摘要

提供一种使用低透气性或非透气性的支承体，具有银盐照片所具有的高表面光泽度以及高点再现性，墨水接收性优良，记录浓度高，而且，不发生由墨水溶剂引起的起皱的喷墨记录用纸。喷墨记录用纸具有低透气性或非透气性的支承体，和在该支承体上涂布形成的至少一层墨水接收层，以及在该墨水接收层上进一步涂布形成的光泽层，与上述光泽层接触的墨水接收层，其细孔分布的比表面积标准模式直径仅为 100nm 以下，以平均二次粒径 1.3 μm 以下的颜料作为主成分，上述光泽层以平均一次粒径 5～100nm 的颜料作为主成分。
1. 一种喷墨记录用纸，该记录用纸具有低透气性或非透气性的支承体。在该支承体上涂布形成的至少一层墨水接受层以及再在该墨水接受层上涂布形成的光泽层，其特征在于：

与上述光泽层连接的墨水接受层，其细孔分布的比表面积标准模式直径仅为 100 nm 以下，并以平均二次粒径为 1.3 μm 以下的颜料作为主成分，

上述光泽层以平均一次粒径为 5～100 nm 的颜料作为主成分，
其中上述墨水接受层的空隙率 a% 与上述光泽层的空隙率 b% 满足下式：
\[a > b, \quad a - b > 25, \quad 45 < a < 80, \quad 10 < b \leq 45. \]

2. 根据权利要求 1 记载的喷墨记录用纸，其中上述光泽层表面的 75°表面光泽度为 70% 以上，并且使用宽 2.0 mm 的光学梳时的映射性为 55% 以上。

3. 根据权利要求 1 记载的喷墨记录用纸，其中上述光泽层的厚度为 0.02～4 μm，且为上述墨水接受层的总厚度的 1/10 以下。

4. 根据权利要求 1 记载的喷墨记录用纸，其中上述墨水接受层的至少一层含粘合剂和粘合剂，上述粘合剂为聚合度 3000～5000 的聚乙烯醇。

5. 根据权利要求 1 记载的喷墨记录用纸，其中上述支承体为薄膜或树脂被覆纸。

6. 根据权利要求 1～5 中任一项记载的喷墨记录用纸，其中上述光泽层是用压光辊形成的。
说明书

喷墨记录用纸

技术领域

本发明涉及喷墨记录用纸，特别是具有高光泽度、高平滑性等优良的外观，以及具有快速墨水吸收性和高的点再现性、高记录浓度等优良记录特性喷墨记录用纸。

背景技术

水性墨水由微细的喷嘴喷出并在记录用纸上形成图像的喷墨记录方法，由于在记录时噪音低，彩色化容易，能够高速记录，而且与其他的打印装置相比价格便宜等原因，被广泛地应用于终端用打印机、传真机、绘图机、或者帐票印刷等中。

近年来，随着打印机的迅速普及和高精度、高速化，加之数码照相机的面市，要求喷墨记录方法中所用的记录用纸具有高的特性。

也就是说，强烈要求实现兼有快速的墨水吸收性、高的记录浓度、优良的耐水性和保存性等记录特性，特别是与银盐照片相匹配的画质和表面光泽的喷墨记录用纸。

一般地，作为赋予喷墨记录用纸光泽的方法，公知的有通过采用高度压光等装置，在施加压力和温度的辊之间让纸穿过使涂层表面平滑化的方法（轧光整理）。但是，通过轧光整理得到的记录用纸，除了光泽度不足外，涂层的空隙也减少，因此墨水吸收性低，结果存在容易产生印字渗色的问题。

除了上述轧光整理以外，为了提高光泽度，还提出了在具有光泽的平滑塑料薄膜或者树脂被覆纸的表面上，设置由淀粉、明胶、水溶性纤维素树脂、聚乙烯醇、聚乙烯吡咯烷酮、改性聚氨酯等墨水吸收性树脂的墨水吸收性树脂的墨水吸收层的方法的许多项方案。

但是，由这些方法得到的记录用纸，虽然得到一定程度的光泽度，但是墨水吸收性不充分，墨水干燥迟缓，因此存在处理困难，容易发生墨水吸收不匀，耐水性和纹理（カール）都差的问题。
另外，在特开平 2－274587 号公报、特开平 8－67064 号公报、特开平 8－118790 号公报、特开 2000－37944 号公报、特开 2001－353957 号等中，提出了设置以小粒径的硅胶等超微粒子颜料作为主成分的涂层的方法。

然而，由这些方法得到的记录用纸，虽然具有一定程度的光泽度，但是由于使用超微粒子颜料，涂层上不能形成足够的空隙，仍然不能得到可以满足的墨水吸收性。

在特开 2000－37944 号公报中，提出由靠近支承体的一方开始，至少具有含有初级粒子的平均粒径为 50 nm 以下的、通过气相法合成的二氧化硅的层和含硅胶的层的喷墨记录用纸。虽然，光泽性、耐划伤性提高，但是由于象硅胶这样的初级粒子体的空隙率变低，因此墨水吸收性容易变低。如果为了保持墨水吸收性而降低涂布量，则产生干扰条纹，光泽面的品质降低，不能得到充分的光泽性。

另外，在特开 2001－353957 号中提出，在支承体上，由靠近该支承体的一侧开始，至少具有含初级粒子的平均粒径为 30 nm 以下的、通过气相法合成的二氧化硅的层和含阳离子性胶体粒子的层的喷墨记录用纸。虽然通过使用阳离子性胶体粒子改善了照相后图像的耐时效性及耐水性，但是与特开 2000－37944 号公报同样，存在墨水吸收性降低的问题。

如上所述，在特开平 2－274587 号公报、特开平 8－67064 号公报、特开平 8－118790 号公报、特开 2000－37944 号公报、特开 2001－353957 号等中，都没有记载任何无需尽可能降低墨水吸收速度而提高光泽性的方法。

作为其它赋予光泽的方法，通过在具有镜面的加热压光辊上压附湿润涂层并干杂，在通过复制取得该镜面得到的所谓涂敷法（例如，参考美国专利 US5275846 的说明书以及特开平 7－89220 号公报）是已知的。

作为涂敷法：

（1） 把以颜料和粘合剂作为主成分的颜料组合物涂覆在原纸上，之后在涂层处于湿润状态期间，用经镜面加工处理的加热的压光辊进行压焊，经干燥上光的湿式涂敷法；

（2） 通过酸、盐和热，使湿润状态的涂层变成凝胶状态，在加热的压光辊上对其进行压焊，经干燥上光的凝胶化涂敷法；

（3） 湿润状态的涂层一旦干燥，之后用再湿润液将其湿润塑化，在加热
的压光辊上对其进行压焊，经干燥上光的再湿润涂涂法等，均是普通公知的。

这些湿式涂涂法，在从业者之间，虽然是作为各个技术被认识的，但是它们在将处于湿润塑化状态的涂层表面在压光辊上进行压焊，干燥，由加热的压光辊上脱模复制取得镜面的方面是相同的。

通过这样的湿式涂涂法得到的铸涂纸，与经轧光整理的通常的记录用纸相比，由于具有高表面光泽和优良的表面平滑性，能够得到优良的印刷效果，因此被专用于高级印刷品等的用途。

但是，此种铸涂纸，当用作喷墨记录用纸时，存在各种困难。例如，在诸如 US5275846 的说明书中所示的那样，上述铸涂纸中，构成其涂层的颜料组合物中的粘合剂等成膜性物质，通过复制取得铸涂器的压光辊表面而得到高的光泽，该成膜性物质的存在使涂层的多孔性丧失，喷墨记录时的墨水吸收性极大降低。因此，为了改善铸涂纸的墨水吸收性，使涂层多孔质化从而能够容易地吸收墨水是重要的。一方面，为了得到银盐照片所具有的高画质，涂层均一成膜是必要的，以使喷墨打印机的微细喷嘴喷出的墨水能够无裂隙地再现。但是，在现有的湿式涂涂中，无裂隙的均一膜与多孔质二者兼得是非常困难的。

另外，对于铸涂纸，为了使湿润的涂料与压光辊接触并干燥，需使涂料中的水分变为蒸气从里面脱出。为此，如果使用象树脂被覆纸和薄膜等这样的透气性显著低的支承体，则蒸气滞留在涂层内部。由于蒸气的体积与蒸发前水的体积相比非常大，没有地方排出的蒸气提升支承体。此时，会将涂层最弱的部分破坏。

例如，涂料相对于经加热的镜面加工压光辊的粘附弱时，涂层与压光辊在界面处剥离，不能充分复制取得压光膜的镜面，引起所谓粘合不良的现象。另一方面，由于压光辊与涂料间的粘合力，在未干燥的涂层一方粘合力弱的情况下，在涂层内部发生破裂，涂层的一部分残留在压光膜的表面上，导致压光辊被污染。不管哪种情况下都不可能形成完美的铸涂面，从而导致品质上、操作上的故障。

因此，使用象树脂被覆纸和薄膜这样的低透气性或非透气性的支承体，得到铸涂纸是非常困难的。

其次，喷墨记录时，已知打印时，受到墨水中所含水分等溶剂的影响，观察到记录用纸伸展发生波动，即所谓起皱（コックリング）的缺陷。起皱不仅
损坏打印物的外观，起皱的记录纸与记录磁头接触污染记录用纸，甚至有时记录用纸破损，而且还有引起记录磁头故障的情况。

为了抑制起皱，使用不发生由墨水中的溶剂引起伸展的支承体，或者在墨水接触层与支承体之间，设置墨水中的溶剂不透过层是有效的。例如，作为支承体，如果使用树脂被覆纸和薄膜等低透气性或者非透气性的支承体，则可以有效抑制起皱。

也就是说，本发明的课题是提供一种使用低透气性或者非透气性的支承体，具有银盐照片所具有的高表面光泽度和点再现性，墨水吸收性与墨水吸收速度优良，记录浓度高，而且不发生由墨水溶剂引起的起皱的喷墨记录用纸。

发明的说明

本发明的发明人们深入研究的结果是，在低透气性或者非透气性的支承体上设置至少一层墨水吸收层，在该墨水吸收层上供给用于形成光泽层的涂布液，在供给的上述涂布液处于湿润状态或者半干燥状态期间，使供给有该涂布液的一面与压力辊接触，在上述压力辊与压力辊之间加压的同时使上述支承体通过，形成涂布液层后，通过立即将该涂布液层从上述压力辊上剥离，得到具有银盐照片所具有的高表面光泽度以及透明玻璃的涂层、点再现性和墨水吸收性，墨水吸收速度优良，记录浓度高，而且不发生由墨水溶剂引起的起皱的喷墨记录用纸，从而完成了本发明。

也就是说，本发明包括下述实施方案。

[1]一种喷墨记录用纸，具有低透气性或者非透气性的支承体，在该支承体上涂布形成的至少一层墨水吸收层，和在该墨水吸收层上再涂布形成的光泽层，

该喷墨记录用纸的特征在于，

与上述光泽层接触的墨水吸收层以细孔分布的比表面积的标准模式直径（基准モデル直径）仅为 100 nm 以下，且平均二次粒径为 1.3 μm 以下的颜料作为主成分，

上述光泽层是以平均一次粒径为 5～100 nm 的颜料为主成分。

[2]如[1]中记载的喷墨记录用纸，上述光泽层表面的 75%表面光泽度（JIS P 8142）为 70% 以上，并且，使用宽度 2.0 mm 的光学梳（光学くし）时的射束性（写像性）（JIS H 8686－2）为 55% 以上。

\[a > b, \quad a - b > 25, \quad 45 < a < 80, \quad 10 < b \leq 45. \]

[4] 如[1]中记载的喷墨记录用纸，上述光泽层的厚度为0.02～4μm，并且为上述墨水接受层总厚度的1/10以下。

图面的简单说明

图1是本发明一个优选的实施方案的示意图。

实施发明的最佳方式

本发明的喷墨记录用纸，优选是通过下述（a）～（e）的实施方案的制造方法制造的。

（a）一种喷墨记录用纸的制造方法，该喷墨记录用纸在低透气性或者非透气性的支承体上具有至少一层墨水接受层和在上述墨水接受层上设置的光泽层，其特征在于该方法包括：

在上述支承体上形成至少一层墨水接受层的墨水接受层形成工序，

在上述墨水接受层上供给用于形成光泽层的涂布液的涂布液供给工序，以及

使供给有上述涂布液的一面与压光辊接触，在上述压光辊与压力辊之间加压的同时使上述支承体通过，形成涂布液层后，在该涂布液层为湿润状态或者半干燥状态期间，从上述压光辊上剥离的加压工序。

（b）如（a）中记载的喷墨记录用纸的制造方法，在上述加压工序后，还包括干燥上述涂布液层的干燥工序。

（c）如（a）中记载的喷墨记录用纸的制造方法，上述光泽层含有平均一次粒径为5～100nm的颜料。

（d）如（a）中记载的喷墨记录用纸的制造方法，与上述光泽层接触的上
述墨水接受层的细孔分布的比表面积标准模式直径仅为 100 nm 以下。

（e）如（a）中记载的喷墨记录用纸的制造方法，上述支承体是薄膜或者树脂被覆纸。

图 1 中示出了本发明的一个优选的实施方案。

根据本实施方案，首先，在低透气性或者非透气性的支承体 2 上设置墨水接受层 3（墨水接受层形成工序）。而后，为使墨水接受层 3 与压光辊 5 接触，将支承体 2 置于压光辊 5 与压力辊 6 之间。其次，在墨水接受层 3 上，供给用于形成光泽层的涂布液 4，在压光辊 5 与压力辊 6 的切线上部形成涂布液集中处（涂布液供给工序）。然后，在涂布液 4 为湿润状态或者半干燥状态期间，为使供给涂布液 4 的面与压光辊 5 接触，使支承体 2 在压光辊 5 和压力辊 6 之间加压的同时通过，形成涂布液层 7 后，立即将涂布液层 7 从压光辊 5 上剥离（加压工序）。此后，用干燥器 9 进行干燥（调湿），得到包括支承体 2、墨水接受层 3、光泽层 8 的喷墨记录用纸 1。

以下，对各工序进行详细说明。

<墨水接受层形成工序>

在本发明的喷墨记录用纸的制造方法中，首先，在低透气性或者非透气性的支承体 2 上进行形成至少一层墨水接受层 3 的墨水接受层形成工序。

（支承体）

在本发明中，低透气性或者非透气性的支承体是指透气度优选为 500 秒以上，更优选为 1000 秒以上的支承体。通常，透气性由作为评价纸和无纺布等的多孔性的项目而公知的透气度表示。透气度是由 100 ml 空气通过面积为 645 mm² 的试验片所需的时间表示的，由 JIS P 8117（纸以及纸板的透气度试验方法）规定。

如上所述，以往在铸涂中，当铸涂层干燥时，涂料的水分变成蒸气，穿过支承体从里面排出，因此用于铸涂的支承体的透气度高是优选的。但是，在本发明中，不受透气度的限制。相反地，为了抑制起皱，支承体不让水分和水蒸汽通过是优选的。因此，本发明使用的支承体，只要是具有平滑表面的低透气性或者非透气性材料，则无需特别的材质。

作为优选的支承体，可举例的有，例如，拉伸聚丙烯，经过特殊加工的，以ユポ（ユポ・コーポレーション公司生产）为代表的合成纸，玻璃纸、聚乙
烯、聚丙烯、软质聚氯乙烯、硬质聚氯乙烯、聚酯等的薄膜，以及用诸如聚乙烯树脂、聚丙烯树脂等树脂在纸等基材表面被覆的树脂被覆纸。特别是，用精混有氧化铁的聚乙烯树脂被覆纸表面的树脂被覆纸在精加工后的外观与照相感光纸等同，是特别优选使用的。支承体为树脂被覆纸的情况下，树脂层的厚度没有特别的限制，例如，在聚乙烯树脂被覆的树脂被覆纸情况下，聚乙烯树脂层的厚度优选为3～50μm，更优选为5～40μm。在聚乙烯树脂层的厚度不足3μm的情况下，树脂被覆时聚乙烯树脂层中容易形成空穴等缺陷，难以控制厚度的情况变多，而且也不容易得到平滑性。相反地，如果超过50μm，则成本增加，得到的效果小，是不经济的。

另外，为了使其与下述墨水接受层的粘合性提高，在树脂层表面上，进行科罗纳放电处理，优选设置结合层。

而且，作为树脂被覆纸的基材使用纸的情况下，作为纸基材，优选使用以木浆作为主材料制得的。适合使用的木浆可以是各种化学纸浆、机械纸浆、再生纸浆等，为了调整这些纸浆的纸力和平滑性、抄纸适应性等，可通过打浆机调整打浆度。打浆度没有特别限制，通常为250～550ml（CSF：JIS―P―8121）程度的是优选的范围。可以优选使用所谓ECF、TCF纸浆等不含氯的纸浆。另外，必要时，可以向木浆中添加颜料。作为颜料，优选使用滑石、碳酸钙、粘土、高岭土、烧制高岭土、二氧化硅、沸石等。通过添加颜料，虽然能够提高不透明性和平滑性，但是如果添加过剩，则有纸力降低的情况，颜料的添加量相对于木浆为1～20质量％的程度是优选的。

（墨水接受层）

在本发明中，在低透气性或者非透气性的支承体上形成至少一层墨水接受层。墨水接受层的至少一层含有颜料与粘合剂，必要的话，还可以含有阳离子性化合物。

在本发明中，形成的墨水接受层可以是一层，也可以是多层。墨水接受层是多层的情况下，所使用的颜料和粘合剂可以在各墨水接受层发生变化。此时，例如，墨水接受层由两层构成时，如果在与光泽层接触的墨水接受层（第1层）中，为了提高光泽度，使用非常微细的颜料，而与支承体接触的墨水接受层（第2层）使用与之相比较大粒径的颜料，则即使第1层的墨水吸收性低，第2层的墨水吸收性也能变高，因此能够同时保持或提高光泽度与墨水吸收性。
在墨水接受层中，作为在与光泽层接触的墨水接受层中使用的颜料，可以例举的是，胶体二氧化硅、无定形二氧化硅、氧化铝、氢氧化铝、碳酸镁、碳酸钙、高岭土、烧制高岭土等透明或白色颜料，可以单独或者两种以上混合使用。

特别优选的颜料是胶体二氧化硅、氧化铝或者无定形二氧化硅。其中，无定形二氧化硅是二次粒子，其内部具有空隙，因此与使用一次粒子胶体二氧化硅和氧化铝的情况相比，即使颜料/树脂的比率低，也难以引起墨水吸收性方面的问题，因此是特别优选使用的。

作为无定形二氧化硅，将通过氮吸附法测得的比表面积为 300 m²/g～1000 m²/g，细孔容积为 0.4 ml/g～2.0 ml/g 的二氧化硅微粒子以胶体状分散的液体作为接种液（シード液），向该接种液中，在碱的存在下，以少量增加的方式添加包括活性硅酸水溶液和/或烷氧化硅烷的供料液，使二氧化硅微粒子生长，也可使用通过氮吸附法测得的比表面积为 100 m²/g～400 m²/g，平均二次粒径为 20 nm～300 nm，而且细孔容积为 0.5 ml/g～2.0 ml/g 的二氧化硅微粒子以胶体状分散的二氧化硅微粒子分散液。

在与光泽层接触的墨水接受层使用无定形二氧化硅的情况下，优选使用平均一次粒径为 3～70 nm，更优选为 5～40 nm 的。另外，无定形二氧化硅优选使用平均二次粒径 1.3 μm 以下，更优选为 10～700 nm 的二氧化硅。如果平均二次粒径为 13 μm 以下，则能够使用孔分布的表面面积标准模式直径为 100 nm 以下，从而容易得到无裂隙的涂层，点再现性、墨水吸收性良好，而且墨水接受层的透明性提高，因此记录浓度也高。

在此处，平均二次粒径是指，涂覆将 5％二氧化硅分散液用均相搅拌机在 5000rpm 下搅拌分散 30 分钟后的分散液，作为试样，用电子显微镜（SEM 和 TEM）观察，拍摄 1 万～40 万倍的电子显微镜照片，测定 5cm 四方形中的二次粒径的匹配（マチナ）径，取平均值而得到的（“微粒子ハンドブック”，朝仓书店，p 52，1991 年出版）。

对平均二次粒径在 1.3 μm 以下的颜料的制造方法没有特别限制，例如，可以为通过将一般市售的合成无定形二氧化硅等块状原料，通过液相化学反应得到沉淀物，经机械方式粉碎的方法，将金属醇盐加水分解的溶胶一凝胶法，气相的高温加水分解等方法制备的。作为机械方式，可例举的是，超声波、高
速旋转磨、滚磨机、容器驱动介质磨、介质搅拌磨、喷雾机、砂磨机、纳米锥钻头（ナノマイザー）等。

另外，对于微细颜料的比表面积没有特别限制，优选为 150 m²/g 以上。此处，微细颜料的比表面积是，将微细颜料在 105℃下干燥，用 Coulter 公司制备的 SA3100 型、在 200℃下、经 2 小时真空脱气后，测定得到的粉末试样的氮吸附脱附等温线，通过 t 法计算出的比表面积。比表面积是微细颜料单位质量的表面积，该值越大，一次粒子越小，二次粒子的形状容易变得复杂，细孔内的容量变大，可以认为墨水吸收性提高。

细孔分布的比表面积标准模式直径指的是，通过下述方法求得比表面积细孔直径分布，由其中的最大值表示。

在本发明中，细孔直径分布指的是，通过压汞法测定的记录层中粒子间形成的空隙（细孔）的直径分布。细孔直径分布可以由通过压汞法求得的空隙量分布曲线经计算细孔直径分布（微分曲线）来求得。压汞法也被称作水银ポロシメトリー，如耐火物 41 卷，6 号 297～303 页/1989 年中所述，是指广泛用于测定多孔体细孔构造（细孔直径和细孔容积）的方法。该测定的原理是，利用水银的表面张力大，因此如果不施加压力，则不会侵入到多孔体的细孔内。也就是说，将对水银施加的压力与此时水银能够侵入的细孔直径之间的关系以下述通式（1）表示。

\[P = -4 \sigma \cos \theta / D \]
（1）

此处，P：水银浸入细孔内所需的压力（psi）
\(\sigma \)：水银的表面张力（480 dyn/cm）
\(\theta \)：水银的接触角（140°）
\(D \)：细孔直径（μm）。

通过将（1）式代入上述式（1）中，得到用于求得细孔直径 D 的通式（2）。

\[D = 213 / P \]
（2）

细孔直径分布是利用上述原理，逐渐改变向水银施加的压力 P，测定此时细孔内侵入的水银的体积也就是细孔容容 V，描绘出根据上述（2）式换算的细孔直径 D 与细孔容容 V 的关系，求得该关系曲线的微分系数（dV/dD）作为纵轴，以细孔直径 D 作为横轴求出的。该细孔直径分布曲线通常具有 1～2 个最大值。
本发明中，为了避免粘连体的影响，在薄膜上设置墨水接收层后，用刀具等剥离下墨水接收层，进行测量。在薄膜上测定时，使用薄膜本身的细孔分布可以忽视的薄膜。

细孔直径越小，记录层的光泽度越高。在本发明中，为了得到银盐照片那样的高光泽度喷墨记录体，存在的细孔直径分布的最大值为 100 nm 以下，优选为 80 nm 以下，更优选为 70 nm 以下。如果存在比 100 nm 大的最大值，则光泽度和点再现性降低，而且记录层容易产生裂隙。

另外，当墨水接收层为多层，例如两层的情况下，不与光泽层接触的墨水接收层也可含有与光泽层接触的墨水接收层中使用的颜料相同的颜料。

在特别优选的颜料为无定形二氧化硅，不与光泽层接触的墨水接收层中使用无定形二氧化硅的情况下，平均一次粒径为 3～70 nm 且平均二次粒径为 20 μm 以下是优选的，平均一次粒径为 5～40 nm 且平均二次粒径为 1.3 μm 以下更为优选。

而且，不与光泽层接触的墨水接收层中使用的无定形二氧化硅的平均二次粒径比与光泽层接触的墨水接收层中使用的无定形二氧化硅的平均二次粒径大是优选的。这是由于，在不与光泽层接触的墨水接收层中使用的无定形二氧化硅的平均二次粒径，和与光泽层接触的墨水接收层中使用的无定形二氧化硅的平均二次粒径相比小的情况下，有时墨水吸收性降低。

作为在墨水接收层中使用的粘合剂，没有特别限制，例如，可以从下述物质中适当选择使用：聚乙烯醇（以下称作 PVA）、聚乙烯醇缩酰、聚乙烯亚胺、聚乙烯吡咯烷酮、聚丙烯酰胺等水溶性树脂，丙烯酸类聚合物胶乳、乙烯—醋酸乙烯酯共聚物等的乙烯基聚合物胶乳等的水分散性树脂。其中，从粘合效果优良的角度出发，PVA 是优选的。

作为粘合剂，在使用例如 PVA 的情况下，聚合度优选为 3000～5000。通过使用聚合度在上述范围内的 PVA，可以减少墨水接收层中的裂隙，而且由墨水溶剂引起的溶胀也减少，因此墨水吸收速度的下降也减少。另外，PVA 的皂化度优选的范围是 90～100%，更优选为 95～100%。如果皂化度低于 90%，则由于墨水溶剂引起的 PVA 溶胀，墨水吸收速度有可能降低。

作为粘合剂的含量，相对于颜料而言，优选为 3～100 质量%，更优选为 5～30 质量% 左右。如果粘合剂低于 3 质量%，墨水接收层中容易产生裂隙，
如果大于 100 质量%，则粘合剂将堵塞由颜料形成的细孔，有导致墨水吸收容量下降的可能性。

在墨水接受层中，必要时，与下述光泽层相同，为了固着墨水中的染料，提供耐水性，以及提高记录浓度，可以添加阳离子性化合物。作为阳离子性化合物如下所述，可以举例能够在光泽层中添加的那些。另外，在光泽层和墨水接受层中，可以适当选择不同种类的阳离子性化合物，甚至还可以同时使用多种阳离子性化合物。

在墨水接受层中，与光泽层相同，为将记录用纸表面从压光辊上平稳地剥离下来，必要时可以添加离模剂。关于离模剂将在后面描述，可以举例能够添加到光泽层中的那些。在光泽层和墨水接受层中，可以适当选择不同种类的离模剂，甚至还可以同时使用多种离模剂。

另外，在墨水接受层中，除上述以外，也可添加在通常的涂覆纸制造中使用的各种颜料、分散剂、增粘剂、消泡剂、着色剂、防静电剂、防腐剂等各种助剂。

墨水接受层是，通过将在溶剂中分散有上述颜料等成分的涂覆液涂覆在支承体上，干燥而形成的。作为涂覆液的溶剂没有特别限制，由于可涂性等原因，水是优选的。

墨水接受层的涂覆量总计为 5～70 g/m² 是优选的，10～50 g/m² 是更优选的，15～40 g/m² 更为优选。另外，涂层的厚度合计为 7～105 μm 是优选的，15～75 μm 是更优选的，22～60 μm 更为优选。在涂覆量不足 5 g/m² 的情况下，不但光泽层不可能充分形成，而且由墨水吸收性降低，可记录性变劣，而如果涂覆量超过 70 g/m²，涂层强度降低，在记录用纸的剪裁加工时和用打印机传送记录用纸等时，可能容易引起故障。

涂覆工序进行一次也可，但也可进行多次。如果涂覆工序进行多次，则墨水接受层也可为多层。另外，通过将涂覆液分为多次涂覆，在抑制裂隙发生的同时可以涂覆更多的涂覆液，可以使墨水接受层的墨水吸收容量变大。

作为墨水接受层的涂覆装置可以使用刮板式涂布机、气刀刮涂机、辊涂机、刮涂棒、照相凹版式涂布机、压铸模（ダイ）涂布机、幕式涂布机等各种公知的涂覆装置。特别是，为了相应于宽度宽的涂料物理性质、涂覆量，气刀刮涂机是适用的。另外，为了使涂覆量的均一性优良，特别是对于高精细记录目的
的光泽型喷墨记录用纸而言，压铸模涂布机和幕式涂布机是优选的涂覆方法。

作为涂膜的干燥方法，没有特别限制，现有公知公用的热风干燥、气体加热器干燥、高频率干燥、电加热器干燥、红外线加热器干燥、激光干燥、电子束干燥等各种加热干燥方式均适用。

<涂布液供给工序>

下面，在墨水接受层上，进行供给用于形成光泽层的涂布液 4 的涂布液供给工序。

（光泽层）

在本发明中，光泽层以颜料作为主成分，含有离和剂等任意其它成分。

如果在光泽层中使用胶体二氧化硅和氧化铝等一次粒子，则由于空隙率降低，墨水吸收速度容易降低。为此，优选的光泽层的厚度为 0.02～4 μm，更优选为 0.05～2 μm。另外，从墨水吸收量和墨水吸收速度兼备的角度考虑，光泽层的厚度占墨水接受层总体厚度的 1/10 以下是优选的。更优选为 1/20 以下，还优选 1/30 以下。

用于形成光泽层的涂布液，通过使这些成分分散在适当的分散介质中来调配。

作为光泽层中所含的颜料，可以例举，胶体二氧化硅、无定形二氧化硅、氧化铝、氢氧化铝、碳酸镁、碳酸钙、高岭土、烧制高岭土等透明或白色颜料。其中特别优选的颜料是胶体二氧化硅、氧化铝或无定形二氧化硅。

使用胶体二氧化硅或者氧化铝，由于光泽性提高，因此特别优选。胶体二氧化硅或氧化铝的平均一次粒径优选为 5～100 nm，更优选为 10～80 nm。更优选为 20～70 nm。平均粒径不足 5 nm 的情况下，有时墨水吸收性降低，而当平均粒径超过 100 nm 时，由于透明性降低，印字浓度有可能下降。

使用无定形二氧化硅的情况下，优选的平均一次粒径为 5～100 nm，更优选为 5～40 nm。另外，无定形二氧化硅优选使用平均二次粒径为 1 μm 以下，更优选为 10～700 nm 的。

虽然水性树脂有可能使墨水吸收性下降，但是必要的情况下也可使用树脂系光泽。

作为水性树脂可以例举的是，聚乙烯醇、聚乙烯醇、阳离子改性聚乙烯醇、聚乙烯吡咯烷酮及其共聚物、聚甲基丙烯酸酯、羧酸甲基纤维素等纤维素衍生物、氧
化淀粉、阴离子化淀粉等改性淀粉类、酪蛋白、大豆蛋白、合成蛋白等蛋白质类、聚苯乙烯树脂、聚丁二烯树脂、聚氨酯树脂、聚丙烯酸树脂、聚酯酸乙烯树脂、聚氯乙烯树脂等性树脂及其共聚物、改性物等，它们可以单独或结合使用，特别是苯乙烯・丙烯酸系的共聚物是优选的。

水性树脂的平均粒径为 20～150 nm 的范围内是优选的，不足 20 nm 的情况下，有时墨水吸收性降低，而超过 150 nm 的情况下，有时透明性降低，印字浓度下降。

水性树脂的玻璃化转变温度在 50～150℃范围内是优选的。玻璃化转变温度低于 50℃时，有时在干燥时光泽层的成膜过度，光泽层的多孔性降低，墨水吸收性下降。高于 150℃的情况下，有时成膜不足，光泽和强度不足。

相对于 100 质量份的颜料，水性树脂的配合量优选为 0～50，更优选为在 0～10 的范围内。

必要时，在光泽层中，与墨水接受层相同，为了固着墨水中的染料，提供耐水性，提高记录浓度，可以添加阳离子性化合物。

作为阳离子性化合物可以例举的是：聚亚胺基多元胺和聚亚胺基多元胺等聚亚胺基多元胺类或者其衍生物、含有仲胺、叔胺基和季铵基的丙烯酸类树脂、聚乙烯类、聚乙烯类、双氰胺—甲酰缩聚物代表的二氰基阳离子树脂、双氰胺—双亚乙基三胺缩聚物代表的多元胺系丙二胺系阳离子树脂、氯甲代氧丙环—二甲基胺加聚合物、二烯丙基二甲基氯化铵—二氧化硫共聚物、二烯丙胺盐—二氧化硫共聚物、二烯丙基二甲基氯化铵聚合物、烯丙基胺盐的聚合物、二烷基胺（甲基）丙烯酸酯季季盐聚合物、丙烯酰胺—二烯丙基胺盐共聚物等阳离子性化合物、丙烯酸和 N—乙烯基丙烯酰胺盐酸聚合物、及其加水分解物、聚胺系树脂，它们可以单独使用，也可多种结合使用。

另外，从墨水吸收速度和印字浓度良好的角度考虑，阳离子化胶体二氧化硅是特别优选使用的。

在用于形成光泽层的涂布液中，除上述成分外，为了将形成的涂布液层的表面从压光辊上顺利地剥离，还优选添加离模剂。

作为离模剂可例举的是：硬脂酸、油酸、棕榈酸等脂肪酸类、以及它们的钠、钾、钙、锌、铵等的盐类、硬脂酰胺、亚乙基双硬脂酰胺以及亚甲基双硬脂酰胺等脂肪酰胺类、微晶蜡、石蜡、聚乙烯蜡等脂肪族烃类、鲸蜡醇、硬
脂醇等高级醇类、精制油（ロート油）、卵磷脂等油脂类和脂质类、含氟的表面活性剂等各种表面活性剂、四氟化乙烯聚合物和乙烯—四氟化乙烯聚合物等氟系聚合物等。

其中，特别优选的是脂肪族烃或其衍生物和改性物、脂肪酸或其盐、脂质类，但是其中作为脂肪族烃优选使用聚乙烯蜡，作为脂肪酸优选使用硬脂酸或油酸，作为脂质优选使用卵磷脂。

另外，光泽层中，除上述以外，也可适当添加在通常的涂覆纸制造中使用的各种颜料、分散剂、增粘剂、消泡剂、着色剂、防静电剂、防腐剂等各种助剂。

作为为了调配分散有上述成分的涂布液用的分散介质，没有特别限制，基于可涂覆性等理由，水是优选的。

在涂布液中的总固形物的浓度优选为0.1～15质量%，更优选为0.5～10质量%。

光泽层的涂布量以干质量计为0.01～3g/m²是优选的，更优选为0.03～2g/m²，还优选为0.05～1g/m²。涂布量不足0.01g/m²时，难以形成足够的光泽层，因此光泽度容易变低。而当涂布量超过3g/m²时，容易得到光泽度，但是墨水吸收性和记录浓度容易变低。

（空隙率）

空隙率由于能够通过上述压汞法测定空隙量，而能够容易地测定。

为使墨水能够充分吸收，墨水接受层的空隙率a，优选45 < a < 80％。更优选为55 ≤ a ≤ 75 %。如果空隙率a低于45％，则墨水吸收速度降低，而当其超过80％时，墨水接受层本身的层变脆，因此有涂层剥落等问题。

为使光泽变得足够高，光泽层的空隙率b，优选为10 < b < 45％。更优选为20 ≤ b ≤ 40。如果空隙率b低于10％，则墨水吸收受阻，因此墨水吸收速度大幅度降低。另外，如果空隙率b超过45%，则表面平滑性降低，因此光泽有可能下降。

而且，a > b，并且a—b > 25。a—b ≤ 25，则光泽性与墨水吸收性不能取得平衡，因此有问题。

<加压工序>

其次，进行加压工序，即在供给的涂布液4为湿润状态或半干燥状态期间,
为使供给涂布液 4 的面与压光辊 5 接触，使支持体 2 在压光辊 5 与压力辊 6 之间加压的同时通过，形成涂布液层 7 后，立即从压光辊 5 上剥离涂布液层 7。

为使供给涂布液 4 的面与压光辊 5 接触，将湿润或者半干燥状态下的涂布液 4，在加热的压光辊 5 和压力辊 6 之间，通过压力辊 6 加压，在墨水接受层 3 上形成涂布液层 7。此时，通过压力和湿度使涂布液层 7 紧密地附着在墨水接受层 3 上，形成了无裂隙的均一膜。

加压工序后，也可进行将涂布液层 7 在干燥器 9 等的干燥区另外干燥的干燥工序。

从干燥条件等的可操作性、墨水接受层的粘合性，光泽层表面的光泽性出发，压光辊的表面温度优选为 40～130℃范围内，优选为 70～120℃的范围内。压光辊的表面温度不足 40℃的情况下，涂布液层中的粘合剂成膜困难，喷墨记录用纸的表面强度有可能降低，与墨水接受层的粘合性恶化。超过 130℃的情况下，涂布液层中的粘合剂成膜进行过度，因此墨水吸收性降低，涂布液 4 沸腾，光泽面有可能恶化。

另外，从耐热性好、可得到优良的表面性方面出发，压光辊优选为金属辊。而且，在表面赋予微细的凹凸制作光泽性降低的所谓半光泽纸的情况下，也可在金属辊上赋予微细的凹凸。压光辊的平均线中心粗糙度 Ra 根据目标的光泽而改变，例如，10 μm 以下。

为使与上述压光辊之间的加压更加均匀，压力辊的材质优选为耐热树脂制的。

通过压力辊的加压是使压光辊和压力辊之间的线压优选为 50～3500N/cm，更优选为 200～3000N/cm 进行的。压光后和压力辊之间的线压不足 50 N/cm 的情况下，线压难以变得均一，光泽性下降，涂布液层 7 相对于墨水接受层 3 的粘合性下降，表面有可能出现裂隙，当超过 3500N/cm 的情况下，由于喷墨记录用纸过度加压，破坏了墨水接受层和光泽层的空隙，因此墨水吸收性有可能下降。

<干燥（调湿）工序>

在本发明中，从压光辊 5 上剥离后的喷墨记录用纸 1（支承体 2、墨水接受层 3 以及涂布液层 7）中的水分处于润湿状态或半干燥状态。涂层的水分含量，很大地受到墨水接受层和光泽层的涂布量的影响，为诸如 7～100％。
从压光辊 5 上剥离后，到用分卷机卷取的期间达到平衡水分的情况下，不需要调湿、干燥装置，但是在涂布速度快，纸等支承体 2 中含水高的情况下，从压光辊 5 上剥离后，到用分卷机卷取的期间，具有调湿装置的调湿工序或者具有干燥装置的干燥工序是必要的。调湿或干燥装置的能力和规格，根据将喷墨记录用纸从压光辊 5 上剥离时含有的水分与平衡水分之间的差以及涂布速度而适当设定。

而且，上述形成的光泽层 8 的表面，为了得到银盐照片那样的手感，75°表面光泽度（JIS P 8142）优选为 70% 以上，更优选为 75% 以上，还优选为 80% 以上；而且，使用宽度为 2.0 mm 的光学栅的映射性（JIS H 8686-2）优选为 55% 以上，更优选为 57% 以上，还优选为 60% 以上，最优选 65% 以上。

而且，图 1 中，压光辊 5 与压力辊 6 左右并列配置，压光辊 5 与压力辊 6 的切线上部形成涂布液集中处，支承体沿纵向通过。但也可例如将压光辊 5 与压力辊 6 上下并列配置，从墨水受层 3 上供给涂布液 4，支承体沿横向通过。

以下例举实施例具体说明本发明，但是并不作为对本发明的限制。另外，实施例中的%和％，除特别说明以外为质量份和质量％。

（二氧化硅溶胶 A）

市售沉降法二氧化硅（商品名：ファインシール X-45，トクヤマ公司制，平均一次粒径为 10 nm，比表面积为 280 m²/g，平均二次粒径为 4.5 μm）通过砂磨机进行水分分散粉碎，用纳米锥钻头（商品名：ナノマイザー，ナノマイザー公司制），反复粉碎分散，分级后，调制由平均二次粒径 80 nm 得到的 10% 分散液。向该分散液中添加作为阳离子性化合物的 10 份二烯丙基二甲基氯化铵（商品名：ユーニャンス CP-103，センカ公司制），引起颜料的凝集和分散液的增粘性，再次使用纳米锥钻头，反复粉碎分散，调制由平均二次粒径 250 nm 形成的 8% 分散液，得到二氧化硅溶胶 A。

（二氧化硅溶胶 B）

市售沉降法二氧化硅（商品名：ファインシール X-45，トクヤマ公司制，平均一次粒径为 10 nm，比表面积为 280 m²/g，平均二次粒径为 4.5 μm）通过砂磨机进行水分分散粉碎后，用纳米锥钻头（商品名：ナノマイザー，ナノマイザー公司制），反复粉碎分散，分级后，调制由平均二次粒径 80 nm 得到的 10% 分散液。向该分散液中添加作为阳离子性化合物的 10 份二烯丙基二甲基氯化
化铵（商品名：ユニャンス CP－103，センカ公司制），引起颜料的凝集和分散液的增粘后，再次使用纳米锥钻头，反复粉碎分散，调制由平均二次粒径 1.3 μm 形成的 8％分散液，得到二氧化硅溶胶 B。

（二氧化硅溶胶 C）

市售凝胶法二氧化硅（商品名：ニツプロジェル AZ600，日本シリカ公司制，平均一次粒径为 10 nm，比表面积为 300 m²/g）通过砂磨机进行水分散粉碎后，用纳米锥钻头（商品名：ナノマイザー，ナノマイザー公司制），反复粉碎分散，分级后，调制由平均二次粒径 80 nm 得到的 10％分散液。向该分散液中添加作为阳离子性化合物的 10 份二烯丙基二甲基氯化铵（商品名：ユニャンス CP－103，センカ公司制），引起颜料的凝集和分散液的增粘后，再次使用纳米锥钻头，反复粉碎分散，调制由平均二次粒径 300 nm 得到的 8％分散液，得到二氧化硅溶胶 C。

（二氧化硅溶胶 D）

市售气相法二氧化硅（商品名：レオロシール QS－30，トクヤマ公司制，平均一次粒径为 10 nm，比表面积为 300 m²/g）通过砂磨机进行水分散粉碎后，用纳米锥钻头（商品名：ナノマイザー，ナノマイザー公司制），反复粉碎分散，分级后，调制由平均二次粒径 80 nm 得到的 10％分散液。向该分散液中添加作为阳离子性化合物的 10 份二烯丙基二甲基氯化铵（商品名：ユニャンス CP－103，センカ公司制），引起颜料的凝集和分散液的增粘后，再次使用纳米锥钻头，反复粉碎分散，调制由平均二次粒径 300 nm 得到的 8％分散液，得到二氧化硅溶胶 D。

（二氧化硅溶胶 E）

市售沉降法二氧化硅（商品名：ファインシール X－45，トクヤマ公司制，平均一次粒径为 10 nm，平均二次粒径为 4.5 μm）通过砂磨机进行水分散粉碎后，用纳米锥钻头（商品名：ナノマイザー，ナノマイザー公司制），反复粉碎分散，分级后，调制由平均二次粒径 500 nm 得到的 20％分散液，得到二氧化硅溶胶 E。

（氧化铝溶胶 A）

市售氧化铝粒子（商品名：AKP－G020，BET 比表面 200 m²/g，γ－氧化铝，住友化学公司制）通过砂磨机粉碎分散后，再用マイクロフルイダイザ
一反复粉碎分散，调制由平均二次粒径 200 nm 得到的 10%分散液，得到氧化铝溶胶。

（支承体 A）

将打浆至 CSF（JIS P-8121）为 250 ml 的针叶树油皮纸浆（NBKP）与打浆至 CSF 为 250 ml 的阔叶树油皮纸浆（LBKP），以质量比 2:8 混合，调制浓度为 0.5%的纸浆浆料。在该纸浆浆料中，相对于纸浆绝对干质量，添加阳离子化淀粉 2.0%、烷基乙烯基二聚物 0.4%、阴离子化聚丙烯酰胺树脂 0.1%、聚酰胺聚胺氯甲代氧丙烯树脂 0.7%，充分搅拌使之分散。

上述组成的纸浆浆料用长网机进行抄纸，通过干燥器、施胶压榨机、压光机，制得定量为 180 g/m²，密度 1.0 g/cm³的原纸。上述施胶压榨工序中使用的施胶压榨液为羧基改性聚乙烯醇和氯化钠以 2:1 的质量比混合，向其中加入水进行过热溶解，并调制成浓度为 5%的溶液，该施胶压榨液以合计 25 ml/m² 的量在纸的两面涂布，从而得到支承体 A（透气度：300 秒）。

（支承体 B）

在上述支承体 A 的原纸的两面上用科罗拉放电处理后，将用班伯里密炼器混合分散的下述聚烯烃树脂组合物 1 以涂覆量 25 g/m² 涂覆到支承体 A 的毛毡面一侧，并将下述聚烯烃树脂组合物 2 以涂覆量 20 g/m² 用具有 T 型模头的熔融挤出机（熔融温度 320℃）涂覆到支承体 A 的网面一侧，毛毡面一侧用镜面的冷却辊，网面一侧用粗面的冷却辊进行冷却固化，得到平滑度（王研式，J. TAPPI No. 5）为 6000 秒，不透明度（JIS P8138）为 93%的树脂被覆的支承体 B（透气度：＞10000 秒）。

（聚烯烃树脂组合物 1）

将长链型低密度聚乙烯树脂（密度 0.926 g/cm³，熔体指数 20g/10 分 35 份，低密度聚乙烯树脂（密度 0.919 g/cm³，熔体指数 2g/10 分 50 份，锐钛矿型二氧化钛（商品名：A－220，石原产业公司制）15 份，硬脂酸锌 0.1 份，抗氧化剂（商品名：Irganox 1010，チバガイキー公司制）0.03 份，群青（商品名：青口群青 NO. 2000，第一化成公司制）0.09 份，荧光增白剂（商品名：UVITEX OB，チバガイキー公司制）0.3 份相混合，作为聚烯烃树脂组合物 1。

（聚烯烃树脂组合物 2）

将高密度聚乙烯树脂（密度 0.954 g/cm³，熔体指数 20 g/10 分 65 份，低
密度聚乙烯树脂（密度 0.919 g/cm³，熔体指数 2g/10 分）35 份相熔融混合，作为聚烯烃树脂组合物 2。

（支承体 C）

将打浆至 CSF（JIS P－8121）为 250 ml 的针叶树晒牛皮纸纸浆（NBKP）与打浆至 CSF 为 250 ml 的阔叶树晒牛皮纸纸浆（LBKP），以质量比 2.8 混合，调制浓度为 0.5%的纸浆浆液。在该纸浆浆液中，相对于浆料绝对干质量，添加阳离子化淀粉 2.0%、烷基乙烯酮二聚物 0.4%、阴离子化的聚丙烯酰胺树酯 0.1%、聚酰胺聚胺氯代氧化丙环树脂 0.7%，充分搅拌使之分散。

上述组成的纸浆浆液用长网机进行抄纸，通过干燥机、施胶压榨机、压光机，制得定量为 150 g/m²，密度 0.75 g/cm³ 的原纸，得到支承体 C（透气度：35 秒）。

实施例 1

在 100 份二氧化硅溶胶 A 中混合入 24 份 5%的聚乙烯醇（商品名：PVA－135H，クラレ公司制，聚合度：3500，皂化度：99%以上），用迈耶绕线棒涂布布在支承体 B 上涂布，涂布量为 25 g/m²（涂层厚度为 38μm），干燥，设置墨水接受层。其次，将平均粒径 25 nm 的胶体二氧化硅（商品名：スノーテックス 50，日产化学公司制）稀释到 10%，如图 1 所示，在墨水接受层上涂覆，在湿润状态期间在表面温度 100℃的镀铬轧光的镜面滚筒上，以线压 2000N/cm 压焊，形成光泽层，在 100℃，干燥 15 分钟，得到喷墨记录用纸。另外，光泽层的涂覆量为 0.5 g/m²，厚度为 1μm。

实施例 2

除用 100 份二氧化硅溶胶 B 代替 100 份实施例 1 的二氧化硅溶胶 A 以外，与实施例 1 相同，得到喷墨记录用纸。

实施例 3

除用 100 份二氧化硅溶胶 C 代替 100 份实施例 1 的二氧化硅溶胶 A 以外，与实施例 1 相同，得到喷墨记录用纸。

实施例 4

除用 100 份二氧化硅溶胶 D 代替 100 份实施例 1 的二氧化硅溶胶 A 以外，与实施例 1 相同，得到喷墨记录用纸。

实施例 5
除用100份氧化铝溶胶A代替100份实施例1的二氧化硅溶胶A以外，与实施例1相同，得到喷墨记录用纸。

实施例6
向100份二氧化硅溶胶E中混入24份5％聚乙烯醇（商品名：PVA－135H，クラレ公司制，聚合度：3500，皂化度：99％以上），用迈耶绕线棒涂布机在支承体B上涂覆，涂覆量为20g/m²，干燥，设置第2墨水接受层。在第2墨水接受层上，向100份二氧化硅溶胶A中混入24份5％聚乙烯醇（商品名：PVA－135H，クラレ公司制，聚合度：3500，皂化度：99％以上），用迈耶绕线棒涂布机涂覆，涂覆量为5g/m²，干燥，设置第1墨水接受层。墨水接受层的总厚度为38μm。其次，将胶体二氧化硅（商品名：スノーテックス50，日产化学公司制）稀释为10％，涂覆在第1墨水接受层上，在润湿状态期间，在表面温度100℃的镀铬轧光镜面滚筒上，以线压2000N/cm压焊，形成光泽层，在100℃，干燥15分钟，得到喷墨记录用纸。另外，光泽层的涂覆量为0.5g/m²，厚度为1μm。

实施例7
在实施例6的第2墨水接受层的形成中，除用サイロジエット703A（クレースデビソン公司制，比表面积：280m²/g，平均二次粒径300nm）代替100份二氧化硅溶胶E以外，与实施例6相同，得到喷墨记录用纸。

实施例8
除了用平均粒径15nm的胶体二氧化硅（商品名：スノーテックスAK，日产化学公司制）代替实施例6的胶体二氧化硅（商品名：スノーテックス50，日产化学公司制）以外，与实施例6相同，得到喷墨记录用纸。

实施例9
除了用二氧化硅溶胶A代替实施例6的胶体二氧化硅（商品名：スノーテックス50，日产化学公司制）以外，与实施例6相同，得到喷墨记录用纸。

实施例10
除了用平均粒径15nm的氧化铝（商品名：二氧化硅溶胶520，日产化学公司制）代替实施例6的胶体二氧化硅（商品名：スノーテックス50，日产化学公司制）以外，与实施例6相同，得到喷墨记录用纸。

实施例11
除了用平均粒径25 nm的胶体二氧化硅（商品名：スノーテックスCM，日产化学公司制）代替实施例6的胶体二氧化硅（商品名：スノーテックス50，日产化学公司制）以外，与实施例6相同，得到喷墨记录用纸。

实施例12
除了用平均粒径25 nm的胶体二氧化硅（商品名：スノーテックスO40，日产化学公司制）代替实施例6的胶体二氧化硅（商品名：スノーテックス50，日产化学公司制）以外，与实施例6相同，得到喷墨记录用纸。

实施例13
在实施例12的光泽层的形成中，除了以线压3500N/cm代替线压2000N/cm进行压焊，形成光泽层以外，与实施例12相同，得到喷墨记录用纸。墨水接受层的厚度为35μm，光泽层的厚度为0.8μm。

实施例14
在实施例12的光泽层的形成中，除了以线压50N/cm代替线压2000N/cm进行压焊，形成光泽层以外，与实施例12相同，得到喷墨记录用纸。光泽层的厚度为1.5μm。

实施例15
在实施例12的光泽层的形成中，除了以表面温度40℃的镀铬轧光镜面滚筒代替表面温度100℃的镀铬轧光镜面滚筒进行压焊，形成光泽层以外，与实施例12相同，得到喷墨记录用纸。

实施例16
除了用市售的聚丙烯合成纸（商品名：エポGWG−140，エポコーポレーション公司制）代替实施例12的支承体B以外，与实施例12相同，得到喷墨记录用纸。

比较例1
除了用支承体C代替实施例12的支承体B以外，与实施例12相同，得到喷墨记录用纸。

比较例2
在实施例1中，除了不形成光泽层以外，与实施例1相同，得到喷墨记录用纸。

实施例17
向 100 份凝胶法二氧化硅（商品名：サイロジエット P612，グレースデヒゾン公司制，平均一次粒径：10 nm，平均二次粒径：7.5μm）中混入 35 份甲硅烷基改性聚乙烯醇（商品名：クレレポバール PVA R-1130，クレレ公司制，聚合度 1700），使其成为浓度为 15％的第 2 墨水接受层用涂料，将该涂料以干涂覆量 15 g/m²用压铸模涂布机涂布在支承体 B 上。

在涂布的第 2 墨水接受层用涂料干燥前，以干涂覆量 5 g/m²用压铸模涂布机涂布向 100 份二氧化硅溶胶 A 中混入 30 份聚乙烯醇（商品名：クレレポバール PVA 135H，クレレ公司制，聚合度 3500），浓度 8％的第 1 墨水接受层用涂料，干燥，形成第 1 和第 2 墨水接受层。此时的墨水接受层的厚度为 28 μm。

其次，将玻璃化转变点为 85℃的苯乙烯－2－己基丙烯酸酯共聚物树脂与平均粒径 30 nm 的胶体二氧化硅的 50/50 的复合物 100 份，作为粘度调整剂的烷基乙烯基醚·马来酸衍生物树脂 5 份，作为离模剂的卵磷脂 3 份与水一起混合、分散，将固体部分浓度 10％的光泽层涂料涂覆到第 1 墨水接受层上，光泽层涂料在润湿状态期间，立即在表面温度 100℃的镀铬轧光的镜面滚筒上以线压 50 kg 压焊，得到喷墨记录用纸。此时光泽层的干涂覆量为 2 g/m²。此时的光泽层的厚度为 2.5μm。

实施例 18

在实施例 17 的第 2 墨水接受层中，除了用第 1 墨水接受层用涂料代替第 2 墨水接受层用涂料以外，与实施例 17 相同，得到喷墨记录用纸。此时的墨水接受层的厚度为 30μm。

实施例 19

除了用市售聚丙烯合成纸（商品名：エポ GWG-140，エポコーポレーション公司制，透气度：>10000 秒）代替实施例 17 的支承体 B 以外，与实施例 17 相同，得到喷墨记录用纸。

比较例 3

除了用支承体 C 代替实施例 17 的支承体 B 以外，与实施例 17 相同，得到喷墨记录用纸。

实施例 20

向 100 份二氧化硅溶胶 D 中混入 24 份 5％聚乙烯醇（商品名：PVA－135H，
クラレ公司制，聚合度 3500，皂化度：99% 以上，用迈耶绕线棒涂布机以 25 g/m²
的涂覆量在支承体 B 上涂覆干燥，设置墨水接受层。此时的墨水接受层的厚度
为 37μm。其次，将平均粒径 25 nm 的胶体二氧化硅（商品名：スノーテックス
O40，日产化学公司制）稀释到 10%，涂覆到墨水接受层上，在湿润状态期
间，在表面温度 100℃的镀铬轧光镜面滚筒上，以线压 2000N/cm 压焊，形成
光泽层；然后，在 100℃干燥 15 分钟，得到喷墨记录用纸。此时的光泽层的
厚度为 1μm。
实施例 21

向 100 份二氧化硅溶胶 D 中混入 24 份 5% 聚乙烯醇（商品名：PVAー135H，
クラレ公司制，聚合度 3500，皂化度：99% 以上），用迈耶绕线棒涂布机以 25 g/m²
的涂覆量在支承体 B 上涂覆干燥，设置墨水接受层。此时的墨水接受层的厚度
为 37μm。其次，向平均粒径 25 nm 的胶体二氧化硅（商品名：スノーテックス
O40，日产化学公司制）中混入 1 份 2% 聚乙烯醇（商品名：クラレポバー
ル PVA Rー1130，クラレ公司制，聚合度：1170），用迈耶绕线棒涂布机涂覆
到墨水接受层上，在 100℃干燥 15 分钟，得到喷墨记录用纸。此时的光泽层的
厚度为 1.5μm。

实施例 22

除了用平均粒径 100 nm 的胶体二氧化硅（商品名：スノーテックス
MP1040，日产化学公司制）代替实施例 20 的胶体二氧化硅（商品名：スノー
テックス O40，日产化学公司制）以外，与实施例 20 相同，得到喷墨记录用纸。

实施例 23

除了用平均粒径 45 nm 的胶体二氧化硅（商品名スノーテックス 20L，日
产化学公司制）代替实施例 20 的胶体二氧化硅（商品名：スノーテックス O40，
日产化学公司制）以外，与实施例 20 相同，得到喷墨记录用纸。

实施例 24

除了用平均粒径 5 nm 的胶体二氧化硅（商品名：スノーテックス XS，日
产化学公司制）代替实施例 20 的胶体二氧化硅（商品名：スノーテックス 50，
日产化学公司制）以外，与实施例 20 相同，得到喷墨记录用纸。

实施例 25
在实施例20的墨水接受层中，除了用聚乙烯醇（商品名：PVA—117，クラレ公司制，聚合度：1700，皂化度：99％以上）代替24份聚乙烯醇（商品名：PVA—135H，クラレ公司制，聚合度3500，皂化度：99％以上）以外，与实施例20相同，得到喷墨记录用纸。

＜试验例1＞

由实施例和比较例得到的喷墨记录用纸的75度表面光泽度、映射性，起皱，印字光泽感，墨水吸收性以及印字浓度进行评价的结果示于表1中。关于各评价是用下述方法测定的。

（75°表面光泽度）

用JIS P8142中记载的方法，测定喷墨记录用纸的75°光泽度。

（映射性）

用JIS H8686—2中记载的方法，用映射性测定机（ICM—1DP、スカ试验机公司制）测定反射45°、2.0 mm的光学梳的白纸部分的映射性，涂布方向与狭缝成直角。表中所示的数字为5次测定的平均值。

（起皱）

起皱是用喷墨打印机BJF870（キヤノン公司制造）进行测量的。墨水墨粉散使用キヤノン公司制造的BCI—6C、BCI—6M、BCI—6Y、BCI—Bk、BCI—6PC以及BCI—6PMフロト。在氰墨水和洋红墨水的2色混合的印刷字迹部分发生的起皱用目测评价。

O：完全没有起皱，状态良好。
Δ：有起皱，根据使用情况不同会出现问题的水平。
×：起皱显著，不能使用的水平。

（印字光泽感）

上述由起皱得到的印刷字迹部分用目测来评价。

O：有目测印字光泽感，状态良好。
Δ：目测印字光泽感稍有降低的状态。
×：目测印字光泽感低，感觉不到光泽的状态。

（墨水吸收性）

上述由起皱得到的印刷字迹部分用目测来评价。

O：在ベータ部分看不到斑点，状态良好。
△ 在ベタ部分看到若干斑点，根据使用情况不同会出现问题的水平。
（印字浓度）

印字浓度用喷墨打印机 BJF870（キヤノン公司制造）进行测量。墨水墨粉鼓使用キヤノン公司制造的BCI-6C、BCI-6M、BCI-6Y、BCI-Bk、BCI-6PC以及BCI-6PMフィト。评价是用マクベス反射浓度计（マクベス公司制造，RD-914）测定黑印刷字迹部分进行的。表中表示的数字为5次测定的平均值。

（空隙率和比表面积标准细孔模式直径）

使用マイクロメトリックススコアーサイザー9320（岛津制作公司制造），通过压汞法，测定整个细孔比表面积和整个细孔容积，求得空隙率和比表面积标准细孔模式直径。
<table>
<thead>
<tr>
<th>实施例</th>
<th>75° 表面光泽度</th>
<th>映射性</th>
<th>起皱</th>
<th>印字光泽感</th>
<th>墨水吸收性</th>
<th>印字浓度</th>
<th>a</th>
<th>b</th>
<th>模式径（nm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例1</td>
<td>78</td>
<td>77</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.35</td>
<td>60</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>实施例2</td>
<td>71</td>
<td>70</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>2.26</td>
<td>57</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>实施例3</td>
<td>78</td>
<td>77</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.35</td>
<td>60</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>实施例4</td>
<td>80</td>
<td>79</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.37</td>
<td>67</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>实施例5</td>
<td>83</td>
<td>79</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.40</td>
<td>62</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>实施例6</td>
<td>78</td>
<td>75</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.40</td>
<td>63</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>实施例7</td>
<td>80</td>
<td>75</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.41</td>
<td>60</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>实施例8</td>
<td>80</td>
<td>77</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.50</td>
<td>60</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>实施例9</td>
<td>60</td>
<td>75</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.25</td>
<td>60</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>实施例10</td>
<td>83</td>
<td>79</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.47</td>
<td>60</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>实施例11</td>
<td>78</td>
<td>75</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.40</td>
<td>60</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>实施例12</td>
<td>80</td>
<td>76</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.48</td>
<td>60</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>实施例13</td>
<td>85</td>
<td>67</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>2.47</td>
<td>55</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>实施例14</td>
<td>73</td>
<td>83</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>2.25</td>
<td>60</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>实施例15</td>
<td>75</td>
<td>79</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.27</td>
<td>60</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>实施例16</td>
<td>80</td>
<td>79</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.48</td>
<td>60</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>比较例1</td>
<td>57</td>
<td>31</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>1.98</td>
<td>60</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>比较例2</td>
<td>48</td>
<td>37</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>2.22</td>
<td>60</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>实施例17</td>
<td>75</td>
<td>75</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>2.22</td>
<td>53</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>实施例18</td>
<td>85</td>
<td>76</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.31</td>
<td>60</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>实施例19</td>
<td>75</td>
<td>78</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>2.25</td>
<td>53</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>比较例3</td>
<td>60</td>
<td>52</td>
<td>△</td>
<td>×</td>
<td>○</td>
<td>2.03</td>
<td>53</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>实施例20</td>
<td>82</td>
<td>77</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.49</td>
<td>67</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>实施例21</td>
<td>78</td>
<td>60</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>2.51</td>
<td>67</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>实施例22</td>
<td>77</td>
<td>75</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.31</td>
<td>67</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>实施例23</td>
<td>79</td>
<td>77</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>2.40</td>
<td>67</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>实施例24</td>
<td>85</td>
<td>78</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>2.48</td>
<td>60</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>实施例25</td>
<td>82</td>
<td>76</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>2.41</td>
<td>67</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>
所有通过实施例 1～25（本发明）制造的喷墨记录用纸在仅有墨水接收层的情况下也都具有高的表面光泽和反射性，特别是，如果在光泽层中用平均一次粒径为 5～100 nm 的颜料，则具有 70% 以上的高 75°表面光泽度和 55% 以上的高反射性，另外，完全不起皱。而且，由于印字光泽感和墨水吸收性良好，因此印字浓度高。

也就是说，所有由实施例 1～25（本发明）制造的喷墨记录用纸都是光泽度高，具有不起皱的优良外观，而且由于印字光泽感和墨水吸收性良好，因此具有记录浓度高的优良记录特性。

如果将实施例 12 和比较例 1 进行比较，即使与使用具有高透气性（透气度 35 秒）的支承体 C 的比较例 1 相比，使用低透气性（透气度：>10000 秒）支承体 B 的实施例 12 的喷墨记录用纸，所有项目也均优良。

如果将实施例 1 和比较例 2 进行比较，不设置光泽层的比较例 2 的喷墨记录用纸在墨水吸收性方面相等，但是除此之外的其它所有项目均比实施例 1 的喷墨记录用纸低劣。

如果将实施例 17（作为支承体使用支承体 B）与比较例 3（支承体使用支承体 A）进行比较，使用低透气性支承体 B 的喷墨记录用纸（实施例）的 75°表面光泽度和反射性等其它所有项目均优于比较例。

另外，墨水接收层中使用的微细颜料的二次粒径不变，如果光泽层中使用的微细颜料的平均一次粒径变小，则光泽度提高，如果变为 8 nm，则墨水吸收性降低。而且，如果平均一次粒径变大，则印字浓度缓慢下降。

如果将实施例 1、3、4 和实施例 2 进行比较，使用平均二次粒径为 1.3 μm 以下二氧化硅溶胶的实施例 1、3 和 4 的喷墨记录用纸，其 75°表面光泽度和印字光泽感、印字浓度良好。

如果将实施例 20 和实施例 25 进行比较，发现使用聚合度为 3500 的 PVA 比使用聚合度为 1700 的 PVA 的墨水吸收性提高，印字浓度变高。

在产业上利用的可能性

如上所述，现有的铸涂纸的制造方法是在加热的压光辊上压焊浸湿可塑状态下的涂层表面，干燥，形成光泽层后，从压光辊上离型复制取得镜面，而本发明是通过在墨水接收层上供给用于形成光泽层的涂布液，在该涂布液处于湿润状态或半干燥状态期间，使该涂布液供给面与压光辊接触，使支承体在压光
辊与压力辊之间加压的同时通过，形成涂布液层后，立即从上述压光辊上剥离该涂布液层，从而设置光泽层。

本发明的喷墨记录用纸的墨水吸收性和墨水吸收速度基本上不降低，具有高表面光泽度，并且具有无裂隙和点再现性优良的喷墨记录适应性。