
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0078531A1

Chauvel et al.

US 20040078531A1

(43) Pub. Date: Apr. 22, 2004

(54)

(75)

(73)

(21)

(22)

(60)

SYNCHRONIZING STACK STORAGE

Inventors: Gerard Chauvel, Antibes (FR); Serge
Lasserre, Frejus (FR)

Correspondence Address:
TEXAS INSTRUMENTS INCORPORATED
PO BOX 655474, M/S 3999
DALLAS, TX 75265

Assignee: Texas Instruments Incorporated, Dal
las, TX (US)

Appl. No.: 10/631,422

Filed: Jul. 31, 2003

Related U.S. Application Data

Provisional application No. 60/400,391, filed on Jul.
31, 2002.

MAN STACK
POINTER

164

(30) Foreign Application Priority Data

Jul. 30, 2003 (EP).. O329.1912.8

Publication Classification

(51) Int. Cl." ... G06F 12/00
(52) U.S. Cl. .. 711/156; 711/165

(57) ABSTRACT

A System comprises a main Stack, a local data Stack and
plurality of flags. The main Stack comprises a plurality of
entries and is located outside a processor's core. The local
data Stack is coupled to the main Stack and is located internal
to the processor's core. The local data Stack has a plurality
of entries that correspond to entries in the main Stack. Each
flag is associated with a corresponding entry in the local data
Stack and indicates whether the data in the corresponding
local data Stack entry is valid. The System performs two
instructions. One instruction Synchronizes the main Stack to
the local data Stack and invalidates the local data Stack,
while the other instruction Synchronizes the main Stack
without invalidating the local data Stack.

PONTER

Patent Application Publication Apr. 22, 2004 Sheet 1 of 6 US 2004/0078531 A1

CO
O
v

S

3
O

Patent Application Publication Apr. 22, 2004 Sheet 2 of 6 US 2004/0078531 A1

3. 8 S

we

\

Patent Application Publication Apr. 22, 2004 Sheet 3 of 6 US 2004/0078531 A1

140 GENERAL PURPOSE (GP)

R1 GENERAL PURPOSE (GP)

R2 GENERAL PURPOSE (GP)

R3 GENERAL PURPOSE (GP)

R4

R5

PROGRAMCOUNTER (PC)
GENERAL PURPOSE/LOCAL VARIABLE
POINTER (LV)
STACK POINTER (SP)

R7 TOP OF STACK (TOS)

GENERAL PURPOSE/ADDRESS INDEX 0 (AIO)

GENERAL PURPOSE/ADDRESS INDEX 1 (AI1)

R10 GENERAL PURPOSE (GP)

R11 GENERAL PURPOSE (GP)

R12 MICRO-PROGRAMCOUNTER (MICRO-PC)

GENERAL PURPOSE (GP)
R14 GENERAL PURPOSE/INDIRECT REGISTER

INDEX (IRI)
STATUS AND CONTROL (ST)

FIGURE 3

Patent Application Publication Apr. 22, 2004 Sheet 4 of 6 US 2004/0078531 A1

MAN STACK
POINTER

164

u-STACK
PONTER

162

MAN STACK
POINTER

164

u-STACK
POINTER

162

MAN STACK
POINTER

164

u-STACK
POINTER

162

FIGURE 4C

Patent Application Publication Apr. 22, 2004 Sheet 5 of 6 US 2004/0078531 A1

MAN STACK
POINTER

164

MAN STACK
POINTER

164

MAN STACK
POINTER POINTER

164 162

Patent Application Publication Apr. 22, 2004 Sheet 6 of 6 US 2004/0078531 A1

MAN STACK
POINTER

FIGURE 6

US 2004/0078531A1

SYNCHRONIZING STACK STORAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority to U.S. Provisional
Application Serial No. 60/400,391 titled “JSM Protection,”
filed Jul. 31, 2002, incorporated herein by reference. This
application also claims priority to EPO Application No.
03291912.8, filed Jul. 30, 2003 and entitled “Synchronizing
Stack Storage, incorporated herein by reference. This appli
cation also may contain Subject matter that may relate to the
following commonly assigned co-pending applications
incorporated herein by reference: “System And Method To
Automatically Stack And Unstack Java Local Variables,”
Ser. No. , filed Jul. 31, 2003, Attorney Docket No.
TI-35422 (1962-05401); “Memory Management Of Local
Variables,” Ser. No. , filed Jul. 31, 2003, Attorney
Docket No. TI-35423 (1962-05402); “Memory Management
Of Local Variables Upon A Change Of Context,” Ser. No.

, filed Jul. 31, 2003, Attorney Docket No. TI-35424
(1962-05403); “A Processor With A Split Stack.” Ser. No.

, filed Jul. 31, 2003, Attorney Docket No.
TI-354.25(1962-05404); “Using IMPDEP2 For System
Commands Related To Java Accelerator Hardware,” Ser.
No. , filed Jul. 31, 2003, Attorney Docket No.
TI-35426 (1962-05405); “Test With Immediate And Skip
Processor Instruction,” Ser. No. , filed Jul. 31, 2003,
Attorney Docket No. TI-35427 (1962-05406); “Test And
Skip Processor Instruction Having At Least One Register
Operand,” Ser. No. , filed Jul. 31, 2003, Attorney
Docket No. TI-35248 (1962-05407); “Methods And Appa
ratuses For Managing Memory,” Ser. No. , filed Jul.
31, 2003, Attorney Docket No. TI-35430 (1962-05409);
“Write Back Policy For Memory,” Ser. No. , filed Jul.
31, 2003, Attorney Docket No. TI-35431 (1962-05410);
“Methods And Apparatuses For Managing Memory,” Ser.
No. , filed Jul. 31, 2003, Attorney Docket No.
TI-35432 (1962-05411); “Mixed Stack-Based RISC Proces
Sor,” Ser. No. , filed Jul. 31, 2003, Attorney Docket
No. TI-35433 (1962-05412); “Processor That Accommo
dates Multiple Instruction Sets And Multiple Decode
Modes,” Ser. No. , filed Jul. 31, 2003, Attorney
Docket No. TI-35434 (1962-05413); “System To Dispatch
Several Instructions. On Available Hardware Resources.”
Ser. No. , filed Jul. 31, 2003, Attorney Docket No.
TI-35444 (1962-05414); “Micro-Sequence Execution. In A
Processor,” Ser. No. , filed Jul. 31, 2003, Attorney
Docket No. TI-35445 (1962-05415); “Program Counter
Adjustment Based On The Detection Of An Instruction
Prefix, Ser. No. , filed Jul. 31, 2003, Attorney
Docket No. TI-35452 (1962-05416); “Reformat Logic To
Translate Between A Virtual Address And A Compressed
Physical Address,” Ser. No. , filed Jul. 31, 2003,
Attorney Docket No. TI-35460 (1962-05417); “Synchroni
zation Of Processor States,” Ser. No. , filed Jul. 31,
2003, Attorney Docket No. TI-35461 (1962-05418); “Con
ditional Garbage Based On Monitoring To Improve Real
Time Performance,” Ser. No. , filed Jul. 31, 2003,
Attorney Docket No. TI-35485 (1962-05419); “Inter-Pro
cessor Control,” Ser. No. , filed Jul. 31, 2003, Attor
ney Docket No. TI-35486 (1962-05420); “Cache Coherency
In A Multi-Processor System,” Ser. No. , filed Jul.
31, 2003, Attorney Docket No. TI-35637 (1962-05421);
“Concurrent Task Execution In A Multi-Processor, Single

Apr. 22, 2004

Operating System Environment,” Ser. No. , filed Jul.
31, 2003, Attorney Docket No. TI-35638 (1962-05422); and
“A Multi-Processor Computing System Having AJava Stack
Machine And A RISC-Based Processor,” Ser. No. s
filed Jul. 31, 2003, Attorney Docket No. TI-35710 (1962
05423).

BACKGROUND OF THE INVENTION

0002) 1. Technical Field of the Invention
0003. The present invention relates generally to synchro
nizing Stack Storage that may be located external to a
processor's core to Stack Storage that may be located internal
to a processor's core.
0004 2. Background Information
0005. Many types of electronic devices are battery oper
ated and thus preferably consume as little power as possible.
An example is a cellular telephone. Further, it may be
desirable to implement various types of multimedia func
tionality in an electronic device Such as a cell phone.
Examples of multimedia functionality may include, without
limitation, games, audio decoders, digital cameras, etc. It is
thus desirable to implement Such functionality in an elec
tronic device in a way that, all else being equal, is fast,
consumes as little power as possible and requires as little
memory as possible. Improvements in this area are desir
able.

BRIEF SUMMARY

0006. In at least one embodiment, a system comprises a
main Stack, a local data Stack and plurality of flags. The main
Stack preferably comprises a plurality of entries and is
located outside a processor's core. The local data Stack is
coupled to the main Stack and preferably is located internal
to the processor's core. The local data Stack has a plurality
of entries that correspond to entries in the main Stack. Each
flag is associated with a corresponding entry in the local data
Stack and indicates whether the data in the corresponding
local data Stack entry is valid. The System preferably per
forms two instructions. One of the instructions copies all
valid data from the local data Stack in the processor's core
to corresponding entries in the main Stack outside the
processor's core and invalidates all previously valid local
data Stack entries. The other instruction copies all valid data
from the local data Stack to the main Stack, but does not
invalidate the local data Stack. Other embodiments comprise
related methods.

NOTATION AND NOMENCLATURE

0007 Certain terms are used throughout the following
description and claims to refer to particular System compo
nents. AS one skilled in the art will appreciate, various
companies may refer to a component by different names.
This document does not intend to distinguish between
components that differ in name but not function. In the
following discussion and in the claims, the terms “includ
ing” and “comprising” are used in an open-ended fashion,
and thus should be interpreted to mean “including, but not
limited to * Also, the term “couple' or “couples” is
intended to mean either an indirect or direct connection.
Thus, if a first device couples to a Second device, that
connection may be through a direct connection, or through

US 2004/0078531A1

an indirect connection via other devices and connections.
The term “system” is used to refer to a collection of
components. For example, a System may comprise a pro
ceSSor and memory and other components. A System also
may comprise a collection of components internal to a single
processor and, as Such, a processor may be referred to as a
System.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 For a more detailed description of the preferred
embodiments of the present invention, reference will now be
made to the accompanying drawings, wherein:
0009 FIG. 1 shows a diagram of a system in accordance
with preferred embodiments of the invention and including
a Java Stack Machine ("JSM") and a Main Processor Unit
(“MPU”);
0010 FIG. 2 shows a block diagram of the JSM of FIG.
1 in accordance with preferred embodiments of the inven
tion;
0011 FIG.3 shows various registers used in the JSM of
FIGS. 1 and 2;
0012 FIGS. 4A-C depict stack management in the event
of an overflow condition;
0013 FIGS. 5A-C depict stack management in the event
of an underflow condition;
0.014 FIG. 6 depicts the operation of an instruction that
cleans and invalidates a local data Stack contained in the
JSM; and
0015 FIG. 7 depicts an exemplary embodiment of the
System described herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0016. The following discussion is directed to various
embodiments of the invention. Although one or more of
these embodiments may be preferred, the embodiments
disclosed should not be interpreted, or otherwise used, as
limiting the Scope of the disclosure, including the claims,
unless otherwise Specified. In addition, one skilled in the art
will understand that the following description has broad
application, and the discussion of any embodiment is meant
only to be exemplary of that embodiment, and not intended
to intimate that the Scope of the disclosure, including the
claims, is limited to that embodiment.
0.017. The subject matter disclosed herein is directed to a
programmable electronic device Such as a processor. The
processor described herein is particularly Suited for execut
ing JavaTM bytecodes or comparable, code. As is well
known, Java is particularly Suited for embedded applica
tions. Java is a relatively "dense' language meaning that on
average each instruction may perform a large number of
functions compared to various other programming lan
guages. The dense nature of Java is of particular benefit for
portable, battery-operated devices that preferably include as
little memory as possible to Save Space and power. The
reason, however, for executing Java code is not material to
this disclosure or the claims that follow. The processor
described herein may be used in a wide variety of electronic
Systems. By way of example and without limitation, the

Apr. 22, 2004

Java-executing processor described herein may be used in a
portable, battery-operated cell phone. Further, the processor
advantageously includes one or more features that reduce
the amount of power consumed by the Java-executing
processor.

0018 Referring now to FIG. 1, a system 100 is shown in
accordance with a preferred embodiment of the invention.
AS shown, the System includes at least two processors 102
and 104. Processor 102 is referred to for purposes of this
disclosure as a Java Stack Machine ("JSM") and processor
104 may be referred to as a Main Processor Unit (“MPU”).
System 100 may also include an external memory 106
coupled to both the JSM 102 and MPU 104 and thus
accessible by both processors. The external memory 106
may exist on a separate chip than the JSM 102 and the MPU
104. At least a portion of the external memory 106 may be
shared by both processors meaning that both processors may
access the same Shared memory locations. Further, if
desired, a portion of the external memory 106 may be
designated as private to one processor or the other. System
100 also includes a Java Virtual Machine (“JVM) 108,
compiler 110, and a display 114. The JSM 102 preferably
includes an interface to one or more input/output (“I/O”)
devices Such as a keypad to permit a user to control various
aspects of the system 100. In addition, data streams may be
received from the I/O space into the JSM 102 to be pro
cessed by the JSM 102. Other components (not specifically
shown) may include, without limitation, a battery and an
analog transceiver to permit wireleSS communications with
other devices. As noted above, while system 100 may be
representative of, or adapted to, a wide variety of electronic
Systems, an exemplary electronic System may comprise a
battery-operated, mobile cell phone.
0019 AS is generally well known, Java code comprises a
plurality of “bytecodes' 112. Bytecodes 112 may be pro
vided to the JVM 108, compiled by compiler 110 and
provided to the JSM 102 and/or MPU 104 for execution
therein. In accordance with a preferred embodiment of the
invention, the JSM 102 may execute at least some, and
generally most, of the Java bytecodes. When appropriate,
however, the JSM 102 may request the MPU 104 to execute
one or more Java bytecodes not executed or executable by
the JSM 102. In addition to executing Java bytecodes, the
MPU 104 also may execute non-Java instructions. The MPU
104 also hosts an operating system (“O/S”) (not specifically
shown), which performs various functions including System
memory management, the System task management that
Schedules the JVM 108 and most or all other native tasks
running on the System, management of the display 114,
receiving input from input devices, etc. Without limitation,
Java code may be used to perform any one of a variety of
applications including multimedia, games or web based
applications in the system 100, while non-Java code, which
may comprise the O/S and other native applications, may
still run on the system on the MPU 104.
0020. The JVM 108 generally comprises a combination
of software and hardware. The Software may include the
compiler 110 and the hardware may include the JSM 102. In
accordance with preferred embodiments of the invention,
the JSM 102 may execute at least two instruction sets. One
instruction Set may comprise Standard Java bytecodes. AS is
well-known, Java bytecode is a Stack-based intermediate
language in which instructions generally target a Stack. For

US 2004/0078531A1

example, an integer add (“IADD’) Java instruction pops two
integers off the top of the Stack, adds them together, and
pushes the Sum back on the Stack. AS will be explained in
more detail below, the JSM 102 comprises a stack-based
architecture with various features that accelerate the execu
tion of Stack-based Java code, where the Stack may include
multiple portions that exist in different physical locations.

0021) Another instruction set executed by the JSM 102
may include instructions other than Standard Java instruc
tions. In accordance with at least Some embodiments of the
invention, other instruction Sets may include register-based
and memory-based operations to be performed. This other
instruction Set generally complements the Java instruction
Set and, accordingly, may be referred to as a complementary
instruction set architecture (“C-ISA”). By complementary, it
is meant that the execution of more complex Java bytecodes
may be Substituted by a “micro-Sequence’ comprising one
or more C-ISA instructions that permit address calculation to
readily “walk through the JVM data structures. A micro
Sequence also may include one or more bytecode instruc
tions. The execution of Java may be made more efficient and
run faster by replacing Some Sequences of bytecodes by
preferably shorter and more efficient sequences of C-ISA
instructions. The two sets of instructions may be used in a
complementary fashion to obtain Satisfactory code density
and efficiency. As such, the JSM 102 generally comprises a
Stack-based architecture for efficient and accelerated execu
tion of Java bytecodes combined with a register-based
architecture for executing register and memory based C-ISA
instructions. Both architectures preferably are tightly com
bined and integrated through the C-ISA.

0022 FIG. 2 shows an exemplary block diagram of the
JSM 102. As shown, the JSM includes a core 120 coupled
to a data Storage 122 and an instruction Storage 130. Storage
122 and 130 are preferably integrated, along with core 120,
on the same JSM chip. Integrating storage 122 and 130 on
the same chip as the core 120 may reduce data transfer time
from storage 122 and 130 to the core 120. The core 120 may
include one or more components as shown. Such compo
nents preferably include a plurality of registers 140, three
address generation units (“AGUs”) 142, 147, micro-trans
lation lookaside buffers (micro-TLBs) 144, 156, a multi
entry micro-stack 146, an arithmetic logic unit (“ALU”)
148, a multiplier 150, decode logic 152, and instruction fetch
logic 154. In general, operands may be retrieved from a main
stack and processed by the ALU 148, where the main stack
may include multiple portions that exist in different physical
locations. For example, the main Stack may reside in exter
nal memory 106 and/or data storage 122. Selected entries
from the main Stack may exist on the micro-stack 146. In this
manner, Selected entries on the micro-stack 146 may repre
Sent the most current version of the operands in the System
100. Accordingly, operands in external memory 106 and
data Storage 122 may not be coherent with the versions
contained on the micro-stack 146. A plurality of flags 158
are associated with the micro-Stack 146. Each micro-Stack
entry preferably has an associated flag 158. Each flag 158
indicates whether the data in the associated micro-Stack
entry is valid and whether the data has been modified. Also,
Stack coherency operations may be performed by examining
the flags 158 and updating the main stack with valid oper
ands from the micro-stack 146 as will be explained below.

Apr. 22, 2004

0023 The micro-stack 146 preferably comprises, at most,
the top n entries of the main Stack that is implemented in data
storage 122 and/or external memory 106. The micro-stack
146 preferably comprises a plurality of gates in the core 120
of the JSM 102. By implementing the micro-stack 146 in
gates (e.g., registers) in the core 120 of the JSM 102, access
to the data contained on the micro-stack 146 is generally
quite fast. Therefore, data access time may be reduced by
providing data from the micro-Stack 146 instead of the main
Stack. General Stack requests are provided by the micro
stack 146 unless the micro-stack 146 cannot fulfill the stack
requests. For example, when the micro-Stack 146 is in an
overflow condition or when the micro-stack 146 is in an
underflow condition (as will be described below), general
Stack requests may be fulfilled by the main Stack. By
analyzing trends of the main Stack, the value of n, which
represents the size of the micro-Stack 146, may be optimized
Such that a majority of general Stack requests are fulfilled by
the micro-stack 146, and therefore may provide requested
data in fewer cycles. As a result, power consumption of the
system 102 may be reduced. Although the value of n may
vary in different embodiments, in accordance with at least
Some embodiments, the value of n may be the top eight
entries in the main stack. In this manner, about 98% of the
general Stack accesses may be provided by the micro-Stack
146, and the number of accesses to the main Stack may be
reduced. AS will be seen below, the main Stack may not
always be coherent with the micro-Stack and, there may be
a need, at times, to Synchronize the main Stack to the
micro-Stack.

0024. Instructions may be fetched from instruction stor
age 130 by fetch logic 154 and decoded by decode logic 152.
The address generation unit 142 may be used to calculate
addresses based, at least in part on data contained in the
registers 140. The AGUs 142 may calculate addresses for
C-ISA instructions. The AGUs 142 may support parallel data
accesses for C-ISA instructions that perform array or other
types of processing. AGU 147 couples to the micro-Stack
146 and may manage overflow and underflow conditions on
the micro-stack 146 preferably in parallel. The micro-TLBs
144, 156 generally perform the function of a cache for the
address translation and memory protection information bits
that are preferably under the control of the operating System
running on the MPU 104.
0025 Referring now to FIG. 3, the registers 140 may
include 16 registers designated as R0–R15. Registers R0–R3,
R5, R8-R11 and R13-R14 may be used as general purposes
(“GP) registers usable for any purpose by the programmer.
Other registers, and Some of the GP registers, may be used
for Specific functions. For example, registerS R4 and R12
may be used to Store two program counters. Register R4
preferably is used to store the program counter (“PC”) and
register R12 preferably is used to Store a micro-program
counter (“micro-PC"). In addition to use as a GP register,
register R5 may be used to Store the base address of a portion
of memory in which Java local variables may be stored when
used by the current Java method. The top of the micro-stack
146 is reflected in registers R6 and R7. The top of the
micro-Stack 146 has a matching address in external memory
106 pointed to by register R6. The operands contained on the
micro-stack 146 are the latest updated values, while their
corresponding values in external memory 106 may or may
not be up to date. Register R7 provides the data value stored
at the top of the micro-stack 146. Registers R8 and R9 may

US 2004/0078531A1

also be used to hold an address index 0 (“AI0) and an
address index 1 (“AI1), which may be used in calculating
addresses in memory generated by various bytecodes, for
example, the result of an IADD instruction. Register R14
may also be used to hold the indirect register index (“IRI”)
that also may be used in calculating memory addresses.
Register R15 may be used for status and control of the JSM
102. As an example, one status/control bit (called the
“Micro-Sequence-Active” bit) may indicate if the JSM 102
is executing a "simple' instruction or a “complex” instruc
tion through a micro-Sequence as explained above. This bit
controls in particular, which program counter is used R4
(PC) or R12 (micro-PC) to fetch the next instruction. A
“simple” bytecode instruction is generally one in which the
JSM 102 may perform an immediate operation either in a
Single cycle (e.g., an IADD instruction) or in Several cycles
(e.g., “dup2 X2). A “complex bytecode instruction is one
in which Several memory accesses may be required to be
made within the JVM data structure for various verifications
(e.g., NULL pointer, array boundaries). Because these data
Structures are generally JVM-dependent and thus may
change from one JVM implementation to another, the soft
ware flexibility of the micro-Sequence provides a mecha
nism for various JVM optimizations now known or later
developed.

0026 Referring again to FIG. 2, the ALU 148 adds,
subtracts, and shifts data. The multiplier 150 may be used to
multiply two values together in one or more cycles. The
instruction fetch logic 154 generally fetches instructions
from instruction storage 130. The instructions may be
decoded by decode logic 152. Because the JSM 102 is
adapted to process instructions from at least two instruction
Sets, the decode logic 152 generally comprises at least two
modes of operation, one mode for each instruction Set. AS
Such, the decode logic unit 152 may include a Java mode in
which Java instructions may be decoded and a C-ISA mode
in which C-ISA instructions may be decoded.
0027. The data storage 122 generally comprises data
cache (“D-cache”) 124 and data random access memory
(“D-RAM”) 126. Reference may be made to copending
applications U.S. Ser. No. 09/591,537 filed Jun. 9, 2000 (atty
docket TI-29884), Ser. No. 09/591,656 filed Jun. 9, 2000
(atty docket TI-29960), and Ser. No. 09/932,794 filed Aug.
17, 2001 (atty docket TI-31351), all of which are incorpo
rated herein by reference. The main Stack, arrays and non
critical data may be stored in the D-cache 124, while Java
local variables, critical data and non-Java variables (e.g., C,
C++) may be stored in D-RAM 126. The instruction storage
130 may comprise instruction RAM (“I-RAM”) 132 and
instruction cache (“I-cache”) 134. The I-RAM 132 may be
used for “complex’ micro-Sequenced bytecodes or micro
Sequences or predetermined Sequences of code, as will be
described below. The I-cache 134 may be used to store other
types of Java bytecode and mixed Java/C-ISA instructions.

0028. As noted above, the C-ISA instructions generally
complement the Standard Java bytecodes. For example, the
compiler 110 may scan a series of Java bytes codes 112 and
replace one or more of Such bytecodes with an optimized
code Segment mixing C-ISA and bytecodes and which is
capable of more efficiently performing the function(s) per
formed by the initial group of Java bytecodes. In at least this
way, Java execution may be accelerated by the JSM 102.

Apr. 22, 2004

0029. As explained above, the JSM 102 implements a
split stack architecture. As illustrated in FIGS. 4A-C and
5A-C below, the main stack (that may be implemented in
data storage 122 and/or external memory 106) may be
“incoherent” from the data contained in micro-stack 146. By
way of background to FIGS. 4A-C and 5A-C, each micro
stack entry has a corresponding flag 158. The flag 158
indicates whether or not the corresponding micro-Stack entry
contains valid data. In the examples of FIGS. 4A-C and
5A-C, a flag 158 designated as “EN” signifies that the flag
is enabled indicating that the corresponding micro-Stack
entry contains valid data. A flag that is blank indicates that
the corresponding micro-Stack entry does not contain valid
data (i.e., contains invalid data).
0030. As noted above, the micro-stack 146 includes a
finite number of entries, and therefore overflow and under
flow conditions may occur. FIGS. 4A-C depict an overflow
condition of the micro-stack 146. Note that although the
micro-stack 146 shown in FIGS. 4A-C is shown containing
four entries, preferred embodiments may have any number
of entries. As shown in FIG. 4A, the micro-stack 146 may
include data values or operands A and B, for example as the
result of pushing A and B on the micro-stack 146. Stack
pointers 162 and 164 reflect the top of the micro-stack 146
and the top of the main stack 160, respectively. When new
data values are pushed on the micro-stack 146, the flags 158
may be enabled (“EN”) to indicate that the new data is valid.
Operands pushed on the micro-Stack 146 generally are not
pushed on a main stack 160. Operands A" and B' indicate the
place of the data in the main stack, but these entries are not
coherent with the corresponding micro-Stack entries A and
B. The symbol () indicates that the associated operand is not
actually present in the main Stack. Coherence may be
achieved if A and B are written to main memory during an
overflow condition or flushing, as explained below. The
main Stack pointer 164 is updated at every push or pop. AS
indicated above, the main stack 160 may exist in external
memory 106 and/or data storage 122, and the main stack 160
may be larger than the micro-Stack 146.

0031 FIG. 4B shows operands C and D pushed on the
micro-stack 146, where the micro-stack 146 is now full. Any
Subsequent operand is pushed on the micro-Stack 146 in a
cyclical manner Such that when the micro-stack 146 is full,
the data at the bottom of the micro-stack 146 (which in this
example is operand A) is overwritten. AS operands are
pushed into entries of the micro-stack 146, the flag 158
associated with each entry may be checked for validity. If the
flag 158 indicates that the data in an entry, where a new push
is performed, is valid (i.e., flag 158 enabled), then the entry
is copied on to the main Stack 160 prior to pushing the next
data operand on the micro-stack 146. FIG. 4C depicts the
result of pushing operand E on the full micro-stack 146 from
FIG. 4B. When the micro-stack 146 is full (FIG. 4B), the
bottom of the micro-stack 146 (operandA) is moved into the
main Stack 160 at an address value equal to the main Stack
pointer 164 minus the number of entries in comprising the
micro-stack 146. For example, FIG. 4B shows the micro
Stack 146 including 4 entries and the main Stack pointer 164
indicating the top of the main Stack 160. In this example,
prior to overwriting operand A on the micro-Stack 146 with
operand E, operand A is copied to an address that is four
entries less than the address indicated by the Stack pointer
164. Thus, operand A from the micro-stack 164 is written to

US 2004/0078531A1

the main stack as indicated in FIG. 4C. then, operand E can
be written to the micro-stack 146 as shown.

0032 FIGS. 5A-C depict an underflow condition of the
micro-stack 146 shown in FIG. 4C. Referring to FIG. 5A,
operand E is popped off the micro-Stack 146 and then
operand D is popped off the micro-Stack 146. AS operands
are popped off of the micro-Stack 146 the corresponding flag
158 is invalidated and the stack pointers 162 and 164 are
decremented. FIG. 5B illustrates a bytecode that provides
operands B and C to the ALU 148. The ALU 148 produces
a result Z, which is placed back on the micro-Stack 146, and
the flag 158 is enabled as shown. If a subsequent bytecode
requires operand Z as well as another operand that is not on
the micro-stack 146, an underflow occurs. Flag 158 prefer
ably is checked for valid data prior to executing bytecodes
to determine whether the required data is present on the
micro-stack 146. For example, FIG. 5C depicts a bytecode
requiring operand Z in addition to operand A, which is not
on the micro-stack 146. Since flag 158 associated with
operand A is not enabled in FIG. 5B, operand A is fetched
from the main stack 160. In some embodiments, multiple
operands may be fetched simultaneously from the main
stack 160. In addition, other embodiments include pre
fetching the operands from the main stack 160.
0033) Flags 158 may be implemented as one or more
registers with bits allocated for each entry in the micro-Stack
146, or alternatively flags 158 may include a read pointer
and a write pointer. The read pointer is preferably updated on
each Stack instruction execution. For example, during an
IADD instruction, the read pointer may decrement itself
once for each operand that is popped off the Stack, and then
increment itself once to write the result of the operand back
on the Stack. The write pointer is preferably updated during
an underflow or an overflow. By comparing the values of the
read pointer and the write pointer, overflow and underflow
conditions can be detected.

0034). As illustrated in FIGS. 4A-C and 5A-C, the data in
the main stack 160 may not be coherent with data in the
micro-stack. For example, in FIG. 4C, the micro-stack
contains operands B, C, and D that are not present in the
main Stack. Similarly, the main Stack 160 contains operand
Ethat is not present in the micro-Stack. Situations may occur
in which it is desirable to have the main stack 160 contain
a complete view of all of the data in the main and micro
Stacks and thus be made coherent with the micro-Stack. For
example, it may be desirable or required to change the
current context of the System and doing So may require all
Stack data to be saved to external Storage. Performing this
action may require all of the Stack data to be contained in the
main Stack to facilitate copying to external Storage. The
preferred embodiments of the invention permit the JSM 102
to execute a “clean and invalidate' instruction to make the
main Stack coherent with the micro-Stack and invalidate the
contents of the micro-stack So that, for instance, another
thread may use the entire micro-Stack. In other situations,
there may be a need for the execution of Some bytecodes to
access and test a value embedded in the Stack, but not at the
top, before performing additional processing. The additional
processing may depend on the outcome of testing the
embedded Stack value. This situation may require the main
Stack to have a complete view of all Stack data, but it may
be desirable for the micro-stack to retain all of its current
data. Accordingly, the JSM 102 also may execute a “clean'

Apr. 22, 2004

instruction which makes the main Stack coherent with the
micro-Stack, but does not invalidate the data in the micro
Stack So that any valid micro-Stack data can be readily used
as desired. The execution of the “clean and invalidate' and
“clean' instructions will be described below.

0035 FIG. 6 illustrates the operation of the clean and
invalidate instruction. The state of the micro-stack 146 and
the main stack 160 in FIG. 6 is repeated from that of FIG.
4C. AS Such, the micro-stack 146 is full with valid data for
operands B-E and the main Stack has valid data for operand
A and placeholders for operands B-E. Thus, micro-stack 146
has valid data that is not present in the main stack 160. The
clean and invalidate instruction preferably Scrolls through
Some or all of the micro-Stack 146, beginning with the top
of the micro-stack that is identified by micro-stack pointer
162, and copies all valid data to corresponding entries in the
main Stack 160 and clears the corresponding valid bits (flags
158) in the micro-stack. In general, however, the order in
which the micro-stack entries are examined for valid data to
be copied to the main Stack is not important and thus the
entries can be examined in any order.
0036 Referring to the example of FIG. 6, the clean and
invalidate instruction causes the JSM 102 to begin with the
top of the micro-stack (although other orders are possible)
which contains operand E. The flag 158 associated with
operand E is examined to determine whether the entry
contains valid data. In the example of FIG. 6, operand E’s
flag 158 indicates that operand E is valid. The JSM 102 then
copies or moves operand E to the top of the main Stack
identified by pointer 164. Both pointers preferably may be
decremented, with the micro-Stack pointer 162 being dec
remented in a cyclical manner. In Some embodiments, the
pointers 162 and 164 may be saved so as not to lose the
current State of the pointers. After Synchronizing the main
stack 160 to the micro-stack 146, the pointer values may be
restored, if desired. After decrementing the micro-Stack
pointer 162, the pointer 162 then points to the entry con
taining operand D. Operand D's flag 158 is checked and the
JSM determines that operand D is valid. Operand D then is
copied or moved to the location pointed to by main Stack
pointer 164. This process repeats until a micro-stack entry is
encountered whose flag 158 indicates that the entry does not
contain valid data. In the example of FIG. 6, all micro-stack
entries contain valid data, but in other cases, one or more
entries may not contain valid data.
0037 As each valid data value is copied from the micro
stack 146 to the main stack, the corresponding flag 158 is
changed to indicate that the entry no longer contains valid
data. Alternatively, once all valid data values from the
micro-Stack are copied to the main Stack, the JSM may
change all flags 158 to the invalid state.
0038. Once the clean and invalidate instruction com
pletes, the main Stack 160 contains a complete view of all
valid Stack data. Further processing on one or more Stack
values may occur as desired. The State of the micro-Stack
146 at this point is that the micro-Stack does not contain any
valid data.

0039. As noted above, the clean instruction copies valid
data from the micro-stack 146 to the main stack. The
copying proceSS preferably functions as described above
with regard to the clean and invalidate instruction. Unlike
the clean and invalidate instruction, for the clean instruction

US 2004/0078531A1

the JSM 102 does not change the flags 158 to invalidate any
of the micro-Stack entries. The clean instruction advanta
geously makes the main Stack 160 coherent in the external
memory, but still keeps the top values locally in the micro
Stack 146, and marked as valid, for later use.
0040. As noted previously, system 100 may be imple
mented as a mobile cell phone such as that shown in FIG.
7. AS shown, a mobile communication device includes an
integrated keypad 412 and display 414. The JSM 102 and
MPU 104 and other components may be included in elec
tronicS package 410 connected to the keypad 412, display
414, and radio frequency (“RF) circuitry 416. The RF
circuitry 416 may be connected to an antenna 418.
0041 While the preferred embodiments of the present
invention have been shown and described, modifications
thereof can be made by one skilled in the art without
departing from the Spirit and teachings of the invention. The
embodiments described herein are exemplary only, and are
not intended to be limiting. Many variations and modifica
tions of the invention disclosed herein are possible and are
within the Scope of the invention. Accordingly, the Scope of
protection is not limited by the description Set out above.
Each and every claim is incorporated into the Specification
as an embodiment of the present invention.
What is claimed is:

1. A System, comprising:
a main Stack having a plurality of entries and residing

outside of a processor's core, each of the main Stacks
entries configurable to contain data;

a local data Stack coupled to the main Stack and located
internal to the processor's core, the local data Stack
having a plurality of entries that correspond to entries
in the main Stack, and each local data Stack entry is
configured to contain data; and

a plurality of flags, wherein each flag is associated with a
corresponding entry in the local data Stack and indi
cating whether the data in the corresponding local data
Stack entry is valid;

wherein the System performs an instruction that copies all
valid data from the local data Stack in the processor's
core to corresponding entries in the main Stack outside
the processor's core.

2. The System of claim 1 wherein Said System examines
the flag associated with a local data Stack entry to determine
whether the entry contains valid data and, only if the entry

Apr. 22, 2004

contains valid data does the System copy the data from the
entry to a corresponding entry in the main Stack.

3. The system of claim 1 further including a local data
Stack pointer associated with the local data Stack and a main
Stack pointer associated with the main Stack, wherein the
instruction causes the System to examine the flag associated
with the entry identified by the local data stack pointer to
determine whether that entry contains valid data, and if the
entry contains valid data, the instruction causes the System
to copy the entry's data to the entry in the main Stack
identified by the main Stack pointer.

4. The system of claim 3 wherein the local data stack
pointer is repeatedly decremented to permit the flags asso
ciated with additional entries in the local data Stack to be
examined for valid data, the data contained in each entry
whose flag indicates that the data is valid is copied to the
main Stack at an entry pointed to by the main Stack pointer
with the main Stack pointer also being decremented.

5. The system of claim 1 wherein the instruction causes
the System to change a flag associated with valid data that is
copied to the main Stack to a State to indicate that the entry
does not contain valid data.

6. The system of claim 1 wherein the instruction retains all
previously valid data in the local data Stack in the local data
Stack and marked as valid through the corresponding flags.

7. A method, comprising:
examining a flag associated with an entry in local data

Stack residing in a processor core, the flag indicating
whether the associated entry contains valid data, and

if the flag indicates the presence of valid data, copying the
data to a corresponding entry in a main Stack that
resides outside the processor core.

8. The method of claim 7 further comprising repeating
examining the flag and copying any valid data until the flags
asSociated with all entries in the local data Stack that have
valid data have been examined.

9. The method of claim 7 further comprising changing the
flag to indicate that the associated entry does not contain
valid data.

10. The method of claim 7 further comprising not chang
ing the flag to indicate that the associated entry does not
contain valid data.

11. The method of claim 7 wherein copying the data
comprises copying data from a local data Stack entry iden
tified by a local data Stack pointer to a corresponding entry
in the main Stack identified by a main Stack pointer.

k k k k k

