wo 2011/084257 A2 IO 0000 O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 11NN A0 00100 D 0 0 0
ernational Bureau S,/ ‘ 0 |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
14 July 2011 (14.07.2011) WO 2011/084257 A2

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/44 (2006.01) GO6F 15/17 (2006.01) kind of national protection available): AE, AG, AL, AM,
(21) International Application Number: ég’ éﬁ’ ég’ CAI\ZI, CBS ? CBRB’ CBI(J}, g;l’ DB]IE{ ? DBI\(V ’];313[{ ’]];é’
PCT/US2010/057871 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
23 November 2010 (23.11.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

12/640.272 17 December 2009 (17.12.2009) ys (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): MI- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
CROSOFT CORPORATION; One Microsoft Way, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Redmond, Washington 98052-6399 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

(72) Imventors: OSHINS, Jacob; c/o Microsoft Corporation, LV, MC., MK, MT, NL. NO, PL, PT. RO, RS, SE. SL SK.

LCA - Interganonal Patents, One Microsoft Way, Refl- SM. TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ.
mond, Washington 98052-6399 (US). GREEN, Dustin GW, ML, MR, NE, SN, TD, TG)

L.; c/lo Microsoft Corporation, LCA - International T T T ’

Patents, One Microsoft Way, Redmond, Washington Declarations under Rule 4.17:

98052-6399 (US).

[Continued on next page]

(54) Title: VIRTUAL STORAGE TARGET OFFLOAD TECHNIQUES

(57) Abstract: A virtual machine storage service can be use a
Child Partition 248 unique network identifier and a SR-IOV compliant device can be
used to transport I/O between a virtual machine and the virtual ma-

602 Virtual Machine

™ Storage Service 220 Guest OS chine storage service. The virtual machine storage service can be of-
floaded to a child partition or migrated to another physical machine
1 along with the unique network identifier.
604 Storage
Virtualization
Client

406 Virtual
Function

A

402 SR-I0V adapter [«

Y

606 Physical Storage

FIG. 6

WO 2011/084257 A2 I 0000) 00 T A A A

as to applicant’s entitlement to apply for and be granted Published:
a patent (Rule 4.17(i1)) — without international search report and to be republished

as to the applicant's entitlement to claim the priority of upon receipt of that report (Rule 48.2(g))

the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

VIRTUAL STORAGE TARGET OFFLOAD TECHNIQUES

BACKGROUND

[0001] Virtual machine technology can be used to package up a workload and
move it in a datacenter. This ability to move a workload from one physical host to another
is a tremendous benefit for users because it allows for dynamic machine consolidation
which leads to much lower hardware and administrative costs. Virtual machines typically
access storage through a module that handles storage virtualization located within a
hypervisor, a management partition or a combination thereof. In this model virtual
machines typically send storage I/O requests to the module via a software communication
path such as an inter-partition communication bus like the example partition bus described
in U.S. Application No. 11/128,647 entitled “Partition Bus,” the contents of which are
herein incorporated by reference in their entirety. Communicating between the virtual
machine and the hypervisor (or management partition) incurs a CPU cycle cost due to
running the communication path and any context switches that may occur when
transporting messages. Accordingly, techniques for increasing the efficiency of handling

I/0 requests by decreasing CPU costs are desirable.

SUMMARY

[0002] An example embodiment of the present disclosure describes a method. In
this example, the method includes, but is not limited to effectuating a migratable storage
service, wherein the migratable storage service is configured to manage virtual hard disk
input/output requests for a child partition, wherein the migratable storage service is
assigned a unique network identifier for a network; and configuring the migratable storage
service as a storage target in a network. In addition to the foregoing, other aspects are
described in the claims, drawings, and text forming a part of the present disclosure.

[0003] An example embodiment of the present disclosure describes a method. In
this example, the method includes, but is not limited to attaching a first unique network
identifier for a network adapter to a storage service configured to manage virtual hard
drive disk input/output requests for a child partition; and attaching a virtual function

effectuated by the network adapter to the child partition, wherein the virtual function

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

includes a second unique network identifier. In addition to the foregoing, other aspects are
described in the claims, drawings, and text forming a part of the present disclosure.

[0004] An example embodiment of the present disclosure describes a method. In
this example, the method includes, but is not limited to executing a storage service in a
child partition, wherein the storage service is configured to manage virtual hard drive disk
input/output requests for a second child partition, wherein the storage device is assigned a
unique network identifier in a network. In addition to the foregoing, other aspects are
described in the claims, drawings, and text forming a part of the present disclosure.

[0005] It can be appreciated by one of skill in the art that one or more various
aspects of the disclosure may include but are not limited to circuitry and/or programming
for effecting the herein-referenced aspects of the present disclosure; the circuitry and/or
programming can be virtually any combination of hardware, software, and/or firmware
configured to effect the herein-referenced aspects depending upon the design choices of
the system designer.

[0006] The foregoing is a summary and thus contains, by necessity,
simplifications, generalizations and omissions of detail. Those skilled in the art will
appreciate that the summary is illustrative only and is not intended to be in any way

limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 depicts an example computer system wherein aspects of the present
disclosure can be implemented.

[0008] FIG. 2 depicts an operational environment for practicing aspects of the
present disclosure.

[0009] FIG. 3 depicts an operational environment for practicing aspects of the
present disclosure.

[0010] FIG. 4 illustrates a computer system including a SR-IOV compliant
network device.

[0011] FIG. 5 illustrates a relationship between memory in a virtualized
environment.

[0012] FIG. 6 depicts an embodiment of the present disclosure.

[0013] FIG. 7 depicts an operational environment for illustrating aspects of the

present disclosure.

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

[0014] FIG. 8 depicts operational procedure for practicing aspects of the present
disclosure.

[0015] FIG. 9 depicts an alternative embodiment of the operational procedure of
FIG. 8.

[0016] FIG. 10 depicts operational procedure for practicing aspects of the present
disclosure.

[0017] FIG. 11 depicts an alternative embodiment of the operational procedure of
FIG. 10.

[0018] FIG. 12 depicts operational procedure for practicing aspects of the present
disclosure.

[0019] FIG. 13 depicts an alternative embodiment of the operational procedure of
FIG. 12.

DETAILED DESCRIPTION

[0020] Embodiments may execute on one or more computer systems. FIG. 1 and
the following discussion are intended to provide a brief general description of a suitable
computing environment in which the disclosure may be implemented.

[0021] The term circuitry used throughout the disclosure can include hardware
components such as hardware interrupt controllers, hard drives, network adaptors,
graphics processors, hardware based video/audio codecs, and the firmware used to operate
such hardware. The term circuitry can also include microprocessors, application specific
integrated circuits, and/or one or more logical processors, e.g., one or more cores of a
multi-core general processing unit configured by firmware and/or software. Logical
processor(s) can be configured by instructions embodying logic operable to perform
function(s) that are loaded from memory, ¢.g., RAM, ROM, firmware, and/or mass
storage. In an example embodiment where circuitry includes a combination of hardware
and software an implementer may write source code embodying logic that is subsequently
compiled into machine readable code that can be executed by a logical processor. Since
one skilled in the art can appreciate that the state of the art has evolved to a point where
there is little difference between hardware implemented functions or software
implemented functions, the selection of hardware versus software to effectuate herein
described functions is merely a design choice. Put another way, since one of skill in the

art can appreciate that a software process can be transformed into an equivalent hardware

3

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

structure, and a hardware structure can itself be transformed into an equivalent software
process, the selection of a hardware implementation versus a software implementation is
left to an implementer.

[0022] Referring now to FIG. 1, an exemplary computing system 100 is depicted.
Computer system 100 can include a logical processor 102, e.g., a hyperthread of an
execution core. While one logical processor 102 is illustrated, in other embodiments
computer system 100 may have multiple logical processors, e.g., multiple execution cores
per processor substrate and/or multiple processor substrates that could each have multiple
execution cores. As shown by the figure, various computer readable storage media 110
can be interconnected by one or more system busses which couples various system
components to the logical processor 102. The system buses may be any of several types of
bus structures including a memory bus or memory controller, a peripheral bus, and a local
bus using any of a variety of bus architectures. In example embodiments the computer
readable storage media 110 can include for example, random access memory (RAM) 104,
storage device 106, e.g., electromechanical hard drive, solid state hard drive, etc.,
firmware 108, e.g., FLASH RAM or ROM, and removable storage devices 118 such as,
for example, CD-ROMs, floppy disks, DVDs, FLASH drives, external storage devices,
etc. It should be appreciated by those skilled in the art that other types of computer
readable storage media can be used such as magnetic cassettes, flash memory cards, digital
video disks, Bernoulli cartridges.

[0023] The computer readable storage media 110 can provide non volatile and
volatile storage of processor executable instructions 122, data structures, program modules
and other data for computer 100. A basic input/output system (BIOS) 120, containing the
basic routines that help to transfer information between elements within the computer
system 100 during start up can be stored in firmware 108. A number of programs may be
stored on firmware 108, storage device 106, RAM 104, and/or removable storage devices
118, and executed by logical processor 102 including an operating system and/or
application programs.

[0024] Commands and information may be received by computer 100 through
input devices 116 which can include, but are not limited to, a keyboard and pointing
device. Other input devices may include a microphone, joystick, game pad, scanner or the
like. These and other input devices can be connected to the logical processor 102 through
a serial port interface that is coupled to the system bus, and are often connected by other

interfaces, such universal serial bus ports (USB). A display or other type of display device
4

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

can also be connected to the system bus via an interface, such as a video adapter which
can be part of, or connected to, a graphics processor 112. In addition to the display,
computers typically include other peripheral output devices (not shown), such as speakers
and printers. The exemplary system of FIG. 1 can also include a host adapter, Small
Computer System Interface (SCSI) bus, and an external storage device connected to the
SCSI bus.

[0025] Computer system 100 may operate in a networked environment using
logical connections to remote computers. The remote computer may be another computer,
a server, a router, a network PC, a peer device or other common network node, and
typically can include many or all of the elements described above relative to computer
system 100.

[0026] When used in a LAN or WAN networking environment, computer system
100 can be connected to the LAN or WAN through a network interface card 114. The
NIC 114, which may be internal or external, can be connected to the logical processor. In
a networked environment, program modules depicted relative to the computer system 100,
or portions thereof, may be stored in the remote memory storage device. It will be
appreciated that the network connections described here are exemplary and other means of
establishing a communications link between the computers may be used. Moreover, while
it is envisioned that numerous embodiments of the present disclosure are particularly well-
suited for computerized systems, nothing in this document is intended to limit the
disclosure to such embodiments.

[0027] Referring now to FIG. 2 and 3, they depict high level block diagrams of
computer systems 200 and 300 configured to effectuate virtual machines. In example
embodiments of the present disclosure computer systems 200 and 300 can include
elements described in FIG. 1 and components operable to effectuate virtual machines.
Turning to FIG, 2, one such component is a hypervisor 202 that may also be referred to in
the art as a virtual machine monitor. The hypervisor 202 in the depicted embodiment can
be configured to control and arbitrate access to the hardware of computer system 100.
Broadly, the hypervisor 202 can generate execution environments called partitions, e.g.,
virtual machines. In embodiments a child partition can be considered the basic unit of
isolation supported by the hypervisor 202. That is, each child partition (246 and 248) can
be mapped to a set of hardware resources, e.g., memory, devices, logical processor cycles,
etc., that is under control of the hypervisor 202 and/or the parent partition and hypervisor

202 can isolate processes in one partition from accessing another partition’s resources,

5

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

e.g., a guest operating system in one partition may be isolated from the memory of another
partition. In embodiments the hypervisor 202 can be a stand-alone software product, a
part of an operating system, embedded within firmware of the motherboard, specialized
integrated circuits, or a combination thereof.

[0028] In the depicted example the computer system 100 includes a parent
partition 204 that can be also thought of as similar to domain 0 in the open source
community. Parent partition 204 can be configured to provide resources to guest
operating systems executing in the child partitions by using virtualization service
providers 228 (VSPs) that are typically referred to as back-end drivers in the open source
community. In this example architecture the parent partition 204 can gate access to the
underlying hardware. Broadly, the VSPs 228 can be used to multiplex the interfaces to the
hardware resources by way of virtualization service clients (VSCs) (typically referred to as
front-end drivers in the open source community). Each child partition can include one or
more virtual processors such as virtual processors 230 through 232 that guest operating
systems 220 through 222 can manage and schedule threads to execute thereon. Generally,
the virtual processors 230 through 232 are executable instructions and associated state
information that provide a representation of a physical processor with a specitic
architecture. For example, one child partition may have a virtual processor having
characteristics of an Intel x86 processor, whereas another virtual processor may have the
characteristics of a PowerPC processor. The virtual processors in this example can be
mapped to logical processors of the computer system such that virtual processor execution
of instructions is backed by logical processors. Thus, in these example embodiments,
multiple virtual processors can be simultaneously executing while, for example, another
logical processor is executing hypervisor instructions. The combination of virtual
processors, various VSCs, and memory in a partition can be considered a virtual machine.

[0029] Guest operating systems 220 through 222 can include any operating system
such as, for example, operating systems from Microsoft®, Apple®, the open source
community, etc. The guest operating systems can use usetr/kernel modes of operation and
can have kernels that can include schedulers, memory managers, etc. Each guest
operating system 220 through 222 can have associated file systems that can have
applications stored thereon such as terminal servers, e-commerce servers, email servers,
etc., and the guest operating systems themselves. The guest operating systems 220-222
can schedule threads to execute on the virtual processors 230-232 and instances of such

applications can be effectuated.

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

[0030] Referring now to FIG. 3, it illustrates an alternative architecture to that
described above in FIG. 2. FIG. 3 depicts similar components to those of FIG. 2; however
in this example embodiment the hypervisor 202 can include the virtualization service
providers 228 and device drivers 224, and parent partition 204 may contain configuration
utilities 236. In this architecture hypervisor 202 can perform the same or similar functions
as hypervisor 202 of FIG. 2. Hypervisor 202 of FIG. 3 can be a stand alone software
product, a part of an operating system, embedded within firmware of the motherboard or a
portion of hypervisor 202 can be effectuated by specialized integrated circuits. In this
example parent partition 204 may have instructions that can be used to configure
hypervisor 202 however hardware access requests may be handled by hypervisor 202
instead of being passed to parent partition 204.

[0031] In embodiments of the present disclosure a network adapter conforming to
the “Single Root Input/Output Virtualization specification” Revision 1.0 herein expressly
incorporated by reference in its entirety can be installed in computer systems such as those
described in the figures. An example adapter could be the “Gigabit ET Dual Port Server
Adapter” from Intel®. SR-IOV capable network devices are hardware devices that can
share an I/O adapter between, for example, virtual machines, or any other process by
virtualizing the interface to a physical function. Each virtualized interface, also known as
a virtual function (VF), roughly appears as a separate network interface card on a PCI-
express bus of a computer system. For example, each virtual function can have an
emulated PCI configuration space and a unique network identifier, e.g., a media access
control address (MAC address), world wide name, etc. Thus, each virtual function can
support a uniquely addressed and strongly partitioned separate path for accessing a
physical function.

[0032] Turning to FIG. 4, it illustrates a computer system 400 that includes an SR-
IOV compliant adapter 402 (“adapter’). Similar to that stated above, computer system
400 can include components similar to those above with respect to FIG. 1-3. The adaptor
402 can include a physical function 410 which can correspond to port, which can be
connected to a network and an internal router 412. Internal router 412 can be configured
to route data to and from network identifiers 420-424 of adapter 402 such as those
assigned to virtual functions 404 or 406, e.g., virtual adapters each with a virtual port.

[0033] In an example embodiment network adapter 402 can be an Ethernet adapter
and the virtual function can be a virtual Ethernet adapter. In this example the virtual

function’s unique identifier would be an Ethernet MAC address. In a Fibre channel

7

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

example, adapter 402 can be a fibre channel host bus adapter and a virtual function can be
a virtual fibre channel host bus adapter having a world wide name including a world wide
node name and a world wide port name. In an Infiniband example the virtual function can
be a virtual Infiniband endpoint having a global identifier.

[0034] Network identifier 424 is shown in dashed lines which indicate that certain
network adapters such as fibre channel host bus adapters or Ethernet adapters can allow
multiple unique identifiers to share a single physical port. In fibre channel this ability is
called N_Port ID virtualization or NPIV and in Ethernet an adapter can operate in what is
called promiscuous mode, include an embedded virtual switch, or filter and route data
addressed for specific MAC addresses to separate memory buffers.

[0035] Each network identifier can be associated with a software protocol stack
(414-418) that is configured to format information so that it can be sent over the network.
In a specific TCP/IP example a process can bind to an instance of the TCP/IP stack’s
application layer through an application layer port. Eventually information that is
processed by different functions of the protocol stack can be processed by a group of
functions that reside in what is known as the media access control layer which is in charge
of assembling frames of data that can be sent over the fabric. This layer of the protocol
stack adds the media access control address for the virtual function to frames that are sent
out on the network. The protocol stack then passes the assembled frames to the physical
layer which is configured to convert the information in the frame into electrical signals
and send the frames out to a network.

[0036] An input/output memory management unit 426 (I/O-MMU) can be used to
couple an I/O interconnect that can perform direct memory access operations, such as a
PCl-express interconnect, to RAM. In an embodiment of the present disclosure /O-MMU
426 can include page tables from hypervisor 202 that translate guest physical addresses
from partitions to system physical addresses. /O-MMU 426 is shown in dashed lines
which indicate that it can exist in multiple locations in the computer system 400. For
example, the /O-MMU can be a chip on a motherboard or a component of a logical
processor.

[0037] FIG. 5 illustrates the relationship between guest physical addresses and
system physical addresses in an embodiment of the present disclosure. Guest memory is a
view of memory that is controlled by hypervisor 202. Guest memory can be assigned to
guest operating systems and controlled by their memory managers. The guest physical

address can be backed by system physical address (SPA), e.g., the memory of the physical
8

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

computer system, managed by hypervisor 202. As shown by the figure, in an embodiment
the GPAs and SPAs can be arranged into memory blocks, e.g., one or more pages of
memory. The relationship between the GPAs and the SPAs can be maintained by shadow
page tables such as those described in commonly assigned U.S. Patent Application No.
11/128,665 entitled “Enhanced Shadow Page Table Algorithms,” the contents of which are
herein incorporated by reference in its entirety. In operation, when a guest operating
system stores data in GPA block 1, the data can actually be stored in a different SPA such
as block 6 on the system. In an embodiment of the present disclosure I/O-MMU 426 can
perform translations during I/O operations to move storage data directly from one GPA
space to another GPA space. In this embodiment logical processor cycles can be saved by
not having to run in the hypervisor instructions to effectuate these translations.

[0038] FIG. 6 illustrates a high-level operational environment for describing
virtual storage target offloading techniques. FIG. 6 shows a virtual machine storage
service 602 in communication with a storage virtualization client 604 via a SR-IOV
network adapter 402 and its virtual function 406. As shown by the figure, in this
embodiment of the present disclosure SR-IOV network adapter 402 can be used to
transport I/O between virtual machines and virtual machine storage services by bypassing
software communication paths. This in turn reduces the amount of CPU cycles used to
perform I/O for a virtual machine, increases the ability to migrate the storage service 602,
and potentially reduces the burden on a host operating system executing in a parent
partition and/or the burden on hypervisor 202.

[0039] Virtual machine storage service 602 can be configured to communicate
with physical storage devices such as logical unit numbers (LUNs) provided by SANSs,
e.g., dirks that may already be virtualized by other storage virtualization techniques, on
behalf of child partitions. In one instance this can include configuring virtual machine
storage service 602 to receive 1/0 requests from virtual machines and route them to LUNSs.
In another instance, where LUNs are sub-allocated, virtual machine storage service 602
can be configured to generate virtual hard drives; expose them to virtual machines; and
store them as virtual hard drive (VHD) files on LUNs or on physical drives. A VHD file
represents a virtual machine hard disk that can be encapsulated within a single file.
Virtual machine storage service 602 can parse the file and effectuate a disk that can be
exposed to guest operating system 220 as if it were physical storage. The virtual hard
disks generated by virtual machine storage service 602 can be represented to a bus that is

accessible to the guest operating systems in a way that appears like they are local.

9

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

[0040] In an embodiment of the present disclosure virtual machine storage service
602 can be configured to be a storage target such as a Fibre channel target or an internet
small computer system interface (iISCSI) target in the network by attaching a unique
network identifier to virtual machine storage service 602 and for example, configuring
storage target parameters used to advertise virtual machine storage service 602 as a storage
target in a datacenter. In an iSCSI example environment, virtual machine storage service
602 can implement an iSCSI target by effectuating LUNs that are accessible to child
partitions over an Internet protocol. Virtual machine storage client 604 or a guest
operating system can obtain the address of virtual machine storage service 602 and a
connection that emulates a connection to a SCSI hard disk can be setup. Virtual machine
storage client 604 can treat virtual machine storage service 602 the same way as it would a
SCSI or hard drive and virtual machine storage service 602 can serve up virtual hard
drives to child partitions. In this example, virtual machine storage client 604 can create
and manage file systems directly on virtual disks provided by the virtual machine storage
service 602 without having to mount remote directories as would be done in a networked
file system environment. From the viewpoint of guest OS 220, it has a network adapter
coupled to a network which is coupled to one or more logical units which act in a manner
similar to hard drives.

[0041] FIG. 7 illustrates an example operational environment for practicing
aspects of the present disclosure. Similar to FIG. 6, one or more SR-IOV network
adapters can be used to transport I/O between virtual machines and virtual machine
storage services thereby eliminating the need to send 1/0 using software communication
paths. This reduces the amount of CPU cycles used to perform I/O for a virtual machine,
increases the ability to migrate the storage service 602, and potentially reduces the burden
on a host operating system and/or the burden on hypervisor 202.

[0042] In this example environment a datacenter including two computer systems
700 and 702 is illustrated connected to a switch 704 (while two computer systems are
shown one of skill in the art can appreciate that the datacenter may have many more
computer systems). Computer systems 700 and 702 can have components similar to those
described in figures 1-4 and switch 704 could be an entire infrastructure of interconnected
switches and routers. Furthermore, computer systems 700 and 702 are illustrated as
including certain features to more clearly explain the herein disclosed techniques and the

disclosure is not limited to being implemented in the depicted topology.

10

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

[0043] Computer system 700 can include manager 250 configured to migrate
storage service 602 according to herein described techniques thus virtual machine storage
service 602 is illustrated in dashed lines to indicate that it can be migrated from one
partition to another partition in the same or a different computer system. Virtual function
706 and 708 are shown in dashed lines to indicate that in certain embodiments the virtual
machine storage service 602 can directly interface with the SR-IOV adapter 402 without
having to access it via a virtual function. In this example embodiment parent partitions
204 and 712 may have control of the physical hardware and a virtual function would not
be needed.

[0044] Continuing with the general overview of the figure, virtual machine storage
service 602 can be migrated in embodiments of the present disclosure by extracting the
unique identifier assigned to it and moving the identifier to a different partition along with
any necessary state information. In one instance this process could include extracting, by
a logical processor running manager 250, the unique identifier; instructing, by a logical
processor running manager 250, an adapter (402 or 718) to attach the unique identifier to a
virtual function in a different partition; and instructing, by a logical processor running
manager 250, an instance of virtual machine storage service 602 to attach itself to the
virtual function. In another instance this process could include extracting, by a logical
processor running manager 250, the unique identifier; instructing, by a logical processor
running manager 250, an adapter (402 or 718) to attach the unique identifier to the adapter
(402 or 718); and instructing, by a logical processor running manager 250, an instance of
virtual machine storage service 602 instantiated in a different partition to use the unique
identifier to communicate on the fabric.

[0045] The following are a series of flowcharts depicting operational procedures.
For ease of understanding, the flowcharts are organized such that the initial flowcharts
present implementations via an overall “big picture” viewpoint and subsequent flowcharts
provide further additions and/or details. Furthermore, one of skill in the art can appreciate
that the operations depicted by dashed lines are considered optional.

[0046] Referring now to FIG. 8§, it illustrates an operational procedure for
practicing aspects of the present disclosure. As shown by the figure, operation 800 begins
the operational procedure and operation 802 shows effectuating a migratable storage
service, wherein the migratable storage service is configured to manage virtual hard disk
input/output requests for a child partition, wherein the migratable storage service is

assigned a unique network identifier for a network. For example, and turning to FIG. 6, a

11

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

migratable storage service such as virtual machine storage service 602 can be effectuated
by a computer system. That is, instructions indicative of virtual machine storage service
602 can be executed by a logical processor. Virtual machine storage service 602 is
considered migratable because it is attached to a unique network identifier and can be
moved by itself, i.e., without moving other management modules, from one partition to
another.

[0047] In an example embodiment virtual machine storage service 602 can
exclusively use the unique identifier on the network, e.g., it may be the only process that
communicates using the unique network address in the datacenter. In this example virtual
machine storage service 602 can be configured to serialize its own state so that the state
information can be sent to a different partition and used to configure another instance of
virtual machine storage service 602. In another example embodiment the virtual machine
storage service 602 can run in a virtual machine that is attached to a virtual function. In
this example the virtual machine storage service 602 may also exclusively communicate in
the network using the unique identifier. Migrating the virtual machine storage service 602
can include serializing the state of the virtual machine that includes the virtual machine
storage service 602 and sending it to another partition.

[0048] In a specific example, and turning to FIG. 7, virtual machine storage
service 602 can be migrated from parent partition 204 to child partition 246. In this
specific example, a logical processor can run manager 250, i.¢., a logical processor can run
instructions indicative of the manager 250, and extract the unique identifier used by virtual
machine storage service 602 to communicate in the datacenter. The unique identifier can
then be sent to child partition 246 and an instance of the virtual machine storage service
602 can be started. Routing tables in adapter 402 can be updated and I/O requests can be
routed by adapter 402 to child partition 246 instead of parent partition 204. In this
example child partition 246 can be configured to use the unique identifier in addition to
any other unique identifiers already in use.

[0049] Continuing with the description of FIG. 8, operation 804 shows
configuring the migratable storage service as a storage target in a network. For example,
in an embodiment of the present disclosure virtual machine storage service 602 can be
configured to be a storage target in the datacenter. Similar to that described above, virtual
machine storage service 602 can be attached to the unique network identifier in a network
and detected as a storage target by a guest OS 220. A communication session can be

opened between guest OS 220 and virtual machine storage service 602 and guest OS 220
12

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

can detect virtual hard drive(s) exposed by virtual machine storage service 602 and use the
virtual disks as if they were local hard drives. In a specific example virtual machine
storage service 602 could emulate an iSCSI target as described above. In this example
virtual machine storage service 602 can expose virtual disks instead of physical disks and
handle I/O from virtual machines by reading or writing to LUNs or physical disks.

[0050] Tuming to FIG. 9, it illustrates an alternative embodiment of the
operational procedure of FIG. 8. Operation 906 shows migrating the migratable storage
service to a remote computer

system. For example, and turning to FIG. 6, in an embodiment the migratable
storage service, €.g., virtual machine storage service 602, can be migrated to a remote
computer system in a datacenter. For example, in an embodiment the remote computer
system may have more I/O bandwidth available than the computer system currently
hosting virtual machine storage service 602 and a decision to move the storage service 602
may be made. In this example a logical processor can run manager 250 and extract the
unique identifier that is assigned to storage service 602 and send it to the remote computer.
Thereafter manager 250 of remote computer can attach the unique identifier to an instance
of storage service 602.

[0051] In a specific example, and turning to FIG. 7, virtual machine storage
service 602 can be migrated from child partition 246 to parent partition 712. In this
specific example manager 250 of computer system 700 can extract the unique identifier
attached to virtual machine storage service 602 and send it to computer system 702.
Manager 250 of computer system 702 can run on a logical processor and attach the unique
identifier to an instance of virtual machine storage service 602 running in parent partition
712. In this example virtual storage service 602 may use the unique identifier when
sending/receiving I/O from clients that were serviced by virtual machine storage service
602 in child partition 246 with or without using a virtual function 708.

[0052] In this specific example state information for virtual machine storage
service 602 and the protocol stack can be sent to computer system 702 so that I/O service
can be uninterrupted. For example, enough information to allow manager 250 of
computer system 702 to configure a protocol stack to reflect at least a functionally
equivalent state of protocol stack of computer system 700 can be sent to computer system
702. State information could include the number of the next packet that is going to be
sent, the socket number that is used, the maximum buffer size, the server’s port number,

the client’s port number, etc. State information can also include information such as

13

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

higher level protocol information. Other examples could be information related to
encryption protocols used.

[0053] In this example embodiment service to the clients would operate
uninterrupted because from the point of view of the client the connection was paused
instead of dropped. For example, when virtual machine storage service 602 is migrated
the protocol stack can wrap-up the current operations it is performing, e.g., by completing
or canceling them, and optionally send a back off message to the protocol bound to a
virtual machine storage client 604 requesting that the protocol hold from sending
information for a short period of time. When protocol stack on computer system 702 is
instantiated it can have an equivalent state as protocol stack on computer system 700 and
can communicate on the network with the unique identifier that was previously associated
with computer system 700. The newly configured protocol stack on computer system 702
can be configured to optionally send a resume message and the protocol servicing the
virtual machine storage client 604 can resume sending I/O. Switch 704 can resolve the
routing so that protocol messages are sent to virtual machine storage service 602 on
computer system 702,

[0054] Continuing with the description of FIG. 9, operation 908 shows
configuring an input/output memory management unit to translate guest physical
addresses associated with the input/output requests for the child partition to system
physical addresses. For example, and referring to FIG. 7, in an embodiment of the present
disclosure a input/output memory management unit 426 of computer system 700 can be
used to convert guest physical address to system physical addresses. For example, when
guest operating system 220 initiates an I/O operation, e.g., a read or write, guest operating
system 220 generates a command that involves guest physical addresses that may need to
be translated into system physical addresses. In an example embodiment these translations
can occur in I/O-MMU 426 instead of the MMU. By offloading the memory translations
to [/O-MMU 426 the burden on hypervisor 202 and/or parent partition 204 is reduced. For
example, guest OS 220 may issue a read operation that includes a request to read a disk
offset into a guest memory address. In this example input/output memory management
unit 426 can use a table that maps guest memory addresses of child partition 248 to system
addresses and convert the guest memory address into the system address that physically
backs the guest memory address the guest wants the read to go into. The virtual machine
storage service 602 can receive the request and obtain information the client is requesting

and provide a response message including previously requested data. The response can be

14

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

provided in a buffer specified as a guest memory address, in which case the adapter 402
and [/O-MMU 426 can translate the provided guest memory address into system physical
address, and the adapter 402 can then copy the response data from the response buffer into
the request buffer to satisfy the client’s request.

[0055] This technique is similar to a memory-to-memory direct memory access
(DMA) operation performed by a peripheral device when the client is on the same
physical computer as virtual machine storage service 602. In this example embodiment
the I/O operation can be similar to a memory-to-memory DMA operation because the
network adapter 402 retrieves the information from one block of system physical address
and moves it to another block of system physical address on behalf of the virtual machine
storage client 604 or virtual machine storage service 602. A specific example may include
a read operation issued by virtual machine storage client 604. In this example virtual
machine storage client 604 can issue a read operation that specifies pages of storage data
that it wants read into memory pages it controls. In this example the pages of data get
copied into pages used by virtual machine storage service 602 to satisfy a request and then
copies the data into memory pages specified by the virtual machine storage client 604.

[0056] Continuing with the description of FIG. 9, operation 910 shows receiving
an input/output job request from the child partition, wherein the child partition is attached
to a virtual function that includes a second unique network identifier for the network. For
example, as shown by figure 6, in an embodiment child partition 248 can include virtual
function 406. In this example child partition 248 can exclusively interface to SR-IOV
adapter 402 via virtual function 406 and can send an I/O request. Adapter 402 can
determine that the command is addressed to the unique identifier associated with virtual
machine storage service 602 and can send the command to it. In this case an I/O
command from child partition 248 can be sent to the virtual machine storage service 602
without having the request sent through hypervisor 202 or through a partition-to-partition
communication interface. Further, the adapter 402 can use the unique identifiers of the
client 604 and virtual machine storage service 602 in determining which memory pages to
use as buffers, and hence, which address spaces to copy data between.

[0057] In a specific example the /O request can be a write operation specifying
the location of the data (in guest physical addresses) and the location on the virtual hard
drive that the data should be written. In this example storage virtualization client 604 can
place the request in one or more packets of information addressed to unique identifier of

virtual machine storage service 602. In this example adapter 402 can receive the request

15

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

and send it to virtual machine storage service 602. Adapter 402 can additionally move the
data from child partition guest physical addresses to system physical addresses allocated to
virtual machine storage service 602. That is, adapter 402 and /O MMU 426 can be
configured to translate both the sending and receiving bufters from guest physical
addresses to system physical addresses and the adapter 402 can then copy the data from an
internal sending buffer to the receiving buffer internally in terms of system physical
addresses. Virtual machine storage service 602 can then store the data in an appropriate
location consistent with its virtual hard drive implementation. As one of skill in the art
can appreciate, this may involve using a virtual hard drive file, it may involve storing data
on a LUN, or it may involve other techniques and locations for storing data, possibly
redundantly.

[0058] Continuing with the description of FIG. 9, operation 912 shows executing
the migratable storage service in a first partition, executing a management service
configured to manage virtual machines in a second partition, and wherein the child
partition is a third partition. For example, in an embodiment virtual machine storage
service 602 can execute in a first partition such as child partition 246, parent partition 204
can run a management service, and virtual machine storage client 604 can run in partition
248. In this example embodiment virtual machine storage service 602 is in a separate
partition from management processes. In this configuration child partition 246 may
effectively act like a dedicated storage partition acting like a SAN target. This
configuration can reduce the burden on hypervisor 202 and the parent partition. For
example, by separating the storage service from a parent partition intra-operating system
locking may be reduced. Moreover, by configuring a computer system in this manner the
burden on the hypervisor scheduler is reduced by reducing the number of messages that
need to be sent between partitions.

[0059] Continuing with the description of FIG. 9, operation 914 shows associating
the migratable storage service with a virtual function of a network adapter that includes
the unique network identifier and attaching the child partition to a second virtual function
of the network adapter. For example, and turning to FIG. 7, in an embodiment virtual
machine storage service 602 can be associated with a virtual function such as virtual
function 404. In the instance where virtual machine storage service 602 runs in child
partition 246 virtual function 404 can be used so it accesses adapter 402 in a controlled

mannet, i.e., in a way that ensures that any processes in child partition 246 do not access

16

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

data that is outside of its partition. In addition, a virtual machine snapshot operation could
be used to migrate virtual machine storage service 602.

[0060] Continuing with the description of FIG. 9, operation 916 shows sending a
notification to a logical processor in response to receiving an input/output job request from
the child partition and determining that the logical processor is executing the migratable
storage service. For example, in an embodiment when an I/O job needs software
processing hypervisor 202 can receive an interrupt and run. Hypervisor 202 can identify a
logical processor that is running or is scheduled to run virtual machine storage service 602
and can notify that logical processor, i.e., by sending an interrupt or a lightweight
notification. If virtual machine storage service 602 is situated in a child partition the
interrupt can be sent to a logical processor without having to wake up a management
partition to service the message. If virtual machine storage service 602 is currently
executing a context switch to virtual machine storage service 602 would not have to occur
nor would an interrupt, as a lightweight notification could be used instead.

[0061] Continuing with the description of FIG. 9, operation 918 shows
determining that input/output traffic is compliant with a security policy as the input/output
traffic is transported between the unique network identifier and at least one other unique
network identifier via a network adapter. For example, in an embodiment adapter 402 can
include a security policy for network traffic. In this example embodiment adapter 402 can
be configured to determine that input/output traffic sent between virtual machine storage
service 602 and another unique identifier, e.g., one that is attached to a virtual machine,
conforms to the security policy. In a specific example a security policy may require that
all input/output traffic is encrypted. In this example adapter 402 can be configured to
determine if writes to the virtual hard drive are in clear text or are encrypted. In another
example, a security policy may require that virtual local area networks are kept entirely
separate, with no data traffic allowed between endpoints in different virtual local area
networks.

[0062] Tuming now to FIG. 10, it illustrates an operational procedure for
practicing aspects of the present disclosure including operations 1000, 1002, and 1004.
Operation 1000 begins the operational procedure and operation 1002 shows attaching a
first unique network identifier for a network adapter to a storage service configured to
manage virtual hard drive disk input/output requests for a child partition. For example,
and turning to FIG. 6, in an embodiment of the present disclosure SR-IOV adapter 402 can

effectuate multiple network identifiers and assign one of them to virtual machine storage

17

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

service 602. In a fibre channel example, a fibre channel host bus adapter can use N_Port
ID virtualization or (NPIV) to allow multiple unique identifiers to be used on the same
port. In this fibre channel example virtual machine storage service 602 could exclusively
use the assigned NPIV address to communicate on the fabric.

[0063] Continuing with the description of FIG. 10, operation 1004 shows
attaching a virtual function effectuated by the network adapter to the child partition,
wherein the virtual function includes a second unique network identifier. For example,
and referring again to FIG. 6, SR-IOV adapter 402 can instantiate virtual function 406
including a unique network identifier and attach it to a virtual machine. In this example
embodiment adapter 402 is configured to function as a switch that routes I/O requests
through the adapter to the storage service 602 bypassing hypervisor 202 or a separate
partition-to-partition communication mechanism. This in turn reduces the time used
executing instructions on a logical processor to notify and switch partitions.

[0064] Tuming now to FIG. 11, it illustrates an alternative embodiment of the
operational procedure of FIG. 10 including additional operations 1106, 1108, 1110, 1112,
and 1114. Operation 1106 shows sending a request to configure a second virtual function
to include the first unique network identifier to a remote computer system that includes a
second network adapter. For example, in an embodiment a logical processor can be
executing instructions in manager 250 and can generate a request to configure a virtual
function in a remote computer system that has another adapter to include the unique
network identifier attached to virtual machine storage service 602. Turning to FIG. 7,ina
specific example manager 250 on computer system 700 can send the generated request to
computer system 702 having an adapter 718. The request in this example can be used by
manager 250 in computer system 702 to command it to instantiate virtual function 710 and
have it include the unique identifier associated with an instance of virtual machine storage
service 602.

[0065] Continuing with the description of FIG. 11, operation 1108 shows
migrating the storage service to a child partition and configuring a second virtual function
assigned to the child partition to use the first unique network identifier. For example and
turning to FIG. 7, a logical processor can run manager 250 and migrate virtual machine
storage service 602 from, for example, parent partition 204 to child partition 246. In this
example logical processor can run manager 250 and extract the unique identifier that is
associated with virtual machine storage service 602 and send it to adapter 402. Adapter

402 can instantiate virtual function 404 and attach the unique identifier to it. Thereafter

18

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

manager 250 can attach the unique identifier to an instance of virtual machine storage
service 602. In this example embodiment virtual machine storage service 602 is in a
separate partition from management processes and has effectively become a dedicated
storage partition acting like an iSCSI target.

[0066] Turning now to operation 1110 it shows translating, by an input/output
memory management unit, guest physical addresses associated with the input/output
requests from the child partition to system physical addresses. For example, and referring
to FIG. 7, in an embodiment of the present disclosure input/output memory management
unit 426 of computer system 700 can be used to convert guest physical address to system
physical addresses. For example, when guest operating system 220 initiates an /O
operation, ¢.g., a read or write, guest operating system 220 generates a command that
involves guest physical addresses. In this example input/output memory management unit
426 can use a table that maps guest memory addresses of child partition 246 to system
addresses used by parent partition 204. Adapter 402 and I/O MMU 426 can be configured
to translate both the sending and receiving buffers from guest physical addresses to system
physical addresses and adapter 402 can then copy the data from an internal sending buffer
to an internal receiving buffer or vice-versa.

[0067] Turning now to operation 1112 it shows configuring the network adapter to
monitor security policy compliance of input/output traffic as the input/output traffic is
transported between the unique network identifier and the second unique network
identifier. For example, in an embodiment adapter 402 can include a security policy for
network traffic. In this example embodiment adapter 402 can be configured to determine
that input/output traffic sent between virtual machine storage service 602 and another
unique identifier, e.g., one that is attached to a virtual machine, conforms to the security
polity. A specific example may include a security policy that requires that certain virtual
machines send I/O using a certain unique identifier in the network. The adapter 402 in this
example can monitor packets of information from the virtual machines and determine if
they are compliant with the security policy.

[0068] Turning now to operation 1114 it shows sending a request to a remote
computer system to instantiate the storage service and assign the storage service the first
unique network identifier in response to determining that an amount of input/output
requests over a predetermined threshold have been received from the remote computer
system. For example, in an embodiment of the present disclosure a logical processor can

run instructions indicative of manager 250 and send a request directing the remote

19

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

computer system such as computer system 702 to instantiate an instance of the virtual
machine storage service 602 and attach it to the unique identifier. The logical processor
can generate this request after monitoring the unique identifiers associated with the
incoming I/O requests and determining that a number of requests over a threshold have
been received from computer system 702. In a specific example the manager 250 could
have determined that 60% of I/O requests over the past 30 minutes have been received
from unique identifiers currently associated with computer system 702. In this instance
manager 250 can determine that performance of the datacenter may be increased if virtual
machine storage service 602 is executing locally on computer system 702 and migrate it.

[0069] Turning now to FIG. 12 it illustrates an operational procedure including
operations 1200 and 1202. Operation 1200 begins the operational procedure and operation
1202 shows executing a storage service in a child partition, wherein the storage device is
configured to manage virtual hard drive disk input/output requests for a second child
partition, wherein the storage service is assigned a unique network identifier in a network.
For example, in an embodiment virtual machine storage service 602 can be effectuated in
a child partition, e.g., child partition 246, and assigned a unique identifier in the network,
e.g., aworld wide name. Child partition 246 in this example embodiment can be
controlled by hypervisor 202 and/or parent partition 204. In this configuration child
partition 246 may eftectively become a dedicated storage partition acting like an iSCSI
target.

[0070] Turning now to FIG. 13, it illustrates an alternative embodiment of the
operational procedure of FIG. 12 including operations 1304, 1306, 1308, 1310, and 1312.
Turning to operation 1304 it shows sending a request to a remote computer system to
instantiate the storage service and assign the storage service the first unique network
identifier in response to determining that an amount of input/output requests over a
predetermined threshold have been received from the remote computer system. For
example, in an embodiment of the present disclosure a logical processor can run
instructions indicative of manager 250 and send a request directing the remote computer
system such as computer system 702 to instantiate an instance of the virtual machine
storage service 602 and attach it to the unique identifier. The logical processor can
generate this request after monitoring the unique identifiers associated with the incoming
I/0 requests and determining that a number of requests over a threshold have been
received from computer system 702. In a specific example the manager 250 could have

determined that 60% of I/O requests over the past 30 minutes have been received from

20

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

unique identifiers currently associated with computer system 702. In this instance
manager 250 can determine that performance of the datacenter may be increased if virtual
machine storage service 602 is executing locally on computer system 702 and migrate it.

[0071] Continuing with the description of FIG. 13, operation 1306 shows
migrating the storage service to a hypervisor. For example, and turning to FIG. 7, in an
embodiment virtual machine storage service 602 can be migrated to hypervisor 202. In
this example embodiment computer system 702 may have an architecture similar to that
depicted in FIG. 3 and a decision to move the storage service 602 from child partition 246
to hypervisor 202 can be made. In this example a logical processor can run manager 250
and extract the unique identifier that is associated with virtual machine storage service 602
and hypervisor 202 can attach it to an instance of the virtual machine storage service 602.
In an example embodiment since hypervisor 202 controls the hardware it can be
configured to access the physical function of adapter 402. In a fibre channel example
implementation, a fibre channel host bus controller can use NPIV to use the unique
identifier to send/receive I/O commands via adapter 402.

[0072] Continuing with the description of FIG. 13, operation 1308 shows
migrating the storage service to a parent partition. For example, and turning to FIG. 7, in
an embodiment virtual machine storage service 602 can be migrated from child partition
246 to parent partition 204 or 712. In this example a logical processor can run manager
250 and extract the unique identifier that is associated with virtual machine storage service
602 and either send it to a remote computer or to parent partition 204 on the local
computer system. Thereafter the unique identifier can be attached to an instance of
storage service 602.

[0073] Continuing with the description of FIG. 13, operation 1310 shows
assigning the storage service to a hypervisor and . In this example embodiment virtual
function 406 can be attached to child partition 248 and it can have a second unique
network identifier on the network. As shown by the figure, in this example embodiment
both child partitions 246 and 248 can be attached to the same SR-IOV adapter 402. Thus,
in this example embodiment [/O requests can be passed through the SR-IOV adapter 402
instead of via hypervisor 202 or via partition-to-partition communication mechanisms and
without having to send the /O over switch 704.

[0074] Continuing with the description of FIG. 13, operation 1312 shows
configuring an input/output memory management unit to translate guest physical

addresses associated with the input/output requests for the child partition to system

21

10

15

20

WO 2011/084257 PCT/US2010/057871

physical addresses. For example, and referring to FIG. 7, in an embodiment of the present
disclosure input/output memory management unit 426 of computer system 700 can be
used to convert guest physical address to system physical addresses. For example, when
guest operating system 220 initiates an I/O operation, e.g., a read or write, guest operating
system 220 generates a command that involves guest physical addresses. In this example
input/output memory management unit 426 can use a table that maps guest memory
addresses of child partition 248 to system addresses used by the parent partition. Adapter
402 and I/O MMU 426 can be configured to translate both the sending and receiving
buffers from guest physical addresses to system physical addresses and adapter 402 can
then copy the data from an internal sending bufter to an internal receiving buffer or vice-
versa.

[0075] The foregoing detailed description has set forth various embodiments of
the systems and/or processes via examples and/or operational diagrams. Insofar as such
block diagrams, and/or examples contain one or more functions and/or operations, it will
be understood by those within the art that each function and/or operation within such
block diagrams, or examples can be implemented, individually and/or collectively, by a
wide range of hardware, software, firmware, or virtually any combinations thereof.

[0076] While particular aspects of the present subject matter described herein have
been shown and described, it will be apparent to those skilled in the art that, based upon
the teachings herein, changes and modifications may be made without departing from the
subject matter described herein and its broader aspects and, therefore, the appended claims
are to encompass within their scope all such changes and modifications as are within the

true spirit and scope of the subject matter described herein.

22

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

What is Claimed is:
1. A system, comprising:
circuitry for effectuating a migratable storage service, wherein the migratable
storage service is configured to manage virtual hard disk input/output requests for a child
partition, wherein the migratable storage service is assigned a unique network identifier
for a network; and
circuitry for configuring the migratable storage service as a storage target in a

network.

2. The system of claim 1, further comprising:
circuitry for migrating the migratable storage service to a remote computer

system.

3. The system of claim 1, further comprising:
circuitry for configuring an input/output memory management unit to translate
guest physical addresses associated with the input/output requests for the child partition to

system physical addresses.

4. The system of claim 1, further comprising:
circuitry for receiving an input/output job request from the child partition, wherein
the child partition is attached to a virtual function that includes a second unique network

identifier for the network.

5. The system of claim 1, further comprising:
circuitry for executing the migratable storage service in a first partition, executing
a management service configured to manage virtual machines in a second partition, and

wherein the child partition is a third partition.

6. The system of claim 1, further comprising:
circuitry for associating the migratable storage service with a virtual function of a
network adapter that includes the unique network identifier and attaching the child

partition to a second virtual function of the network adapter.

23

10

15

20

25

30

WO 2011/084257 PCT/US2010/057871

7. The system of claim 1, further comprising:
circuitry for sending a notification to a logical processor in response to receiving
an input/output job request from the child partition and determining that the logical

processor is executing the migratable storage service.

8. The system of claim 1, further comprising:
circuitry for determining that input/output traftic is compliant with a security
policy as the input/output traffic is transported between the unique network identifier and

at least one other unique network identifier via a network adapter.

9. A computer method, comprising:
attaching a first unique network identifier for a network adapter to a storage service
configured to manage virtual hard drive disk input/output requests for a child partition;
and
attaching a virtual function effectuated by the network adapter to the child

partition, wherein the virtual function includes a second unique network identifier.

10. The computer method of claim 9, further comprising:
sending a request to configure a second virtual function to include the first unique

network identifier to a remote computer system that includes a second network adapter.

11. The computer method of claim 9, further comprising:
migrating the storage service to a child partition and configuring a second virtual

function assigned to the child partition to use the first unique network identifier.

12. The computer method of claim 9, further comprising:
translating, by an input/output memory management unit, guest physical addresses
associated with the input/output requests from the child partition to system physical

addresses.

13. The computer method of claim 9, further comprising:
configuring the network adapter to monitor security policy compliance of
input/output traffic as the input/output traffic is transported between the unique network

identifier and the second unique network identifier.

24

WO 2011/084257 PCT/US2010/057871

14. The computer method of claim 9, further comprising:
sending a request to a remote computer system to instantiate the storage service
and assign the storage service the first unique network identifier in response to
5 determining that an amount of input/output requests over a predetermined threshold have

been received from the remote computer system.
15. The computer method of claim 9, further comprising:

migrating assigning the storage service to a hypervisor and configuring a second

10 virtual function to use the first unique network identifier.

25

WO

2011/084257 PCT/US2010/057871

113

100 Computer System

112 Graphics
Processing Unit 114 NIC
116 1/0O Devices
1TO anpﬁer_Re_adaale_ Sgraaer/leaa ________________
108 Firmware 118 Removable Storage

r— 1_20_BE)S_) Devices

L - 4
_______ | _—,__—_—————.
| | | |
| | | |
| 250 Manager : | 250 Manager :
| | | |
e e e e | e e e e e - — |

106 Storage Device 104 RAM
| | | |
| | | |
| 250 Manager : | 250 Manager :
| | | |
e e e e = | e e e e — = |
102 Logical
Processor

FIG. 1

WO 2011/084257 PCT/US2010/057871

2/13

200 Computer System

204 Parent Child Partition 246 Child Partition 248
Partition
228
Virtualization 220 Guest OS 220 Guest OS
Service
Providers
—_—_————
1250 Manager|
—_——
224 Device 216 230 Virtual 218 232 Virtual
Drivers VSCs || Processor VSCs | | Processor
202 Hypervisor
| 250 Manager |

v
112
106 Storage 114 NIC Graphl(_:s 102 Logical 104 RAM
Device Proces_smg Processor
Unit
N—

FIG. 2

WO 2011/084257 PCT/US2010/057871

313

300 Computer System

204 Parent Child Partition 246 Child Partition 248
Partition
| 236 |
| Configuration | 220 Guest OS 220 Guest OS
| Utilities |
|~ == 1
| 250 Manager |
224 Device 216 230 Virtual 218 232 Virtual
Drivers VSCs Processor VSCs Processor

202 Hypervisor

228 Virtualization Service
Providers

224 Device Drivers

/\
" 112
106 Storage 114 NIC Graphlc_:s 102 Logical 104 RAM
Device Proces_smg Processor
Unit
N—

FIG. 3

WO 2011/084257

4/13

PCT/US2010/057871

400 Computer System

250 Manager

414 Protocol

416 Protocol

418 Protocol

?

?

Stack Stack Stack
404 VF 406 VF |

420 422 : 424 Network
Network Network | I[dentifiers
Identifier Identifier |

o

l

412 Internal Router

i

410 Physical Function

402 SR-I0OV
Adapter

FIG. 4

WO 2011/084257 PCT/US2010/057871

5/13

Guest Physical
Address 1 2 3 4

[/O-MMU
Translation

System Physical
Address

FIG. 5

WO 2011/084257

6/13
_ 5 602 Virtual Ma(?hine
Storage Service
A
T »1402 SR-IOV adapter

¢

PCT/US2010/057871

Child Partition 248

220 Guest OS

604 Storage
Virtualization
Client

406 Virtual
Function

A

/l\

N~

606 Physical Storage

N~

FIG. 6

WO 2011/084257 PCT/US2010/057871

7113
700 Computer System
204 Parent Partition 246 Child Partition 248 Child Partition

F——————
| 250 Manager | 220 Guest OS
______ J —_———— —
| = anovim o | | 602 Virtual

6&2 Vr']'.““a' | Machine 604 Storage
st ac Slne . | Storage | Virtualization
I_Ao_ra_ge_ ervice, | _Service | Client

1'706 Virtual | 404 Virtual 406 Virtual
Function | Function Function

__¥__))

202 Hypervisor _ _ _ _
—— D :
| | 602 Virtual
250 Manager 1 “Machine |

| Storage :
B _S_ervici]
; i
> 402 SR-IOV <
adapter
A
y
704 Switch
p1718 SR-IOV adapter [«—
| 250 Manager || 802 Virtual |
— — — — — —| Machine |
| Storage |
L Service _|
202 Hypervisor
——
:708\ﬁnuaﬂ v
._Fﬂnﬁti@_! 710 Virtual Function
: 602 Virtual Machine | [Ebi\ﬁhﬁéﬁhééﬁhéW
. _ Storage Service_ | | _Storage Service _!
| 250 Manager |
712 Parent Partition 714 Child Partition
702 Computer System

FIG. 7

WO 2011/084257 PCT/US2010/057871

8/13

800
start

802 effectuating a migratable storage service, wherein the
migratable storage service is configured to manage virtual hard
disk input/output requests for a child partition, wherein the
migratable storage service is assigned a unique network identifier
for a network

!

804 configuring the migratable storage service as a storage target
in a network

FIG. 8

PCT/US2010/057871

WO 2011/084257

9/13

e Sonm RSN el _
| Jordepe spomiou | _ J[qeIRISTWN |- — === — “ I oMU Y | | sossaippe |
A YU 0 oMo
® Bl lhuopl _	O Sunnooxo L AVCEPEAHOMIL 1 red py		105 s0ymuop _	oskyd		
Yomjou onbrun	St Jossaoo0xd	l a1y Jo uonouny	_ - mo.::é d piuo Il S?og U woISAS			
190 SUOISEa]	_Eoﬂwoﬁ O JELD		[BMMIA PUOSOS I	9 .H U1 B@WM 1 o:_wq: u0d0s		oruonned
e pue JoynuopI _ _ SuruTuINOp		O uonnJted pryo	_ ;M: e Qa q%o% e o %S e _	PERAWIF		————
Yomjou onbrun _	pue woned _	oW Suryoene _ nnred p	pnpout jeyy	_ s1sonbax indino Il wosks _		
ol _		©ulsoumoew	fuonouny femuia) Andur oy I			
Oy} uoomdq	PITYO oY) oy	PUB JO1RUIp! 3 _ _ ! Il soinduwos				
_			Temia O3euew 0} I''e 03 poyoene st ! ym pajeroosse			
Ppouodsuen _ 1sonbai qof	SHomou onbrun _ _ I sowor e					
_ "	y pamSyuod do1axs	uonnaed ppiyo	SOsSaIppe 1			
_ ST O1jJen	_ mdno/ndur	_ o3 sopnjoul jey) _ “ TuowoSeuRW B __ o) urRIYM		[eorsAyd jsong __ 0] DOTAIS _		
ndno/ndur o ad 0MI0 . . :						
_mw %w: o\w bmzwwm _	M@ MMMMWMM L ! M M@MMHQMM u	_wqﬁzooxo doﬁﬁém__ ‘wonnaed		ojersuen o) jun "_ oSe101s _		
km Q _	© ’		Jo uonouny _	1S B UL 001ALS L PIIYo Sy} WOy		juowoSeuew __0388@8_
® aﬁﬂ H&W oo 1 SMSS	ONNMM Mwmw%m		98v101s SqereISIL Il jsonborqof		Asowow __ om	
_ P OUJeD		R 1 ®		oy Sunnoaxo z16	hndmopndur ue	mdmondut I gunerdnu
mdnoandur 1eyy ' oy woneoymou dIqeIRISIW Y)Y I : : ue SuLmn3ryuos						
_ _ I : ea i :	I Surarooar 016	_ 906				
Sururuiolep 16	® 3urpuds 916 _ Sunerosse p16		o I 806 I			

J

1) 2 3upuos g1 || Bunmposse 16 R R
-—-f——"'--3 ity Wil Sitebe) skl el

SI0MIQU B Ul
10318) 93BI0IS B SB IOTAIDS 93BI0]S J[qrIeidw oY) SULINIJU0d ()Y

+

JI0MIdU B I0J
JOYNUIPI JI0MIdU onbrun € pougisse ST 001AI0S 93BI0)S J[qrIRISTW
oy urazoym ‘uonned piyo e 103 sysanbar yndinondur ysip
pIey [enIA 93euBW 0] PAINSIJUOD ST IJTAIIS 9FI0IS d[qereIsIu
o) UIQIOYM ‘OOTAIS 93BI0)S 9[qeIRI3IW B SUnenod}Jo 708

yels
008

WO 2011/084257 PCT/US2010/057871

10/13

1000
start

1002 attaching a first unique network identifier for a network
adapter to a storage service configured to manage virtual hard
drive disk input/output requests for a child partition

l

1004 attaching a virtual function effectuated by the network
adapter to the child partition, wherein the virtual function
includes a second unique network identifier

FIG. 10

PCT/US2010/057871

WO 2011/084257

11/13

w)SAS _

“ Jondwod dowd1 oY) _
| UWIOIJ POAIIIAT U IABY _
_ pIoysaxy) paururidopaid _
B I9A0 S)sanbax _

“ mdino/ndur jo yunoure _
| ue 1ey) SUIUTULIdISP _
| 01 9suodsar ur JoynuapI _
_ JIomidu onbrun jsary _
_ oY) 901AIS 9BRIOIS A _
awﬂmmw pue J01AISS owSBm
_ Y} AeNIULISUL 0] WIISAS _
Idwos gjowar © _

“ 011sonbar & Juipuas 1 _

e

IOL1UIPT SAOMID |
anbrun puooos _
St} puB JOYNUPI |
J10M39u anbrun _
A UMDY |
payodsuen _

SI olyen _
ndino/ndur ot se _
oyJen mdinondur _
Jo douerdwos _
Korjod A1mnoos _
Joyiuowr 03 1depe _
pompu oy

“ SuLn3yuod Z111 |

e

| sossoippe !
|Teo1sAyd warsAs _
| 01 uonnied |
| PIYd oy

| woxy sisonbai
_H:&:o /ndur oy
| UHM PIIRIOOSSE
| s9ssaIppe

| [eoiskyd

| 1son3 “run

| JuswseuRw

_ A1owaw

I mdmno/ndur ue

_
_
_
_
_
_
!
_
_
_
| Aq ‘Sunejsuen “

| Joynuopr |
| yompu |
| onbrun |
| 15113 oy osn o |
| uonued pyryo |
[01 pouSisse |
| uonouny |
| [EMIIA Puodas |
| & SuLmsSiyuoo |
_ pue _
| uonnaed pyryo |
| ®ojoomases |
| oSeims oy |
{Suneisrur gop 1l

ll#lIL

| Jodepe

| 3110M19U PU02aS
| e sopnpour

| e worsAs

| 1omndwoo

| ouwax

| ® 01 10ymuopI

| j10M)0u 9nbrun
I1s113 oy opnpour
| 01 uonouny

| Tenuaia puooos
| eomS3iyuoo

| o13sonbax

|l'e Sutpuas 9017 |

-——p--

JOYTIUOPT JI0M)dU dnbrun puoods & sapnjour
uonouny [eniIA oY) urdIdym ‘vonnted pyo oy oy 1depe
}I0MI2U Y} Aq PAILNIOALJO UONOUNJ [ENMIIA B SUIYORNE H(0T

+

uonnued ppiyd e 10y s1sanbax yndinondur ysip aaLIp
ey [enIIA oFeUBW 0} PAINSU0D 901AI0S 0Fe10)S © 01 1depe
SHOMIU B 10J JOLTIUIPI JIomIou dnbrun 15113 © Surgoene 7o |

1e)s
0001

WO 2011/084257 PCT/US2010/057871

12/13

1200
start

1202 executing a storage service in a child partition, wherein the
storage service is configured to manage virtual hard drive disk
input/output requests for a second child partition, wherein the

storage service is assigned a unique network identifier in a
network

FIG. 12

WO 2011/084257

PCT/US2010/057871

13/13

1200
start

1202 executing a storage service in a child partition, wherein the
storage service is configured to manage virtual hard drive disk
input/output requests for a second child partition, wherein the

storage service is assigned a unique network identifier in a
network

B

| 1304 sending a || 306 1308

| request to a remote || mieratin || migrating
computer system tol g EIl the
I~ . ||the storage|

| Instantiate the service 1o | storage
| storage service and II I service to
| assign the storage I|h ervisor” a parent
| service the first | P I partition

unique network
| identifier in
response to
| determining that an
| amount of input/
| output requests
| over a
predetermined
|threshold have been
| received from the
| remote computer
| system

| . ..
and the child partition the input/output

requests for the

child partition
to system
physical
addresses

I are assigned the first
| and second unique

| identifiers
I
I

| | 1312
. figuri
I 1310 assigning the I C?II: L%}l(;l::guin
| second child partition a | Ewmo P
| second virtual function ! mana enrl};nt
lassociated with a second! anag
| unique network | ' unit to translate
. : . t physical
| identifier, wherein the : guest physica
| second child partition
P | ! associated with
I
I
|
I
I

I
I
I
I
I
I
I
| addresses
I
I
|
|
|
|
|

FIG. 13

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings

