

**(12) STANDARD PATENT**  
**(19) AUSTRALIAN PATENT OFFICE**

**(11) Application No. AU 2012261412 B2**

(54) Title  
**FGFR-Fc fusion protein and use thereof**

(51) International Patent Classification(s)  
**C07K 19/00** (2006.01)      **A61P 35/00** (2006.01)  
**A61K 38/17** (2006.01)      **C12N 5/10** (2006.01)  
**A61K 47/48** (2006.01)      **C12N 15/62** (2006.01)  
**A61K 48/00** (2006.01)      **C12N 15/63** (2006.01)

(21) Application No: **2012261412**      (22) Date of Filing: **2012.05.18**

(87) WIPO No: **WO12/159550**

(30) Priority Data

(31) Number      (32) Date      (33) Country  
**201110132218.9**      **2011.05.20**      **CN**

(43) Publication Date: **2012.11.29**  
(44) Accepted Journal Date: **2016.02.25**

(71) Applicant(s)  
**Yantai Rongchang Biotechnologies Co., Ltd.**

(72) Inventor(s)  
**Fang, Jianmin;Li, Dong**

(74) Agent / Attorney  
**Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001**

(56) Related Art  
**WO 2008/065543 A2**  
**WO 2012/159548 A1**  
**WO 2007/014123 A2**  
**WO 2000/046380 A2**  
**WO 2011/060333 A1**

(12) 按照专利合作条约所公布的国际申请

(19) 世界知识产权组织  
国际局

(43) 国际公布日  
2012年11月29日 (29.11.2012)



(10) 国际公布号  
WO 2012/159550 A1

(51) 国际专利分类号:

C07K 19/00 (2006.01) A61K 38/17 (2006.01)  
C12N 15/62 (2006.01) A61K 47/48 (2006.01)  
C12N 15/63 (2006.01) A61K 48/00 (2006.01)  
C12N 5/10 (2006.01) A61P 35/00 (2006.01)

(21) 国际申请号:

PCT/CN2012/075706

(22) 国际申请日:

2012年5月18日 (18.05.2012)

(25) 申请语言:

中文

(26) 公布语言:

中文

(30) 优先权:

201110132218.9 2011年5月20日 (20.05.2011) CN

(71) 申请人(对除美国外的所有指定国): 烟台荣昌生物工程有限公司 (YANTAI RC BIOTECHNOLOGIES, LTD.) [CN/CN]; 中国山东省烟台市经济技术开发区荣昌路1号张丽, Shandong 264006 (CN)。

(72) 发明人: 及

(75) 发明人/申请人(仅对美国): 房健民 (FANG, Jian-min) [CA/CN]; 中国山东省烟台市经济技术开发区荣昌路1号张丽, Shandong 264006 (CN)。 李栋 (LI,

Dong) [CN/CN]; 中国山东省烟台市经济技术开发区荣昌路1号张丽, Shandong 264006 (CN)。

(81) 指定国(除另有指明, 要求每一种可提供的国家保护): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ, CA, CI, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW。

(84) 指定国(除另有指明, 要求每一种可提供的地区保护): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), 欧亚 (AM, AZ, BY, KG, KZ, RU, TJ, TM), 欧洲 (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)。

[见续页]

(54) Title: FGFR-FC FUSION PROTEIN AND USE THEREOF

(54) 发明名称: FGFR-Fc 融合蛋白及其用途

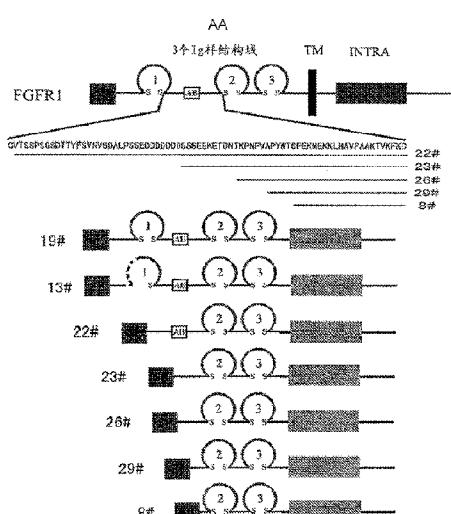



图1 / Fig. 1

(57) Abstract: Provided are a fusion protein comprising the intermediate functional sequence (IFS) part of the FGFR Ig-like domain, FGFR second Ig-like domain (D2), FGFR third Ig-like domain (D3), and Immunoglobulin Fc region, nucleic acid molecule encoding the fusion protein, and the carrier and host cell comprising the nucleic acid molecule. Also provided are a preparation method for the fusion protein and the use of carriers or cells comprising the fusion protein, the nucleic acid molecule encoding the fusion protein, or the nucleic acid molecule in preparing medications for treating diseases related to angiogenesis regulation.

(57) 摘要: 提供了一种包含源自 FGFR Ig 样结构域中间功能性序列 (IFS) 的部分、FGFR 第二 Ig 样结构域 (D2) 和 FGFR 第三 Ig 样结构域 (D3) 和免疫球蛋白 Fc 区的融合蛋白、编码该融合蛋白的核酸分子以及包含核酸分子的载体和宿主细胞。还提供了该融合蛋白的制备方法, 以及包含融合蛋白、编码融合蛋白的核酸分子或包含核酸分子的载体或细胞在制备用于治疗与血管新生调控相关的疾病的药物中的应用。



**根据细则 4.17 的声明:**

- 关于发明人身份(细则 4.17(i))
- 关于申请人有权申请并被授予专利(细则 4.17(ii))

**本国际公布:**

- 包括国际检索报告(条约第 21 条(3))。
- 包括说明书序列表部分(细则 5.2(a))。

## **FGFR-Fc FUSION PROTEIN AND USE THEREOF**

### **FIELD OF INVENTION**

The present invention belongs to the field of biotechnology and relates to the treatment of diseases, especially the treatment of FGF overexpression-related diseases. Particularly, the present invention relates to FGFR-Fc fusion proteins and the use thereof in the treatment of angiogenesis regulation-related diseases. More particularly, the present invention relates to isolated soluble FGFR-Fc fusion proteins and their applications in manufacture of the medicament for the treatment of angiogenesis regulation-related diseases.

### **BACKGROUND OF THE INVENTION**

Angiogenesis is one of the primary factors resulting in the growth and metastasis of malignant tumor [1]. The process of angiogenesis is regulated by many factors, among which some factors promote angiogenesis, while some factors inhibit angiogenesis, and as a result, the regulation of angiogenesis is a very complicated dynamic equilibrium process [2]. The anti-angiogenesis treatment is intended to control the growth of tumor by blocking angiogenic stimulating factors or preventing angiogenesis in the tumor using angiogenesis inhibitors. At present, a large amount of angiogenic stimulating factors are known, such as, for example, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), hepatocyte growth factor (HGF) etc., which may stimulate the division and differentiation of vascular endothelial cells and the morphogenesis of blood vessels. Among these factors mentioned above, it is now known that VEGF is the most angiogenesis-specific and the most effective growth factor [3, 4].

In a hypoxic environment inside the tumor tissue, a plenty of VEGFs are secreted by the tumor cells, which induce the division and migration of vascular

endotheliocytes, finally resulting in the establishment of tumor vascular network. It has been demonstrated by a lot of animal experiments that the inhibition of VEGF may prevent angiogenesis, and further inhibit the growth of tumor. For this reason, VEGF and its receptors become important targets for anti-angiogenesis medicaments. At present, anti-angiogenesis medicaments demonstrated in clinical trials to have remarkable efficacy include Bevacizumab (under the trade name of Avastin), which is able to block VEGF directly and inhibit the tumor angiogenesis. Bevacizumab was approved for marketing by FDA in 2004, and as a first-line drug for rectal cancer, it is the first marketing-approved drug that plays a role in anticarcinogenesis by inhibiting angiogenesis. Avastin is a humanized anti-VEGF monoclonal antibody, which is produced by a famous US biotechnology company Genentech. In a large-scale Phase III clinical trial, the combined therapy by Avastin and chemotherapy may significantly extend the survival time of the patients suffered from many kinds of cancers, including rectal cancer, lung cancer, breast cancer and renal cancer, etc. [5, 6] The clinical success of Avastin is a landmark, demonstrating that the anti-angiogenesis treatment using tumor vascular system as the target is a clinically effective measure and provide a new path for the tumor treatment. In western countries, Avastin has already been widely used for tumor therapy and is one of the drugs holding the largest global market share.

Besides Avastin, several drugs for anti-VEGF signaling are also under the late phase of human clinical trial in foreign countries, which are expected for clinical application in the next several years. Among others, Aflibercept (also called as VEGF-Trap), developed by the cooperation between US biotechnology company Regeneron and Sanofi-Aventis, is now under the large-scale Phase III clinical trial [7]. An anti-VEGF receptor II (VEGFR2) monoclonal antibody drug IMC-1121B (Imclone) is also under the Phase III clinical trial [8]. In China, the development of new medicaments now also focuses on the anti-tumor medicament using anti-angiogenesis as the target. Medicaments using VEGF and its receptor, or other angiogenic targets are under the development by several Chinese companies or

research institutions. These new drugs will definitely provide new choices for cancer therapy and new hope for the patients.

Great progress has been achieved in the clinical treatment of tumor using anti-VEGF medicament, however, it has also been shown by the clinical trial that the anti-VEGF treatment are also considerably limited. From the point of the effect of tumor treatment, Avastin may extend the half survival time of the colon cancer patient for about 3-4 months [9, 10], and extend the half survival time of the breast cancer patient for about 7-8 months [11], and thus, Avastin cannot effectively inhibit the growth of tumor blood vessel in a long term. Therefore, the problem how to further improve the effect of clinical treatment using anti-angiogenesis method need to be solved by tumor investigators and is also the main point of the research and development of the next generation anti-angiogenesis medicament.

The primary causes resulting in the failure of anti-VEGF treatment or the appearance of resistance may depend on the regulation of tumor angiogenesis by a plurality of factors. Although VEGF plays an important role in angiogenesis, it is not the only angiogenesis stimulating factor. Meanwhile, owing to the heterogeneity of tumor cells, the complexity of tumor microenvironment and the compensatory response mechanism of body, when the activity of VEGF is inhibited for a long period of time, other angiogenesis stimulating factors would be expressed [12], and thus the growth of tumor blood vessel is no longer dependent on VEGF signaling path. The variation of angiogenesis factors expressed by the tumor was studied during anti-VEGFR2 treatment for pancreatic tumor by Prof. Hanahan's group (University of California, San Francisco, US), indicating that the expression of several genes changed during anti-VEGF treatment, in which the expression of FGF-2 significantly increased. It has been shown that the expression of FGF, especially FGF-2, increased significantly in the tumor resistant to anti-VEGF treatment so that angiogenesis was activated again and the tumor repopulation was inhibited after blocking FGF signal pathway [13]. It may be seen that the over-expression of FGF-2 is closely related to the ability of tumor to escape from anti-VEGF treatment. Therefore, we believe the

—4/53—

angiogenesis of tumor may be efficiently prevented and the tumor growth may be inhibited by blocking FGF pathway, so that angiogenesis-related diseases can be treated alone by anti-FGF treatment or by a combination therapy of anti-FGF and anti-VEGF treatment.

Fibroblast growth factor (FGF) is a growth factor family for heparin-binding, and there are 22 family members (FGF 1-14, 16-23) in the mammals. FGF plays an important role in many biological functions, for example, cell proliferation, differentiation, migration, angiogenesis and tumorigenesis etc. Fibroblast growth factor receptor (FGFR) is the receptor which binds the family members of fibroblast growth factor. FGF may bind FGFR and activate the downstream signal pathway, which plays an important role in a physiological and pathological process, such as embryogenesis, development, vasculogenesis, vasodilatation, neuroregulation, ischemia protection, wound healing and tumorigenesis etc. [14, 15] It has already been demonstrated that overexpression of FGF/FGFR *in vivo* is closely related to many diseases including tumors (such as fibroma, neuroglioma, melanoma, prostate carcinoma, lymphomata, leukaemia, urinary system cancer etc.), skeletal system diseases (dwarfism, craniosynostosis, achondroplasia, acanthosis nigricans) and renal failure etc. It has already been reported that increased expression level of FGF and its receptor may directly promote the survival and proliferation of tumor cells, and the survival of hepatic carcinoma cells is significantly reduced by down-regulation of FGF by siRNA [22]. Therefore, it is expected to block FGF pathway by constructing an FGFR-Fc fusion protein that is able to antagonize FGF, which is of the potential for treating FGF overexpression-related diseases.

At present, few researches focus on the development of new anti-angiogenesis medicament using FGF and its receptor as the target in clinical trials. For example, FP-1039, a fusion protein composed of whole extracellular domain of human FGFR1 and human IgG1 Fc fragment, is developed by a US company Five Prime and now in volunteer recruitment stage of Phase I clinical trial. However, it has been suggested by researches of Wang and Olsen that the first Ig-like domain of the

extracellular domain of human FGFR1 and the linking fragment between the first and the second Ig-like domain of the extracellular domain of human FGFR1 may inhibit binding of FGFR1 and FGF [20, 21].

Therefore, it is expected to block FGF pathway by constructing an FGFR-Fc fusion protein that is able to antagonize FGF so that angiogenesis may be efficiently inhibited or it may act on tumor cells directly and inhibit their growth, and it is of the potential for treating FGF overexpression-related diseases to cure angiogenesis-related diseases such as tumors.

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

## SUMMARY

The space structure of protein is closely related to its biological function. The FGF binding capacity is directly influenced by difference among the conformations of each Ig-like domain of the extracellular domain of FGFR and the linking fragment. Different fusion proteins, composed of the FGFR extracellular domain fragments of various lengths and IgG Fc, are constructed by means of genetic engineering to obtain fusion proteins with different conformations, so that the fusion protein with high efficiency of FGF binding and biological activity can be screened.

There are four FGFR genes in the mammals: fgfR1-fgfR4. Fibroblast growth factor receptor is composed of the extracellular domain, transmembrane domain and intracellular domain. There are many members in FGFR family, which have similar extracellular domain but vary in the ligand binding property and kinase domain. Their extracellular domains include three immunoglobulin-like (Ig-like) domains: the first Ig-like domain, the second Ig-like domain and the third Ig-like domain, and there is a sequence between the first and the second Ig-like domain, which is referred as the intermediate functional sequence of the Ig-like domain of FGFR (IFS for short herein)

in this specification. The intermediate functional sequence may comprise one acidic amino acid segment, which is referred as acidic box (AB).

In a first aspect, the invention provides an isolated soluble fusion protein of fibroblast growth factor receptor (FGFR), comprising: a part derived from the FGFR extracellular domain and an immunoglobulin Fc region, wherein the part derived from the FGFR extracellular domain consists of an amino acid sequence corresponding to positions 1-241 of SEQ ID NO: 12, positions 1-230 of SEQ ID NO: 13, or positions 1-224 of SEQ ID NO: 14 or encoded by a nucleotide sequence corresponding to positions 1-723 of SEQ ID NO: 19, positions 1-690 of SEQ ID NO: 20, or positions 1-672 of SEQ ID NO: 21.

In a second aspect, the invention provides an isolated soluble fusion protein of fibroblast growth factor receptor (FGFR), wherein said protein consists of an amino acid sequence of any one of SEQ ID NOs: 12-14, or is encoded by a nucleic acid molecule consisting of a nucleotide sequence of any one of SEQ ID NOs: 19-21.

Disclosed herein is an isolated soluble fusion protein of fibroblast growth factor receptor (FGFR), which comprises: the part derived from the intermediate functional sequence (also referred as IFS herein) of the Ig-like domain of FGFR, the second Ig-like domain (also referred as D2 herein) of FGFR, the third Ig-like domain (also referred as D3 herein) of FGFR and immunoglobulin Fc region.

Also disclosed is a fusion protein, which comprises or consists of: the part derived from the intermediate functional sequence region of the Ig-like domain of FGFR, the second Ig-like domain of FGFR, the third Ig-like domain of FGFR and immunoglobulin Fc region. In some embodiments, the part derived from IFS contains no acidic box. In some other embodiments, the part of IFS has the amino acid sequence of position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1, or has the amino acid sequence sharing at least 90% identity, preferably 93%, 95%, 97%, 98% or 99% identity, with the amino acid sequence of position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1.

Also disclosed is a fusion protein, which comprises or consists of: the first Ig-like domain (also referred to as D1 herein) of FGFR or a moiety thereof, the part derived from the intermediate functional sequence region of the Ig-like domain of FGFR, the second Ig-like domain of FGFR, the third Ig-like domain of FGFR and immunoglobulin Fc region. Preferably, said D1 domain or a moiety thereof possesses:

the amino acid sequence corresponding to position 40 to position 118 of SEQ ID NO: 1, or the amino acid sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity with the sequence of position 40 to position 118 of SEQ ID NO: 1; or

the amino acid sequence corresponding to position 77 to position 118 of SEQ ID NO: 1, or the amino acid sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity with the amino acid sequence of position 77 to position 118 of SEQ ID NO: 1.

Also disclosed is a fusion protein, which comprises or consists of: the intermediate functional sequence region of the Ig-like domain of FGFR or a moiety thereof, the second Ig-like domain of FGFR, the third Ig-like domain of FGFR and immunoglobulin Fc region, wherein:

the second Ig-like domain of FGFR has the amino acid sequence corresponding to position 163 to position 247 of SEQ ID NO: 1, or the amino acid sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity with the amino acid sequence of position 163 to position 247 of SEQ ID NO: 1; and/or

the third Ig-like domain of FGFR has the amino acid sequence corresponding to position 270 to position 359 of SEQ ID NO: 1, or the amino acid sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity with the amino acid sequence of position 270 to position 359 of SEQ ID NO: 1.

Also disclosed is a fusion protein, which comprises a region derived from the extracellular domain of FGFR and immunoglobulin Fc region or composed thereof, wherein the region derived from the extracellular domain of FGFR:

(1) comprises an amino acid sequence corresponding to any one of positions 1-353 of SEQ ID NO: 9, positions 1-299 of SEQ ID NO: 10, positions 1-273 of SEQ ID NO: 11, positions 1-241 of SEQ ID NO: 12, positions 1-230 of SEQ ID NO: 13, positions 1-224 of SEQ ID NO: 14 and positions 1-219 of SEQ ID NO: 15, or encoded by a nucleotide sequence corresponding to any one of positions 1-1059 of SEQ ID NO: 16, positions 1-897 of SEQ ID NO: 17, positions 1-819 of SEQ ID NO: 18, positions 1-723 of SEQ ID NO: 19, positions 1-690 of SEQ ID NO: 20, positions 1-672 of SEQ ID NO: 21, and positions 1-657 of SEQ ID NO: 22;

(2) comprises or consists of an amino acid sequence having at least 70% identity, optionally at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity with an amino acid sequence corresponding to any one of positions 1-353 of SEQ ID NO: 9, positions 1-299 of SEQ ID NO: 10, positions 1-273 of SEQ ID NO: 11, positions 1-241 of SEQ ID NO: 12, positions 1-230 of SEQ ID NO: 13, positions 1-224 of SEQ ID NO: 14 and positions 1-219 of SEQ ID NO: 15; or

(3) comprises or consists of an amino acid sequence encoded by a nucleotide sequence having at least 70% identity, optionally at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity with a nucleotide sequence corresponding to any one of positions 1-1059 of SEQ ID NO: 16, positions 1-879 of SEQ ID NO: 17, positions 1-819 of SEQ ID NO: 18, positions 1-723 of SEQ ID NO: 19, positions 1-690 of SEQ ID NO: 20, positions 1-672 of SEQ ID NO: 21 and positions 1-657 of SEQ ID NO: 22.

Also disclosed is a fusion protein, said protein:

(1) comprises the amino acid sequence indicated by any one of SEQ ID NOs: 9-15, or the amino acid sequence encoded by the nucleotide sequence indicated by any one of SEQ ID NOs: 16-22;

(2) comprises or consists of the amino acid sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity, with the amino acid sequence indicated by any one of SEQ ID NOs: 9-15; or

(3) comprises or consists of the amino acid sequence encoded by the nucleotide sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity, with the nucleotide sequence indicated by any one of SEQ ID NOs: 16-22.

Preferably, in the fusion protein, the immunoglobulin Fc region is human IgG1 Fc region, and more preferably, it comprises:

the amino acid sequence corresponding to SEQ ID NO: 7, or the amino acid sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity, with the amino acid sequence of SEQ ID NO: 7; or

the amino acid sequence encoded by the nucleotide sequence corresponding to SEQ ID NO: 8, or the amino acid sequence encoded by the nucleotide sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity, with the nucleotide sequence of SEQ ID NO: 8.

In one embodiment of the present invention, the immunoglobulin Fc region is located at the C-terminus of the fusion protein.

Also disclosed is a fusion protein precursor comprising a secretory signal peptide region, for example, VEGFR1 signal peptide region, and preferably, the secretory signal peptide region has the amino acid sequence of position 1 to position 26 of SEQ ID NO: 2 or the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 23. Preferably, the signal peptide region is located at the N-terminus of the precursor.

Also disclosed is a fusion protein which sequentially comprises from the N-terminus to the C-terminus: the part derived from IFR, D2, D3 and immunoglobulin Fc region.

In another embodiment, the domains and/or regions involved in the fusion protein of the present invention are linked directly and/or by a linker. In one embodiment, the region derived from the extracellular domain of FGFR and immunoglobulin Fc region are linked directly. In another embodiment, the region derived from the extracellular domain of FGFR and immunoglobulin Fc region are linked by a linker.

In one embodiment, the fusion protein of the present invention inhibits angiogenesis. In another embodiment, the fusion protein of the present invention binds FGF, preferably FGF2, *in vivo* and/or *in vitro*. In another embodiment, the fusion protein of the present invention inhibits tumor cells directly.

Also disclosed is an FGFR-Fc fusion protein, which comprises a part derived from the extracellular domain of FGFR and a part derived from immunoglobulin Fc region. Particularly, the part derived from the extracellular domain of FGFR is the part derived from the extracellular domain of FGFR1. Preferably, the immunoglobulin Fc region is human immunoglobulin Fc region, for example, human IgG1 Fc region. In one embodiment of the present invention, the FGFR-Fc fusion protein has the capacity of binding and/or antagonizing FGF, and thus, may inhibit angiogenesis.

In the FGFR-Fc fusion protein, the part derived from the extracellular domain of FGFR may comprise one or more selected from the group consisting of: D1 domain or a moiety thereof, the part derived from IFS, D2 domain or a moiety thereof and D3 domain or a moiety thereof. In one embodiment, the part derived from the extracellular domain of FGFR may comprise D1 or a moiety thereof, the part derived from IFS, D2 domain and D3 domain. In another embodiment, the part derived from the extracellular domain of FGFR may comprise the part derived from IFS, D2 domain and D3 domain, and preferably, the part derived from IFS has the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1. In some preferable embodiments of the present invention, the FGFR-Fc fusion protein contains no D1 or a moiety thereof. In some other preferable embodiments of the present invention, the FGFR-Fc fusion protein contains no part from IFS other than the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1.

In some embodiments of the present invention, the order from the N-terminus to the C-terminus of each region and/or each domain involved in the FGFR-Fc fusion protein may

be any order. In some other embodiments, said order can be as shown in Fig. 1. In some other embodiments, said order may be different from the order shown in Fig. 1.

In some embodiments, the FGFR-Fc fusion protein of the present invention further comprises one or more intrachain disulfide bonds, and preferably, comprises one or more intra-chain disulfide bonds in the Ig-like domain.

In one embodiment of the present invention, the FGFR-Fc fusion protein can be produced by expression of the nucleic acid comprising the nucleotide sequence indicated by any one of SEQ ID NOS: 16-22 in a mammalian cell line. Particularly, the mammalian cell line is CHO cell line.

Additionally, a FGFR-Fc fusion protein is also disclosed in which domains and/or regions involved in the fusion protein are operatively linked and/or by a linker.

In a third aspect, the invention provides an isolated nucleic acid molecule encoding the fusion protein of the first or second aspect.

Also disclosed is an isolated nucleic acid molecule which encodes the fusion protein or the precursor of the fusion protein of the present invention is provided. Preferably, the nucleic acid molecule comprises the nucleotide sequence indicated by any one of SEQ ID NOS: 16-22.

In a fourth aspect of the present invention, a vector comprising the nucleic acid molecule of the third aspect is provided.

In a fifth aspect of the present invention, an isolated and/or non-human cell, optionally a CHO cell, transfected by the vector of the fourth aspect provided.

Also disclosed is a composition comprising the fusion protein of the present invention, which is mixed with a pharmaceutically acceptable carrier, is provided.

In a sixth aspect of the present invention, a pharmaceutical composition comprising the fusion protein of the first or second aspect, the nucleic acid molecule of the third aspect, the vector of the fourth aspect, or the cell of the fifth aspect and a pharmaceutically acceptable carrier is provided.

Also disclosed is a method for producing the angiogenesis-inhibitory fusion protein, which is carried out by expressing the fusion protein in prokaryotic cells or eukaryotic cells, especially, in mammalian cell lines.

Also disclosed is a method for producing the angiogenesis-inhibitory fusion protein, which is carried out by expressing the nucleic acid molecule in mammalian cell lines. Preferably, the mammalian cell line is CHO cell line.

In a seventh aspect, the invention provides use of the fusion protein of the first or second aspect, the nucleic acid molecule of the third aspect, the vector of the fourth aspect, or the cell of the fifth aspect in the manufacture of a medicament for inhibiting angiogenesis in a mammal.

In an eighth aspect, the invention provides use of the fusion protein of the first or second aspect, the nucleic acid molecule of the third aspect, the vector of the fourth aspect, or the cell of the fifth aspect in the manufacture of a medicament for treating or preventing a tumor, optionally a solid tumor, in a subject.

In a ninth aspect, the invention provides a method for inhibiting angiogenesis in a mammal in need thereof, comprising administering an effective amount of the fusion protein of the first or second aspect, the nucleic acid molecule of the third aspect, the vector of the fourth aspect, the cell of the fifth aspect, or the pharmaceutical composition of the sixth aspect to the mammal.

In a tenth aspect, the invention provides a method for treating or preventing a tumor, optionally a solid tumor, in a subject, comprising administering an effective amount of the fusion protein of the first or second aspect, the nucleic acid molecule of the third aspect, the vector of the fourth aspect, the cell of the fifth aspect, or the pharmaceutical composition of the sixth aspect to the subject.

Also disclosed is a method for inhibition of angiogenesis is provided, which comprises administrating angiogenesis-inhibiting effective amount of the FGFR-Fc fusion protein, the nucleic acid molecule encoding the protein, the vector comprising the nucleic acid molecule

and/or a pharmaceutical composition comprising any one mentioned above to the subject in need thereof. Preferably, the method is carried out in the mammals.

Also disclosed is a method for the treatment or prevention of tumors in the mammals is provided, which comprises administrating therapeutically or preventively effective amount of the FGFR-Fc fusion protein, the nucleic acid molecule encoding the protein, the vector comprising the nucleic acid molecule and/or a pharmaceutical composition comprising any one mentioned above to the subject in need thereof, and preferably, the tumor is a solid tumor.

Also disclosed is a method for the treatment or prevention of ophthalmic angiogenesis-related diseases in the mammals is provided, which comprises administrating therapeutically or preventively effective amount of the FGFR-Fc fusion protein, the nucleic acid molecule encoding the protein, the vector comprising the nucleic acid molecule and/or a pharmaceutical composition comprising any one mentioned above to the subject in need thereof, and preferably, the ophthalmic angiogenesis-related disease is age-related macular degeneration.

Also disclosed is use of the FGFR-Fc fusion protein, the nucleic acid molecule encoding the protein, the vector comprising the nucleic acid molecule and/or a pharmaceutical composition comprising any one mentioned above in manufacture of a medicament for inhibiting angiogenesis. Also disclosed is use of the FGFR-Fc fusion protein, the nucleic acid molecule encoding the protein, the vector comprising the nucleic acid molecule and/or a pharmaceutical composition comprising any one mentioned above in manufacture of a medicament for the treatment or prevention of angiogenesis-related diseases, and preferably, the angiogenesis-related disease is a tumor or ophthalmic angiogenesis-related disease.

In view of different provisions for the subject protected in the patent systems of different countries, the disclosure has further provided the pharmaceutical uses corresponding to the methods mentioned above and the medicines for the intended uses. These various pharmaceutical uses and medicines are also covered in the protection scope of the present invention, as if they were already specifically described in the present disclosure.

19 Jan 2016  
2012261412

— 13a/53 —

In the disclosure, only some specific embodiments claimed for protection are illustrated by way of example, in which the technical features described in one or more technical proposals can be combined with any one or more technical proposals, and these technical proposals obtained by combination are also covered in the protection scope of the application, as if these technical proposals obtained by combination were already specifically described in the disclosure.

With reference to the accompanying figures and the description in more detail below, the present invention will be illustrated by way of example only. It should be understood that the description below is only illustrated by way of example for the technical solutions claimed for protection by the present invention, and not regarded

—14/53—

as any limitation on these technical solutions. The protection scope of the present invention shall be defined by the claims as appended.

## BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a structural representation of FGFR1-Fc fusion protein. FGFR1-Fc fusion protein is represented by a solid line, and the deleted amino acid is represented by a dash line; the antibody-like domain is represented by a circle; different antibody-like domains are represented by number 1-3; the disulfide bond is represented by s s; human IgG1 Fc is represented by a grey box; VEGFR1 signal peptide is represented by SP; the acidic box sequence is represented by a box with letter AB.

Fig. 2 shows the comparison of FGF-2 binding among various FGFR1-Fc fusion proteins. Binding of heparin (100 ng/mL) containing FGF-2 (50 ng/mL) or FGF-2 (50 ng/mL) alone to each FGFR1-Fc fusion protein (20 ng/mL) is detected by ELISA.

Fig. 3 shows SDS-PAGE of 26# FGFR1-Fc fusion protein.

Fig. 4 shows the binding of FGF-2 to a gradient concentration of 26# FGFR1-Fc fusion protein.

Fig. 5 shows the affinity between 26# FGFR1-Fc fusion protein and FGF-2.

Fig. 6 shows the effect of 26# FGFR1-Fc fusion protein on the HUVEC cell division induced by FGF-2.

## DESCRIPTION OF THE PREFERRED EMBODIMENTS

### Definitions

Unless otherwise defined, all scientific terms used herein have the same meaning as commonly understood by those skilled in the art. With regard to the definitions and terms in the art, reference may be made to Current Protocols in Molecular Biology

(Ausubel) by the skilled one. Standard three- and/or one-letter code used for expressing one of 20 common L-amino acids in the art are adopted as the abbreviation of amino acid residues.

Although the number ranges and approximate parameter values are given in a broad range in the present invention, all numbers in the specific examples are described as precise as possible. However, certain errors exist in any numerical values essentially, which may be resulted from the standard deviation during the measurement for each of them. Additionally, it should be understood that all ranges disclosed herein encompass any and all possible subranges contained therein. For example, it should be understood that the range "from 1 to 10" as described herein encompasses any and all possible subranges between the minimum 1 and the maximum 10 (including the endpoints); i.e., all subranges started from the minimum 1 or more, for example 1 to 6.1, and all subranges ended at the maximum 10 or less, for example 5.5 to 10. Additionally, it should be understood that any reference referred as "incorporated herein" is incorporated in its entirety.

Additionally, it should be noted that unless otherwise clearly and explicitly stated, the singular form includes the plural referent, as used in the present invention. The term "or" and the term "and/or" are used interchangeably, unless otherwise clearly indicated in the context.

In the claims which follow and in the description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

As used herein, the term "Fc", "Fc region", "Fc fragment" or "immunoglobulin Fc region" refers to the crystallizable fragment of immunoglobulin, and in the present invention, said Fc region is preferably the human IgG1 Fc region.

2012261412 01 Oct 2014

- 159/53 -

The term "Fc fusion protein" refers to the antibody-like molecule which incorporates the binding specificity of a heterologous protein and the effector function of a constant region of an immunoglobulin. In the term of molecular structure, a Fc fusion protein comprises the amino acid sequence having the required binding specificity and the sequence of a constant region of an immunoglobulin. A Fc fusion protein molecule generally comprises a binding site of a receptor or a ligand. The sequence of immunoglobulin constant region may be derived from any

— 16/53 —

immunoglobulin, for example, IgG-1, IgG-2, IgG-3 or IgG-4 subtype, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.

The term "soluble" protein as used herein refers to the protein which may be dissolved in an aqueous solution at a biologically relevant temperature, pH level and osmotic pressure. The "soluble fusion protein" as used herein is intended to mean that the fusion protein does not contain a transmembrane region or an intracellular region.

As used herein, the term "isolated" refers to the following substance and/or entity: (1) which is isolated from at least some components which is present when initially produced (in natural environment and/or in a experiment device) and related thereto and/or (2) which is produced, prepared and/or manufactured artificially. The isolated substance and/or entity may be isolated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, substantially 100% or 100% other components related to it initially.

The term "part" and "fragment" interchangeably refer to a part of polypeptide, nucleic acid or other molecular constructs.

The term "Ig-like domain" as used herein refers to immunoglobulin-like domain, which may be found in a plurality of protein families and involved in many biological functions, including cell-cell recognition, cell surface receptor, immune function and the like.

Fibroblast growth factor (FGF) is a heparin-binding growth factor family, which has 22 family members in the mammals (FGF 1-14, 16-23). FGF has many important biological functions, such as cell multiplication, differentiation, migration, angiogenesis and tumorigenesis. FGF exerts many biological functions by binding and activating the cell surface FGF receptor (FGFR). (See, for example, Eswarakumar *et al. Cytokine Growth Factor Rev.* 16: 139-149, 2005). Fibroblast growth factor receptor (FGFR) is the receptor that binds the family members of fibroblast growth factor. A part of fibroblast growth factor receptor is involved in the disease process. In the mammals, there are 4 FGFR genes: fgfR1-fgfR4. The fibroblast growth factor

— 17/53 —

receptor is composed of extracellular domain, transmembrane domain and intracellular domain. There are many members in FGFR family, which are different from each other in the term of ligand binding properties and kinase domains. However, the extracellular domains thereof are similar. There are three immunoglobulin-like (Ig-like) domains contained in their extracellular domains: the first Ig-like domain, the second Ig-like domain and the third Ig-like domain, and there is also a sequence contained between the first and the second Ig-like domain. Said sequence contained between the first and the second Ig-like domain is referred herein as the intermediate functional sequence region of the Ig-like domain of FGFR. Said intermediate regulation sequence comprises a region of acidic amino acids, referred as acidic box (AB).

As used herein, the term "the first Ig-like domain of FGFR" or "the first Ig-like domain" refers to the first Ig-like domain in the protein FGFR from the N-terminus, which has for example the amino acid sequence corresponding to position 40 to position 118 of SEQ ID NO: 1. Similarly, the term "the second Ig-like domain of FGFR" or "the second Ig-like domain" refers to the second Ig-like domain in the protein FGFR from the N-terminus, which has for example the amino acid sequence corresponding to position 163 to position 247 of SEQ ID NO: 1; the term "the third Ig-like domain of FGFR" or "the third Ig-like domain" refers to the first Ig-like domain in the protein FGFR from the N-terminus, which has for example the amino acid sequence corresponding to position 270 to position 359 of SEQ ID NO: 1. Preferably, the FGFR is FGFR1, and the first Ig-like domain of FGFR is the first Ig-like domain of FGFR1, and the second Ig-like domain of FGFR is the second Ig-like domain of FGFR1, and the third Ig-like domain of FGFR is the third Ig-like domain of FGFR1.

A part of sequence of hFGFR1 is given as follows, in which each Ig-like domain is shown in shaded area sequentially, see <http://www.ncbi.nlm.nih.gov/protein/AAH15035.1>

MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDLL  
QLRCRLRDDVQSINWLRDGVLQLAESNRTRITGEEVEVQDSVPADSGLYACVT  
SSPSGSDTTYFSVNVDALPSSEDDDDDDSSSEEKETDNTKPNPVAPYWTSP  
EKMEKKLHAVPAAKTVKFKCPSSG180TPNPTLWRWLKNGKEFKPDHRIGGYK  
VRYATWSHIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSPHRPILQAG  
LPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGP300DNLPYVQI  
LKTAGVNTTDKEMEVVLHLRNVSFEDAGEYTCLAGNSIGLSHHSAWLTVLEAL  
EER

The amino acid sequence of FGFR1 may be found in SEQ ID NO: 1, and its encoding nucleotide sequence may be found in SEQ ID NO: 4.

As used herein, the term "the intermediate functional sequence region of the Ig-like domain of FGFR" or "the intermediate functional sequence of the Ig-like domain of FGFR" or "IFS" refers to the sequence between the first Ig-like domain and the second Ig-like domain in the protein FGFR, and preferably, IFS sequence has the amino acid sequence corresponding to position 118 to position 162 of SEQ ID NO: 1. Unexpectedly, it has been found by the present inventor that there is a significant effect of the intermediate functional sequence region on the function of the Ig-like domain. In some embodiments of the present invention a FGFR fusion protein, which comprises a plurality of parts of various lengths derived from the intermediate functional sequence region, and particularly preferably, the part derived from the intermediate functional sequence region contains no acidic box. More preferably, the part derived from IFS has the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1. The protein FGFR is preferably FGFR1 (SEQ ID NO: 1), especially the protein human FGFR1. The amino acid sequence of the protein human FGFR1 may be found in SEQ ID NO: 1, and its cDNA sequence may be found in SEQ ID NO: 4.

The term "FGFR" as used herein refers to fibroblast growth factor receptor, which may be FGFR1, FGFR2, FGFR3 and/or FGFR4. Preferably, the FGFR in the present invention is FGFR1, more preferably, human FGFR1.

— 19/53 —

As used herein, the term "degenerate variant" is intended to mean that the degenerate variant comprises a degenerate change at the third position of the amino acid codon so that the degenerate variants encode the same amino acid, for example the wobble position of a triplet code comprising one or more changed variants (also referred as synonymous variant).

As used herein, the term "subject" refers to mammals, such as human. However, it may also be other animals, such as domesticated animals (such as dog and cat etc.), livestocks (such as cattle, sheep, pig and horse etc.) or experimental animals (such as monkey, rat, mouse, rabbit and guinea pig etc.).

As used herein, the term "percentage identity", "homology" or "identity" refers to the sequence identity between two amino acid sequences or nucleic acid sequences. The percentage identity may be determined by alignment between two sequences, and the percentage identity refers to the amount of the same residue (i.e., amino acid or nucleotide) at the same position in the sequence aligned. Sequence alignment and comparison may be performed using standard algorithms in the art (for example Smith and Waterman, 1981, *Adv. Appl. Math.* 2: 482; Needleman and Wunsch, 1970, *J. Mol. Biol.* 48: 443; Pearson and Lipman, 1988, *Proc. Natl. Acad. Sci., USA*, 85: 2444) or by the computerized versions of these algorithms (Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Drive, Madison, WI). Said computerized versions publicly available are BLAST and FASTA. Additionally, ENTREZ available through National Institutes of Health (Bethesda MD) may be used for sequence alignment. When BLAST and GAP-BLAST are used, default parameters for each program (for example, BLASTN, available on the website of National Center for Biotechnology Information) may be used. In one embodiment, the percentage identity between two sequences may be determined using GCG with a gap-weight of 1 so that the giving weight of each amino acid gap seems as if it is a single amino acid mismatch between two sequences. Alternatively, ALIGN (version

—20/53—

2.0), which is a part of GCG (Accelrys, San Diego, CA) Sequence Alignment Software Package, may be used.

As used herein, the term "hybridization" refers to the process by which a stable double-stranded polynucleotide is formed by non-covalent bonding between two single stranded polynucleotides. The term "hybridization" also may refer to triple-stranded hybridization. The double stranded polynucleotide (generally) produced is the "hybrid" or "duplex". "The condition for hybridization" generally includes a salt concentration lower than about 1 M, and more generally, lower than about 500 mM, and lower than about 200 mM. The hybridization temperature may be as low as 5°C, but it usually higher than about 22°C, and more usually higher than about 30°C, and preferably higher than about 37°C. Hybridization is usually carried out under strict conditions (i.e., the conditions under which the probe will hybridize to its target sequence). Strict hybridization conditions are dependent on the sequence and will be varied under different conditions. Higher hybridization temperature will be probably required by longer segments for specific hybridization. Since the hybridization stringency may be influenced by other factors (including base composition and length of the complementary strand, the presence of organic solvent and the degree of base mismatch), the combination of parameters is more important than the absolute value of any single parameter. Generally, the strict condition is selected as 5°C lower than the Tm of the sequence under certain ionic strength and pH. Exemplary strict conditions include pH 7.0 to 8.3, sodium ion (or other salts) concentration of at least 0.01 M to no more than 1 M and temperature of at least 25°C. For strict conditions, see, for example Sambrook, Fritsche and Maniatis. "Molecular Cloning A laboratory Manual", 2<sup>nd</sup> edition, Cold Spring Harbor Press (1989) and Anderson "Nucleic Acid Hybridization", 1<sup>st</sup> edition, BIOS Scientific Publishers Limited (1999), which are incorporated herein by reference for all purposes mentioned above.

As used herein, the term "linker", "peptide linker", "linking sequence" or "linker sequence" refers to a short amino acid sequence by which individual domain and/or region involved in the present fusion protein are linked together, and the length of the short amino acid sequence is generally 0-20 amino acids, and preferably, 2-10 amino acids.

As used herein, the term of "the amino acid sequence corresponding to SEQ ID NO: N" in a fusion protein or part or domain is intended to mean said fusion protein or part or domain has the amino acid sequence substantially as indicated by SEQ ID NO: N, and preferably, containing no more than 1, 2, 3, 4, 5, 10 or 20 substitutions, additions and deletions of amino acids, and yet preferably, said fusion protein or part or domain shares at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity with the amino acid sequence of SEQ ID NO: N, and more preferably, said fusion protein or part or domain has the amino acid sequence as indicated by SEQ ID NO: N.

As used herein, the term "FGFR-Fc fusion protein" refers to a fusion protein which comprises the part derived from the extracellular domain of FGFR and the part derived from the immunoglobulin Fc region, wherein the part derived from the extracellular domain of FGFR may: (1) comprise the amino acid sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity, with the amino acid sequence indicated by any one of SEQ ID NOs: 9-15 or composed thereof; (2) comprise the amino acid sequence encoded by the nucleotide sequence sharing at least 70% identity, preferably at least 80%, 90%, 93%, 95%, 97%, 98% or 99% identity, with the nucleotide sequence indicated by any one of SEQ ID NOs: 16-22 or composed thereof; or (3) possess the amino acid sequence indicated by any one of SEQ ID NOs: 9-15, or the amino acid sequence encoded by the nucleotide sequence indicated by any one of SEQ ID NOs: 16-22.

In some preferable embodiments, the FGFR-Fc fusion protein may be encoded by the nucleic acid, in which the nucleotide sequence encoding the part derived from the extracellular domain of FGFR comprises the sequence of which the complementary

—22/53—

sequence is hybridized with the nucleotide sequence as indicated by any one of SEQ ID NOS: 16-22 under stringent conditions, or comprises the degenerative variant of the nucleotide sequence as indicated by any one of SEQ ID NOS: 16-22. In some preferable embodiments, the nucleotide sequence encoding the immunoglobulin Fc region comprises the sequence of which the complementary sequence is hybridized with the nucleotide sequence indicated by SEQ ID NO: 8 under stringent conditions, or comprises the degenerative variant of the nucleotide sequence indicated by SEQ ID NO: 8.

In other preferable embodiments, the FGFR-Fc fusion protein includes the FGFR-Fc fusion protein variant. In one embodiment, the variant includes the variant which contains no more than 2, 3, 4, 5 or 10 substitutions, additions or deletions of amino acid in the part derived from IFS corresponding to the amino acid sequence indicated by position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1, and preferably, the variant retains the angiogenesis-inhibitory capacity. In another embodiment, the variant includes the variant which contains no more than 2, 3, 4, 5, 10 or 20 substitutions, additions or deletions of amino acid in D2 domain corresponding to the amino acid sequence indicated by position 163 to position 247 of SEQ ID NO: 1, and preferably, the variant retains the angiogenesis-inhibitory capacity. In another embodiment, the variant includes the variant which contains no more than 2, 3, 4, 5, 10 or 20 substitutions, additions or deletions of amino acid in D3 domain corresponding to the amino acid sequence indicated by position 270 to position 359 of SEQ ID NO: 1, and preferably, the variant retains the angiogenesis-inhibitory capacity. In another embodiment, the substitution, addition or deletion is located at the linker or the linking part.

In addition to the naturally occurring modifications in the part derived from the extracellular domain of FGFR and the part derived from immunoglobulin Fc region, other post-translational modifications may also be comprised in the FGFR-Fc fusion

—23/53—

protein. Such modifications include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, esterification and acylation. As a result, non-amino acid component may be comprised in the modified FGFR-Fc fusion protein, for example polyethylene glycol, lipid, polysaccharide or monosaccharide, and phosphoric acid. Effect of such non-amino acid components on the function of the FGFR-Fc fusion protein may be tested as described for other FGFR-Fc fusion protein variants herein. When FGFR-Fc fusion protein is produced in a cell, post-translational processing is also possibly important for correct folding and/or protein function. Special cell machines and unique mechanisms exist in different cells (for example CHO, HeLa, MDCK, 293, WI38, NIH-3T3 or HEK293) for these post-translational activities, and different cells may be selected to make sure correct modification and processing of FGFR-Fc fusion protein.

The fusion protein as described herein may be produced by any method known in the art. For example, it may be produced by chemical synthesis or from nucleic acid expression. The peptides used in the present invention may be easily prepared according to the established standard liquid, or preferably, solid phase peptide synthesis method known in the art (see, for example J. M. Stewart and J. D. Young, Solid Phase Peptide Synthesis, 2<sup>nd</sup> edition, Pierce Chemical Company, Rockford, Illinois (1984), in M. Bodanzsky, and A. Bodanzsky, The Practice of Peptide Synthesis, Springer Verlag, New York (1984)). The fusion protein may be produced by the techniques known in the art so that one or more intramolecular crosslinkings may be formed between the cysteine residues located in the polypeptide sequence expected to be comprised in the protein (see, for example US patent No. 5478925). In addition, general modifications may be performed to the protein described herein by adding cysteine or biotin to the C-terminus or N-terminus of the protein.

As used herein, "therapeutically effective amount" or "effective amount" refers to the dosage which is sufficient to show the benefit to the subject administrated. The actually administrated dosage, the rate and the time course of administration are

dependent on the condition of the patient and the severity of the disease. Finally, the physician is responsible for the prescription (for example decision on the dosage etc.) and will make a decision for the treatment, usually by considering the disease treated, individual condition of the patient, position of delivery, the method for administration and other factors known to the physician.

A series of isolated soluble FGFR-Fc fusion proteins are constructed by the present inventor, which may bind FGF and effectively inhibit the cell division induced by FGF. The fusion protein preferably comprises: the part derived from IFS, D2, D3 and immunoglobulin Fc region.

Unexpectedly, it has also been found by the present inventor that the binding of FGF by the fusion protein is significantly influenced by the length of the part derived from IFS. Therefore, in some embodiments of the present invention fusion proteins comprising the parts derived from IFS with various lengths. Preferably, the part derived from IFS comprises no acidic box, and more preferably, it has the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1. In some preferable embodiments, the part derived from IFS comprises the fusion protein corresponding to the amino acid sequence indicated by position 145 to position 162 of SEQ ID NO: 1, which has extremely high FGF affinity and may particularly effectively inhibit the cell division induced by FGF.

In some embodiments of the present invention, a soluble FGFR-Fc fusion protein is provided, which comprises: D1, a part derived from IFS, D2, D3 and immunoglobulin Fc region. Preferably, the part derived from IFS comprises no acidic box, and more preferably, it has the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1.

In some other embodiments of the present invention, a soluble FGFR-Fc fusion protein is provided, which comprises: a part of D1, a part derived from IFS, D2, D3

and immunoglobulin Fc region. Preferably, the part derived from IFS comprises no acidic box, and more preferably, it has the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1.

In some other embodiments of the present invention, a soluble FGFR-Fc fusion protein is provided, which is composed of: a part derived from IFS, D2, D3 and immunoglobulin Fc region. Preferably, the part derived from IFS comprises no acidic box, and more preferably, it has the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1.

In some other embodiments of the present invention, a soluble FGFR-Fc fusion protein is provided, which is sequentially composed of, from the N-terminus to the C-terminus, a part derived from IFS, D2, D3 and immunoglobulin Fc region. Preferably, the part derived from IFS comprises no acidic box, and more preferably, it has the amino acid sequence corresponding to position 134 to position 162, position 145 to position 162 or position 151 to position 162 of SEQ ID NO: 1.

In some other embodiments of the present invention, an FGFR-Fc fusion protein is provided, which may inhibit tumor cells directly or indirectly. Preferably, the FGFR-Fc fusion protein of the present invention inhibits tumor cells directly. More preferably, the growth of tumor cells is inhibited by the FGFR-Fc fusion protein of the present invention by at least 10%, 20%, 30%, 40%, 50%, 80%, 90% and 95% etc. The tumor cells may be any tumor cells, for example, leukaemia, lung cancer, liver cancer, head and neck cancer, stomach cancer, bladder cancer, carcinoma of uterine cervix etc. Particularly, the inhibition is achieved by direct binding to tumor cells.

In some embodiments, the present invention includes use of (i) FGFR-Fc fusion protein, or (ii) the polynucleotide encoding such fusion protein, in the preparation of the compositions or medicaments for the treatment of diseases mediated by or related to angiogenesis. For example, in one embodiment, the present invention includes use

of (i) FGFR-Fc fusion protein, or (ii) the polynucleotide encoding such fusion protein in the preparation of the medicaments as an angiogenesis inhibitor.

In some embodiments, the FGFR-Fc fusion protein according to the present invention may be produced by the expression of the nucleotide sequence as indicated by any one of SEQ ID NOs: 16-22 in a mammalian cell line. In particular, the mammalian cell line is CHO cell line.

Additionally, in the present invention, the FGFR-Fc fusion protein as described below is provided, in which a part derived from the extracellular domain of FGFR may be fused with the immunoglobulin Fc region with or without a linker.

In some other embodiments, the present invention includes the isolated nucleic acid molecules encoding the FGFR-Fc fusion protein, and the present invention also includes use of these molecules in manufacture of a medicament. The nucleic acid may be recombinant, synthetic or produced by any available methods in the art, and the method includes cloning by means of using a standard technique.

In some other embodiments, the present invention includes a vector comprising the isolated nucleic acid molecule of the present invention. The vector may be an expression vector, in which the nucleic acid is operatively linked to a control sequence which is able to provide the expression of the nucleic acid in a host cell. A plurality of vectors may be used. For example, suitable vectors may include virus (for example poxvirus, adenovirus, baculovirus etc.); yeast vector, bacteriophage, chromosome, artificial chromosome, plasmid, cosmid.

In some embodiments, the present invention further includes the cells transfected by these vectors so that the FGFR-Fc fusion protein is expressed. The host cell suitable for the present invention may be prokaryotic cell or eukaryotic cell. They include bacteria, for example *E. coli*, yeast, insect cell and mammalian cell. The mammalian cell lines that may be used include, but are not limited to, Chinese Hamster Ovary (CHO) cell, baby hamster kidney cell, NS0 mouse myeloma cell, monkey and human cell lines, and derivate cell lines thereof, etc.

In another aspect of the present invention, a method for angiogenesis inhibition is provided, comprising administrating the FGFR-Fc fusion protein of the present invention to the subject in need thereof. Preferably, the method is carried out in the mammals.

In another aspect of the present invention, a method for binding FGF *in vitro* or *in vivo* is provided, which comprises contacting FGF to the fusion protein according to the present invention.

In another aspect of the present invention, a method for the treatment or prevention of tumors in the mammals is provided, which comprises administrating the FGFR-Fc fusion protein of the present invention to the subject in need thereof, and preferably, the tumor is a solid tumor.

In another aspect of the present invention, a method for the treatment or prevention of ophthalmic angiogenesis-related diseases in the mammals is provided, which comprises administrating the FGFR-Fc fusion protein of the present invention to the subject in need thereof, and preferably, the ophthalmic angiogenesis-related disease is age-related macular degeneration.

The present invention also relates to use of the FGFR-Fc fusion protein in the preparation of medicaments for angiogenesis inhibition. Additionally, the present invention also relates to use of the FGFR-Fc fusion protein in the preparation of medicaments for the treatment or prevention of angiogenesis-related diseases, and preferably, angiogenesis-related diseases are tumors or ophthalmic angiogenesis-related disease.

The angiogenesis-related diseases as described in the present invention include, but are not limited to, angiogenesis-dependent cancers, comprising, for example, solid tumor, hematogenic tumor (for example leukaemia) and tumor metastasis; benign tumor, for example, angioma, acoustic neuroma, neurofibroma, trachoma and pyogenic granuloma; rheumatoid arthritis; psoriasis; rubeosis; Osler-Webber

—28/53—

Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joint and angiofibroma.

In some embodiments of the methods described, one or more FGFR-Fc fusion proteins may be administrated together (simultaneously) or at a different time (sequentially). Additionally, the fusion protein may be administrated together with additional medicament used for cancer treatment or angiogenesis inhibition.

In some embodiments, the method disclosed in the present invention may be used alone. Alternatively, the subject method may be combined with other conventional anticancer therapies for the treatment or prevention of proliferative diseases (for example tumor). For example, these methods may be used for the prevention of cancers, the prevention of cancer relapse and postoperative metastasis, and may be used as a supplement for other cancer therapies. As disclosed in the present invention, the effectiveness of conventional cancer therapies (for example, chemotherapy, radiotherapy, phototherapy, immunotherapy and operation) may be enhanced by using target polypeptide therapeutic agents.

In ophthalmology, angiogenesis is related to, for example, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, corneal transplantation rejection, neovascular glaucoma and RLF (retrolental fibroplasia). The FGFR-Fc fusion protein disclosed herein may be administrated inside the eye or by other routes. Other diseases related to angiogenesis in ophthalmology include, but not limited to, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogren, acne rosacea, phlyctenosis, syphilis, Mycobacteria infection, lipid degeneration, chemical burn, bacterial ulcer, fungal ulcer, Herpes simplex infection, Herpes zoster infection, protozoan infection, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy and comeal graph rejection, sickle cell anemia, sarcoid, pseudoxanthoma

elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis/vitritis, mycobacterial infections, Lyme's disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, Bechets disease, infection resulting in retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pit, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complication. Other diseases include, but not limited to, rubeosis (neovascularization of the angle) related diseases and diseases induced by abnormal hyperplasia of the fibrous blood vessel or fibrous tissue, including all kinds of proliferative vitreoretinopathy.

## Administration

The fusion protein of the present invention may be administrated alone, but preferably, as a pharmaceutical composition which usually comprises a suitable pharmaceutical excipient, diluent or carrier selected according to the intended administration route. The fusion protein may be administrated to the patient in need thereof by any suitable route. A precise dosage will be dependent on many factors, including exact properties of the fusion protein.

Some suitable administration routes include (but are not limited to) oral, rectal, nasal, topical (including buccal and sublingual), subcutaneous, vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intracutaneous, intrathecal and extradural) administration.

For intravenous injection and injection at the focal site, active ingredients are present in the form of a parenterally-acceptable aqueous solution, which is free of pyrogen and has appropriate pH value, isotonicity and stability.

A suitable solution may be well formulated by the skilled one in the art using, for example, isotonic excipients such as sodium chloride injection, Ringer's injection, Ringer's lactate injection. As required, preservative, stabilizer, buffering agent,

—30/53—

antioxidant and/or some other additives may be added. The pharmaceutical composition orally administrated may be in a form of tablet, capsule, powder or oral liquid etc. Solid carrier, such as gelatin or adjuvant, may be comprised in a tablet. Liquid pharmaceutical composition usually comprises liquid carrier, such as water, petroleum, animal or vegetable oil, mineral oil or synthetic oil. Also included may be normal saline solution, glucose or other sugar solutions or glycols such as ethylene glycol, propylene glycol or polyethylene glycol.

Examples of the techniques and schemes as mentioned above and other techniques and schemes as used according to the present invention may be found in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A. (ed), 1980.

#### Cloning of the fusion protein and construction of the expression plasmid

The FGF receptor fragment are obtained from the amplification of the cDNA template of corresponding receptor through PCR, and IgG1 Fc fragment is obtained from the cDNA amplification of the human-derived IgG1 through PCR. When PCR primers are designed, linking sequences are introduced between different fragments so that these different fragments may be finally linked by overlap PCR to form reading frames for different fusion proteins, and endonuclease BspE I and Pst I site are added to both ends of the cDNA. The cDNAs for different fusion proteins may be cloned to the expression plasmid after digestion by BspE I and Pst I. The plasmid after cloning may be determined by endonuclease digestion, electrophoresis and finally DNA sequencing.

#### Expression and purification of the fusion protein

The present fusion protein may be expressed and purified by techniques commonly used in the art. DNA from corresponding fusion protein plasmid was purified using plasmid purification kit (MAX) available from Qiagen, and the

—31/53—

concentration of plasmid DNA was determined using UV spectrophotometry, and the plasmid was transfected to CHO cell using FUGENE 6 liposome (Roche). Specific method for transfection was performed according to the specification of the product. Based on the expression amount required for the proteins, two methods were employed in the present invention for protein expression: (1) transient expression, in which the fusion protein contained culture supernatant was usually harvested 48-72 h after transfection, and the relative content of the fusion protein was then determined using human IgG ELISA so that the fusion protein may be rapidly and efficiently obtained; (2) establishing a stable cell line and producing the common DHFR-defective CHO cell expression system using the recombinant protein medicament expression, the basic process of which includes cell transfection, selection of stably transfected cell, clone screening, stress amplification, culture medium and process optimization etc., and finally realizing a large-scale suspension culture of CHO engineering cell strain in a serum free culture medium. The culture product was collected and the fusion protein was purified using Protein A affinity column. The purified protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and subsequently all eluates in which the required expression product was contained were combined and filtered using a 0.22  $\mu$ m filter, and then protein quantification was carried out according to a plurality of methods such as Lowry protein assay. The volume of CHO cell culture in the present invention was at a level of 10 L bioreactor, through which the fusion protein obtained after purification could satisfy the protein amount required in the animal experiments, and also a basis was established for future scaling-up.

Neutralization of FGF by the fusion protein was validated at a level of protein

After the fusion protein expressed by CHO was obtained, the binding capacity of the fusion protein to FGF is evaluated in the present invention at a level of protein. Binding experiment and affinity experiment were performed for validation in the

—32/53—

present invention, in which steps of the binding experiment included: after initially coated by FGF-2 on a 96-well ELISA plate, the coated well was blocked by BSA followed by adding each fusion protein at the same concentration, and then a secondary antibody to human IgG Fc-HRP was added after washing, and the samples were developed, stopped and read at 450nm on a ELISA plate, and finally the fusion protein which had binding capacity to FGF-2 was screened based on the signal strength. The affinity experiment was performed in order to determine the affinity of the fusion protein to FGF-2 in the solution system, which comprised the following steps: FGF-2 was initially coated on a 96-well ELISA plate to capture the antibody, and then the coated well was blocked by BSA, and subsequently a mixture of the fusion protein and FGF-2 which was previously prepared and incubated were added with a gradient of diluted standards, and after incubation, an HRP-labeled detection antibody was added (using antibody 2 which specifically detected free VEGF or FGF-2), and subsequently the samples were developed, stopped and read at 450nm on a ELISA plate, and finally the relative concentration of free FGF-2 was detected in the mixture of the fusion protein and FGF-2. Through the experiments above, the fusion protein having a blocking effect on FGF-2 was screened.

Neutralization of FGF by the fusion protein was validated at a cellular level

After the binding capacity of the fusion protein to FGF-2 was determined at a level of protein, its angiogenesis-inhibiting effect will be further validated at a cellular level in the present invention. The inhibition capacity of the fusion protein on the division and migration of the vascular endotheliocyte is examined by the division test using human umbilical vein endothelial cell (HUVEC) and the HUEVC cell migration test. The inhibition capacity of the fusion protein on the division of HUVEC cell can be examined by the HUVEC cell division test, which comprises the following steps during the experiment: 3000 HUVEC cells/well were inoculated to a 96-well plate and cultured at 37°C in an incubator supplemented with 5% CO<sub>2</sub>, and then FGF-2 as

—33/53—

well as a mixture of the fusion protein at different concentrations with FGF-2 are added respectively, and after culturing for another 3-4 days, 10% CCK-8 is added and cultured for 2 h before the sample is read at 450 nm on a ELISA plate. The inhibition capacity of the fusion protein on the division of vascular endotheliocyte induced by FGF-2 was evaluated based on the difference of absorbance, and the median effective concentration of the fusion protein was obtained for FGF-2 inhibition. The inhibition capacity of the fusion protein on HUVEC cell migration was examined by the HUVEC cell migration test, which comprises the following steps during the experiment: 50000 HUVEC cells as well as the fusion protein at various concentrations were initially inoculated in the upper chamber, while 600  $\mu$ L FGF-2 containing culture liquid was added into the lower chamber, and subsequently, the sample was cultured at 37°C in an incubator supplemented with 5% CO<sub>2</sub> for 20-24 h before cells on the face side of the membrane of the upper chamber were removed, and then cells on the back side of the membrane were fixed, stained and washed with PBS before observed and counted under an inverted microscope. The migration of HUVEC cells induced by the stimulation of FGF-2 was demonstrated by counting the HUVEC cells on the back side of the membrane, and the inhibition capacity of the fusion protein on the migration of the vascular endotheliocyte was tested by adding the fusion protein at various concentrations into the culture liquid. Through the experiments mentioned above, the inhibition capacity of the new fusion protein constructed in the present invention was validated on the division and migration of the vascular endotheliocyte induced by FGF-2, which also provided a basis for future animal experiments.

Tumor growth-inhibiting capacity of the fusion protein was validated by the tumor model

After the blocking effect of the new fusion protein in the present invention on FGF-2 signal was demonstrated by experiments at a protein level and a cellular level,

its anti-tumor capacity would be tested in animal tumor models in the present invention. In the present invention, the anti-angiogenesis and anti-tumor effect of the fusion protein would be validated by models commonly used in searching medicaments for angiogenesis and tumor, for example, LLC mouse lung cancer, U87 gliocytoma, B16 melanoma and so on. In animal experiments, in addition to conventional control groups, control medicaments, such as VEGF-Trap, FP-1039, would also be included so as to obtain comparative data for anti-tumor capacity. During experiments, 100  $\mu$ L tumor cell liquid with appropriate amount was subcutaneously injected into C57 mouse on one side of the back, and the tumor volume was measured with a vernier caliper twice a week. Upon the tumor grew to about 200  $\text{mm}^3$ , the fusion protein at various concentrations was subcutaneously injected and the mice were sacrificed after 2-3 weeks. Subsequently, the tumor volume was measured with a vernier caliper, and the anti-tumor effect of the fusion protein was validated by the size of the tumor. Furthermore, individual tumor tissue was analyzed using methods such as immunohistochemistry to investigate the regulation mechanism of angiogenesis.

## Examples

Example 1: Construction of recombinant expression plasmid for FGFR1-Fc fusion protein

The FGF receptor fragment is obtained from the amplification of the cDNA template of FGF receptor through PCR, and IgG1 Fc fragment is obtained from the cDNA amplification of the human-derived IgG1 through PCR. A commercially available cDNA (PCR Ready First Strand cDNA, derived from human adult colon cancer tissue, BioChain) was used as the template for FGFR1 fragment. Total RNA was extracted from the blood of healthy human subjects using human blood RNA extraction kit (QIAGEN). According to the manufacturer's instruction of reverse transcription kit (Promega), RT-PCR was performed using M-MLV reverse

transcriptase (Promega) so that RNA was reversely transcribed to cDNA which was used as the template for IgG1 Fc fragment. RT-PCR was performed according to the manufacturer's instruction of reverse transcription kit, which has the following steps: Oligo dT, dNTP, total RNA and DEPC H<sub>2</sub>O were mixed homogeneously and reacted at 70°C for 10 min before placed on ice for 5 min, and subsequently RNase inhibitor, M-MLV reverse transcriptase and reaction buffer were added. The mixture was reacted at 42°C for 1 h and subsequently at 70°C for 15 min, and the cDNA obtained may be used as the template.

Various FGFR1 fragments were individually amplified by PCR using the cDNA from human adult colon cancer tissue as the template (the primers were listed in table 1), and IgG1 Fc fragment was amplified by PCR using human blood cDNA as the template (the primers were listed in table 1 and 2). The reaction conditions for the PCR were as follows: 5 min of pre-denaturalization at 98°C, total 30 cycles of 30 s of denaturalization at 98°C, 45 s of annealing at 56°C and 2 min of extension at 72°C, and finally another 10 min of extension. When PCR primers were designed, 20 or more complementary base sequences were introduced as the linking sequence between FGFR1 fragment and IgG1 Fc fragment so that the FGFR1 fragment and IgG1 Fc fragment may be subsequently linked by overlap PCR to form reading frames for different fusion proteins, and at the same time, restriction endonuclease BspE I and Pst I site were added at both ends of the PCR product.

Subsequently, overlap PCR was carried out to obtain each FGFR1-Fc fusion protein fragment by amplification. The process of the overlap PCR reaction may be divided into two rounds, in which the fragment required for linking and containing no primer was included in the first round with reaction conditions as follows: 5 min of pre-denaturalization at 98°C, 6 cycles of 30 s of denaturalization at 98°C, 45 s of annealing at 56°C and 5 min of extension at 72°C, and finally another 10 min of extension at 72°C; after the first round, the second round of PCR was carried out by adding the primers for both ends with reaction conditions as follows: 5 min of

pre-denaturalization at 98°C, 30 cycles of 30 s of denaturalization at 98°C, 45 s of annealing at 56°C and 2 min of extension at 72°C, and finally another 10 min of extension at 72°C; through the process above, reading frames for different fusion proteins were spliced, and at the same time, restriction endonuclease BspE I and Pst I site were added at both ends of the cDNA.

After amplification, the fragments amplified by PCR were purified using QIAquick PCR purification kit (QIAGEN). cDNAs of various fusion proteins and the eucaryotic expression plasmid pSV2-dhfr (ATCC) were digested by BspE I and Pst I, respectively. Subsequently, 1% agarose gel electrophoresis was performed on the digested samples under a voltage of 90 V. Target fragments were recovered using QIAquick gel extraction kit (QIAGEN) before ligating at 16°C for 1 h using a ligase (NEB). The mixture for ligation reaction was transformed to the competent Top10 *E. coli* under the conditions of 90 s of reaction at 42°C followed by 3 min of standing on ice. After the sterile LB culture broth (free of antibody) added, the mixture was shaken at 250 rpm in a shaker at 37°C for 1 h before coating on a LB plate supplemented with ampicillin. The plate was cultured overnight in a thermostated incubator at 37°C, and then single colonies were picked out and transferred to an ampicillin-containing LB culture broth. The inoculated culture broth was shaken at 250 rpm in a shaker at 37°C overnight before the plasmid was extracted using alkaline lysis. Subsequently, the sample was digested by restriction endonuclease before evaluated by 1% agarose gel electrophoresis under a voltage of 90 V. The recombinant plasmid with correct endonuclease digestion was confirmed by DNA sequencing. Based on the steps above, 19#, 13#, 22#, 23#, 26#, 29# and 8# expression plasmid for FGFR1-Fc fusion protein were constructed. The protein sequence of FGFR1-Fc in each fusion protein and its encoding nucleotide sequence were listed in Table 3. The schematic diagram of the fusion protein structure was shown in Fig. 1.

Table 1: Primers used for amplification of FGFR1 fragment

| Fusion | Upstream primer | Downstream primer |
|--------|-----------------|-------------------|
|--------|-----------------|-------------------|

-37/53-

| protein |                                                                         |                                                                        |
|---------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| 19#     | 19#-FGFR1For (SEQ ID NO: 24)<br><br>TAGTTCCGGAAGGCCGTCCCCGACCTTGCCTG    | FGFR1Rev (SEQ ID NO: 31)<br><br>GTTTTGTCCTCCAGGTAC<br><br>AGGGGCGAGGTC |
| 13#     | 13#-FGFR1For (SEQ ID NO: 25)<br><br>TAGTTCCGGAAAAAAATCGCACCCGCATCACAG   | FGFR1Rev                                                               |
| 22#     | 22#-FGFR1For (SEQ ID NO: 26)<br><br>TAGTTCCGGAGTAACCAGCAGCCCCCTCGGGC    | FGFR1Rev                                                               |
| 23#     | 23#-FGFR1For (SEQ ID NO: 27)<br><br>TAGTTCCGGATCCTCTTCAGAGGAGAAAGAAC    | FGFR1Rev                                                               |
| 26#     | 26#-FGFR1For (SEQ ID NO: 28)<br><br>TAGTTCCGGAAAACCTAACCCCGTAGCTCCAT    | FGFR1Rev                                                               |
| 29#     | 29#-FGFR1For (SEQ ID NO: 29)<br><br>TAGTTCCGGACCATATTGGACATCCCCAGAAAAG  | FGFR1Rev                                                               |
| 8#      | 8#-FGFR1For (SEQ ID NO: 30)<br><br>CTAGCTCCGGACCAGAAAAGATGGAAAAGAAATTGC | FGFR1Rev                                                               |

Table 2: Primers used for amplification of IgG1 Fc fragment

|                  | Upstream primer                                            | Downstream primer                                                   |
|------------------|------------------------------------------------------------|---------------------------------------------------------------------|
| IgG1 Fc fragment | FcFor (SEQ ID NO: 32)<br><br>CTGTACCTGGAGGACAAACTCACACATGC | FcRev (SEQ ID NO: 33)<br><br>GATATCTGCAGTCATTT<br><br>ACCCGGAGACAGG |

Table 3: Protein sequences and nucleotide sequences for FGFR1-Fc fusion proteins

| Fusion protein | Upstream primer | Downstream primer |
|----------------|-----------------|-------------------|
|----------------|-----------------|-------------------|

|            |               |               |
|------------|---------------|---------------|
| <b>19#</b> | SEQ ID NO: 9  | SEQ ID NO: 16 |
| <b>13#</b> | SEQ ID NO: 10 | SEQ ID NO: 17 |
| <b>22#</b> | SEQ ID NO: 11 | SEQ ID NO: 18 |
| <b>23#</b> | SEQ ID NO: 12 | SEQ ID NO: 19 |
| <b>26#</b> | SEQ ID NO: 13 | SEQ ID NO: 20 |
| <b>29#</b> | SEQ ID NO: 14 | SEQ ID NO: 21 |
| <b>8#</b>  | SEQ ID NO: 15 | SEQ ID NO: 22 |

#### Example 2: Transient expression and quantification of the fusion proteins

The DNA of individual fusion protein plasmid was purified using MAX Plasmid Purification Kit (Qiagen). The concentration of the plasmid DNA was determined by UV spectrophotometry. 1  $\mu$ g recombinant plasmid and 6  $\mu$ L liposome (FuGENE 6 Transfection Reagent, Roche) were homogeneously mixed into 100  $\mu$ L fresh IMDM culture broth (GIBCO); after standing for 15 min, the mixture was added to the CHO cells (ATCC) cultured overnight after inoculation at a cell density of  $3 \times 10^5$ /mL into a 6-well plate; the mixture was cultured at 37°C in an incubator supplemented with 5% CO<sub>2</sub> for 48 h with a cell complete culture broth (IMDM medium containing 10% FBS, 1% HT and 1% glutamine, all supplied by GIBCO); subsequently, the supernatant was collected and determined for the relative content of the fusion protein using human IgG ELISA kit for protein quantification (BETHYL). The relative content of the fusion protein expressed and secreted by CHO was determined with the following steps: 100  $\mu$ L anti-human IgG-Fc protein (10  $\mu$ g/mL) purified by affinity was coated to a 96-well ELISA plate (IMMULON) and subsequently washed for 5 times using 300  $\mu$ L PBST washing solution; each coated well was blocked with 200  $\mu$ L freshly prepared blocking working solution (blocking stock solution : PBS=1: 19) and incubated at 37°C for 1 h; after washed in 300  $\mu$ L PBST washing solution for 5 times, 100  $\mu$ L IgG solution diluted in a gradient (200 ng/mL original concentration and

—39/53—

diluted by PBS in the multiple proportion of 1: 2) as a standard and 100  $\mu$ L culture supernatant of each fusion protein diluted in a gradient (starting with the concentration of each culture supernatant, and diluted by PBS in the multiple proportion of 1: 5) were added to each well and incubated at 37°C for 2h; after washed in 300  $\mu$ L PBST washing solution for 5 times, 100  $\mu$ L anti-human IgG Fc-HRP secondary antibodies diluted with PBS in a ratio of 1: 10000 was added and incubated at 37°C for 1h; after washed, the well was developed by adding 100  $\mu$ L developing solution (KPL); finally, after the development was stopped by adding 100  $\mu$ L stopping solution (KPL), the absorbance of the ELISA plate was read at a wavelength of 450 nm on a ELISA reader. The concentrations of various fusion proteins may thereby be determined according to the standard curve.

### Example 3: Binding of the fusion proteins

The binding capacity of 19#, 13#, 22#, 23#, 26#, 29# and 8# fusion protein constructed above to FGF-2 was detected by ELISA. Initially, a 96-well ELISA plate (IMMULON Company) was coated by 100  $\mu$ L solution containing 50 ng/mL FGF-2 (R&D Systems) as well as containing 100 ng/mL heparin (Sigma Company) and 50 ng/mL FGF-2. Subsequently, the plate was washed by 300  $\mu$ L PBST washing solution for 5 times before each coated well was blocked by 200  $\mu$ L freshly prepared blocking working solution (KPL Company) (blocking stock solution : PBS = 1:19) and incubated at 37°C for 1 h. After washed in 300  $\mu$ L PBST washing solution for 5 times, 100  $\mu$ L solutions of various fusion proteins (dissolve in PBS, pH=7.2, concentration of 20 ng/ml) were added and incubated at 37°C for 2 h. After washed in 300  $\mu$ L PBST washing solution for 5 times, 100  $\mu$ L secondary antibody to human IgG Fc-HRP (BETHYL Company) diluted with PBS in a ratio of 1:10000 was added and incubated at 37°C for 1h. After washed in 300  $\mu$ L PBST washing solution for 5 times, the well was developed to the presence of color at room temperature in a dark place by adding 100  $\mu$ L developing solution (KPL Company), and finally the development was

—40/53—

stopped by adding 100  $\mu$ L stopping solution (KPL Company) before the absorbance of the ELISA plate was read at a wavelength of 450 nm on a ELISA reader. The higher the binding capacity of the fusion protein to FGF2 was, the larger the absorbance was and the stronger the signal was. Based on the strength of the signal, 26# fusion protein was determined to have the highest binding capacity to FGF-2. Comparison of FGF-2 binding among various fusion proteins was shown in Fig. 2. It can be seen from Fig. 2 that 19#, 13#, 22#, 23#, 26# and 29# fusion protein constructed in the present invention bound to FGF at different extents in the presence of heparin, and particularly, the binding extent of 23#, 26# and 29# was extremely higher than control, and higher than that of 19#, 13# and 22#, indicating that the fusion proteins containing no acidic box according to the present invention had excellent effect. Among others, especially high binding extent was demonstrated by 26#, which presented us a clue that the fusion protein of the present invention had significantly better binding effect when comprises a part of certain length derived from the intermediate functional sequence of the Ig-like domain of FGFR.

#### Example 4: Stable expression and purification of the fusion proteins

DHFR-defective CHO cells (ATCC) were transfected by the recombinant expression plasmid of 26# fusion protein (possessing a high FGF-2 binding capacity) through a liposome (Roche). Particularly, 5  $\mu$ g recombinant plasmid and 30  $\mu$ L liposome (FuGENE 6 Transfection Reagent, Roche) were homogeneously mixed into 100  $\mu$ L fresh IMDM culture broth (GIBCO); after standing for 15 min, the mixture was added to the DHFR-defective CHO cells (ATCC) cultured overnight after inoculation at a cell density of  $3 \times 10^5$ /mL in a 10 cm culture dish (Corning); the mixture was cultured at 37°C in an incubator supplemented with 5% CO<sub>2</sub> for 2-3 days with a cell complete culture broth containing 10% FBS, 1% HT and 1% glutamine in a IMDM culture medium (all supplied by GIBCO); subsequently, the cells were digested by trypsin (GIBCO), inoculated at a cell density of  $3 \times 10^5$ /mL in 30 mL

—41/53—

serum-free 302 culture medium (SAFC) in a flask, and selectively cultured at 37°C in an incubator supplemented with 5% CO<sub>2</sub> at 100 rpm to a cell density of 10<sup>6</sup>/mL. Subsequently, 3000 cells were inoculated into a 10 cm culture dish (Corning) (the culture broth containing 10% FBS and 1% glutamine in an IMDM culture medium) and cultured at 37°C in an incubator supplemented with 5% CO<sub>2</sub> to form single clones. These single clones were picked out and cultured in a 96-well plate (Corning). The relative content of the fusion protein expressed and secreted by each individual single clone was determined using a human IgG ELISA kit for protein quantification (BETHYL) under the same conditions and steps as described in Example 2 for the determination of the relative content of the fusion protein. The clone with the highest expression amount was screened out and transferred to a 6-well plate for culturing to a confluence rate of about 70%. The cells were digested by trypsin and transferred to a 10 cm culture dish. Subsequently, gradual stress amplification was carried out by adding methotrexate (MTX, Sigma) with various concentrations (10 nM, 20 nM, 50 nM, 100 nM, 200 nM and 500 nM). After stress amplification, the cells were digested by trypsin and inoculated at a cell density of 3×10<sup>5</sup>/mL in a flask. The expression amount of a single cell was determined so that genetically engineered stains of CHO were obtained for expressing a particular fusion protein. Finally, large-scale suspension culture (volume of 10L) of the genetically engineered stain of CHO was carried out at 37°C, 5% CO<sub>2</sub>, 40% dissolved oxygen and 80 rpm in a serum-free 302 culture medium (pH 7.0, SAFC). The culture product was collected by centrifugation. After the supernatant was filtered using 0.45 µm filter membrane (Millipore), affinity chromatography was performed according to the instruction manual of Protein A affinity column (GE) with the specific steps as follows: initially, a protein A affinity column was equilibrated by a PBS buffer (pH 7.0); subsequently, the supernatant was loaded on the column and washed again with the PBS buffer; finally, the column was eluted with a citric acid buffer (pH 3.0), and the eluent was collected and filtered by a 0.45 µm filter membrane. After virus inactivation by adding S/D (0.3% tributyl phosphate/1% Tween 80) at 24°C for 6 h, the target protein was further purified by a

molecular sieve chromatography with the following steps: first, the eluent obtained from the Protein A affinity chromatography was dialyzed in a dialysis bag against a PBS buffer; subsequently, the sample was concentrated in a 10 KD ultrafiltration cup (Millipore); the sample concentrated using the ultrafiltration cup was then loaded on a molecular sieve chromatography column Superdex 200 (GE) equilibrated by a PBS buffer, and subsequently the column was eluted with a PBS buffer and the eluting peak was collected. The purified protein was analyzed by SDS-PAGE (Fig. 3); and subsequently, the eluates containing the required expression product was combined and filtered with a 0.22  $\mu$ m filter membrane (Millipore) before the protein content was determined using many methods such Lowry protein assay.

#### Example 5: Gradient-binding experiment of the fusion proteins

The binding capacities of the fusion proteins as constructed above to FGF-2 were detected by ELISA, similarly as in Example 3. Initially, a 96-well ELISA plate was coated by 100  $\mu$ L solution containing 50 ng/mL FGF-2 (R&D Systems). Subsequently, the plate was washed in 300  $\mu$ L PBST washing solution for 5 times before each coated well was blocked by 200  $\mu$ L freshly prepared blocking working solution (KPL) (blocking stock solution : PBS = 1: 19) and incubated at 37°C for 1 h. After washed in 300  $\mu$ L PBST washing solution for 5 times, 100  $\mu$ L solutions containing various fusion proteins at different concentrations (the starting content of protein was 16000 pM, and was diluted in a ratio of 1: 3) were added and incubated at 37°C for 2 h. After washed in 300  $\mu$ L PBST washing solution for 5 times, 100  $\mu$ L anti-human IgG Fc-HRP secondary antibody (BETHYL) diluted with PBS in a ratio of 1: 10000 was added and incubated at 37°C for 1 h. After washed in 300  $\mu$ L PBST washing solution for 5 times, the well was developed by adding 100  $\mu$ L developing solution (KPL), and finally the development was stopped by adding 100  $\mu$ L stopping solution (KPL) before the absorbance of the ELISA plate was read at a wavelength of 450 nm on a ELISA reader. Based on the intensity of the signal, the gradient binding capacities of

—43/53—

the fusion proteins to FGF-2 were determined. In the experiment procedure mentioned above, specific conditions and steps may be found in Example 3. Gradient binding of 26# fusion protein to FGF-2 was compared in Fig. 4. It can be seen that the binding capacity of 26# fusion protein to FGF-2 was dose-dependent. It has been suggested by this example that the binding capacity to FGF-2 increased with an enhanced molar concentration of 26# fusion protein, manifested by a stronger signal at a wavelength of 450 nm; while the binding capacity to FGF-2 decreased correspondingly with a gradient dilution of the molar concentration of 26# fusion protein.

#### Example 6: Affinity experiment of the fusion proteins

The affinity of the fusion protein to FGF-2 in a solution system was determined by an affinity experiment. Initially, a 96-well ELISA plate was coated by 100  $\mu$ L solution containing 2.0  $\mu$ g/mL FGF-2 capture antibody (R&D Systems). Subsequently, the plate was washed in 300  $\mu$ L PBST washing solution for 5 times before each coated well was blocked by a blocking working solution (KPL) (as seen in Example 3) and incubated at 37°C for 1 h. After washed in 300  $\mu$ L PBST washing solution for 5 times, previously prepared and incubated (4 °C overnight) mixture of the fusion proteins and FGF-2 as well as the standard (R&D Systems) diluted in a gradient were added, in which the specific preparation procedure was as follows: the starting concentration of 26# fusion protein was 400 pM (dissolved in PBS) and diluted in a gradient ratio of 2-fold, and the solutions of the fusion protein were 1: 1 mixed with 20 pM FGF-2 solution (dissolved in PBS), and that is, the starting final concentration of each fusion protein was 200pM, and the final concentration of FGF-2 was 10 pM in the mixture solution prepared. The plate was incubated at 37°C for 2 h and washed in 300  $\mu$ L PBST washing solution for 5 times before 100  $\mu$ L FGF-2 detection antibody solution (250 ng/mL) was added (R&D systems, which may specifically detect free antibodies against FGF-2). The plate was incubated at 37°C for 2 h and washed in 300  $\mu$ L PBST washing solution for 5 times, and subsequently, HRP labeled streptavidin

—44/53—

(R&D systems) was added (diluted by PBS in 1: 200). The plate was incubated at 37°C for 2 h and washed in 300  $\mu$ L PBST washing solution for 5 times before the well was developed at room temperature in a dark place for an appropriate duration (about 15-30 min) by adding 100  $\mu$ L developing solution (KPL). Finally, after the development was stopped by adding 100  $\mu$ L stopping solution (KPL), the absorbance of the ELISA plate was read at a wavelength of 450 nm on a ELISA reader. The relative concentration of free FGF-2 in the mixture of the fusion protein and FGF-2 was determined. The affinity between 26# fusion protein and FGF-2 in a solution system can be seen in Fig. 5. As demonstrated in this Example, 26# fusion protein had high affinity to FGF-2 in a solution system. The affinity increased with an enhanced concentration, which is manifested as a decreased amount of free FGF-2 with an enhanced concentration of the fusion protein. The affinity between 26# fusion protein and FGF-2 in a solution system can be seen in Fig. 5. As demonstrated in this Example, 26# fusion protein had affinity to FGF-2 in a solution system. The affinity increased with an enhanced concentration, which is manifested as a decreased amount of free FGF-2.

#### Example 7: Inhibitory test for division on human umbilical vein endothelial cell

The inhibitory ability of the fusion proteins on the division of vascular endothelial cells was examined in a division test for human umbilical vein endothelial cell (HUVEC). HUVEC cells (AllCells) were cultured to the exponential growth phase in an HUVEC complete medium (AllCells) at 37°C in an incubator supplemented with 5% CO<sub>2</sub>. HUVEC cells were counted after digested by trypsin. 3000 HUVEC cells were inoculated per well in an HUVEC basal medium containing 1% FBS (AllCells) in a 96-well plate. The plate was cultured overnight at 37°C in an incubator supplemented with 5% CO<sub>2</sub>.

100  $\mu$ L FGF-2 (R&D Systems) solution (final concentration of 5 ng/mL) diluted by an HUVEC basal medium containing 1% FBS, as well as 100  $\mu$ L mixture of

—45/53—

various amount of 26# fusion protein and FGF-2 (in which the final concentration of the fusion protein was 40 pM, diluted in an HUVEC basal medium containing 1% FBS with a ratio of 1:10, and the final concentration of FGF-2 was 5 ng/mL) were added and cultured for another 3-4 days. Subsequently, the culture medium was taken out and a culture medium containing 10% CCK-8 (DOJINDO) was added for another 2 h of culture before the absorbance of the 96-well plate was read directly at a wavelength of 450 nm on an ELISA reader. Based on the difference of the absorbance, the inhibitory ability of the fusion protein on the division of vascular endothelial cells induced by FGF-2 was determined. The effect of the fusion protein on HUVEC cell division induced by FGF-2 was shown in Fig. 6. As demonstrated in this Example, 26# fusion protein has biological activity and function at the cellular level, which can inhibit HUVEC cell division induced by FGF-2, and has the binding capacity to FGF-2. Such binding capacity increases as the molar concentration of 26# fusion protein increases, which is indicated by the inhibition of HUVEC cell division induced by FGF-2.

The present invention has already been illustrated by specific examples. However, it will be appreciated by a person of ordinary skill in the art that the present invention is not limited to each specific embodiments. Various changes and modifications may be made by a person of ordinary skill under the scope of the present invention, and each technical feature mentioned in the specification may be combined without departing from the spirit and scope of the invention. Such changes and modifications fall into the scope of the present invention.

## References

- [1] Hanahan D, Weinberg RA. The hallmarks of cancer. *Cell*, 2000, 100(1):57–70.
- [2] Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. *Cell*. 1996, 86:353-64.

- [3] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. *Nat Med*. 2003, 9:669-76.
- [4] Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. *Oncologist*. 2004, 1:2-10.
- [5] Jenab-Wolcott J, Giantonio BJ. Bevacizumab: current indications and future development for management of solid tumors. *Expert Opin Biol Ther*. 2009, 9(4):507-17.
- [6] Summers J, Cohen MH, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. *Oncologist*. 2010, 15(1):104-11.
- [7] Hsu JY, Wakelee HA. Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. *BioDrugs*. 2009, 23(5):289-304.
- [8] Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. *Curr Opin Investig Drugs*. 2009, 10(6):597-605.
- [9] Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. *N Engl J Med*. 2004, 350(23):2335-42.
- [10] Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilienbaum R, Johnson DH. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. *N Engl J Med*. 2006, 355(24):2542-50.
- [11] Jenab-Wolcott J, Giantonio BJ. Bevacizumab: current indications and future development for management of solid tumors. *Expert Opin Biol Ther*, 2009, 9(4):507-17.
- [12] Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. *Proc Natl Acad Sci U S A*. 2007, 104(3):967-72.

2012261412 01 Oct 2014

—47/53—

- [13] Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. *Cancer Cell*, 2005, 8(4):299-309.
- [14] A Beenken, M Mohammadi. *Nature Rev.*, 2009, 8(3): 235~53.
- [15] M Mohammadi, S K Olsen, O A Ibrahim. *Cytokine*, 2005, 16: 107~137.
- [16] M Presta, P D Era, S Mitola et al. *Cytokine*, 2005, 16(2): 159~178.
- [17] R Grose, C Dickson. *Cytokine*, 2005, 16(2): 179~186.
- [18] Y H Cao, R H Cao, E M Hedlund. *J. Mol. Med.*, 2008, 86(7): 785~789.
- [19] M J Cross, L C Welsh. *Trends Pharmacol. Sci.*, 2001, 22(4): 201~207.
- [20] Wang F. et al., *J Biol Chem*. 1995, 270:10231-10235
- [21] Olsen SK. et al., *Proc Natl Acad Sci U S A*. 2004, 101:935-940
- [22] Gauglhofer C, Sagmeister S, Schrottmaier W, Fischer C, Rodgarkia-Dara C, Mohr T, Stättner S, Bichler C, Kandioler D, Wrba F, Schulte-Hermann R, Holzmann K, Grusch M, Marian B, Berger W, Grasl-Kraupp B. *Hepatology*. 2011 Mar;53(3):854-64.

## CLAIMS

1. An isolated soluble fusion protein of fibroblast growth factor receptor (FGFR), comprising: a part derived from the FGFR extracellular domain and an immunoglobulin Fc region, wherein the part derived from the FGFR extracellular domain consists of an amino acid sequence corresponding to positions 1-241 of SEQ ID NO: 12, positions 1-230 of SEQ ID NO: 13, or positions 1-224 of SEQ ID NO: 14 or encoded by a nucleotide sequence corresponding to positions 1-723 of SEQ ID NO: 19, positions 1-690 of SEQ ID NO: 20, or positions 1-672 of SEQ ID NO: 21.
2. An isolated soluble fusion protein of fibroblast growth factor receptor (FGFR), wherein said protein consists of an amino acid sequence of any one of SEQ ID NOs: 12-14, or is encoded by a nucleic acid molecule consisting of a nucleotide sequence of any one of SEQ ID NOs: 19-21.
3. An isolated nucleic acid molecule encoding the fusion protein of claim 1 or claim 2.
4. A vector comprising the nucleic acid molecule of claim 3.
5. A cell, optionally a CHO cell, transfected by the vector of claim 4.
6. A pharmaceutical composition, comprising the fusion protein of claim 1 or claim 2, the nucleic acid molecule of claim 3, the vector of claim 4, or the cell of claim 5, and a pharmaceutically acceptable carrier.
7. Use of the fusion protein of claim 1 or claim 2, the nucleic acid molecule of claim 3, the vector of claim 4, or the cell of claim 5 in the manufacture of a medicament for inhibiting angiogenesis in a mammal.

19 Jan 2016  
2012261412

- 49/53 -

8. Use of the fusion protein of claim 1 or claim 2, the nucleic acid molecule of claim 3, the vector of claim 4, or the cell of claim 5 in the manufacture of a medicament for treating or preventing a tumor, optionally a solid tumor, in a subject.

9. A method for inhibiting angiogenesis in a mammal in need thereof, comprising administering an effective amount of the fusion protein of claim 1 or claim 2, the nucleic acid molecule of claim 3, the vector of claim 4, the cell of claim 5, or the pharmaceutical composition of claim 6 to the mammal.

10. A method for treating or preventing a tumor, optionally a solid tumor, in a subject, comprising administering an effective amount of the fusion protein of claim 1 or claim 2, the nucleic acid molecule of claim 3, the vector of claim 4, the cell of claim 5, or the pharmaceutical composition of claim 6 to the subject.

2012261412 19 Jan 2016

- 50/53-

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

2012261412 19 Jan 2016

- 51/53 -

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

2012261412 19 Jan 2016

- 52/53-

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

Figure 1




Figure 2

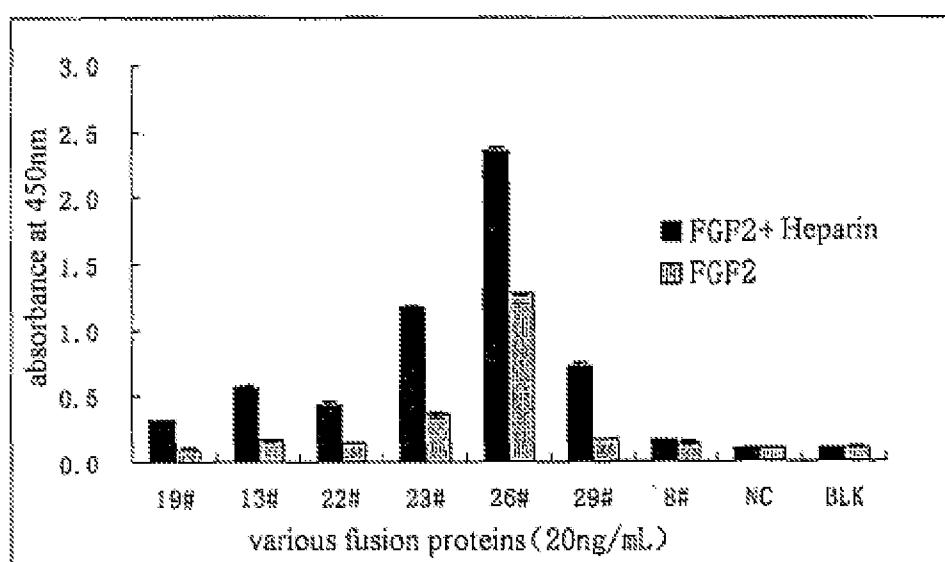



Figure 3

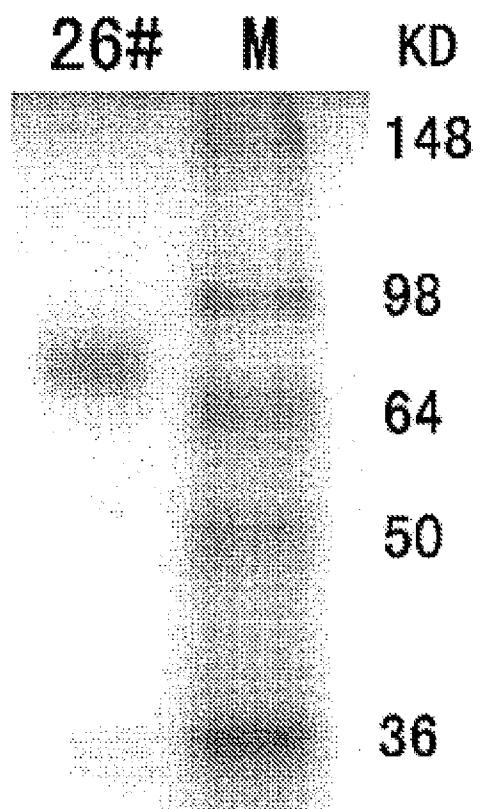



Figure 4

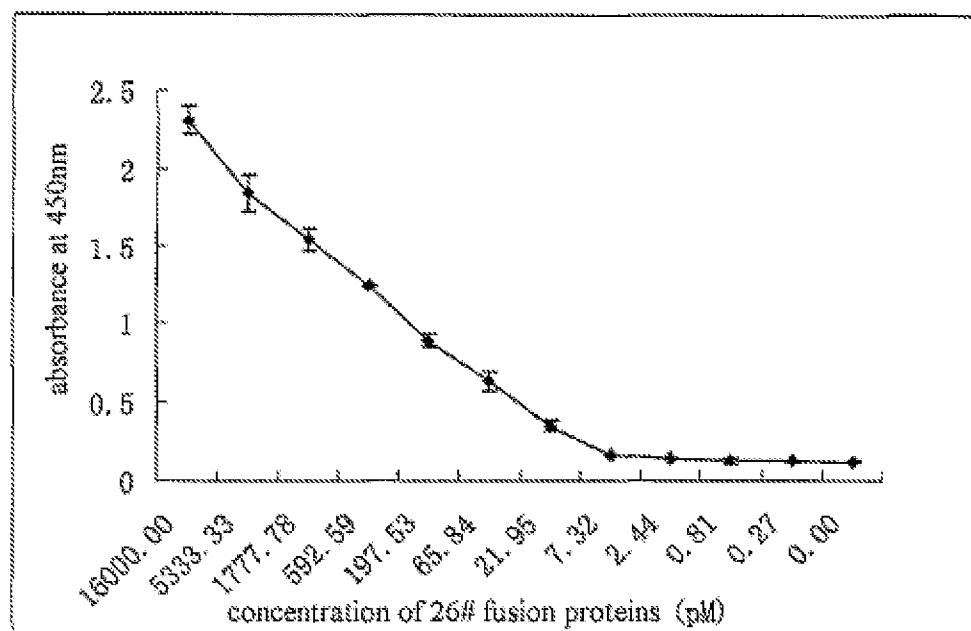



Figure 5

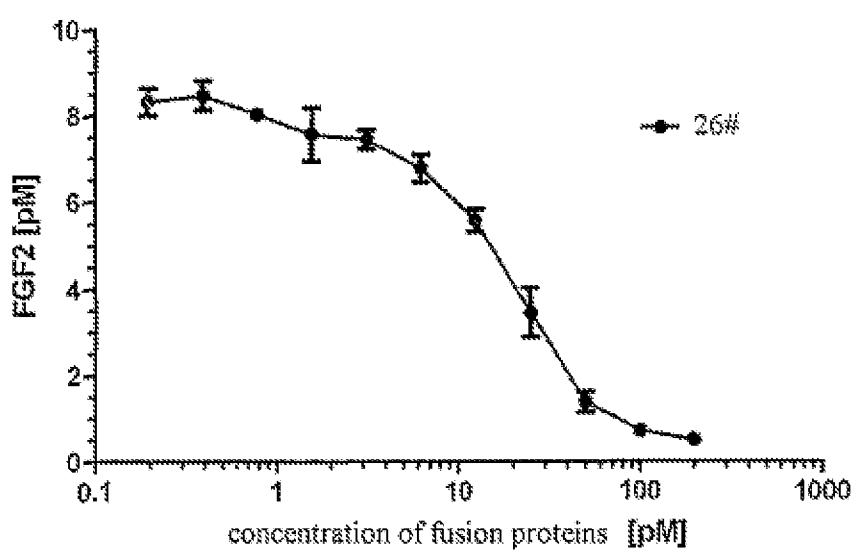
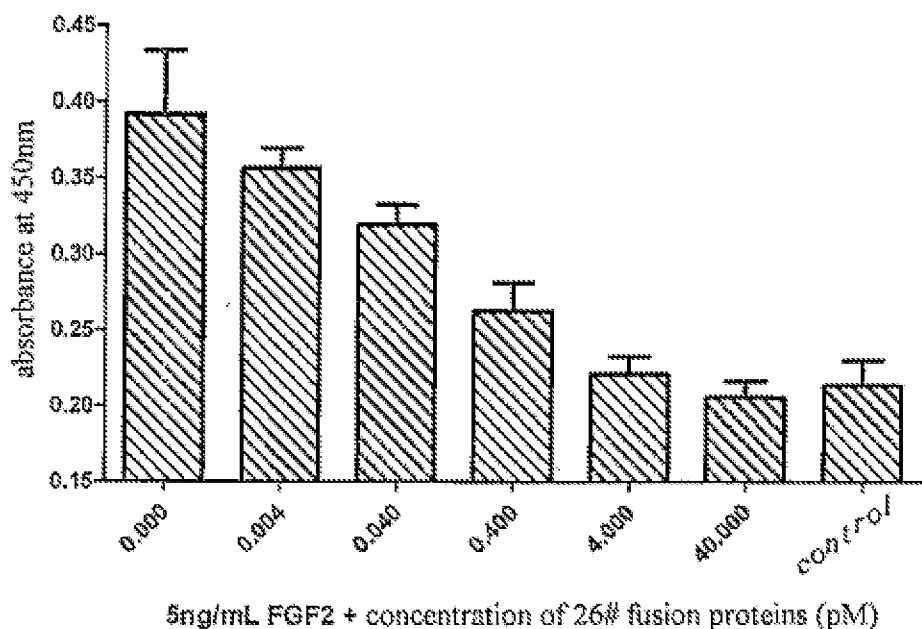




Figure 6



4562516\_1  
SEQUENCE LISTING

<110> YANTAI RC BIOTECHNOLOGIES, LTD.  
<120> FGFR-FC FUSION PROTEIN AND USE THEREOF  
<130> application file  
<160> 33  
<170> PatentIn version 3.2  
<210> 1  
<211> 820  
<212> PRT  
<213> Homo sapiens

<220>  
<221> Ig1\_FGFR  
<222> (40)..(118)

<220>  
<221> Ig2\_FGFR  
<222> (163)..(247)

<220>  
<221> Ig3\_FGFR  
<222> (270)..(359)

<400> 1

Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala  
1 5 10 15

Thr Leu Cys Thr Ala Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln  
20 25 30

Pro Trp Gly Ala Pro Val Glu Val Glu Ser Phe Leu Val His Pro Gly  
35 40 45

Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile  
50 55 60

Asn Trp Leu Arg Asp Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg  
65 70 75 80

Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser  
85 90 95

Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr  
100 105 110

Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp  
115 120 125

Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr  
130 135 140

4562516\_1

Lys Pro Asn Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys Met Glu  
145 150 155 160

Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe Lys Cys  
165 170 175

Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys Asn Gly  
180 185 190

Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val Arg Tyr  
195 200 205

Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp Lys Gly  
210 215 220

Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr  
225 230 235 240

Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln  
245 250 255

Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn Val Glu  
260 265 270

Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln Trp Leu  
275 280 285

Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu Pro  
290 295 300

Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp Lys Glu  
305 310 315 320

Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala Gly Glu  
325 330 335

Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His Ser Ala  
340 345 350

Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val Met Thr  
355 360 365

Ser Pro Leu Tyr Leu Glu Ile Ile Ile Tyr Cys Thr Gly Ala Phe Leu  
370 375 380

Ile Ser Cys Met Val Gly Ser Val Ile Val Tyr Lys Met Lys Ser Gly  
385 390 395 400

Thr Lys Lys Ser Asp Phe His Ser Gln Met Ala Val His Lys Leu Ala  
405 410 415

4562516\_1  
Lys Ser Ile Pro Leu Arg Arg Gln Val Thr Val Ser Ala Asp Ser Ser  
420 425 430  
  
Ala Ser Met Asn Ser Gly Val Leu Leu Val Arg Pro Ser Arg Leu Ser  
435 440 445  
  
Ser Ser Gly Thr Pro Met Leu Ala Gly Val Ser Glu Tyr Glu Leu Pro  
450 455 460  
  
Glu Asp Pro Arg Trp Glu Leu Pro Arg Asp Arg Leu Val Leu Gly Lys  
465 470 475 480  
  
Pro Leu Gly Glu Gly Cys Phe Gly Gln Val Val Leu Ala Glu Ala Ile  
485 490 495  
  
Gly Leu Asp Lys Asp Lys Pro Asn Arg Val Thr Lys Val Ala Val Lys  
500 505 510  
  
Met Leu Lys Ser Asp Ala Thr Glu Lys Asp Leu Ser Asp Leu Ile Ser  
515 520 525  
  
Glu Met Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn  
530 535 540  
  
Leu Leu Gly Ala Cys Thr Gln Asp Gly Pro Leu Tyr Val Ile Val Glu  
545 550 555 560  
  
Tyr Ala Ser Lys Gly Asn Leu Arg Glu Tyr Leu Gln Ala Arg Arg Pro  
565 570 575  
  
Pro Gly Leu Glu Tyr Cys Tyr Asn Pro Ser His Asn Pro Glu Gln  
580 585 590  
  
Leu Ser Ser Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly  
595 600 605  
  
Met Glu Tyr Leu Ala Ser Lys Lys Cys Ile His Arg Asp Leu Ala Ala  
610 615 620  
  
Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe  
625 630 635 640  
  
Gly Leu Ala Arg Asp Ile His His Ile Asp Tyr Tyr Lys Lys Thr Thr  
645 650 655  
  
Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp  
660 665 670  
  
Arg Ile Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu  
675 680 685

4562S16\_1

Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Val Pro Val  
690 695 700

Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro  
705 710 715 720

Ser Asn Cys Thr Asn Glu Leu Tyr Met Met Arg Asp Cys Trp His  
725 730 735

Ala Val Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu  
740 745 750

Asp Arg Ile Val Ala Leu Thr Ser Asn Gln Glu Tyr Leu Asp Leu Ser  
755 760 765

Met Pro Leu Asp Gln Tyr Ser Pro Ser Phe Pro Asp Thr Arg Ser Ser  
770 775 780

Thr Cys Ser Ser Gly Glu Asp Ser Val Phe Ser His Glu Pro Leu Pro  
785 790 795 800

Glu Glu Pro Cys Leu Pro Arg His Pro Ala Gln Leu Ala Asn Gly Gly  
805 810 815

Leu Lys Arg Arg  
820

<210> 2

<211> 1338

<212> PRT

<213> Homo sapiens

<400> 2

Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser  
1 5 10 15

Cys Leu Leu Leu Thr Gly Ser Ser Ser Gly Ser Lys Leu Lys Asp Pro  
20 25 30

Glu Leu Ser Leu Lys Gly Thr Gln His Ile Met Gln Ala Gly Gln Thr  
35 40 45

Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys Trp Ser Leu Pro  
50 55 60

Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser Ala  
65 70 75 80

Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr  
85 90 95

Ala Gln Ala Asn His Thr Gly Phe Tyr Ser Cys Lys Tyr Leu Ala Val  
Page 4

4562516\_1

|                                                                     |     |     |
|---------------------------------------------------------------------|-----|-----|
| 100                                                                 | 105 | 110 |
| Pro Thr Ser Lys Lys Lys Glu Thr Glu Ser Ala Ile Tyr Ile Phe Ile     |     |     |
| 115                                                                 | 120 | 125 |
| Ser Asp Thr Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu     |     |     |
| 130                                                                 | 135 | 140 |
| Ile Ile His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val     |     |     |
| 145                                                                 | 150 | 155 |
| Thr Ser Pro Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr     |     |     |
| 165                                                                 | 170 | 175 |
| Leu Ile Pro Asp Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly Phe     |     |     |
| 180                                                                 | 185 | 190 |
| Ile Ile Ser Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu Thr Cys Glu     |     |     |
| 195                                                                 | 200 | 205 |
| Ala Thr Val Asn Gly His Leu Tyr Lys Thr Asn Tyr Leu Thr His Arg     |     |     |
| 210                                                                 | 215 | 220 |
| Gln Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr Pro Arg Pro Val     |     |     |
| 225                                                                 | 230 | 235 |
| 240                                                                 |     |     |
| Lys Leu Leu Arg Gly His Thr Leu Val Leu Asn Cys Thr Ala Thr Thr     |     |     |
| 245                                                                 | 250 | 255 |
| Pro Leu Asn Thr Arg Val Gln Met Thr Trp Ser Tyr Pro Asp Glu Lys     |     |     |
| 260                                                                 | 265 | 270 |
| Asn Lys Arg Ala Ser Val Arg Arg Arg Ile Asp Gln Ser Asn Ser His     |     |     |
| 275                                                                 | 280 | 285 |
| Ala Asn Ile Phe Tyr Ser Val Leu Thr Ile Asp Lys Met Gln Asn Ser Lys |     |     |
| 290                                                                 | 295 | 300 |
| Asp Lys Gly Leu Tyr Thr Cys Arg Val Arg Ser Gly Pro Ser Phe Lys     |     |     |
| 305                                                                 | 310 | 315 |
| 320                                                                 |     |     |
| Ser Val Asn Thr Ser Val His Ile Tyr Asp Lys Ala Phe Ile Thr Val     |     |     |
| 325                                                                 | 330 | 335 |
| Lys His Arg Lys Gln Gln Val Leu Glu Thr Val Ala Gly Lys Arg Ser     |     |     |
| 340                                                                 | 345 | 350 |
| Tyr Arg Leu Ser Met Lys Val Lys Ala Phe Pro Ser Pro Glu Val Val     |     |     |
| 355                                                                 | 360 | 365 |
| Trp Leu Lys Asp Gly Leu Pro Ala Thr Glu Lys Ser Ala Arg Tyr Leu     |     |     |

4562516\_1

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 370                                                             | 375 | 380 |
| Thr Arg Gly Tyr Ser Leu Ile Ile Lys Asp Val Thr Glu Glu Asp Ala |     |     |
| 385                                                             | 390 | 395 |
| 400                                                             |     |     |
| Gly Asn Tyr Thr Ile Leu Leu Ser Ile Lys Gln Ser Asn Val Phe Lys |     |     |
| 405                                                             | 410 | 415 |
| Asn Leu Thr Ala Thr Leu Ile Val Asn Val Lys Pro Gln Ile Tyr Glu |     |     |
| 420                                                             | 425 | 430 |
| Lys Ala Val Ser Ser Phe Pro Asp Pro Ala Leu Tyr Pro Leu Gly Ser |     |     |
| 435                                                             | 440 | 445 |
| Arg Gln Ile Leu Thr Cys Thr Ala Tyr Gly Ile Pro Gln Pro Thr Ile |     |     |
| 450                                                             | 455 | 460 |
| Lys Trp Phe Trp His Pro Cys Asn His Asn His Ser Glu Ala Arg Cys |     |     |
| 465                                                             | 470 | 475 |
| 480                                                             |     |     |
| Asp Phe Cys Ser Asn Asn Glu Glu Ser Phe Ile Leu Asp Ala Asp Ser |     |     |
| 485                                                             | 490 | 495 |
| Asn Met Gly Asn Arg Ile Glu Ser Ile Thr Gln Arg Met Ala Ile Ile |     |     |
| 500                                                             | 505 | 510 |
| Glu Gly Lys Asn Lys Met Ala Ser Thr Leu Val Val Ala Asp Ser Arg |     |     |
| 515                                                             | 520 | 525 |
| Ile Ser Gly Ile Tyr Ile Cys Ile Ala Ser Asn Lys Val Gly Thr Val |     |     |
| 530                                                             | 535 | 540 |
| Gly Arg Asn Ile Ser Phe Tyr Ile Thr Asp Val Pro Asn Gly Phe His |     |     |
| 545                                                             | 550 | 555 |
| 560                                                             |     |     |
| Val Asn Leu Glu Lys Met Pro Thr Glu Gly Glu Asp Leu Lys Leu Ser |     |     |
| 565                                                             | 570 | 575 |
| Cys Thr Val Asn Lys Phe Leu Tyr Arg Asp Val Thr Trp Ile Leu Leu |     |     |
| 580                                                             | 585 | 590 |
| Arg Thr Val Asn Asn Arg Thr Met His Tyr Ser Ile Ser Lys Gln Lys |     |     |
| 595                                                             | 600 | 605 |
| Met Ala Ile Thr Lys Glu His Ser Ile Thr Leu Asn Leu Thr Ile Met |     |     |
| 610                                                             | 615 | 620 |
| Asn Val Ser Leu Gln Asp Ser Gly Thr Tyr Ala Cys Arg Ala Arg Asn |     |     |
| 625                                                             | 630 | 635 |
| 640                                                             |     |     |
| Val Tyr Thr Gly Glu Glu Ile Leu Gln Lys Lys Glu Ile Thr Ile Arg |     |     |

4562516\_1

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 645                                                             | 650 | 655 |
| Asp Gln Glu Ala Pro Tyr Leu Leu Arg Asn Leu Ser Asp His Thr Val |     |     |
| 660                                                             | 665 | 670 |
| Ala Ile Ser Ser Ser Thr Thr Leu Asp Cys His Ala Asn Gly Val Pro |     |     |
| 675                                                             | 680 | 685 |
| Glu Pro Gln Ile Thr Trp Phe Lys Asn Asn His Lys Ile Gln Gln Glu |     |     |
| 690                                                             | 695 | 700 |
| Pro Gly Ile Ile Leu Gly Pro Gly Ser Ser Thr Leu Phe Ile Glu Arg |     |     |
| 705                                                             | 710 | 715 |
| Val Thr Glu Glu Asp Glu Gly Val Tyr His Cys Lys Ala Thr Asn Gln |     |     |
| 725                                                             | 730 | 735 |
| Lys Gly Ser Val Glu Ser Ser Ala Tyr Leu Thr Val Gln Gly Thr Ser |     |     |
| 740                                                             | 745 | 750 |
| Asp Lys Ser Asn Leu Glu Leu Ile Thr Leu Thr Cys Thr Cys Val Ala |     |     |
| 755                                                             | 760 | 765 |
| Ala Thr Leu Phe Trp Leu Leu Thr Leu Phe Ile Arg Lys Met Lys     |     |     |
| 770                                                             | 775 | 780 |
| Arg Ser Ser Ser Glu Ile Lys Thr Asp Tyr Leu Ser Ile Ile Met Asp |     |     |
| 785                                                             | 790 | 795 |
| Pro Asp Glu Val Pro Leu Asp Glu Gln Cys Glu Arg Leu Pro Tyr Asp |     |     |
| 805                                                             | 810 | 815 |
| Ala Ser Lys Trp Glu Phe Ala Arg Glu Arg Leu Lys Leu Gly Lys Ser |     |     |
| 820                                                             | 825 | 830 |
| Leu Gly Arg Gly Ala Phe Gly Lys Val Val Gln Ala Ser Ala Phe Gly |     |     |
| 835                                                             | 840 | 845 |
| Ile Lys Lys Ser Pro Thr Cys Arg Thr Val Ala Val Lys Met Leu Lys |     |     |
| 850                                                             | 855 | 860 |
| Glu Gly Ala Thr Ala Ser Glu Tyr Lys Ala Leu Met Thr Glu Leu Lys |     |     |
| 865                                                             | 870 | 875 |
| Ile Leu Thr His Ile Gly His His Leu Asn Val Val Asn Leu Leu Gly |     |     |
| 885                                                             | 890 | 895 |
| Ala Cys Thr Lys Gln Gly Gly Pro Leu Met Val Ile Val Glu Tyr Cys |     |     |
| 900                                                             | 905 | 910 |
| Lys Tyr Gly Asn Leu Ser Asn Tyr Leu Lys Ser Lys Arg Asp Leu Phe |     |     |

|                                                                 |      |      |
|-----------------------------------------------------------------|------|------|
| 915                                                             | 920  | 925  |
| Phe Leu Asn Lys Asp Ala Ala Leu His Met Glu Pro Lys Lys Glu Lys |      |      |
| 930                                                             | 935  | 940  |
| Met Glu Pro Gly Leu Glu Gln Gly Lys Lys Pro Arg Leu Asp Ser Val |      |      |
| 945                                                             | 950  | 955  |
| 960                                                             |      |      |
| Thr Ser Ser Glu Ser Phe Ala Ser Ser Gly Phe Gln Glu Asp Lys Ser |      |      |
| 965                                                             | 970  | 975  |
| Leu Ser Asp Val Glu Glu Glu Asp Ser Asp Gly Phe Tyr Lys Glu     |      |      |
| 980                                                             | 985  | 990  |
| Pro Ile Thr Met Glu Asp Leu Ile Ser Tyr Ser Phe Gln Val Ala Arg |      |      |
| 995                                                             | 1000 | 1005 |
| Gly Met Glu Phe Leu Ser Ser Arg Lys Cys Ile His Arg Asp Leu     |      |      |
| 1010                                                            | 1015 | 1020 |
| Ala Ala Arg Asn Ile Leu Leu Ser Glu Asn Asn Val Val Lys Ile     |      |      |
| 1025                                                            | 1030 | 1035 |
| Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asn Pro Asp Tyr     |      |      |
| 1040                                                            | 1045 | 1050 |
| Val Arg Lys Gly Asp Thr Arg Leu Pro Leu Lys Trp Met Ala Pro     |      |      |
| 1055                                                            | 1060 | 1065 |
| Glu Ser Ile Phe Asp Lys Ile Tyr Ser Thr Lys Ser Asp Val Trp     |      |      |
| 1070                                                            | 1075 | 1080 |
| Ser Tyr Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly Gly Ser     |      |      |
| 1085                                                            | 1090 | 1095 |
| Pro Tyr Pro Gly Val Gln Met Asp Glu Asp Phe Cys Ser Arg Leu     |      |      |
| 1100                                                            | 1105 | 1110 |
| Arg Glu Gly Met Arg Met Arg Ala Pro Glu Tyr Ser Thr Pro Glu     |      |      |
| 1115                                                            | 1120 | 1125 |
| Ile Tyr Gln Ile Met Leu Asp Cys Trp His Arg Asp Pro Lys Glu     |      |      |
| 1130                                                            | 1135 | 1140 |
| Arg Pro Arg Phe Ala Glu Leu Val Glu Lys Leu Gly Asp Leu Leu     |      |      |
| 1145                                                            | 1150 | 1155 |
| Gln Ala Asn Val Gln Gln Asp Gly Lys Asp Tyr Ile Pro Ile Asn     |      |      |
| 1160                                                            | 1165 | 1170 |
| Ala Ile Leu Thr Gly Asn Ser Gly Phe Thr Tyr Ser Thr Pro Ala     |      |      |

4562516\_1

|                                                                 |      |      |  |
|-----------------------------------------------------------------|------|------|--|
| 1175                                                            | 1180 | 1185 |  |
| Phe Ser Glu Asp Phe Phe Lys Glu Ser Ile Ser Ala Pro Lys Phe     |      |      |  |
| 1190 1195 1200                                                  |      |      |  |
| Asn Ser Gly Ser Ser Asp Asp Val Arg Tyr Val Asn Ala Phe Lys     |      |      |  |
| 1205 1210 1215                                                  |      |      |  |
| Phe Met Ser Leu Glu Arg Ile Lys Thr Phe Glu Glu Leu Leu Pro     |      |      |  |
| 1220 1225 1230                                                  |      |      |  |
| Asn Ala Thr Ser Met Phe Asp Asp Tyr Gln Gly Asp Ser Ser Thr     |      |      |  |
| 1235 1240 1245                                                  |      |      |  |
| Leu Leu Ala Ser Pro Met Leu Lys Arg Phe Thr Trp Thr Asp Ser     |      |      |  |
| 1250 1255 1260                                                  |      |      |  |
| Lys Pro Lys Ala Ser Leu Lys Ile Asp Leu Arg Val Thr Ser Lys     |      |      |  |
| 1265 1270 1275                                                  |      |      |  |
| Ser Lys Glu Ser Gly Leu Ser Asp Val Ser Arg Pro Ser Phe Cys     |      |      |  |
| 1280 1285 1290                                                  |      |      |  |
| His Ser Ser Cys Gly His Val Ser Glu Gly Lys Arg Arg Phe Thr     |      |      |  |
| 1295 1300 1305                                                  |      |      |  |
| Tyr Asp His Ala Glu Leu Glu Arg Lys Ile Ala Cys Cys Ser Pro     |      |      |  |
| 1310 1315 1320                                                  |      |      |  |
| Pro Pro Asp Tyr Asn Ser Val Val Leu Tyr Ser Thr Pro Pro Ile     |      |      |  |
| 1325 1330 1335                                                  |      |      |  |
| <210> 3                                                         |      |      |  |
| <211> 1356                                                      |      |      |  |
| <212> PRT                                                       |      |      |  |
| <213> Homo sapiens                                              |      |      |  |
| <400> 3                                                         |      |      |  |
| Met Gln Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu |      |      |  |
| 1 5 10 15                                                       |      |      |  |
| Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro |      |      |  |
| 20 25 30                                                        |      |      |  |
| Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys Ala Asn Thr Thr |      |      |  |
| 35 40 45                                                        |      |      |  |
| Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro |      |      |  |
| 50 55 60                                                        |      |      |  |
| Asn Asn Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser |      |      |  |
| 65 70 75 80                                                     |      |      |  |

Asp Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Asn  
 85 90 95

Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser  
 100 105 110

Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser  
 115 120 125

Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys  
 130 135 140

Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser  
 145 150 155 160

Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg  
 165 170 175

Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met Ile  
 180 185 190

Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu Ser  
 195 200 205

Tyr Gln Ser Ile Met Tyr Ile Val Val Val Gly Tyr Arg Ile Tyr  
 210 215 220

Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu  
 225 230 235 240

Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile  
 245 250 255

Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu  
 260 265 270

Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe  
 275 280 285

Leu Ser Thr Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln Gly Leu  
 290 295 300

Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Asn Ser Thr  
 305 310 315 320

Phe Val Arg Val His Glu Lys Pro Phe Val Ala Phe Gly Ser Gly Met  
 325 330 335

Glu Ser Leu Val Glu Ala Thr Val Gly Glu Arg Val Arg Ile Pro Ala  
 340 345 350

Lys Tyr Leu Gly Tyr Pro Pro Pro Glu Ile Lys Trp Tyr Lys Asn Gly  
 355 360 365

Ile Pro Leu Glu Ser Asn His Thr Ile Lys Ala Gly His Val Leu Thr  
 370 375 380

Ile Met Glu Val Ser Glu Arg Asp Thr Gly Asn Tyr Thr Val Ile Leu  
 385 390 395 400

Thr Asn Pro Ile Ser Lys Glu Lys Gln Ser His Val Val Ser Leu Val  
 405 410 415

Val Tyr Val Pro Pro Gln Ile Gly Glu Lys Ser Leu Ile Ser Pro Val  
 420 425 430

Asp Ser Tyr Gln Tyr Gly Thr Thr Gln Thr Leu Thr Cys Thr Val Tyr  
 435 440 445

Ala Ile Pro Pro Pro His His Ile His Trp Tyr Trp Gln Leu Glu Glu  
 450 455 460

Glu Cys Ala Asn Glu Pro Ser Gln Ala Val Ser Val Thr Asn Pro Tyr  
 465 470 475 480

Pro Cys Glu Glu Trp Arg Ser Val Glu Asp Phe Gln Gly Gly Asn Lys  
 485 490 495

Ile Glu Val Asn Lys Asn Gln Phe Ala Leu Ile Glu Gly Lys Asn Lys  
 500 505 510

Thr Val Ser Thr Leu Val Ile Gln Ala Ala Asn Val Ser Ala Leu Tyr  
 515 520 525

Lys Cys Glu Ala Val Asn Lys Val Gly Arg Gly Glu Arg Val Ile Ser  
 530 535 540

Phe His Val Thr Arg Gly Pro Glu Ile Thr Leu Gln Pro Asp Met Gln  
 545 550 555 560

Pro Thr Glu Gln Glu Ser Val Ser Leu Trp Cys Thr Ala Asp Arg Ser  
 565 570 575

Thr Phe Glu Asn Leu Thr Trp Tyr Lys Leu Gly Pro Gln Pro Leu Pro  
 580 585 590

Ile His Val Gly Glu Leu Pro Thr Pro Val Cys Lys Asn Leu Asp Thr  
 595 600 605

Leu Trp Lys Leu Asn Ala Thr Met Phe Ser Asn Ser Thr Asn Asp Ile  
 610 615 620

Leu Ile Met Glu Leu Lys Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr  
625 630 635 640

Val Cys Leu Ala Gln Asp Arg Lys Thr Lys Lys Arg His Cys Val Val  
645 650 655

Arg Gln Leu Thr Val Leu Glu Arg Val Ala Pro Thr Ile Thr Gly Asn  
660 665 670

Leu Glu Asn Gln Thr Thr Ser Ile Gly Glu Ser Ile Glu Val Ser Cys  
675 680 685

Thr Ala Ser Gly Asn Pro Pro Pro Gln Ile Met Trp Phe Lys Asp Asn  
690 695 700

Glu Thr Leu Val Glu Asp Ser Gly Ile Val Leu Lys Asp Gly Asn Arg  
705 710 715 720

Asn Leu Thr Ile Arg Arg Val Arg Lys Glu Asp Glu Gly Leu Tyr Thr  
725 730 735

Cys Gln Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe  
740 745 750

Ile Ile Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu Ile Ile Ile Leu  
755 760 765

Val Gly Thr Ala Val Ile Ala Met Phe Phe Trp Leu Leu Leu Val Ile  
770 775 780

Ile Leu Arg Thr Val Lys Arg Ala Asn Gly Glu Leu Lys Thr Gly  
785 790 795 800

Tyr Leu Ser Ile Val Met Asp Pro Asp Glu Leu Pro Leu Asp Glu His  
805 810 815

Cys Glu Arg Leu Pro Tyr Asp Ala Ser Lys Trp Glu Phe Pro Arg Asp  
820 825 830

Arg Leu Lys Leu Gly Lys Pro Leu Gly Arg Gly Ala Phe Gly Gln Val  
835 840 845

Ile Glu Ala Asp Ala Phe Gly Ile Asp Lys Thr Ala Thr Cys Arg Thr  
850 855 860

Val Ala Val Lys Met Leu Lys Glu Gly Ala Thr His Ser Glu His Arg  
865 870 875 880

Ala Leu Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly His His Leu  
885 890 895

4562516\_1

Asn Val Val Asn Leu Leu Gly Ala Cys Thr Lys Pro Gly Gly Pro Leu  
900 905 910

Met Val Ile Val Glu Phe Cys Lys Phe Gly Asn Leu Ser Thr Tyr Leu  
915 920 925

Arg Ser Lys Arg Asn Glu Phe Val Pro Tyr Lys Thr Lys Gly Ala Arg  
930 935 940

Phe Arg Gln Gly Lys Asp Tyr Val Gly Ala Ile Pro Val Asp Leu Lys  
945 950 955 960

Arg Arg Leu Asp Ser Ile Thr Ser Ser Gln Ser Ser Ala Ser Ser Gly  
965 970 975

Phe Val Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu Ala Pro  
980 985 990

Glu Asp Leu Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile Cys Tyr  
995 1000 1005

Ser Phe Gln Val Ala Lys Gly Met Glu Phe Leu Ala Ser Arg Lys  
1010 1015 1020

Cys Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu  
1025 1030 1035

Lys Asn Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile  
1040 1045 1050

Tyr Lys Asp Pro Asp Tyr Val Arg Lys Gly Asp Ala Arg Leu Pro  
1055 1060 1065

Leu Lys Trp Met Ala Pro Glu Thr Ile Phe Asp Arg Val Tyr Thr  
1070 1075 1080

Ile Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile  
1085 1090 1095

Phe Ser Leu Gly Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp Glu  
1100 1105 1110

Glu Phe Cys Arg Arg Leu Lys Glu Gly Thr Arg Met Arg Ala Pro  
1115 1120 1125

Asp Tyr Thr Thr Pro Glu Met Tyr Gln Thr Met Leu Asp Cys Trp  
1130 1135 1140

His Gly Glu Pro Ser Gln Arg Pro Thr Phe Ser Glu Leu Val Glu  
1145 1150 1155

## 4562516\_1

His Leu Gly Asn Leu Leu Gln Ala Asn Ala Gln Asp Gly Lys  
 1160 1165 1170

Asp Tyr Ile Val Leu Pro Ile Ser Glu Thr Leu Ser Met Glu Glu  
 1175 1180 1185

Asp Ser Gly Leu Ser Leu Pro Thr Ser Pro Val Ser Cys Met Glu  
 1190 1195 1200

Glu Glu Glu Val Cys Asp Pro Lys Phe His Tyr Asp Asn Thr Ala  
 1205 1210 1215

Gly Ile Ser Gln Tyr Leu Gln Asn Ser Lys Arg Lys Ser Arg Pro  
 1220 1225 1230

Val Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu Pro Glu  
 1235 1240 1245

Val Lys Val Ile Pro Asp Asp Asn Gln Thr Asp Ser Gly Met Val  
 1250 1255 1260

Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp Arg Thr Lys Leu  
 1265 1270 1275

Ser Pro Ser Phe Gly Gly Met Val Pro Ser Lys Ser Arg Glu Ser  
 1280 1285 1290

Val Ala Ser Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln Ser Gly  
 1295 1300 1305

Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Glu Glu  
 1310 1315 1320

Ala Glu Leu Leu Lys Leu Ile Glu Ile Gly Val Gln Thr Gly Ser  
 1325 1330 1335

Thr Ala Gln Ile Leu Gln Pro Asp Ser Gly Thr Thr Leu Ser Ser  
 1340 1345 1350

Pro Pro Val  
 1355

<210> 4  
 <211> 5911  
 <212> DNA  
 <213> Homo sapiens

<400> 4  
 agatgcaggg ggcgcacacgc caaaggagac caggctgtag gaagagaagg gcagagcgcc 60  
 ggacagctcg gcccgcctcc cgtccctttgg ggccgcggct ggggaactac aaggcccagc 120

4562516\_1  
aggcagctgc agggggcgga ggcggaggag ggaccagcgc gggtggagt gagagagcga 180  
gcctcgccgc cccgcccggcg catagcgctc ggagcgctct tgcggccaca ggcgcggcgt 240  
cctcgccggc gggcggcagc tagcgggagc cgggacgccc gtgcagccgc agcgcgcggc 300  
ggaaccggg tgtgcccggg gctggcggc cacgtccggc cgggaccgag accccctcgta 360  
gcccgcattgcg gcgacccctgc 3tccccggc cgcgagcgcg cgcgcgcgttgg 420  
gaacccaagg acttttctcc ggtccgagct cggggcgccc cgcaggcgcc acggtacccg 480  
tgctgcagtc gggcacgcgg cggcggcggg gcctccgcag ggcgatggag cccggctctgc 540  
aaggaaagtg aggcgcggcc gctgcgttct ggaggagggg ggcacaaggc ctggagaccc 600  
cgggtggcgg acgggagccc tccccccggc cgcgcgcggg ggcaccagct cgggcgcctcat 660  
tggccgcgc cgggctggag ggcgcgcgc cgcgcgcgc cgggagtcg agcgcgcggcc 720  
gcggagctct tgcgaccccg ccaggacccg aacagagccc gggggcggcg ggcggagcc 780  
ggggacgcgg gcacacgcgc gctgcaccaa gccacggcgg actctcccgaa ggcggaaacct 840  
ccacgcgcgc cgggggtcag tttgaaaagg aggttcgcgc tcactgtggaa gtatccatgg 900  
agatgtggag ccttgcacc aacctctaact tgcagaactg ggatgtggag ctggaaagtgc 960  
ctccctttctt gggctgtgc ggtcacagcc acactctgc cgcctaggcc gtccccgacc 1020  
ttgccttgaac aagcccgcc ctggggagcc cctgtggaaag tggagtcctt cctggtcac 1080  
cccggtgacc tgcgcgcgc tgcgtgtcg ctcgcggacg atgtgcagag catcaactgg 1140  
ctgcgggacg ggggtgcagct ggcggaaagc aaccgcaccc gcatcacagg ggaggaggtg 1200  
gaggtgcagg actccgtgcc cgcagactcc ggcctctatg cttgcgttaac cagcagcccc 1260  
tcgggcagtgc acaccaccta cttctccgtc aatgtttcag atgcctctccc ctccctcgag 1320  
gatgatgatg atgatgatga ctccctttca gaggagaaag aaacagataa caccasacca 1380  
aaccctgttag ctccatattg gacatccccca gaaaagatgg aaaagaaatt gcatgcagtg 1440  
ccggctgcca agacagtgaa gttcaaattgc cttccagtg ggacccaaa ccccacactg 1500  
cgctggttga aaaaatggcaa agaattcaaa cctgaccaca gaattggagg ctacaaggc 1560  
cgttatgcca cctggagcat cataatggac tctgtggcgc cctctgacaa gggcaactac 1620  
acctgcatttgc tggagaatga gtacggcagc atcaaccaca cataccagct ggatgtcg 1680  
gagcggtccc ctcaccggcc catccgtcaa gcagggtgc cgcacacaa aacagtggcc 1740  
ctgggttagca acgtggagtt catgtgtaaag gtgtacagtg acccgacgccc gcacatccag 1800  
tggctaaagc acatcgaggt gaatggagc aagattggcc cagacaacct gccttatgtc 1860  
cagatccgttga agactgcgtgg agttaataacc accgacaaag agatggaggt gcttcactta 1920  
agaaaatgtct cctttgagga cgcaggggag tatacgtgc tggcgggtaa ctctatcgga 1980  
ctctcccatc actctgcgtatg gttgaccgtt ctggaaagccc tggaagagag gccggcgttg 2040  
atgacccctgc cccctgtaccc ggagatcatc atctattgc cagggccctt cctcatctcc 2100  
tgcgtggcggcggc ggtcggtcat cgtctacaag atgaagagtg gtacccaagaa gagtgcaccc 2160

4562516\_1

cacagccaga tggctgtgca caagctggcc aagagcatcc ctctgcgcag acaggtaaca 2220  
 gtgtctgctg actccagtgc atccatgaac tctggggttc ttctggttcg gccatcacgg 2280  
 ctctcctcca gtgggactcc catgctagca ggggtctctg agtatgagct tcccgaagac 2340  
 cctcgctggg agctgcctcg ggacagactg gtcttaggca aaccctggg agagggctgc 2400  
 tttgggcagg tggtgttggc agaggctatc gggctggaca aggacaaacc caaccgtgtg 2460  
 accaaaagtgg ctgtgaagat gttgaagtcg gacgcaacag agaaaagactt gtcagacctg 2520  
 atctcagaaa tggagatgat gaagatgatc gggaaagcata agaatatcat caacctgctg 2580  
 ggggcctgca cgcaggatgg tcccttgtat gtcatcgctg agtatgcctc caagggcaac 2640  
 ctgcgggagt acctgcaggc ccggaggccc ccagggctgg aatactgcta caaccccagc 2700  
 cacaacccag aggagcagct ctccctccaag gacctgggt cctgcgccta ccaggtggcc 2760  
 cgaggcatgg agtacttgc ctccaagaag tgcatacacc gagacctggc agccaggaat 2820  
 gtccctggta cagaggacaa tgtatgaag atagcagact ttggcctcgc acgggacatt 2880  
 caccacatcg actactataa aaagacaacc aacggccgac tgcctgtgaa gtggatggca 2940  
 cccgaggcat tatttgaccg gatctacacc caccagagtg atgtgtggc tttcggggtg 3000  
 ctccctgtgg agatcttac tctggcgcc tccccatacc ccgggtgtgcc tgtggaggaa 3060  
 cttttcaagc tgctgaagga ggttcaccgc atggacaagc ccagtaactg caccacgc 3120  
 ctgtacatga tgatgcggga ctgctggcat gcagtgcct cacagagacc caccttcaag 3180  
 cagctggtgg aagacctgga ccgcacatcg gccttgacct ccaaccagga gtacctggac 3240  
 ctgtccatgc ccctggacca gtactcccc agctttcccg acacccggag ctctacgtgc 3300  
 tcctcagggg aggattccgt cttcttcat gagccgcgtc ccgaggagcc ctgcctgccc 3360  
 cgacacccag cccagcttc caatggcgga ctcaaacgcc gctgactgcc acccacacgc 3420  
 cctccccaga ctccaccgtc agctgttaacc ctcacccaca gccctgctg ggcccaccac 3480  
 ctgtccgtcc ctgtccccctt tcctgctggc aggagccggc tgcctaccag gggccttcct 3540  
 gtgtggccctg ctttcacccccc actcaagtc a cttctccctc caccctctt ccacctgctg 3600  
 gtgagaggtg caaagaggca gatcttgct gccagccact tcacccctc ccagatgttg 3660  
 gaccaacacc cttccctgcc accaggcaact gcctggaggg cagggagtgg gagccaatga 3720  
 acaggcatgc aagtgagagc ttccctgagct ttctccctgc ggtttggct gttttgcctt 3780  
 caccataag cccctcgac tctggtggca ggtgccttgc cttcagggtc acagcagtag 3840  
 ggaggtcagt gtttcgtgcc tcgattgaag gtgcacccgt ccccgatag gtgggtggcag 3900  
 tggcttatta attccgatac tagttgctt tgctgaccaa atgcctggta ccagaggatg 3960  
 gtgaggcgaa ggccagggtg gggcagttg tggccctgc gggcccgcc cccaaactggg 4020  
 ggctctgtat atagctatga agaaaaacaca aagtgtataa atctgagttt atatttacat 4080  
 gtctttttaa aagggtcgat accagagatt taccatcggt gtaagatgtc cctgggtggct 4140  
 gggaggcattc agttgctata tattaaaaac aaaaaagaaaa aaaaaggaaaa atgtttttaa 4200

4562516\_1

|            |             |            |             |            |             |      |
|------------|-------------|------------|-------------|------------|-------------|------|
| aaaggtcata | tatTTTTgc   | tactTTTgct | gtTTTtatTT  | tttAAattat | gttctaaacc  | 4260 |
| tatTTTcaGT | ttaggtccCT  | caataAAAAT | tgctgCTgCT  | tcATTTATCT | atgggCTgta  | 4320 |
| tgAAAAGGGT | ggGAATgtCC  | actggAAAGA | agggACACCC  | acgggCCCTG | gggCTAGGTC  | 4380 |
| tgtCCCGAGG | gcACCGCATG  | ctCCCGGCGC | aggTTCCCTG  | taACCTCTTC | ttCCCTAGGTC | 4440 |
| ctgcACCCAG | acCTCACGAC  | gcACCTCTG  | cCTCTCCGCT  | gCTTTGGAA  | agtCAGAAAA  | 4500 |
| agaAGATgTC | tgcTTcgAGG  | gcAGGAACCC | catCCATgCA  | gtAGAGGCgC | tgggCAAGAGA | 4560 |
| gtCAAGGCCC | agCAGCCATC  | gACCATGGAT | ggTTTCTCC   | aAGGAAACCG | gtggggTTGG  | 4620 |
| gCTGGGGAGG | ggGCACCTAC  | CTAGGAATAG | ccACGGGTA   | gAGCTACAGT | gATTAAGAGG  | 4680 |
| aaAGCAAGGG | cgcggTTgCT  | cACGCCtGTA | atCCCAgCAC  | tttGGGACAC | cgAGGTGGC   | 4740 |
| AGATCACTTC | AGGTcAGGAG  | tttGAGACCA | gcCTGGCaa   | ctTAGTAAA  | ccccATCTCT  | 4800 |
| actAAAAATG | caAAAATTAT  | ccAGGCATGG | tggCACACGC  | ctGTAATCCC | AGCTCCACAG  | 4860 |
| gaggCTGAGG | cAGAATCCCT  | tGAAGCTGGG | aggCGGAGGT  | tgcAGTgAGC | cgAGATTGCG  | 4920 |
| ccATTGCACT | ccAGCCTGGG  | caACAGAGAA | aACAAAAAGG  | AAAACAAATG | atGAAGGTCT  | 4980 |
| gcAGAAACTG | AAACCCAGAC  | atGTGCTGC  | ccccCTATG   | tggGcatGgt | tttGCCAGTG  | 5040 |
| cttCTAAGTG | cAGGAGAACa  | tgtCACCTGA | ggCTAGTTT   | gcATTcAGGT | ccCTGGCTTC  | 5100 |
| gtTTCTGTT  | ggTATGCTC   | cccAGATCGT | cTTCCtGTA   | tCCATGTGAC | cAGACTGTAT  | 5160 |
| ttgtTGGAC  | tgtCGCAGAT  | ctTGGCTTCT | tACAGTTCTT  | cCTGTCCAAA | ctCCATCCTG  | 5220 |
| tccCTCAGGA | ACGGGGGGAA  | aATTCTCCGA | atGTTTTGG   | ttttttGGCT | gtttGGAATT  | 5280 |
| tactTCTGCC | ACCTGCTGGT  | catCACTgTC | ctCACTAAGT  | ggATTCTGGC | tccccCGTAC  | 5340 |
| ctCATGGCTC | AAACTACCAc  | tcCTCAGTCG | ctATATTAAA  | gCTTATATTT | tGCTGGARTA  | 5400 |
| ctGCTAAATA | caAAAGAAAG  | ttCAATATGT | tttCATTTCT  | gtAGGGAAAA | tggGATTgCT  | 5460 |
| gCTTTAAATT | tCTGAGCTAG  | ggATTTTTG  | gcAGCTGCAG  | tgtTGGCGAC | tATTGTAAAA  | 5520 |
| ttCTCTTGT  | ttCTCTCTGT  | AAATAGCACC | tGCTAACATT  | acaATTtGTA | tttATGTTA   | 5580 |
| aAGAAGGCAT | CAATTGGTGA  | ACAGAACTAG | gAAATGAATT  | tttAGCTCTT | AAAAGCATTt  | 5640 |
| gCTTTGAGAC | cgcACAGGAG  | tGTCTTTCT  | tGTAACACAG  | tGATGATAAT | ttCTGCCCTG  | 5700 |
| GCCCTACCTT | GAAGCAATGT  | tGTGTGAAGG | gATGAAGAAAT | ctAAAAGTCT | tCATAAGTCC  | 5760 |
| ttGGGAGAGG | tGCTAGAAAAA | ATATAAGGCA | ctATCATAAT  | tACAGTGTG  | tcCTTGTGT   | 5820 |
| tactACTCAA | ATCACCCACA  | AATTCCCCA  | AAAGACTGCgC | TAGCTGTCAA | AtAAAAGACA  | 5880 |
| gtGAAATTGA | CCTGAAAAAA  | AAAGAAAAAA | A           |            |             | 5911 |

<210> 5  
 <211> 7123  
 <212> DNA  
 <213> Homo sapiens

<400> 5  
 atcGAGGTCC gCGGGAGGCT CGGAGCGCGC CAGGCGGACA CTCCtCTCGG CTCCtCCCCG 60  
 gcAGCGGGCGG CGGCTCGGAG CGGGCTCCGG ggCTCGGGTG cAGCGGCCAG CGGGCGCCTG 120

## 4562516\_1

|                                                                      |      |
|----------------------------------------------------------------------|------|
| gcggcgagga ttacccgggg aagtgggtgt ctccctggctg gagccgcgag acggggcgctc  | 180  |
| agggcgcgaa gccggcgccg gcgaacgaga ggacggactc tggcgccgg gtcgttggcc     | 240  |
| gcggggagcg cgggcaccgg gcgagcaggc cgcgtcgcc tcaccatggt cagctactgg     | 300  |
| gacaccgggg tcctgctgtg cgccgtgctc agctgtctgc ttctcacagg atctagttca    | 360  |
| ggttcaaaaat taaaagatcc tgaactgagt taaaaggca cccagcacat catgcaagca    | 420  |
| ggccagacac tgcacatcaca atgcaggggg gaagcagccc ataaaatggtc tttgcctgaa  | 480  |
| atggtgagta aggaaagcga aaggctgagc ataactaaat ctgcctgtgg aagaaatggc    | 540  |
| aaacaattct gcagttacttt aaccttgaac acagctcaag caaaccacac tggcttctac   | 600  |
| agctgcaaat atctagctgt acctacttca aagaagaagg aaacagaatc tgcaatctat    | 660  |
| atatttatta gtgatacagg tagaccttgc gtagagatgt acagtgaaat ccccgaaatt    | 720  |
| atacacatga ctgaaggaag ggagctggtc attccctgcc gggttacggtc acctaacatc   | 780  |
| actgttactt taaaaaagtt tccacttgac actttgatcc ctgatggaaa acgcataatc    | 840  |
| tgggacagta gaaagggctt catcaratca aatgcaacgt acaaagaaat agggcttctg    | 900  |
| acctgtgaag caacagtcaa tgggcatttg tataagacaa actatctcac acatcgacaa    | 960  |
| accaatacaa tcatacatgt ccaaataagc acaccacgccc cagtcaaatt acttagaggc   | 1020 |
| catacttttgc tcctcaatttg tactgctacc actcccttgc acacgagagt tcaaattgacc | 1080 |
| tggagttacc ctgatggaaa aaataagaga gcttccgtaa ggcgacgaat tgaccaaagc    | 1140 |
| aattcccatg ccaacatatt ctacagtgtt cttaactatttgc acaaaatgca gaacaaagac | 1200 |
| aaaggacttt atacttgcg tgtaaggagt ggaccatcat tcaaattctgt taacacctca    | 1260 |
| gtgcataat atgataaaagc attcatcaat gtgaaacatc gaaaacagca ggtgcttgc     | 1320 |
| accgttagctg gcaagcggtc ttaccggctc tctatggaaa tgaaggcatt tccctcgccg   | 1380 |
| gaagttgtat ggtttaaaaga tgggttacct gcgactgaga aatctgctcg ctatggact    | 1440 |
| cgtggctact cgtaattat caaggacgta actgaagagg atgcaggaa ttatacaatc      | 1500 |
| ttgctgagca taaaacagtc aaatgtgttt aaaaacctca ctgccactct aattgtcaat    | 1560 |
| gtgaaaccccc agatttacga aaaggccgtg tcattcggttcc cagacccggc tctctaccca | 1620 |
| ctgggcagca gacaaatcct gacttgcacc gcataatggta tccctcaacc tacaatcaag   | 1680 |
| tggttctggc accccctgtaa ccataatcat tccgaagcaa ggtgtgactt ttgttccaat   | 1740 |
| aatgaagagt cctttatcct ggtatgtgac agcaacatgg gaaacagaat tgagagcatc    | 1800 |
| actcagcgca tggcaataat agaaggaaag aataagatgg ctgcacccctt ggttggct     | 1860 |
| gactctagaa tttctggaaat ctacatttgc atagcttcca ataaagtgg gactgtggga    | 1920 |
| agaaacataa gcttttatat cacagatgtg ccaaattgggt ttcatgtttaa cttggaaaaaa | 1980 |
| atgccgacgg aaggagagga cctgaaaactg tcttgcacag ttaacaagtt cttatacaga   | 2040 |
| gacgttactt ggatttact gcgacagtt aataacagaa caatgcacta cagtattagc      | 2100 |
| aagcaaaaaaa tggccatcac taaggagcac tccatcaatc ttaatcttac catcatgaat   | 2160 |

## 4562516\_1

|                                     |                                   |      |
|-------------------------------------|-----------------------------------|------|
| gtttccctgc aagattcagg cacctatgcc    | tgccagagcca ggaatgtata cacagggaa  | 2220 |
| gaaatccctcc agaagaaaaga aattacaatc  | agagatcagg agcaccata cctccctgcga  | 2280 |
| aacctcagtg atcacacagt ggccatcagc    | agttccacca ctttagactg tcatgtaat   | 2340 |
| ggtgtccccg agcctcagat cacttggttt    | aaaaacaacc aaaaaataca acaagagcct  | 2400 |
| ggaattatit taggaccagg aagcagcacg    | ctgtttattt aaagagtcac agaagaggat  | 2460 |
| gaaggtgtct atcactgcaa agccaccaac    | cagaaggct ctgtggaaag ttcaagcatac  | 2520 |
| ctcaactgttc aaggaaccc tcgacaagtct   | aatctggagc tgatcactt aacatgcacc   | 2580 |
| tgtgtggctg cgactctctt ctggctccca    | ttaaccctct ttatccgaaa aatgaaazagg | 2640 |
| tcttcrrctg aaataaaagac tgactaccta   | tcaattataa tggacccaga tgaagttcct  | 2700 |
| ttggatgagc agtgtgagcg gtcctttat     | gatgccagca agtgggagtt tgcccggag   | 2760 |
| agacttaaac tgggcaaatac acttggaaaga  | ggggcttttgg gaaaagtgg tcaagcatca  | 2820 |
| gcatttggca ttaagaaatc acctacgtgc    | cggaactgtgg ctgtgaaaat gctgaaagag | 2880 |
| ggggccacgg ccagcgagta caaagctctg    | ataaaatctt gacccacatt ggccaccatc  | 2940 |
| tgaacgtggt taacctgctg ggagcctgca    | ccaagcaagg agggcctctg atggtgattt  | 3000 |
| ttgaaatactg caaatatgga aatctctcca   | actacctcaa gagcaaacgt gacttatttt  | 3060 |
| ttctcaacaa gnatgcagca ctacacatgg    | agcctaagaa agaaaaaaatg gagccaggcc | 3120 |
| tggaaacaagg caagaaacca agactagata   | gcgtcaccag cagcgaaagc tttcgagact  | 3180 |
| ccggctttca ggaagataaa agtctgagtg    | atgtttgagga agaggaggat tctgacggtt | 3240 |
| tctacaagga gcccacact atggaagatc     | tgatittctta cagttttcaa gtggccagag | 3300 |
| gtggccagag gcatggagtt cctgtcttcc    | agaaaagtgc ttcatcgga cctggcagcg   | 3360 |
| agaaaacattc ttatctga gaacaacgtg     | gtgaagatit gtgatttgg ctttgcggg    | 3420 |
| gatattttata agaaccccgaa ttagtgtgaga | aaaggagata ctgcacttcc tctgaaatgg  | 3480 |
| atggctcctg aatctatctt tgacaaaatc    | tacagcacca agagcgacgt gtggctttac  | 3540 |
| ggagtgattgc tggggaaat cttccctta     | gggggtctc catacccagg agtacaaaatg  | 3600 |
| gatgaggact ttgcagtcg cctgagggaa     | ggcatgagga tgagagctcc tgagtactct  | 3660 |
| actccctgaaa tctatcagat catgctggac   | tgctggcaca gagacccaaa agaaaggcca  | 3720 |
| agatrtgcag aacttgcga aaaacttaggt    | gatggcttc aagcaaatgt acaacaggat   | 3780 |
| ggtaaaagact acatcccaat caatgccata   | ctgacaggaa atagtgggtt tacatactca  | 3840 |
| actccctgcct tctctgagga cttcttcaag   | gaaagtatit cagctccgaa gtttaattca  | 3900 |
| ggaagctctg atgatgtcag atacgtaaat    | gctttcaagt tcatgagcct ggaaagaatc  | 3960 |
| aaaaccccttg aagaactttt accgaatgcc   | acccatgtt ttgatgacta ccagggcgac   | 4020 |
| agcagcactc tggggccctc tcccatgctg    | aagcgcttca cctggactga cagcaaaccc  | 4080 |
| aaggcctcgc tcaagattga cttgagagta    | accagtaaaa gtaaggagtc ggggctgtct  | 4140 |
| gatgtcagca ggcccagttt ctgccattcc    | agctgtggc acgtcagcga aggcaagcgc   | 4200 |

## 4562516\_1

|                                                                      |      |
|----------------------------------------------------------------------|------|
| aggttcacct acgaccacgc tgagctggaa aggaaaatcg cgtgctgctc cccgccccca    | 4260 |
| gactacaact cggtggtcct gtactccacc ccacccatct agagtttgc acgaagcctt     | 4320 |
| atttctagaa gcacatgtgt atttataccc ccagggaaact agcttttgc agtattatgc    | 4380 |
| atataataagt ttacacccctt atctttccat gggagccagc tgcttttgc gatttttta    | 4440 |
| atagtgcctt ttttttttg actaacaaga atgttaactcc agatagagaa atagtgacaa    | 4500 |
| gtgaagaaca ctactgctaa atcctcatgt tactcagtgt tagagaaatc cttccctaaac   | 4560 |
| ccaatgactt ccctgctcca acccccggca cctcaggcga cgaggacca gtttgcattga    | 4620 |
| ggagctgcac tgatcaccctt atgcattcacg tacccactg ggccagccct gcagccaaa    | 4680 |
| acccaggcga acaagccccgt tagccccagg gatcactggc tggcctgagc aacatctcg    | 4740 |
| gagtcctcta gcaggcctaa gacatgtgag gaggaaaagg aaaaaaaagca aaaagcaagg   | 4800 |
| gagaaaagag aaaccgggag aaggcatgag aaagaatttg agacgcacca tgtggcacg     | 4860 |
| gagggggacg gggctcagca atgccatttc agtggcttcc cagctctgac ctttctacat    | 4920 |
| ttgagggccc agccaggagc agatggacag cgatgagggg acattttctg gattctggaa    | 4980 |
| ggcaagaaaa ggacaaatat cttttttgc actaaagcaa attttagaac tttacccatg     | 5040 |
| gaagtggttc tatgtccatt ctcattcgtg gcatgttttgc attttagca ctgagggtgg    | 5100 |
| cactcaactc tgagccata cttttggctc ctctagtaag atgcactgaa aacttagcca     | 5160 |
| gagttaggtt gtctccaggc catgatggcc ttacactgaa aatgtcacat tctattttgg    | 5220 |
| gtattaaat atagtcaga cacttaactc aatttcttgg tattattctg ttttgcacag      | 5280 |
| ttagttgtga aagaaagctg agaagaatga aaatgcagtc ctgaggagag gagttttctc    | 5340 |
| cataatcaaaa cgaggcgtga tggagggaaaa aggtcaataa ggtcaaggga aaacccgtc   | 5400 |
| tctataccaa ccaaaccata tcaccaacac agttgggacc caaaacacag gaagtcagtc    | 5460 |
| acgtttcctt ttcattttat gggattcca ctatctcaca ctaatctgaa aggatgtggaa    | 5520 |
| agagcattag ctggcgcata ttaagcactt taagctcctt gagtaaaaag gtggtagtga    | 5580 |
| atttatgc当地 ggtatttctc cagttggac tcaggatatt agttaatgag ccattactag     | 5640 |
| aagaaaaagcc catttcaac tgctttgaaa cttgcctgg gtctgagcat gatggaaata     | 5700 |
| gggagacagg gtaggaaagg ggcctactc ttcaagggtct aaagatcaag tggccttgg     | 5760 |
| atcgctaagc tggctctgtt tgatgctatt tatgc当地 agggctctatg tatttatgat      | 5820 |
| gtctgcaccc tctgcagccca gtcagaagct ggagaggcaa cagtgatttgc ctgcttcttgc | 5880 |
| gggagaagag tatgtttccct tttatccatg taatttaact gtagaaccctg agctctaaatg | 5940 |
| aaccgaagaa tgtatgcctc tgccatgatg tgccacatcc ttgtttaag gctctctgta     | 6000 |
| tgaagagatg ggaccgtcat cagcacattc cctagtgagc ctactggctc ctggcagcgg    | 6060 |
| cttttgc当地 agactcacta gccagaagag aggagtggaa cagtcctctc caccaagatc     | 6120 |
| taaatccaaa caaaagcagg ctagagccag aagagaggac aaatcttgc tcttccttctt    | 6180 |
| ctttacatac gcaaaccacc tgtgacagct ggcaattttta taaatcaggt aactggaaagg  | 6240 |

## 4562516\_1

|                                                                    |      |
|--------------------------------------------------------------------|------|
| aggtaaaaca cagaaaaaaag aagacctcag tcaattctct actttttttt tttttccaa  | 6300 |
| atcagataat agcccgcaaa atagtgataa caaataaaac cttagctatt catgtcttga  | 6360 |
| tttcaataat taattcttaa tcattaaagag accataataa atactccttt tcaagagaaa | 6420 |
| agcaaaacca ttagaattgt tactcagctc cttcaaactc aggtttgtag catacatgag  | 6480 |
| tccatccatc agtcaaagaa tggttccatc tggagtctta atgttagaaag aaaaatggag | 6540 |
| acttgtaata atgagctagt tacaaaagtgc ttgttcatta aaatagcact gaaaattgaa | 6600 |
| acatgaatta actgataata ttccaatcat ttgccatTTA tgacaaaaat ggttggcact  | 6660 |
| aacaagaac gagcaattcc tttcagagtt tctgagataa tgtacgtgga acagtctggg   | 6720 |
| tggaaatgggg ctgaaaccat gtgcaagtct gtgtcttgc agtccaagaa gtgacaccga  | 6780 |
| gtatgttaatt ttagggaccc gtgccttgc tccatggcca caagaatgca aacatcaaac  | 6840 |
| agataactcgc tagcctcatt taaattgatt aaaggaggag tgcattttg gccgacagtg  | 6900 |
| gtgttaactgt atgtgtgtgt gtgtgtgtgt gtgtgtgggt gtatgtgtgt            | 6960 |
| tttgtgcata actatTTAAG gaaactggaa ttttaaagtT acttttatac aaaccaagaa  | 7020 |
| tatatgctac agatataaga cagacatggT ttggccttat atttctagtc atgatgaatg  | 7080 |
| tatTTTGTAT accatTTCA tataataaaac ttccaaaaac aca                    | 7123 |

<210> 6  
 <211> 6055  
 <212> DNA  
 <213> Homo sapiens

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| <400> 6                                                             |     |
| actgagtcggc gggacccccc gagagcggc aatgtgtggT cgctgcgttt cctctgcctg   | 60  |
| cgccgggcat cacttgcgcg ccgcagaaag tccgtctggc agcctggata tcctctccct   | 120 |
| ccggcaccgg cagacgcccc tgcagccgcg gtcggcgccc gggctccctt gcccgtgcg    | 180 |
| ctcaactgTC ctgcgctgcg ggggtccgcg agttccacct ccgcgcctcc ttctcttagac  | 240 |
| aggcgctggg agaaaagaacc ggctcccgg ttcgtggcat ttcgccccggc tcgaggtgca  | 300 |
| ggatgcagag caaggtgcTg ctggccgtcg ccctgtggct ctgcgtggag acccgccccg   | 360 |
| cctctgtggg tttgcctagt gtttctcttg atctgcccag gctcagcata caaaaagaca   | 420 |
| tacttacaat taaggctaatac acaactcttc aaattacttg caggggacag agggacttgg | 480 |
| actggctttg gcccaataat cagagtggca gtgagcaaaag ggtggaggtg actgagtgca  | 540 |
| gcgtatggcct ttctgttaag acactcacaa ttccaaaagt gatcgaaat gacactggag   | 600 |
| cctacaagtT cttctaccgg gaaactgact tggcctcggt catttatgtc tatgttcaag   | 660 |
| attacagatc tccatTTTATT gcttctgtta gtgaccaaca tggagtcgtg tacattactg  | 720 |
| agaacaaaaaa caaaaactgtg gtgattccat gtctcggtc catttcaaat ctcaacgtgt  | 780 |
| cactttgtgc aagataccga gaaaagagat ttgttccTGA tggtaacaga atttctggg    | 840 |
| acagcaagaa gggctttact attcccagct acatgatcag ctatgctggc atggctttct   | 900 |

4562516\_1

|             |            |             |             |             |            |      |
|-------------|------------|-------------|-------------|-------------|------------|------|
| gtgaagcaaa  | aattaatgt  | gaaagttacc  | agtcttattat | gtacatagtt  | gtcggttag  | 960  |
| ggtataaggat | ttatgtatgt | gttctgagtc  | cgtctcatgg  | aattgaacta  | tctgttggag | 1020 |
| aaaagcttgt  | cttaaattgt | acagcaagaa  | ctgaactaaa  | tgtggggatt  | gacttcaact | 1080 |
| gggaatacc   | ttcttcgaag | catcagcata  | agaaaacttgt | aaaccgagac  | ctaaaaaccc | 1140 |
| agtctggag   | tgagatgaag | aaattttga   | gcaccttaac  | tatacatgg   | gtaccccgga | 1200 |
| gtgaccaagg  | attgtacacc | tgtcagcat   | ccagtggct   | gatgaccaag  | aagaacagca | 1260 |
| catttgtcag  | ggtccatgaa | aaacctttt   | ttgctttgg   | aagtggcatg  | aatctctgg  | 1320 |
| tggaagccac  | ggtggggag  | cgtgtcagaa  | tccctgcgaa  | gtacccttgtt | tacccacccc | 1380 |
| cagaataaaa  | atggtataaa | aatggaatac  | cccttgagtc  | caatcacaca  | attaaagcgg | 1440 |
| ggcatgtact  | gacgattatg | gaagtgagtg  | aaagagacac  | aggaaattac  | actgtcatcc | 1500 |
| ttaccaatcc  | catttcaaag | gagaagcaga  | gccatgttgt  | ctctcttgtt  | gtgtatgtcc | 1560 |
| cacccagat   | ttgtgagaaa | tctctaattct | ctccctgtgga | ttccctaccag | tacggcacca | 1620 |
| ctcaaacgct  | gacatgtacg | gtctatgcc   | ttccctcccc  | gcatcacatc  | cactggatt  | 1680 |
| ggcagttgga  | ggaagagtg  | gccaaacgagc | ccagccaa    | tgtctcagt   | acaaacccat | 1740 |
| acccttgtga  | agaatggaga | agtgtggagg  | acttccaggg  | aggaaataaa  | attgaagtt  | 1800 |
| ataaaaatca  | atttgctcta | attgaaggaa  | aaaacaaaac  | tgttaagtacc | cttgttatcc | 1860 |
| aagcggcaaa  | tgtgtcagct | ttgtacaaat  | gtgaagcggt  | caacaaagtc  | gggagaggag | 1920 |
| agagggtgat  | ctccctccac | gtgaccacgg  | gtccctgaaat | tactttgca   | cctgacatgc | 1980 |
| agcccactga  | gcaggagagc | gtgtctttgt  | gggtcactgc  | agacagatct  | acgtttgaga | 2040 |
| acctcacatg  | gtacaagctt | ggcccacagc  | ctctgcctat  | ccatgtggga  | gagttgccc  | 2100 |
| cacctgttt   | caagaacttg | gatactctt   | ggaaattgaa  | tgccaccatg  | ttctctaata | 2160 |
| gcacaaatga  | cattttgatc | atggagctt   | agaatgcac   | cttgcaggac  | caaggagact | 2220 |
| atgtctgcct  | tgctcaagac | aggaagacca  | agaaaagaca  | ttgcgtggc   | aggcagctca | 2280 |
| cagtcctaga  | gcgtgtggc  | cccacgatc   | caggaaacct  | ggagaatcag  | acgacaagta | 2340 |
| ttggggaaag  | catcgaagtc | tcatgcacgg  | catctggaa   | tcccccctcc  | cagatcatgt | 2400 |
| ggtttaaaga  | taatgagacc | cttgttagaag | actcaggcat  | tgtattgaag  | gatggaaacc | 2460 |
| ggaacctcac  | tatccgcaga | gtgaggaagg  | aggacgaagg  | cctctacacc  | tgccaggcat | 2520 |
| gcagtgttct  | tggctgtgca | aaagtggagg  | catttttcat  | aatagaaggt  | gcccaggaaa | 2580 |
| tacttcttgt  | catcatccta | cggaccgtt   | agcggggcaa  | tggagggaa   | ctgaagacag | 2640 |
| gctacttgtc  | catcgtcatg | gatccagatg  | aactcccatt  | ggatgaacat  | tgtgaacgac | 2700 |
| tgccttatga  | tgccagcaaa | tggaaattcc  | ccagagaccg  | gctgaagcta  | ggtaagcctc | 2760 |
| ttggccgtgg  | tgcctttggc | caagtgattt  | aagcagatgc  | cttggaaatt  | gacaagacag | 2820 |
| caacttgcag  | gacagtagca | gtaaaaatgt  | tgaaagaagg  | agcaacacac  | agtgagcatc | 2880 |

4562516\_1

gagctctcat gtctgaactc aagatcctca ttcatattgg tcaccatctc aatgtggtca 3000  
 accttctagg tgccctgtacc aagccaggag ggccactcat ggtgattgtg gaattctgca 3060  
 aatttggaaa cctgtccact tacctgagga gcaagagaaa tgaatttgc ccctacaaga 3120  
 ccaaaggggc acgattccgt caagggaaag actacgttgg agcaatccct gtggatctga 3180  
 aacggcgctt ggacagcattc accagtagcc agagctcagc cagctctggg lllglggagg 3240  
 agaagtccct cagtgtatgt aagaagagg aagctcctga agatctgtat aaggacttcc 3300  
 tgaccttggg gcatctcatc tggttacagct tccaaagtggc taagggcatg gagttcttgg 3360  
 catcgcaaa gtgtatccac agggacctgg cggtcacgaaa tatcctctta tcggagaaga 3420  
 acgtggtaa aatctgtgac ttggcttgg cccgggatat ttataaagat ccagattatg 3480  
 tcagaaaaagg agatgctcgc ctccctttga aatggatggc cccagaaaca atttttgaca 3540  
 gagtgtacac aatccagagt gacgtctggt cttttgggtt tttgtgtgg gaaatattt 3600  
 ccttaggtgc ttctccatat cctggggtaa agattgtatga agaattttgt aggcgattga 3660  
 aagaaggaac tagaatgagg gcccctgatt atactacacc agaaaatgtac cagaccatgc 3720  
 tggactgctg gcacggggag cccagtcaga gaccacgtt ttcaagatgtg gtggAACATT 3780  
 tggaaaatct cttgcaagct aatgctcagc aggtggcaa agactacatt gttttccga 3840  
 tatcagagac tttagcatg gaagaggatt ctggactctc tctgcctacc tcacctgttt 3900  
 cctgtatgga ggaggaggaa gtatgtgacc ccaaattcca ttatgacaac acagcaggaa 3960  
 tcagtcagta tctgcagaac agtaagcgaa agagccggcc tggatgtta aaaacatTT 4020  
 aagatatccc gttagaagaa ccagaagtaa aagtaatccc agatgacaac cagacggaca 4080  
 gtggatgtt tttgcctca gaagagctga aaactttgg aagacagaacc aaattatctc 4140  
 catctttgg tggaaatggtg cccagcaaaa gcagggagtc tggatgtt gaaggctcaa 4200  
 accagacaag cggctaccag tccggatatc actccgtatga cacagacacc accgtgtact 4260  
 ccagtggatgg agcagaactt taaaagctga tagagattgg agtgcAAACC ggtggcacag 4320  
 cccagattct ccagcctgac tcggggacca cactgagctc tccctctgtt taaaaggaag 4380  
 catccacacc cccaaacttcc ggacatcaca tgagaggtgc tgctcagatt ttcaagtttt 4440  
 gtttttcca ccagcaggaa gtagccgcat ttgatTTCA ttgcacaac agaaaaagga 4500  
 cctcggactg cagggagcca gtcttctagg catatcctgg aagaggcttg tgacccaaaga 4560  
 atgtgtctgt gtcttctccc agtgttgacc tgatcctctt ttcatatcat taaaaagca 4620  
 ttatcatgc cccctgtgc gggctcacc atgggttttag aacaaagacg ttcaagaaat 4680  
 ggccccatcc tcaaagaagt agcagtaccc ggggagctga cacttctgtt aaactagaag 4740  
 ataaaccagg caatgttaagt gttcgaggtg ttgaagatgg gaaggatTT cagggctgag 4800  
 tctatccaag aggctttgtt taggacgtgg gtcccaagcc aagccTTAAG tggatTTCC 4860  
 ggattgtatgg aagggaaagac taacgttacc ttgctttggg gaggacttggc gcctgcAAAT 4920  
 gcattgtgtt tgctctgggtt gaggtgggca tgggggtctgt tctgaaatgt aaagggttca 4980

4562516\_1

gacggggttt ctggtttag aagggtgcgt gttcttcgag ttgggctaaa gtagagttcg 5040  
ttgtgtgtt tctgactcct aatgagagtt ccttccagac cgttacgtgt ctccctggcca 5100  
agccccagga aggaaatgtat gcagctctgg ctccctgtct cccaggctga tcctttattc 5160  
agaataccac aaagaaaagga cattcagctc aaggctccct gccgtgtga agagttctga 5220  
ctgcacaaac cagcttctgg tttcttctgg aatgaatacc ctcatatctg tcctgatgtg 5280  
atatgtctga gactgaatgc gggaggttca atgtgaagct gtgtgtggtg tcaaagtttc 5340  
aggaaggatt ttaccctttt gttcttcccc ctgtcccaa cccactctea ccccgcaacc 5400  
catcagtatt ttagttattt ggcctctact ccagtaaacc tgattgggtt tgttcactct 5460  
ctgaatgatt attagccaga cttcaaaatt attttatagc ccaaattata acatctattg 5520  
tattattttag acttttaaca tatagagcta tttctactga ttttgcctt tgttctgtcc 5580  
ttttttcaa aaaagaaaat gtgtttttg tttgttacca tagtgtgaaa tgctggaaac 5640  
aatgactata agacatgcta tggcacatat atttatagtc tgtttatgtt gaaacaaaatg 5700  
taatatatta aagccttata tataatgaac tttgtactat tcacattttg ttcagtatt 5760  
atgttagcata acaaagggtca taatgttttca agcaattgtat gtcattttat taaagaacat 5820  
tgaaaaaactt gaaggaatcc ctgttgcagg ttgcattact gtacccatca tttctaaaat 5880  
ggaagaggggg gtggctgggc acagtggccg acacctaaaaa acccaggact ttggggggcc 5940  
aaggtggag gatcgcttga gcccaggagt tcaagaccag tctggccaac atggtcagat 6000  
tccatctcaa agaaaaaagg taaaaataaa ataaaatgga gaagaaggaa tcaga 6055

<210> 7

<211> 223

<212> PRT

<213> Homo sapiens

<400> 7

Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val  
1 5 10 15

Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr  
20 25 30

Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu  
35 40 45

Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys  
50 55 60

Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser  
65 70 75 80

Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys  
85 90 95

## 4562516\_1

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile  
 100 105 110

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro  
 115 120 125

Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu  
 130 135 140

Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn  
 145 150 155 160

Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser  
 165 170 175

Asp Gly Pro Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg  
 180 185 190

Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu  
 195 200 205

His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys  
 210 215 220

<210> 8

<211> 669

<212> DNA

<213> Homo sapiens

<400> 8

acatggccac cgtccccagc acctgaactc ctggggggac cgtcagtctt cctcttcccc 60  
 ccaaaaaccca aggacaccct catgatctcc cggaccctg aggtcacatg cgtgggttgt 120  
 gacgtgagcc acgaagaccc tgaggtcaag ttcaactgggt acgrggacgg cgtggagggt 180  
 cataatgcca agacaaagcc gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc 240  
 gtcctcaccc tcctgcacca ggactggctg aatggcaagg agtacaagtg caaggtctcc 300  
 aacaaaagccc tcccagcccc catcgagaaa accatctcca aagccaaagg gcagccccga 360  
 gaaccacagg tgtacaccct gcccccatcc cggatgagc tgaccaagaa ccaggtcagc 420  
 ctgacctgcc tggtaaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat 480  
 gggcagccgg agaacaacta caagaccacg cctccctgtgc tggactccga cggccccttc 540  
 ttccctctaca gcaagctcac cgtggacaag agcaggtggc agcaggggaa cgtcttctca 600  
 tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtct 660  
 ccgggtaaa 669

<210> 9

<211> 580

<212> PRT

<213> Artificial sequence

4562516\_1

<220>

<223> 19# fused protein

<400> 9

Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln Pro Trp Gly Ala Pro  
1 5 10 15

Val Glu Val Glu Ser Phe Leu Val His Pro Gly Asp Leu Leu Gln Leu  
20 25 30

Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile Asn Trp Leu Arg Asp  
35 40 45

Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg Ile Thr Gly Glu Glu  
50 55 60

Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser Gly Leu Tyr Ala Cys  
65 70 75 80

Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr Tyr Phe Ser Val Asn  
85 90 95

Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp Asp Asp Asp Asp Asp  
100 105 110

Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr Lys Pro Asn Pro Val  
115 120 125

Ala Pro Tyr Trp Thr Ser Pro Glu Lys Met Glu Lys Lys Leu His Ala  
130 135 140

Val Pro Ala Ala Lys Thr Val Lys Phe Lys Cys Pro Ser Ser Gly Thr  
145 150 155 160

Pro Asn Pro Thr Leu Arg Trp Leu Lys Asn Gly Lys Glu Phe Lys Pro  
165 170 175

Asp His Arg Ile Gly Gly Tyr Lys Val Arg Tyr Ala Thr Trp Ser Ile  
180 185 190

Ile Met Asp Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr Cys Ile  
195 200 205

Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr Gln Leu Asp Val  
210 215 220

Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala  
225 230 235 240

Asn Lys Thr Val Ala Leu Gly Ser Asn Val Glu Phe Met Cys Lys Val  
245 250 255

4562516\_1

Tyr Ser Asp Pro Gln Pro His Ile Gln Trp Leu Lys His Ile Glu Val  
260 265 270

Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu Pro Tyr Val Gln Ile Leu  
275 280 285

Lys Thr Ala Gly Val Asn Thr Asp Lys Glu Met Glu Val Leu His  
290 295 300

Leu Arg Asn Val Ser Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala  
305 310 315 320

Gly Asn Ser Ile Gly Leu Ser His His Ser Ala Trp Leu Thr Val Leu  
325 330 335

Glu Ala Leu Glu Glu Arg Pro Ala Val Met Thr Ser Pro Leu Tyr Leu  
340 345 350

Glu Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu  
355 360 365

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu  
370 375 380

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser  
385 390 395 400

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu  
405 410 415

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr  
420 425 430

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn  
435 440 445

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro  
450 455 460

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln  
465 470 475 480

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val  
485 490 495

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val  
500 505 510

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro  
515 520 525

4562516\_1

Pro Val Leu Asp Ser Asp Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr  
530 535 540

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val  
545 550 555 560

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu  
565 570 575

Ser Pro Gly Lys  
580

<210> 10

<211> 526

<212> PRT

<213> artificial sequence

<220>

<223> 13# fused protein

<400> 10

Lys Asn Arg Thr Arg Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser  
1 5 10 15

Val Pro Ala Asp Ser Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser  
20 25 30

Gly Ser Asp Thr Thr Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro  
35 40 45

Ser Ser Glu Asp Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys  
50 55 60

Glu Thr Asp Asn Thr Lys Pro Asn Pro Val Ala Pro Tyr Trp Thr Ser  
65 70 75 80

Pro Glu Lys Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr  
85 90 95

Val Lys Phe Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg  
100 105 110

Trp Leu Lys Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly  
115 120 125

Tyr Lys Val Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val  
130 135 140

Pro Ser Asp Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly  
145 150 155 160

Ser Ile Asn His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His

4562516\_1

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 165                                                             | 170 | 175 |
| Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu |     |     |
| 180                                                             | 185 | 190 |
| Gly Ser Asn Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro |     |     |
| 195                                                             | 200 | 205 |
| His Ile Gln Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly |     |     |
| 210                                                             | 215 | 220 |
| Pro Asp Asn Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn |     |     |
| 225                                                             | 230 | 235 |
| Thr Thr Asp Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe |     |     |
| 245                                                             | 250 | 255 |
| Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu |     |     |
| 260                                                             | 265 | 270 |
| Ser His His Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg |     |     |
| 275                                                             | 280 | 285 |
| Pro Ala Val Met Thr Ser Pro Leu Tyr Leu Glu Asp Lys Thr His Thr |     |     |
| 290                                                             | 295 | 300 |
| Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe |     |     |
| 305                                                             | 310 | 315 |
| Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro |     |     |
| 325                                                             | 330 | 335 |
| Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val     |     |     |
| 340                                                             | 345 | 350 |
| Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr |     |     |
| 355                                                             | 360 | 365 |
| Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val |     |     |
| 370                                                             | 375 | 380 |
| Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys |     |     |
| 385                                                             | 390 | 395 |
| Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser |     |     |
| 405                                                             | 410 | 415 |
| Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro |     |     |
| 420                                                             | 425 | 430 |
| Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val |     |     |

4562516\_1

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 435                                                             | 440 | 445 |     |
| Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly |     |     |     |
| 450                                                             | 455 | 460 |     |
| Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp |     |     |     |
| 465                                                             | 470 | 475 | 480 |
| Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp |     |     |     |
| 485                                                             | 490 | 495 |     |
| Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His |     |     |     |
| 500                                                             | 505 | 510 |     |
| Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys         |     |     |     |
| 515                                                             | 520 | 525 |     |
| <210> 11                                                        |     |     |     |
| <211> 500                                                       |     |     |     |
| <212> PRT                                                       |     |     |     |
| <213> artificial sequence                                       |     |     |     |
| <220>                                                           |     |     |     |
| <223> 22# fused protein                                         |     |     |     |
| <400> 11                                                        |     |     |     |
| Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr Tyr Phe Ser Val Asn |     |     |     |
| 1                                                               | 5   | 10  | 15  |
| Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp Asp Asp Asp Asp     |     |     |     |
| 20                                                              | 25  | 30  |     |
| Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr Lys Pro Asn Pro Val |     |     |     |
| 35                                                              | 40  | 45  |     |
| Ala Pro Tyr Trp Thr Ser Pro Glu Lys Met Glu Lys Lys Leu His Ala |     |     |     |
| 50                                                              | 55  | 60  |     |
| Val Pro Ala Ala Lys Thr Val Lys Phe Lys Cys Pro Ser Ser Gly Thr |     |     |     |
| 65                                                              | 70  | 75  | 80  |
| Pro Asn Pro Thr Leu Arg Trp Leu Lys Asn Gly Lys Glu Phe Lys Pro |     |     |     |
| 85                                                              | 90  | 95  |     |
| Asp His Arg Ile Gly Gly Tyr Lys Val Arg Tyr Ala Thr Trp Ser Ile |     |     |     |
| 100                                                             | 105 | 110 |     |
| Ile Met Asp Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr Cys Ile |     |     |     |
| 115                                                             | 120 | 125 |     |
| Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr Gln Leu Asp Val |     |     |     |
| 130                                                             | 135 | 140 |     |

4562516\_1

Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala  
145 150 155 160

Asn Lys Thr Val Ala Leu Gly Ser Asn Val Glu Phe Met Cys Lys Val  
165 170 175

Tyr Ser Asp Pro Gln Pro His Ile Gln Trp Leu Lys His Ile Glu Val  
180 185 190

Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu Pro Tyr Val Gln Ile Leu  
195 200 205

Lys Thr Ala Gly Val Asn Thr Asp Lys Glu Met Glu Val Leu His  
210 215 220

Leu Arg Asn Val Ser Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala  
225 230 235 240

Gly Asn Ser Ile Gly Leu Ser His His Ser Ala Trp Leu Thr Val Leu  
245 250 255

Glu Ala Leu Glu Glu Arg Pro Ala Val Met Thr Ser Pro Leu Tyr Leu  
260 265 270

Glu Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu  
275 280 285

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu  
290 295 300

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser  
305 310 315 320

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu  
325 330 335

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr  
340 345 350

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn  
355 360 365

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro  
370 375 380

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln  
385 390 395 400

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val  
405 410 415

4562516\_1

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val  
420 425 430

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Thr Thr Pro  
435 440 445

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr  
450 455 460

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val  
465 470 475 480

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu  
485 490 495

Ser Pro Gly Lys  
500

<210> 12

<211> 468

<212> PRT

<213> artificial sequence

<220>

<223> 23# fused protein

<400> 12

Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr Lys Pro Asn Pro Val  
1 5 10 15

Ala Pro Tyr Trp Thr Ser Pro Glu Lys Met Glu Lys Lys Leu His Ala  
20 25 30

Val Pro Ala Ala Lys Thr Val Lys Phe Lys Cys Pro Ser Ser Gly Thr  
35 40 45

Pro Asn Pro Thr Leu Arg Trp Leu Lys Asn Gly Lys Glu Phe Lys Pro  
50 55 60

Asp His Arg Ile Gly Gly Tyr Lys Val Arg Tyr Ala Thr Trp Ser Ile  
65 70 75 80

Ile Met Asp Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr Cys Ile  
85 90 95

Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr Gln Leu Asp Val  
100 105 110

Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala  
115 120 125

Asn Lys Thr Val Ala Leu Gly Ser Asn Val Glu Phe Met Cys Lys Val

4562516\_1

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 130                                                             | 135 | 140 |     |
| Tyr Ser Asp Pro Gln Pro His Ile Gln Trp Leu Lys His Ile Glu Val |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu Pro Tyr Val Gln Ile Leu |     |     |     |
| 165                                                             | 170 | 175 |     |
| Lys Thr Ala Gly Val Asn Thr Thr Asp Lys Glu Met Glu Val Leu His |     |     |     |
| 180                                                             | 185 | 190 |     |
| Leu Arg Asn Val Ser Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala |     |     |     |
| 195                                                             | 200 | 205 |     |
| Gly Asn Ser Ile Gly Leu Ser His His Ser Ala Trp Leu Thr Val Leu |     |     |     |
| 210                                                             | 215 | 220 |     |
| Glu Ala Leu Glu Glu Arg Pro Ala Val Met Thr Ser Pro Leu Tyr Leu |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Glu Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu |     |     |     |
| 245                                                             | 250 | 255 |     |
| Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu |     |     |     |
| 260                                                             | 265 | 270 |     |
| Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser |     |     |     |
| 275                                                             | 280 | 285 |     |
| His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu |     |     |     |
| 290                                                             | 295 | 300 |     |
| Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr |     |     |     |
| 305                                                             | 310 | 315 | 320 |
| Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn |     |     |     |
| 325                                                             | 330 | 335 |     |
| Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro |     |     |     |
| 340                                                             | 345 | 350 |     |
| Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln |     |     |     |
| 355                                                             | 360 | 365 |     |
| Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val |     |     |     |
| 370                                                             | 375 | 380 |     |
| Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val |     |     |     |
| 385                                                             | 390 | 395 | 400 |
| Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro |     |     |     |

405 4562516\_1  
410 415

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr  
420 425 430

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val  
435 440 445

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu  
450 455 460

Ser Pro Gly Lys  
465

<210> 13  
<211> 457  
<212> PRT  
<213> artificial sequence

<220>  
<223> 26# fused protein

<400> 13

Lys Pro Asn Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys Met Glu  
1 5 10 15

Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe Lys Cys  
20 25 30

Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys Asn Gly  
35 40 45

Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val Arg Tyr  
50 55 60

Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp Lys Gly  
65 70 75 80

Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr  
85 90 95

Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln  
100 105 110

Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn Val Glu  
115 120 125

Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln Trp Leu  
130 135 140

Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu Pro  
145 150 155 160

4562516\_1

Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp Lys Glu  
165 170 175

Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala Gly Glu  
180 185 190

Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His Ser Ala  
195 200 205

Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val Met Thr  
210 215 220

Ser Pro Leu Tyr Leu Glu Asp Lys Thr His Thr Cys Pro Pro Cys Pro  
225 230 235 240

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys  
245 250 255

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val  
260 265 270

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr  
275 280 285

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu  
290 295 300

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His  
305 310 315 320

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys  
325 330 335

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln  
340 345 350

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu  
355 360 365

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro  
370 375 380

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn  
385 390 395 400

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu  
405 410 415

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val  
420 425 430

4562516\_1

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln  
435 440 445

Lys Ser Leu Ser Leu Ser Pro Gly Lys  
450 455

<210> 14  
<211> 451  
<212> PRT  
<213> artificial sequence

<220>  
<223> 29# fused protein

<400> 14

Pro Tyr Trp Thr Ser Pro Glu Lys Met Glu Lys Lys Leu His Ala Val  
1 5 10 15

Pro Ala Ala Lys Thr Val Lys Phe Lys Cys Pro Ser Ser Gly Thr Pro  
20 25 30

Asn Pro Thr Leu Arg Trp Leu Lys Asn Gly Lys Glu Phe Lys Pro Asp  
35 40 45

His Arg Ile Gly Gly Tyr Lys Val Arg Tyr Ala Thr Trp Ser Ile Ile  
50 55 60

Met Asp Ser Val Val Pro Ser Asp Lys Gly Asn Tyr Thr Cys Ile Val  
65 70 75 80

Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr Gln Leu Asp Val Val  
85 90 95

Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn  
100 105 110

Lys Thr Val Ala Leu Gly Ser Asn Val Glu Phe Met Cys Lys Val Tyr  
115 120 125

Ser Asp Pro Gln Pro His Ile Gln Trp Leu Lys His Ile Glu Val Asn  
130 135 140

Gly Ser Lys Ile Gly Pro Asp Asn Leu Pro Tyr Val Gln Ile Leu Lys  
145 150 155 160

Thr Ala Gly Val Asn Thr Thr Asp Lys Glu Met Glu Val Leu His Leu  
165 170 175

Arg Asn Val Ser Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly  
180 185 190

Asn Ser Ile Gly Leu Ser His His Ser Ala Trp Leu Thr Val Leu Glu  
Page 36

195

200

205

Ala Leu Glu Glu Arg Pro Ala Val Met Thr Ser Pro Leu Tyr Leu Glu  
210 215 220

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly  
225 230 235 240

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met  
245 250 255

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His  
260 265 270

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val  
275 280 285

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr  
290 295 300

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly  
305 310 315 320

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile  
325 330 335

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val  
340 345 350

Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser  
355 360 365

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu  
370 375 380

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro  
385 390 395 400

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val  
405 410 415

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met  
420 425 430

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser  
435 440 445

Pro Gly Lys  
450

## 4562516\_1

<211> 446  
 <212> PRT  
 <213> artificial sequence

<220>  
 <223> 8# fused protein

<400> 15

Pro Glu Lys Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr  
 1 5 10 15

Val Lys Phe Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg  
 20 25 30

Trp Leu Lys Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly  
 35 40 45

Tyr Lys Val Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val  
 50 55 60

Pro Ser Asp Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly  
 65 70 75 80

Ser Ile Asn His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His  
 85 90 95

Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu  
 100 105 110

Gly Ser Asn Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro  
 115 120 125

His Ile Gln Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly  
 130 135 140

Pro Asp Asn Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn  
 145 150 155 160

Thr Thr Asp Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe  
 165 170 175

Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu  
 180 185 190

Ser His His Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg  
 195 200 205

Pro Ala Val Met Thr Ser Pro Leu Tyr Leu Glu Asp Lys Thr His Thr  
 210 215 220

Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe  
 225 230 235 240

## 4562516\_1

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro  
 245 250 255

Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val  
 260 265 270

Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr  
 275 280 285

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val  
 290 295 300

Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys  
 305 310 315 320

Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser  
 325 330 335

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro  
 340 345 350

Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val  
 355 360 365

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly  
 370 375 380

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp  
 385 390 395 400

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp  
 405 410 415

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His  
 420 425 430

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys  
 435 440 445

<210> 16

<211> 1743

<212> DNA

<213> Artificial sequence

<220>

<223> Nucleotide sequence of 19# fused protein

<400> 16

aggccgtcccc cgaccttgcc tgaacaagcc cagccctggg gagccccctgt ggaagtggag 60

tccttcctgg tccaccccccgg tgacctgcta cagcttcgtct gtcggctgcg ggacgatgtg 120

cagagcatca actggctgcg ggacgggggtg cagctggcgg aaagcaatcg caccgcac 180

4562516\_1

|             |             |             |            |             |             |      |
|-------------|-------------|-------------|------------|-------------|-------------|------|
| acaggggagg  | aggtaggaggt | gcaggactcc  | gtgcccgcag | actccggcct  | ctatgcttgc  | 240  |
| gttaaccagca | gcccctcggt  | cagtgacacc  | acctacttct | ccgtcaatgt  | ttcagatgct  | 300  |
| ctccccctcct | cgaggatgt   | tgatgatgt   | gatgactcct | cttcagagga  | gaaagaaaaca | 360  |
| gataacacca  | aaccaaacc   | cgtagctcca  | tattggacat | ccccagaaaa  | gatggaaaaag | 420  |
| aaattgcatg  | cagtgcgcgc  | tgccaagaca  | gtgaagttca | aatgccttc   | cagtggacc   | 480  |
| ccaaacccca  | cactgcgcgt  | gttgaaaaat  | ggcaaagaat | tcaaacctga  | ccacagaatt  | 540  |
| ggaggctaca  | aggccgtta   | tgccacctgg  | agcatcataa | tggactctgt  | ggtgcctct   | 600  |
| gacaaggcga  | actacacctg  | cattgtggag  | aatgagtacg | gcagcatcaa  | ccacacatac  | 660  |
| cagctggatg  | tcgtggagcg  | gtccctcac   | cggcccatcc | tgcaagcagg  | gttgcggcc   | 720  |
| aacaaaacag  | tggccctggg  | tagcaacgt   | gagttcatgt | gtaaggtgt   | cagtgacccg  | 780  |
| cagccgcaca  | tccagtggct  | aaagcacatc  | gaggtgaatg | ggagcaagat  | tggcccagac  | 840  |
| aacctgcctt  | atgtccagat  | cttgaagact  | gctggagtt  | ataccaccga  | caaagagatg  | 900  |
| gaggtgcctc  | acttaagaaa  | tgtctcttt   | gaggacgcag | gggagtatac  | gtgcttggcg  | 960  |
| gttaactcta  | tcggactctc  | ccatcactct  | gcatggttga | ccgtcttgg   | agccctggaa  | 1020 |
| gagaggccgg  | cagtgtatgc  | ctcgccccctg | tacctggagg | acaaaaactca | cacatgc     | 1080 |
| ccgtgcccag  | cacctgaact  | cctggggggga | ccgtcagtct | tcctcttccc  | ccaaaaaccc  | 1140 |
| aaggacacccc | tcatgatctc  | ccggacccct  | gaggtcacat | gcgtgggtgg  | ggacgtgagc  | 1200 |
| cacgaagacc  | ctgaggtcaa  | gttcaactgg  | tacgtggacg | gcgtggaggt  | gcataatgcc  | 1260 |
| aagacaaagc  | cgcgggagga  | gcagtacaac  | agcacgtacc | gtgtggtcag  | cgtcctcacc  | 1320 |
| gtcctgcacc  | aggactggct  | aatggcaag   | gagtacaagt | gcaaggcttc  | caacaaagcc  | 1380 |
| ctccccagccc | ccatcgagaa  | aaccatctcc  | aaagccaaag | ggcagccccg  | agaaccacag  | 1440 |
| gtgtacacccc | tgccccatc   | ccggatgag   | ctgaccaaga | accaggtcag  | cctgacctgc  | 1500 |
| ctggtcaaag  | gttttatcc   | cagcgacatc  | gccgtggagt | gggagagcaa  | tggcagccg   | 1560 |
| gagaacaact  | acaagaccac  | gcctccgt    | ctggactccg | acggctc     | tttcttac    | 1620 |
| agcaagctca  | ccgtggacaa  | gagcagggt   | cagcagg    | acgtttctc   | atgctccgt   | 1680 |
| atgcattgagg | ctctgcacaa  | ccactacacg  | cagaagagcc | tctccctgt   | tccgggtaaa  | 1740 |
|             | tga         |             |            |             |             | 1743 |

<210> 17  
<211> 1581  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Nucleotide sequence of 13# fused protein

<400> 17  
aaaaatcgca cccgcacatcac aaaaaaggaggtgtgc aggactccgt gcccgcac  
tccggcctct atgcttgcgt aaccagcagc ccctcggtca gtgacaccac ctacttctcc 60  
tccggcctct atgcttgcgt aaccagcagc ccctcggtca gtgacaccac ctacttctcc 120

4562516\_1

|              |              |             |             |             |             |      |
|--------------|--------------|-------------|-------------|-------------|-------------|------|
| gtcaatgttt   | cagatgctct   | ccccctcctcg | gaggatgatg  | atgatgatga  | tgactccctct | 180  |
| tcagaggaga   | aagazacaga   | taacacccaaa | ccaaaccccg  | tagctccata  | ttggacatcc  | 240  |
| ccagaaaaga   | tggaaaagaa   | attgcattgca | gtgccggctg  | ccaagacagt  | gaagttcaaa  | 300  |
| tgcccttcca   | gtgggacccc   | aaaccccaaa  | ctgcgctgg   | tgaaaaatgg  | caaagaattc  | 360  |
| aaacctgacc   | acagaattgg   | aggctacaag  | gtccgttatg  | ccacctggag  | catcataatg  | 420  |
| gactctgtgg   | tgccctctga   | caagggcaac  | tacacctgca  | ttgtggagaa  | tgagtacggc  | 480  |
| agcatcaacc   | acacatacca   | gctggatgtc  | gtggagcggt  | ccccctcaccg | gcccatcctg  | 540  |
| caagcagggt   | tgccccccaa   | caaaacagtg  | gcccctggta  | gcaacgtgga  | gttcatgtgt  | 600  |
| aagggtgtaca  | gtgacccgca   | gccgcacatc  | cagtggctaa  | agcacatcga  | ggtgaatggg  | 660  |
| agcaagattg   | gccccagacaa  | cctgccttat  | gtccagatct  | tgaagactgc  | tggagttaat  | 720  |
| accaccgaca   | aagagatgga   | ggtgcttcac  | ttaagaaatg  | tctcccttga  | ggacgcaggg  | 780  |
| gagtatacgt   | gcttggcggg   | taactctatc  | ggactctccc  | atcactctgc  | atggttgacc  | 840  |
| gttcttggaaag | cccttggaaaga | gaggccggca  | gtgatgacct  | cgtccctgt   | cctggaggac  | 900  |
| aaaactcaca   | catgcccacc   | gtgcccagca  | cctgaactcc  | tggggggacc  | gtcagtcttc  | 960  |
| ctcttcccccc  | caaaaacccaa  | ggacaccctc  | atgatctccc  | ggacccctga  | ggtcacatgc  | 1020 |
| gtgggtggtgg  | acgtgagcca   | cgaagacccct | gaggtaagt   | tcaactggta  | cgtggacggc  | 1080 |
| gtggaggtgc   | ataatgccaa   | gacaaagccg  | cgggaggagc  | agtacaacag  | cacgtaccgt  | 1140 |
| gtggtcagcg   | tcctcaccgt   | cctgcaccag  | gactggctga  | atggcaagga  | gtacaagtgc  | 1200 |
| aagggtctcca  | acaaagccct   | cccagccccc  | atcgagaaaaa | ccatctccaa  | agccaaaggg  | 1260 |
| cagccccgag   | aaccacaggt   | gtacaccctg  | cccccatccc  | gggatgagct  | gaccaagaac  | 1320 |
| caggttcagcc  | tgacctgcct   | ggtcaaaggc  | ttcttatccca | gcgcacatgc  | cgtggagtgg  | 1380 |
| gagagcaatg   | ggcagccgga   | gaacaactac  | aagaccacgc  | ctcccgtgt   | ggactccgac  | 1440 |
| ggctccctct   | tcctctacag   | caagtcacc   | gtggacaaga  | gcaggtggca  | gcaggggaac  | 1500 |
| gtcttctcat   | gtccgtat     | gcatgaggct  | ctgcacaacc  | actacacgca  | gaagagcctc  | 1560 |
| tcctgtctc    | cgggtaaatg   | a           |             |             |             | 1581 |

<210> 18  
 <211> 1503  
 <212> DNA  
 <213> Artificial sequence

<220>  
 <223> Nucleotide sequence of 22# fused protein

|          |             |             |             |            |            |             |     |
|----------|-------------|-------------|-------------|------------|------------|-------------|-----|
| <400> 18 | gtaaccagca  | gccccctcggg | cagtgcacacc | acctacttct | ccgtcaatgt | ttcagatgct  | 60  |
|          | ctccccctcct | cgaggatga   | tgtatgatgat | gatgactct  | cttcagagga | gaaagaaaaca | 120 |
|          | gataacacca  | aaccaaacc   | cgtagctcca  | tattggacat | ccccagaaaa | gatggaaaag  | 180 |
|          | aaattgcatt  | cagtgcggc   | tgccaaagaca | gtgaagttca | aatgccttc  | cagtggacc   | 240 |

4562516\_1

|            |        |       |      |     |        |      |     |     |     |      |     |     |     |      |     |     |    |     |     |      |     |
|------------|--------|-------|------|-----|--------|------|-----|-----|-----|------|-----|-----|-----|------|-----|-----|----|-----|-----|------|-----|
| ccaaacccca | ca     | tgcgc | tg   | gtt | aaaaat | gg   | caa | aga | at  | tca  | aa  | cc  | ac  | aga  | att | 300 |    |     |     |      |     |
| ggaggctaca | agg    | tcc   | gtt  | ac  | cac    | ctt  | gg  | ag  | cat | cata | aa  | tgg | act | ctgt | gtt | ggc | c  | tct | 360 |      |     |
| gacaagg    | ca     | act   | ac   | ac  | ctg    | catt | gtt | gg  | ag  | at   | acg | gc  | ag  | cat  | caa | cc  | ac | ac  | ata | 420  |     |
| cag        | ctggat | g     | tc   | gt  | gg     | ag   | cg  | gt  | cc  | c    | tc  | cc  | cg  | at   | cc  | tg  | cc | cg  | cc  | 480  |     |
| aaca       | aaa    | ac    | ag   | tgg | cc     | ct   | tt  | gg  | g   | ta   | ac  | gt  | g   | at   | gt  | gt  | ta | ag  | gt  | 540  |     |
| cag        | ccgc   | caca  | tcc  | ag  | tgg    | ct   | aa  | ag  | ca  | at   | tc  | g   | gg  | at   | g   | gg  | ca | ag  | at  | 600  |     |
| aa         | cc     | tc    | tt   | at  | gt     | cc   | ca  | at  | g   | at   | ct  | gt  | gg  | at   | tc  | tt  | cc | ca  | ag  | ac   | 660 |
| gag        | gt     | gtt   | cc   | ttc | act    | taa  | ag  | aaa | t   | gt   | tc  | tc  | tt  | tt   | at  | gt  | cc | gg  | at  | 720  |     |
| gg         | ta     | act   | ct   | ta  | tc     | gg   | ac  | t   | tc  | tc   | at  | cc  | ac  | cc   | ga  | ca  | cc | gg  | aa  | 780  |     |
| gag        | agg    | cc    | gg   | cc  | tc     | gt   | at  | gg  | cc  | tt   | gg  | gg  | aa  | cc   | cc  | tt  | cc | gg  | aa  | 840  |     |
| aa         | gg     | ac    | ac   | cc  | tc     | at   | gt  | gg  | gg  | cc   | tt  | cc  | cc  | cc   | cc  | tt  | cc | cc  | aa  | 900  |     |
| aagg       | ac     | ac    | cc   | tc  | at     | gt   | at  | tc  | cc  | gg   | ac  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 960  |     |
| ca         | cac    | ga    | ac   | cc  | tc     | tt   | gg  | ac  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1020 |     |
| aa         | gac    | aa    | ag   | cc  | tc     | tt   | gg  | ac  | tc  | tc   | tc  | tc  | tc  | tc   | tc  | tc  | tc | tc  | aa  | 1080 |     |
| gt         | cct    | tg    | cacc | agg | act    | gg   | gt  | gg  | ca  | gg   | at  | gt  | tc  | tc   | tc  | tc  | tc | tc  | aa  | 1140 |     |
| ct         | ccc    | cc    | cc   | cc  | cc     | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1200 |     |
| gt         | gt     | ac    | ac   | cc  | cc     | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1260 |     |
| ct         | gg     | tc    | aa   | ag  | cc     | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1320 |     |
| gaga       | aca    | act   | aca  | cc  | cc     | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1380 |     |
| ac         | aa     | gg    | ac   | cc  | cc     | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1440 |     |
| at         | gc     | at    | gagg | cc  | cc     | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1500 |     |
| at         | g      | ca    | gg   | cc  | cc     | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc  | cc   | cc  | cc  | cc | cc  | aa  | 1503 |     |

<210> 19  
<211> 1407  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Nucleotide sequence of 23# fused protein

|       |    |    |    |    |    |     |     |     |    |    |    |    |    |    |    |    |    |     |    |    |    |     |
|-------|----|----|----|----|----|-----|-----|-----|----|----|----|----|----|----|----|----|----|-----|----|----|----|-----|
| <400> | 19 | tc | ct | tc | ag | agg | aaa | aga | aa | ac | ca | aa | ac | cc | cc | gt | ag | tcc | at | tt | gg | 60  |
| tc    | c  | t  | t  | c  | a  | g   | a   | g   | a  | a  | c  | a  | c  | a  | c  | c  | g  | t   | c  | t  | t  | 120 |
| at    | at | cc | cc | ag | aa | aa  | aa  | at  | tg | at | gt | tc | tc | cc | cc | cc | cc | cc  | cc | cc | cc | 180 |
| tt    | ca | aa | at | g  | cc | cc  | cc  | cc  | cc | cc | cc | cc | cc | cc | cc | cc | cc | cc  | cc | cc | cc | 240 |
| ga    | tt | ca | aa | ac | cc | cc  | cc  | cc  | cc | cc | cc | cc | cc | cc | cc | cc | cc | cc  | cc | cc | cc | 300 |
| at    | at | gg | ac | cc | cc | cc  | cc  | cc  | cc | cc | cc | cc | cc | cc | cc | cc | cc | cc  | cc | cc | cc | 360 |
| ta    | c  | gg | cc | cc | cc | cc  | cc  | cc  | cc | cc | cc | cc | cc | cc | cc | cc | cc | cc  | cc | cc | cc | 420 |

4562516\_1  
atgtgttaagg tgtacagtga cccgcagccg cacatccagt ggctaaagca catcgaggtg 480  
aatgggagca agattggccc agacaacctg ctttatgtcc agatcttcaa gactgctgga 540  
gttaataccca ccgacaaaaga gatggaggtg cttcaactaa gaaatgtctc ctttgaggac 600  
gcaggggagt atacgtgctt ggcgggtaac tctatcgac tctccatca ctctgatgg 660  
ttgaccgttc tggaaagccct ggaagagagg cccgcagtga tgacccgtcc cctgtacctg 720  
gaggacaaaaa ctcacacatg cccaccgtgc ccagcacctg aactccctggg gggaccgtca 780  
gtcttcctct tccccccaaa acccaaggac accctcatga tctccggac ccctgaggtc 840  
acatgcgtgg tggtgacgt gagccacgaa gaccctgagg tcaagttcaa ctggtagtgc 900  
gacggcgtgg aggtgcataa tgccaaagaca aagccgcggg aggagcagta caacagcacg 960  
taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtagc 1020  
aagtgcagg tctccaacaa agccctccca gccccatcg agaaaaccat ctccaaagcc 1080  
aaaggcagc cccgagaacc acagggtgtac accctgcccc catccggga tgagctgacc 1140  
aagaaccagg tcagcctgac ctgcctggc aaaggcttct atcccaagcga catgcggcgtg 1200  
gagtggaga gcaatggca gccggagaac aactacaaga ccacgcctcc cgtgctggac 1260  
tccgacggct ctttcttcct ctacagcaag ctcaccgtgg acaagagcag gtggcagcag 1320  
ggaaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag 1380  
agccctccccc tgtctccggg taaaatga 1407

<210> 20  
<211> 1374  
<212> DNA  
<213> artificial sequence

<220>  
<223> Nucleotide sequence of 26# fused protein

<400> 20  
aaacctaacc ccgtagctcc atattggaca tccccagaaa agatggaaaa gaaattgcat 60  
gcagtgccgg ctgccaagac agtgaagttc aaatgcccccc ccagtggac cccaaacccc 120  
acactgcgct ggtgaaaaaa tggcazagaa ttcaaacctg accacagaat tggaggctac 180  
aaggtccggtt atgccacctg gagcatcata atggactctg tgggtccctc tgacaaggc 240  
aactacacct gcattgtgga gaatgagttac ggcagcatca accacacata ccagctggat 300  
gtcgtggagc ggtccccctca ccggcccatc ctgcaagcag ggttgcggc caacaaaaca 360  
gtggccctgg gtagcaacgt ggagttcatg tgtaagggtgt acagtgaccc gcagccgcac 420  
atccagtggc taaagcacat cgaggtgaat gggagcaaga ttggcccaaga caacctgcct 480  
tatgtccaga tcttgaagac tgctggagtt aataccaccc acaaagagat ggaggtgctt 540  
cacttaagaa atgtctccct tgaggacgca ggggagtata cgtgcttggc gggtaactct 600  
atcggactct cccatcactc tgcatggttg accgttctgg aagccctgga agagaggccg 660  
gcagtgtatga cctcgccccct gtacctggag gacaaaaactc acacatgccc accgtgcccc 720

4562516\_1

|             |             |            |             |            |             |      |
|-------------|-------------|------------|-------------|------------|-------------|------|
| gcacctgaac  | tcctgggggg  | accgtcagtc | ttccctttcc  | ccccaaaacc | caaggacacc  | 780  |
| ctcatgatct  | cccgacccc   | tgaggtcaca | tgcgtggtgg  | tggacgtgag | ccacgaagac  | 840  |
| cctgaggtca  | agttcaactg  | gtacgtggac | ggcgtggagg  | tgcataatgc | caagacaaag  | 900  |
| ccgcgggagg  | agcagtacaa  | cagcacgtac | cgtgtggtca  | gcgtcctcac | cgtcctgcac  | 960  |
| raggaactggc | tgaatggcaa  | ggagtacaag | tgcaggatct  | ccaacaaagc | cctcccaagcc | 1020 |
| cccatcgaga  | aaaccatctc  | caaagccaaa | gggcagcccc  | gagaaccaca | ggtgtacacc  | 1080 |
| ctgccccat   | cccggatga   | gctgaccaag | aaccaggatca | gcctgacctg | cctggtcaaa  | 1140 |
| ggcttctatc  | ccagcgacat  | cgccgtggag | tggagagaca  | atgggcagcc | ggagaacaac  | 1200 |
| tacaagacca  | cgccctccgt  | gctggactcc | gacggctcc   | tcttcctcta | cagcaagetc  | 1260 |
| accgtggaca  | agagcagggtg | gcagcagggg | aacgtcttct  | catgctccgt | gatgcatgag  | 1320 |
| gctctgcaca  | accactacac  | gcagaagagc | ctctccctgt  | ctccggtaa  | atga        | 1374 |

<210> 21  
 <211> 1356  
 <212> DNA  
 <213> Artificial sequence

<220>  
 <223> nucleotide sequence of 29# fused protein

|          |              |             |              |            |             |             |      |
|----------|--------------|-------------|--------------|------------|-------------|-------------|------|
| <400> 21 | ccatatttggaa | catccccaga  | aaagatggaa   | aagaaattgc | atgcagtgcc  | ggctgccaag  | 60   |
|          | acagtgaagt   | tcaaattcccc | ttcccaatgggg | accccaaacc | ccacactgct  | ctggttgaaa  | 120  |
|          | aatggcaaaag  | aattccaaacc | tgaccacaga   | attggaggct | acaaggatccg | ttatgccacc  | 180  |
|          | tggagcatca   | taatggactc  | tgtggtgc     | tctgacaagg | gcaactacac  | ctgcattgtg  | 240  |
|          | gagaatgagt   | acggcagcat  | caaccacaca   | taccagctgg | atgtcgtgga  | gcggtcccct  | 300  |
|          | caccggccca   | tcctgcaagc  | agggttgc     | gccaacaaaa | cagtggccct  | gggttagcaac | 360  |
|          | gtggagttca   | tgtgttaagg  | gtacagtgc    | ccgcagccgc | acatccagt   | gctaaagcac  | 420  |
|          | atcgaggtga   | atgggagcaa  | gattggccca   | gacaacctgc | cttatgtcca  | gatcttgaag  | 480  |
|          | actgtggag    | ttaataccac  | cgacaaagag   | atggaggtgc | ttcacttaag  | aatgtctcc   | 540  |
|          | tttgaggacg   | cagggagta   | tacgtgc      | gcggtaact  | ctatcgact   | ctcccatcac  | 600  |
|          | tctgcatggt   | tgaccgttct  | ggaagccctg   | gaagagaggc | cgccgtgtat  | gacctcgccc  | 660  |
|          | ctgtacctgg   | aggacaaaaac | tcacacatgc   | ccaccgtgcc | cagcacctga  | actcctgggg  | 720  |
|          | ggaccgtcag   | tcttcctctt  | cccccaaaaa   | cccaaggaca | ccctcatgat  | ctcccgacc   | 780  |
|          | cctgaggtca   | catgcgtgg   | ggtggacgtg   | agccacgaag | accctgaggt  | caagttcaac  | 840  |
|          | tggtaatgtgg  | acggcgtgga  | ggtgcataat   | gccaagacaa | agccgcggga  | ggagcagtac  | 900  |
|          | aacagcacgt   | accgtgtgg   | cagcgtcc     | accgtcctgc | accaggactg  | gctgaatggc  | 960  |
|          | aaggagtaca   | agtgcaggt   | ctccaaacaaa  | gcccctccag | cccccatg    | gaaaaccatc  | 1020 |
|          | tccaaagcca   | aagggcagcc  | ccgagaacca   | caggtgtaca | ccctgcccc   | atcccggtat  | 1080 |

4562516\_1  
gagctgacca agaaccaggc cagcctgacc tgcctggtca aaggcttcta tcccagcgac 1140  
atcgccgtgg agtgggagag caatggcag ccggagaaca actacaagac cacgcctccc 1200  
gtgctggact ccgacggctc cttcttcctc tacagcaagc tcaccgtgga caagagcagg 1260  
tggcagcagg ggaacgtctt ctcatgtcc gtgatgcattt aggtcttgca caaccactac 1320  
acgcagaaga gcctctccct gtctccgggt aatga 1356

<210> 22  
<211> 1341  
<212> DNA  
<213> artificial sequence

<220>  
<223> Nucleotide sequence of 8# fused protein

<400> 22  
ccagaaaaga tggaaaagaa attgcatgca gtgccggctg ccaagacagt gaagttcaaa 60  
tgcccttcca gtgggacccc aaaccccaaca ctgcgttgt tgaaaaatgg caaagaattc 120  
aaacctgacc acagaattgg aggctacaag gtccgttatg ccacctggag catcataatg 180  
gactctgtgg tgccctctga caagggcaac tacacctgca ttgtggagaa ttagtacggc 240  
agcatcaacc acacataacca gctggatgtc gtggagcggtt cccctcaccg gcccatcctg 300  
caagcagggt tgcccgccaa caaaacagtg gcccctggta gcaacgtgga gttcatgtgt 360  
aagggttaca gtgacccgca gcccacatc cagtggctaa agcacatcga ggtgaatggg 420  
agcaagattg gcccagacaa cctgccttat gtccagatct tgaagactgc tggagttaat 480  
accaccgaca aagagatgga ggtgcttcac ttaagaaatg tctccttga ggacgcaggg 540  
gagtatacgt gcttggcggg taactctatc ggactctccc atcactctgc atggttgacc 600  
gttctggaag ccctggaaga gaggccggca gtgatgacct cgcggctgtt cctggaggac 660  
aaaactcaca catgcccacc gtgcccagca cctgaactcc tggggggacc gtcagtcctc 720  
ctctttccccca caaaacccaa ggacaccctc atgatctccc ggacccctga ggtcacatgc 780  
gtggtggtgg acgtgagccca cgaagacccct gaggtcaagt tcaactggta cgtggacggc 840  
gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agtacaacag cacgtaccgt 900  
gtggtcagcg tcctcaccgt cctgcaccag gactggctga atggcaagga gtacaagtgc 960  
aagggtctcca acaaagccct cccagcccccc atcgagaaaaa ccattctccaa agccaaagg 1020  
cagccccgag aaccacaggt gtacaccctg ccccccattttt gggatgagct gaccaagaac 1080  
caggtcagcc tgacctgctt ggtcaaaaggc ttctatccca ggcacatcgc cgtggagtg 1140  
gagagcaatg ggcagccggca gaacaactac aagaccacgc ctccctgtgtt ggactccgac 1200  
ggctctttctt tcctctacag caagctcacc gtggacaaga gcagggtggca gcaggggaac 1260  
gtcttctcat gtcctgtat gcatgaggct ctgcacaaacc actacacgca gaagacccctc 1320  
tccctgtctc cgggtaaaatg a 1341

<210> 23

## 4562516\_1

|                                                                 |  |    |
|-----------------------------------------------------------------|--|----|
| <211> 78                                                        |  |    |
| <212> DNA                                                       |  |    |
| <213> Homo sapiens                                              |  |    |
| <400> 23                                                        |  |    |
| atggtcagct actgggacac cggggctctg ctgtgcgcgc tgctcagctg tctgcttc |  | 60 |
| acaggatcta gttccgga                                             |  | 78 |
|                                                                 |  |    |
| <210> 24                                                        |  |    |
| <211> 32                                                        |  |    |
| <212> DNA                                                       |  |    |
| <213> Artificial sequence                                       |  |    |
| <220>                                                           |  |    |
| <223> 19# Fw primer                                             |  |    |
| <400> 24                                                        |  |    |
| tagttccgga aggccgtccc cgaccttgcc tg                             |  | 32 |
|                                                                 |  |    |
| <210> 25                                                        |  |    |
| <211> 32                                                        |  |    |
| <212> DNA                                                       |  |    |
| <213> Artificial sequence                                       |  |    |
| <220>                                                           |  |    |
| <223> 13# Fw primer                                             |  |    |
| <400> 25                                                        |  |    |
| tagttccgga aaaaatcgca cccgcatacac ag                            |  | 32 |
|                                                                 |  |    |
| <210> 26                                                        |  |    |
| <211> 31                                                        |  |    |
| <212> DNA                                                       |  |    |
| <213> Artificial sequence                                       |  |    |
| <220>                                                           |  |    |
| <223> 22# Fw primer                                             |  |    |
| <400> 26                                                        |  |    |
| tagttccgga gtaaccagca gccccctcggg c                             |  | 31 |
|                                                                 |  |    |
| <210> 27                                                        |  |    |
| <211> 33                                                        |  |    |
| <212> DNA                                                       |  |    |
| <213> Artificial sequence                                       |  |    |
| <220>                                                           |  |    |
| <223> 23# Fw primer                                             |  |    |
| <400> 27                                                        |  |    |
| tagttccgga tcctcttcag aggagaaaaga aac                           |  | 33 |
|                                                                 |  |    |
| <210> 28                                                        |  |    |
| <211> 32                                                        |  |    |
| <212> DNA                                                       |  |    |
| <213> Artificial sequence                                       |  |    |
| <220>                                                           |  |    |
| <223> 26# Fw primer                                             |  |    |
| <400> 28                                                        |  |    |
| tagttccgga aaacctaacc ccgtagctcc at                             |  | 32 |

|                                          |  |    |
|------------------------------------------|--|----|
| <210> 29                                 |  |    |
| <211> 34                                 |  |    |
| <212> DNA                                |  |    |
| <213> Artificial sequence                |  |    |
| <220>                                    |  |    |
| <223> 29# Fw primer                      |  |    |
| <400> 29                                 |  |    |
| tagttccgga ccatattgga catccccaga aaag    |  | 34 |
| <210> 30                                 |  |    |
| <211> 36                                 |  |    |
| <212> DNA                                |  |    |
| <213> Artificial sequence                |  |    |
| <220>                                    |  |    |
| <223> 8# Fw primer                       |  |    |
| <400> 30                                 |  |    |
| ctagctccgg accagaaaaag atggaaaaga aattgc |  | 36 |
| <210> 31                                 |  |    |
| <211> 30                                 |  |    |
| <212> DNA                                |  |    |
| <213> Artificial sequence                |  |    |
| <220>                                    |  |    |
| <223> FGFR1Rev primer                    |  |    |
| <400> 31                                 |  |    |
| gttttgtcct ccaggtacag gggcgaggtc         |  | 30 |
| <210> 32                                 |  |    |
| <211> 30                                 |  |    |
| <212> DNA                                |  |    |
| <213> Artificial sequence                |  |    |
| <220>                                    |  |    |
| <223> FcFor primer                       |  |    |
| <400> 32                                 |  |    |
| ctgtacctgg aggacaaaaac tcacacatgc        |  | 30 |
| <210> 33                                 |  |    |
| <211> 30                                 |  |    |
| <212> DNA                                |  |    |
| <213> Artificial sequence                |  |    |
| <220>                                    |  |    |
| <223> FcRev primer                       |  |    |
| <400> 33                                 |  |    |
| gatatctgca gtcatttacc cggagacagg         |  | 30 |