United States Pa&em [19]

Sackm et al.

(i 3,851,733
(451 Dec. 3, 1974

[54] ELEVATOR SYSTEM

[75] Inventors: Miiton Sackin, Pittsburgh; David M.
Edison, Murrysville, both of Pa.

[73] Assignee:

[22] Filed:
[21] Appl. No.: 340,617

[52] US. Clioooiiiiieoio 187/29 R
[51] Int. Cl...oco.......... e s B66b 1/18
[58] Field of Search............................. 187/29
[56] References Cited

' UNITED STATES PATENTS

3,443,668 Hall etal. ..o 187/29
3,511,343

3,587,786

3,589,473

20

i A

Westinghouse Electric Corporation,
Pittsburgh, Pa.

Mar. 12, 1973

THER
IMING
FUNCTIONS

Primary Examiner—Robert K. Schaefer .
Assistant Examiner—W. E. Duncanson, Jr.
Attorney, Agent, or Firm—D. R. Lackey

[57] ABSTRACT

A new and improved elevator system and method of
allocating calls and assigning cars in an elevator Sys-
tem to serve calls for elevator service, When a floor
call is received, it is processed by adding it to the as-
signment register of at least one of the elevator cars,
or by creating a demand signal relative to the call. The
floor calls in the system are reprocessed in response to
certain conditions, to determine if there is a closer
suitable car to each of the floor calls than the car
which presently has the call in its assignment register.
When a closer suitable car is found the call is added to
the assignment register of this closer car, and it is re-
moved from any other assignment register in which it
appears.

30 Claims, 30 Drawing Figures

|

4
PROCESSOR

46

CORRIDOR
CALL
CONTROL

L I5JINTERFACE]

l)} th LANDING

72
- CORE
MEMORY|
Tl SYSTEM PROCESSOR
L . OTHERCARS

TIMING
g38
- Limie
CAR CALL SWITCHES
CONTROL IN
HATCHway

@32 44-\m‘__

56
2nd LANDING

ST TSSO S

i

52 TIMING—l ;?4

DOOR FLOOR
OPERATOR [+ SELECTOR || LANTERNS

HALL

OPERATOR 54
NOTOR SPEED
PATTERN
[CONTROLLERI™ | e RATOR
) T . DISTANCE
S | — PULSES

56
L)} Ist LANDING

PULSE
) DETECTOR ca 10

y PULSE_}
lDETECTOR'

PATENTEL 0EC 31874 3,851,733

SHEET 01 OF 18

! .)
: B0—INTERRUPT
76

OTHER o
. INPUT
~ FUNCTIONS O e AER—INTERFACE
. TIMING : 74
70 -'
' PROCESSOR
—[INTERFACE] 79
| core |
~"IMEMORY,
46 S5REOR 1l SYSTEM PROCESSOR
cCiEoL ———— OTHER CARS
2645 26 :8 20 , |
- liMOTOR}= ISJINTERFACE
30 I
o , 45 | FIG. |
14 E; ;
56 TIMING 18 v
6 30th LANDING {
8 CAR CALL O
o Heol 62 . CONTROL SWTEHES
v . ; HATCHWAY
52 TIMING 4
lj U, 6 0 o i
oH2 44 DOOR FLOOR ™| HALL
12 B | |car~{orermor f sr 2208, —*|LANTERNS
56 DOOR '
F /3% 2nd LANDING| | |OPERATOR 1 (54
g 58! | MOTOR e
| , .| PATTERN
g a0 | CONTROLLERI™ 6 N RATOR
7 DISTANCE
B 50 a8 | — PULSES
- 56
. Ist LANDING L PULSE
A4 s : o4 N
o) Zé* : S 32 P,
u | \—ueE

DETECTOR

]
(@)

3,851,73C

PATENTELOEC 31974

SHET 02 OF 18

. Y 1iN0412
2 9ld Cvdov L3 diNsk
10481NOD S-S NEED
31v9 <
- . N P
oW
S31vo Tt - *l - |
L0 SrF T CEAR " 00V /"8
viva 4 & NOLLIGGY ~{ ONILY9 COaN | ¥3INNOD —
| sl Osw . > <] ONIN3I3LS CODd| V9084 [FNIdd [dids
- | ow } mam ~{ Vviva CO-INId| I |
H344N8 . — 0-2Nid)-| P awo r H¥3INNOD ;
AYOWIN 0oy UnNign Nelelv] \ WVH90ud -
7 : T o IR [ANIWIHONI oIl
of) "o inwnooy d WNE ve O 1 S
dd9 _ BAYR : _ R
L - - * ﬁNm " NIOV o . . A
OL SIOVHYILNI VINYING| dD9 ‘ §300930 Nmmww%_mm
- A v _— <= ONI¥IILS \ |
] N I 1| SONIVO L 1 tm ‘e by [e3aveEn)
b4]| I_O&.—.ZOO = (o]0]} A4VL
1 / g 4300930 -5 > ! 1 or’
, 1| [31v1s I /92
AHOW3W o6 4300030 y31siony] |
NOILONY LSNI 40dN —
02i] 221| vz 96 Jayl — g .t
08 1NOD .TW ool T}
31YM/AV3Y SE'm'] — OINRENEL 35VH01S
ASOW3IA ﬂ % 43A1303Y _
. [saLvele ¢ 7 »
a «/2_04 I18YNI % -~ FEl w »
e y31S1930] __ - TOYLNOD | 8315193y | S 1dNYEILNI
MM\-._ Ss3¥agy o8 mmJDm &/W__ oul NOILONHISN! NIMI AVNOILIaay HO1VM3NIO
104INOD AYOWNIN | o1y 1050 201 o | _ 1ot 3N
319 o A [¥31svW /vo_aoo d09 ! , 3NIL _
409 |0Qv | - ogl
- . - - | P - : M

PATENTLL UC 31874 | 1.851,733
- SHEET Q3 OF 18

150~ 152+
INTERRUPT [POWER
EXECUTIVE FAILURE
, EON
o, / | °\

156
y
P kis2 <\

[
158 ,/ 160 ‘/’64 v \\ (|54

CcSu - > TNC TIME
0 (2) (0)

e e PLACNGIN BID
66} | FLOW

~ [acL

(3)

J

: : 5
(@]

FIG.4

b
%2 [acr

(4)

|/|74

\ 1
CHECK

———{ (5) |e—

BID REGISTER-XBDR

/HIGHEST PRIORITY
hllnolslah[s 5[4 [3]2]i]o
CHECK—1 FIG.5

ACR—
ACL——
TNC ——
CSu

TIME

INPUT REGISTER#1
I [10|9|s]7|s[5|4|3]2|i [o] FIG 6

TIME

N\
SERVICE DIRECT]
(1=UP, O=DN)ON

k-FLOOR ADDRESS+I [~ ZONE-~]
PeLO. [1To]s [e[7 6 5]+]3]]I]c]
-DEMUSCALL A DEmann?) PF1G.8

' _ . —ASG(HAS CAR BEEN
e TIME ~ § ASSIGNED TOCALL?)

- PCLOA LII]IOIQIBI7[6'|5|4I3|2Il Iﬂ
CALL TABLE(CL)
2-12 BIT WORDS/CALL : s

PATENTELLEC 3174

3,851,733

SHEET 04 OF 18

ZHAN dX34 Mddn dnis

z7an|aazw| asvalydas

|

{

*

k

W___N_m_e_m_w_\._m__m_or__;qumo

! a

, . : aaw z1 azw 34 Al
lol ilele[v]s][o][z]s]e]ali]msrs !I'OI g .hNI._mF SN >0I914
_ P A
W3001
{oli]e]e]¥]s]o]] glelofin] s
) ONIN3Q
e ——OVvoL e VoL e -2Vl -
biele|vis|9iL|8|e]oilnfzifeilvifsi]si] 21]81] 61]02] 12[22[c2|ve|Se] 92| L2]82]62]0 #4004 g-q)) 4
olilejeiv|siois|alsjoifn]a]eilvlci|of]gll 6oz izlzzczl ve 52|92l i 2| szl6zi0e #1189 ,
. SAHOM 118 2I-€ .
(V21) Q80339 11VD 1N0 G3NIL
ONYYD INVYO ZNYY0
€400 $8712D CH10D— — .|
ey 2 mp) GHID
Ogi6¢182|.2(8¢|s¢ibeleeicel 1ziozfel i8I Ll|olfsi|bi|el|ai|1t{o]elg]ls]lolsv]lelal #4004
olljejeivisigjzisie|olijaifsiivI|ci{o] |8l 61|02]12|z2|c2| v 2 52| 92| 2 2| 826 2| OC 1elzeleelbelsel #1198
ASdN-Y¥VI dN/STIVI dN -
NYOS— ONV Y2 INVHO ZNYNO 29|43
087199 147100 287190
0¥7D 1459 24710 v
bleleivisliolzislse|of]at|elivt|si|ol|si[s1]el]oe]1z]ezlcelvalcz]oz] 2826208 #H¥0014
OltleleivisiejsiBis|oIjt]alelbt|SI|91]21|81]6l |02 12|z2|s2|v2|szioz| 2|82]62l0¢! I1c zeleslpvelse|# 118
- ASNQ-YVONMOG/STIVONMOQ ———8m _
4VD/SAYOM 118 21-¢ SaMOM Li8 2i-9 SQMOM 118 21-9

(VH0)3718V1 INIWNOISSY 8VD -(H¥7103)040034 IONVHD 110 - (810) aN0034 V0

/

PATENTELEC 31874

SHEET 0S5 OF 18

3,851,733

" INPUT WORDS FROM EACH CAR

wo | "TIOTS T8 76533 T2TTTo1
Y lavas 32L |DRCL |ceBL [ccasleaLL [upsviuPTr INSc lBYPS sLDN
141098'76543210
FIGI2¢ 1w AVPS |avPs |avea lave 3lave 2lave ilaveo :
1110-987554’3'2'10
Iwe ’ ' WT 75 |WT50|CREG |ATSV
OUTPUT WORDS TO EACH CAR
owo | T 109376,543l2|vlo
FADS |FADS |FAD4 |FAD3 [FAD2 |FAD! [FADO|SASS [TASS MOD! IMODOIFARK|
¢ HTiIo[s]8 76574 3‘|2 I 10
FIGI3q owi HLMI [HLMO DCLO |DOPNICCAT |Mccr| Gswv
Myl ol el 7654131371 0
owz STT [MNFL INEXT
N I
EXTRA MEMORY WORD FOR EACH CAR
, sl 0] °]8[7 16 [5[a 327 o
- FIG.14 | Bag| MFS [BNXT|BCC |ASG |MFx _zons!
' ZONE CODE
UPSV DNSV
CODE |zonE ZONE| CODE
TE| 7
7 |Te
|5 | nz
FIG.15
oMzD| 6
4 Lz
2 | MF MF | 2
! e{ }a :
O | ———NOASSIGNMENT —— | o

PATENTLLEC 3 1974.

200~
(0s0/0)
,202

STOREPC.
STORE ACC

204

/
READ
INPUT |

SET TIME= 32
BID TIMER PROGRAM

ﬂ 214
M 4

RETRIEV
ACC

216
RETRIEVE
PC.8 RETURN

FIG.16

_ pd
DECREMENT | 150
TIME i

212
N
Yo 218
7

3,851,733

SHEET 06 OF 18

‘ 220f
/2

22

SET TO ZERO:
XBDR, DEMIND,
DEMAS, TODEM,
UPK,DPK,UPTIM
NCL,NTOD,MFU,
NEX!,ZCCI, ZINIT

1

i 224
, 226

CLEAR:
CRA,CLR,
CCLR, CL

ped
SET BIT
S5 OF XBDR|

234

IS
BIT # N

SET IN XBDR

240

JMP TO STARTY .
OF PROGRAM N .

FIG.I7

PATENTEL 0EC 3174 o 3,851,732
- SHEEF- (07 OF 18 o

246
; 248

DECREMENT:
NXTIM,MFTIM,MFSTIM

250. ,252
DECREMENT
DPK
| 254
SET SDPK \
IN SYSW
; 7 |
064, IN |SET UPK,GPPK]
SET UPK & o
UPPK IN SYSW 266
CLEAR TODEM| -
268_ A
@ 294
i
7
/ 2704 298
TOM=SYSMFX<—0)R
SET MFTIM=4 SET TCBITS &
SYSW BIT
NTOD =——NTOD- |
290
288
DECR}” .
TIMER| -
N
282 | 284 . . 286
L
: N CALL
NTOD =— QTOD WN <O p
WN =— NCL-| ? T'ME?R 0
/.
300 - |Y- Y 292
SET TODEM

FIG.I8 | il

PATENTEL DEC 31874
SHEET

302

3,851,733

08 OF 18

-

/303

SET TO ZERO:
NOSC,NAC,
ZNMC, ZMDC

304

SET Zi=
MAXCRN

'{ /305
TRANSFER: -

OWO-~ZOWO IWO—=ZIWO
OW| =ZOWI W[—=Z|W]|

OW2--Z0W2 |1w2—z|w2
XW —=ZXW :

(%jaos
~]

329_ |

DEMAS-—O|
SYSMFX=-—0
NCL=--0

CAR-STATUS
ANALYSIS

(FiGs .20A,208B,20¢,20D)

I'S. CARS

AVAD
?

(_3l3 «

SET MFD
IN "DEMIND"
"DEMAS"

SETMFD *,L

IN "DEMIND"

FIG.19

330i

PATENTE. ttc 31974

3.851,733
SHEET 03 OF 18
FIG.20A
33
Q (332
|2ACP=- ADVANCE-CARRAGE|
350 '
CHANGE (352
\ SET
N BYPASS | ZACLBD

353

~zZACPMF==
ACP -MFL

4l8\ Y | : J‘

358 INEXIZCCI=0 356,
BASEMENT
- ASSIGNMENT
361,
SET ZACLBD
BSMT

NEXT, AVAD

LANT 8 DOOR NORMAL |
NEXI=ZCCi=0 -

383\

DOOR,LANTERN
NORMAL

l'll' i

PATENTL. C 31814

3,851,733

SHEET 10 OF 18
FIG208B

y___/
SET MFX,SYSMF
CLEAR CRA
ASG

414

43|

CLEARCRA, XW
SET ZONE =

428
@ Q> O

(335

BSMT AVAD,

NEXT, PARK
CLEAR ZXW
SET ZONE
ASGN MODE=00
TASS=—T.D.
SASS=—3D.

334

A RY

IT BE MADE
AVAD

ASG
42| SETZACLBD

|

CAR
CE}AN&;ED
426 O? E

,427

SET ZACLBD

SE
ZON E CODE

Y

S

 PATENTEL Dt & 31974

SET UPTIM

402
DOOR

3,851,733
SHEET 11 OF 18
N o FIG.20C
” 3390
,404
SET ZCCi
SET NXTIM

NORMAL

/Y

PATENTEL GEC 31874

SHEET 12 OF 18

FIG. 20D

3,851,733 |

403

452

PARK,AS MODE |
NORMAL ,DOOR
BLANT NORMAL,

STT

L

384

444

ASGN MODE

=00

STT,PARK
MAIN FL 8

BELOW DOOR,
LANT NORMAL

MF PARK

TASS=—DOWN
SASS<— DOWN
ASGN MODE=00

ASGN

448,

MID BLDG
PARK

AVAD,ASGN

339, 338
SET CAR] N [SET CAR
LDNP DNPK
340 ; 341,

OQUTPUT
3COMMAND
WORDS

UPDATE

342\

EXTRAWORD [}

UPDATE
INPUT DATA

343

PATENTELLCC 31078

3,851,733

SHEET - 13 OF 18

47|

470 N 472y 474\
INITIALIZE | LDA WITH SETBITIN
FOR UP CALLS CALL WORD YCALL"
g -
F
CALLS Vo ar
INCR TBITN 476 . ‘
“FINISHED WITH I TH
INCREMENT BIT # AT
479 _ 478
XOR YCALL + CLR WORD
“l;‘ll]NEHL{ELDL 8 STORE IN CCLR
CLR=— YCALL
FLOORS
? YCALL —O
N
483
INITIALIZE
493 FOR DN CALLS
/ .
INITIALIZE ' i,
FOR UP
CALLS

ADDCALL TO

TABLE ,SET
ZONE G TIMER

NCL

Y 491

. /
REMOVE CALL
AND COMPACT

TABLE

488
[DECR NCL, YNCLO]

'y 489
REMOVE BIT FROM CRA

FOR EACH CAR WITH
PROPER SASS

R

FI1G.21

PATENTEL GEC 31974 3.851,733
SHEET 14 OF 18 |

FIG.22A

503 N

1 .
DELETE DEMINDY — -
HI,LO,MZ PCLOX=-PCLO PCALLO

FDCL=-ZACLBD
MZDSWP-—0

SPMCR ~—0
FocL~0] sio,
‘ ORDER CALL
508 T8L
516 .
PCLOX=-PCLO=-PCLO+2
PCLOAX=-PCLOA~PCLO+ 2
N Y
574 512,
[zacLeD-0] | ACRMSK~—CALZON="20NE]
514, 515
BASEMENT |
PROGRAM
575f

JACLOCR=-|
ASDIF -— 128
Xi-—NMCRO

by

- PATENTE. 0eC 31974

SHEET 15 OF 18

3,851,733

FIG.22B
534
CALL=_N
ASG - DEM o
? 539
Y CAR=N\N
SPMCR
535 | Y
Y
N 540
N_ZAcLBD
Y 4
536 Y
FORM: | g
CAR PTRS FOR XI SFLONN [
529, . ACLFLR
|FORM : ACLMCR] N

UP CALL
PROGRAM |
)
\ o
AHICAR =X
HIFLR=-ACRFLR
) S :

SHEET 16 OF 18

FIG22C

3,851,733

| 4

552 _

IF CALL=0
DELETE CRA
TO ACLFLR
OF XI

- 550 %

5471‘

IACLMCR=JACLMCR]] 555

IF CALL=0
TO ACLFLR

DELETECRA

OF ACLOCR

SET DEMIND:

Mz

SET MzZDSwP
AHIFLR~-—MFL
AHICAR ~—-|
SET DEMIND: MZ

557\

FDCL=—0
MZDSWP=~0 -
SET SPMCR: ACLOCR

558, |

FOR ACLOCR:
SET CRA TO
ACLFLR,SD

573

ACLOCR--AHICAR
SET: ASG-DEM

ACLOCR =—X1

ASDIF--ACLMCR

537

FOCL--0
MZDSWP--0

L |

PRES ASG\\N
CALL TO.
?

PATENTEL DEC 31974 o 3,851,733
SHEET 17 OF 18

FIG.23A
605
——={ORDER CALL TBL] |

600

LKA=-7
LKO=6

608
SUB: LOOK

618

TOM TODEM:LO | | i | TODEM:HI
"PROGRAM

: N , ‘
FOUND , | _PROGRAM - | PROGRAM

Y
619

N
1 CALL T.O,
?

Y
620

Y__(CALL ASG
»

621, I[N
[REFLR=—CALLFLR]

622,

FIND CLOSEST CAR
IS AVAD-ASG

[ocRNO ~—CcRNO |

625y |y
EXPOSE CALL
ADRESS
626+ |
MZ outPuT ||
_ ASSIGNMENT

y

PATENTEL GEC 31874 3,851,733
SHEET 18 0F 18

FI1G.23B

645,
RESET LOBMZD]

DEMINDMZ

DEMIND:BSMT| | IDEMIND :LO DEMIND: HI
PROGRAM

PROGRAM PROGRAM PROGRAM

B —

hsﬂﬁ;—MFL]

y 64l

FIND
CLOSEST CAR

' FIG.24
642 '
2 609 610
FOUND - PCLV=—PCALLO)

Y 643 |PCLV=—PCLV+2
e 6!7/)
OUTPUT
ASSGMNT |
/644

SET DEMAS: MF
RESET LOBMZD

ACC~—PCLV|

3,851,733

1
ELEVATOR SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

Certain of the apparatus disclosed and described in
this application, but not claimed, may be claimed in the
following concurrently filed applications:

Application Ser. No. 340,619, filed Mar. 12, 1973 in
the name of J. Vine, which is assigned to the same as-
signee as the present application.

Application Ser. No. 340,615, filed Mar. 12,1973 in
the name of N. Sackin, which is assigned to the same
assignee as the present application.

BACKGROUND OF THE INVENTION

1. Field of the Invention:

The invention relates in general to elevator systems
and more specifically to elevator systems in which a
plurality of elevator cars are coritrolled by a central dis-
patching control apparatus.

2. Description of the Prior Art:

In the average multi-tenant building which includes
an elevator system having a plurality of cars for serving
the floors of the building, about 80 percent of the floor
calls registered above the main floor are down calls,
and even in a single-tenant building down calls predom-
inate. Therefore, elevator systems which include a cen-
tral dispatcher or system processor for controlling the
dispatching of a plurality of elevator cars in response to
floor calls, include special strategy for down calls.

For example, in one prior art system, the floors are
divided into zones having one or more floors per zone,
and a down floor call is assigried to all elevator cars
having a position, service and travel direction which is
suitable for the call location. The number of zones reg-
istering down calls are counted, and the number of ele-
vator cars set for down travel which are in the process
of serving down floor calls are also counted. When the
number of zones having down calls exceeds the number
of down runing cars serving the zones, a demand is cre-
ated to which available or non-busy cars are assigned.
When there are more down running cars than zones
having down calls, the calls are deleted from the lowest
of the cars and this car is made available. Any floor
calls which it may have in its assignment register are
given'to the other cars. :

SUMMARY OF THE INVENTION

Briefly, the present invention is a new and improved
elevator system, and method of dispatching cars to
serve floor calls for an elevator system, which provides
new and improved strategy for allocating floor calls,
and assigning cars to floor calls, including an improved
arrangement and method for handling down calls.

A new floor call is allocated to the assignment regis-
ter of at least one suitably conditioned car which is al-
ready in the process of serving calls. A suitably condi-
tioned car is one which is located relative to the call,
and with a travel and service direction such that it will
be able to service the call in question as it continues its
present course through the building. Failing to find
such a car, a demand signal is created relative to the
call and a non-busy car, i.e., a car which is in service
but which is not presently in the process of serving a
call for elevator service, is assigned to the demand call.

20

25

30

35

40

45

50

55

60

65

2

If there are no such cars available, the demand persists
until a car becomes available, or a running car finally
gets into a position which conditions it to serve the call.

The processed floor calls are reprocessed when an
event occurs which indicates the possible need to real-
locate one or more of the floor calls. When a floor call
is reprocessed, it is determined if there is a closer suit-
able car to the call floor than the car, or cars which
presently have the call in their associated assignment
registers. The cars are successively compared relative
to a specific call and each time a closer suitable car is
found than a previous suitable car, the call is deleted
from the assignment register of a less suitable car.
When all cars have been compared, the call is added to
the "assignment register of the closest suitable car
found. Thus, after reprocessing, only one car has any
one floor call in its assignment register.

When down floor car is allocated to a down running
car, this car is not considered for further down calls.
Thus, placing each call in the assignment register of
only one car, and by allowing one down call to be allo-
cated to a down running car, any excess calls over
down running cars automatically creates a demand sig-
nal for an available car for each call in excess of the
down running cars. It is not necessary to count the calls
and to count the cars to implement this down availabil-
ity strategy.

Further, the invention results in the call registers of
the cars accurately representing the present traffic con-
dition. The assignment registers of the cars are not clut-

tered with calls which they may not answer because an-

other closer car with the same call will reach the call
floor first. The invention thus returns the elevator cars
to the available status much quicker, preventing unnec-
essary running through th building by cars which will
not serve the call they are running for. The quicker re-
turn to the available status also reduces the waiting
time required to assign available cars to demand calls,

The invention eliminates the prior art problem of de-
ciding which car to remove from running status and to
make available when the number of down running cars
exceeds the number of down calls. In the prior art, arbi-
trarily deleting the calls from the assignment register of
the lowest car and reallocating these calls to the re-
maining running cars may not always be the best strat-
egy. With the present invention, the best strategy is al-
ways implemented, as the closest car to a call always
has the call assignment.

In one embodiment of the invention, the removal of
a floor call from the assignment register of a car which
is not as close to the call floor as another car, is subject
to the condition that the less suitable car has no regis-
tered car calls. If the less suitable car has one or more
car calls, removing the floor call from its assignment
register will not hasten its return to availability status,
as the car will continue to be a busy car until it has
served its car call. Thus, the floor call is not deleted
from the assignment register of a car which has a car
call, since it is a suitably conditioned car for the floor
call, and the chance is present that the closer car may
for some reason be delayed, allowing the less suitable
car to answer the call. Thus, the less suitable car retains
the floor call in its assignment register until the closer
car answers the call, or the car call is served, or the less
suitable car answers the floor call,

3,851,733

3
BRIEF. DESCRIPTION OF THE DRAWINGS

The invention may be better understood, and further
advantages and uses thereof more readily apparent,
when considered in view of the following detailed de-
scription of exemplary embodiments, taken with the
accompanying drawings, in which: °

FIG. 1 is a partially schematic and partially block dia-
gram of an elevator system which may utilize the teach-
ings of the invention; .

FIG. 2 is a detailed block diagram of a system proces-
sor which may be used in the elevator system shown in
FIG. 1; :

FIG. 3 is a schematic representation of instruction

cycle state sequences which may be used to execute in-
structions by the system processor shown in FIG. 2;
+ FIG. 4 is a block diagram of a new and improved soft-
ware system for the elevator system shown in FIG. 1,
which directs the system processor hardware to the
task of operating the elevator system to provide im-
proved elevator service; :

FIG. § is a diagrammatic representation of a bid reg-
ister used by the software system to determine the most
efficient linkage of subprograms during each running of
the program in response to traffic conditions being ex-
perienced by the elevator system;

FIG. 6 is a diagrammatic representation of input reg-
ister number 1 shown in FIG. 2, illustrating its use for
interrupts, such as a time interrupt; ’

. FIG. 7 is a diagrammatic representation of a call re-
cord, call change record, and a car assignment table es-
tablished by the software system for keeping track of
corridor calls, and the allocation or assignment of the
corridor calls to the various elevator cars of the system;

FIG. 8 is a diagrammatic representation of a call
table established by the software system, illustrating the
two words placed into the call table for each corridor
call; S

FIG. 9 is a diagrammatic representation of a timed
~out call record establishied by the software system, for
keeping track of corridor calls registered for longer
than a predetermined period of time;

FIG. 10 is a diagrammatic representation of words
established by the software system to keep track of sys-
tem demands, the types of demands, and whether a car
has been assigned to certain of the demands;

FIG. 11 is a diagrammatic representation of a system
signals word established by the software system to keep
. track of certain types of system demands: .

FIG. 12 is a diagrammatic representation of the input
words received by the systém processor from each ele-
* vator ‘car of the system;

. FIG.13isa diagrammatic representation of the out-
put words prepared by the system processor for each
elevator car of the system, and sent to the associated
car controllers thereof; ,

- FIG. 14 is a diagrammatic representation of an addi-
tional word established by the software system for each
elevator car; . i .

FIG. 15 is a diagrammatic representation of a zone
code which may be used to identify corridor call loca-
tion and service direction’ request, as well as the.loca-
tions and movements

-associated building;

of the various elevator cars in the

15

20

25

30 -

35

40

45

50

55

60

65

4

FIG. 16 is a flow chart illustrating a subprogram
which may be used for the block software function enti-
tled “Interrupt Executive” in FIG. 4;

FIG. 17 is a flow chart illustrating a subprogram
which may be used to establish the linkages between
the subprograms of the software system shown in FIG.
4, in response to the bid register shown in FIG. 5;

FIG. 18 is a flow chart illustrating a subprogram
which may be used for the block software function enti-
tled “Time” in FIG. 4; _

FIG. 19 is a flow chart illustrating a subprogram
which may be used for the block software function enti-
tled “CSU” in FIG. 4; ;

FIGS. 20A, 20B, 20C and 20D show an illustrative
flow chart for determining the status of each elevator
car, which flow chart may be used by the subprogram

~CSU shown in FIG. 19;

FIG. 21 is a flow chart illustrating a subprogram
which may be used for the block software furiction enti-
tled “TNC” in FIG. 4;

FIGS. 22A, 22B and 22C illustrates a flow chart
which may be used for the block software function enti-
tled “ACL” in FIG. 4;

FIGS. 23A and 23B illustrate a flow chart which may
be used for the block software function entitled “ACR"”
in FIG. 4;) ‘

FIG. 24 is a flow chart for a subroutine “LOOK"
which may be used in the software function; and

‘DESCRlPTlON OF PREFERRED EMBODIMENTS
FIG. 1

Referring now to the drawings, and FIG. 1 in particu-
lar, there is shown an elevator system 10 which may uti-
lize the teachings of the invention. Elevator system 10
includes a plurality of cars, such as car 12, the move-
ment of which is controlled by a system processor 11.
Since each of the cars of the bank of cars, and the con-
trols therefor, are similar in construction and opera-
tion, only the controls for car 12 will be described.

More specifically, car 12 is mounted in a hatchway
13 for movement relative to a structure 14 having a
plurality of landings, such as 30, with only the first, sec-
ond and thirtieth landings being shown in order to sim-
plify the drawing. The car 12 is supported by a rope 16
which is reeved over a traction sheave 18 mounted on
the shaft of a drive motor 20, such as a direct current
motor as used in the Ward-Leonard drive system, or in
a solid state drive system. A counterweight 22 is con-
nected to the other end of the rope 16. A governor rope
24 which is connected to the top and bottom of the car
is reeved over a governor sheave 26 located above the
highest point of travel of the car in the hatchway 13,
and over a pulley 28 located at the bottom of the hatch-
way. A pick-up 30 is'disposed to detect movement of
the car 12 through the effect of circumferentiaily-
spaced openings 26A in the governor sheave 26. The
openings in the governor sheave are spaced to provide
a pulse for each standard increment of travel of the car,

-such as a pulse for each .5 inch of car travel. Pick-up

30, which may be of any suitable type, such as optical
or magnetic, provides in response to the movement of
the openings 26A in the governor sheave. Pick-up 30
is connected to a pulse detector 32 which provides dis--
tance pulses for.a floor selector 34. Distance pulses

3,851,733

§

may be developed in any other suitable manner, such
as by a pick-up disposed on the car which cooperates
with regularly spaced indicia in the hatchway.

Car calls, as registered by push button array 36
mounted in the car 12, are recorded and serialized in

car call control 38, and the resulting serialized car call .

information is directed to the floor selector 34.

Corridor calls, as registered by push buttons mounted
in the corridors, such as the up push button 40 located
at the first landing, the down push button 42 located at
the thirtieth landing, and the up and down push buttons
44 located at the second and other intermediate land-
ings, are recorded and serialized in corridor call control
46. The resulting serialized corridor call information is
directed to the system processor 11. The system pro-
cessor 11 directs the corridor calls. to the cars through
an interface circuit, shown generally at 15, to effect ef-
ficient service for the various floors of the building and
effective use of the cars.

The floor selector 34 processes the distance pulses”

from pulse detector 32 to develop information con-
cerning the position of the car 12 in the hatchway 13,
and also directs these processed distance pulses to a
speed pattern generator 48 which generates a speed
reference signal for motor controller 58, which in turn
provides the drive voltage for motor 20,

The floor selector 34 keeps. track of. the car 12 and
the calls for service for the car, it provides the request
to accelerate signal to the speed pattern generator 48,
and provides the deceleration signal for the speed pat-
tern generator 48 at the precise time required for the
car to decelerate according to a predetermined decel-
eration pattern and stop at a predetermined floor for
which a call for service has been registered. The floor
selector 34 also provides signals for controlling such
auxiliary devices as-the door operator 52, the hall lan-
terns 54, and it controls the resetting of the car call and
corridor call controls when a car or corridor call has
been serviced. '

Landing, and leveling of the car at the landing, is ac-
complished by ahatch transducer system which utilizes
inductor plates 56 disposed at each landing, and a
transformer 58 disposed on the car 12. :

The motor controller 50 includes a speed regulator
- responsive to the reference pattern provided by the
speed pattern generator 48. The speed control may be
derived from a comparison of the actual speed of the
motor and that called for by the reference pattern by
using a drag magnet regulator, such as disclosed in U.S,
Pat. Nos. 2,874,806 and 3,207,265, which are assigned
to the same assignee as the present -application. The
precision landing system using inductor plates and
transformer. 58 is described in detail in U.S. Pat. No.
3,207,265. : :

An overspeed condition near either the upper. or
lower ‘terminal is detected by the compbination of a
pick-up 60 and slow-down blades, such as a slow-down
blade 62. The pick-up 60 is preferably mounted on the
car: 12, and a slow-down blade is mounted near. each
terminal. The slow-down blade has spaced openings,
such as a toothed edge, with the teeth being spaced to
generate pulses in-a pick-up 60 when there is relative
motion between them. These pulses are processed in

pulse detector. 64 and-directed ‘to the speed pattern-

generaor 48 where they are used to detect overspeeds.

6

A new and improved floor selector 32 for operating
a single elevator car, without regard to operation of the
car in a bank of cars, has been disclosed in co-pending
application Ser. No. 254,007, filed May 17, 1972, now
U.S. Pat. No. 3,750,850 which is assigned to the same
assignee as the present application. In order to avoid

* duplication and to limit the complexity of the present

15

20

25

30

35

40

45

50

55

60

65

application, application Ser. No. 254,007, filed May
17, 1972, is hereby incorporated by reference, and will
hereinafter be referred to as the first incorporated ap-
plication.

The programmable system processor 11 includes an
interface function 70 for receiving signals from, and
sending signals to, the car controllers (interface 15) of
the elevator cars in the elevator system, a core memory
72 in which a software package is stored, a processor

74 for executing instructions stored in the memory 72

relative to the dispatching of elevator cars and.other-
wise controlling a group of elevator cars according to
software strategy stored in the core memory, a tape
reader 76, an input interface 78 for transferring the
software data from paper tape, or the like, to the core

memory 72, an interrupt function 80, also connected to

the processor 74 via input interfaces 78, and a timing
function 82 for controlling the transmission of data be.
tween the system processor 11 and the car controllers
of the elevator cars.

Concurrently filed application Ser. No. 340,618,
filed Mar. 12, 1973, in the name of David Edison enti-
tled “Elevator System”. wich is assigned to the same
assignee as the present application, discloses a new and
improved elevator system for operating a plurality of
elevator cars in response to signals provided by a pro-
grammable system processor. This application - is
hereby incorporated by reference, and will be hereinaf-
ter referred to as the second incorporated application.
The second incorporated application sets forth the
changes necessary in each single car control, described
in the first incorporated application, as well as details
of the interface functions 15 and 17, and master timing
82, shown in block form in FIG. 1, for operating a plu-
rality of elevator cars according to a software program
stored in the core memory 72. The present application,
as well as the concurrently filed applications referred
to under the heading “Cross-Reference to Related Ap-
plications,” collectively set forth a new and improved
processor 74 for executing the instructions stored in
the core memory 72, as well as new and improved strat-
egy for dispatching a plurality of elevator cars to more
efficiently. service calls for elevator service registered
from the various landings or floors of an associated
structure. The new and improved strategy . is ‘imple-
mented by software, which dcts upon the data received
from the corridor call registers and from the car con-
trollers of the various elevator cars, to provide signals
for the car controllers which effect the new and im-
proved strategy of the stored program. :

FIG. 2

FIG. 2 is a detailed block diagram of the processor 74
shown in FIG. 1, as well as the core memory 72, the
input interface 70, the tape reader 76, and the interrupt
fucntion 80. Since the programmable system processor
11 is broadly similar in function to most digital comput-
ers, and is therefore well known to those skilled in the _
art, a block diagram of the various functions will be suf-

3,851,733

7

ficient description for those skilled in the digital com-

puter art. .
Process 74 is a special purpose controller which uti-

lizes a stored program, a fixed instruction set, and a

8:
decoder and control 98, to provide an enable signal for
a master oscillator or clock 104. The master oscillator.
104 provides the correct number of gating pulses GCP ,
for the specific function being executed. = ’

in the data steering gating 94. Clocking of data is con-
trolled by a pulse control function 102, which is re-
sponsive to the instruction register 90 and cycle state

fixed cycle control sequence, to control serial gating of 5 -~ The pulse control-102 and cycle state decoder and
data between the various registers of the programmable ~ control 98 also control a memory read and write func-
system processor 11. For purposes of example, the in- ~ tion 106, which in turn sets the memory for a reading
- struction and data word lengths are 12 bits wide, per- OF writing function, dgpendlqg upon the specific cycle
mitting the addressing of 4,096 words of memory, but State dictated by the instruction. - ‘
an 8K core, or larger, may be used, as required by a 10 The various arithmetic and Togical functions which
specific application. ' cooperate with the accumulator register 92 are shown
Processlor 74 includes five registers’ a program generally at 108, and the function of Incrementing the
‘counter register' 84, a memory address register 86, a program: counter register is shown at 110. . ‘
memory buffer register 88, an instruction register 90, A skip test circuit 111 provides a signal SKIP for the
and an accumulator register 92, 15 circuitry 110 for incrementing the program counter 84,
The program counter 84 provides a pointer to mem- when the program counter 84 is to be incremented by
ory 72 for instruction execution. The contents of the two instead of by one.
program counter 84 provide the address of the instruc- The instruction set for the system processor 11 in-
tion being executed. ' cludes eight memory reference instructions, i.e., those
The memory address register 86 is a temporary stor- 20 which require a memory operation in the execution of
age register for forming addresses for memoryreadand the instruction other than the initial memory operation
write functions. , required to call up the function, and sixteen accumula-
The memory buffer register 88 is the interface for tor reference instructions, i.e., those that cause opera-
data transformed to and from the memory 72. ‘tion of the current contents of the accumulator at the
The instruction register 90 is the temporary storage 25 beginning of the instruction execution.
location for the instruction being executed. : The instruction set is as follows:
T - VMeﬁl‘;l;‘liefe;;l;:;uhm -
Instructions Mne- Code
monic
1. Load Accumulator LDA () XXXX
XXXX
2. Add Accumulator ADD 110¢) do.
3. And Accumulator : AND. 001() do.
4. Exclusive Or Accumulator XOR 010() do.
5. Store Accumulator STA 101() .-do.
6. Store Program Counter _ STP 100() -do.
7. Program Branch BRA. 011(¢) do.
8. Operate OPR 000 1 _ do.
Accumulator Reference
’ Instructions Mne- Code
monic
1. Skip Unconditionally SKU " 0000 0000 YYYY
2. Form 2's Complement CHS 0000 0001 do.
3. Load Accumulator With Zero LDZ. 0000 0010 do.
4. Priority Interrupt ' PRI 0000 0011 Q000
5. Long Shift LSA 00000100 YYYY
6. Short Shift SSA . 0000 0101 do.
7. Skip On Bit SKB 0000 0110 do.
8. Set A Bit. SET- 00000111 do.
9. Input INP * " 0000 1000 00YY
10. Output OUT 0000 1001 00YY
11. Skip on Zero SKZ 0000 1010 0000
12. Skip on Positive SKP " 0000 1011 0000
13, Skip on Negative " SKN . 0000 1100 0000
14, One’s Complement NOT 0000 1101 0000
15. Literal Add : LTA 0000 1110 YYYY
16. Set Bit To Zero STZ 0000 1111 YYYY - °
The accumulator register 92 is a temporary storage " The addressing of the memory reference instructions
location for the result of arithmetic and logical opera- may be “direct,” in which ‘event the instruction is
tions.- . , stored on the same page of the core memory 72 as the
" The processor 74-also includes a data steering gating address of the instruction provided by the program
function 94 which steers input data to the proper regis- 60 counter 84, The addressing of the memory reference
ter according to the instruction being executed and the .~ instructions may also be “indirect,” in which event the
specific cycle state of the processor. An instruction de-, _instruction is stored in a different page of the memory
coder 96 and cycle state decoder and control 98 con- : than the page on which the address of the instruction
trol the gating paths established in a gating and steering provided by the program counter 84 is stored. The
function 100, which in turn specifies the gating paths 65 fourth MSB of the instruction code determines whether

- the addressing will be direct or indirect, with a logical

‘“one” indicating a direct instruction and a logical
*“zero” indicating an indirect instruction. With a direct

3,851,733

9

instruction, the address of the memory to be operated
is determined by the four MSB of the program counter
and the eight LSB of the instruction. The four MSB of
the program counter defines one of the sixteen possible
256 word pages within the 4,096 word blocks of core
memory, and the eight LSB of the instruction defines
the word within the page.

With indirect addressing, the four MSB of the pro-
gram counter 84 and the eight LSB of the instruction
are used for determining an address in the same page
as the program counter pointer, and the contents of this
address is the address of the memory to be operated
upon. Since this address is a full 12 bit word, this ad-
dress can be anywhere within the 4,096 word block of
memory 72.

A fixed cycle control sequence is utilized to effect in-
struction execution. The control sequence includes six
possible cycle states. However, every cycle state is not
utilized for every instruction. FIG. 3 illustrates the five
different cycle state sequences that are used, with the
Roman numerals indicating cycle states as follows:

I — Instruction Fetch

II — Indirect Addressing

III — Memory Read

IV — Memory Write

V — Accumulator Reference

VI — Increment Program Counter

Cycle states I and VI are used with all instructions,
while the use of the remaining cycle states depend upon
the specific instruction being executed. For example, a
memory reference instruction involving a memory read
operation would use cycle states I, Il and VI with di-
rect addressing, and cycle states I, II, HI and VI with in-
direct addressing. A memory reference instruction in-
volving -a memory write operation would use cycle
states I, IV and VI with direct addressing, and cycle
states I, II, IV and VI with indirect addressing. An accu-
mulator reference instruction would use cycle states I,
V and VI. ‘ '

Cycle state I calls up from the memory the instruc-
tion to be executed. At the start of cycle state I, the ad-
dress of the instruction is in the program counter 84.
The contents ‘of the program counter 84, indicated by
serial output signal PCO. is transferred to the serial
input ADIN. of the memory address register 86 via the
data steering gating circuits 94, The cycle state decoder
and control 98 is outputting the cycle state signal for
cycle state I to both the gating steering decoder 100,
which sets the gating paths in data steering gating 94,
and to memory read/write control 106, which sets the
memory 72 for the memory read operation required to
call up the address of the instruction. placed in the
memory address register 86. The memory address from
the memory address register 86 is transferred in paral-
lel to the core memory 112 via gates 114, and the con-
tents of this address is transferred in parallel to the
memory buffer register 88 via gates 116. The contents
- of the memory buffer régister 88 are then transferred
serially indicated by output signal MBO, by the gating
pulses GCP to the mput IRIN of the instruction register
90 via data steering gating circuit 94,

Various parts of the instruction in the instruction reg-
ister 90 are transferred in parallel to the instruction de-
coder 96, pulse control 102, and addition and bit test
circuitry 108. The instruction decoder 96 sets gates in
the gating and steering decoder 100, and it enables the
cycle state decoder and control 98 to provide the cycle

I5

20

25

30

35

40

45

10

state output signal associated with the specific instruc-
tion. : .

If the instruction placed in the instruction register 90
was an indirect memory reference instruction, the se-
quence automatically advances to cycle state II. Cycle
state I obtains the memory address that data is to be
read from during cycle state IHl, or written into during
cycle state IV, depending upon the specific instruction.
In cycle state II, the four MSB of the program counter
84 contained in the serial output signai PCO, and the
eight LSB of the instruction register 90 contained in the
serial output signal IRO are transferred to the memory
address register 86 via the data steering gating circuits
94, which have been preset to accomplish this function.

If the instruction ‘being executed is a direct memory
reference instruction which requires a memory read
operation (instructions LDA, ADD, AND, XOR, BRA
and OPR direct) advancement is made directly from
cycle state I to.cycle State IIL. If the instruction being
executed is an indirect memory reference instruction of
this type, advancement is. made from cycle state II to
cycle state I1I.

Cycle state III obtains the data from memory 112 that
is to be operated upon by the instruction execution.
The memory address for this data is contained in the
memory buffer register 88 for an indirect instruction,
as a result of the memory read operation in cycle state
II, and is contained in the four MSB of the program
counter 84 and eight LSB of the instruction register 90
for a direct instruction. During cycle state HI, this data
is transferred from its location to the address reigster
86 via the data steering gating circuit 94, and a memory
read operation is initiated in response to signal IIl being
applied to memory read/write control 106 from the
cycle state decoder and control 98. The data read from
the memory 112 is transferred in parallel to the mem-
ory buffer register 88, and is then serially transferred to
the accumulator register 92 via data steering gating cir-
cuits 94, or operated upon by the contents of the accu-
mulator 92 and the result stored in the accumulator 92,
or transferred to the program counter 84, depending

upon the specific instruction.

If the instruction being executed is a direct memory
reference instruction which requires a memory write
operation (instructions STP and STA) advancement is
made directly from cycle state I to cycle state IV. If the
istruction being executed is an indirect memory refer-

ence instruction of this type, advancement is made

from cycle state II to cycle state V. Cycle state IV
writes data into memory 112. The memory address for
the write operation is contained in the memory buffer
register 88 for an indirect instruction, and is contained
in the four MSB of the program counter 84 and the
eight LSB of the instruction register 90 for a direct in-
struction. During cycle state IV, this data is transferred
from its location to the memory address register 86 via

. the data steering gating circuits 94. The data to be writ-

ten into the memory 112 is contained in either the ac-
cumulator 92 or the program counter 84, and during
cycle state 1V, this data is transferred serially from its

- location to the memory buffer register 88 via the data

65

steering gating circuits 94. Signal IV from cycle state
decoder and control 98 enables the memory read/write
control 106 to prepare the memory 112 for the write
operation, and the data transferred to the memory buf-
fer register 88 is transferred in parallel to memory 112

3,851,733

11

via gates 118 to the memory address contained in the
- memory address register 86. .

If the instruction read during cycle state I was an ac-
cumulator reference instruction, advancement is made
directly from cycle state I to cycle state V. Cycle state
V is used to operate upon the contents of the accumu-
lator 92.

At the completion of cycle states III, IV and V, ad-
vancement is made to cycle state VI, which increments
the program counter 84. Cycle state decocer and con-
trol 98 outputs the signal VI to increment the program
counter function 110, which advances the program

counter to establish the memory address of the next in-

struction to be executed. Since memory operations are
not required during cycle state VI, control of the mem-
ory 112 is relinquished to direct memory access
(DMA), enabling data words to be exchanged between
the memory 112 and the car controllers of the elevators
cars, , '

The execution of the LDA instruction results in the
accumulator 92 being loaded with the contents of a
memory location. With an LDA direct instruction, the
contents of the memory location defined by the four
MSB of the program counter 84 and the eight LSB of
the instruction contained in the instruction register 90
is loaded into the accumulator 92. For example, if the
program counter 84 contains the hexadecimal count
CO1 g, and the memory address CO1 4 contains FD7,6,
the address of the data is the hexadecimal number
CD74. If the data at this address is assumed to be 513,
the execution of this instruction would result in the

92, : :

If the LDA instruction was indirect, instead of direct,
the contents of the memory location defined by the
four MSB of the program counter 84 and the eight LSB
of the instruction would be used as an address instead
of data. The contents of this address would then be
loaded into the accumulator 92. For example, if the
contents of the program counter 84 is CO1,4, and the
contents of memory address CO1,q is ED7,, memory
location CD7,4 would be read to obtain the address.
513,4, and memory location 513, would be read to ob-
tain the data, which for example will be assumed to be
7145 The execution of this instruction thus results in
the hexadecimal number 7144 residing in the accumu-
lator 92. Execution of either the LDA direct or indirect
instruction results in erasure of the previous contents
of the accumulator.

Execution of the ADD instruction results in the con-
tents of the accumulator 92 being added with the con-
tents of a memory location, with the sum being stored
in the accumulator 92. The previous contents of the ac-
cumulator are destroyed.

Execution of the AND instruction results in the con-
tents of the accumulator and the contents of'a memory
location being AND'ed on a bit-by-bit basis. The result
is'stored in the accumulator; which erases or destroys
the previous contents thereof. ,

Execution of the. XOR instruction results in the con-
tents of the accumulator and:the contents of a memory
location being exclusive OR’ed on a bit-by-bit basis.

- The result is 'stored in the accumulator, which destroys
- its ‘previous contents -

hexadecimal number 5§13, being in the accumulator

15

20

25

30

35

40

45

50

55

60

65

Execution of the STA instruction results in the con- -

tents of the accumulator being stored in a memory lo-

12

cation.' The execution of this instruction does not
change the contents of the accumulator.

Execution of the STP instruction results in the cur-
rent contents of the program counter 84 being stored
in a memory location. The contents of the program
counter are not .changed by the instruction execution,
with the exception that the program counter is incre-
mented by one at the end of the instruction execution.

The instruction BRA is used to cause branching, i.e.,
program execution is switched to memory locations
which are not in the normal sequence of adjacent mem-
ory locations. The BRA instruction loads the program
counter 84. The program counter 84 is incremented by
2 at the completion of the BRA instruction. .

The OPR direct instruction permits indirect loading
of the accumulator 92 with data stored in the direct
memory access (DMA) portion of the memory 112.
The DMA portion of memory 112 is that portion into
which data is written or read by the car controllers of
the various elevator cars without program intervention.

The accumulator reference instructions are a sub-set
of the OPR idrect instruction. The most significant digit
O,¢ defines the OPR indirect accumulator reference
class of instructions. The middle hexadecimal digit-de-
fines the specific accumulator reference instruction.
The least significant hexadecimal digit defines the lit-
eral of the instruction. g ‘ ,

The SKU instruction is used to skip the execution of
a number of sequential instructions, with the number of
instructions skipped being set forth in the literal. The
accumulator contents are not changed and the program
counter is not further incremented beyond that neces-
sary to skip the desired number of instructions.

Execution of the CHS instruction results in the 2’s
complement of the data in the accumulator being -
formed and stored in the accumulator. :

Execution of the LDZ instruction results in the aceu-
mulator contents being replaced by 000, e

Execution of instruction PRI is used for priority inter-
rupts. "

Execution of instruction LSA results in the contents
of the accumulator being shifted right. The amount of
right shift is determined by the literal. The shift is per-
formed by recirculation. .

Execution of instruction SSA is similar to the LSA
instruction, with the exception that recirculation is not
performed. The accumulator is filled with zeros from
the left as the shift is performed.

Execution of instruction SKB results in skipping the
next instruction if the tested bit is equal to logical one.
In other words, the program counter is incremented by

. two if the tested bit is logical one, and is incremented

by one if the tested bit is a logical zero. The bit to be
tested is determined by decoding the literal. The accu-
mulator contents are not altered by execution of this
instructions. ‘ P

Execution of instruction SET results in a selected bit
of the accumulator being set for a logical one. The bit
to be set is determined by decoding. the literal. Bits
other than the specified bit of the accumulator are not
changed by execution of this instruction.

Execution of instruction INP causes the contents of
one of the input registers 126 or 128 shown in FIG. 2
to be transferred to the accumulator. The two LSB of
the literal selects the input register, with a 01 referring

3,851,733

13

to input register 126 and a 10 referring to input register
128. The contents of the addressed input register re-
main unchanged by execution of this instruction.
Execution of instruction QUT forces the contents of
the accumulator to transfer to an output register. Since
an output register is not presently used, this instruction
would not be used until such a register is required.
Execution of instruction SKZ results in the next in-
struction in the sequence being skipped if the contents
of the accumulator is zero. In other words, the program

counter 84 is incremented by two if all of the bits of the

accumulator are logical zeros. The program counter is
incremented by one if any bit of the accumulator is a
logical one. The contents of the accumulator are not
altered by execution of this instruction.

Execution of instruction SKP results in the next in-
struction in sequence being skipped if the contents of
the accumulator is positive. This condition is satisfied
if the most significant bit of the accumulator is logical
zero and the contents of the accumulator is not G00,,.
Execution of this instruction does not alter the contents
of the accumulator. '

Execution of instruction SKN results in the next in- .

struction in sequence being skipped if the contents of
the accumulator is negative. This condition is satisfied
if the most significant bit of the accumulator is a logical
one. The contents of the accumulator are not changed
by execution of this instruction.

Execution of instruction NOT results in the one’s

complement of the accumulator contents being
formed. The result is stored in the accumulator and the
previous contents thereof are destroyed.

Execution of instruction LTA results in the literal
being arithmeticly added to the contents of the accu-
mulator. The results are stored in the accumulator and
the previous contents are destroyed.

Execution of instruction STZ results in a bit of the ac-
cumulator being set to logical zero. The bit to be set to
zero is defined by decoding the literal. For example, if
the literal is 0000, it refers to the LSB, and if the literal
is 1011 it refers to the MSB of the accumulator. Only
the bit specified by decoding the literal is affected by
execution of this instruction. -

The master oscillator 104 may include a crystal con-
trolled oscillator which' provides gated clock pulses
GCP at the desired rate, such as 6 MHZ, for shifting

20

25

30

35

45

and control of data transferred within the processor 74. .

The gating signal for initiating the pulses GCP is the sig-
nal ENABLE provided by the pulse control circuit 102.

The pulse control circuit.102 may include a 4 bit bi-
nary synchronous counter which is parallel loaded to
provide a predetermined number of active clock
pulses, up to and including 12, in response to the four
LSB. of the instruction register 90. The pulse control
102, in addition to controlling the number of active
clock pulses, provides clock pulses on count ¢ and on
count 15 of the synchronous counter which establishes
the gating paths necessary to enable gated clock pulse
generation. Set.and reset pulses are also provided on
counts 0 and 14, respectively of the synchronous
counter. The 12 gated clock pulses appedr on counts 3
through 14 of this counter. o SR

For example, assume the synchronous counter is on
count 15, which halted the count from a previous cycle
state. When a signal is provided to transfer or shift the
data, the counter will advance to a count of 0, which

50

55

60

65

14

count establishes the gating necessary to enable clock
pulse generation, and it also established the parallel
loading of the counter. Gated clock pulses are gener-
ated from the beginning of the next clock pulse. Upon
the next clock pulse the counter is parallel loaded to an
initial value necéssary to permit the correct number of
gated clock pulses to be generated. The gated clock
pulse circuitry is disabled on count 14 and the cycle
state advanced. The count of 15 halts the counting op-

_erations, completing the data shift or transfer for a

given cycle state, or a portion of a cycle state, when a
cycle state requires more than one data shift.

The cycle state decoder and control 98 may include
a binary synchronous counter which is either parallel
loaded or advanced by one count depending upon the
specific instruction, which forces the parallel load cir-
cuitry to follow the requisite instruction cycle state se-
quence, as shown in FIG. 3. The outputs of the counter
are decoded to provide signals I through VI, corre-
sponding to the specific cycle state the processor is in
at any instant.

The read/write memory control 106 is gated at the
proper time by count 14 from the pulse control 102 and
the various cycle state signals which require a memory
operation. A read or write signal is provided by control
106, over lines 120 or 122, respectively, when the
memory 112 is not busy, as indicated by the absence of
a memory busy signal over line 124.

The instruction decoder 96 may include, for exam-
ple, a 3 to 8 line decoder responsive to parallel output
bits 9 through 11 of parallel output signal IRP of in-
struction register 90, for decoding the 8 memory refer-
ence instructions, and a 4 to 16 line decoder responsive
to bits 4 through 7 of parallel output IRP of instruction
register 90, for decoding the 16 accumulator reference
instructions. The instruction decoding circuitry 96 and
the cycle state output signals from cycle state decoder
and control 98 provide the inputs to the gating and
steering decoder logic 100. The outputs of logic 160
establish the gating paths for the gated clock pulses
GCP. <

The data steering gating 94 receives inputs from the
various registers, and steers these signals to the input of
the proper register as established by. the specific in-
struction and cycle state of the instruction execution
sequence. . o : : .

Program counter register 84, memory address regis-
ter 86, memory buffer register 88, instruction register
90, and accumulator register 92, may each include
three, four bit synchronous shift registers. The clock

‘pulse input to the registers may be the GCP signal

which is gated under control of the
decoder logic 100. ,)
The increment program counter circuitry 110, for ex-
ample, may include a full adder, a first flip-flop for sav-
ing the carry for each serial arithmetic operation, and
a second flip-flop utilized to add an additional 1 to the
program counter contents. The program counter 84 is _
incremented by 1 or 2 during cycle state VI for all in-
structions except SKU. The program counter is incre-
mented by 1 during cycle state VI, except when the sec-
ond flip-flop is set by a signal SKIP which causes the
program counter to be incremented by 2.
~The signal SKIP is provided by the skip test circuit
111. A 16 to 1 line multiplexer may be utilized to test
the bit selected by the SKB instruction. The parallel
outputs ACPA of the accumulator 92 are connected to

gating and steering

3,851,733

15

the data inputs of the multiplexer, and the four LSB of

_ the instruction register 90 are connected to the data se-.

lect inputs. The multiplexer is enabled by the SKB in-
struction. Thus, when the SKB instruction is executed,
the accumulator bit defined by the code of the four
LSB of the program counter will determine the state of
the SKIP signal.

The addition and bit test circuitry 108 includes the
full adders and flip-flops required to save their carry
outputs resulting from bit serial addition. One addition
circuit is used for execution of the SKU instruction dur-
ing cycle state VI, in which the contents of the four
LSB of the instruction register 90 are added to the con-
tents of the program counter 84. Another addition cir-
cuit is operative during cycle state V for adding the
contents of the four LSB of the instruction register 90
to.the contents of the accumulator 92 for execution of
instruction LTA. Still another addition circuit is opera-
tive during cycle state III, for implementing the ADD,
AND and XOR instructions. C

* The addition and bit test circuitry 108 also includes
the set/clear bit circuitry used with the SET and STZ
instructions, which force a selected bit of the accumu-
lator 92 to a logical one and logical zero, respectively.
The bit manipulation is accomplished on a serial basis
as the accumulator 92 is shifted during cycle state V.
For example, the data outputs of a 4 to 16 line decoder
may be cross connected to the data inputs-of a 16 to 1
line multiplexer. The inputs of the decoder are con-
nected to the four LSB of the instruction register 90,

. The output of the multiplexer provides a signal which

may be utilized to control the setting or ‘clearing of the
appropriate bit. The outputs of the pulse control
counter of pulse control 102 are connected to the data
select inputs of the multiplexer. The output of the mul-
tiplexer is a logical one during the interval the selected
bit is being shifted, which may be used to force the se-
rial input to the accumulator 92 during this interval to

a logical one or a logical zero in response to a SET or
STZ instruction, respectively.

~ - The addition and bit test circuitry 108 also includes

circuitry for performing the 2’s complement function.

The input interface 78 includes two 12 bit registers
126 and 128 referred to as input register No. 1 and
input register No. 2, respectively. Input register No. 1
provides interrupt inputs to the processor 74, and input
register No. 2 provides data input to the processor 74
via external devices, such as the tape reader 76.

The interrupt circuitry 80 which provides interrupts
for input register No. 1 includes a time interrupt gener-
ator 130, interrupt receiver and storage circuitry 132,
and interrupt detection circuitry 134. ' '

The interrupt receiver and storage circuitry 132 has
inputs connected to the time interrupt generator 130,
as well as'to any additional interrupts, such as an inter-

5

20

25

30

35

40

45

50

55

rupt responsive to a low voltage detector. Pulses are. .

generated by the interrupts in circuit 132 which. are di-
rected to the interrupt detection circuitry 134, and also
stored in memories, such as flip-flops, which in turn are
connected to the parallel inputs of input register No. 1.
Input register No. 1 is loaded with a stored interrupt
from circuit 132 in response to a signal from the inter-
rupt detection circuit 134, which forces parallel load-
ing of input register No. 1. This signal remains active
until the contents of input register No. 1. are serially
transferred to the accumulator 92 via data steering gat-

i6

ing 94. The processor 74 inputs the contents of input
register No. 1 to the accumulator 92 in order to read
the active interrupt number. The interrupt storage flip-
flops are reset when input register No, 1 is loaded.

The interrupt detection circuitry 134, upon receiving
an interrupt signal from circuitry 132, provides a signal
to the processor 74 of an active intetrupt, including sig-
nals to program counter 84 and memory address regis-
ter 86. The signals from the interrupt detection cir-
cuitry 134 to the memory address register 86 zero’s the
memory address register to force the instruction STP
located at 000,4 to store the contents of the program
counter. The signal from the interrupt detection cir-
cuitry 134 to the program counter 84 forces the con-

) tents of the program counter to be zeroed during cycle

state I, to force the instruction STA located at 001,,.
The STA instruction stores the contents of the accumu-
lator. A program associated with an interrupt may then
be initiated. B :)
FIG. 4

FIG. 4 is a block diagram which illustrates a new and
improved arrahgement of subprograms for effecting
the dispatching and control of a plurality of elevator
cars. In general, the concept is divide the program into
subsections, and include means, hardware, software, or
both, for indicating which subsections of the program
have a need to run, as determined by signals and data
provided by the elevator system. Additional means
then serially runs the subsections of the program which
have a need to run with their sequence being basedon
their relative urgencies. The software of a programma-
ble system processor for directing the associated hard-
ware to the task of elevator car dispatching must (a)
read and store car status data from the car controller
of the various elevator cars, (b) read and store corridor
call data, (c) process the system data obtained: in (a)

‘and (b) to determine an advantageous pattern-of ser-

vice assignments to the cars, (d) send commands to ini-
tiate an elevator car on a determined service assign-
ment, (e) send floor numbers to running cars to indi-
cate appropriate stopping points, and (f) output signals
indicative of system conditions, as necessary to the
proper functioning of other system components,

The software scheme employed should permit strat-
egy changes to be incorporated without modification of
the overall' program concept. Further, the software
should -accomplish all of the functions (a).through (e)
listed above while using the sequential processing mode
required with a digital computer system processor, in
such a manner that stop requests to moving cars are al-
most always valid when received by the car controller
of the associated car.

‘Certain physical features of the elevator installation
affect the software, such as the total number of floors
to be served by the elevator cars, the number of eleva-
tor cars in the bank or elevator system, the presence or
absence of an express zone at which none of the cars
stop, and- basement and top extension floors to be
served. ‘ . S S

Certain strategy concepts which affect the software,
regardless of the specific strategy to. be implemented,
are the main floor, or point where passengers initially
enter the elevator system, zoning of the building for
service assignment purposes, demands for service for a
zone initiated by a corridor call from that zone when no
car is presently assigned to the zone, and modifications

3,851,733

17

of car assignment patterns according to traffic condi-
tions. :

The activities of the programmable system processor
can be divided into two broad categories, (1) book-
keeping, and (2) actions initiated by significant events
in the system. The bookkeeping activities must be per-
formed on a cyclic basis, with a sufficiently high fre-
quency to keep the computer’s records up to date. This
includes reading in the car status data and corridor call
registers, and updating system-signal outputs. At any
instant of time, the occurrence of an event in the sys-
tem requires some special action by the computer,
which temporarily must break the cyclic bookkeeping
activity. Such significant events are (a) a new corridor
call in the system, for which the computer or system
processor must try to allocate to a suitable running car,
or register a demand signal relative to the call which
signifies that an available non-busy car, if any, must be

15

assigned to the call, (b) car stops, which cancels a cor- -

ridor call at that floor if the car and call service direc-
tion are similar, and perhaps may require a new stop
request to the car, (c) a car becomes available, requir-
ing the car to be assigned to a call for which a demand
signal was created, if any, (d) a car leaves the main
floor, which may require a replacement car to be
brought to the main floor, (e) a car enters a new zone,
which now allows calls in the new zone to be allocated
to the car, possibly cancelling a demand, (f) a car is
taken out of service, requiring any calls allocated to the
car to be reallocated, if possible, or to create a demand
signal for those which are not so allocated, and (g) a
car is by-passing corridor calls, which may mean cer-
tain calls allocated to the car must be reallocated, or a

. demand signal created therefor. For purposes of this
specification, calls added to the assignment register of
a busy or running car, i.e., a car already busy on the
task of serving a car call or a corridor call on a zone ba-
sis, as opposed to a specifically assigned basis; will be
referred to as allocated calls, and corridor calls which
cannot be so allocated and for which a demand signal
is created, to which an available non-busy car is as-
signed, will be referred to as assigned or demand calls.
In other words, calls are allocated, cars are assigned. In
certain instances a call will be referred to as being unas-
signed, with this being for the convenience of the soft-
ware language. What is meant, is that the call is consid-
ered unallocated.

The occurrence of an event in the system which re-
quires action by the system processor may be detected
by hardware, in which case the hardware generates an
interrupt pulse which causes the normal cyclic activity
of the computer to be broken; or, the events may be de-
tected by software. Detection of an event by software
is achieved by comparison of successive data records,
in which case the program itself interrupts its cyclic
bookkeeping function by branching itself into the ac-
tion appropriate to the event detected.

A number of events will often occur in a very short
period of time, and since they must be processed se-
quentially, the software arrangement assigns priority
ratings to events in accordance with the urgency of the
actions, and then the program processes them in the
order of priority.

In the embodiment of the invention selected for illus-
tration, two hardware interrupts are provided, one for
power failure, and one for timing. The power failure in-
terrupt enables the computer to. initiate an emergency

20

25

30

40

50

55

60

65

18

procedure when the line voltage falls below a predeter-
mined level. The timing interrupt occurs at regular in-
tervals, and is used by the computer to maintain a
clock, so that timing of actions can be efficiently per-
formed as required by the strategy. All other events are
detected by comparison of successive data records, but
other events may be detected by hardware, if desired.

The software package employed includes a set of
function programs, i.e., bookkeeping and control pro-
grams, which run under the direction of an executive
program. The executive program includes (a) an interr-
rupt executive, shown generally at 150 in FIG. 4, which
handles hardware interrupt processing, such as power
failure indicated by block 152, and (b) a priority execu-
tive which controls the running of the function pro-
grams according to their priorities.

A unique priority is assigned to each function pro-
gram as a fixed characteristic of the software package.
There are four possible program states, (1) running,
(2) suspended due to interrupt, (3) bidding to run, and
(4) inactive. . .)

The only program not subject to interrupt is the inter-
rupt executive 150. Thus, the interrupt executive can
only be in states (1) running, or (4) inactive. It is never
bidding to run, since it runs immediately upon receipt

“of an interrupt pulse. If the interrupt is for timing, the

interrupt executive decrements a clock, and may place
a timer program into bid, and optionally may place cer-
tain other function programs into the bidding state be-
fore returning control to the suspended program.. The
optional feature is only required where the elevator sys-
tem is such that certain bookkeeping programs may be
prevented from running often enough to keep the sys-
tem up to date during heavy traffic conditions, in which
event the interrupt executive places them in bid when
they haven’t run for a predetermined selected period of
time.

Once a function program starts, it runs either until
completion, or until an interrupt occurs. In the former
case, the program transfers back to the priority execu-
tive, while in the latter case control transfers to the in-
terrupt executive and the function program goes into
suspension. When the interrupt executive ‘has com-
pleted, it restarts the suspended program from the
point at which it was interrupted. Function programs,
once started, are not suspended for the running of
other function programs, regardless of priority ratings.

The function of the priority executive is to initiate the
highest priority function program bidding to run. It is
subject to interrupt in the same manner as the function
programs. Function programs are placed in bid by
other function programs, and by the interrupt execu-
tive. The interrupt executive places a timer program
154 into bid at predetermined intervals, such as every
3.2 seconds, as indicated by dashed line 156. The timer
program 154 is given the highest priority, i.e., zero, to
insure that it will run before any other function pro-
gram when the priority program is checking the bid
register to see which program to run next.

Before discussing the bidding structure further, it is
essential to describe how the software package is di-
vided into a plurality of subprograms, and the bidding
priority associated with each. These subprograms are
referred to as CSU, TNC, ACL, ACR, and CHECK.

3,851,733

19

Subprogram CSU, indicated by block 158 in FIG. 4,
has the second highest priority, i.e., 1. Subprogram
CSU reads and stores car status data provided by the
car controllers of the elevator cars in the bank, and it
also compares the new data. relative. to the previous
data record to detect events requiring action. Subpro-
gram CSU places subprogram TNC into bid, indicated
by dashed line 160, and also subprogram ACR, indi-
cated by dashed line 162, as required by the detected
events, and sets a flag for use by function program ACL
in response to detected events.

Subprogram TNC, indicated by block 164, has the
third highest priority, ie., 2. Subprogram TNC reads
the status of the corridor call registers and makes a
comparison with the previous record to detect the ar-
rival of new calls. New calls are added to a call table CL
which keeps a record of the floor number, service di-
rection, and the elapsed time since the call was regis-
tered, for each call. The subprogram TNC also detects
the cancelling of a corridor call, and removes the call
from the call récords. Subprogram TNC places subpro-
gram ACL into bid, indicated by dashed line 166.

- Subprogram ACL, indicated by block 168 in FIG. 4,
has the fourth highest priority, i.e., 3. Subprogram ACL
“allocates calls to running or busy cars that are suitably
conditioned, i.e., located relative to the call and with a
service direction such that the car will be able to handle
the call as it proceeds on its journey through the build-
ing. Any call which cannot be so allocated by subpro-
gram ACL creates a demand signal which signifies that
an available car should be assigned to serve the call.
Subprogram ACL registers the demand signal, includ-
ing a signal identifying the type of demand, but the as-
signment of an available ¢ar to the call is performed in
subprogram ACR. ‘ ‘

Subprogram ACL normally only allocates new calls
detected since it last ran, as the other calls in the call
table were processed, i.e., either allocated to busy cars
or flagged as demand cails, during previous cycles.
However, when a flag or indicator is set by subprogram
CSU in response to the detection .of an event which

may require reallocation of one or more calls, subpro-

gram ACL will process all of the calls in the system.
Subprogram ACL places subprogram CHECK into bid,
indicated by dashed line 170, or this function may auto-
matically beé performed by the priority executive each
time control is returned to the priority executive
Subprogram ACR, indicated by block 172 in FIG. 4,
. has the fifth highest priority, i.e., 4. Subprogram ACR,
which is placed into bidding by subprogram CSU only
when there is a demand in the system and there is an
available car which can be assigned to the demand, as-
signs available cars to demands in an order of priority

specified by the strategy. A demand may be a single’

call, or a group of calls from a single zone. Program
ACR assigns a car to each demand until all demands

are satisfied or no available car remains, and outputs a

command to each car it assigns. -Subprogram ACR
places program CHECK into bid, indicated by dashed
line 174, or as hereinbefore stated relative to subpro-
gram ACL, the priority program may place subprogram
CHECK into bid each time it obtains control. :
Subprogram CHECK, indicated by block:176, may
simply place subprogram CSU into bid, indicated by
dashed line 178, and it may additionally be used to
check for computer failure, and then automatically dis-
connect the computer or system processor should some

10

15

20

20

predetermined action of the computer fail to satisfy a
predetermined requirement.

Subprogram TIME indicated by block 154 in FIG. 4,
which has the highest priority of zero, decrements all
of the clock counters by which the computer controls
the timing of certain of its actions. For example, it con-
trols the clock for timing how long the car stands at the
main floor, and the elapsed time each corridor call has
been registered. , , '

In certain installations, where the running of the
strategy programs ACL and ACR 'may result in exces-
sive running times, the interrupt executive may place
subprograms CSU and TNC into bid on a time basis.
For example, if the subprogram CSU has not run for a
predetermined period of time, such as 0.4 second, it
may be placed into bid by the interrupt execttive, as
indicated by dashed line 180. If subprogram TNC has
not run for a predetermined period of time, such as 0.7
second, it may be placed into bid by the interrupt exec-
utive, as indicated by dashed line 182. In most installa-

. tions, however, the subprograms CSU and TNC will

25

30

normally run frequently enough that timed bidding by
the interrupt executive will not be required. .
The bidding structure among the subprograms in

> FIG. 4 is indicated by dashed lines, and the flow or se-

quence of the running of the subprograms is indicated
by solid lines between the blocks. It will be noted that
the function programs run in two main loops. The first.
main loop includes function programs CSU-TNC-ACL-
CHECK-CSU, and the second main loop includes func-
tion programs CSU-TNC-ACL-ACR-CHECK-CSU.

~ The second main loop only occurs when a demand has

35

40

45

50

55

60

65

been created dte to the non-allocation ‘of a call to.a
suitable busy car by subprogram ACL, and subprogram

‘CSU determines that there is a car available for assign-

ment to the demand and accordingly places-subpro-
gram ACR into bid. Even though subprogram- CSU
places subprogram ACR into bid, it also places subpro-
gram TNC into bid, and when CSU completes its run-
ning, the priority. executive runs TNC since it has a
higher priority than ACR. Subprogram TNC then
places subprogram ACL into bid. Thus, when TNC re-
turns control to the priority executive; it runs ACL be-
cause it has a higher priority than ACR. When subpro-
gram ACL is completed, subprogram ACR then runs
because it has a higher priority than CHECK. Subpro-
gram ACR runs until all demands have been satisfied,
or there are no available cars to assign to demands, and
then returns control to the priority executive: which
runs subprogram CHECK. Subprogram CHECK bids
subprogram CSU and the loop which is followed on the
next running of the program depends upon whether or
not CSU bids ACR. ' :

While the block diagram of FIG. 4 indicates that se-
lected function subprograms run and place other sub-
programs into bid, it is to be understood that the steps
for determining whether a specific: subprogram has a
need to run may be outside the subprogram, just as it
is for subprogram ACR. The need for subprograms
CSU, TNC and ACL may be determined outside these
programs and if they have a need to run they may then
be placed into bid. For example, instead of entering
subprogram TNC to find out if there are any new calls,
this step could be performed outside TNC and TNC
placed into bid only when the program has something
to do. In the specific embodiment of the invention the
step- for determining the need for subprograms CSU;

21
TNC and ACL are determined within the program, and
if they have a need to run they, in effect, put themselves
into bid by branching into the necessary steps to take
the required action. If they have no need to run, the
program is exited when this is determined.
Before describing the subprograms of the software
package in detail, certain of the tables kept by the soft-

ware in the memory or referred to by the software, will
be described. .

FIG. §

FIG. 5 illustrates the bid register XBDR referred to
by the priority executive at the completion of a func-
tion program to determine the highest priority program

bidding to run. When a program is placed into bid, its -

associated bit of the bid register is set to logic one. The
bid register is a 12 bit word, with only the 6 bits starting

from zero being used. Subprogram TIME, having the
- highest priority, is associated with bit zero, and subpro-
gram CHECK, having the lowest priority, is assigned to
bit 3. '

FIG. 6

FIG. 6 illustrates the 12 bits of input register No. 1,
referred to with reference numeral 126 in FIG. 2. Input
register No. 1 is used as an interrupt register, as herein-
before described, with bit zero being set to a logical one
in response to a signal from the time interrupt genera-
tor 130. Any additional hardware interrupts would be
assigned to other bits of input register No. 1.

FIG. 7

FIG. 7 illustrates the call record CLR, the call change
record CCLR, and car assignment table CRA. While
these records use different memory locations in the
memory 112 shown in FIG. 2, they are illustrated in a
consolidated manner in FIG. 7 for convenience.

When the corridor call registers are read, the infor-

mation is stored in a memory location which includes-

six 12-bit words for a building having up to 36 floors.
This is the call record CLR, with the calls being stored
therein on a one bit per floor per direction basis. Words
CLRO, CLR1 and CLR2 provide 36 bits and thus room
for storing down calls from up to 36 floors. The floors
may be assigned to like numbered bits, numbering the
bits and floors starting from the right-hand side of the
down call record: Words CLR3, CLR4 and CLR5 pro-
vide 36 bits and room for storing up calls from up to 36
floors. The bits of these words are numbered starting
from the right side of the call record, and the floors are
assigned to bits starting floor No. 1 from the highest
numbered bit used in the down call record.

The call change record CCLR follows the same for-
mat as the call record CLR, and its six words CCLRO
through CCLRS are in the same core region. When the
latest call record is compared with the immediately
preceding one, a bit is set in the call change record for
each change. Thus, a new up or down corridor call will
set. a bit in the call change record, since a set bit ap-
pears for this floor in the latest reading of the corridor
call register but not in the previous reading. ‘In like
manner, a canceled corridor call, i.e., one that was an-
swered, will set a bit in the call change record since a
set bit appears for-the associated floor in the previous
record but not in the latest reading: ‘

Car assignment table CRA contains three words per

car for a building having up to 36 floors, with the con-

20

25

30

35

40

55

60

65

3,851,733

22

vention used for up service (UPSV) cars and down ser-
vice (DNSV) cars being the same as used for storage
of up and down corridor calls, respectively, in the call
record CLR. The specific convention used is deter-
mined by the service direction of the car. Thus, when
the service direction of a car is down, its three words
CRANO through CRAN?2 of its assignment table will
have the convention of the upper table in FIG. 7, and
when the service direction is up, its three words
CRANO-CRAN?2 will have the convention of the lower
table in FIG. 7. When a program allocates a call to a
car, or assigns a car to a specific floor, it sets an indica-
tor or bit for the floor in question in the car's assign-
ment table CRA. If the car is a running car and the call
is allocated to it by program ACL, the program, in ad-
dition to setting the bit associated with the floor of the
call in the car’s assignment table, must check to see if
this call is closer than the stop previously sent to the
car, and if so, it must replace the “next stop” address
with the address of this call. If the car is an available car
being assigned to a demand call by program ACR, in
addition to.placing the call in the car assignment table
of the car, it must assign the service direction for the
car, give it a start signal, and send the address of the
floor to the car: If the demand has several calls associ-
ated with it, such as a number of high zone up calls, all
the calls associated with the demand are placed in the
car assignment table CRA of the car, and the floor ad-
dress of the first stop is sent to the car.

FIG. 8

FIG. 8 illustrates the call table CL wherein two 12-bit
words are kept for each corridor call. The first word
PCLO maintains a 3-bit binary word corresponding to
the zone of the call (bits 0-2), bit 4 of the word estab-
lishes the service direction of the call, with a logical one
indicating up and a logical zero indicating down, and
bits 5 through 11 are the address of the floor in binary.
The second word associated with each call, referred to
as PCLOA, uses bit 1 tg flag whether or not the call is
a demand call and bit 0 to indicate whether or not a car
has been assigned to the floor of the call. Bits § through
11 are used by the call timer, which is set to the timed
out value when the call s first stored in the call record.
This time is decremented on each running of the sub-
program TIME, going negative when the call times out.

FIG. 9

FIG. 9 illustrates a timed ‘out call record TCA, which
consists of three 12-bit words TACO-TCA2 for up to
36 floors. The same convention applies as heretofore
explained relative to- the call record CLR.

FIG. 10

- FIG. 10 illustrates data words DEMIND, TODEM,
and DEMAS. Word DEMIND is a demand indicator
word, with bits of the word being assigned to different
types of service demands. For example, a main floor
demand for service to a top extension floor (MFE) is
assigned to bit 9, a top extension floor demand (TE) is
assigned to bit 7, a main zone down demand (MZD) is
assigned to bit 6, a high zone up demand (HZ) is as-
signed to bit 5, a low zone up demand (LZ) is assigned

~ to bit 4, a main floor demand (MF) is assigned to bit

2, and a basement demand (B) is assigned to bit 1. A

23

demand thus sets a bit in DEMIND corresponding to
the type of demand registered. :

Word TODEM is used for timed out demands, and
uses the same convention as DEMIND. A demand reg-
istered for a predetermined period of time sets a bit in
TODEM corresponding to the type of demand. When
a car is assigned to a demand, the corresponding bit in
DEMIND is reset to zero, but the corresponding bit in
TODEM is not reset to zero until the call is actually an-
swered by the car.

Word DEMAS is an indicator word. When a car has
been. assigned to answer a main floor demand (MFD)
or a demand from the main floor for the extension
(MFE), a bit is set in DEMAS corresponding to the de-
mand bit in DEMIND. The bit is turned off in DEMAS
when the car responds and the call is canceled.

FIG. 11

FIG. 11 illustrates a system status word SYSW which
has bits set corresponding to different system condi-
tions. For example, bit 7 may be associated with intense
up traffic (SIUP), bit 6 with down peak (SDPK), bit §
with up peak (UPPK), bit 4 with a basement demand
(BASD), bit 3 with a top extension demand (TEXD),
bit 2 with main zone down demand (MZDD), bit 1 with
an up demand in the high zone (UDHZ), and bit 0 with
an up demand in the low zone (UDLZ)..

FIG. 12

FIG. 12 illustrates the three. 12:-bit input words IWO,
IWI and IW2 which are sent to the system' processor
from each car controller. These input ‘words provide
status data relative to each car which the system pro-
cessor uses in determining its strategy and corridor call
assignments. The information conveyed by the symbols
in’ these input words is listed in the symbol and ‘signal
identification table hereinafter set forth.

FIG. 13

FIG. 13 illustrates the three 12-bit output words
OWO, OW1 and OW2 which are sent to each car con-

3,851,733

5

10

15

20

25

30

35

40

. 24

troller by the system processor. These words include
the various commands sent to each elevator car by the
system processor, in order to dispatch the cars and an-
swer corridor calls according t the programmed strat-
egy. The information conveyed by these words may
also be obtained by looking up the appropriate symbol
in the table hereinafter set forth.

FIG. 14

FIG. 14 illustrates an additional or extra memory
work maintained for each car, to further aid the system
processor in keeping track of each car. The informa-
tion contained in this extra word may aiso be identified
by referring to the listing of signals and program identi-
fiers. :

FIG. 15

FIG. 15 illustrates how a building may be zoned and
coded, to provide a zone code used by the system pro-
cessor to keep track of corridor calls, demands, and the
elevator cars. A call for up or down service, or a car set
for up or down service, uses the zone code of 1 for the
basement (B), the zone code 2 for the main floor (MF),
and 7 for the top extension (TE). An up service call, or
a-car set for up service uses zone codes 4 and § for
floors between the main floor and top extension, di-
vided into low and high zones LZ and HZ, respectively.
A call for down service, ‘or a car set for down service,
associated with the floors between the main floor and
top extension (MZD), uses a zone code of 6. A car with
‘no assignment is given a zone code of 0. If the building
has a middle express zone at which no cars stop, this
-group of floors may be given the zone code of 3.

In describing the software programs shown in FIG. 4
in detail, it will be helpful to set forth the program iden-
tifiers used in the flow charts, as well as the various sig-
nals and symbols used in the discussion of the flow
charts. The following listing of symbols and their func-
tions also include the signals used in the input words,
output words, and extra word, shown in FIGS. 12,13
and 14. o ‘ :

Symbol Description

ACC Accumulator register

ACIN Serial input signal to accumulator register

ACL Subprogram for allocating calis

ACLFLR Call floor R

ACL$CR Car number of closest suitable car found so far -

ACLMCR Call floor minus ACP ; .

ACO Serial output signal from accumulator register

ACP. Advanced car position

ACPA Parallel output signal from accumulator register

ACR * Subprogram for assigning available cars

ACRFLR ACP of car being processed

ACRMSK Zone mask-exposes zone of call for car selection

ADIN Serial input signal to memory address register -

ADO Serial output signal from memory address register

AHICAR Car number of highest car considered so far -

AHIFLR ACP of highest car considered so far :

ASDIF Call floor minus ACP of closest car to call found
so far : .

ASFL Assigned floor

ASG Assigned

ASGN Assigned .

ATSV Attendant service

AVAD Car available according to system’ processor

AVAS Car available according to fioor selector ‘

AVPO-AVP6 ACP in binary S :

B Basement Zone — Code

BASCAP Capability to serve basement

BASD Basement demand — system signal

BCC Basement car call

BDR Bid register

BNXT Basement next

BSMT Basement assignment signal

BYP Is car bypassing corridor calls .

3,851,733
25 26

CCLR
CCLRO-CCLRS
CL

" CLR
CLRO-CLRS5
CRA

CRAnO-CRARN2
CREG
CRNO

. Symbol Description
BYPS Signal-Car is bypassing corridor calls
CALL Signal that car has a car call
CALZON Zone of call being processed
CARZON Zone of car being processed
CCAB Car call above ACP
CCAl Inhibits car from answering car calls
CCBL Car call below ACP .

Call change record

Word names in CCLR

Call table

Call record .
Word names in CLR

Car assignment table

Word names in CRA

Car call registered signal -

Car number

CSuU
DCLO
DEC
DECR
DEM
DEMAS

DEMIND

DNPK
DNSV
D¢PN
DPK

FADO-FAD6
" FDCL

FL

GCP

Hi
HIFLER
HIZON
HLMO
HLMI

Mddo.
MéD1
MSB

MSK
MZD
MZDD
MZDSWP

NAC
NCL
NEXI

NEXT
NMCRO
NQOSC
NTOD
NXTIM
OCRNO
dW0-¢pW2
PARK

Subprogram for bringing status of cars up to date
Close car door signal from processor

Slgnal that car has started to decelerate
Decrement .

Demand

Indicator word — used to indicate when a car has
been assigned to (MED) and MEF demands
Demand indicator word — has a bit for each type
of service demand . ’
Car down peak signal

Down service signal

" Open car door signal from processor

Down peak timer

Signal that car door is closed

Down service

Down travel

Assigned floor address in binary -
Indicator — set to zero when highest down call
has been processed

Floor

Gated clock pulses

HIGH

ACP of highest car considered so far

High zone

Hall lantern signal

Hall lantern signal

High zone up — Code 5

Subprogram — Interrupt Executive
Increment .

Car in service signal .

Serial input signal to instruction register
Serial output signal from instruction register
Parailel output signal from instruction register
In service

Input words to system processor

Jump .

Bit selection mask used in Subroutine LOOK
Bit selection- mask used in Subroutine LOOK
Low ’

Indicator set when an available car has been
assigned to main zone down service-
Subroutine

Least significant bit

Highest number assigned to a car :
Serial input signal to memory buffer register
Serial output signal from memory buffer register
Master car call reset

Main floor zone — Code 2

Main fioor demand

Main floor number

Timer which runs when no car at main floor
‘Main floor start

Main floor start timer

Indicator set when a car is expressing to main
floor -

Indicator set when there is a main floor up call
Signal which'indicates ACP is at main floor
Floor address mode signal

Floor address mode signal

Most significant.bit

Mask |
Main zone down.— Code 6 .
Systems signal — main zone down demand ¢

Indicator — non-zero during second loop when
processing highest down call

Number of in service cars available

Number of calls in call table CL

Indicator — indicates there is a next car when
non-zero ’ '

Car next signal for next car to leave main floor
Number of cars in system

Number of cars out of service

Number of timed out down calls

Next timer :

Car number

Output words from system processor to cars
Park signai from processor |

27

3,851,733

Symbol Description
PC. - Program counter register :
PCALLO Pointer to address of first word -of call table
PCIN Serial input signal to program counter register
PCLO Address ptr. of call table — 1st word of call
being processed
PCLOA Address ptr. of call table — 2nd word of call
. being processed
PCLOAX Local address of PCLOA
PCLOX Local address of PCLO
PCLV Temporary storage address for call table address
: - being processed - :
PCO Serial output signal from program counter register
PIN1-0 Output signal from input register No. 1
PIN2-0 Output signal from input register No. 2
PTR Pointer
‘QTOD Quota of T.O. down demands o
REFLR Floor No. of call being processed
SASS Service assignment signal from processor
SD Service direction
SDPK System ‘down peak signal
Siup System intense up traffic signal
SLDN Car slowing down signal
- SPMCR Indicator which is non-zero when a Zone 6 ASG
car has been given a down cotridor call
STRP Indicator which is non-zero when door. light beam.
has ot been broken for a predetermined time
STT . Basement signal '
SYSMFX System has a car which is expressing to main floor
SYSW System signals word .
TASS Travel assignment signal from processor
TBITN Bit number used to load information from
corridor calls
TCA Timed out.call record
TCAO-TCA2 Word names in TCA
TD Travel direction .
TE Top extension zone — Code 7
TEXD System signal for TE demand
TNC Subprogram. for tabulating new calls
Té Timed out - :
T¢DEM - Timed out demand indicator
TéM Indicator which when non-zero indicates MFTIM
has timed out o
UDHZ System signal — up demand in high zone
ubpLz System signal — up demand in low zone
UPK Up peak indicator — non-zero during up peak
UPPK System signal — up peak
UPSV Up service signal '
UPTIM Up peak timer — positive during up peak
UPTR Up travel signal
us Up service
uT Up travel)
VTMI Storage location
WN Variable used in timer program
WTS0 * Car load signal indicating 50% of capacity
WT75 Car load signal indicating 75% of capacity
XBDR Bid register :
X! Variable used to indicate the number of the car
being processed
Xw Extra word . :
YCALL Call word created in TNC for XOR with CLR word
to obtain CCLR
YNCLO Counts number of processed calls in call table as
: opposed to new calls
ZACLBD Indicator — when non-zero it requirests ACL to
reprocess all calls in call table CL
ZACP Image of ACP at start of processing run through
program
ZACPMF Variable set to the advanced car position minus
’ main floor .
ZCCl Indicator. — when non-zero it indicates a car call
has been registered in the “next" car
Zl The number of the car being processed
ZINIT Indicator — zero during first run through CSU and
o one thereafter
ZI1W0 Image of input word IWO at start of CSU
ZIv 1 Image of input word IW1 at start of CSU
Ziw?2 Image of input word IW2 at start of CSU
ZMDC Counter-— No. of cars qualifying to answer MFD
ZNMC Counter — No. of cars at main floor excluding
) those with BSMT assignment :
ZONE Code identifying location of calls and service
’ direction, and location of car '
ZéWO Image of output word ¢WO at start of CSU
ZeWI Image of outpu word ¢W 1 at start of CSU
ZoW2 Image of output word ¢W2 at start of CSU
ZXW Image of extra word at start of program run
-VI Cycle states of system processor
32L

Signal indicating car is moving

3,851,733

29
FIG. 16

FIG. 16 is a flow chart of an interrupt executive pro-
gram which may be used for the function shown as
block 186 in FIG. 4. The interrupt executive program
starts at terminal 200 in response to a timing interrupt
initiated by the time interrupt generator 130 shown in
FIG. 2; or, when the computer is first taking control of
the system and the program has been started at the hex-
adecimal address 000,. The interrupt executive, in
step 202, stores the information which is currently in
the program counter 84 and in the accumulator 92, and
in step 204 input register No. 1 is read. Input register
No. 1 is illustrated in block form as register 126 in FIG.
2, and the 12 bits of the register are shown in FIG. 6.
Step-206 checks bit 0 to see if it is set (i.e., a logical

one). If this bit is set, it indicates a timing interrupt and

the timer is decremented in step 208. If this bit is not
set, i.e., it is a logical zero, it indicates the computer has
just taken control and the program is at address 000 .
In this event, the program leaves the interrupt. execu-
tive program at terminal 210 to folow certain initializa-
tion procedures, as will be hereinafter explained.

If the entry into the interrupt executive was fora tim-

20

ing interrupt, the time is checked in step-212 to see if

the time is less than zero. If the time is not less than
zero, the contents of the accumulator and program
counter are retrieved in steps 214 and 216, respec-
tively, and the program running at the time of the inter-
rupt is reentered at the same point that it was at the
time of the interrupt. -

If the time is less than zero, it indicates that it has
been 3.2 seconds since the timer program last ran, and
the timer is set to 32 and the timer program is placed
in bid in step 218. Steps 214 and 216 are then followed
to resume the program which was running. When the
running is completed and control is returned to the pri-
ority executive, the subprogram TIME, bid by step 218,
will run since it has the highest priority. '

" FIG. 17

FIG. 17 is‘a flow chart which illustrates an initializa-

tion procedure and the priority executive. If the pro-
gram was started at hexadecimal address 000, and thus
the interrupt executive 150 followed the path to termi-
nal 210, an initialization procedure starting at terminal
220 of FIG. 17 would be followed. As shown in step
222, this includes setting to zero the bid register
XBDR, the demand word DEMIND, the indicator word
DEMAS, the timed out denabp indicator demand, the
up and down peak indicators UPK and DPK, respec-

25

30

35

40

50

tively, the up peak timer UPTIM, indicator NCL which -

indicates the number of calls in the call table CL, indi-
cator NTOD for the number of timed out down calls,
_indicator MFU for a main floor up.call, indicator NEXI
for “next” car, indicator ZCCI for a car call in the
“next” car, and indicator ZINIT for indicating the first
run through subprogram CSU. The program then fol-
lows the path through terminal 224 to'step 226, which
clears the car assignment table CRA, the call record.
CLR, the call change record CCLR, and the call table
- CL, shown in FIGS. 7 and 8. This completes the initiali-
zation steps, and the priority executive is entered at-ter-
minal 228. : s

The function of the priority executive is to start at the
highest priority.bit, i.e., bit 0, of the bid register XBDR
shown in FIG. 5, and run the highest priority program
which is bidding to run. Therefore, the first step 230 is

55

30

to set the pointer to bit 0 of the bid register. The pro-
gram CHECK is then placed in bid in step 232 by set-
ting bit § of the bid register. Each bit of the bid register
is successively checked, starting from bit 0, by steps
234 and 236, and when a set bit is found, this bit is
turned off in step 238 and the program junps to the
start of this program at terminal,240. If onoe of the
function programs were bidding to run, the subprogram
CHECK would be run as it was placed in bid by the pri-
ority executive during step 232. Subprogram CHECK
may be an active program, which checks the computer
logic for malfucntion; or, as illustrated in FIG. 17, it
may simply be a dummy program entered at terminal
242 which has a single step 244 for placing subprogram
CSU into bid by setting bit 1 of the bid register XBDR
to a logic one, and then returns to terminal 228 of the
priority executive, Thus, when the computer is first tak-
ing control, the priority executive starts the active pro-
gram with program CSU by bidding the subprogram
CHECK. Subprograms ACL and ACR thus effectively
place subprogram CHECK into bid when they return
control to the priority executive, since the priority ex-
ecutive bids the subprogram CHECK for them.

FIG. 18

FIG. 18 is a flow chart of subprogram TIME which
may be used for the function shown as block 154 in
FIG. 4. Subprogram TIME is entered at terminal 246

‘and step 248 decrements timers NXTIM, MFTIM and

MFSTIM. Timer NXTIM controls the time for dis-
patching the “next” car from the main floor, timer
MFTIM runs when there is no car at the main floor, and
timer MFSTIM is the main floor start timer. The down
peak timer DPK is checked in step 250 to determine if
it is greater than zero, and if it is, indicating a down
peak condition, the down peak timer is decremented in
step 252 and the system down peak SDPK is set in the

, system signals word SYSW shown in FIG. 11.

The up peak timer UPTIM is then checked in step
256 to see if it is greater than zero. If it is, indicating an
up peak condition, the down peak timer DPK is
checked to see if it is greater than zero, as down peak
predominates up peak’if both occur at the same time.,
If a down. peak condition is occurring UPK. and UPPK
are set to logic one in step 262. If an up peak is occur-
ring in the absence of a down peak, UPK and UPPK are
set to logic one in step 264. If an up peak is not occur- -
ring, step 256 proceeds directly to step 262, setting
UPK and UPPK to logic one. The timed out demand
word TODEM, shown'in FIG. 10, is cleared in step 266,
and the indicator NEXI is checked in step 268. If NEXI
is greater than zero it indicates there is'a “next car,
and when it is zero it indicates there is no “next” car.

If there is a “‘next” car, step 270 sets indicators

SYSMFX and T¢M to zero, both of which are associ-

" ated with the function of obtaining a car for the main

60

floor when there is no “next” car. The main floor timer
MFTIM is set to four in step 270, and is continually

‘reset to four as long as there is a car at the main floor.

- The program then proceeds to terminal 272.

If step 268 determines that there is no *next” car, the

* up peak indicator UPK is checked in step 274. If an up

65

peak is occurring and UPK is set, indicator T¢M is set
in step 276 and the program advances-to terminal 272.
When an indicator or a bit is indicated as being set, it
indicates that it is set to a logic one. If the up peak UPK
is not set, the main floor timer MFTIM, which runs

3,851,733

31
when there is no car at the main floor, is checked in
step 278 to see if it has timed out. If it has not timed
out, the program advances to terminal 272. If it has
timed out, step 280 checks to see if there is an up call
registered at the main floor, and if there is; indicator
T¢M is set in step 276. If there is no up call at the main
floor, i.e., MFU is not set, the program advances to ter-
minal 272, '

The subprogram TIME now checks every call in the
call table CL for timing out. Step 282 sets quota num-
ber of timed out down calls NTOD to the quoto QTOD
which will initiate up call bypass. Step 282 also sets the
variable WN to the number of calls in the call table CL
minus 1, in order to provide a negative number when

all the calls in the call table have been processed. WN
is tested in step 284 to determine if all calls have been
processed, and if not, the call timer of the call is
checked in step 286 to see if it has timed out, i.e:, is it
negative? If it is not timed out, the timer for this call is
decremented in step 288 and the next call, if any, is
considered by setting WN equal to WN-1 in step 290.
If a call is found whose timer has timed out, the associ-
ated bit in the timed out demand word TODEM, illus-
trated in FIG. 10, is set in step 292, The call is checked
in step 294 for service direction. If it is an up call, step
296 sets the associated bit in the systems word SYSW,
and if it is a down call, step 298 sets the associated bit
inthe timed out call record TCA, shown in FIG. 9. Step
298 also- sets the number of timed out down calls
NTOD to NTOD minus: 1. Then, for both up and down
calls, the program advances to step 290 to process the
next call. When all calls have been processed, step 284
exits the subprogram TIME via terminal 300, returning

to terminal 228 of the priority executive shown in FIG.
17. '

FIG. 19

FIG. 19 is a flow chart of subprogram CSU, which,
along with the flow chart shown FIGS. 204, 20B, 20C
and 20D, may-be used for the function 158 shown in
block form in FIG: 4. Subprogram CSU starts at termi-
nal 302, and in step 303 it sets to zero the number of
out-of-service cars (NOSC), the number of available
“cars (NAC), the number of cars at the main floor, ex-
cluding thosé with a basement assignment -(ZNMC),

15

20

25

35

40

45

and the number of cars qualifying as answering a main -

floor demand (ZMDC). Step 304 sets the variable Z1
equal to the highest number assigned to an elevator car,
i.e;, number 3 for a 4 car system, starting the number-
ing from zero. Step 305 forms an image of the output
words OWO, OW1. and OW2, an image of the input
- words IWO, IW1 and IW2, and an image of the extra
word XW, for the first car to be processed for use dur-
ing the analysis. The car status analysis starts at termi-
nal 306 and ends at terminal 307. The car status analy-
sis between these terminals is- shown in FIGS. 20A,
20B, 20C and 20D, and will be hereinafter described.

~After the car status analysis for the car in question is
completed, step 308 ‘decrements Z1, and Z1 is then
checked.in step 309 to see if there is still another car
to be considered. If there is still one or more cars to
consider, the program returns to step 305 for the next
car and its analysis is performed. .

When all cars have been considered, the indicator
ZINIT is checked in step 310 to see if this is the first run
_ of subprogram CSU following start up of the system. If

65

32

it is the first run, ZINIT is set non-zero in step 311 and

the program returns to terminal 302. The first car sta-
tus analysis following start up of the system is not an in-
depth analysis, as will be observed when FIGS. 20A
through 20D are described. - . '

If this was not the first run through subprogram CSU
following start up, the program advances to step 312
which checks the down peak timer DPK. The down
peak timer DPK is positive during a down peak condi-
tion, and if it is positive, the program advances to step
313 which sets the bits MFD in the DEMIND and
DEMAS words shown in FIG. 10 associated with the
main floor demand. If the down peak timer DPK is.not
positive, step 314 checks to see if there are any cars
which qualify to answer a main floor demand, or if the
system is in up peak. If any cars qualify, counter ZMDC
will be positive, or if the system is in up peak, the up
peak indicator UPK will be positive, and the program
advances to step 313, previously described. If there are
no cars which qualify, or if the system is not in up peak,
the main floor demand bit MFD is set-in DEMIND in
step 315, to register a demand for a car at the main
floor. : :

Step 316 checks to see if there are any demands in
the system by checking the demand word DEMIND. If
there are no demands in the system, subprogram TNC
is bid in'step 317. If there are demands, it is important
to note that subprogram ACR is not automatically
placed into bid. First, the system is checked to see if
there is an available car which can be assigned to the
demand. If there are none, counter NAC will be zero
when it is checked in step 318 and subprogram CSU
places subprogram TNC into bid.in step 317. If there
is a demand and an available car, subprogram ACR is
bid in step 319, and then subprogram TNC is bid in step
317. 1f both TNC and ACR are placed into bid, TNC
will run before ACR since it has a higher priority, as
pointed out relative to the program bidding and flow
structure in FIG. 4. ST

Step 317 advances to step 325, which ¢hecks to see
if all in service cars are available according to the sys-
tem processor (AVAD). If all in service calls are not
AVAD, program CSU exits at terminal 326 and the
program returns to terminal 328 of the priority execu-
tive. The program also exits from terminal 326 if either
the down peak timer DPK or up peak timer UPK are
positive, as checked in step 327, or if there is a demand

-in the system, determined by -checking DEMIND .in
~step 328. If all in service cars are AVAD, the system‘is

not on down peak or up peak, and there are no de-
mands in the system, step 329 reinitializes DEMAS,
SYSMFX and NCL by setting them to zero and the pro-
gram exits at terminal 330 which enters terminal 224
of FIG. 17 in order to clear all of the tables in step 226.

- This insures that a corridor call does not become “lost”

for some reason, clearing the call table CL.and car as-

“signment registers CRA when all in service cars are

available. If an unanswered corridor call is present it
will be re-registered in the call record CLR and picked

- up as a new call in the call change record CCLR, result-

ing in one of the available cars being assigned to the
call. . -

FIGS. 20A-20D

FIGS. 20A-20D may be assembled to provide a single
flow chart for the car status analysis function which is -
performed for each car between.terminals 306 and 307

3,851,733

33

of subprogram CSU in FIG. 19. The car status analysis
starts at terminal 331 and in step 332 ZACP is formed
which is an image of the advanced car position of the
car whose status is being checked. Step 333 checks
ZINIT to see if this is the first run through CSU after
start up, and if it is the program advances to terminal
334 (FIG. 20B) and follows. the initialization proce-
dures of step 335. This step sets BSMT, AVAD, NEXT,
and PARK to logic one, it clears the image of the extra
word ZXW, it sets the zone of the car according to the
zone code shown in FIG. 15, it sets both of the assign-
ment mode signals MODO and MODI1 to logic zero, in-
hibiting all corridor calls to the car, it sets the travel as-
_signment signal TASS to correspond to the travel direc-
tion of the car, and it sets the service assignment signal
SASS to correspond to the service direction of the car.
The program then advances to terminal 336 (FIG.
20D) where the system down peak timer DPK is
checked in step 337. If the system down peak timer is
“‘on,” the car indicator DNPK is set in step’338, and if
it is not on, DNPK is set in step 339. The three com-
mand words OW0 OW1 and OW2 shown in FIG. 13 are
then outputted to the car in step 340, the extra word
shown in FIG. 14 is updated in step 341, the input data
is updated in step 342, and the car status analysis exits
at terminal 343, returning to terminal 307 in FIG. 19.

After all cars have been checked by this initial proce-
dure, ZINIT is set to one in step 311 (FIG: 19) of CSU
and analysis of the cars starts all over again. This time,
step 333 of FIG. 20A will advance to step 344, to check
if the car is in service. If it is not in service, counter
NOSC for counting the number of cars out of service
is incremented in step 345. The car'is then checked in
step 346 to determine if the car was in service on the
previous running of CSU. If it was not in service during
the previous running, the program advances to step 342
and the car status analysis is complete for this car, exit-
ing back to.terminal 307 of FIG. 19 via terminal 343..

If the car was in service on the last running of CSU
but is not now in service, this is an event which requires
processing all of the calls in the call table on the next
running of ACL, so flag ZACLDB is set in step 347.
The car is checked in step 348 to determine if this car
is indicated by the system processor as being the next
car to leave the main floor. If it is identified as the next
car to leave the main floor, indicators NEXI and ZCCl
are set to zero in step 418, indicating there is no next
car, and the program advances to terminal 334 in FIG.
20B, following the same route described for the first
run through the car status analysis immediately follow--
ing start up. If the car was not next, the program ad-
vances directly from step 348 to terminal 334.

If the car is in service, step 349 checks to see if the
car was in service during the previous running of CSU.
If it was not in service during the previous running, its
assignment table CRA is cleared in step 350 and the
program advances to terminal 334, which was herein-
before described.

If the car was in service, the car is checked for a
change in its bypass status in step 351, and if there was
a change in its bypass status, indicator ZACLBD is set
in step 352 to cause subprogram ACL to process all of
the cells in the call table.

Variable ZACPMF is then set to the advanced car
position minus the main floor in step 353. The car posi-

5

10

15

20

25

30

35

40

45

34

tion is checked in step 354 to see whether the advanced
car position is below the main floor. If it is, output sig-
nal BSMT is set for the car in step 355, and step 356
sets the mode signals MODO and MODI1 to give the car
a main floor and below assignment, it sets the basement
assignment signal STT, as well as to properly set the
travel and service assignments. The program then ad-
vances to terminal 336 in FIG. 20D, hereinbefore de-
scribed.

If the advanced car position is not below the main
floor, step 354 advances to step 357 and checks to see
if signal BSMT is set. If it is not set, the program ad-
vances directly to terminal 358. If it is set, the car is
checked in‘steps 359 and 360 to determine if the car
is available according to the floor selector (AVAS),
and if it is, was it AVAS on the preceding run of CSU.
If the car is not AVAS, or is AVAS and was AVAS on
the previous running of CSU, the program advances to
the basement assignment step 356 hereinbefore de-
scribed. If the car is AVAS but was not AVAS on the
previous running of CSU, the flag ZACLBD is set and
BSMT is set in step 361. The change in availablility ac-
cording to the selector is an event requiring ACL to
process all of the calls in the call table during its next
running, in response to the set indicator ZACLBD, and
setting BSMT removes the basement signal to the car.
The program then advances to terminal 358.

Step 362 sets STT to turn off the basement signal and

checks for basement car calls in step 363. If there is a
basement car call, step 364 sets BCC, and if there are
no basement car calls, step 365 sets BCC.
- Step 366 determines if the car is assigned to serve a
demand, and if it is, step 367 checks to see if the car
is selected as the next car to leave the main floor. If it
is “next,” signals NEXT and AVAD are set, the door
and lantern modes are set normal, and indicators NEXI
and ZCCl are set to zero, in step 368. Step 369 (FIG.
20B) sets the master car call reset signal MCCR, en-
abling car calls to be registered in this “next” car, and
the program advances to terminal 370. If the car is not
next, step 380 sets AVAD and MNFL and the program
advances to terminal 370.

If a car is not assigned to a demand, step 366 ad-
vances to step 371 which determines if the advanced
car position is at the main floor. If it is not at the main
floor, step 372 sets MNFL and MFS, the output signal
which indicates whether the advanced car position is at
the main floor, and the main floor start signal, respec-

- tively. :

50

55

60

65

Step 373 determines if the car is the next car to leave
the main floor, and if it is, the program advances to step
368, hereinbefore described. If it is not “next,” the car
is checked in step 374 (FIG. 20B) to determine if it has
completed its run. If it has not, signal AVAD is set in
step 375 and the program advances to terminal 370. If
the car has completed its run, it is checked in step 376
to see if it should be made AVAD, i.e., does it have any
car calls or demands? If it is suitable to be made
AVAD, step 377 sets AVAD, and if not, step 378 sets
AVAD, and the program advances to terminal 370 via -
step 369, hereinbefore described. If step 371 deter-
mines that the advanced car position is at the main
floor, determined by binary input signal AVPO-AVP6
being equal to the binary address of the main floor, step
379 sets MNFL and step 381 checks to see if the car
has a main floor start signal. If it does, step 382 checks
the main floor start timer MFSTIM to see if it has timed

3,851,733

35

out. If it has timed out, step 383 sets the door and lan-
tern modes normal and the program advances to termi-
nal 384 in FIG. 20D. If timer MFSTIM has not timed
out, step 385 checks the car weight, and if it is greater
than 75% of capacity, the program advances to step
383, just described. If the car weight is less than 75%
of capacity, step 369 (FIG. 20B) enables car calls to be
registered and the program advances to terminal 370.

If the car is at the main floor but does not have a main
floor start signal, step 386 determines if the car is se-
lected as the next car to leave the main floor. If it is not

“next,” step 387 determines if the car qualifies as the
next car to leave the main floor. If it does not qualify,
step 388 sets NEXT, and proceeds to step 369, herein-
before ‘described. If it does qualify as “next,” signal
NEXT is set in step 389 and the program advances to
terminal 390 in FIG. 20C. If step 386 determines that
the car is “‘next,” the program also advances to termi-
nal 390. ' '

From terminal 390 in FIG. 20C, the “next” car is ex-
amined in step 391 to see if the doors should be held
open. If they should, step 392 checks the door timer,
and if it has not timed out the program goes to-terminal
370 (FIG. 20B). If the door timer has timed out, as de-
termined by step 392, step 393 checks to see if the car
is moving. If it is, the program goes to terminal 370. If
it is not moving, step 394 checks for car calls above the
advanced car position. If there are no car calls above,
step 395 checks to see if the car doors are open. If the
car doors are not open, the program goes to terminal
370 via stép 369, hereinbefore described. If they are
open, step 396 determines if indicator STRP is set, indi-
cating the safety ray beam associated with the door has
been unbroken for four consecutive secutive seconds.
If indicator STRP is set, step 397 sets signal AVAD and

20

25

30

35

the program goes to terminal 370 via step 369, and if

STRP is not set, the program goes from step 396 to ter-
minal 370 via step 369.

If step 394 determined that there were car calls
above, the master car call reset signal MCCR is
checked in step 398 to see if it is set. If it is set, indicat-
ing car calls cannot be accepted by the car, the pro-
gram goes to terminal 370. If it is not set, indicating car
calls: may be registered, step 399 sets AVAD. and
checks indicator ZCCl in step. 400 to see if a car call
has been registered in the car: If a-car call has been reg-
istered, the safety ray.indicator STRP is checked in step

401. If it is set, indicatmg an unbroken beam for four

seconds, the door is set normal in step -402, signal
MCCR is set in step 403 (FIG. 20D), and the program
goes to terminal 384. If step 400 finds ZCCI not set,
step 404 sets ZCCI and also sets the timer NXTIM
which controls the time interval before the car gets the
‘main floor start command. The program then advances
to terminal 405. If indicator STRP was not set in step
401, the program also advances to terminal 405,

‘From . terminal - 408, the program checks timer
NXTIM for timing out in step 406. If it has timed out,
the program goes to step 402, hereinbefore described,
and if it has not timed out step 407 checks to see if the
car is.on down peak, and if it is, the program goes to
step 402. If it is not on down peak, step 408 determines
if the car weight is over 50 percent of its capacity. If it
* is over 50 percent of its capacity, step 409 sets the up
peak timer UPTIM and the program goes to step 402.
If the car weight is less than 50 percent of its capacnty,
_ the program goes to step 403.

40

45

50

55

36

Program branches which enter terminal 370 in FIG.
20B are now checked in step 410 to see if the car satis-
fies the requirements of meeting a main floor demand
(MFD), for example, is the car AVAD and the at the
main floor, or will it shortly be at the main floor be-
cause of its travel and service direction? If the car qual-
ifies it is counted by incrementing counter ZMDC in
step 411, and the program advances to stép 412, If it
does not meet the MFD requirements, the program

-proceeds directly to step 412.

Step 412 checks to see if the advanced car position

is the main floor, and if so, it is counted in step 413 by
incrementing ZNMC, and if not, the program advances
to terminal 414, If the advariced car position is at the
main floor. and not moving, as checked in step 415, or
moving but not decelerating, as checked in step 416,
the program goes to terminal 414. If the advanced car
position is at the main floor, and the car is movmg and
deceleratmg, indicating the car is just arriving at the
main floor, signals MFX, SYSMF and ASG are set, and
the assignmet register CRA of the car is cleared in step
417. The program then goes.to terminal 414,
. From terminal 414, the car is checked in step 419 to
see if it has a PARK assignment. If it does, step 420 sets
the car not available according to the dispatcher
(AVAD is set), and the program proceeds to terminal
421. If the car does not have an assignment PARK, step
419 proceeds to step 422 which checks to see if the car
is assigned to a demand. If it is assigned to a demand,
step 423 determines if it should retain the assigned sta-
tus by determining if the car has answered its first call
since its assignment. If it has not answered. its first call
it should maintain the assigned status and the program
goes to step 424 in FIG. 20D. If the car has answered
the first call of its assignment, it would not retain the
assigned status,” and step 425 sets both ASG and
ZACLBD to flag program' ACL to process all the calls
in the call table, as this car is now a busy car which may
be given zone assignments, i.e., calls may be allocated
to it.

The program then goes to terminal 421 and the car
is checked for a change in zone in step-426. If it has not
changed zone, the program goes to terminal 424. If it
has changed zone, step 427 sets the zone code and also
sets the indicator ZACLBD ssince this is an event re-
quiring processmg of all the calls in the call ‘table CL
the next time subprogram ACL runs. The program then
goes to terminal 424, .

If step 422 found the car was not a551gned step 428
checks to see if the car is AVAD. If it is not AVAD,
step 429 determines if the car has been selected to be
the next car to leave the main floor. If it is “next,” the
program goes to terminal 336, hereinbefore déscribed.

If the car is not AVAD and not *“next,” step 430
checks to see if the car was AVAD the last time CSU
ran. If it was not, the program goes to terminal 421,
hereinbefore described. If it was AVAD on the last run,
the program goes to step 335, herembefore described,

‘to set the signals listed therein.

If step 428 determines that the car is AVAD, step
431 checks to see if the advanced car position is at the
main floor. If it is not, step 432 determines if the car is
expressing to the main floor. If it is not, the program
goes to terminal 433. If it is expressing to the main
floor, signal AVAD is set in step 434 and step 435 in
FIG. 20D checks to see if the car is in the main zone
down (zone 6). If it is not in this zone, the program goes

3,851,733

37

. to terminal 436. If it is in zone 6, step 437 sets the car
for the main floor park assignment, with both the travel
and service signals TASS and SASS set to down, and
with the assignment mode 00 to reject corridor calls.
The program then goes from step 437 to terminal 336,
hereinbefore described.

If step 431 in FIG. 20B finds the advanced car posi-
tion is at the main floor, the up peak indicator UPK is
checked in step 438. If the up peak indicator is not set,
the program goes to terminal 433. If the up peak indi-
cator is set, step 439 determines if the number of cars
at the main floor, excluding those with a basement as-
signment, is greater than two. If indicator ZNMC is
greater than two, the program goes to terminal 433. If
indicator ZNMC is not greater than two, step 440 sets
AVAD, and step 441 clears the car assignmernt register
CRA and the extra word shown in FIG. 14, and sets the
zone equal to zero, the zone for a car with no assign-
ment. The program then proceeds to step 403 in FIG.
20D, and terminal 384, hereinbefore described.

From terminal 433 the program goes to step 442
which increases the number of available car indicator
NAC by one, and then step 443 determines if this
AVAD car was AVAD on the previous running of
CSU. If it was not, the program advances to step 441,

hereinbefore described, and if it was AVAD on the pre-

vious running, the program goes to terminal 384 in
FIG. 20D via step 403, hereinbefore described.

10

15

20

25

An analysis which arrives at terminal 384 in FIG. ‘

20D sets the assignment mode 00 and sets ASGN to
logic one in step 444, and advances to terminal 445.
The program, from terminal 445, advances to step 446
which asks the question “‘are the number of available
cars plus the number of cars at the main floor equal to
twice the number of cars in the system?” If the answer
is no, the program goes to terminal 336, hereinbefore
described. If the answer is yes, step 447 determines if
there are any demands in the system. If there are none,
step 448 initiates a mid-building park for the car and
sets AVAD and ASGN, and the program returns to ter-
minal 336. If step 447 locates a demand, the program
goes to terminal 336 instead of to step 448.

A program branch arriving at terminal 424 in FIG.
20D checks in step 449 to see if the car assignment reg-
ister CRA has a floor assigned therein. If it does have
a floor assigned in CRA, step 450 provides the address
for the floor as signal FADQ-FADG, placing the signal
in output word OW0.

Step 451 then checks to see if the service assignment
SASS is up. If the answer is no, step 452 sets the assign-
ment mode normal, the door mode normal, and the lan-
tern mode normal, and sets PARK and STT, before ad-
vancing to terminal 4485,

If step-451 determines that SASS is up, step 453 de-
termines if the advanced car. position is ‘equal to or
greater than the main floor. If it is not, the program ad-
vances to step 452. If it is, step 454 checks to see if the
car is on down peak, and if it is not, the program goes
to step 452. If the car is on down peak, step 455 checks
the number of timed out down calls. If indicator NTOD
is negative, the quota for going into up. call bypass is
reached and the program goes to terminal 384 and to
step 444 which sets the assignment mode 00, rejecting
corridor calls. If NTOD is positive, .the program ad-
vances to step 452 which sets the assignment mode nor-
mal, able to “see” corridor calls ahead of its service di-
rection. ‘

30

35

40

45

50

55

60

65

38

If step 449 determined that a floor was not assigned
in the car assignment table CRA of the car being con-
sidered, step 456 checks to see if the car has a base-
ment assignment or a basement car call. If it is a base-
ment car, step 457 determines if the advanced car posi-
tion of the car is at the main floor or above. If its ad-
vanced car position is below the main floor, the pro-
gram goes to terminal 336 hereinbefore described. If
the advanced car position is at the main floor or above,
step 458 sets STT and PARK, it provides a main floor
and below assignment, it sets the car assignment for
down travel and down service, and sets the door and
hall lanterns normal. The car is checked in step 459 to
see if it is moving. If it is not moving, the program goes
to terminal 336. If it is moving, step 460 sets the car
ASGN and then goes to terminal 336.

If step 456 determines that the car is not a basement
car, step 461 checks to see if the advaniced car position
is at the main floor. If it is not at the main floor the pro-
gram goes to terminal 436, hereinbefore described. If
the advanced car position is at the main floor, step 462
checks for car calls above. If there are no car calls
above, the program goes to terminal 436. If there are
car calls above, the program goes to terminal 445,
hereinbefore described. This completes a car status

analysis which may be used for this function in program
CSuU.

FIG. 21

FIG. 21 is a flow chart of subprogram TNC, which
may be used for function 164 shown in block form in
FIG. 4. Subprogram TNC, which tabulates new calls,
starts at terminal 470 and step 471 initializes the sub-
program for scanning for up calls. The corridor call
registers load their call information directly into the
core during cycle state VI by direct memory access,
with the core addresses being sequential in the order of
the floors of the building. The up calls are located at a
predetermined bit of each call word in the core, and
step 472 loads the first call word into the accumulator
to examine this bit. If an up cali is registered, deter-
mined by step 473, a bit is set in a 12-bit word YCALL
in step 474. Otherwise, step 474 is skipped. Word
YCALL is a variable used to provide a call record word
for comparison with the previous call record word CLR
to obtain the call change record CCLR. The word
YCALL then becomes the new CLR word. Steps 475,
476 and 477 go through 12 floors of the building and
then, in step 478, exclusive OR’s the word YCALL and
the previous call record word CLR for the same floors
and the result is stored in the call change record CCLR.
Since YCALL is now the new CLR word, YCALL may
be set to zero to process the next group of 12 floors.
Step 479 then returns to step 472 via step 477 to check
the next 12 floors. When all floors of the structure have
been checked, step 479 advances to step 480 which
asks if down calls have been checked. Since only up
calls have been checked so far, the program advances
to step 481 to set the address pointer for scanning the
core addresses for down calls, looking at the down call
bit of the call words. The process described relative to
up calls is then repeated for down calls until step 479
finds that all floors have been checked for down calls.
Step 480 then advances the program to step 482.

Step 482 sets counter YNCLO to the number of calls

“in the call table CL, and then step 483 prepares to scan

the call change record CCLR for down calls. Any bit

3,851,733

39

set in CCLR indicates a change, i.¢., either a cancelied
call or a new call. Therefore, step 484 scans CCLR
until it finds a bit which has been set. When a set bit is
found, step 485 checks to see if it is an up call from the
main floor. Since we are first processing down calls, it
will not be a main floor up call and the program ad-
vances to step 486. . ;

Step 486 determines if the call is in the call table. If
it is, the set bit in CCLR indicates the call has been an-
swered, and the call is removed from the call table CL,
counters NCL and YNCLO are decremented, and the
call is removed from any car assignment register CRA
which may currently contain the call, by steps 487, 488
and 489, respectively, and the program returns to step
484 to look for another set bit in CCLR.

If step 486 determines that the call is not in the call
table CL, the set bit indicates a new corridor call, and
step 490 adds the call to the bottom of the call table
CL, setting the zone and timer as shown in the two call

_words for each call in FIG. 8. Step 491 increments
counter NCL, to reflect the added call, but counter
YNCLO is not incremented since this call has not yet
been processed by program ACL. The program then
returns to step 484 to look for the next set bit'in the call
change:record CCLR. » o ,

When' no ' further set bit is found, or if there were
none to start with, the program advances to step 492
which checks to see if the call change record CCLR has
been processed for up calls. Since up calls have not yet
been processed, step 493 initializes for up calls and the
program returns to step 484. Step 485 checks to see if
a set bit indicates a main floor up call, and if so step 494

- changes the- indicator MFU to the opposite condition
of what it presently is. If it was a logic zero, it is set to
a logic one to indicate a call. If it was a logic one it is
set to logic zero to indicate the call has been answered.

The remaining portion of the up call change record
CCLR is processed in the same manner described rela-

tive to down calls in the call change record. When no
further set bit is found, or if none were found to begin
with, step 492 advances ‘to step 495 which places sub-
program ACL into bid and exits the program at termi-
nal 496 to return to terminal 228 of the priority execu-
tive. Since subprogram ACL is the highest priority pro-
gram now bidding to run, even if CSU put ACR into
bid, program ACL will now run. v

 FIGS. 22A:22C

FIGS. 22A, 22B and 22C may be assembled to pro-
vide a flow chart for the strategy program ACL, shown
as block 160 in FIG. 4. The function of subprogram
ACL is to allocate corridor calls to suitably conditioned
cars already busy with the task of serving calls for ele-
vator service, or to create a demand signal relative to
a call which cannot be so allocated. This program does
not assign available cars to demand calls, as that func-
tion is performed by subprogram ACR when a demand
exists, determined by ACL, and there is an available
car which can be assigned to this demarid, determined
by CSU, which then puts ACR into bid.

- Subprogram ACL starts at terminal 500 and then im-
mediately checks flag ZACLBD in step 501 to see if
CSU found an event which indicates that the whole call
table CL should be processed, as opposed to only pro-
cessing new calls which were added to the bottom of

15

20

25

30

35

40

45

50

65

the processed calls in the call table CL by subprogram

TNC. If flag ZACLBD is not set, step 502 sets the ad-

40
dress pointer to the first new call. Since each call has
two words in the call table, the address of the first new
call is the address PCALLO of the first call plus twice
the number of calls in the call table (2YNCLO).

If ZACLBD is set, all demands are reset in step 503
and step 504 sets the pointer to the first call in- the call
table CL. Steps 502 and 504 both advance to step 505
which sets the address of the second word of the first
call to be considered. ' _

Step 506 again. checks indicator ZACLBD, and if it
is not set, step 507 sets indicator FDCL to zero, as only.
new calls will be processed, which omits the portion of
the program relative to highest down call strategy. The
program then advances to terminal 508,

If step 506 finds ZACLBD set, indicating all calls will
be processed, the highest down call strategy will be
used, and step 509 sets FDCL to logic one, it sets indi-
cator MZDSWP to zero, which indicator is also used in
the highest down call strategy, and it sets indicator
SPMCR to zero, used to indicate when a zone 6 unas-
signed (ASG) car has been given a down corridor call.

Step 509 then advances to step 510 which orders the
call table CL, using any of the well known sorting tech-
niques, to place the highest call in the. building at the
top of the list, and the rest of the calls in order as they
appear in the building when proceeding downwardly
from the highest call registered. The program then ad- -
vances to terminal 508. . C

From terminal 508, the program goes to step 511
which examines the contents of the address of the first
word PCLO of the call, which may be the first call in
the call table, or the first new call, depénding upon
whether ZACLBD is set. If the contents of address
PCLO is not zero, there is a call at this address and step
512 sets the zone mask ACRMSK for car selection, and
CALZON to the zone of the call, taken from bits 0,1
and 2 of the first call word. : < :

“Step 513 checks CALZON to see if the call is for the
basement zone (zone 1 as determined from FIG. 15).
If it is for the basement zone, step 514 runs the base-
ment program and then advances to terminal 515.
When a call has been processed, the program always
returns to terminal 515 to start the selection of the next
call, with the addresses of the two words of the next call
being established in step $16. The program- then re-
turns to terminal 508 to examine the contents of the ad-
dress of the first word of this next call. The basement
program, for example, sets predetermined require-
ments for a basement car, and finding such a car would
set the signal BSMT for this carto'a logic one. If such
a car is not found, it would creaté a demand for the
basement by setting bit number one in DEMIND asso-

-ciated with a basement demand B. In either event, the

program would return to terminal 515 as described. - .

If step 513 determines that the call zone (CALZON)
is not the basement zone, step 517 sets the variable
ACLFLR equal to the call floor and advances to termi-
nal 518, :

The program then advances from terminal 518 to
step 5§19 which checks bits 0 and 1 of the second call
word to see if the call is a demand, and to see.if a car
has ‘been assigned to this demand. If the call is an as-
signed-demand call, the program advances to terminal
520. If the call is any other combination besides an as-
signed-demand call, step 521 arbitrarily sets the call as
a demand call, but unassigned (ASG), regardless -of
what the combination actually is. The program then ad-
vances to terminal 520, B

41

Step 522 arbitrarily sets the variable ACLOCR to
minus one. This variable will later be set to the car
number of the closest suitable car found to the call
floor, and will be changed to the car-number of a closer
suitable car, as other cars are considered and closer
cars found. Step 522 arbitrarily sets the variable ASDIF
to 128. ASDIF will later be set to the call floor minus
the advanced car position of the closest suitable car
found, and will be changed as required when closer
suitable cars are found. Step 522 also sets the variable
X1 to the number of cars in the elevator system. The
program then advances to terminal 523 (FIG. 22B),
which is the terminal the program returns to-each time
it wishes to consider another car relative to the specific
call being considered.

Step 524 then sets X1 to X1 minus one, since the
highest number assigned to a car is one less than the
maximum number of cars in the elevator system, when
assigning numbers to cars starting with zero.

* Step 525 is used to detect when all of the cars have
been considered relative to a specific call, advancing to
terminal 5§26 when it is considering a car, and to termi-
nal 527 when there are not further cars to consider.
building ' ‘

If a car is being considered, terminal 526 advances
step 528 to provide the address for obtaining informa-
tion relative to the car being considered, and step 529
sets the variable ACLMCR equal to the call floor minus
the advanced car position of the car being checked.
Step 530 checks to see if the car is both in service and
not bypassing corridor calls. If the car is not in service,
orif it is in service but it is bypassing corridor calls, the
program returns to terminal 523 to consider the next
car, as this car is not suitable for any call regardless of
its location in the bulding or its service direction.

If the car passes the “in service” and ““riot bypassing™
test of step 530, it is then checked in step 531 to see if
mask ACRMSK for car selection exposes the zone of
the car (CARZON). If the car does not pass this test,
i.e.; it does not have the same zone as the call being
considered, the program returns to terminal 523 to
consider the next car. It will be noted that only busy
cars can be considered, as an available car without an
assignment is given the code of zero (see FIG. 15). The
zone of a busy car is the zone of its advanced car posi-
tion, while the zone of an assigned car, a car which has
not started to decelerate to answer the first call after
being assigned to-a demand, has the zone of the call it
is assigned to answer. ’

If the car passes the test of step 531, we already know
that it has the proper service direction for the call, be-
cause the zone also identifies the service direction. The
program then advances.to step' 532 which checks the
service direction of the call; If the call is for up service,
step 533 runs the up call program and then returns to

terminal 523 to consider another car. The up call pro- -

gram is not shown in detail, as it may be very similar to
the down call program, if desired, or as in the usual
case, it may not be as complicated as the down call
strategy. For example, the up call program may follow
the strategy set forth in U.S. Pat. Nos. 3,292,736 and
3,256,958, both of which are assigned to the same as-
signee as the present application. In general, if the
ACLMCR is equal to or greater than- zero, the ad-
vanced car position is at or below the floor of the call,
and the car is therefore suitably conditioned for the up
call. It is then just a matter of storing the car number

3,851,733

5

15

42

and position of the closest suitably conditioned car to
the call, and updating it as a closer suitable car is found.
After the up call program in step 533 processes a car
relative to a call, it returns to terminal 523 to process
the next car. ,

If the call being considered in step 532 is for down
service, the program advances to step $34 which tests
the call to see if the call is a demand call and whether
a car has been assigned thereto. If it is a demand call
and a car has been assigned to the demand, it will be
referred to as an assigned-demand call. If it is an assig-
neddemand call, the car is checked in step 535 to see
if this car is an assigned car, i.e., a car assigned to a de-
mand which has not yet started to decelerate to answer
the first call of the demand assignment. If the car is an

- assigned car, step 536 checks to see if the floor the car

20

25

30

35

40

45

50

55

60

65

is assigned to is the same as the floor of the call pres-
ently being considered. If it is, then the call is allowed
to remain with this car, since the car is already in the
process of answering the call, and the program ad-
vances to terminal 537 and to step 538 which sets indi-
cators FDCL and MZDSWP to zero, since if this call
was the highest down call, the special highest down call
strategy need not be considered. Since no further cars
need be considered relative to this call, step 538 re-
turns to terminal 515 to select the next call:

If step 534 determines that the call is an assigned-
demand call but step 535 finds the car to be unassigned
(ASG) or if the car is assigned and step 536 finds that
the assigned floor is not the same as the call floor, then
the program returns to terminal 523 to consider the
next car.

. If step 534 finds that this down call is not an assigned-
demand call, the program advances to step 539 which
checks to see if the car has already been given a zone
6-down call. I a car is given a zone 6 down call, an indi-

.cator SPMCR is set, and if the whole call table is being

processed, an SPMCR car is not considered for another
down call. Step 540 checks to see if the whole call table
is being processed by checking indicator ZACLBD. If

the car is a SPMCR car, i.e., its indicator SPMCR is set,

and the whole call table is being processed, this car is
no longer considered for the call being processed and
the progam returns to terminal 523 to check another
car. The strategy is to get as many cars working on zone
6 down calls as possible, in order to exhaust busy cars
in zone 6 and create a demand for an available car, or
cars to-be assigned to zone 6 when the number of zone
6 down calls exceeds the number of busy cars serving
zone 6. o '

If the car is not a SPMCR car, or if it is and only new
calls are being considered, the program advances to
step 541 which checks to see if the car is expressing to
the main floor. If the car is expressing to the main floor,
step 542 determines if the up peak indicator UPK is set.
If it is, this car is no longer considered for the call and
the program advances to terminal 523 to consider an-
other car. If the car is expressing to the main floor but
the up peak indicator is not set, step 543 determines if
the call being processed is timed out. If it is not timed -
out, this car is no longer considered for the call and the
program returns to terminal 523,

If the car is not expressing to the main floor, or if it
is expressing to the main floor and the up peak indica-
tor is not set and the call is timed out, the program ad-
vances to step 544 to check the condition of indicator
MZDSWP. This indicator will only be set when the

3,851,733

43

highest down call cannot be allocated according to a
first set of conditions, and provides the opportunity to
try to allocate the highest down call according to a sec-
ond set of conditions before leaving subprogram ACL.
Since we haven’t determined that- this call cannot be
allocated at this point, indicator MZDSWP will not
have been set, even if this is the highest down call regis-
tered. Therefore, the program advances to step 545.

Step 545 determines if the car has been assigned to
a demand call by subprogram ACR. If it has been so as-
signed, this car is no longer considered for this call and
the program returns to terminal 523. A car retains its
‘assigned status once it is given an assignment by pro-
gram ACR until it starts to decelerate for the first call
of the demand assighment, at which time it becomes a
busy car to which program ACL may allocate corridor
calls.

If the car is not in the assigned status, step 546 checks
to'see if ACLMCR, formed in step 529, is greater than
zero. If it is greater than zero, the advanced car position
is on.the wrong side of the call, i.e:, below this down
call and the program returns to terminal 523 to con-
sider another car. If the call floor minus the advanced
car position is not greater than zero, i.e., zero or nega-
tive, then the advanced position of the car is either at
or above the floor of the call, and we have now found
a suitable car for the call. = B

When a suitable call is found for a call, it is now
checked to see if it is the most suitable car found so far,
or if a more suitable car was found during checking a
higher numbered car relative to this call; The basis for
comparing suitability to find the most suitable car; is

which car has an advanced car position closer to-the '

call floor. This function is performed by first obtaining
the absolute value of ACLMCR without regard to its
sign, which is performed:in step:547 (FIG. 22C), and
then checking in step 548 to see if ASDIF minus
ACLMCR is greater than zero. ASDIF is the difference
between the call floor and the advanced car position of
the closest car to the call floor found so far. If this is the
first suitable car found, ASDIF will still .be 128, since
it was arbitrarily set to this value in step 522. In this in-
stance, ASDIF minus ACLMCR will be greater than
zero, and the program advances to step 549, If should
be noted that if a suitable car was previously found and
the present suitable car is-closer to the call floor that
ASDIF minus ACLMCR will also be greater than zero,
-and in this instance the program will also advance to
step 549. Thus, the program advances to step 549 when
the car being considered is the most suitable car found
so far.

-Step 549 then determines if this “most suitable car so

far” is the first suitable car found, or-a more suitable

car than one previously found to be suitable. It does
this by checking ACLOCR relative to zero. If itis nega-
tive, as it was arbitrarily set.in step 522, this is the first
car found to be suitable and the program advances to
step- 550 which sets ACLOCR to the car number of the
car presently being considered, and sets ASDIF to that

of ACLMCR. Thus, a future suitable car will be com- 6

pared with this car to determine which is more suitable.
The program then goes to terminal 523 to consider an-
other car relative to this call. If a suitable car was previ-
ously found but the present car is more suitable,
ACLOCR will not be negative, so step 549 will go to
step 551, . : '
Step 551 checks to see if the car which was found to

be less suitable has a.car call by checking the signal

‘ 44
CALL. If it does not have a car call and the floor cail
now being considered was allocated to the car on a pre-
vious running of program ACL, the allocation of this
floor call to the less suitable car is removed by remov-
5 ing the call from its assignment table CRA. The strat-
egy is to unclutter the call registers of the cars by re-
moving call allocations they will not answer, expediting
their return to the availability status, which allows them
to be assigned to demands. However, if the car has a
10 car call, it will not be going back to the available status
until it serves the car call, and since the car is suitable
for the floor call being processed, it is allowed to retain
the floor call allocation in the event the more suitable
car is delayed in answering the call for some reason. »
15 Assuming that a suitable car was already found for
the call being processed during the present running of
program ACL, or during a previous running thereof,
and that step 548 determines that the previous suitable
car is more suitable than the car now being considered.
20 In this instance, step 548 will advance to step 552. If
this call had been allocated to the car now being con-
sidered during a previous running of subprogram ACL,
step 552 removes this call from its assignment table
CRA if the car has no car calls. The reason behind this
25 strategy is the same as explained for step 551. The pro-
gram then returns to terminal 523 to consider another
car. The up call program in step 533 may use steps 547
through 552 to find the most suitable car for an up call
in the same manner as just described for down. calls,
30~ Once all the cars have been considered relative o a
call, the number of the most suitable car found will ap-
pear in ACLOCR, and the difference between the ad-
vanced car position of this car and the call floor will ap-
pear in ASDIF. ' T :
When all cars have been considered relative to a call,
step 525 determines this when X1 becomes negative,
and the program advances to terminal 527 and to step
553. Step 553 checks the service direction of the corri-
40 dor call presently being considered. If the call is for up
service, the program advances to the up call program
in step 533. This part of the up call program checks to
see if a suitable car was found by checking to see if
ACLOCR is still a negative 1. If it is, a demand will be
45 registered for the zone of the call and a corresponding
bit set in DEMIND. if ACLOCR is not negative, a suit-
able car was found and its assignment table CRA is set
to the call floor.

If step 5§53 determines that the call is for down ser-
50 vice, the program advances to:step 554 (FIG. 22C)
‘where the call is-checked to see if is an assigned-
demand call. If the answer is yes, it is immediately
known that no car was found for this call as when step
536 found a car assigned to the floor of an assigned-
55 demand call the program advanced to step 538 and to
terminal 5§15 to consider the next call. Thus, a car was
not found assigned to the floor of an assigned-demand
call when an assigned-demand call reaches step 5§54. If
the call is an assigned-demand call, step 554 returns the
program to step 521 which arbitrarily sets the call as a
demand ‘call but unassigned. All cars are. looked at
again relative to this call, but this time in an attempt to
find a suitable car, rather than a car assigned to the
floor of the call. Thus, this time the program will
" branch from step 534 to step 539 and follow the prece-
dure hereinbefore described for ASG and DEM calls.
When all cars have been considered, the program will
return to step 554. '

35

3,851,733

45

- If step 554 finds that the call is not an assignedde-
mand call, step 555 checks to see if a suitable car was
found for the call by checking ACLOCR. If ACLOCR
is not negative, a suitable car was found and the call is
set ASG and DEM by stem 556 to indicate that it is a
call allocated to a car by subprogram ACL, as opposed
to a demand call to which a car was assigned by subpro-
gram ACR.

Since a suitable car was found, step 557 sets indicator
FDCL and MZDSWP to a logic zero, since the highest
down call strategy will not now apply to this running of
program ACL. The bit of SPMCR corresponding to the
most suitable car found (ACLOCR) is set, to prevent
this car from being allocated another zone 6 down call
when the whole call table is being processed, as herein-
before described relative to steps 539 and 540,

Step §58 puts the floor of the call into the assignment
register CRA of the ‘most suitable car found
(ACLOCR), and the program returns to terminal 515
to consider the next call in the cail table CL. The up
call program 533 may use the same step 558 when it
finds a suitable car for an up call.

If step 555 finds ACLOCR still negative, a suitable
car was not found for the call ‘and the program ad-
vances to step 859 to see if this call is the highest down
call by checking indicator FDCL. If the whole call table
is being processed, and this call is the highest down call
registered, FDCL is set to logic one by step 5C9. If indi-
cator FDCL is not set, step 560 creates a-demand for
the main zone down (Zone 6), which appears in DE-
MIND (bit 6), and the program goes to terminal 515 to
consider the next call. B '

If indicator FDCL is set, special ‘treatment is given
this highest down call by changing the requirements for
a suitable car, and the cars are checked again relative
to the call. However, this is not done unconditionally.
Step 561 first checks to see if there are any ‘available
cars to assign to a demand. If there is an available car,
the program allows the unassigned highest-down call to
create a demand by branching the program to step 560
and then returning to terminal 515 to take the next call.
The strategy here is to prevent two elevator cars from
being made to traverse substantially the full length of

15

20

46

When there are no available cars, as determined by
step 561, the program advances to step 562 which
checks to see if the indicator MZDSWP is set. Step 509
reset MZDSWP by setting it to zero, and thus
MZDSWP is not set at this point. The program then ad-
vances to step 563 which sets MZDSWP by setting it to
a logic one. Step 563 also sets AHIFLR arbitrarily to
the main floor, with AHIFLR being subsequently set to
the floor of the advanced car position of the highest car
found. AHICAR is also arbitrarily set to minus one,
with AHICAR being subsequently set to the car num-
ber of the highest car found. A demand for the main
zone down (zone 6) is also registered by step 563,
which appears in DEMIND.

The program now returns to terminal 518 to process
this unassigned highest down cali for a second time.,
This down call is processed according to an unassigned
demand call, as hereinbefore described, until reaching
step 544. If a car passes all of the tests up to step 544,
step 544 now finds that MZDSWP is set, having been
set by step 563 to signify the second processing of an
unassigned highest down 'call. The program . now
branches from step 544 to step 564 which picks out the
cars which are assigned to demand calls. It will be re-
membered that the first processing of this call elimi-
nated such cars from consideration in step 545, consid-
ering only unassigned cars. On this second processing,

. only cars assigned to a demand call are considered. If

30

step 564 finds the car unassigned it advances the pro-
gram to terminal 523 to look at the next car. B

~ If the car is assigned, the advanced car position of
this car (ACRFLR) is checked in step 565 to see if it

" is the highest assigned car considered so far (HIFLR).

35

40

the building unnecessarily. In the prior art the assign-

. ment to answer the highest down call persists in that if

while an assigned car is moving to answer the highest.

down call, anothier down call is registered which is still
higher, the car goes to this new higher call and the orig-
inal call becomes a demand which is given to the next
available car. In this instance, an available car which is
close to the last registered highest down call will not be
assigned to this down call, as the assignment of the al-
ready assigned car will be changed to this higher down
call. The available car which is close to this last regis-
tered highest down call may then be assigned to the
down call originally assigned to the first car. Thus it will
be seen that both of these cars may travel unnecessarily
long distances to reach their assigned floors. The pres-
ent strategy assigns the highest down call-to the closest
car, and then when a new higher down call appears, the
system is interrogated as to there being any more avail-
able cars. If there are no available cars, this new higher
down call is given to the assigned car traveling to the
call which was originally the highest down call. If there
is an available car, the assignment is not changed. The
program produces another demand, assigning this call
to the closest available car, while still maintaining the
priority of the highest down call. '

45

30

IF this is the first assigned car found in this reprocessing
of the highest down floor call, and it is above the main
floor, it will be the highest car since HIFLR was arbi-
trarily set to the main floor. If ACRFLR is not greater
than HIFLR the program goes to terminal 523 to con-
sider the next car. If this is the highest car found so far
AHICAR is set to the car number of the car presently
being considered, and HIFLR is set to the floor of the
advanced car position of this car in step 566. When all
cars have been considered AHICAR will thus contain
the car number of the highest assigned car in the build-
ing and HIFLR will contain the floor of the advanced
car position of this car. '
When all cars have been considered relative to this
call, the program will follow steps 553, 554, 585, 559
and 561 to step 562. Step 562 will now find MZDSWP
set since it was set by step 563 to mark the second pro-
cessing of the highest down call. The program then
goes to step 567 which checks to see if a car was found

- during the second processing of the highest down call.

65

If no car was found, AHICAR will still be minus one
due to step 563, and the program advances to step 538
to reset FDCL and MZDSWP, and then it will go to ter-
minal 515 to take the next call.

If a car was found AHICAR will be equal to the num-
ber of the car, and the program advances to step 568.
Step 568 determines the location of the car relative to
the call floor by subtracting AHIFLR from ACLFLR.
If the difference is greater than zero, the floor of the ad-
vanced car position of the car is below the highest
down call. If the advanced car position is below the call
floor, step 569 checks the travel assignment TASS. If
the travel assignment is down, the program goes to the
next call via step 538. If the travel assignment is up,
step 570 checks to see if the car has started to deceler-

3,851,733

47

- ate. If it has, the program goes to the next call via step
§38. If it hasn’t, it is not too late to change the car’s as-
signment, and the program advances to step 571, which
is where the program goes when step 568 determines
that the advanced car position of the car is above the
call floor. Thus, an assigned car traveling upwardly for
a down floor call will have its assignment changed to
the higher registered down floor call, and since only
one car is assigned to each down floor call in zone 6,
the previously assigned call will become a demand the
next time this call is processed by subprogram ACL, if
the call cannot be allocated to a busy. car.

Step 571 checks to see if the call presently being con-
sidered, i.e., the highest down call registered, is timed
out. If it is not timed out, step 572 determines if the call
the car is presently assigned to answer is timed out. If
it is the program returns to terminal 515 via step 538
to consider the next.call. If the call presently being con-
sidered is timed out, or if it is not timed out and the call
the car is assigned to is not timed out, the program ad-
vances to step 573 which. sets the car number of the
closest suitable car (ACLOCR) to the car number of
AHICAR set in step 566. The call is also. set assigned
and a demand by step 573 since it is being given to an
assigned ‘car. The program then goes to step 557 to
reset FDCL and MZDSWP and to set SPMCR, and step
558 then puts the floor of this highest down callinto the
assignment register CRA of this car (ACLOCR). The
original down call assigned to this car will not have a
car found to be assigned to its floor during the next run-
ning of program ACL and an attempt will then be made

10

15

20

25

30

to allocate the call to a busy car or'a demand will be

created for it to which an available car will be assigned.

When all of the calls to be processed have been com-
pleted; step 511 finds the contents of PCLO now equal
to zero, and the program then sets ZACLBD to zero in

step 574, and exits the program via terminal 575 to re-

turn to the priority executive. Program ACL does not

have to put subprogram CHECK into bid since this

function is accomplished by step 232 of the priority ex-
- ecutive, as hereinbefore described. -

'FIGS. 23A & 23B

FIGS. 23A and 23B may be assembled to provide a
flow chart of subprogram ACR, which may be used for
the function 172 shown in FIG. 4. The function of sub-
program ACR is to assign available cars,-i.e., those not
already busy serving a call for elevator service, to de-
mands created by subprogram ACL when subprogram

- ACL is unable to allocate a floor call to a properly con-
. ditioned busy car. As described in the second incorpo-
. rated application, the floor selector of an elevator car
provides a signal‘-AVAS to the programmable system
processor when the car is in service but not presently
serving-a call for elevator service. Signal AVAS is pro-
vided when an in service car is not running or deceler-
ating and its doors are closed. The system processor
‘then ‘makes its. own decision concerning availability,
providing a signal AVAD when the car is considered
available by the system processor for demand assign-
ments. T S TR

As hereinbefore explained, program- ACR only runs
when a demand is created by subprogram ACL, and

- CSU determines that there is an available car which
can be assigned to the demand. Subprogram CSU puts
ACR into bid, but it will not run until programs TNC

35

40

45

50

60

65

48

and'ACL have run, since ACR has a lower priority than
either of these subprograms. Thus, when subprogram
ACR is bid by subprogram CSU, it breaks the program
out of its first loop or cycle and directs it to the second
loop or cycle which includes ACR. ,

Subprogram ACR successively checks the different’
types of system demands, in a predetermined order of
priority. Since when a demand is found, the program
for finding an available car for the demand, is in gen-
eral, similar for .each demand, only the timed out de-
mand for zone §, i.e., main zone down, indicated in the
timed out demand word TODEM, and the demand for
the main floor, indicated in the demand word DE-
MIND, will be described in detail.

More specifically, subprogram ACR starts at termi-
nal 600 and step 601 checks: indicator TOM, which
when set indicates the main floor timer MFTIM has
timed out. If TOM is set, step 602 then checks
SYSMFX, which when set, indicates there.is a car ex-
pressing to the main floor. If indicator TOM is set and
indicator SYSMFX is not set, the program advances to
step 603 which attempts to find a car for the main floor.
If a car cannot be found, the program may exit at termi-
nal 604 (FIG. 23B) and return to the priority executive
since it is unlikely that a car could be located for any:
other type of demand which might be registered. Or,
the program may be arranged to check certain other
types of demands and attempt to find a car it it finds
one of these demands registered. The complete pro-
gram loop is so fast that there will usually only be one
type of demand registered for any specific running of
ACR. Thus, as a practical manner, when ACR finds a
demand and it cannot assign a car to that demand, the
program may immediately return to the priority execu-

tive. . :

If indicator TOM 'is not set, or if set and indicator
SYSMFX is set, or if step 603 finds a car, the program
advances to step 605 which orders the call table CL in
the same manner described relative to step 510.in sub-
program ACL. Step 606 checks TODEM for a timed
out demand in zone 6, i.e., a timed out main zone down
call. If bit 6 of TODEM, representing a timed out main
zone.down demand MZD, is set; step 607 sets bit selec-
tion masks LKA and LKO equal to binary 7 and binary
6, respectively, which are then and’ed and exclusive
or’ed with a call word in subroutine LOOK in step 608
to find a-call of a certain type, and then see if the zone
of the call matches the zone of the demand, ie., zone"
6 in this instance. s R

FIG. 24 is a flow chart of subroutine LOOK which
may be used for step 608, which subroutine is entered
at terminal 609, Step 610 sets the variable PCLV equal
to the address of the first word of the call: table
(PCALLO). Since step 605 ordered the call table, the
first word of the call table will be the highest call in the

building, and may be an up or down call. Step 611

checks the contents of PCLV. If the contents is equal
to zero, indicating no calls in the call table, step 612
then sets the accumulator equal to zero and returns to
program ACR via terminal 613.. e

If the contents.of PCLV is not zero, step 614 checks
to see if the call in PCLV matches the look: masks.
Since LKA was set to binary 7 in step 607, and’ing a bi-
nary 7 with the call word exposes bits'0,°1 and 2 of the
first call word, which bits are used to identify the zone.
LKO, set to binary 6, exclusive or’s binary 6 with the

zone of the call. If they- match, the call is‘a main zone

3,851,733

49

down call and step 615 places the call table address
PCLYV of this call word in the accumulator and returns
to ACR via terminal 613. If the call is not a zone 6 call,
for example it may be an up call, the program advances
to terminal 616 and step 617. Step 617 sets PCLV
equal to the address of the first word of the next call in
the call table and returns to step 611. This cycling con-
tinues until either a zone 6 call is found, which is placed
in the accumulator by step 618, or all calls are tested
and no zone 6 call is found, which results in step 612
placing zeros in the accumulator. ,

Step 618 of FIG. 23A checks to see if a zone 6 call
‘was found. If a zone 6 call was found it must now be
tested to see if it timed out, since . we are looking for a
timed out zone 6 call. Step 619 performs this function,)
and if the call is not timed out the program returns to
terminal 616 of subroutine LOOK which advances to
the next call of the call table to continue the search for
a timed out zone 6 call. If the call is timed out the pro-
gram advances to step 620 to see if the call has already
been assigned. If it has, the program returns to terminal
616 of subroutine LOOK to examine the next call in the
call table, as a car will already be in the process of an-
swering an assigned call. "

If step 620 finds that the call is not assigned, the floor
of the zone 6 call found is made the reference floor
REFLR in step 621. Step 622 then looks for the closest
car to this floor which is in service, available according
to the dispatcher (AVAD), and not assigned (ASG).
Step 623 determines if such a car was found, and'if not 3
the program ACR reutrns to the priority executive via
terminal 604. If a car was found, step 624 sets OCRNO
to the car number of the car found. OCRNO is the car
number to which an assignment is to be made. Step 625
provides the binary address of the call floor, which will
be output to the car in question as signal FADO-FADG,
and step 626 outputs the car assignment including the
floor address assignment mode MODO, MOD1 and ser-
vice assignment SASS. '

If step 606 does not fird a timed out demand in zone 4
6, or step 618 does not find a zone 6 call, or if a zone
6 call is found and step 623 finds a car to assign to the -
call, the program advances to step 627.

Step 627 checks bit 4 of TODEM for a timed out de-
mand in the low zone up, i.e., zone 4, using the conven-
tion of FIG. 15. If bit 4 of TODEM is set, step 628 then
checks bit 4 of DEMIND to determine if a car has al-
ready been assigned to zone 4. When a car is assigned
to a demand, the demand is removed from DEMIND,

_but until the timed out call in the demand zone is-an-
swered, it will persist in TODEM. Thus, if in checking
TODEM In step 627 a zone 4 timed out demand is
found, step 628 is-necessary to see if a car has been pre-
viously assigned to this demand. If DEMIND shows a
zone 4 demand then step 629 finds the lowest up call
in zone 4, and then looks for the closest in service car
which is AVAD and ASG. If a car is found for. this call,

 the assignment is made to the car and the program ad-
vances to terminal 639. If a car was not found, the pro-
gram goes back to the priority executive via terminal
604. :

If step 627 does not find a timed out demand in zone
4, or if one is found and step 628 does not find a de-
mand in zone 4, the program also advances to terminal
630. ’ '

From terminal 630, step 631 checks bit 5 of TODEM
for a timed out demand in the high zone (zone 5). Find-
ing a zone 5 timed out demand, step 632 checks to see
if a car has already been assigned to zone 5. If step 632

2

2

3

4

5

5

0

50

finds that a car has not been assigned to a demand in
zone S, step 633 finds the lowest up call in zone 5, finds
the closest in service car which is AVAD and ASG, and

. outputs the assignment. If a call is not found in step

633, or if a car is found, the program advances to termi-
nal 634 (FIG. 23B). If a call is found but a car is not
found, the program returns to the priority executive via
terminal 604. If a timed out demand in zone § is not
found, or if one is found and a demand for zone 5 is not
found in DEMIND, the program advances to terminal
634,

From terminal 634, the program advances to step
635 which checks bit 6 of DEMIND for a zone 6 de-
mand. Finding such a demand, step 636 finds the call
and a car for the call if possible, advancing to terminal
684 and to the priority executive if a call is found but
no car, and to step 637 if it cannot find a zone 6 call.
The program also advances to step 637 if step 635 fails
to find a zone 6 demand.

Step 637 checks bit 2 of DEMIND for a main floor

- demand: Finding such a demand, step 638 checks bit

5

0

5

0

5

50

5

65

2 of DEMAS to see if a car has already been assigned
to a main floor demand. If bit 2 of DEMAS is not set,
step 639 checks indicator LOBMZD to see if an AVAD
car has been assigned to zone 6, the main zone down.
If LOBMZD is not set, an AVAD car has not been as-
signed zone 6, and step 640 sets the reference floor
REFLR to the main floor. Step 641 tries to locate the
closest available car, and finding such a car, as deter-
mined by step 642, step 643 outputs the main floor as-
signment. Step 644 sets bit 2 of DEMAS to indicate a
car has been assigned to the main floor demand, and
indicator LOBMZD is reset. If step 641 fails to find a
car, as.noted in step 642, the program returns to the
priority executive via terminal 604. If step 637 faiis to
find a demand for the main floor, or if it does and
DEMAS indicates a car has already been assigned to
the main floor demand, the program advances to step
645. If indicator LOBMZD is set (step 639) or a car is
found (step 642), the program advances to step 646.

Step 645 resets LOBMZD, and advances to step 646.
Step 646 checks bit 1 of DEMIND for a basernent de-
mand, and finding such a demand attempts to find a car
for the basement in step 647. If a car is not found, the
program returns to the priority executive via terminal
604. If a car is found, the program advances to step
648, : '

Step 648 checks bit 4 of DEMIND for a demand in
the low zone up, zone 4. Finding such a demand, step
649 locates the lowest up call of zone 4 and attempts
to assign a car to it. If step 649 fails to find a car, the
program returns to the priority executive via terminal
604. If a car is found, or if a zone 4 call cannot be lo-
cated, the program advances to step 650. Step 650
checks bit 5 of DEMIND for a zone 5 demand: Finding
such a demand, step 651 finds the lowest up call in zone
§, attempts to assign a car to the call, and returns to the
priority executive via terminal 604. If step 650 does not

60 find a zone § demand, the program returns to the prior-

ity executive via terminal 604,
PROGRAM LISTING ONE

For the sake of brevity. a program listing filed
with the application has been cancelled from. this
specification but is included in the application on file
in the United ‘States Patent Office. The: program
strategy in this program listing, except as mod-

51

ified, changed or improved by this, or the co-pending.

applications set forth under the heading “Cross-
Reference to Related. Applications”, follows that dis-
closed in U.S. Pat. No. 3,292,736 and/or U.S. Pat. No.
3,256,958, which are assigned to the same assignee as
the present application. '

In summary, there has been disclosed a new and im-
proved elevator system, and method of allocating floor
calls and assigning elevator cars to floor calls, which re-
sults in improved elevator service. New floor cars are
allocated to an elevator car which is already in the pro-
cess of serving a call for.elevator service, which car has
a service and travel direction, and position relative to
the call, such that the car will be able to answer the call
as it continues its journey through the building. This
original allocation may be made to all suitably condi-
tioned cars, or to-only the closest suitably conditioned
car to the call floor. The floor calls are periodically re-
processed to determine if there is a closer suitable car
. than the car, or cars, which presently have the call in
their assignment registers. If a closer suitable car is
found the floor call is added to its assignment register
-and it is deleted from the assignment registers.of all of
the cars which may contain it. Thus, cars will not travel
" ‘unnecessarily for calls they will not answer because a
closer car with the assignment will ultimately answer
the call. The cars thus return- to the available status
much quicker, enabling them to be assigned to demand
calls' which the system was unable to find a suitably
conditioned running car for. This arrangement also au-
tomatically provides a demand for a car, or cars, when
“the down calls exceed down running. cars, without the
necessity of providing means for counting the number
of down running cars and the number of down calls by
allocating only one down call to each down running car
and by piacing the call in the assignment register of
only one. Further, the arrangement prevents the situa-
tion of having more down running cars than the num-
ber of down floor calls, and it is therefore unnecessary
to set up arbitrary rules for returning one of the busy
“cars to the available status, which rules may not be the
- proper strategy for the existing situation. -

We claim as our invention: . o

1. A method of allocating floor calls from a plurality
of floors of a structure to a plurality of elévator cars
mounted in the structure to serve the floors, comprising
the steps-of:- - .~ ' : :

providing means for registering floor calls from the

plurality of floors. of the structure,

providing assignment means for each of the elevator

" cars, » ' ‘ c ‘

processing a new floor call by adding the call to the.

assignment means of at least one of the elevator
~.cars or. by creating a demand signal,
reprocessing each floor call to locate the closest car
in position to serve the call, :
deleting a floor call added to the assignment means
of a car during the processing step when the repro-
cessing step finds.a different car which is closer to
the call floor, -
. and adding the floor call to the
this closer car. o

2. The method of claim 1, wherein the step of pro-
cessing a new call includes the step of adding each new
call to the assignment means of a suitable car whose ad-
vanced car position is closer to the call floor.

3. The method of claim 1 wherein the step of repro-
cessing each floor call includes the steps of providing

assignment means of

5

10

15

200

25

30

3,851,733

52

signals relative to the advanced car position and service
direction of each of the elevator cars, and considering
these signals to determine if a car is suitable to answer
the call. . o a

4. The method of claim 1 including the step of pro-
viding a reallocation signal responsive to at least one
event, the existence of which indicates the possible
need for reallocating floor calls, with the reprocessing
step being initiated in response to said reallocation sig-
nal. , S :

5. The method of claim 1 including the step of divid-
ing the structure into different zones for up and down
calls and determining the zone of each car depending
upon its position and service direction, and wherein the
step of reprocessing each call includes a step of com-
paring the zone of a floor call and the zone of each car.

6. The method of claim 1 including the step of pro-
viding means in each elevator car for passengers to reg-
ister car calls, and wherein the step of deleting a floor

call from the assignment means of an elevator car wheti

a closer suitable car is found is subject to the condition
that the car has no registered car calls. |

7. The method of claim 1 including the step of pro-
viding a signal when a down floor call is added to the
assignment means of an elevator car, and considering .
this signal during the processing and reprocessing steps
to remove this car from consideration for another down
floor call. ' o

8. The method of claim 1 wherein the processing and
reprocessing steps consider those elevator cars which

are not in the process of serving a call for elevator ser-

. vice as not suitable for allocation of calls, and including

35

40

45

50

35

60

65

the step of assigning elevator cars in this category to
floor calls for which a demand signal was created by the
processing step. o
9. An elevator system for a structure having a plural-
ity of vertically spaced floors, comprising:
a plurality of elevator cars, ER
means mounting the elevator cars for movement rela-
tive to the structure to serve the floors,
down floor call registering means operable for regis-
- tering a call for elevator service in the down direc-
tion from each of a‘plurality of said floors,
up floor call registering means operable for register-
" ing a call for elevator service in the up direction
from each of a plurality of said floors,
car call registering means for each’of the elevator
cars operable for registering a call for each of a plu--
rality of said floors which may be desired by load:
in the associated elevator car, S
dispatching means for allocating registered floor calls
to selected elevator cars, ' Co -
and assignment register means associated with each
of said elevator cars operable to receive floor call
. allocations of said dispatching means,
said dispatching means including:
collecting means for collecting floor calls from said
up and down floor call registering means, ‘
processing means for periodically processing certain -
floor calls collected by said collecting means by ei-
ther adding a selected floor call to the assignment
register of at least one elevator car or registering a
demand signal relative to the call, - ,
control means for detecting the possible need to real-
locate at least certain of the floor calls to a differ- -
ent elevator car than the original allocation, and
providing a signal when such need is detected,
processing means. processing only new floor calls

3,851,733

53

until said control means provides a signal, at
which time all of the floor calls in the system are
processed,

said processing means, when processmg a floor call

previously allocated to an elevator car, allocating
the floor cali to a second car in response to prede-
termined conditions, and deleting the floor call al-
location from the assignment register of the first
car in response to a predetermined condition.

10. The elevator system of claim 9 wherein the con-
trol means is responsive to predetermined conditions
the occurrence of any one of which indicates a possible
need to reallocate at least certain of the floor calls, with
the control means being in a first condition, in the ab-
sence of all of the predetermined conditions and in a
second condition when any one of the predetermined
conditions occur, wherein the processing means is re-
sponsive to the control means to process all of the floor

calls when the control means is in its second condition, .

and processing only new floor calls when the control
means is in its first condition.

11. The elevator system of claim 10 wherein the pre-
determined conditions to which the control means is
responsive: includes an elevator car bypassing floor

- calls and an in-service elevator car going out of service.

12. The elevator system of claim:9 wherein the pre-
-determined conditions to which the processing means
will allocate a floor call previously allocated to a first
car to a second car includes the second car being lo-
cated relative to the call floor and with a service direc-
tion consistent with the service direction of the call,
and with an advanced car position which is closer to the
call floor than the advanced car position of the first car.

13. The elevator system of claim 9 wherein the pre-
determined condition which will cause the processing

.. means to delete a call allocation from the assignment

Tregister means of a first car after allocating the floor
call to a second car is the absence of a car call in the
car call registering means of the first car.

14. The elevator system of claim 9 wherein the pro-
cessing means includes means for excluding cars not in
the process of serving a call for elevator service from
consideration when allocating floor calls, and including
means for assigning cars in this category to floor calls
for which a demand signal was registered by the pro-
cessing means, and wherein said processing ‘means
compares each car having an advanced car position
and service direction suitable to answer a specific call
with a previous car found suitabie to determine which
car has an advanced car position closer to the floor of
" the call, and uses the closer of the two for any subse-

quent comparison to obtain the closest suitable car to

the call floor when all cars have been considered, with
the processing means allocating the call to the assign-
ment register means of the closest suitable car.

18. The elevator system of claim 9 including means
for excluding an elevator car from consideration as
being suitable for a down floor call, when it already has
another down floor call in its assignment reglster
means.

16. A method of allocating floor calls from a plurality
of floors of a structure to-a plurality of elevator cars
mounted in the structure to serve the floors, comprising
the steps of:

providing call table means to which new floor calls

are added and answered floor calls are deleted,
periodically ordering all of the floor calls in-the call

5

10

15

20

25

30

35

40

45

50

55

60

65

54

table means such that floor calls appear in the call
table in the order in which their associated floors
are located in the structure,

adding calls received between ordering steps to an

end of the ordered floor calls,.

providing an-assignment register for each of the ele-

vator cars,

periodically processing the new calls located at the

~end of the ordered floor calls in the call table

means by adding each new call to the assignment
register of at least one of the elevator cars, or by
creatmg a demand signal,

processing all of the calls in the call table means fol-

Iowmg each ordering step by successively deter-
mining the suitability of at least certain of the ele-
vator cars relative to serving each floor call, start-
ing with the call located at one end of the call table,
determining the suitable car, if any, whose advanced
car position is closest to each floor call by compar-
-ing the advanced car position of each car found to
be suitable for a specific floor call with the ad-
vanced car position of a previous car found to be
suitable for this call and using only the closer of the
two cars for comparison with the advanced car po-
“sition of a subsequent car found to be suitable for
this call,
deleting a floor call allocation, if any, from the as-
signment register of a suitable car when a closer
suitable car is found for this floor call,

allocating each floor call to the closest suitable car

found by entering the floor call in. the assxgnment
register of the selected car,

and ‘creating a demand signal when a suitable car

cannot be found for a floor call.

17. The method of claim 16 wherein the step of peri-
odically processmg the new calls located at the end of
ordered calls in the call table means includes the step
of allocating each new call to a suitable car whose ad- - -
vanced car position is closest to the call.

‘18. The method of claim 16 wherein the step of suc-
cessively considering the suitability of each car relative
to serving each call includes the steps of providing 31g~
nals relative to the advanced car position and service
direction of each of the elevator cars, and considering
these signals to determine if the car is conditioned to
answer the call.

19. The method of claim 16 mcludmg the step of pro-
viding a reordering sxgnal responsive to at least one
event, the existence of which indicates the possible
need for reallocating floor calls, wherein the presence
or absence of the reordering signal is used to initiate
the step of periodic ordering of the floor calls in the call
table, and the step of periodic processing of only the
new calls, respectively.

26. The method of claim 16 including the step of dl-
viding the structure into different zones for up calls and
different zones for down calls, and determining the
zone of each car depending upon its position and ser-
vice direction, and wherein the step of successively
consndermg the suitability of each car relative to serv-
ing each call includes the step of comparing the zone
of the floor call and the zone of each car.

21. The method of claim 16 including the step of pro-
viding means in each elevator car for passengers to reg-
ister car calls, and wherein the step of deleting a floor
call allocation from the assignment register of an eleva-
tor car when a closer suitable car is found is subject to
the condition that the car has no registered car calls.

3,851,733

55

22. The method of claim 16 including the step of pro-
viding a signal when a down floor call is allocated to the
assignment resister of an elevator car, which signal is

considered during the step of considering the suitabil-
ity of the car for another down floor call, removing this
car from consideration for such a call.

23. The method of claim 16 wherein the step of suc-
cessively considering at least certain of the elevator
cars relative to serving each call in the ordered call
- table considers those elevator cars which are not in the
process of serving a call for elevator service as not suit-
able for allocation of calls, and including the step of as-
signing elevator cars in this category to floor calls for
which a demand signal was created by the processing
step. :)

24. An elevator system for a structure having a plu-
rality of vertically spaced floors, comprising:

-a plurality of elevator cars,

means mounting the elevator cars for movement rela-

tive to the structure to serve the floors,
down floor call registering means operable for regis-
tering a call for elevator service in the down direc-
tion from each of a plurality of said floors, .

up floor call registering means operable for register-
ing a call for elevator service in the up direction
from each of a.plurality of said floors, '

car call registering means_for each-of the elevator
cars operable for registering a call for each of a plu-
rality of said floors which may be desired by load
in the associated elevator car,

dispatching means for allocating registered floor calls

- to selected elevator cars, :

~and assignment register means associated with each
of said elevator cars operable to receive floor call
allocations from said dispatching means,

said dispatching means including:

first means for collecting floor calls from said up and

down floor call registering means, -

second means for periodically ordering the floor calls

collected by said first means such that their loca-
tions relative to.one another correspond to the lo-
cations of their associated floors in the structure,
said first: means adding floor calls collected subse-
quent to the ordering of the floor calls by said sec-
.ond means toan end of the ordered floor calls,
and third means for periodically processing certain
floor calls collected: by said first means by either
~allocating a selected floor call to the assignment
register of at least one elevator car or registering a
demand signal relative to the. call,
said third means being responsive to said second
means, processing all of the floor calls each time
said second means orders the floor calls and other-
wise only processing floor calls added to an end of
the ordered floor calls," o
said third means, when processing a floor call previ-
ously allocated to an elevator car, allocating the
floor call to'a second car in response to predeter-
mined conditions and deleting this floor call alloca-

15

20

25

30

35

40

45

50

55

60

65

56

tion from the assighment register of the first car in’
response to a predetermined condition. .

25. The elevator system of claim 24 including control
means responsive to predetermined conditions the oc-
currence of any one of which indicates a possible need
to reallocate at least certain of the floor calls, said con-
trol means being in a first condition in the absence of
all of said predetermined conditions and in a second
condition when any one of said predetermined condi-
tions occur, wherein the dispatching means is respon-
sive to said control means, with its second means being
effective when said control means is in its second con-
dition to order all of the floor calls, and cause its third
means to process all of the floor calls, and with the
third means processing only the calls at the end of the
ordered floor calls when the control means is in its first
condition. ,

26. The elevator system of claim 25 wherein the pre-
determined conditions to which the control means is
responsive includes an elevator car bypassing floor
calls and an in-service elevator car going out of service.

27. The elevator system of claim 24 wherein the pre-
determined conditions to which the third means will al-
locate a floor call previously allocated to a first car to
a second car include the second car being located rela-
tive to the call floor and with a service direction consis-
tent with' the service direction of the call, and with an
advanced car position which is closer to the call floor
than the advanced car position of the first car.

28. The elevator system of claim 24 wherein a prede-
termined condition which will cause the third means to
delete a call allocation from the assignment register
means of a first car after allocating the floor call to a
second car is the absence of a car call on the car call

-registering means of the first car. ,

29. The elevator system of claim 24 whérein the third
means includes means for excluding cars not in the pro-
cess of serving a call for elevator service from consider-
ation when allocating floor calls, and including means
for assigning cars in this category to floor calls for
which a demand signal was registered by the third
means, and wherein said third means successively com-
pares each car having an advanced car position and ser-
‘vice direction suitable to answer a specific call with a
previous car fotind suitable to determine which car has
an advanced car position closer to the floor of the call,
and uses the closer of the two for any subsequent com-
parison, to-obtain the closest suitable car to the call
floor when-all cars have been considered, with said
third means allocating the call to the assignment regis-
ter means of the closer suitable car. :

30. The elevator system of claim 24 including means
for excluding an elevator car from consideration as
being suitable for allocating a down floor call when it

. already has a down floor call in its assignment register

Jmeans, ‘
Tk ok ¥ k%

