

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
21 June 2007 (21.06.2007)

PCT

(10) International Publication Number
WO 2007/070348 A1(51) International Patent Classification:
B29C 33/00 (2006.01) B29D 11/00 (2006.01)

(74) Agents: JOHNSON, Philip, S. et al.; One Johnson & Johnson Plaza, New Brunswick, NJ 08933 (US).

(21) International Application Number:
PCT/US2006/046754

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
7 December 2006 (07.12.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/299,641 12 December 2005 (12.12.2005) US

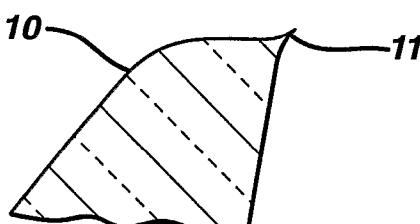
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): JOHNSON & JOHNSON VISION CARE, INC. [US/US]; 7500 Centurion Parkway, Suite 100, Jacksonville, FL 32256 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DUBEY, Dharmesh, K. [US/US]; 9087 Starpass Drive, Jacksonville, FL 32256 (US). SONG, Xu [CN/US]; 1817 Forest Glen Way, St. Augustine, FL 32092 (US). SCHLAGE, Mark, E. [US/US]; 15445 Cape Drive North, Jacksonville, FL 32226 (US).

Published:


— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2007/070348 A1

(54) Title: MOLDS FOR USE IN CONTACT LENS PRODUCTION

(57) Abstract: The invention provides molds useful in the production of contact lenses having seamless edges and in which molds movement of one mold half in relation to the other mold half is decreased. The results are attained by providing mold halves with shoulder stops and seam-matching features.

MOLDS FOR USE IN CONTACT LENS PRODUCTION

5

Field of the Invention

The invention relates to molds useful in the manufacture of contact lenses. In particular, the molds of the invention provide for the production of lenses with seamless edges.

10

Background of the Invention

Methods and molds useful in the manufacture of contact lenses are well known. For example, in United States Patent No. 5,540,410, incorporated herein in its entirety by reference, are disclosed molds and their use in contact lens manufacture. However, the known lens molds are disadvantageous in that they do not permit production of lens edges without seams. By "seam" is meant a line or demarcation formed by excess lens material. Referring to the drawings, in Figure 1 is illustrated a close-up cross-sectional side view of lens edge 10 that has a seam 11. The presence of such seams is disadvantageous in that the seam may contact the conjunctiva and cause surface roughness, discomfort, or both. Additionally, known lens molds are disadvantageous in that they permit movement of one mold half of a mold assembly in relation to the other mold half. This movement results in the lens edge shape varying from one side of the lens to the other. For example, as shown in Figure 2a is one lens edge of one side of a lens and has a different shape than that of the lens edge of the opposite side of the same lens shown Figure 2b.

25

Brief Description of the Drawings

FIG. 1 is a close-up, cross-sectional side view of a seamed lens edge.

FIG. 2a is a close-up, cross-sectional side view of a first lens edge of a first side of a lens.

30 FIG. 2b is a close-up, cross-sectional side view of a second lens edge of a second side of the lens of Figure 2.

Figure 3 is a top elevational view of a front mold half of a mold of the invention.

FIG. 3a is a cross-sectional view of the mold half of FIG. 3 along I-I.

Figure 4 is a top elevational view of a back mold half of a mold of the
5 invention.

FIG. 4a is a cross-sectional view of the mold half of FIG. 4 along II-II.

FIG. 5 is a close-up, cross sectional view of a mold assembly that is the front
mold half of FIG. 3 fitted with the back mold half of Figure 4.

FIG. 5a is a close-up, cross-sectional view of an area of the mold of FIG. 5.

10 FIG. 6a, 6b and 6c are close-up, cross-sectional views of an area of an
embodiment of a mold of the invention.

Detailed Description of the Invention and Preferred Embodiments

15 The molds of the invention permit formation of a contact lens having a
seamless edge. Additionally, mold half movement is decreased in the molds of the
invention resulting in the production of lenses with reduced edge variation. It is a
discovery of the invention that these results can be attained by
providing a mold with a shoulder stop and a seam-matching feature.

20 In one embodiment, the invention provides a mold for production of a
contact lens comprising, consisting essentially of, and consisting of a front curve
mold half and a back curve mold half wherein each of the mold halves has a
shoulder stop and a conical seam.

25 Referring to Figures 3, 3a, and 5a, front mold half 102 is shown with convex
surface 113 spaced generally parallel and apart from concave surface 110 and an
essentially uniplanar annular flange 106. Flange 106 is integral with guidewall 125
and extends radially outwardly from the surfaces 110 and 113 in a plane normal, or
perpendicular, to the axis of symmetry of the concave surface 110. The front mold
30 conical seam 112 is continuous with shoulder 114, which surface is continuous with
guidewall 125. Concave surface 110 has the dimensions of the front curve of the
unswelled lens to be cast in the mold and is sufficiently smooth so that the contact

lens surface formed is of optically acceptable quality. Convex surface 113 need not have a surface suitable to form an optical quality surface.

5 As shown on Figures 4, 4a, and 5a, back mold half 103 has spaced surfaces 109 and 115 and an essentially uniplanar annular flange 105 extending radially outwardly therefrom in a plane normal to the axis of convex surface 109. Back mold half 103 defines a central curved section with an optical quality convex surface 109 and a generally parallel concave surface 115. Convex surface 109 has the
10 dimensions of the unswelled back surface curve of the lens to be cast and is sufficiently smooth so that the lens surface formed is of optically acceptable quality. Concave surface 115 of back mold half 103 need not have surfaces suitable to form optical quality surfaces. The back mold half conical seam 117 is continuous with shoulder 118. Outwardly tapering guidewall 119 is continuous with and extends
15 upwardly from shoulder 118. Flange 105 is continuous with guidewall 119 and extends radially outwardly from surfaces 115 and 109. Either or both of the mold halves of the invention may be constructed to include mold tabs, as shown in U. S. Patent No. 5,540,410.

20 In Figures 5 and 5a are illustrated various views of the two, complementary mold halves, front mold half 102 and back mold half 103, assembled to form a mold. The front mold half 102 defines a central, curved section with an optical quality concave surface 110. Concave surface 110 has a circumferential, well-defined edge 111 extending therearound. As shown in Figure 5a, the circular edge 111, in
25 conjunction with back surface circumferential edge 120, forms a well defined and uniform plastic radius parting line for the subsequently molded contact lens. Edge 111 typically has a curvature ranging from about 3 to 45 micrometers or less, preferably about 5 to about 30 micrometers, and the surfaces defining the edge may form an angle in the range of about 75 to about 90 deg.

As shown in Figure 5a, continuous with and extending curvedly upwardly from circular edge 111 toward shoulder 114 is front mold half conical seam 112. Conical seam 112 extends curvedly upwardly from edge 111 at an angle of about 75 5 to about 85 degrees above a plane normal, or perpendicular, to the axis of symmetry of concave surface 110. Shoulder 114 is continuous with and extends radially outwardly from conical seam 112. Extending upwardly from shoulder 114 is guidewall 125. Guidewall 125 extends from shoulder 114 at an angle of about 45 degrees to about 89 degrees above a plane normal, or perpendicular, to the axis of 10 symmetry of concave surface 110.

Also as shown in Figure 5a, back mold half 103 has back mold half conical seam 117 extending upwardly from circumferential edge 120 at an angle of about 75 to about 85 degrees above a plane normal, or perpendicular, to the axis of symmetry 15 of convex surface 109. In all embodiments of the mold of the invention, the front and back mold halves' conical seams are complementarily shaped so that the surfaces fit securely together to minimize or prevent side-to-side displacement of the mold halves. Shoulder 118 is continuous with and extends radially outwardly from conical seam 117. Back mold half guidewall 119 extends upwardly from shoulder 20 118 at angle of about 45 degrees to about 89 degrees.

The length of the conical seams 112 and 117 may be about 50 μ to about 500 μ . The conical seams 117 and 112 serve to minimize side-to-side movement of the mold halves. Additionally, when pressure is applied to back mold half 103 so 25 that it presses into front mold half 102, excess lens material will be forced from the lens cavity in the direction of shoulders 114 and 118. One ordinarily skilled in the art will recognize that the precise amount of pressure used will depend upon the mold materials used, with higher modulus materials requiring the application of more pressure than lower modulus materials. Preferably, the back mold half is 30 oversized in it diameter about 1 μ to about 100 μ when compared to the front mold half. This oversizing permits deflation of the front mold half as pressure is applied

to the back mold half facilitating movement of the excess lens material away from the lens cavity.

5 Shoulders 114 and 118 are complementarily shaped with respect to each other and delineate the maximum travel distance over which the front and back mold half may move. The length of each of the shoulders is about 50 microns to about 1000 microns.

10 Guidewalls 119 and 125 are optionally, but preferably, included in the respective mold halves. The guidewalls may be about 1 μ to about 100 μ in length. The guidewalls ensure that the mold halves are assembled easily without the need for critical alignment and tolerancing needs for the mold assembly machines.

15 In Figures 6a, 6b, and 6c is depicted the way in which the oversizing of the back mold half in relation to the front mold half facilitates interlocking of the mold halves. After the mold halves are contacted, as shown in Figure 6a, pressure is applied to the back mold half serving to deflect the lower portion of conical seam 112 of the front mold half in an upward direction as shown in Figure 6b. As 20 pressure continues to be applied onto the back mold half, back mold half circumferential edge 120 is driven into the front mold half.

25 The mold halves of the invention may be used in producing contact lenses by polymerization of a polymerizable composition. Preferably, the contact lenses produced using the mold assemblies formed from the mold halves of the invention are unhydrated lenses that may be made ready to wear by hydrating, or swelling, the lenses by any method known in the art. Front mold half 102 and back mold half 103 may be formed of any suitable material including, without limitation, glass or a thermoplastic polymer. Preferably, the molds are formed from a material 30 that is sufficiently transparent to ultra-violet light to allow irradiation therethrough to

promote polymerization of a contact lens material, preferably a soft contact lens material. Preferred thermoplastic materials for forming the mold halves of the 5 invention are polystyrene and polypropylene. Each mold half may be formed from the same or a different material than the other mold half. Production of the mold halves may be accomplished by any convenient method, but preferably as set forth in U.S. Patent No. 5,540,410.

10 In the mold of the invention, more preferably the material used for formation of the back mold half 103 is harder, or less compressible, than that of front mold half 102. Given the configuration of the mold halves of the invention, the use of a softer front mold half material permits the back surface circumferential edge 120 to impinge, or flatten, the front surface circumferential edge 111 when pressure is 15 applied to the mold. This permits the removal of excess lens material from mold cavity at the parting line of the front and back mold halves. Alternatively, a back mold half that is softer than the front may be used resulting in front surface circumferential edge 111 impinging on back edge 120.

20 In all embodiments, the front and the back mold halves are designed so as to permit rapid transmission of heat therethrough and yet be rigid enough to withstand the prying forces used to separate the mold halves during demolding. The mold of the invention may be used in any method for the manufacture of contact lenses. Generally, in the preferred method, a quantity of polymerizable composition is 25 placed onto the concave surface 110 of front mold half 102, preferably by injection. Back mold half 103 with convex surface 109 facing toward front mold half 102 concave surface 110 is placed onto the polymerizable composition. Preferably, the volume of the polymerizable composition used is greater than the volume of the cavity formed by the two mold halves.

Once mold half 103 is placed onto front mold half 102, the mold halves preferably are pressed together using a force of about 1 to about 5 pounds. The force may be applied to either or both flanges 105 and 106. The force may be

5 applied by any convenient means including, without limitation, using air pressure, mechanical means, such as a spring, or a combination thereof. In one embodiment, a deposition nozzle that is flat-shaped to lay across the flange or one that is a combination of cone and flat-shaped to fit partially into mold half 102 or 103 is used. The force is maintained throughout the polymerization of the polymerizable

10 composition.

The polymerizable composition is preferably polymerized by exposure to ultra-violet radiation. Following completion of polymerization, the mold formed by front and back mold halves 102 and 103, respectively, is disassembled and the cast

15 lens undergoes additional processing.

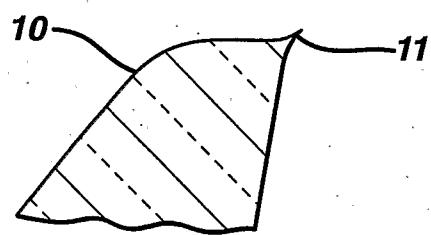
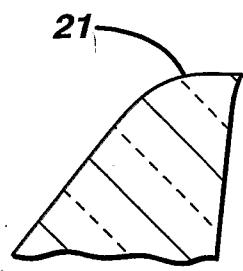
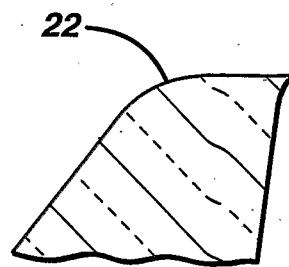
What is claimed is:

5 1. A mold for the production of a contact lens, comprising a front mold half and a back mold wherein each of the mold halves comprises a shoulder and a conical seam.

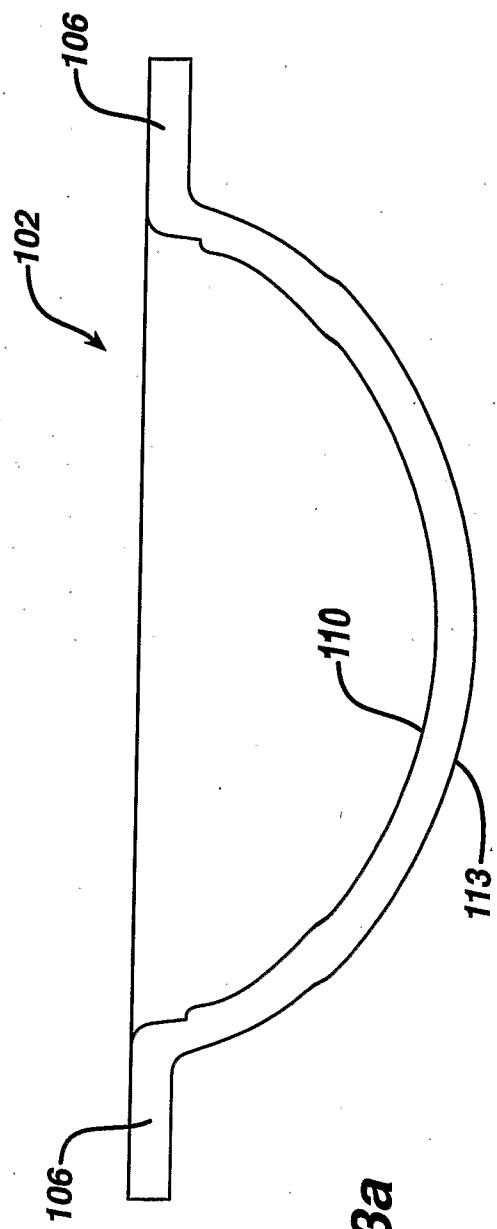
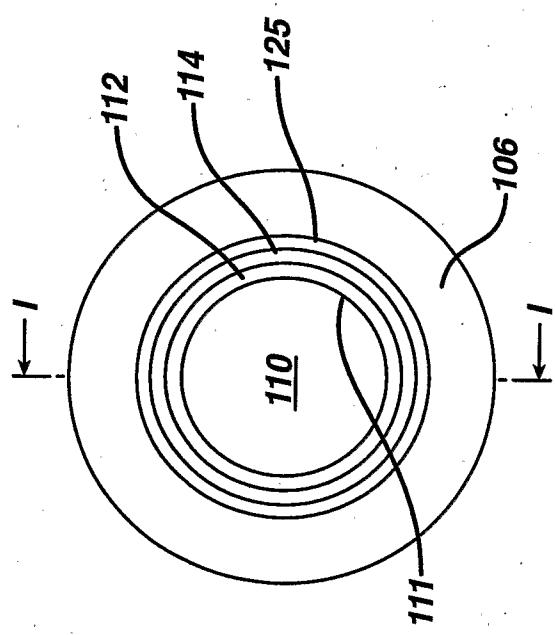
10 2. A mold for the production of a contact lens, comprising a front mold half and a back mold half wherein:

 the front mold half comprises a first article having a central curved section with a concave surface, a convex surface and a circular circumferential edge, the central section of the concave surface suitable for imparting a curvature to the front curve of a contact lens;

15 the first article also having an axis of symmetry about the concave surface, a first conical seam continuous with and extending curvedly upwardly from the circular edge in a plane about 75 to about 85 degrees above a plane normal to the concave surface axis of symmetry, a first shoulder continuous with and extending radially outwardly from the first conical seam, and an annular flange integral with




20 and surrounding the first shoulder and extending radially outwardly from the concave and convex surfaces in a plane normal to the concave surface axis;

 the back mold half comprises a second article having a central curved section with a concave surface and a convex surface, the central section of the convex surface suitable for imparting a curvature to the back curve of a contact lens; and



25 the second article also having an axis of symmetry about the convex surface, a circumferential edge surrounding the convex surface, a second conical seam extending upwardly from the circumferential edge in a plane about 75 to about 85 degrees above the convex surface axis of symmetry, a second shoulder continuous with and extending radially outwardly from the second conical seam, and an annular flange integral with, surrounding and extending radially outwardly from the concave and convex surfaces in a plane normal to the convex surface axis.

3. The mold of claim 2, wherein each of the front and back mold halves further comprises a guidewall extending upwardly from the first and second shoulder, respectively, the guidewall for the front mold half extending at an angle of about 45 to 89 degrees above a plane normal to the concave surface axis of symmetry and the guidewall for the back mold half extending at an angle of about 45 to 89 degrees above a plane normal to the convex surface axis of symmetry.
4. The mold of claim 1, 2 or 3 wherein the front and back mold halves comprise a thermoplastic polymer transparent to ultra-violet light.
5. The mold of claim 4, wherein the thermoplastic polymer is polypropylene or polystyrene.
- 15 6. The mold of claim 5, wherein one mold half comprises polystyrene and the other mold half comprises polypropylene.
7. The mold of claim 5, wherein the front mold half is harder than the back mold half.
- 20 8. The mold of claim 5, wherein the back mold half is harder than the front mold half.
9. A method for producing a contact lens comprising the steps of:
 - 25 a.) providing a mold according to claim 1, 2 or 3;
 - b.) injecting a polymerizable composition into the mold; and
 - c.) polymerizing the polymerizable composition.
10. The method of claim 9, further comprising the step of applying pressure, simultaneously with step c.), to the first article annular flange, the second article annular flange, or both.

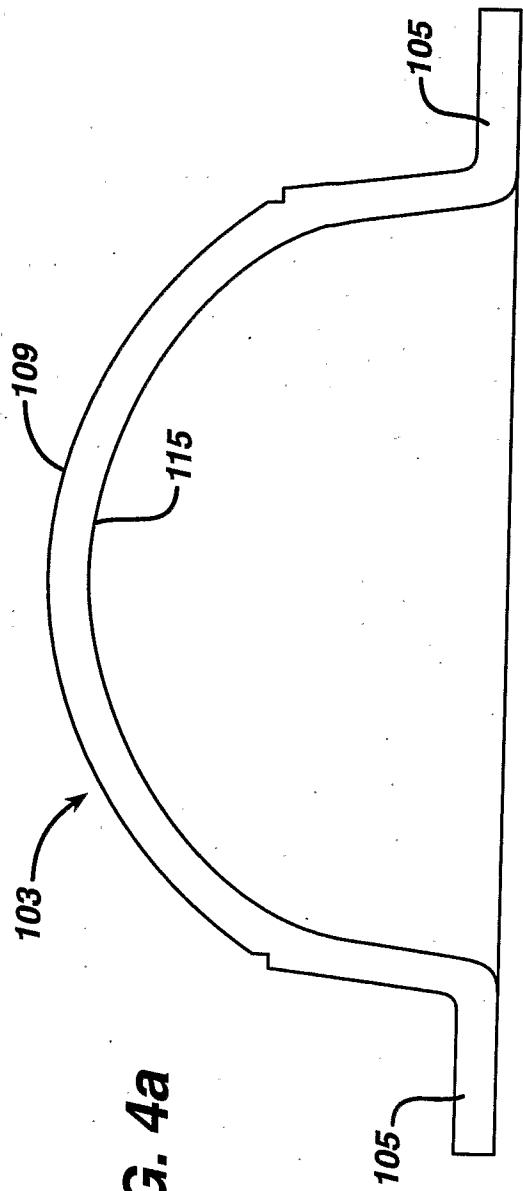
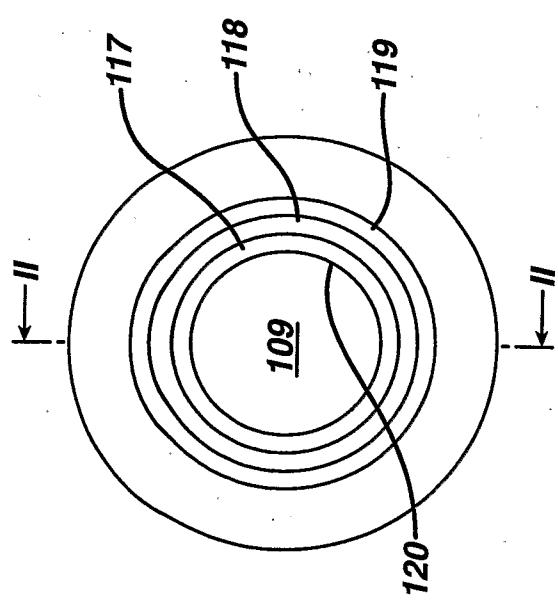
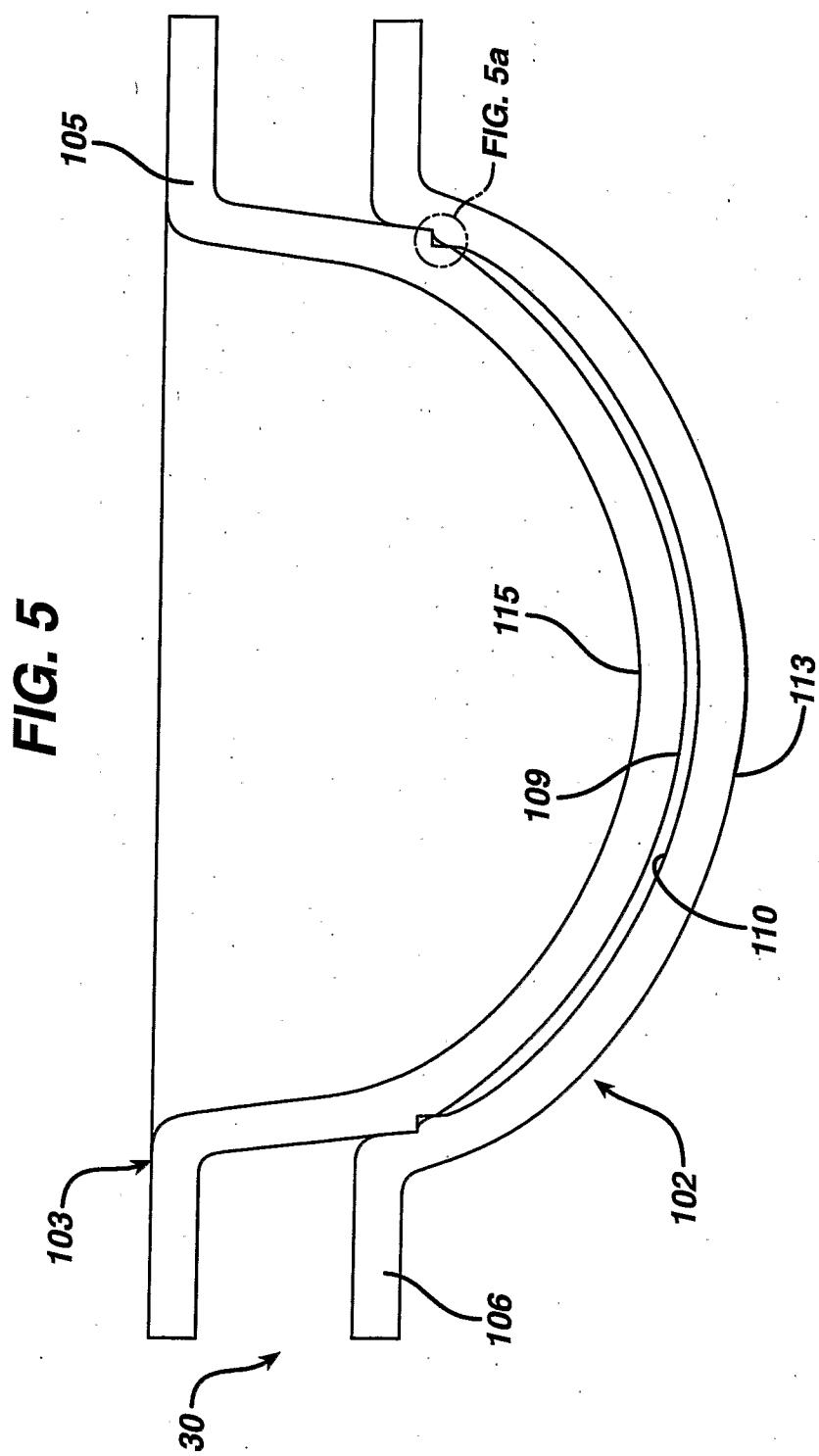
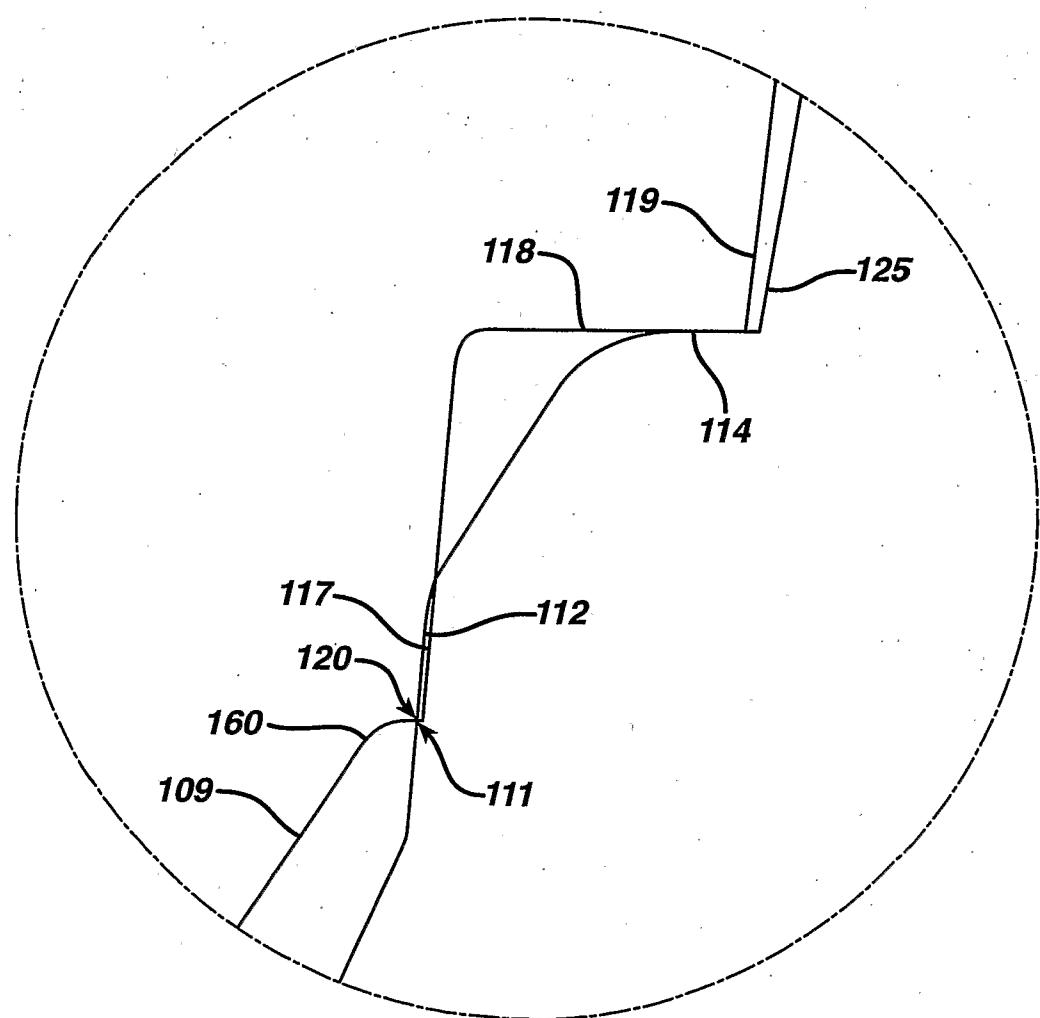
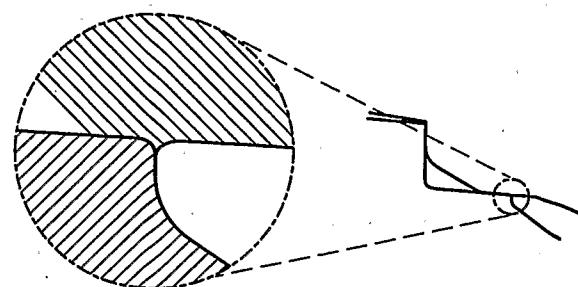
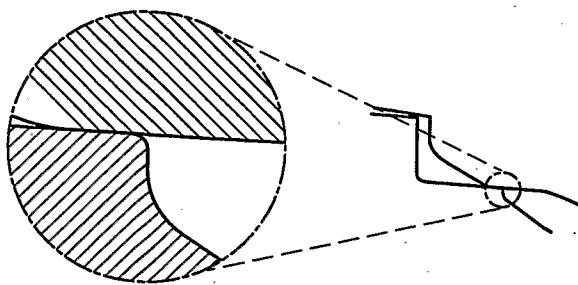
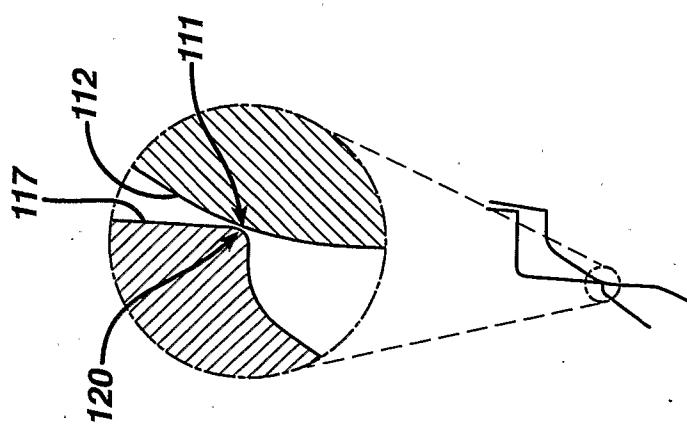


1/6

FIG. 1**FIG. 2a****FIG. 2b**


2/6


3/6




4/6

5/6

FIG. 5a

6/6

FIG. 6c**FIG. 6b****FIG. 6a**

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/046754

A. CLASSIFICATION OF SUBJECT MATTER
INV. B29C33/00 B29D11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B29C B29D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01/42001 A (JOHNSON & JOHNSON VISION CARE [US]) 14 June 2001 (2001-06-14) figure 5 page 6, line 1 – line 9 page 6, line 18 – page 8, line 6 -----	1-10
A	EP 1 040 907 A2 (OCULAR SCIENCES INC [US]) 4 October 2000 (2000-10-04) paragraph [0013] – paragraph [0015]; figure 2 -----	1-10
A	GB 2 329 356 A (MCCALL WILLIAM R [GB]) 24 March 1999 (1999-03-24) page 4, line 7 – line 13; claim 2; figure 2 ----- -/-	1-10

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

16 March 2007

Date of mailing of the international search report

23/03/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Zattoni, Federico

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/046754

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 407 866 A1 (MENICON CO LTD [JP]) 14 April 2004 (2004-04-14) paragraph [0031] paragraph [0034] paragraph [0035] paragraph [0050] - paragraph [0054]; figure 6 -----	1-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/046754

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 0142001	A 14-06-2001	AR	028883 A1	28-05-2003
		AU	1801801 A	18-06-2001
		BR	0008444 A	16-10-2001
		CA	2362668 A1	14-06-2001
		CN	1352595 A	05-06-2002
		EP	1152883 A1	14-11-2001
		JP	2003516247 T	13-05-2003
		TW	505560 B	11-10-2002
EP 1040907	A2 04-10-2000	AT	256006 T	15-12-2003
		DE	60007016 D1	22-01-2004
		DE	60007016 T2	28-10-2004
		US	6405993 B1	18-06-2002
GB 2329356	A 24-03-1999	NONE		
EP 1407866	A1 14-04-2004	WO	03002322 A1	09-01-2003
		JP	2003011139 A	15-01-2003
		US	2004191353 A1	30-09-2004