.96353	86
GRASP	chr12:52400919-52401166	0.9259	28.3875581	48.04841	105
HBM	chr16:216426-216451	0.9706	35.04374159	35.09097	111
ITPRIPL1	chr2:96990968-96991328	1	17.39816032	163.0944	134
KCNK17_A	chr6:39281195-39281282	0.9583	36.55797101	25.37726	139
KIAA1949	chr6:30646976-30647084	0.9556	30.04064322	173.3102	143
LOC100131176	chr7:151106986-151107060	1	16.94187139	29.40354	152
MAST1	chr19:12978399-12978642	1	19.30541369	26.98715	160
MAX.chr1.8277285-8277316	chr1:8277285-8277316	0.9815	31.30790191	52.33035	165

MAX.chr1.8277479-8277527	chr1:8277479-8277527	1	18.61607143	45.48146	166
MAX.chr11.14926602-14927148	chr11:14926602-14927148	1	4.590639238	107.8495	168
MAX.chr15.96889013-96889128	chr15:96889013-96889128	0.9778	18.09917355	35.80772	173
MAX.chr18.5629721-5629791	chr18:5629721-5629791	0.9375	17.83216783	20.53691	177
MAX.chr19.30719261-30719354	chr19:30719261-30719354	1	33.50409836	30.88791	178
MAX.chr22.42679578-42679917	chr22:42679578-42679917	0.9778	37.74834437	39.34049	189
MAX.chr5.178957564-178957598	chr5:178957564-178957598	1	22.21108884	56.95444	195
MAX.chr5.77268672-77268725	chr5:77268672-77268725	0.9074	15.49630845	37.65949	199
MAX.chr6.157556793-157556856	chr6:157556793-157556856	0.9778	33.75787815	33.87352	203
MAX.chr8.124173030-124173395	chr8:124173030-124173395	1	23.47893058	63.5876	208
MN1	chr22:28197962-28198388	0.9352	23.36568394	26.69456	220
MPZ	chr1:161275561-161275996	0.8519	49.15590864	856.6978	221
NR2F6	chr19:17346428-17346459	1	13.02466029	353.7936	228
PDXK_A	chr21:45148429-45148556	0.9722	75.55254849	229.9245	241
PDXK_B	chr21:45148575-45148681	0.9778	24.6031746	68.40522	242
PTPRM	chr18:7568565-7568808	1	27.52463054	20.36446	259
RYR2_B	chr1:237205619-237205640	0.95	21.12877583	25.85603	269
SERPINB9_A	chr6:2902941-2902998	0.9907	28.33433917	27.88833	274
SERPINB9_B	chr6:2903031-2903143	0.9769	25.91687042	40.06479	275
SLC8A3	chr14:70654596-	0.9706	16.90022757	46.84595	281

	70654640				
STX16_B	chr20:57225077-57225227	1	1.678527607	208.9613	289
TEPP	chr16:58018790-58018831	0.9222	14.38988095	44.1351	296
TOX	chr8:60030723-60030754	0.9537	13.484375	86.64659	302
VIPR2	chr7:158937370-158937481	0.9074	30.22915651	23.9336	316
VSTM2B_A	chr19:30016283-30016357	0.9853	42.3267861	44.34645	319
ZNF486	chr19:20278004-20278145	1	28.7755102	40.02498	324
ZNF626	chr19:20844070-20844199	1	72.64705882	47.34274	325
ZNF671	chr19:58238810-58238955	1	30.69748581	235.6787	326

Table 8. Table 8 shows 1) area under the curve for identified methylated regions distinguishing BRCA2 breast cancer tissue from normal breast tissue, 2) the Fold Change (FC) for BRCA2 breast cancer tissue vs. normal breast tissue, and 3) the Fold Change (FC) for BRCA2 breast cancer tissue vs. buffy coat (normal).

Gene Annotation	Region on Chromosome (starting base-ending base)	AUC	FC Tissue	FC Buffy	DMR No.
ANTXR2	chr4:80993475-80993634	0.9074	28.18115	48.41438	12
B3GNT5	chr3:182971589-182971825	0.9136	118.1266	122.9242	16
BHLHE23_A	chr20:61637950-61637986	0.9948	21.22272	21.07755	21
BMP4	chr14:54421578-54421916	0.9815	45.77028	21.74194	25
CHRNA7	chr15:32322830-32322897	1	349.4748	29.49189	55
EPHA4	chr2:222436217-222436320	0.9236	58.94207	21.52714	76

FAM171A1	chr10:15412558-15412652	0.9087	51.57005	26.28231	87
FAM20A	chr17:66597237-66597326	0.996	30.89732	21.35891	89
FMNL2	chr2:153192734-153192836	0.9028	53.3376	24.66469	95
FSCN1	chr7:5633506-5633615	0.9028	25.15063	30.87569	97
GSTP1	chr11:67350986-67351055	0.9	>1x10 ⁶	>1x10 ⁶	107
HBM	chr16:216426-216451	0.9	22.7961	22.82682	111
IGFBP5	chr2:217559103-217559244	0.9722	59.11994	22.99517	125
IL17REL	chr22:50453462-50453555	1	28.30452	28.99172	129
ITGA9	chr3:37493895-37493994	0.9706	43.32188	35.86874	131
ITPRIPL1	chr2:96990968-96991328	0.9583	14.7331	147.0693	134
KIRREL2	chr19:36347825-36347863	0.9853	45.39026	35.4729	144
LRRC34	chr3:169530006-169530139	0.9306	22.69192	30.27401	156
MAX.chr1.239549742-239549886	chr1:239549742-239549886	0.916	20.67734	21.47568	163
MAX.chr1.8277479-8277527	chr1:8277479-8277527	0.8333	13.25255	32.37769	166
MAX.chr11.14926602-14927148	chr11:14926602-14927148	0.9922	3.97073	93.28576	168
MAX.chr15.96889013-96889128	chr15:96889013-96889128	0.9514	8.454545	16.72662	173
MAX.chr2.238864674-238864735	chr2:238864674-238864735	0.9762	27.89736	28.99259	181
MAX.chr5.81148300-81148332	chr5:81148300-81148332	0.9583	12.50391	24.59992	200
MAX.chr7.151145632-151145743	chr7:151145632-151145743	0.9444	8.972603	58.5148	206
MAX.chr8.124173030-124173395	chr8:124173030-124173395	0.9306	7.530176	56.77946	208

MAX.chr8.143533298-143533558	chr8:143533298-143533558	0.9097	32.741	20.5064	210
MERTK	chr2:112656676-112656744	0.9222	27.51721	62.09376	217
MPZ	chr1:161275561-161275996	0.9236	33.56504	584.9775	221
NID2_C	chr14:52536192-52536328	0.9236	13.44693	22.6526	226
NTRK3	chr15:88800287-88800414	0.9167	20.89983	28.86352	229
OLIG3_A	chr6:137818896-137818917	0.9198	15.98856	20.54162	232
OLIG3_B	chr6:137818978-137818988	0.9012	11.04806	20.26448	233
OSR2_C	chr8:99960580-99960630	0.9136	19.58805	32.89474	236
PROM1	chr4:16084793-16085112	0.9583	32.17623	41.64147	258
RGS17	chr6:153452120-153452393	0.9028	24.55645	20.63008	265
SBNO2	chr19:1131795-1131992	0.9012	58.01495	69.1242	271
STX16_B	chr20:57225077-57225227	1	1.597137	198.8289	289
TBKBP1	chr17:45772630-45772726	0.9559	21.05769	41.61125	294
TLX1NB	chr10:102881178-102881198	0.9074	22.34146	128.8689	298
VIPR2	chr7:158937370-158937481	0.9074	26.0117	20.59448	316
VN1R2	chr19:53758121-53758147	0.9583	17.79366	22.4549	317
VSNL1	chr2:17720216-17720257	0.9485	59.26645	43.69099	318
ZFP64	chr20:50721057-50721235	0.9167	25.93427	21.27889	322

Table 9. Table 9 shows 1) area under the curve for identified methylated regions distinguishing invasive breast cancer tissue from normal breast tissue, 2) the Fold Change

(FC) for invasive breast cancer tissue vs. normal breast tissue, and 3) the Fold Change (FC) for invasive breast cancer tissue vs. buffy coat (normal).

Gene	Region on Chromosome (starting base-ending base)	AUC	FC Tissue	FC Buffy	DMR No.
CDH4_E	chr20:59828479-59828729	0.9319	24.19	24.91762	53
FLJ42875	chr1:2987037-2987116	0.9012	36.28	26.33723	92
GAD2	chr10:26505066-26505385	0.9016	25.3	33.18529	98
GRASP	chr12:52400919-52401166	0.9311	40.47	56.12708	105
ITPRIPL1	chr2:96990968-96991328	0.91	32.57	236.8703	134
KCNA1	chr12:5019401-5019633	0.9147	55.3	35.34681	136
MAX.chr12.4273906-4274012	chr12:4273906-4274012	0.939	25.47	153.0038	170
MAX.chr18.76734362-76734476	chr18:76734362-76734476	0.9304	21.29	55.1493	177
MAX.chr19.30719261-30719354	chr19:30719261-30719354	0.9174	28.37	22.54408	178
MAX.chr4.8859602-8859669	chr4:8859602-8859669	0.9211	11.78	24.06671	191
MAX.chr4.8860002-8860038	chr4:8860002-8860038	0.9401	24.35	83.41947	192
MAX.chr5.145725410-145725459	chr5:145725410-145725459	0.9266	14.46	23.92735	193
MAX.chr5.178957564-178957598	chr5:178957564-178957598	0.9022	17.01	35.18328	195
MAX.chr5.77268672-77268725	chr5:77268672-77268725	0.9044	16.79	34.23046	199
MPZ	chr1:161275561-161275996	0.9007	56.97	527.027	221
NKX2-6	chr8:23564115-23564146	0.9056	19.22	32.40724	227

PRKCB	chr16:23847575-23847699	0.9032	35.63	371.6895	256
RBFOX3_B	chr17:77179778-77180064	0.9241	22.81	32.30013	263
SALL3	chr18:76739321-76739404	0.9136	66.21	56.29973	270
VSTM2B_A	chr19:30016283-30016357	0.9278	43.07	37.76572	319

Next, SYBR Green Methylation-specific PCR (qMSP) was performed on the discovery samples to confirm the accuracy and reproducibility of the candidate DMR's shown in Table 2. In addition, a 16 marker subset was run on frozen low grade and high 5 grade DCIS samples to test applicability (22 high grade/CIS/P3 DCIS (ductal carcinoma in situ); 11 low grade/P1 DCIS).

qMSP primers were designed for each of the marker regions using Methprimer software (Li LC and Dahiya R. Bioinformatics. 2002 Nov;18(11):1427-31) They were synthesized by IDT (Integrated DNA Technologies). Assays were tested and optimized 10 (using the Roche LightCycler 480) on dilutions of bisulfite converted universally methylated DNA, along with converted unmethylated DNA and converted and unconverted leukocyte DNA negative controls (10ng/ea). Assays taken forward needed to demonstrate linear regression curves and negative control values less than 5-fold below the lowest standard (1.6 genomic copies). Some of the more promising DMRs which had assay or control failures 15 were re-designed. Of the 127 total designs (Table 10 shows the forward and reverse primer sequence information for the 127 total designs), 80 high performing MSP assays met QC criteria and were applied to the samples. The MSP primer sequences, each of which include 2-8 CpGs, were designed to provide a quick means of assessing methylation in the samples, and as such, were biased for amplification efficiency over trying to target the most 20 discriminant CpGs - which would have required lengthy optimization timeframes.

DNA was purified as described in the discovery RRBS section and quantified using picogreen absorbance (Tecan/Invitrogen). 2ug of sample DNA was then treated with sodium bisulfite and purified using the Zymo EZ-96 Methylation kit (Zymo Research). Eluted material was amplified on Roche 480 LightCyclers using 384-well blocks. Each plate was 25 able to accommodate 2 markers (and standards and controls) for a total of 40 plates. The 80 MSP assays had differing optimal amplification profiles (Tm = 60, 65, or 70°C) and were

grouped accordingly. The 20uL reactions were run using LightCycler 480 SYBR I Master mix (Roche) and 0.5umoles of primer for 50 cycles and analyzed, generally, by the Fit Point 18% absolute quantification method. All parameters (noise band, threshold, etc.) were pre-specified in an automated macro to avoid user subjectivity. The raw data, expressed in 5 genomic copy number, was normalized to the amount of input DNA (β -actin). Results were analyzed logically using JMP and displayed as AUC values. Twelve comparisons were run: each breast cancer subtype vs normal breast, and each subtype vs buffy coat. In addition, the methylation fold change ratio (mFCR) was calculated for each comparison using both average and median fractional methylation (FCR = cancer(methylated copies/ β -actin 10 copies)/normal(methylated copies/ β -actin copies)). Both of these performance metrics were critical for assessing the potential of a marker in a clinical blood-based test.

>90% of the markers tested yielded superior performance in both AUC and FCR categories, with numerous AUCs in excess of 0.90, cancer vs normal tissue FCRs >10, and cancer vs buffy coat FCRs >50.

15 Table 11 shows area under the curve for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal breast tissue.

20 Table 12 shows area under the curve for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal buffy coat.

25 Table 13 shows methylation fold change for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal breast tissue.

30 Table 14 shows methylation fold change for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal buffy coat.

In the DCIS high grade vs low grade comparison, AUCs of the 16 markers tested ranged from 0.57 to 0.92. Several combinations of two markers achieved 95% sensitivity at

91% specificity (only 1 false positive) (Table 15). A 3 marker combination (SCRT2_B, ITPRIPL1, MAX.chr8.124173030-124173395) was 100% sensitive at 91% specificity.

Table 10.

Gene Annotation	DMR No.	Forward Primer 5'-3'	SEQ ID NO:	Reverse Primer 5'-3'	SEQ ID NO:
AADAT-RS	2	GAG TTT CGG CGG CGT TTT TCG	1	CGC TAC GTC TAA CTT CCC GCG C	2
ABLIM1-FS	3	TTT TCG ACG AGT AGG ATT GAA GAA GGA AC	3	GCG AAT CTA TCT ACC GAA ACG CGC T	4
AJAP1_A	6	TTT TGA TTT GTA ATA TAG AGG AAA GCG TCG T	5	GTA TAA ACG CGT AAA TAC CAA ACT AAA CGA A	6
AJAP1_B	7	GTT TCG AGA AAG GAG AAG GGG GAG C	7	ACT CCC AAC GAA AAC TTC GCA AAC G	8
ALOX5-RS	9	GTT TTT TGT CGG GAG TTA TTC GT	9	CCA AAA ATT AAA TTA AAA ACG CTA CGC A	10
ASCL2-RS	14	GTT TTA GGA GGG TGG GGC GT	11	AAC ACG ACT ATT CGA AAA ACG CGC A	12
ATP6V1B1-RS	15	TTC GTA GTA TCG GGA GTC GA	13	GAA ATA ATA AAA ACG CCG CAC GCT	14
BANK1-FS	17	GTC GTA GTT TTC GCG GGT GGT AAG C	15	CGA ACG CTA CCT AAA CTC TCC CGA C	16
BEST4-RS	20	GGA ATC GCG AGT TTT GGG ATA GTC G	17	AAA TAC AAT TAC ACC CTC TAC CGC C	18
BHLHE23_C	23	GAG GCG TTC GGT GGG ATT TC	19	CCC CGA CCT ATA AAC CTA CGA CGC T	20
BHLHE23_D	24	GAG GAG GTA GCG GGC GTC GA	21	CGC GTC GAT CTA ACT TAC CTA CGA A	22
C10orf125-FS	27	TTG CGT TTA TCG ATT TCG TTT TCG T	23	GCA CTA CTA TCC CCC GAA CTA CTC TAC GC	24
C17orf64-RS	29	TTA TTA GGC GGG GAG TCG GGT GTC	25	CTC GAA TCC CTA AAA AAC TCG CGA A	26
C19orf66-FS	31	AGG AAA TTC GGT AGC GAT TAT ACG G	27	AAA CCC CTA CAA CCT CAC CGT ACA CGA T	28
CALN1_A	36	CGG AGT TAA TAG GTA CGG GAG GCG T	29	CAA ACC CCC GAA CTA TCG CGA A	30
CAPN2-FS	39	CGG GTA TCG CGG TTA AGT TGG C	31	TAT CGT AAA AAC CCA ACC CCT CGA C	32
CD1D-FS	47	GGG ATT GGT GAG ATT CGG GAC GT	33	CTC CCC GAA ACC AAA AAA CAA CGA	34

				A	
CDH4_E	53	GTT TTA AAT CGT ATT CGT AGT TCG G	35	ACG AAC GAA AAC TTT CCT AAA CGA A	36
CHST2_A	56	GCG TTT TTT TAT CGT TTT AGG GCG T	37	ACC GAC ACT ACC AAC CTC TCC GAA	38
CHST2_B	57	TGC GGG GAT TTT TAG CGG AAG C	39	CCG ACG AAC TAT CCG ACT ATC ACT CGT T	40
CLIC6-FS	58	GTA GTA GGT GGA GGG GGC GAG TTC	41	CTC TCG AAA ACC GCA AAA TCC TCG	42
CLIP4-FS	59	GGT AAT ATT GCG ATA TTT CGT AGA CGT	43	AAC AAT CAA ATA ATC GAA CGC ACG C	44
COL23A1-RS	60	GTC GTT TTT CGT TAC GAA GCG GC	45	AAA ACT AAA TAA ATC TAT CCT CGA T	46
CXCL12-FS	63	GCG TCG GCG GTT TTT AGT AAA AGC	47	AAC GAA TCT CAT TAA ATC TCC CGT C	48
DBNDD1R-FS	64	GAT TTT CGG GAG CGG CGA	49	CTT CCC CGC AAC GAA CCG	50
DLX4-FS	66	TTC GTT GGT ATA TTC GCG TAG GTG C	51	CGA ATA CCG AAA TCT ATA ACC CCG AA	52
DLX6-FS	67	ATT ATG ATT ACG ATG GTT GAC GG	53	CTC CAT AAA AAC GAA TTT AAA CGA A	54
DNM3_A	69	TTT GGT TAT AGA ACG TAG AGG TCG T	55	ATC GAA CCA CCA AAC CAA ACG C	56
DSCR6-FS	72	GGG AAG TTT AGT AGG TGA GCG T	57	ACT AAA AAC GTT TCC GTC GAA CGC A	58
DTX1-RS	73	GTT GGT AGG AGT AGG GTT GGT TCG A	59	ATC GCA ATC GTA ACC CGT AAA CGC	60
EMX1_A	74	ATT CGT ACG GTT TTT TCG TTT TCG T	61	GAC CAA CTA CTT CCG CTC GAC GC	62
ETS1_B	80	CGG ATT TAG CGG TCG AGA CG	63	TTT AAA ACG TTT CTC GCG ACG CC	64
FAM126A-FS	83	TCG TTA GGC GAT GAT AAT TAG CGA	65	TAA AAA AAC CAT AAA CCC TAA CGA C	66
FAM129C-FS	84	GTT GGA GAA GAC GAT TCG TTC GGA C	67	CCA AAA CCT CAC TCC TCA ACC GC	68
FBN1-FS	91	CGC GAT GCG CGT TTT GAA C	69	GAC GCG ACT AAC TTC CAA CCT AAC GAA	70
FMN2-RS	94	TTT TCG TGG TTG TCG TCG TTG C	71	GCC GCG CTC TAC ACT AAA CAT ATT CGC	72
FOXP4-FS	96	CGG GGA AGT GGG AGT TTT TAG CG	73	AAA AAA ACT AAA TCA AAA CCG CGA C	74
GAS7-FS	99	GCG AGT TCG CGT TGT TTA CGT TTC	75	ACC GAC GCT ACC TAT AAC TCC ACG CT	76

GP5-RS	104	TTA GGT TTG TTT ATT AAT TTT ACG T	77	TCT ACA AAA CGC CGC GAC	78
GRM7-FS	106	GTT AAT TCG AGA GCG CGA GGC GT	79	GAC CAA AAA AAA TAA AAA ATC CCG CGA C	80
GYPC_B	109	TAA AGA AAT AGA AAG CGG GCG ATA CGT	81	CGA ACT AAA AAA ACC GCC AAC CCG	82
HHEX-RS	113	GGG TTT TGC GGT TAA TGG CG	83	AAT AAC AAA CGC GTC CCG AAA ACG A	84
HNF1B_B	116	TTA GTT TTT TTT GGT TTT TAT TTG AAT TTC GA	85	AAC TTT TCC ACC GAT TCT CAA TTC CG	86
HOXA1_A	117	ATT TAA ATT TTC GGC GTT TCG TCG T	87	ACA CTC CAA ATC GAC CTT TAC AAT CGC	88
HOXA7_A	119	AGT TTG GTT CGT TTA GCG ATT GCG T	89	AAC GCG ACT AAA ACC AAT TTC CGC A	90
IGF2BP3_A	123	TTT ATT TGT TTT TAT CGT TCG TCG G	91	AAA TAT ATA CCC GAT TTC CCC GTT	92
IGF2BP3_B	124	TAA TCG GCG TCG AGA GAG ATA TCG T	93	CCG TCA ACC AAT CGA AAA CGA A	94
IL15RA-FS	128	TCG TTT ATT TCG TTT TTT TTG TCG A	95	AAC CAA CCT AAA ATC TAC ACT CGC A	96
ITPRIPL1-FS	134	GGG TCG TAG GGG TTT ATC GC	97	CAT ACT TAT CCG AAC GTC TAA ACG TC	98
ITPRIPL1-FS	134	GGT TTT AGC GAT GAA TCG GAC GT	99	CAC GAT CTT AAA AAA ACA ACG CGA C	100
KCNH8-RS	138	CGT ATT TTT AGG TTT AGT TCG GCG T	101	ACA CTA TTA CCC GCG AAA AAA CGA T	102
KCNK17_B	140	GAG TTT GTT TGG GGG TTG GTC GTA TTC	103	CCA AAT ATA ACG TTT AAC TCT TTA CCA CGA A	104
KCNK9-FS	141	TTT TTT TTG ATT CGG ATT TTT TCG G	105	CTA ATA AAC GCC GCC GTA TTC GAC G	106
KLF16-FS	145	TTT TCG CGT TGT TTT TAT TTA TCG T	107	TAC ACA ACC ACC CAA CTA CTC CGC G	108
KLHDC7B-RS	146	TGT TGT TGG GTA AAG GTT AGT ACG T	109	CGA AAA CCC AAC TCC CGA A	110
LAYN-RS	147	TTT TTG CGG TCG TTT TTC GGA GC	111	CTT ACC AAC TAA CCC CCG CCT ACC G	112
LIME1-RS	148	CGT TTT AGT AGG GAT TGG GGG CGA	113	CCC GAA AAC CAA AAT AAA ATC CGC A	114
LMX1B_A	149	CGG AAT AGC GCG GTC GTT TTT TC	115	TTT AAC CGT AAC GCT CGC CTC GAC	116
LOC100132891-FS	153	GTC GGT TGT GTT TAG AGC GTA GCG T	117	AAA AAA AAC CCC GAC GAC GAA	118

LOC100132891-FS	153	GTT GCG ATT GTT TGT ATT TTG CGG	119	ATA ATA ACA AAA AAC CCC TCC CGA C	120
LSS-FS	157	AGT TTC GTT AGG GAA GGG TTG CGT C	121	CAA CTA AAA CTC TAC CGC GCT CGA T	122
MAGI2-RS	159	AGG AAG GGT TTC GAG TTT AGT GCG G	123	AAA AAA ATC AAC GCG TCC TCC TCG C	124
MAST1-RS	160	TTT CGA TTT CGT TTT TAA ATT TCG T	125	AAA CTA AAC GAC CTA ACC CTA CGT A	126
MAX.chr1.8277479- 8277527-RS	166	AAG TTT ACG CGC GAG TTT GAT CGT C	127	CGA AAC GAC TTC TCT CCC CGC A	128
MAX.chr11.14926602- 14927148-FS	168	TTT AGT TCG CGG AAG TTA GGT TCG G	129	GAA AAC ACA ATA AAC CCC GCC GTC	130
MAX.chr11.68622869- 68622968-FS	169	GTT AGA TTG TAG GAG GGA TTA GCG G	131	AAA AAA CGA CTA AAA AAT TCA CGC C	132
MAX.chr12.4273906- 4274012-FS	170	TTT GGA GTT TGG GGG ATC GAT AGT C	133	CGA CGA AAC TAA AAC CGC GTA CGT A	134
MAX.chr12.4273906- 4274012-FS	170	TTT GGA GTT TGG GGG ATC GAT AGT C	135	CGA CGA AAC TAA AAC CGC GTA CGT A	136
MAX.chr12.59990671- 59990859-FS	171	ATT ATA TTG GGG GCG TTA GGT TCG G	137	AAC AAA CAA TTC GCA CGT AAA CGA A	138
MAX.chr15.96889013- 96889128-FS	173	GGG CGG TTT ACG TGG ATT TTT ATA GAT TTT C	139	GCG TCT CGA ACC GTA CCC TAA CGT A	140
MAX.chr17.73073682- 73073814-RS	174	CGT CGT TGT TGA TTA TGA TCG CGG	141	CGC TTC CTA ACA ACC TTC CTC GAA	142
MAX.chr18.76734362- 76734476-RS	177	TTA ACG GTA TTT TTT GTT TTT TCG T	143	AAA AAA AAC TCG TCC CCG CGC T	144
MAX.chr19.46379903- 46380197-FS	179	TCG GTT AGT TCG AGG TAG GAA GTT TTG C	145	TAT TAA CCG AAA AAC GAA AAC CAA ATC CGA	146
MAX.chr19.46379903- 46380197-FS	179	AGT TTT GTT GTT TTG GGT AGG TCG G	147	AAA AAC TAA AAA CCT TTC TCT CGA C	148
MAX.chr2.223183057- 223183114-RS	180	GCG TTG AGA GTG ACG GAT ATT TTT CGT C	149	ACT ACC TAA ACT CCG AAC ACG CCC G	150
MAX.chr20.1784209- 1784461-FS	185	TTA GCG TAT CGG GAA TTA GGG GGA C	151	GAA AAC GAA AAA ACG ACG CGC A	152
MAX.chr20.1784209- 1784461-RS	185	TCG TTT TTT AGG TGG GGA AGA AGC G	153	GAA CCG TAT TTA AAA CCA ATC CCC GC	154
MAX.chr4.8859602- 8859669-RS	191	AAT TGG GGT TCG GGG TTC GGT AC	155	TTA CCC CTA CCC AAA AAA ATA CGC T	156
MAX.chr5.145725410- 145725459-RS	193	GGG GTT AGA GTT TCG CGT TCG C	157	CGC GTC TCC CGT CCT ATC TAT ATA CGT C	158
MAX.chr5.42994866- 42994936-FS	198	TAG GAA TTT TTT AAA TTC GTT TTA	159	CAC AAA AAC TCG ATA CAA TTA CCG	160

		CGG		TT	
MAX.chr5.77268672-77268725-FS	199	TAT TTT ATA GTC GCG TTA AAA GCG T	161	GTC GAT AAA AAA CCT ACG CGA CGA A	162
MAX.chr6.157557371-157557657-FS	204	GAT TTA GTT TTT CGG GTT TAT AGC GG	163	TAT TAA AAA CGA CCA AAC CTC CGC A	164
MAX.chr8.124173030-124173395-FS	208	TGG TTG TAG GCG TTT TGT TGG AGT TC	165	AAA AAC GAC CCT AAC CAC CCT CGT T	166
MCF2L2-FS	216	TTT TGC GTA GTT GGG TAG GGT TCG G	167	CCC GCA TTC CCG AAA AAA ACG AT	168
MCF2L2-RS	216	TTA GGG TTT TTT TCG AGG AGT TCG A	169	ATC CCC CGT ACG AAA CTA AAC GCG	170
MCF2L2-RS	216	GCG TTC GTA TTT TCG GGA GAG GC	171	TCT ACG TAA CTA AAC AAA ACC CGA A	172
MIB2-FS	219	CGT TTT GTG TTT TAT AAA AAG AAA GAT TTT CCG	173	AAA ACC CCA AAA ACG CCC GAT	174
MPZ-FS	221	GGG GCG TAT ATA TTA GTT ATC GAG CGA	175	AAA AAA AAC CCT AAA AAC CGC CGA A	176
MSX2P1-FS	222	TTC GTT TAA TGA GAA GGG GTT AGC GG	177	TAA AAC AAA CTA AAA ACC TTA ACG CGA CGC T	178
NACAD-RS	223	GGG GAG GGA GTT TTT TTT AC	179	GTA CGC GAA CTC GCC AAA CAC TAC G	180
ODC1-FS	231	GTA GGG TTG GTA GTC GTT TTT ACG T	181	AAC CCA TCT AAT TAC AAA ATA CCT CGA T	182
ODC1-RS	231	GGT TTT ATA GGG GAA ATT ATT TTC GT	183	AAA ACC TCG TCT TTA TAA CAT CGA A	184
ODC1-RS	231	TAG GAT ATT TCG ATG TTA TAA AGA CGA	185	AAC AAA ACT AAC AAC CGC CTC CAC G	186
OSR2_A	234	TTT GGA GTT ATC GGA AGG CGA AAG TAC	187	GCA CGC CGA AAA AAT AAA AAC GAA	188
OTX1-RS	237	TTT TCG ATA TCG ATA TCG AAG GCG T	189	ATA ACT TAA AAC CCT AAA TTC CGC C	190
PAQR6-FS	238	GCG GGT AGT AGG AAG ATT AGT AGC GG	191	CCG ACT TCC GTA CGA AAC CGT A	192
PLXNC1_A	245	TAA TAG AGG TTT GCG TTG GAA TCG A	193	AAC GCA CCC TAA ACA AAA CCA CGA C	194
PLXNC1_B	246	TGA AGA GTT GTT AGT TCG TTT AGC GT	195	GCC AAA AAT TCG ATT CCA ACG CA	196
PPARA-FS	248	TAG TGG TAG GTA TAG TTG GTA GCG G	197	ATC AAA ACT CCC CTC CTC GAA AAC G	198

PPARG-RS	249	GTT TTT AAG CGG CGG TCG T	199	AAA AAA AAT CCC GTT CGC T	200
PRKCB-RS	256	GCG CGC GTT TAT TAG ATG AAG TCG	201	AAA ATC AAA AAC CAC AAA TTC ACC GCC	202
PRMT1-FS	257	CGG GGA GAG GAG GGG TAG GAT TTA C	203	CAA CTT AAA CAC CAC TTC CTC CGA A	204
RBFOX3_A	262	TGT TTT TTT TGT TCG GGC GG	205	AAA TAA CTA ACT CCT ACT CTC GCC CGC T	206
RFX8-FS	264	ATA GTT TTT TAA TTT TCG CGT TTC GTC GA	207	AAA AAC AAC TCC AAC CCA CAC CGC	208
RIC3-RS	266	GCG GGA GGA GTA GGT TAA TTT TCG A	209	AAA AAC AAA ATA CGC GAA ACG CAC G	210
SCRT2_B	273	CGA GAA GGT TTT GTC GTA GAC GTC GT	211	TAC GTA TCC ATA CCC GCG CTC G	212
SLC16A3-FS	276	TTT GTT TGT ATA ATA GGG GTT GCG G	213	CGC CTA ACT ACC GAA AAA TAC CGA A	214
SLC22A20-FS	277	GGT GGG GTT ATT TTT TTA TGG AGT CGA TTC	215	CGA ACC AAA CCT ACG ATT CCC GAA	216
SLC2A2-RS	278	GGG AGA AGA GAA TGG TTT TTT GTC GTC	217	TCT TAT ACT CAA CCC CGA CCT ACC GAC	218
SLC30A10-FS	279	GTT TTA TTC GGG GTT TTA GCG TTA TTT ACG G	219	AAA AAA CCG CGT TAC TCA ACG CGC	220
SLC7A4-RS	280	GTT TAG AGC GGA GGT AGC GGT TGC	221	CGC CTA TTC TTA AAC CTA AAC CCG TC	222
SLITRK5-FS	282	CGT AGA GGA TTA TAA AGA TTT GTA CGA	223	TAC TAT AAC TAC TAC GAT AAC GAC GAC GAC	224
SPHK2-RS	284	AGA TTT CGG TTT TTG TTT CGA TTT TCG T	225	ATT AAT ACT AAC TTA CGA AAC CGC C	226
ST8SIA4-RS	285	ATT ATT TTT GAG CGT GAA AAA TCG T	227	AAA TTT CTC TCC AAT TAA ATT CCG TA	228
STAC2_B	287	GTG GGT TTG TCG TCG GAT TTC G	229	AAA TAA CCG CGT CAT CCG ATT CGT T	230
STX16_A	288	TGG ATG TTT TAT ATT AAT TTT TAG TTG TAT AAC G	231	GTA CTT TTT CTC TCA CGA AAA ATA TTC CCG C	232
STX16_B	289	TGC GTG GAA TAA ATT TTA TAT ACG T	233	GCT CAA CAC ACG AAA AAC CCT CGA A	234
STX16_B	289	CGG TGC GGG GTT TTA ATA AAG GAT C	235	TCC ACG CAA AAA CAA AAA ACG CGT A	236
SYNJ2-FS	291	GGC GTA GTT ATG ATT TCG TTT TTT	237	ATC CTT TCG ACC CTA CGT ACC TCG	238

		CGT		AT	
TBX1-FS	295	TTT ACG ATT ATT GTT TTA GAT AAT ACG G	239	GAA CCC GAC GAA CTT CGA A	240
TMEM176A-FS	300	GGG AAA TCG CGT AGT TTG GGC	241	AAA ACG ACG AAA AAA CGA AAA CGA C	242
TNFRSF10D-FS	301	AGT TAT CGC GAT CGG TTT GGG TTA AC	243	AAA CGA TTA CCT CTT TCG TTC GTT CGT T	244
TRH_A	303	CGG CGG TTT ATT TGA AGA GGG TTC	245	CGA CAA ATC AAA AAT CTA CAA CGC T	246
TRIM67-RS	305	TTT TAA CGT TAG TTA CGA GTT GCG G	247	CGA ACA AAC CAA ACA ACC GAA	248
UBTF-RS	310	GTA GAT TAG GCG GGG GCG A	249	GAA CAA AAA CAT AAA CTA ATA CAA ATA TCT CCC G	250
ZSCAN12-FS	327	GGA GGG AGA GTT TTT CGC GGA TTC	251	CTA AAC CCC TCA AAC CCT AAC CGA T	252
GRASP	105	TGT TTT CGG ATA CGG CGA GC	253	ACG AAC GAA CTA TAC GCG ACG CT	254

Table 11. Table 11 shows area under the curve for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal breast tissue.

5

Gene Annotation	Basal-like / Triple Negative	HER2+	Luminal A	Luminal B	BRCA1	BRCA2	DMR No.
BHLHE23_C	0.75	0.93567	0.80392	0.74728	0.82716	0.70782	23
CALN1_A	0.89699	0.86842	0.73638	0.98039	0.95679	0.68724	36
CD1D	0.66204	0.82066	0.91503	0.78431	0.83951	0.66667	47
CHST2_A	0.65972	0.8655	0.94118	0.66231	0.69753	0.63374	56
FAM126A	0.36806	0.64717	0.86928	0.53377	0.59877	0.72428	83
FMN2	0.55324	0.93762	0.8976	0.7037	0.75926	0.65432	94
HOXA1_A	0.60417	0.94152	0.81264	0.57734	0.56173	0.58848	117
HOXA7_A	0.52315	0.95906	0.84423	0.76144	0.82716	0.73251	119
KCNH8	0.5463	0.96881	0.85839	0.72985	0.73457	0.78189	138
LOC100132891	0.81019	0.9883	0.94771	0.80174	0.8642	0.75309	153
MAX.chr1.8277479- 8277527	0.68981	0.66569	0.73203	0.69172	0.99383	0.607	166

MAX.chr15.96889013-96889128	0.68287	0.93372	0.82353	0.88235	0.98765	0.80247	173
NACAD	0.86111	0.8577	0.7146	0.70806	0.84568	0.7284	223
SLC30A10	0.64352	0.77388	0.94989	0.57516	0.58333	0.77366	279
TRIM67	0.81134	0.97856	0.88126	0.77015	0.73457	0.71811	305
ATP6V1B1	0.8912	0.8616	0.83007	0.82789	1	0.81893	15
BANK1	0.75231	0.70175	0.83878	0.66231	0.91975	0.79835	17
C10orf125	0.39352	0.76706	0.94444	0.70806	0.73765	0.7037	27
C17orf64	0.58333	0.97856	0.85185	0.81699	0.81173	0.86831	29
CHST2_B	0.59722	0.91228	0.89325	0.68192	0.64506	0.69547	57
DLX4	0.86574	0.85965	0.61547	0.83333	0.84877	0.79424	66
DNM3_A	0.35185	0.92203	0.92375	0.58388	0.62346	0.65021	69
EMX1_A	0.74537	0.91813	0.86275	0.68627	0.94444	0.67901	74
FOXP4	0.7037	0.61209	0.64488	0.58388	0.91358	0.53086	96
GP5	0.87731	0.77388	0.82353	0.72113	1	0.65844	104
IGF2BP3_A	0.64583	0.92008	0.87364	0.75599	0.69753	0.74897	123
ITPRIPL1	0.94676	1	0.91285	0.94336	1	0.95473	134
KLHDC7B	0.63194	0.5614	0.58606	0.66449	0.42593	0.55144	146
LMX1B_A	0.77083	0.81871	0.878	0.76253	0.80864	0.79012	149
MAX.chr11.14926602-14927148	0.98611	0.93567	0.94553	0.94553	1	0.98354	168
MAX.chr5.42994866-42994936	0.84259	0.91618	0.90196	0.93682	0.93827	0.95885	198
MAX.chr8.124173030-124173395	0.87963	0.8577	0.87146	0.89542	0.96914	0.77778	208
MPZ	0.9294	0.98246	0.93682	0.88344	0.86111	0.79835	221
ODC1	0.3588	0.89474	0.83442	0.60349	0.46914	0.55967	231
PLXNC1_A	0.61806	0.83626	0.8976	0.57952	0.67901	0.65844	245
PRKCB	0.91204	0.96491	0.99782	0.97603	0.88272	0.78189	256
ST8SIA4	0.84722	0.47173	0.80392	0.66885	0.57407	0.56379	285
STX16_B	0.84259	0.7115	0.80174	0.71895	0.98765	0.59259	289
UBTF	0.69676	0.67836	0.91939	0.68192	0.83333	0.76132	310
LOC100132891	0.66898	0.94542	0.93682	0.79303	0.96914	0.83951	153
ITPRIPL1	0.88657	0.98051	0.90741	0.87364	0.99383	0.86008	134
ABLIM1	0.7662	0.91618	0.79303	0.67756	0.83951	0.83128	3
KLF16	0.91898	0.75049	0.64924	0.9085	0.76543	0.66255	145
MAX.chr12.4273906-4274012	0.83796	0.88499	0.86928	0.94336	0.72222	0.74074	170

MAX.chr12.59990671-59990859	0.68056	0.89084	0.77342	0.53595	0.54938	0.60494	171
MAX.chr19.46379903-46380197	0.72801	0.96296	0.79085	0.83987	0.91975	0.82099	179
ZSCAN12	0.76852	0.88694	0.74946	0.78214	0.82099	0.70782	327
AADAT	0.49537	0.7193	0.58606	0.56427	0.69136	0.61317	2
BHLHE23_D	0.65972	0.85185	0.86492	0.84314	0.85802	0.70782	24
COL23A1	0.66898	0.89669	0.82353	0.68954	0.49074	0.92181	60
CXCL12	0.56019	0.70565	0.66231	0.59695	0.85802	0.72428	63
KCNK9	0.80556	0.88499	0.82789	0.67756	0.84568	0.70782	141
LAYN	0.55787	0.96686	0.76471	0.63834	0.62963	0.84774	147
OTX1	0.60648	0.78363	0.84749	0.69717	0.98765	0.81481	237
PLXNC1_A	0.70718	0.85673	0.91068	0.62854	0.67284	0.68519	245
RIC3	0.78009	0.90643	0.74292	0.7756	0.83951	0.69136	266
SCRT2_B	0.91319	0.95517	0.73638	0.7658	0.91975	0.47119	273
IGF2BP3_B	0.62037	0.96296	0.87582	0.66885	0.73457	0.7572	124
MAX.chr17.73073682-73073814	0.78009	0.67836	0.59913	0.52505	0.88889	0.73251	174
TBX1	0.45139	0.49708	0.75163	0.69499	0.48765	0.46914	295
ALOX5	0.44676	0.91618	0.76688	0.60784	0.47531	0.74486	9
ASCL2	0.82899	0.92271	0.77101	0.48913	0.82609	0.6087	14
CDH4_E	0.81597	0.94639	0.84205	0.82789	0.80556	0.70782	53
MAST1	0.91304	0.95411	0.7971	0.84511	0.87681	0.82298	160
MAX.chr20.1784209-1784461	0.57101	0.9686	0.90145	0.6481	0.49275	0.65839	185
RBFOX3_A	0.75652	0.92271	0.86957	0.83967	0.7029	0.58385	262
TRH_A	0.97222	0.94347	0.97168	0.86275	1	0.79012	303
HNF1B_B	0.78472	0.88109	0.83007	0.71895	0.65432	0.73663	116
MAX.chr12.4273906-4274012	0.89855	0.92271	0.90725	0.89258	0.69565	0.63354	170
GAS7	0.77391	0.89614	0.82319	0.74936	0.58696	0.46584	99
MAX.chr5.145725410-145725459	0.90725	0.99758	0.92319	0.85166	0.85145	0.85714	193
MAX.chr5.77268672-77268725	0.85797	0.98551	0.91304	0.90537	0.86232	0.73292	199
GYPC_B	0.68986	0.93478	0.96232	0.72379	0.32609	0.50932	109
DLX6	0.56667	0.91063	0.87246	0.58951	0.70652	0.76708	67
FBN1	0.61739	0.87077	0.94058	0.65473	0.58333	0.79814	91

OSR2_A	0.71304	0.89614	0.90145	0.75703	0.63043	0.74534	234
BEST4	0.69275	0.96377	0.84058	0.91049	0.81884	0.69565	20
AJAP1_B	0.76232	0.84058	0.76232	0.91816	0.73188	0.73913	7
DSCR6	0.98261	0.92512	0.87246	0.86445	0.85507	0.76398	72
MAX.chr11.68622869- 68622968	0.50145	0.98792	0.95362	0.7289	0.53623	0.81366	169

Table 12. Table 12 shows area under the curve for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal buffy coat.

Gene Annotation	Basal-like	HER2+	Luminal A	Luminal B	BRCA1	BRCA2	DMR No.
BHLHE23_C	0.83594	0.98026	0.89338	0.82721	0.875	0.80556	23
CALN1_A	0.93555	0.92599	0.84926	1	1	0.88194	36
CD1D	0.74609	0.86184	0.93015	0.86397	0.92708	0.76389	47
CHST2_A	0.73828	0.88651	0.95772	0.73162	0.76563	0.68056	56
FAM126A	0.75781	0.89474	0.93199	0.84743	0.91667	0.86458	83
FMN2	0.77344	0.96053	0.95221	0.78676	0.9375	0.79861	94
HOXA1_A	0.74609	0.97039	0.93015	0.64706	0.64583	0.66667	117
HOXA7_A	0.54297	0.98684	0.87868	0.79044	0.91667	0.84028	119
KCNH8	0.57031	0.98684	0.87132	0.76287	0.77083	0.77778	138
LOC100132891	0.80859	0.99342	0.95221	0.77941	0.875	0.70139	153
MAX.chr1.8277479- 8277527	0.82031	0.80592	0.86397	0.87132	1	0.83333	166
MAX.chr15.96889013- 96889128	0.87109	0.99013	0.95956	0.95588	1	0.97917	173
NACAD	0.89453	0.91118	0.80147	0.73529	0.90625	0.75	223
SLC30A10	0.75391	0.91118	0.98897	0.65074	0.59375	0.91667	279
TRIM67	0.80664	1	0.8989	0.76654	0.69792	0.78125	305
ATP6V1B1	1	1	1	1	1	1	15
BANK1	0.99609	0.99671	1	0.98529	1	1	17
C10orf125	0.70313	0.88816	0.95588	0.81618	0.875	0.81944	27
C17orf64	0.78906	0.99671	0.94853	0.93015	0.84375	0.95833	29
CHST2_B	0.64453	0.92105	0.91176	0.72426	0.67188	0.70833	57
DLX4	0.93945	0.9227	0.79596	0.94853	0.92188	0.90278	66
DNM3_A	0.71875	0.98684	0.96324	0.79779	0.79167	0.85417	69

EMX1_A	0.80469	0.92763	0.90441	0.75735	0.98958	0.72917	74
FOXP4	1	1	1	1	1	1	96
GP5	1	1	1	0.99265	1	1	104
IGF2BP3_A	0.65625	0.92105	0.86949	0.75919	0.71354	0.75694	123
ITPRIPL1	0.94922	1	0.90809	0.95956	1	0.95833	134
KLHDC7B	1	1	1	0.98897	1	0.98611	146
LMX1B_A	1	0.99671	1	1	1	1	149
MAX.chr11.14926602-14927148	1	0.99342	1	0.99632	1	1	168
MAX.chr5.42994866-42994936	0.94922	0.98026	0.98529	0.99265	1	1	198
MAX.chr8.124173030-124173395	0.98438	0.91118	0.98162	0.98897	1	0.98611	208
MPZ	0.94922	0.99342	0.96691	0.94485	0.90625	0.86111	221
ODC1	0.89453	0.99013	0.97794	0.90074	0.84375	0.875	231
PLXNC1_A	0.94531	0.94408	0.97794	0.88235	0.89583	0.92361	245
PRKCB	0.97266	0.98684	1	1	0.9375	0.86806	256
ST8SIA4	0.99219	1	1	0.98162	1	0.99306	285
STX16_B	1	1	1	1	1	1	289
UBTF	0.99609	0.99671	1	0.99632	1	0.92361	310
LOC100132891	0.8125	0.97697	1	0.84926	1	0.90278	153
ITPRIPL1	0.90234	1	0.95404	0.95221	1	0.9375	134
ABLIM1	0.83398	0.9523	0.8511	0.75919	0.92708	0.88542	3
KLF16	1	0.87171	0.83456	1	0.84375	0.8125	145
MAX.chr12.4273906-4274012	0.90625	0.94737	0.97059	0.97059	0.83333	0.94444	170
MAX.chr12.59990671-59990859	0.78516	0.92434	0.85662	0.63235	0.69792	0.6875	171
MAX.chr19.46379903-46380197	0.78125	0.97697	0.82353	0.88603	0.94792	0.86111	179
ZSCAN12	0.76758	0.88487	0.75	0.78125	0.82292	0.70486	327
AADAT	0.76172	0.85855	0.80147	0.71691	0.89583	0.81944	2
BHLHE23_D	0.71875	0.86184	0.89706	0.87868	0.85417	0.77778	24
COL23A1	0.67969	0.90461	0.8125	0.69118	0.47917	0.93056	60
CXCL12	0.96875	0.97697	0.95221	0.87132	0.98958	0.99306	63
KCNK9	0.92188	0.92434	0.91912	0.71691	0.9375	0.70833	141
LAYN	0.56641	0.97039	0.75735	0.65441	0.625	0.84722	147
OTX1	0.99219	1	1	0.99632	1	1	237

PLXNC1_A	0.81445	0.90625	0.95956	0.76287	0.71875	0.80208	245
RIC3	0.85352	0.96711	0.82353	0.83824	0.89583	0.77778	266
SCRT2_B	0.93359	0.98684	0.83088	0.8364	0.97917	0.61806	273
IGF2BP3_B	0.72656	0.97204	0.90257	0.74632	0.8125	0.81597	124
MAX.chr17.73073682-73073814	1	1	0.93934	0.98529	1	1	174
TBX1	0.99609	1	1	1	1	1	295
ALOX5	0.77539	0.99671	0.87316	0.7739	0.73958	0.81944	9
ASCL2	0.85778	0.92593	0.79556	0.575	0.82222	0.65714	14
CDH4_E	0.87891	0.95724	0.85294	0.85294	0.84375	0.75694	53
MAST1	0.90667	0.96296	0.76444	0.85833	0.86667	0.83333	160
MAX.chr20.1784209-1784461	0.71556	0.98889	0.96	0.73125	0.63333	0.74286	185
RBFOX3_A	0.72	0.90741	0.8	0.7625	0.64444	0.51429	262
TRH_A	1	0.99342	1	0.90809	1	0.97222	303
HNF1B_B	1	1	1	1	1	0.95139	116
MAX.chr12.4273906-4274012	0.9875	0.98611	0.95	0.92647	0.79167	0.88393	170
GAS7	0.93333	0.97917	0.91458	0.86213	0.75	0.79911	99
MAX.chr5.145725410-145725459	0.94583	0.98264	0.92708	0.87868	0.86979	0.91071	193
MAX.chr5.77268672-77268725	0.95417	0.99306	0.96667	0.95588	0.92708	0.875	199
GYPC_B	0.90833	0.99306	1	0.87132	0.76042	0.85714	109
DLX6	0.70208	0.96528	0.95	0.7261	0.83854	0.85268	67
FBN1	0.41667	0.85417	0.94583	0.65074	0.5625	0.79464	91
OSR2_A	0.90417	1	1	0.96507	0.95833	0.91518	234
BEST4	0.69167	0.93403	0.825	0.87132	0.80208	0.74107	20
AJAP1_B	0.675	0.71875	0.675	0.82353	0.65625	0.39286	7
DSCR6	0.97917	0.93056	0.8625	0.89706	0.875	0.80357	72
MAX.chr11.68622869-68622968	0.71458	0.99653	0.97917	0.88603	0.70313	0.88393	169

Table 13. Table 13 shows methylation fold change for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal breast tissue.

5

Gene Annotation	Basal-like	HER2+	Luminal A	Luminal B	BRCA1	BRCA2	DMR No.
BHLHE23_C	17.39	28.60	15.89	8.07	21.97	5.13	23
CALN1_A	28.82	16.81	15.57	15.63	22.24	9.44	36
CD1D	10.77	16.99	21.18	9.33	13.48	10.65	47
CHST2_A	15.19	82.95	80.41	28.63	13.89	57.16	56
FAM126A	4.45	10.43	31.13	10.07	14.02	30.56	83
FMN2	2.71	27.06	22.58	16.21	24.59	7.57	94
HOXA1_A	20.01	42.46	26.87	14.45	12.63	18.71	117
HOXA7_A	9.72	23.28	15.61	8.19	6.23	7.65	119
KCNH8	1.78	39.32	35.88	14.75	14.13	45.90	138
LOC100132891	185.19	312.06	194.65	143.63	186.82	180.80	153
MAX.chr1.8277479-8277527	9.79	5.38	9.20	7.31	18.72	6.42	166
MAX.chr15.96889013-96889128	6.87	7.87	5.80	5.54	9.78	5.97	173
NACAD	59.72	97.55	3.38	20.96	21.53	22.18	223
SLC30A10	6.66	87.99	105.28	31.45	49.17	88.74	279
TRIM67	86.70	69.09	53.28	43.64	83.52	32.16	305
ATP6V1B1	3.95	2.43	2.52	2.18	3.75	2.52	15
BANK1	2.21	1.49	1.81	1.48	2.17	2.14	17
C10orf125	3.79	18.09	19.60	13.34	16.57	12.82	27
C17orf64	9.30	42.58	15.72	11.05	11.18	24.94	29
CHST2_B	48.81	281.00	298.32	116.70	135.51	191.68	57
DLX4	45.64	60.68	16.25	29.97	41.18	29.75	66
DNM3_A	8.86	23.78	30.08	11.49	18.30	21.56	69
EMX1_A	43.60	122.29	82.84	25.57	49.07	59.72	74
FOXP4	1.88	0.87	1.24	0.91	1.66	1.15	96
GP5	4.39	2.30	2.78	2.43	6.32	2.58	104
IGF2BP3_A	20.99	38.55	29.02	33.09	12.02	26.13	123
ITPRIPL1	68.12	53.72	43.47	51.51	63.79	47.41	134
KLHDC7B	1.31	0.91	1.09	0.79	1.00	0.91	146
LMX1B_A	2.06	2.17	2.14	1.44	2.08	2.32	149
MAX.chr11.14926602-14927148	36.24	22.85	19.10	23.87	28.89	17.02	168
MAX.chr5.42994866-42994936	19.79	13.50	9.94	11.94	21.43	12.21	198
MAX.chr8.124173030-	21.90	24.50	10.92	14.77	28.87	24.86	208

124173395							
MPZ	123.49	79.48	48.93	74.77	131.51	63.10	221
ODC1	1.78	8.69	8.19	4.66	1.97	7.56	231
PLXNC1_A	7.89	13.76	9.63	8.37	12.31	18.75	245
PRKCB	26.21	38.24	34.42	25.44	26.52	11.10	256
ST8SIA4	0.48	1.05	1.65	0.65	1.13	1.44	285
STX16_B	3.01	1.93	1.96	2.16	3.90	2.88	289
UBTF	1.79	1.77	2.71	1.50	1.93	2.92	310
LOC100132891	9.99	14.86	9.71	8.33	11.87	10.56	153
ITPRIPL1	61.84	47.86	33.92	39.52	46.55	32.55	134
ABLIM1	126.47	140.31	63.32	44.29	132.06	117.33	3
KLF16	25.67	7.34	4.47	7.38	10.97	6.36	145
MAX.chr12.4273906-4274012	301.23	105.51	111.39	153.60	171.56	6.10	170
MAX.chr12.59990671-59990859	28.29	52.80	32.14	14.31	24.76	57.36	171
MAX.chr19.46379903-46380197	22.21	55.50	38.80	19.14	43.26	63.39	179
ZSCAN12	10284.41	4154.53	78.06	4637.92	2760.20	188.89	327
AADAT	1.31	6.34	21.38	14.40	1.47	1.94	2
BHLHE23_D	158.47	264.51	122.98	34.78	124.83	48.69	24
COL23A1	3.98	24.50	27.84	17.76	1.63	29.07	60
CXCL12	2.86	10.36	6.15	6.61	11.71	26.51	63
KCNK9	48.27	85.89	94.77	21.69	46.39	130.44	141
LAYN	16.27	55.56	25.44	23.04	21.03	38.03	147
OTX1	2.80	2.55	2.75	2.26	6.13	4.22	237
PLXNC1_A	22.95	41.20	28.28	29.16	37.81	53.43	245
RIC3	75.70	47.95	37.52	32.73	77.58	16.49	266
SCRT2_B	164.74	109.65	63.97	81.04	101.97	5.69	273
IGF2BP3_B	185.90	412.90	282.64	212.43	385.38	225.97	124
MAX.chr17.73073682-73073814	1.73	0.83	0.85	1.08	1.60	1.84	174
TBX1	1.84	1.42	0.69	0.79	1.41	2.45	295
ALOX5	5.56	22.45	13.11	12.76	8.52	23.22	9
ASCL2	36.06	18.95	24.95	8.63	3.72	22.63	14
CDH4_E	85.74	88.80	89.15	55.48	180.60	66.56	53
MAST1	143.54	82.72	21.57	16.93	93.73	52.01	160
MAX.chr20.1784209-	34.65	76.68	61.27	31.39	29.19	34.67	185

1784461							
RBFOX3_A	83.13	51.12	56.20	30.74	29.32	41.81	262
TRH_A	13.50	11.59	8.32	9.56	17.69	9.88	303
HNF1B_B	3.02	4.34	2.55	2.40	2.62	4.08	116
MAX.chr12.4273906-4274012	114.75	55.89	51.99	73.21	59.98	9.32	170
GAS7	60.65	32.36	32.26	48.04	33.41	9.47	99
MAX.chr5.145725410-145725459	90.31	118.51	79.19	78.52	136.00	88.88	193
MAX.chr5.77268672-77268725	41.72	50.96	29.95	37.74	65.41	40.86	199
GYPC_B	16.66	22.32	18.77	17.73	4.48	5.49	109
DLX6	91.12	105.35	81.17	31.54	38.38	24.90	67
FBN1	1.41	92.19	132.70	56.35	26.88	122.22	91
OSR2_A	42.34	72.55	32.82	45.53	77.54	58.19	234
BEST4	71.08	73.96	61.71	99.72	85.57	64.51	20
AJAP1_B	28.08	13.72	10.00	20.22	16.87	1.71	7
DSCR6	53.05	52.43	20.76	33.33	36.39	35.57	72
MAX.chr11.68622869-68622968	20.35	111.34	116.50	58.10	30.52	70.46	169

Table 14. Table 14 shows methylation fold change for the identified 80 methylated regions distinguishing basal / triple negative breast tissue, HER2+ breast tissue, Luminal A breast tissue, Luminal B breast tissue, BRCA1 breast tissue, and BRCA2 breast tissue in comparison with normal buffy coat.

Gene Annotation	Basal-like	HER2+	Luminal A	Luminal B	BRCA1	BRCA2	DMR No.
BHLHE23_C	128.20	210.78	117.13	59.52	161.94	37.79	23
CALN1_A	106.73	62.24	57.65	57.89	82.38	34.97	36
CD1D	20.42	32.22	40.18	17.70	25.57	20.20	47
CHST2_A	39.29	214.65	208.06	74.08	35.94	147.92	56
FAM126A	55.82	131.03	391.00	126.44	176.02	383.76	83
FMN2	7.46	74.48	62.15	44.63	67.68	20.83	94
HOXA1_A	65.29	138.57	87.67	47.15	41.21	61.06	117
HOXA7_A	33.10	79.29	53.17	27.90	21.23	26.06	119
KCNH8	2.80	61.92	56.51	23.23	22.25	72.29	138
LOC100132891	315.30	531.29	331.39	244.53	318.07	307.81	153

MAX.chr1.8277479-8277527	54.62	30.04	51.31	40.77	104.42	35.83	166
MAX.chr15.96889013-96889128	31.27	35.82	26.39	25.21	44.51	27.19	173
NACAD	7734.43	12633.27	437.58	2714.09	2788.77	2872.49	223
SLC30A10	35.40	467.99	559.93	167.25	261.52	471.97	279
TRIM67	184.28	146.87	113.25	92.76	177.52	68.37	305
ATP6V1B1	135.04	83.03	86.23	74.40	128.07	86.05	15
BANK1	104.87	70.72	85.77	70.16	102.93	101.27	17
C10orf125	18.08	86.39	93.58	63.71	79.10	61.20	27
C17orf64	44.89	205.57	75.89	53.34	53.97	120.40	29
CHST2_B	188.62	1085.94	1152.89	451.00	523.69	740.74	57
DLX4	3920.54	5213.08	1395.77	2574.90	3537.32	2556.10	66
DNM3_A	61.22	164.42	207.92	79.42	126.48	149.04	69
EMX1_A	144.48	405.29	274.54	84.73	162.63	197.93	74
FOXP4	381.51	176.16	251.88	183.64	336.40	232.30	96
GP5	280.65	146.74	178.00	155.65	404.01	164.80	104
IGF2BP3_A	24.63	45.23	34.05	38.83	14.10	30.66	123
ITPRIPL1	84.73	66.82	54.07	64.07	79.34	58.97	134
KLHDC7B	186.31	129.54	154.64	111.99	142.69	129.65	146
LMX1B_A	203.26	213.63	211.34	142.05	204.63	229.02	149
MAX.chr11.14926602-14927148	497.03	313.40	261.90	327.34	396.19	233.42	168
MAX.chr5.42994866-42994936	73.59	50.18	36.95	44.37	79.69	45.39	198
MAX.chr8.124173030-124173395	64.77	72.44	32.29	43.69	85.38	73.51	208
MPZ	249.93	160.87	99.03	151.32	266.15	127.71	221
ODC1	30.64	149.64	141.00	80.25	33.86	130.18	231
PLXNC1_A	106.94	186.43	130.47	113.37	166.70	253.90	245
PRKCB	75.54	110.24	99.23	73.32	76.45	31.99	256
ST8SIA4	38.54	83.88	132.23	51.67	90.22	115.10	285
STX16_B	475.75	305.35	309.74	340.45	615.98	455.10	289
UBTF	125.97	125.03	190.93	105.76	136.15	205.77	310
LOC100132891	25.07	37.29	24.36	20.90	29.79	26.49	153
ITPRIPL1	234.04	181.13	128.39	149.56	176.16	123.19	134
ABLIM1	1223.97	1357.94	612.81	428.63	1278.01	1135.46	3
KLF16	75.80	21.67	13.19	21.78	32.40	18.78	145

MAX.chr12.4273906-4274012	>1x10 ⁶	170					
MAX.chr12.59990671-59990859	82.48	153.92	93.68	41.71	72.17	167.20	171
MAX.chr19.46379903-46380197	52.82	132.00	92.28	45.54	102.88	150.76	179
ZSCAN12	2693238	1087971	20443.01	1214559	722829	49466.69	327
AADAT	2.91	14.15	47.72	32.13	3.28	4.33	2
BHLHE23_D	272.07	454.11	211.13	59.71	214.31	83.59	24
COL23A1	4.68	28.80	32.73	20.87	1.91	34.18	60
CXCL12	73.68	266.57	158.26	170.11	301.27	681.91	63
KCNK9	88.62	157.70	174.01	39.83	85.17	239.50	141
LAYN	17.15	58.55	26.81	24.28	22.17	40.08	147
OTX1	118.61	107.72	116.27	95.75	259.48	178.56	237
PLXNC1_A	52.27	93.86	64.43	66.42	86.12	121.71	245
RIC3	187.45	118.73	92.91	81.04	192.10	40.83	266
SCRT2_B	617.81	411.22	239.92	303.91	382.41	21.34	273
IGF2BP3_B	137.82	306.10	209.53	157.48	285.70	167.52	124
MAX.chr17.73073682-73073814	150.82	72.51	74.12	93.99	139.52	159.80	174
TBX1	715.28	553.15	266.62	307.86	548.03	950.84	295
ALOX5	71.55	288.98	168.70	164.22	109.6464	298.90	9
ASCL2	40.30	21.18	27.89	9.65	4.1572	25.29	14
CDH4_E	314.87	326.08	327.36	203.74	663.182	244.42	53
MAST1	232.79	134.16	34.98	27.45	152.0212	84.36	160
MAX.chr20.1784209-1784461	88.90	196.72	157.17	80.52	74.88755	88.94	185
RBFOX3_A	52.90	32.53	35.76	19.56	18.6575	26.60	262
TRH_A	175.90	151.01	108.45	124.56	230.4582	128.70	303
HNF1B_B	31.72	45.52	26.74	25.24	27.46255	42.86	116
MAX.chr12.4273906-4274012	487.31	237.37	220.79	310.90	254.73	39.59	170
GAS7	235.17	125.48	125.07	186.25	129.54	36.70	99
MAX.chr5.145725410-145725459	96.45	126.57	84.58	83.86	145.26	94.93	193
MAX.chr5.77268672-77268725	96.32	117.66	69.15	87.14	151.02	94.34	199
GYPC_B	371.40	497.60	418.40	395.42	99.91	122.49	109

DLX6	364.67	421.64	324.85	126.23	153.59	99.67	67
FBN1	0.76	49.47	71.20	30.24	14.42	65.58	91
OSR2_A	2655.22	4549.99	2058.28	2855.38	4862.64	3648.91	234
BEST4	13.74	14.29	11.93	19.27	16.54	12.47	20
AJAP1_B	3.21	1.57	1.14	2.31	1.93	0.20	7
DSCR6	51.96	51.35	20.34	32.65	35.65	34.84	72
MAX.chr11.68622869-68622968	99.98	547.01	572.37	285.43	149.92	346.17	169

Table 15. Table 15 shows AUC, average FC, median FC, and p-value distinguishing DCIS high grade and DCIS low grade.

Gene Annotation	AUC	Average FC	Median FC	p-value	DMR No.
SCRT2_B	0.92149	43.36	49.89	<.0001	273
MPZ	0.90083	11.89	23.24	0.0001	221
MAX.chr8.124173030-124173395	0.90083	5.62	8.24	0.0102	208
ITPRIPL1	0.88017	2.47	25.81	0.0903	134
ITPRIPL1	0.87603	3.04	26.71	0.036	134
DLX4	0.85124	5.03	3.99	0.0017	66
CALN1_A	0.82231	5.90	26.11	0.0105	36
IGF2BP3_B	0.81405	5.69	48.23	0.0127	124
LOC100132891	0.78512	2.95	4.82	0.0495	153
MAX.chr5.42994866-42994936	0.7562	4.85	2.10	0.0051	198
MAX.chr11.14926602-14927148 fp	0.73554	1.57	2.51	0.1458	168
PRKCB	0.72314	1.83	2.83	0.1702	256
EMX1_A	0.66529	1.23	21.26	0.7382	74
DNM3_A	0.66116	1.77	2.43	0.1205	69
CHST2_B	0.64876	3.84	5.48	0.0531	57
C10orf125	0.57025	1.24	1.77	0.7431	27

5 Example II.

This example describes the tissue validation of breast-cancer specific markers. Independent tissue samples (fresh frozen) were selected from institutional cancer registries at Mayo Clinic Rochester and were reviewed by an expert pathologist to confirm correct classification and to guide macro-dissection. Cases comprised 29 triple negative/basal-like, 34 HER2 type, 36 luminal A, and 25 luminal B invasive breast cancers. Also included were 5

BRCA1 and 6 BRCA2 cancers, 21 DCIS w/HGD and 12 DCIS w/LGD. Controls included 27 age matched normal breast tissues and 18 buffy coat samples from normal females.

55 methylated DNA markers (MDMs) were chosen from the list of 80 MDMs (see, Example I and Tables 11-15) which were tested on the discovery samples.

5 Genomic DNA was prepared using QIAamp DNA Mini Kits (Qiagen, Valencia CA) and bisulfite converted using the EZ-96 DNA Methylation kit (Zymo Research, Irvine CA). Amplification primers were designed from marker sequences using Methprimer software (University of California, San Francisco CA) and synthesized commercially (IDT, Coralville IA). Assays were rigorously tested and optimized by SYBR Green qPCR (Roche) on bisulfite 10 converted (methylated and unmethylated genomic DNA) and unconverted controls. Assays which cross reacted with negative controls were either redesigned or discarded. Melting curve analysis was utilized to ensure specific amplification was occurring.

15 qMSP was performed using the LightCycler 480 instrument on 2uL of converted DNA in a total reaction volume of 25uL. Standards were derived from serially diluted universal methylated DNA (Zymo Research). Raw marker copies were standardized to CpG-agnostic β -actin, a marker for total genomic DNA.

Results were analyzed logically using JMP10 (SAS, Cary NC). Cases were compared separately to normal breast controls and normal buffy coat samples. Methylation ratios and absolute differentials were calculated for each of the MDMs.

20 MDM performance in the independent samples was excellent with many AUCs and methylation fold change ratios (FCs) greater than 0.90 and 50, respectively. Results are provided in Table 16A (Triple Negative), 16B (HER2 $^{+}$), 16C (Luminal A), 16D (Luminal D), and 16E (Overall). Here, the MDMs are ranked by AUC (comparing overall cases to buffy 25 coat samples). This is a critical metric for potential application in plasma as the majority of cell-free DNA (cfDNA) originates with leukocytes. Any MDM which does not highly discriminate epithelial-derived cancers from leukocyte DNA will fail in a blood test format, no matter its performance in tissues. 41 of 55 MDMs had cancer v buffy coat AUCs in excess of 0.9, with 3 achieving perfect discrimination (AUC=1). Tables 16A, 16B, 16C, 16D, and 16E also list AUCs, FCs, p-values, and % cancer methylation as other critical metrics in 30 evaluating and demonstrating the excellence of these MDMs.

Table 17 highlights the top 10 MDMs for discriminating DCIS HGD from DCIS LGD.

Table 16A.

Gene Annotation	Triple Negative AUC	p-value	%meth	FC	DMR No.
ATP6V1B1	0.91799	<.0001	27.64	3.27	15
FOXP4	0.63653	0.0061	52.73	1.53	96
LMX1B_A	0.77446	<.0001	26.28	3.32	149
BANK1	0.72693	0.0007	23.39	1.84	17
OTX1	0.7987	<.0001	25.43	3.46	237
ST8SIA4	0.69711	0.075	8.34	0.68	285
MAX.chr11.14926602-14927148	0.99441	<.0001	25.03	44.82	168
UBTF	0.64026	0.0065	25.66	1.87	310
STX16_B	0.59459	0.0021	37.06	2.48	289
KLHDC7B	0.58155	0.1761	23.62	1.25	146
PRKCB	0.88816	<.0001	14.86	32.90	256
TBX1	0.44548	0.7784	14.24	1.06	295
TRH_A	0.95433	<.0001	25.50	9.67	303
MPZ	0.96319	<.0001	21.79	75.65	221
GP5	0.81081	<.0001	26.05	3.53	104
DNM3_A	0.53588	0.0003	9.43	11.61	69
MAX.chr17.73073682-73073814	0.61696	0.0223	26.25	1.58	174
TRIM67	0.88164	<.0001	11.53	44.19	305
PLXNC1_A	0.56757	<.0001	6.94	10.77	245
MAX.chr12.4273906-4274012	0.95433	<.0001	14.01	64.62	170
CALN1_A	0.92637	<.0001	14.36	34.56	36
ITPRIPL1	0.73066	<.0001	12.14	26.28	134
MAX.chr12.4273906-4274012	0.91053	<.0001	10.16	299.72	170
GYPC_B	0.69152	<.0001	9.77	10.05	109
MAX.chr5.42994866-42994936	0.86952	<.0001	12.97	18.90	198
OSR2_A	0.65284	<.0001	14.65	35.06	234
SCRT2	0.85927	<.0001	10.26	78.29	273
MAX.chr5.145725410-145725459	0.87372	<.0001	8.50	43.77	193
MAX.chr11.68622869-	0.67102	0.0003	9.03	10.44	169

68622968					
MAX.chr8.124173030-124173395	0.79776	<.0001	20.24	2.84	208
CXCL12	0.47717	0.0347	22.81	3.67	63
MAX.chr20.1784209-1784461	0.64865	<.0001	7.57	23.22	185
LOC100132891	0.77074	<.0001	10.31	33.46	153
BHLHE23_D	0.80429	<.0001	6.09	94.32	24
ALOX5	0.60951	0.0006	8.79	8.24	9
MAX.chr19.46379903-46380197	0.72693	<.0001	7.50	18.54	179
ODC1	0.50326	0.0009	5.35	11.28	231
CHST2_B	0.59226	0.0003	6.21	115.56	57
MAX.chr5.77268672-77268725	0.87698	<.0001	11.21	43.30	199
C17orf64	0.64678	<.0001	19.80	21.95	29
EMX1_A	0.81454	<.0001	8.05	61.16	74
CHST2_A	0.4986	0.0014	4.33	52.73	56
DSCR6	0.83504	<.0001	8.99	92.33	72
ITPR1PL1	0.75676	<.0001	11.13	26.84	134
IGF2BP3_B	0.62302	0.0099	11.34	28.74	124
CDH4_E	0.71016	<.0001	4.40	8.46	53
NACAD	0.77213	<.0001	4.51	40.68	223
DLX4	0.94874	<.0001	26.56	11.40	66
ABLIM1	0.7931	<.0001	6.12	309.82	3
BHLHE23_C	0.71109	<.0001	7.21	64.86	23
MAST1	0.66356	<.0001	11.84	39.32	160
ZSCAN12	0.7754	<.0001	7.32	130.97	327
SLC30A10	0.64585	0.003	4.45	28.19	279
GRASP	0.75862	<.0001	7.85	48.03	105
C10orf125	0.59972	0.0007	7.38	6.46	27

Table 16B.

Gene Annotation	HER2+ AUC	p-value	%meth	FC	DMR No.
ATP6V1B1	0.90143	<.0001	29.30	3.47	15
FOXP4	0.55008	0.1059	43.50	1.26	96
LMX1B_A	0.86725	<.0001	26.35	3.33	149

BANK1	0.80843	<.0001	29.09	2.29	17
OTX1	0.84261	<.0001	27.67	3.76	237
ST8SIA4	0.63275	0.0135	18.88	1.54	285
MAX.chr11.14926602-14927148	0.94913	<.0001	20.82	37.28	168
UBTF	0.82989	<.0001	45.57	3.32	310
STX16_B	0.62401	0.0042	36.51	2.45	289
KLHDC7B	0.61447	0.0227	28.31	1.50	146
PRKCB	0.9221	<.0001	17.64	39.07	256
TBX1	0.36486	0.8886	14.01	1.04	295
TRH_A	0.95946	<.0001	32.64	12.38	303
MPZ	0.95588	<.0001	26.60	92.35	221
GP5	0.86169	<.0001	40.00	5.43	104
DNM3_A	0.96502	<.0001	29.87	36.79	69
MAX.chr17.73073682-73073814	0.42687	0.7884	17.65	1.06	174
TRIM67	0.91335	<.0001	10.00	38.35	305
PLXNC1_A	0.86963	<.0001	11.11	17.25	245
MAX.chr12.4273906-4274012	0.84976	<.0001	10.53	48.55	170
CALN1_A	0.87917	<.0001	12.21	29.38	36
ITPRIPL1	0.95866	<.0001	23.28	50.38	134
MAX.chr12.4273906-4274012	0.8752	<.0001	5.88	173.48	170
GYPC_B	0.98569	<.0001	20.00	20.57	109
MAX.chr5.42994866-42994936	0.94436	<.0001	12.87	18.76	198
OSR2_A	0.8283	<.0001	22.48	53.78	234
SCRT2	0.88116	<.0001	7.61	58.12	273
MAX.chr5.145725410-145725459	0.96343	<.0001	13.01	67.01	193
MAX.chr11.68622869-68622968	0.95151	<.0001	21.77	25.18	169
MAX.chr8.124173030-124173395	0.81558	<.0001	22.14	3.10	208
CXCL12	0.60413	0.0012	34.62	5.57	63
MAX.chr20.1784209-1784461	0.96105	<.0001	13.80	42.33	185

LOC100132891	0.91773	<.0001	22.35	72.51	153
BHLHE23_D	0.84499	<.0001	5.47	84.74	24
ALOX5	0.89587	<.0001	20.49	19.21	9
MAX.chr19.46379903-46380197	0.88394	<.0001	15.20	37.60	179
ODC1	0.86248	<.0001	10.09	21.29	231
CHST2_B	0.92806	<.0001	15.73	292.49	57
MAX.chr5.77268672-77268725	0.93084	<.0001	12.93	49.95	199
C17orf64	0.95469	<.0001	32.32	35.82	29
EMX1_A	0.88474	<.0001	11.68	88.73	74
CHST2_A	0.83863	<.0001	8.85	107.82	56
DSCR6	0.94118	<.0001	7.61	78.17	72
ITPRIPL1	0.9531	<.0001	23.40	56.42	134
IGF2BP3_B	0.86606	<.0001	27.94	70.85	124
CDH4_E	0.77424	<.0001	6.06	11.65	53
NACAD	0.78219	<.0001	4.02	36.27	223
DLX4	0.83227	<.0001	32.28	13.86	66
ABLIM1	0.83148	<.0001	6.60	333.82	3
BHLHE23_C	0.84579	<.0001	7.29	65.61	23
MAST1	0.79571	<.0001	14.23	47.24	160
ZSCAN12	0.86248	<.0001	8.11	145.16	327
SLC30A10	0.79849	<.0001	9.87	62.56	279
GRASP	0.8124	<.0001	9.75	59.63	105
C10orf125	0.82273	<.0001	10.54	9.22	27

Table 16C.

Gene Annotation	Luminal A AUC	p-value	%meth	FC	DMR No.
ATP6V1B1	0.86937	<.0001	22.81	2.70	15
FOXP4	0.72222	0.0004	47.80	1.39	96
LMX1B_A	0.89489	<.0001	26.33	3.32	149
BANK1	0.88363	<.0001	30.59	2.41	17
OTX1	0.85736	<.0001	28.06	3.81	237
ST8SIA4	0.82583	<.0001	29.43	2.40	285
MAX.chr11.14926602-14927148	0.84159	<.0001	9.80	17.54	168
UBTF	0.89865	<.0001	45.16	3.29	310

STX16_B	0.72523	<.0001	42.32	2.84	289
KLHDC7B	0.76426	<.0001	33.45	1.77	146
PRKCB	0.9542	<.0001	24.47	54.19	256
TBX1	0.72297	0.0688	9.74	0.72	295
TRH_A	0.93168	<.0001	27.00	10.24	303
MPZ	0.87725	<.0001	9.40	32.62	221
GP5	0.72823	<.0001	20.40	2.77	104
DNM3_A	0.97748	<.0001	31.67	39.00	69
MAX.chr17.73073682-73073814	0.52177	0.3713	19.47	1.17	174
TRIM67	0.93619	<.0001	10.08	38.66	305
PLXNC1_A	0.81081	<.0001	14.22	22.09	245
MAX.chr12.4273906-4274012	0.91216	<.0001	11.65	53.72	170
CALN1_A	0.87012	<.0001	9.36	22.52	36
ITPRIPL1	0.90841	<.0001	12.19	26.37	134
MAX.chr12.4273906-4274012	0.94482	<.0001	5.19	153.20	170
GYPC_B	0.91742	<.0001	16.59	17.06	109
MAX.chr5.42994866-42994936	0.83859	<.0001	7.69	11.21	198
OSR2_A	0.82995	<.0001	13.90	33.26	234
SCRT2	0.80143	<.0001	4.15	31.68	273
MAX.chr5.145725410-145725459	0.91066	<.0001	7.10	36.56	193
MAX.chr11.68622869-68622968	0.94219	<.0001	14.20	16.42	169
MAX.chr8.124173030-124173395	0.88589	<.0001	19.02	2.66	208
CXCL12	0.76201	<.0001	46.83	7.54	63
MAX.chr20.1784209-1784461	0.89189	<.0001	9.92	30.44	185
LOC100132891	0.93956	<.0001	15.50	50.30	153
BHLHE23_D	0.82808	<.0001	4.39	67.94	24
ALOX5	0.83033	<.0001	14.53	13.62	9
MAX.chr19.46379903-46380197	0.83408	<.0001	11.15	27.58	179
ODC1	0.91967	<.0001	9.20	19.40	231

CHST2_B	0.94557	<.0001	15.06	280.03	57
MAX.chr5.77268672-77268725	0.86186	<.0001	9.93	38.36	199
C17orf64	0.95495	<.0001	27.43	30.41	29
EMX1_A	0.91366	<.0001	9.89	75.12	74
CHST2_A	0.95646	<.0001	11.32	137.95	56
DSCR6	0.77928	<.0001	3.50	35.98	72
ITPRIPL1	0.89414	<.0001	7.98	19.25	134
IGF2BP3_B	0.9223	<.0001	27.68	70.19	124
CDH4_E	0.81757	<.0001	7.40	14.23	53
NACAD	0.70833	0.0006	2.88	25.92	223
DLX4	0.76877	<.0001	9.95	4.27	66
ABLIM1	0.8217	<.0001	3.92	198.44	3
BHLHE23_C	0.79992	<.0001	5.53	49.76	23
MAST1	0.71096	0.0006	5.15	17.10	160
ZSCAN12	0.67042	0.0114	2.65	47.50	327
SLC30A10	0.90053	<.0001	11.36	71.97	279
GRASP	0.72598	<.0001	4.84	29.64	105
C10orf125	0.88964	<.0001	18.44	16.13	27

Table 16D.

Gene Annotation	Luminal B AUC	p-value	%meth	FC	DMR No.
ATP6V1B1	0.85838	<.0001	27.93	3.31	15
FOXP4	0.59676	0.023	48.67	1.41	96
LMX1B_A	0.90811	<.0001	27.31	3.45	149
BANK1	0.80865	<.0001	31.07	2.45	17
OTX1	0.89838	<.0001	32.49	4.42	237
ST8SIA4	0.62811	0.0286	19.04	1.55	285
MAX.chr11.14926602-14927148	0.99351	<.0001	21.39	38.30	168
UBTF	0.87784	<.0001	52.44	3.82	310
STX16_B	0.71892	0.0002	39.48	2.65	289
KLHDC7B	0.72432	0.001	34.42	1.82	146
PRKCB	0.91243	<.0001	20.33	45.01	256
TBX1	0.38054	0.372	18.89	1.40	295
TRH_A	0.92649	<.0001	31.24	11.85	303

MPZ	0.95189	<.0001	18.90	65.63	221
GP5	0.77189	<.0001	35.26	4.78	104
DNM3_A	0.89514	<.0001	25.61	31.54	69
MAX.chr17.73073682-73073814	0.58595	0.0507	25.18	1.51	174
TRIM67	0.92	<.0001	12.08	46.32	305
PLXNC1_A	0.80973	<.0001	8.38	13.02	245
MAX.chr12.4273906-4274012	0.89622	<.0001	12.62	58.22	170
CALN1_A	0.80541	<.0001	10.14	24.39	36
ITPR1PL1	0.95135	<.0001	21.99	47.60	134
MAX.chr12.4273906-4274012	0.87135	<.0001	5.91	174.39	170
GYPC_B	0.8973	<.0001	15.82	16.27	109
MAX.chr5.42994866-42994936	0.92973	<.0001	11.46	16.71	198
OSR2_A	0.92216	<.0001	24.46	58.54	234
SCRT2	0.82216	<.0001	10.65	81.27	273
MAX.chr5.145725410-145725459	0.89351	<.0001	12.41	63.94	193
MAX.chr11.68622869-68622968	0.93297	<.0001	39.01	45.12	169
MAX.chr8.124173030-124173395	0.9373	<.0001	27.88	3.91	208
CXCL12	0.53405	0.0003	64.30	10.35	63
MAX.chr20.1784209-1784461	0.87784	<.0001	17.84	54.72	185
LOC100132891	0.92541	<.0001	34.07	110.53	153
BHLHE23_D	0.8	<.0001	6.95	107.58	24
ALOX5	0.84432	<.0001	20.19	18.93	9
MAX.chr19.46379903-46380197	0.94054	<.0001	18.28	45.21	179
ODC1	0.68973	<.0001	5.35	11.29	231
CHST2_B	0.86324	<.0001	10.01	186.17	57
MAX.chr5.77268672-77268725	0.96541	<.0001	15.27	58.97	199
C17orf64	0.90595	<.0001	32.60	36.14	29
EMX1_A	0.8973	<.0001	15.12	114.84	74

CHST2_A	0.72865	<.0001	6.30	76.74	56
DSCR6	0.92432	<.0001	9.59	98.53	72
ITPRIPL1	0.91135	<.0001	19.45	46.90	134
IGF2BP3_B	0.82973	<.0001	45.42	115.16	124
CDH4_E	0.81838	<.0001	9.05	17.39	53
NACAD	0.75081	0.0002	6.43	57.97	223
DLX4	0.94595	<.0001	21.61	9.28	66
ABLIM1	0.88541	<.0001	4.31	217.96	3
BHLHE23_C	0.8	<.0001	10.48	94.28	23
MAST1	0.77622	<.0001	7.76	25.77	160
ZSCAN12	0.72054	0.0002	15.29	273.71	327
SLC30A10	0.74595	<.0001	8.48	53.74	279
GRASP	0.79459	<.0001	5.88	35.98	105
C10orf125	0.50757	0.0006	6.91	6.04	27

Table 16E.

Gene Annotation	Overall AUC	p-value	%meth	FC	DMR No.
ATP6V1B1	0.88731	<.0001	26.75	3.17	15
FOXP4	0.62969	0.0032	47.95	1.39	96
LMX1B_A	0.86181	<.0001	26.52	3.35	149
BANK1	0.81125	<.0001	28.59	2.25	17
OTX1	0.84786	<.0001	28.23	3.84	237
ST8SIA4	0.61072	0.0054	19.51	1.59	285
MAX.chr11.14926602-14927148	0.93745	<.0001	18.72	33.52	168
UBTF	0.81517	<.0001	42.18	3.07	310
STX16_B	0.66565	<.0001	38.93	2.61	289
KLHDC7B	0.67241	0.0005	29.94	1.58	146
PRKCB	0.92153	<.0001	19.52	43.21	256
TBX1	0.36127	0.9266	13.81	1.02	295
TRH_A	0.94355	<.0001	29.05	11.02	303
MPZ	0.93396	<.0001	18.93	65.72	221
GP5	0.79294	<.0001	30.09	4.08	104
DNM3_A	0.85418	<.0001	24.75	30.48	69
MAX.chr17.73073682-73073814	0.53095	0.1372	21.71	1.31	174

TRIM67	0.91391	<.0001	10.80	41.41	305
PLXNC1_A	0.76983	<.0001	10.49	16.29	245
MAX.chr12.4273906-4274012	0.9017	<.0001	12.09	55.76	170
CALN1_A	0.87271	<.0001	11.47	27.59	36
ITPRIPL1	0.88928	<.0001	17.19	37.21	134
MAX.chr12.4273906-4274012	0.9029	<.0001	6.69	197.30	170
GYPC_B	0.87925	<.0001	15.78	16.22	109
MAX.chr5.42994866-42994936	0.8932	<.0001	11.11	16.19	198
OSR2_A	0.80667	<.0001	18.56	44.40	234
SCRT2	0.841	<.0001	7.84	59.82	273
MAX.chr5.145725410-145725459	0.91303	<.0001	10.12	52.12	193
MAX.chr11.68622869-68622968	0.87947	<.0001	20.07	23.21	169
MAX.chr8.124173030-124173395	0.85636	<.0001	21.94	3.08	208
CXCL12	0.60615	<.0001	41.39	6.66	63
MAX.chr20.1784209-1784461	0.85113	<.0001	12.03	36.91	185
LOC100132891	0.89124	<.0001	19.91	64.60	153
BHLHE23_D	0.82149	<.0001	5.60	86.71	24
ALOX5	0.79948	<.0001	15.96	14.97	9
MAX.chr19.46379903-46380197	0.84416	<.0001	12.85	31.77	179
ODC1	0.76024	<.0001	7.77	16.38	231
CHST2_B	0.84154	<.0001	12.15	226.06	57
MAX.chr5.77268672-77268725	0.90519	<.0001	12.13	46.85	199
C17orf64	0.87293	<.0001	28.03	31.07	29
EMX1_A	0.88056	<.0001	11.01	83.60	74
CHST2_A	0.77114	<.0001	8.00	97.42	56
DSCR6	0.86595	<.0001	7.14	73.34	72
ITPRIPL1	0.88165	<.0001	15.26	36.79	134
IGF2BP3_B	0.81822	<.0001	27.51	69.74	124
CDH4_E	0.78073	<.0001	6.67	12.81	53

NACAD	0.75207	<.0001	4.29	38.67	223
DLX4	0.86399	<.0001	22.31	9.58	66
ABLIM1	0.83054	<.0001	5.25	265.54	3
BHLHE23_C	0.79174	<.0001	7.40	66.61	23
MAST1	0.73627	<.0001	9.73	32.31	160
ZSCAN12	0.75774	<.0001	7.79	139.40	327
SLC30A10	0.78182	<.0001	8.75	55.48	279
GRASP	0.77114	<.0001	7.10	43.44	105
C10orf125	0.72646	<.0001	11.36	9.94	27

Table 17. Table 17 highlights the top 10 MDMs for discriminating DCIS HGD from DCIS LGD.

Gene Annotation	AUC	p-value	DMR No.
DSCR6	0.9127	<.0001	72
SCRT2	0.86905	0.0314	273
MPZ	0.85714	0.0275	221
MAX.chr8.124173030-124173395	0.84127	0.0122	208
OSR2_A	0.84127	0.0067	234
MAX.chr11.68622869-68622968	0.82143	0.0067	169
ITPRIPL1	0.81746	0.0851	134
MAX.chr5.145725410-145725459	0.81349	0.0037	193
BHLHE23_C	0.80952	0.004	23
ITPRIPL1	0.80556	0.0658	134

5

Example III.

This example describes identification of breast tissue markers and plasma markers for detecting breast cancer.

Candidate methylation markers for the detection of breast cancer were identified by

10 RRBS of breast cancer and normal breast tissue samples. Originally 58 markers were identified and target enrichment long-probe quantitative amplified signal assays were designed and ordered (see, e.g., WO2017/075061 and U.S. Patent Application Serial No. 15,841,006 for general techniques) (Table 18 shows the methylated regions distinguishing breast cancer tissue from normal breast tissue) (Tables 19 and 20 show the primer and probe 15 sequences for the markers shown in Table 18). After design screening and redesign, 56 markers (see, Table 21) were chosen and assays made, triplexed and tested on tissue. Assays

were equally split between FAM and HEX reporting and triplexed with the reference assay, B3GALT6 which reports to Quasar670.

Table 18. Methylated regions distinguishing breast cancer tissue from normal breast tissue

5

DMR No.	Gene Annotation	Region on Chromosome (starting base-ending base)
329	ABLIM1_B	chr10:116391634-116391781
330	AJAP1_C	chr1:4715533-4715652
331	ALOX5_B	chr10:45914740-45914889
332	ASCL2_B	chr11:2292232-2292371
333	BANK1_B	chr4:102711861-102712082
334	BHLHE23_E	chr20:61638334-61638574
335	C10orf125_B	chr10:135171404-135171514
336	C17orf64_B	chr17:58499085-58499196
337	CALN1_1520	chr7:71801485-71801604
37	CALN1_B	Chr7:71801741-71801800
339	CD1D_1058	chr1:158150861-158151139
340	CDH4_7890	chr20:59827763-59828158
341	CHST2_8128	chr3:142838015-142838501
342	CHST2_8384	chr3:142838015-142838501
343	CHST2_9316	chr3:142839218-142839575
344	CHST2_9470	chr3:142839218-142839575
345	CLIC6_B	chr21:36042020-36042140
346	CXCL12_B	chr10:44881200-44881315
347	DLX4_B	chr17:48042552-48042616
348	DNM3_D	chr1:171810425-171810575
74	EMX1_A	chr2:73151498-73151578
349	ESPN_B	chr1:6507924-6508087
350	FAM59B_7764	chr2:26407703-26407976
351	FOXP4_B	chr6:41528816-41528912
104	GP5	chr3:194118738-194118924
352	HOXA1_C	chr7:27135593-27135895
353	IGF2BP3_C	chr7: 23513861-23514064
354	IPTRIPL1_1138	chr2:96990958-96991338
355	IPTRIPL1_1200	chr2:96990958-96991338

356	KCNK9_B	chr8:140715096-140715177
357	KCNK17_C	chr6:39281887-39281994
358	KLHDC7B_B	chr22:50987209-50987311
359	LAYN_B	chr11:111412023-111412090
360	LIME1_B	chr20:62369173-62369342
361	LMX1B_D	chr9:129388170-129388223
362	LOC100132891_B	chr8:72755986-72756299
375	MAST1_B	chr19:12978496-12978642
338	MAX.chr12.427.br	chr12:4273906-4274012
174	MAX.chr17.73073682-73073814	chr17:73073682-73073814
363	MAX.chr20.4422	chr20:1784207-1784471
364	MPZ_5742	chr1:161275554-161276006
365	MPZ_5554	chr1:161275554-161276006
366	MSX2P1_B	chr17:56234426-56234520
367	ODC1_B	chr2:10589075-10589225
234	OSR2_A	chr8:99952233-99952366
368	OTX1_B	chr2:63281460-63281599
246	PLXNC1_B	chr12:94544333-94544426
369	PRKCB_7570	chr16:23847569-23847705
370	SCRT2_C	chr20:644563-644631
279	SLC30A10	chr1:220101458-220101634
371	SPHK2_B	chr19:49127571-49127685
372	ST8SIA4_B	chr5:100240049-100240286
373	STX16_C	chr20:57225077-57225237
374	TBX1_B	chr22:19754226-19754419
303	TRH_A	chr3:129693484-129693575
328	TRIM67_B	chr1:231297039-231297163

Table 19.

Gene Annotation	DMR No.	Forward Primer 5'-3'	SEQ ID NO:	Reverse Primer 5'-3'	SEQ ID NO:
ABLIM1_B	329	TGGTAATCGGGTTTT CGACG	255	CCGCGAATCTATCTACC GAAAC	256
AJAP1_C	330	GTGTTAGGTTGGCGGG AAG	257	GTTACCCGCTTACGAAA AACGA	258
ALOX5_B	331	TTCGTTTTTGTCTGGG AGTTATTC	259	TCCAAAAATTAAATTAAA AACGCTACGC	260
ASCL2_B	332	ATAATACGGTTGTCG GGAGG	261	GTAATATAACTACGCG ACGCGTA	262

BANK1_B	333	GAGAGTTTAGGTAGCG TTCGG	263	CCTAACGCTACTAACAC ATTATAACGA	264
BHLHE23_E	334	CGCGGTTTGGAGCGT TAG	265	CCGAAACGACCGAAAAAC GAC	266
C10orf125_B	335	CGGTTCGTTGCGTTA TCGA	267	CCCCCGAACTACTCTAC GCG	268
C17orf64_B	336	GATTATATTGGATTTT GTTTATCGCGT	269	GACTCTTCCTACCCGCG A	270
CALN1_1520	337	GCGGTTTTAGTCGC GGG	271	AACAAATAATTAACAAAC AACGCCTCC	272
CALN1_B	37	TCGTTCGGCGTATTAA TTTCGTAT	273	CGCGAAAAACTTCCTCC GA	274
CD1D_1058	339	GGATTGGTGAGATTG GGAC	275	CCCGAAACCAAAAAACA ACGA	276
CDH4_7890	340	CGGGGAGTTTCGTTG TATCG	277	CGAATAACGACTACGAA CTTTAACG	278
CHST2_8128	341	CGTAGTTATAGATTAT TAGAGAGGGCG	279	CTAAAACGATAAAAAAAC GCGAACG	280
CHST2_8384	342	TGGTAGTTTCGGTAT CGACGAG	281	TAACTCTACGCGCAAA CGC	282
CHST2_9316	343	GGGATTTTAGCGGAA GCGA	283	CGACGAACTATCCGACT ATCACT	284
CHST2_9470	344	CGGAGGAATCGGGTA GAATCG	285	ACTCTCCCATAACAAACGA CTCC	286
CLIC6_B	345	CGCGTAGGGCGAGTT C	287	GCCTCCTCCTACCTCTC G	288
CXCL12_B	346	TCGGCGGTTTTAGTA AAAGCG	289	AAATCTCCGTCCCACT CC	290
DLX4_B	347	GGTATATTCGCGTAGG TGCG	291	AACCGAATACCGAAATCT ATAACCC	292
DNM3_D	348	GTAGTTGGTTGTAGT GCGTG	293	CCCGAACTTCCCACATCGA AC	294
EMX1_A	74	TTCGTACGGTTTTTCG TTTCG	295	CCACCACGTAATAATTCT TCTCGAAA	296
ESPN_B	349	CGGTTGATATTATCG GGGTTCG	297	AATTAACGCCCCCTATAA CATCC	298
FAM59B_7764	350	CGCGATAGCGTTTTT ATTGTCGCG	299	CGCACGACCGTAAAATA CTCG	300
FOXP4_B	351	CGGTCGTAGATTGTT TTAGAGCG	301	CAAATACCGTCGAAAAAA AACTAAATCAAAAC	302
GP5	104	CGTTGTAGGACGGTTA TGTGCG	303	CATCCTACTCTTCGAAAT AAACCGC	304
HOXA1_C	352	AGTCGTTTTTAGGTA GTTTAGGCG	305	CGACCTTACAATCGCC GC	306
IGF2BP3_C	353	AGATTGGCGCGTAAAA GCG	307	ACCGACCCCGAAAAACG 308	
IPTRIPL1_1138	354	CGTTTTCGGAGTCGCG TG	309	AACCATACTTATCCGAAAC GTCTAAC	310
IPTRIPL1_1200	355	GAGTAGGGTTATTTTC GCGGG	311	CTACTTTTCCCACAA AATAAAAACGT	312
KCNK9_B	356	TTTCGCGTATTCGTG GTTC	313	AACGCCGCCGTATTG 314	
KCNK17_C	357	TCGCGTTGGAAGTTGC G	315	CGTATTCTAAACGCTAA AAACCGC	316
KLHDC7B_B	358	CGGCGGTAGTTGCG G	317	CTACTAAACAAAAACCA CACGTCC	318
LAYN_B	359	GGTAGGTTGTTAGTT GGTTTCG	319	CGCTATCTACGACCG CCT	320

LIME1_B	360	CGGAGGTAGCGGGCG AG	321	CACTCACCGCTTCCGCC	322
LMX1B_D	361	GGCGTTCGTTTCGGCG	323	CGCTTCTCCGACGCC	324
LOC100132891_B	362	GCGGTTGAGTTTTGG TCGG	325	CCCCGTATAACTAAAAAC GACGAC	326
MAST1_B	375	CGTTTTTTTATGTAGT AAGCGATTTTCGC	327	AAACGACGACGAACGCC	328
MAX.chr12.427.br	338	GCGTTTGGTTTTTCG TTTCGAG	329	GAACGACGAAACTAAAA CCGC	330
MAX.chr17.73073 682-73073814	174	CGTTTTGGTAGTTTT TTTCGAGTCG	331	GCTTAAACGTAACCGAA ACGCC	332
MAX.chr20.4422	363	GGTTGCGCGTCGTTT TTC	333	CCCGACGCGTTAAATC GT	334
MPZ_5742	364	GGATGGGAATAGTTAA GTTTTAGTCGTT	335	TCCAACATTACATACAAC ACTAACGTC	336
MPZ_5554	365	GGTTAGGGTGGAGTT CGTTA	337	ACTCCGAACTCTACTCAT CCTTC	338
MSX2P1_B	366	TAGGTTGGAGATTTG ACGCG	339	CGAAACCTAAAAACGCC	340
ODC1_B	367	GGTTGGTAGTCGTTT TACGTTTC	341	CAAAACCCATCTAATTAC AAAATACCTCGA	342
OSR2_A	234	TGGAGTTATCGGAAGG CGA	343	CGAACTCCCGAAACGAC G	344
OTX1_B	368	GGAAATGGTTAGAGT TTGGATTCG	345	TTCTAAAAAAACTTTCG ATACCGACA	346
PLXNC1_B	246	GTGGTTGAAGAGTTG TTAGTTCTTTAG	347	GCCAAAAATTGATTCCA ACGCA	348
PRKCB_7570	369	AAGGTGGTTGTTGA AGAACG	349	ACCCCTCCGACAAAAAAA CGTAC	350
SCRT2_C	370	GCGAGAAGGTTTGTC GTAGA	351	ACCTACTCACGCACAAC CT	352
SLC30A10	279	CGCGGTGAGGAAGAT CG	353	ACGCCACCTACGACTAC G	354
SPHK2_B	371	GTACGGTTATTGGTTG AGCGG	355	CCGAATCCTCCTCCAAA CG	356
ST8SIA4_B	372	GGAATTAAATTGGAGA GAAATTTGGCG	357	CCAAAATTTCCCTCATCT ATATACGCC	358
STX16_C	373	GTTGCGGGTCGGGTT GC	359	GCAAAACACAAAAACGC GTAAAAACC	360
TBX1_B	374	GTCGTGTTGTCGTAG TTGTC	361	CGTAAAACCGAACGAC GCG	362
TRH_A	303	TTTCGTTGATTTATT CGAGTCGTC	363	GAACCCTCTCAAATAAA CCGC	364
TRIM67_B	328	GATTAATAGTCGGGG TCGCG	365	ATTCTCCAACGCCAAC AC	366

Table 20.

Gene Annotation	DMR No.	Probe Sequence	SEQ ID NO:
ABLIM1_B	329	CGCGCCGAGG CGCGCTTCCACTCC/3C6/	367
AJAP1_C	330	AGGCCACGGACG GCGGCGTTTTTTATGTTG/3C6/	368
ALOX5_B	331	AGGCCACGGACG CAACCGAACTAAAAAAACTAACG/3C6/	369

ASCL2_B	332	CGCGCCGAGG GCGCGTAAGATTTGG/3C6/	370
BANK1_B	333	CGCGCCGAGG GCGGGTAGTAGTGCG/3C6/	371
BHLHE23_E	334	CGCGCCGAGG CGACCGAAAAATCGAAAAACA/3C6/	372
C10orf125_B	335	CGCGCCGAGG GCTAACCGCAATAAACACG/3C6/	373
C17orf64_B	336	CGCGCCGAGG TTTCGTTTCGGTTGG/3C6/	374
CALN1_1520	337	CGCGCCGAGG CCGTACCTATTAACTCCG/3C6/	375
CALN1_B	37	AGGCCACGGACG TCGTTTTTTTTGCGGGT/3C6/	376
CD1D_1058	339	AGGCCACGGACG CGTATTGGCGCGATTAG/3C6/	377
CDH4_7890	340	AGGCCACGGACG GTTGAAAAAAACTCGACGAA /3C6/	378
CHST2_8128	341	AGGCCACGGACG GCCGTTCTCTAACTCCG/3C6/	379
CHST2_8384	342	AGGCCACGGACG CCGAATAACGAACGCGA/3C6/	380
CHST2_9316	343	AGGCCACGGACG TCGTTCTCGATTTCGC/3C6/	381
CHST2_9470	344	AGGCCACGGACG CGAATAAACCTACGAAAAAAACG /3C6/	382
CLIC6_B	345	AGGCCACGGACG GAAAACCGCAAAATCCTCG/3C6/	383
CXCL12_B	346	AGGCCACGGACG CGCGAAATAACCTATAATTAACTCA/3C6/	384
DLX4_B	347	CGCGCCGAGG CCGAACCAACACTCAAAAC/3C6/	385
DNM3_D	348	CGCGCCGAGG GCGCGTTGGTTGGT/3C6/	386
EMX1_A	74	AGGCCACGGACG AACCGCTCCAACC/3C6/	387
ESPN_B	349	CGCGCCGAGG CGCGACGACTAAAAAAATTCA/3C6/	388
FAM59B_7764	350	AGGCCACGGACG GTCGAAATCGAAACGCTC/3C6/	389
FOXP4_B	351	CGCGCCGAGG CCGCGACTACCTCTTC/3C6/	390
GP5	104	AGGCCACGGACG CGACGTCTACAAACCA/3C6/	391
HOXA1_C	352	CGCGCCGAGG GCGGGTAGTTGG/3C6/	392
IGF2BP3_C	353	CGCGCCGAGG GCGAAAACCCGCC/3C6/	393
IPTRIPL1_1138	354	CGCGCCGAGG CGTCTAACTAAACGCGATAAAC/3C6/	394
IPTRIPL1_1200	355	CGCGCCGAGG GCGGTTTAGCGATGAATC/3C6/	395
KCNK9_B	356	CGCGCCGAGG CGATTGAGGGCGT/3C6/	396
KCNK17_C	357	AGGCCACGGACG CGCGACGAAACTC/3C6/	397
KLHDC7B_B	358	AGGCCACGGACG GCGGCGGTTGGATT/3C6/	398
LAYN_B	359	AGGCCACGGACG TCCCGAAACGAACGATAAA/3C6/	399
LIME1_B	360	CGCGCCGAGG CGCCGTCGCACTAC/3C6/	400
LMX1B_D	361	AGGCCACGGACG CGCGACTCCCCACT/3C6/	401

LOC100132891_B	362	AGGCCACGGACG CGCAAATAATAACCGAAGC/3C6/	402
MAST1_B	375	AGGCCACGGACG CGTTCGAGGTTAGTTTTGG/3C6/	403
MAX.chr12.427.b_r	338	AGGCCACGGACG CGTACGTAACCCGCG/3C6/	404
MAX.chr17.7307 3682-73073814	174	CGCGCCGAGG CGCTACTAACATAACCGC/3C6/	405
MAX.chr20.4422	363	CGCGCCGAGG CGTTTCGTTGATTGGTT/3C6/	406
MPZ_5742	364	CGCGCCGAGG TCGGTGATTGATGTGTGCG/3C6/	407
MPZ_5554	365	CGCGCCGAGG CGTAACCTCCATCTCGATAACC/3C6/	408
MSX2P1_B	366	CGCGCCGAGG CGACCGCGAAAAACG/3C6/	409
ODC1_B	367	AGGCCACGGACG CGCGTTGGAAGTTTCG/3C6/	410
OSR2_A	234	CGCGCCGAGG GCGCGAACACAAAACG/3C6/	411
OTX1_B	368	CGCGCCGAGG ACCGAAAACGCCCTAAA/3C6/	412
PLXNC1_B	246	CGCGCCGAGG GCGTGGAGAAATGTTAGTTG/3C6/	413
PRKCB_7570	369	AGGCCACGGACG CGGGCGGTGAATTGT/3C6/	414
SCRT2_C	370	AGGCCACGGACG ACGTCGTATTTGGCG/3C6/	415
SLC30A10	279	AGGCCACGGACG GCGTTGTTAGCGCG/3C6/	416
SPHK2_B	371	AGGCCACGGACG GATCCCGCAAATCAACAC/3C6/	417
ST8SIA4_B	372	CGCGCCGAGG CGATCCCCAACTCCC/3C6/	418
STX16_C	373	CGCGCCGAGG CGCTTCTAAACCTCGATCC/3C6/	419
TBX1_B	374	CGCGCCGAGG CGCGGTGTTAATATGTATTC/3C6/	420
TRH_A	303	AGGCCACGGACG CGTTGGCGTAGATATAAGC/3C6/	421
TRIM67_B	328	AGGCCACGGACG CGAACTACGAAAACAACCTC/3C6/	422

Table 21

Marker	DMR	Marker	DMR
AJAP1_C	330	CHST2_9316	343
C10orf125_B	335	ASCL2_B	332
CALN1_B	37	ESPN_B	349
BHLHE23_E	334	DLX4_B	347
CD1D_1058	339	KCNK17_C	357
HOXA1_C	352	EMX1_A	74
LOC100132891_B	362	MPZ_5742	364

MSX2P1_B	366	LAYN_B	359
PRKCB_7570	369	KCNK9_B	356
ITPRIPL1_1200	355	ABLIM1_B	329
SPHK2_B	371	MAX.chr12.427.br	338
C17orf64_B	336	SCRT2_C	370
TRIM67_B	328	IGF2BP3_C	353
MAX.chr20.4422	363	MAST1_B	375
DNM3_D	348	MAX.chr17.73073682-73073814	174
ODC1_B	367	OTX1_B	368
OSR2_A	234	ST8SIA4_B	372
SLC30A10	279	CXCL12_B	346
TRH_A	303	LIME1_B	360
ALOX5_B	331	TBX1_B	374
PLXNC1_B	246	STX16_C	373
CDH4_7890	340	FOXP4_B	351
CLIC6_B	345	CALN1_1520	337
LMX1B_D	361	ITPRIPL1_1138	354
FAM59B_7764	350	CHST2_8128	341
GP5	104	CHST2_8384	342
BANK1_B	333	CHST2_9470	344
KLHDC7B_B	358	MPZ_5554	365

A collection of 38 normal breast cancer samples including 6 BRCA carriers and 113 breast cancer tissue samples including Luminal A & B, HER2+, BRCA1+, BRCA2+, triple negative and DCIS varieties was tested for presence of the 56 methylation markers. The 56 markers displayed a range of sensitivities from ~15% to 92% at 95% specificity. Table 22 shows the markers demonstrating sensitivity at or above 25% at 95% specificity. A 5 marker panel (SPHK2, c17orf64_B, DLX4_B, MPZ_5742, ITPRIPL1_1138) showed 96% sensitivity at 100% specificity. The resulting ROC curve had an AUC of 0.995.

10 **Table 22.**

Marker	DMR No.	Sensitivity
AJAP1_C	330	66.30%
C10orf125_B	335	58.40%
CALN1_B	37	69.70%
BHLHE23_E	334	43.80%

CD1D_1058	339	68.50%
HOXA1_C	352	62.90%
LOC100132891_B	362	79.80%
MSX2P1_B	366	79.80%
PRKCB_7570	369	86.50%
ITPRIPL1_1200	355	79.80%
SPHK2_B	371	65.20%
C17orf64_B	336	77.50%
TRIM67_B	328	79.80%
MAX.chr20.4422	363	71.90%
CHST2_9316	343	73.00%
ASCL2_B	332	53.90%
ESPN_B	349	67.40%
DLX4_B	347	83.10%
KCNK17_C	357	55.10%
EMX1_A	74	77.50%
MPZ_5742	364	91.00%
LAYN_B	359	57.30%
KCNK9_B	356	62.90%
ABLIM1_B	329	44.90%
	338	
MAX.chr12.427.br		79.80%
SCRT2_C	370	78.70%
IGF2BP3_C	353	70.80%
MAST1_B	375	77.50%
DNM3_D	348	74.20%
ODC1_B	367	65.20%
OSR2_A	234	70.80%
SLC30A10	279	60.70%
TRH_A	303	85.40%
ALOX5_B	331	59.60%
PLXNC1_B	246	61.80%
CDH4_7890	340	71.90%
CLIC6_B	345	48.30%
LMX1B_D	361	56.20%

FAM59B_7764	350	66.30%
GP5	104	61.80%
BANK1_B	333	43.80%
OTX1_B	368	70.80%
ST8SIA4_B	372	40.40%
CXCL12_B	346	56.20%
LIME1_B	360	47.20%
STX16_C	373	52.80%
FOXP4_B	351	36.00%
CALN1_1520	337	66.30%
ITPRIPL1_1138	354	83.10%
CHST2_8128	341	62.90%
CHST2_8384	342	60.70%
CHST2_9470	344	66.30%
MPZ_5554	365	92.10%

Based on the results of the tissue testing, a set of 28 markers were selected to test on a set of plasma samples collected from breast cancer patients and normal controls. The 28 markers were split into two pools of 14 due to the high number of markers to be tested. The 5 markers in the two pools are shown in Tables 23 and 24 below.

Table 23: Pool 7 Breast Cancer Plasma Markers	
AJAP1	C10orf125
CALN1_B	BHLHE23
LOC100132891	MSX2P1
SPHK2	C17orf64
MAST1	DNM3
MAX.chr.12.427.br	OTX1
SCRT2	ALOX5

Table 24: Pool 8 Breast Cancer Plasma Markers	
FAM59B	ITPRIPL1_B
ODC1_B	OSR2_A
CD1D_B	DLX4_2591
PRKCB_7570	MAX.chr20.4422
TRIM67	MPZ

TRH_A	CXCL12_B
EMX1_br	CHST2_B

The testing of Pool 7 markers was done on a collection of EDTA plasma samples comprised of 85 breast cancer samples (33 stage I, 33 stage II, 18 stage III, and 1 stage IV) and 100 healthy normal controls. The testing of Pool 8 markers was done on a similar 5 collection of EDTA plasma samples comprised of 85 breast cancer samples (34 stage I, 32 stage II, 18 stage III and 1 stage IV) and 100 healthy normal controls. Based on the results of the Pool 7 and Pool 8 testing, a collection of 14 assays were selected for further testing (shown in Table 25).

Table 25: Pool 9 Breast Cancer Plasma Markers	
SPHK2	C17orf64
FAM59B	ITPRIPL1_B
ODC1_B	OSR2_A
TRIM67	MPZ
TRH_A	CXCL12_B
CD1D_B	C10orf125
CALN1_B	CHST2_B

10

The testing of Pool 9 markers was done on a collection of LBgard (Biomatrica, San Diego, CA) plasma samples comprised of 42 breast cancer samples (1 stage I, 16 stage II, 14 stage III, and 11 stage IV) and 84 healthy normal controls. Table 26 shows the identified methylated region for the Pool 9 markers. Table 27 shows the exhibited sensitivity and 90% specificity for the Pool 9 markers. Tables 28 and 29 show the primer information, and probe 15 information for the Pool 9 markers. A collection of 4 markers (FAM59B, ITPRIPL1, TRH_A, and C17orf64_B) exhibited a sensitivity of 74% at 90% specificity. The resulting ROC curve exhibited an AUC of 0.884.

20

Table 26.

DMR No.	Gene Annotation	Region on Chromosome (starting base-ending base)
47	CD1D	chr1:158150864-158151129

134	ITPRIPL1	chr2:96990968-96991328
90	FAM59B	chr2:26407713-26407972
27	C10orf125	chr10:135171410-135171504
305	TRIM67	chr1:231297047-231297159
284	SPHK2	chr19:49127580-49127683
37	CALN1_B	chr7:71801741-71801800
57	CHST2_B	chr3:142839223-142839568
221	MPZ	chr1:161275561-161275996
346	CXCL12_B	chr10:44881200-44881315
367	ODC1_B	chr2:10589075-10589225
234	OSR2_A	chr8:99952233-99952366
303	TRH_A	chr3:129693484-129693575
336	C17orf64_B	chr17:58499085-58499196

Table 27.

Marker Name	AUC	Sens @ 90% sp	DMR No.
FAM59B	0.814	50.0%	90
ITPRIPL1	0.804	61.9%	134
ODC1_B	0.809	59.5%	367
OSR2_A	0.749	42.9%	234
TRIM67	0.669	30.9%	305
MPZ	0.698	47.6%	221
TRH_A	0.83	50.0%	303
CXCL12_B	0.71	28.6%	346
SPHK2	0.585	31.0%	284
C17orf64_B	0.763	59.5%	336
CD1D	0.613	33.3%	47
C10orf125	0.775	45.2%	27
CALN1_B	0.622	26.2%	37
CHST2_B	0.687	38.1%	57

Table 28.

Gene Annotation	DMR No.	Forward Primer 5'-3'	SEQ ID NO:	Reverse Primer 5'-3'	SEQ ID NO:
CD1D	47	GGATTGGTGA GATTCGGGAC	423	CCCGAAACCAAA AAACAAACGA	424

ITPRIPL1	134	GAGTAGGGTT ATTTTCGCGG G	425	CTACTTTTTCC CGACAAAATAAA AACGT	426
FAM59B	90	CGCGATAGCG TTTTTATTGT CGCG	427	CGCACGACCGT AAAATACTCG	428
C10orf125	27	CGGTCGTTG CGTTTATCGA	429	CCCCCGAACTAC TCTACGCG	430
TRIM67	305	GATTAAATAGT CGGGGTCGC G	431	ATTCTCCAACGC CAACCAC	432
SPHK2	284	GTACGGTTAT TGGTTGAGCG G	433	CCGAATCCTCCT CCAAACG	434
CALN1_B	37	TCGTTCGGCG TATTATTTCG TAT	273	CGCGAAAAACTT CCTCCGA	274
CHST2_B	57	GGGATTTTA GCGGAAGCGA	437	CGACGAACATAC CGACTATCACT	438
MPZ	221	GGTTAGGGGT GGAGTTCGTT A	439	ACTCCGAACCTCT ACTCATCCTTTC	440
CXCL12_B	346	TCGGCGGTTT TTAGTAAAAG CG	441	AAATCTCCCGTC CCACTCC	442
ODC1_B	367	GGTTGGTAGT CGTTTTACGT TTTC	443	CAAAACCCATCT AATTACAAAATA CCTCGA	444
OSR2_A	234	TGGAGTTATC GGAAGGCAGA	445	CGAACTCCCGAA ACGACG	446
TRH_A	303	TTTCGTTGAT TTTATTGAGT CGTC	447	GAACCCTCTTCA AATAAACCGC	448
C17orf64_B	336	GATTATATTCG GATTTGTTTA TCGCGT	449	GAECTTCCCTAC CCGCGA	450

Table 29.

Gene Annotation	DMR No.	Probe Sequence	SEQ ID NO:
CD1D	47	AGGCCACGGACG CGTATTGGCGCGATTAG/3C6/	451
ITPRIPL1	134	CGCGCCGAGG GCGGTTTAGCGATGAATC/3C6/	452

FAM59B	90	AGGCCACGGACG GTCGAAATCGAAACGCTC/3C6/	453
C10orf125	27	CGCGCCGAGG GCTAACGCGAATAAACACG/3C6/	454
TRIM67	305	AGGCCACGGACG CGAACTACGAAAACAACCTC/3C6/	455
SPHK2	284	AGGCCACGGACG GATCCCGCAAATCAACAC/3C6/	456
CALN1_B	37	AGGCCACGGACG TCGTTTTTTTTGCGGGT/3C6/	376
CHST2_B	57	CGCGCCGAGG TCGTTCCCTCGATTCGC/3C6/	458
MPZ	221	CGCGCCGAGG CGTAACTCCATCTCGATAACC/3C6/	459
CXCL12_B	346	CGCGCCGAGG CGCGAAATAAACCTATAATTAACTCA/3C6/	460
ODC1_B	367	AGGCCACGGACG CGCGTTGGAAGTTTCG/3C6/	461
OSR2_A	234	CGCGCCGAGG GCGCGAACACAAAACG/3C6/	462
TRH_A	303	AGGCCACGGACG CGTTTGGCGTAGATATAAGC/3C6/	463
C17orf64_B	336	CGCGCCGAGG TTTCGTTTCGGTTCGG/3C6/	464

All publications and patents mentioned in the above specification are herein incorporated by reference in their entirety for all purposes. Various modifications and variations of the described compositions, methods, and uses of the technology will be apparent to those skilled in the art without departing from the scope and spirit of the technology as described. Although the technology has been described in connection with specific exemplary embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in pharmacology, biochemistry, medical science, or related fields are intended to be within the scope of the following claims.

Definitions of the specific embodiments of the invention as claimed herein follow.

According to a first embodiment of the invention, there is provided a method of screening for breast cancer in a sample obtained from a subject, the method comprising:

- 1) assaying a methylation level of one or more chromosomal regions in a sample from the subject through:
 - treating DNA in the sample with a reagent that modifies DNA in a methylation-specific manner;
 - amplifying the treated DNA using a set of primers specific for each of the one or more chromosomal regions, wherein the one or more chromosomal regions comprises FAM59B; and
 - determining the methylation level of the one or more chromosomal regions by polymerase chain reaction, nucleic acid sequencing, mass spectrometry, methylation-specific nuclease, mass-based separation, and/or target capture; and
- 2) identifying the subject as having breast cancer when the methylation state of the one or more chromosomal regions is different than a methylation state of the one or more chromosomal regions assayed in a subject that does not have breast cancer.

The term “comprise” and variants of the term such as “comprises” or “comprising” are used herein to denote the inclusion of a stated integer or stated integers but not to exclude any other integer or any other integers, unless in the context or usage an exclusive interpretation of the term is required.

Any reference to publications cited in this specification is not an admission that the disclosures constitute common general knowledge in Australia.

CLAIMS

1. A method of screening for breast cancer in a sample obtained from a subject, the method comprising:
 - 1) assaying a methylation level of one or more chromosomal regions in a sample from the subject through:

treating DNA in the sample with a reagent that modifies DNA in a methylation-specific manner;

amplifying the treated DNA using a set of primers specific for each of the one or more chromosomal regions, wherein the one or more chromosomal regions comprises FAM59B; and

determining the methylation level of the one or more chromosomal regions by polymerase chain reaction, nucleic acid sequencing, mass spectrometry, methylation-specific nuclease, mass-based separation, and/or target capture; and
 - 2) identifying the subject as having breast cancer when the methylation state of the one or more chromosomal regions is different than a methylation state of the one or more chromosomal regions assayed in a subject that does not have breast cancer.
2. The method of claim 1, wherein the one or more chromosomal regions further comprises at least one of CD1D, ITPRIPL1, C10orf125, TRIM67, SPHK2, CALN1_B, CHST2_B, MPZ, CXCL12_B, ODC1_B, OSR2_A, TRH_A, and/or C17orf64_B.
3. The method of claim 1, wherein the reagent that modifies DNA in a methylation-specific manner comprises a methylation-sensitive restriction enzyme, a methylation-dependent restriction enzyme, and/or a bisulfite reagent.
4. The method of claim 1, wherein determining the methylation level of the one or more chromosomal regions comprises using multiplex amplification, methylation-specific PCR, quantitative methylation-specific PCR, methylation-specific DNA restriction enzyme analysis, quantitative bisulfite pyrosequencing, flap endonuclease assay, PCR-flap assay, and/or bisulfite genomic sequencing PCR.

5. The method of claim 1 or claim 2, wherein the specific set of primers for each of the one or more chromosomal regions is selected from the group consisting of:
 - for TRH_A a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 245 and 246,
 - for MPZ a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 175 and 176, or SEQ ID NOS: 439 and 440,
 - for ITPRIPL1 a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 97 and 98, SEQ ID NOS: 99 and 100, or SEQ ID NOS: 425 and 426,
 - for OSR2_A a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 187 and 188,
 - for CHST2_B a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 39 and 40,
 - for C17orf64_B a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 269 and 270, or SEQ ID NOS: 449 and 450,
 - for CXCL12_B a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 289 and 290, or SEQ ID NOS: 441 and 442,
 - for ODC1_B a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 341 and 342, or SEQ ID NOS: 443 and 444,
 - for CD1D a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 423 and 424,
 - for FAM59B a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 427 and 428,
 - for C10orf125 a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 429 and 430,
 - for TRIM67 a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 431 and 432,
 - for SPHK2 a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 433 and 434, and
 - for CALN1_B a set of primers capable of binding an amplicon bound by a sequence comprising SEQ ID NOS: 273 and 274.

6. The method of claim 1, wherein the sample comprises tissue.
7. The method of claim 6, wherein the tissue is breast tissue.
8. The method of claim 1, wherein the sample is blood, serum, or plasma.

35440-W0-1-ORD_ST25.txt
SEQUENCE LISTING

<110> MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH
EXACT SCIENCES DEVELOPMENT COMPANY, LLC

<120> DETECTING BREAST CANCER

<130> EXCTM-35440/W0-1/ORD

<150> US 62/592,828

<151> 2017-11-30

<160> 464

<170> PatentIn version 3.5

<210> 1

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 1

gagtttcggc ggcgttttc g

21

<210> 2

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 2

cgctacgtct aacttccgc gc

22

<210> 3

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 3

ttttcgacga gtaggattga agaaggaac

29

35440-W0-1-ORD_ST25.txt

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 4
gcgaatctat ctaccgaaac gcgcct

25

<210> 5
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 5
ttttgatttg taatatacag gaaagcgtcg t

31

<210> 6
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 6
gtataaacgc gtaaatacaca aactaaacgaa a

31

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 7
gtttcgagaa aggagaaggg ggagc

25

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 8
actcccaacg aaaacttcgc aaacg 25

<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 9
gttttttgtc gggagttatt cgt 23

<210> 10
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 10
ccaaaaatta aattaaaaac gctacgca 28

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 11
gttttaggag ggtggggcgt 20

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 12	aacacgacta ttcgaaaaac gcgca	25
<210> 13		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 13		
ttcgtatgtat cgggagtcga		20
<210> 14		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 14		
gaaataataa aaacgccgca cgct		24
<210> 15		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 15		
gtcgtatgttt tcgcgggtgg taagc		25
<210> 16		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 16		
cgaacgctac ctaaactctc ccgac		25

35440-W0-1-ORD_ST25.txt

<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 17
ggaatcgcga gttttggat agtcg

25

<210> 18
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 18
aaatacaatt acaccctcta ccgcc

25

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 19
gaggcggtcg gtgggatttc

20

<210> 20
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 20
ccccgaccta taaacctacg acgct

25

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 21
gaggaggtag cgggcgtcga 20

<210> 22
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 22
cgcgtcgatc taacttacct acgaa 25

<210> 23
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 23
ttgcgttat cgatttcgtt ttcgt 25

<210> 24
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 24
gcactactat cccccgaact actctacgc 29

<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 25
ttattaggcg gggagtcggg tgtc 24

<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 26
ctcgaatccc taaaaaactc gcgaa 25

<210> 27
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 27
aggaaattcg gtagcgattt tacgg 25

<210> 28
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 28
aaacccctac aacctcaccc tacacgt 28

<210> 29
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 29
cggagttat aggtacggta ggcgt 25

35440-W0-1-ORD_ST25.txt

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 30
caaacccccc aactatcgcg aa 22

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 31
cgggtatcgc ggttaagttg gc 22

<210> 32
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 32
tatcgtaaaa acccaacccc tcgac 25

<210> 33
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 33
gggattggtg agattcggga cgt 23

<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 34
ctcccccggaaa ccaaaaaaaca acgaa

25

<210> 35
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 35
gttttaatc gtattcgtag ttcgg

25

<210> 36
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 36
acgaacggaaa actttcctaa acgaa

25

<210> 37
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 37
gcgtttttt atcggttttag ggcgt

25

<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 38	
accgacacta ccaacctctc cgaa	24
<210> 39	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 39	
tgcggggatt tttagcgaa gc	22
<210> 40	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 40	
ccgacgaact atccgactat cactcggt	28
<210> 41	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 41	
gttagtaggtg gagggggcga gttc	24
<210> 42	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 42	
ctctcgaaaa ccgcaaaatc ctgc	24

35440-W0-1-ORD_ST25.txt

<210> 43
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 43
ggtaatattg cgatattcg tagacgt

27

<210> 44
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 44
aacaatcaa taatcgaacg cacgc

25

<210> 45
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 45
gtcgaaaa gttacgaagc ggc

23

<210> 46
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 46
aaaactaaat aatctatcc tcgat

25

<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 47
gcgtcggcgg ttttttagtaa aagc

24

<210> 48
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 48
aacgaatctc attaaatctc ccgtc

25

<210> 49
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 49
gattttcggg agcggcga

18

<210> 50
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 50
cttcccccga acgaaccg

18

<210> 51
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 51	
ttcgttggta tattcgcgta ggtgc	25
<210> 52	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 52	
cgaataccga aatctataac cccgaa	26
<210> 53	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 53	
attatgattta cgatgggtga cgg	23
<210> 54	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 54	
ctccataaaaa acgaatttaa acgaa	25
<210> 55	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 55	
tttggttata gaacgttagag gtcgt	25

35440-W0-1-ORD_ST25.txt

<210> 56

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 56

atcgaaccac caaaccaaac gc 22

<210> 57

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 57

ggaaagttta gtaggtgagc gt 22

<210> 58

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 58

actaaaaacg tttccgtcga acgca 25

<210> 59

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 59

gttggtagga gtagggttgg ttcga 25

<210> 60

<211> 24

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 60
atcgcaatcg taacccgtaa acgc

24

<210> 61
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 61
attcgtacgg ttttttcgtt ttcgt

25

<210> 62
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 62
gaccaactac ttccgctcga cgc

23

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 63
cggatttagc ggtcgagacg

20

<210> 64
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 64
tttaaacgt ttctcgac gcc 23

<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 65
tcgttaggcg atgataatta gcga 24

<210> 66
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 66
taaaaaaacc ataaacccta acgac 25

<210> 67
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 67
gttggagaag acgattcggtt cggac 25

<210> 68
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 68
ccaaaacctc actcctcaac cgc 23

35440-W0-1-ORD_ST25.txt

<210> 69
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 69
cgcgatgcgc gttttgaac 19

<210> 70
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 70
gacgcgacta acttccaacc taacgaa 27

<210> 71
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 71
ttttcggtt tgtcgtcggt gc 22

<210> 72
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 72
gccgcgctct acactaaaca tattcgc 27

<210> 73
<211> 23
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 73
cggggaagtg ggagtttta gcg 23

<210> 74
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 74
aaaaaaaacta aatcaaaacc gcgac 25

<210> 75
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 75
gcgagttcgc gttgtttacg tttc 24

<210> 76
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 76
accgacgcta cctataactc cacgct 26

<210> 77
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 77		
ttagtttgt ttattaattt tacgt		25
<210> 78		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 78		
tctacaaaac gccgcgac		18
<210> 79		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 79		
gttaattcga gagcgcgagg cgt		23
<210> 80		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 80		
gaccaaaaaa aataaaaaat cccgcgac		28
<210> 81		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 81		
taaagaaata gaaagcgggc gatacgt		27

35440-W0-1-ORD_ST25.txt

<210> 82
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 82
cgaactaaaa aaaccgccaa cccg

24

<210> 83
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 83
gggttttgcg gttaatggcg

20

<210> 84
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 84
aataacaaac gcgtcccgaa aacga

25

<210> 85
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 85
ttagttttt ttggttttta tttgaatttc ga

32

<210> 86
<211> 26
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 86
aactttcca ccgattctca attccg 26

<210> 87
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 87
atttaaattt tcggcgtttc gtcgt 25

<210> 88
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 88
acaactccaaa tcgaccctta caatcgc 27

<210> 89
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 89
agtttggttc gtttagcgat tgcgt 25

<210> 90
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 90	
aacgcgacta aaaccaattt ccgca	25
<210> 91	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 91	
tttattttgtt tttatcggtt gtcgg	25
<210> 92	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 92	
aaatatataac ccgatttccc cgtt	24
<210> 93	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 93	
taatcggcgt cgagagagat atcgt	25
<210> 94	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 94	
ccgtcaacca atcgaaaacg aa	22

35440-W0-1-ORD_ST25.txt

<210> 95	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 95	
tcgtttatTTT cgtttttttt gtcga	25
<210> 96	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 96	
aaccaaccta aaatctacac tcgca	25
<210> 97	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 97	
gggtcgttagg ggtttatcgc	20
<210> 98	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 98	
catacttatac cgaacgtctta aacgtc	26
<210> 99	
<211> 23	
<212> DNA	
<213> Artificial Sequence	

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 99
ggtttagcg atgaatcgga cgt

23

<210> 100
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 100
cacgatctta aaaaaacaac gcgac

25

<210> 101
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 101
cgtatttta ggtagttc ggagt

25

<210> 102
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 102
acactattac ccgcgaaaaa acgat

25

<210> 103
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 103	27
gagtttgttt gggggtttgtt cgtattc	
<210> 104	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 104	31
ccaaatataa cgtttaactc tttaccacga a	
<210> 105	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 105	25
tttttttga ttcggatttt ttcgg	
<210> 106	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 106	25
ctaataaacg ccgccgtatt cgacg	
<210> 107	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 107	25
ttttcgcgtt gtttttattt atcgt	

35440-W0-1-ORD_ST25.txt

<210> 108
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 108
tacacaacca cccaaactact ccgcg

25

<210> 109
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 109
tgttgttggg taaaggttag tacgt

25

<210> 110
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 110
cgaaaaccca actccccgaa

19

<210> 111
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 111
tttttgcgtt cgtttttcgg agc

23

<210> 112
<211> 25
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 112
cttaccaact aaccccccgc taccg 25

<210> 113
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 113
cgtttttagta gggattgggg gcga 24

<210> 114
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 114
cccgaaaaacc aaaataaaaat ccgca 25

<210> 115
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 115
cggaatagcg cggtcgaaaaat ttc 23

<210> 116
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 116	24
tttaaccgta acgctcgccct cgac	
<210> 117	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 117	25
gtcggttgtg ttttagagcgt agcgt	
<210> 118	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 118	21
aaaaaaaaacc ccgacgacga a	
<210> 119	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 119	24
gttgcgattg tttgtattt gcgg	
<210> 120	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 120	25
ataataacaa aaaacccctc ccgac	

35440-W0-1-ORD_ST25.txt

<210> 121
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 121
agtttcgtta gggaaagggtt gcgtc

25

<210> 122
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 122
caactaaaac tctaccgcgc tcgat

25

<210> 123
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 123
aggaagggtt tcgagtttag tgcg

25

<210> 124
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 124
aaaaaaaaatca acgcgtcctc ctcgc

25

<210> 125
<211> 25
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 125
tttcgatttc gtttttaaat ttcgt

25

<210> 126
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 126
aaactaaacg acctaaccct acgta

25

<210> 127
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 127
aagtttacgc gcgagtttga tcgtc

25

<210> 128
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 128
cgaaacgact tctctcccg ca

22

<210> 129
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 129
tttagttcgc ggaagttagg ttcgg 25

<210> 130
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 130
gaaaacacaa taaacccgc cgtc 24

<210> 131
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 131
gttagattgt aggagggatt agcgg 25

<210> 132
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 132
aaaaaacgac taaaaaattc acgcc 25

<210> 133
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 133
tttgagttt ggggatcga tagtc 25

35440-W0-1-ORD_ST25.txt

<210> 134

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 134

cgacgaaact aaaaccgcgt acgta

25

<210> 135

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 135

tttggagttt gggggatcga tagtc

25

<210> 136

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 136

cgacgaaact aaaaccgcgt acgta

25

<210> 137

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 137

attatatgg gggcgtagg ttcgg

25

<210> 138

<211> 25

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 138
aacaaacaat tcgcacgtaa acgaa 25

<210> 139
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 139
gggcggttt cgtggatttt tatagatttt c 31

<210> 140
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 140
gcgtctcgaa ccgtacccta acgta 25

<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 141
cgtcgttgtt gattatgatc gcgg 24

<210> 142
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 142	24
cgcttcctaa caaccttctt cgaa	
<210> 143	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 143	25
ttaacggat tttttgtttt ttgcgt	
<210> 144	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 144	22
aaaaaaaaact cgtccccgct ct	
<210> 145	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 145	28
tcggtagtt cgaggttagga agtttgc	
<210> 146	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 146	30
tattaaccgaa aaaacgaaaa ccaaatccga	

35440-W0-1-ORD_ST25.txt

<210> 147

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 147

agttttgttgg ttttgggttag gtcgg

25

<210> 148

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 148

aaaaactaaa aacctttctc tcgac

25

<210> 149

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 149

gcgttgagag tgacggatata ttttcgtc

28

<210> 150

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 150

actacctaataa ctccgaacac gcccg

25

<210> 151

<211> 25

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 151
tttagcgtatc ggaaattagg gggac

25

<210> 152
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 152
gaaaacgaaa aaacgacgca

22

<210> 153
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 153
tcgttttta ggtggggaaag aagcg

25

<210> 154
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 154
gaaccgtatt taaaaccaat ccccg

26

<210> 155
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 155		
aattgggtt cggggttcgg tac		23
<210> 156		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 156		
ttacccctac ccaaaaaat acgct		25
<210> 157		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 157		
ggggtagag tttcgcggttc gc		22
<210> 158		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 158		
cgcgtctccc gtcctatcta tatacgctc		28
<210> 159		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 159		
taggaatttt ttaaattcgt tttacgg		27

35440-W0-1-ORD_ST25.txt

<210> 160

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 160

cacaaaaaact cgataacaatt accgtt

26

<210> 161

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 161

tatttttagt tcgcgttaaa agcgt

25

<210> 162

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 162

gtcgataaaaa aacctacgac acgaa

25

<210> 163

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 163

gattttagttt ttcgggttta tagcgg

26

<210> 164

<211> 25

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 164
tattaaaaac gaccaaacct ccgca 25

<210> 165
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 165
tggttgttagg cgttttgttg gagttc 26

<210> 166
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 166
aaaaacgacc ctaaccaccc tcgtt 25

<210> 167
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 167
ttttgcgtag ttgggttaggg ttccgg 25

<210> 168
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 168	cccgcattcc cgaaaaaaaaac gat	23
<210> 169		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 169		25
ttagggtttt ttgcgaggag ttgcga		
<210> 170		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 170		24
atcccccgta cgaaactaaa cgcg		
<210> 171		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 171		23
gcgttcgtat ttgcgggaga ggc		
<210> 172		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 172		25
tctacgtaac taaacaaaaac ccgaa		

35440-W0-1-ORD_ST25.txt

<210> 173

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 173

cgttttgtgt tttataaaaaa gaaagatttt cgg

33

<210> 174

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 174

aaaaccccaa aaacgcccga t

21

<210> 175

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 175

ggggcgtata tattagttat cgagcga

27

<210> 176

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 176

aaaaaaaaacc ctaaaaacccg ccgaa

25

<210> 177

<211> 26

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 177
ttcgtttaat gagaagggtt tagcgg

26

<210> 178
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 178
taaaaacaaac taaaaacctt aacgcgacgc t

31

<210> 179
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 179
ggggagggag ttttttttac

20

<210> 180
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 180
gtacgcgaac tcgccaaca ctacg

25

<210> 181
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 181	25
gtagggttgg tagtcgttt tacgt	
<210> 182	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 182	28
aaccatcta attacaaaat acctcgat	
<210> 183	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 183	26
ggtttatag gggaaattat tttcgt	
<210> 184	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 184	25
aaaacctcgt ctttataaca tcgaa	
<210> 185	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 185	27
taggatattt cgatgttata aagacga	

35440-W0-1-ORD_ST25.txt

<210> 186

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 186

aacaaaacta acaaccgcct ccacg

25

<210> 187

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 187

tttggaggtta tcggaaggcg aaagtac

27

<210> 188

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 188

gcacgcccga aaaaataaaaaa cgaa

24

<210> 189

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 189

ttttcgatat cgatatcgaa ggcgt

25

<210> 190

<211> 25

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 190
ataacttaaa accctaaatt ccgcc 25

<210> 191
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 191
gcgggttagta ggaagattag tagcgg 26

<210> 192
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 192
ccgacttccg tacgaaaccg ta 22

<210> 193
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 193
taatagaggt ttgcgttgga atcga 25

<210> 194
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 194	aacgcaccct aaacaaaacc acgac	25
<210> 195		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 195		
tgaagagttt ttagttcggt tagcgt		26
<210> 196		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 196		
gccaaaaatt cgattccaaac gca		23
<210> 197		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 197		
tagggtagg tatagtgg agcgg		25
<210> 198		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 198		
atcaaaaactc ccctcctcga aaacg		25

35440-W0-1-ORD_ST25.txt

<210> 199
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 199
gtttttaagc ggcggtcgt 19

<210> 200
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 200
aaaaaaaaatc ccgttcgct 19

<210> 201
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 201
gcgcgcgtt attagatgaa gtcg 24

<210> 202
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 202
aaaatcaaaa accacaaatt caccgcc 27

<210> 203
<211> 25
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 203
cggggagagg aggggtagga tttac

25

<210> 204
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 204
caacttaaac accacttctt ccgaa

25

<210> 205
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 205
tgtttttttt gttcggggcg

20

<210> 206
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 206
aaataactaa ctcctactctt cgcccgct

28

<210> 207
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 207	atagttttt aattttcgcg tttcgtcga	29
<210> 208		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 208		
aaaaacaact ccaacccaca ccgc		24
<210> 209		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 209		
gcgggaggag taggttaatt ttcga		25
<210> 210		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 210		
aaaaacaaaa tacgcgaaac gcacg		25
<210> 211		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 211		
cgagaaggtt ttgtcgtaga cgtcgt		26

35440-W0-1-ORD_ST25.txt

<210> 212

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 212

tacgtatcca tacccgcgct cg

22

<210> 213

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 213

tttggggta taataggggt tgcgg

25

<210> 214

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 214

cgcctaacta ccgaaaaata ccgaa

25

<210> 215

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 215

gggggggtta tttttttatg gagtcgattc

30

<210> 216

<211> 24

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 216
cgaaccaaac ctacgattcc cgaa

24

<210> 217
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 217
gggagaagag aatggttttt tgtcgac

27

<210> 218
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 218
tcttatactc aaccccgacc taccgac

27

<210> 219
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 219
gttttattcg gggtttttagc gttatttacg g

31

<210> 220
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 220	aaaaaaaccgc gttactcaac gcgc	24
<210> 221		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 221		24
gtttagagcg gaggttagcgg ttgc		
<210> 222		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 222		26
cgcctattct taaacctaaa cccgtc		
<210> 223		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 223		27
cgttagaggat tataaagatt tgtacga		
<210> 224		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 224		30
tactataact actacgataa cgacgacgac		

35440-W0-1-ORD_ST25.txt

<210> 225

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 225

agatttcggt ttttgttcg attttcgt 28

<210> 226

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 226

attaatacta acttacgaaa ccgcc 25

<210> 227

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 227

attatttttg agcgtgaaaa atcgt 25

<210> 228

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 228

aaatttctct ccaattaaat tccgta 26

<210> 229

<211> 22

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 229
gtgggttgt cgtcgattt cg 22

<210> 230
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 230
aaataaccgc gtcatccgat tcgtt 25

<210> 231
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 231
tggatgtttt atattaattt ttagttgtat aacg 34

<210> 232
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 232
gtacttttc tctcacgaaa aatattcccg c 31

<210> 233
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 233	tgcgtggaat aaattttata tacgt	25
<210> 234		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 234		
gctcaacaca cgaaaaaccc tcgaa		25
<210> 235		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 235		
cggtgcgggg ttttaataaa ggatc		25
<210> 236		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 236		
tccacgcaaa aacaaaaaac gcgta		25
<210> 237		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 237		
ggcgttagtta tgatttcgtt tttcgt		27

35440-W0-1-ORD_ST25.txt

<210> 238

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 238

atccttcga ccctacgtac ctcgat

26

<210> 239

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 239

tttacgatta ttgttttaga taatacgg

28

<210> 240

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 240

gaacccgacg aacttcgaa

19

<210> 241

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 241

gggaaatcgc gtagtttggg c

21

<210> 242

<211> 25

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 242
aaaacgacga aaaaacgaaa acgac 25

<210> 243
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 243
agttatcgcg atcggtttgg gttaac 26

<210> 244
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 244
aaacgattac ctcttcgtt cgttcggtt 28

<210> 245
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 245
cggcggttta tttgaagagg gttc 24

<210> 246
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 246	cgacaaatca aaaatctaca acgct	25
<210> 247		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 247		25
ttttaacgtt agttacgagt tgcggt		
<210> 248		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 248		21
cgaacaaacc aaacaaccga a		
<210> 249		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 249		19
gttagattagg cgggggcga		
<210> 250		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 250		34
gaacaaaaac ataaactaat acaaatatct cccg		

35440-W0-1-ORD_ST25.txt

<210> 251

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 251

ggagggagag ttttcgcgg attc

24

<210> 252

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 252

ctaaaccctt caaaccctaa ccgat

25

<210> 253

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 253

tgttttcgga tacggcgagc

20

<210> 254

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 254

acgaacgaac tatacgcgac gct

23

<210> 255

<211> 21

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 255
tggtaatcggttttcgac g

21

<210> 256
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 256
ccgcgaatct atctaccgaa ac

22

<210> 257
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 257
gtgttaggtt gggcggaaag

19

<210> 258
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 258
gttacccgct tacgaaaaac ga

22

<210> 259
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 259	ttcgaaaaatt gtcgggagtt attc	24
<210> 260		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 260	tccaaaaatt aaattaaaaa cgctacgc	28
<210> 261		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 261	ataatacggt tgttcgggag g	21
<210> 262		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 262	gttaaatataa actacgcgac gcgta	25
<210> 263		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 263	gagagtttag gtagcggtcg g	21

35440-W0-1-ORD_ST25.txt

<210> 264

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 264

cctaacgcta ctaacaacat tataacga

28

<210> 265

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 265

cgcgggtttg gagcgtag

19

<210> 266

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 266

ccgaaacgac cgaaaacgac

20

<210> 267

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 267

cggttcggtt cgtttatcga

20

<210> 268

<211> 20

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 268
cccccgaaact actctacgcg

20

<210> 269
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 269
gattatattc ggattttgtt tatcgct

28

<210> 270
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 270
gactttcct acccgcgaa

18

<210> 271
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 271
gcgggtttta gttcgcgaa

19

<210> 272
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 272	aacaaataat taacaaacaa cgccctcc	27
<210> 273		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 273		
tcgttcggcg tatttatttc gtat		24
<210> 274		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 274		
cgcgaaaaac ttcctccga		19
<210> 275		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 275		
ggattggta gattcgggac		20
<210> 276		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 276		
cccgaaacca aaaaacaacg a		21

35440-W0-1-ORD_ST25.txt

<210> 277
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 277
cggggagttt cgtttgtatc g

21

<210> 278
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 278
cgaataacga ctacgaacctt taaacg

26

<210> 279
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 279
cgtagttata gatttatttag agagggcg

28

<210> 280
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 280
ctaaaacgat aaaaaaacgc gaaacg

26

<210> 281
<211> 23
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 281
tggtagttt cggtatcgac gag 23

<210> 282
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 282
taactctacg cgcaaaacgc 20

<210> 283
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 283
gggattttta gcggaagcga 20

<210> 284
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 284
cgacgaacta tccgactatc act 23

<210> 285
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 285	21
cggaggaatc gggtagaatc g	
<210> 286	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 286	22
actctccat aacaacgact cc	
<210> 287	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 287	17
cgcgttagggc gagttc	
<210> 288	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 288	18
gcctccctcct acctctcg	
<210> 289	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 289	22
tcggcggtt ttagtaaaag cg	

35440-W0-1-ORD_ST25.txt

<210> 290
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 290
aaatctcccg tcccactcc

19

<210> 291
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 291
ggtatattcg cgttagtgcg

20

<210> 292
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 292
aaccgaatac cgaaatctat aaccc

25

<210> 293
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 293
gtagttgggt tgttagtgcggt g

21

<210> 294
<211> 19
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 294
cccgaaacttc ccatcgaac

19

<210> 295
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 295
ttcgtacggt ttttcgttt tcg

23

<210> 296
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 296
ccaccacgta ataattcttc tcgaaa

26

<210> 297
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 297
cggttgata ttattcgggg ttgc

24

<210> 298
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 298	aattaacgcc ccctataaca tcc	23
<210> 299		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 299		
cgcgatagcg ttttttattg tcgcg		25
<210> 300		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 300		
cgcacgaccg taaaatactc g		21
<210> 301		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 301		
cggttcgtag attgttttag agcgt		24
<210> 302		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 302		
caaataccgt cgaaaaaaaaa ctaaatcaaa ac		32

35440-W0-1-ORD_ST25.txt

<210> 303
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 303
cggtttagga cggttatgtc g

21

<210> 304
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 304
catcctactc ttcgaaataa accgc

25

<210> 305
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 305
agtcgttttt ttaggttagtt taggcg

26

<210> 306
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 306
cgacctttac aatcgccgc

19

<210> 307
<211> 19
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 307
agattggcgc gtaaaagcg

19

<210> 308
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 308
accgaccccg aaaaacg

17

<210> 309
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 309
cgtttcgga gtcgcgtg

18

<210> 310
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 310
aaccataactt atccgaacgt ctaaac

26

<210> 311
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 311
gagtagggtt attttcgcgg g 21

<210> 312
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 312
ctactttttt cccgacaaaa taaaaacgt 29

<210> 313
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 313
ttttcgcgta tttcgtggtt c 21

<210> 314
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 314
aacgccgccc tattcg 16

<210> 315
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 315
tcgcgttgaa agttgcg 17

35440-W0-1-ORD_ST25.txt

<210> 316

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 316

cgtattctaa acgctaaaaa accgc

25

<210> 317

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 317

cggcggttagt tttgcgg

17

<210> 318

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 318

ctactaaaca aaaaccaaca cgtcc

25

<210> 319

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 319

ggttaggttg ttagttggtt ttcg

24

<210> 320

<211> 20

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 320
cgctatctct acgaccgcct

20

<210> 321
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 321
cggaggtagc gggcgag

17

<210> 322
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 322
cactcaccgc ttccgcc

17

<210> 323
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 323
ggcggttcgtt tcggcg

16

<210> 324
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 324	16
cgcttctccg acgccc	
<210> 325	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 325	20
gcgggtttagt ttttggtcgg	
<210> 326	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 326	24
ccccgtataa ctaaaaacga cgac	
<210> 327	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 327	31
cgtttttttt atgttagtaag cgattttcg c	
<210> 328	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 328	17
aaacgacgac gaacgcc	

35440-W0-1-ORD_ST25.txt

<210> 329
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 329
gcgtttggc ttttcgttt cgag

24

<210> 330
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 330
gaacgacgaa actaaaaccg c

21

<210> 331
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 331
cgtttttgg tagtttttt cgagtcg

27

<210> 332
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 332
gcttaaacgt aaccgaaacg cc

22

<210> 333
<211> 19
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>		
<223>	Synthetic	
<400>	333	
	ggttgcgcgt cgtttttc	19
<210>	334	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400>	334	
	cccgacgcgt ttaaatcgt	19
<210>	335	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400>	335	
	ggatggaaat agttaagttt tagtcgtt	28
<210>	336	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400>	336	
	tccaaacatta cataacaacac taacgtc	27
<210>	337	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	

35440-W0-1-ORD_ST25.txt

<400> 337
ggtaggggt ggagttcgaa a 21

<210> 338
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 338
actccgaact ctactcatcc ttcc 24

<210> 339
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 339
taggttggag attttgcgc g 21

<210> 340
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 340
cgaaacctaa aaacgccgaa ac 22

<210> 341
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 341
ggttggtagt cgttttacg ttttc 25

35440-W0-1-ORD_ST25.txt

<210> 342

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 342

caaaaacccat ctaattacaa aataacctcga

30

<210> 343

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 343

tggagttatc ggaaggcga

19

<210> 344

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 344

cgaactcccg aaacgacg

18

<210> 345

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 345

ggaaatggtt tagagtttg gatttcg

27

<210> 346

<211> 27

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 346
ttctaaaaaa tactttcgat accgaca

27

<210> 347
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 347
gtggtttcaa gagttgttag ttcgtttag

29

<210> 348
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 348
gccaaaaatt cgattccaac gca

23

<210> 349
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 349
aagggtgggtt gtttgaagaa gc

22

<210> 350
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 350	accctccgac aaaaaaacgt ac	22
<210> 351		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 351	gcgagaaggt tttgtcgtag a	21
<210> 352		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 352	acctactcac gcacaacct	19
<210> 353		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 353	cgcggtgagg aagatcg	17
<210> 354		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 354	acgccaccta cgactacg	18

35440-W0-1-ORD_ST25.txt

<210> 355
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 355
gtacggttat tggttgagcg g

21

<210> 356
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 356
ccgaatcctc ctccaaacg

19

<210> 357
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 357
ggaatttaat tggagagaaa ttttggcg

28

<210> 358
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 358
ccaaaatttc cctcatctat atacgcc

27

<210> 359
<211> 17
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 359
gttgcgggtc gggttgc

17

<210> 360
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 360
gcaaaaacaa aaaacgcgta aaaacc

26

<210> 361
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 361
gtcgtcggtt tcgtagttgt c

21

<210> 362
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 362
cgtaaaaacc gaacgacgacg

20

<210> 363
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 363	tttcgttga ttttattcga gtcgtc	26
<210> 364		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 364	gaaccctctt caaataaacc gc	22
<210> 365		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 365	gattaaatag tcggggtcgc g	21
<210> 366		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 366	attctccaac gccaaccac	19
<210> 367		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 367	cgcgccgagg cgcgcttcca ctcc	24

35440-W0-1-ORD_ST25.txt

<210> 368

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 368

aggccacgga cggcggcggtt tttttttatg ttg

33

<210> 369

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 369

aggccacgga cgcaaccgaa ctaaaaaaaaaaa aaactaacg

39

<210> 370

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 370

cgcgccgagg gcgcgtaaga ttttcgg

27

<210> 371

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 371

cgcgccgagg gcgggtagta gtgcg

25

<210> 372

<211> 31

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 372
cgcgccgagg cgaccgaaaa atcgaaaaac a 31

<210> 373
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 373
cgcgccgagg gctaacgcga ataaaacacg 30

<210> 374
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 374
cgcgccgagg ttttcgttt cggtttcgg 29

<210> 375
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 375
cgcgccgagg ccgtacctat taactccg 28

<210> 376
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 376	aggccacgga cgtcgaaaaa tttttgcggg t	31
<210> 377		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 377		30
aggccacgga cgcgtattgg cgcgatttag		
<210> 378		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 378		33
aggccacgga cggttcgaaa aaaactcgac gaa		
<210> 379		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 379		30
aggccacgga cggccgttct ctaacttccg		
<210> 380		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 380		29
aggccacgga cgccgaaata cgaacgcga		

35440-W0-1-ORD_ST25.txt

<210> 381

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 381

aggccacgga cgtcggtcct cgatttcgc

29

<210> 382

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 382

aggccacgga cgcgaataaa acctacgaaa aaaaacg

37

<210> 383

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 383

aggccacgga cggaaaaccg caaaatcctc g

31

<210> 384

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 384

aggccacgga cgcgcgaaat aaacctataa ttaactca

38

<210> 385

<211> 29

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 385
cgcgccgagg ccgaaccaac actcaaaac 29

<210> 386
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 386
cgcgccgagg gcgcgtttgg tttggt 26

<210> 387
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 387
aggccacgga cgaacgcgct ccaacc 26

<210> 388
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 388
cgcgccgagg cgcgacgact aaaaaaattc a 31

<210> 389
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 389	aggccacgga cggtcgaaat cgaaacgctc	30
<210> 390		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 390	cgcgccgagg ccgcgactac ctcttc	26
<210> 391		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 391	aggccacgga cgcgacgtcc tacaaaacca	30
<210> 392		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 392	cgcgcccagg ggcggtagtt gttgc	25
<210> 393		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 393	cgcgcccagg gcgaaaaccc cgcc	24

35440-W0-1-ORD_ST25.txt

<210> 394

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 394

cgcgccgagg cgtcttaacta aacgcgataa ac

32

<210> 395

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 395

cgcgcccagg gcggtttag cgatgaatc

29

<210> 396

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 396

cgcgcccagg cgattcgagg gcgt

24

<210> 397

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 397

aggccacgga cgcgacgc aaaactc

27

<210> 398

<211> 26

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 398
aggccacgga cggcggcggt tggatt 26

<210> 399
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 399
aggccacgga cgtcccgaaa cgaacgataa a 31

<210> 400
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 400
cgcggcgagg cgccgtcgca ctac 24

<210> 401
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 401
aggccacgga cgcgcgactc cccact 26

<210> 402
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 402	aggccacgga cgcgcaaata ataacgcgaa cg	32
<210> 403		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 403	aggccacgga cgcgttcgag gtttagtttt tgg	33
<210> 404		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 404	aggccacgga cgcgtacgta acccgcg	27
<210> 405		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 405	cgcgccgagg cgctactaac cataaccgc	29
<210> 406		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 406	cgcgccgagg cgttttcggtt tgattcggtt	30

35440-W0-1-ORD_ST25.txt

<210> 407

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 407

cgcgccgagg tcggtgattg atgtgtgcg

29

<210> 408

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 408

cgcgccgagg cgtaactcca tctcgataac c

31

<210> 409

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 409

cgcgccgagg cgaccgcgaa aaaacg

26

<210> 410

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 410

aggccacgga cgcgcttgg aagtttcg

28

<210> 411

<211> 26

<212> DNA

<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 411
cgcgccgagg gcgcgaacac aaaacg 26

<210> 412
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 412
cgcgccgagg accgaaaacg ccctaaa 27

<210> 413
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 413
cgcgccgagg gcgtggagaa atgttagttt g 31

<210> 414
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 414
aggccacgga cgcggcggt gaatttgt 28

<210> 415
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 415	aggccacgga cgacgtcgta tttgtggcg	29
<210> 416		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 416	aggccacgga cggcggtt tagcgcg	27
<210> 417		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 417	aggccacgga cggatccgc aaatcaacac	30
<210> 418		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 418	cgcgccgagg cgatcccaa ctccc	25
<210> 419		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 419	cgcgccgagg cgcttctaaa acctcgatcc	30

35440-W0-1-ORD_ST25.txt

<210> 420
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 420
cgcgccgagg cgccgtcggtt aatatgtatt c

31

<210> 421
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 421
aggccacgga cgcgttggc gtagatataa gc

32

<210> 422
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 422
aggccacgga cgcgaactac gaaaacaacc tc

32

<210> 423
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 423
ggattggta gattcgggac

20

<210> 424
<211> 21
<212> DNA
<213> Artificial Sequence

35440-W0-1-ORD_ST25.txt

<220>
<223> Synthetic

<400> 424
cccgaaacca aaaaacaacg a

21

<210> 425
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 425
gagtagggtt attttcgcgg g

21

<210> 426
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 426
ctactttttt cccgacaaaaa taaaaacgt

29

<210> 427
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 427
cgcgatagcg ttttttattg tcgcg

25

<210> 428
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 428
cgcacgaccg taaaatactc g 21

<210> 429
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 429
cggttcgttg cgtttatcga 20

<210> 430
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 430
cccccgaact actctacgct 20

<210> 431
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 431
gattaaatag tcggggtcgc g 21

<210> 432
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 432
attctccaac gccaaaccac 19

35440-W0-1-ORD_ST25.txt

<210> 433
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 433
gtacggttat tggttgagcg g

21

<210> 434
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 434
ccgaatcctc ctccaaacg

19

<210> 435
<211> 0
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 435
000

<210> 436
<211> 0
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 436
000

<210> 437
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

35440-W0-1-ORD_ST25.txt

<223> Synthetic

<400> 437

gggattttta gcggaagcga

20

<210> 438

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 438

cgacgaacta tccgactatc act

23

<210> 439

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 439

ggtaggggt ggagttcggtt a

21

<210> 440

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 440

actccgaact ctactcatcc ttcc

24

<210> 441

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 441

tccggcggttt ttagtaaaag cg

22

35440-W0-1-ORD_ST25.txt

<210> 442	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 442	
aaatctcccg tccccactcc	19
<210> 443	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 443	
ggttggtagt cgtttttacg ttttc	25
<210> 444	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 444	
caaaaacccat ctaattacaa aatacctcga	30
<210> 445	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 445	
tggagttatc ggaaggcga	19
<210> 446	
<211> 18	

35440-W0-1-ORD_ST25.txt

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 446
cgaactcccg aaacgacg 18

<210> 447
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 447
tttcgttga ttttattcga gtcgtc 26

<210> 448
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 448
gaaccctctt caaataaaacc gc 22

<210> 449
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 449
gattatattc ggattttgtt tatcgct 28

<210> 450
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

35440-W0-1-ORD_ST25.txt

<223> Synthetic

<400> 450

gactttcct acccgca

18

<210> 451

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 451

aggccacgga cgcgtattgg cgcgatttag

30

<210> 452

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 452

cgcgccgagg gcgggttttag cgatgaatc

29

<210> 453

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 453

aggccacgga cggtcgaaat cgaaacgctc

30

<210> 454

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 454

cgcgccgagg gctaacgcga ataaaacacg

30

35440-W0-1-ORD_ST25.txt

<210> 455
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 455
aggccacgga cgcgaaactac gaaaacaacc tc 32

<210> 456
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 456
aggccacgga cggatccgc aaatcaacac 30

<210> 457
<211> 0
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 457
000

<210> 458
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 458
cgcgccgagg tcgttcctcg atttcgc 27

<210> 459
<211> 31
<212> DNA

35440-W0-1-ORD_ST25.txt

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 459

cgcgccgagg cgtaactcca tctcgataac c

31

<210> 460

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 460

cgcgccgagg cgcgaaataa acctataatt aactca

36

<210> 461

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 461

aggccacgga cgcgcgttgg aagtttcg

28

<210> 462

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 462

cgcgccgagg gcgcgaaacac aaaacg

26

<210> 463

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

35440-W0-1-ORD_ST25.txt

<400> 463	
aggccacgga cgcgttggc gtagatataa gc	32
<210> 464	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 464	
cgcgccgagg ttttcgtttt cggttcgg	29