发明名称
一步法制备胶原蛋白的方法

摘要
本发明公开了一步法制备胶原蛋白的方法，其依次包括原料处理、热水提取、过滤纯化、去离子化处理、浓缩蒸发、酶解、高温灭菌、喷雾干燥等步骤。本发明能保证产品质量稳定，提高产品纯度和安全性，并降低加工过程中的能耗，降低加工成本。
权利要求书

1. 一种来自胶原蛋白的方法，其特征在于，其依次包括以下步骤：

1) 原料处理：将新鲜的鱼皮洗净后切成小块，用浓度为10-15g/L的稀硫酸浸泡5-8小时，然后用去离子水清洗浸泡后的鱼皮3-5次；

2) 热水提取：步骤1) 处理后的鱼皮放入到提取罐中，用热水熬煮依次经历四个阶段提取，第一个阶段：55-65℃热水熬煮4-8小时；第二个阶段：65-75℃热水熬煮4-6小时；第三个阶段：75-85℃热水熬煮4-6小时；第四个阶段：85℃以上热水熬煮4-6小时，得到粗提液；

3) 过滤纯化：将上述粗提液用硅藻土或活性炭过滤纯化，得到纯化提取液；

4) 去离子化处理：上述纯化提取液再用阴离子交换器进行离子交换处理；

5) 浓缩蒸发：将步骤4) 处理后的纯化提取液蒸发出水分，得到浓缩液；

6) 酒解：经过步骤5) 的浓缩液用质量浓度为1-3%的胃蛋白酶液进行酶解，并调整pH值为2.3，温度控制为35-40℃；

7) 高温灭菌：在138℃的温度下进行瞬时灭菌；

8) 喷雾干燥：灭菌后的胶原蛋白通过喷雾干燥后即得产品。

2. 根据权利要求1所述的方法，其特征在于：步骤6) 酒解过程中胃蛋白酶液与浓缩液的质量比为1:1。(8-12)。

3. 根据权利要求2所述的方法，其特征在于：步骤6) 中通过乙酸调整pH值。

4. 根据权利要求1所述的方法，其特征在于：步骤6) 中酶解的时间为6-8小时。

5. 根据权利要求1所述的方法，其特征在于：步骤7) 中采用超高温瞬时灭菌方式在150-165℃的高压蒸汽下浓缩液的温度上升至138℃并维持4-7秒。

6. 根据权利要求1所述的方法，其特征在于：步骤8) 中喷雾干燥塔的进风温度140-180℃，出风温度70-85℃，产物温度30-60℃。
一步法制备胶原蛋白的方法

技术领域
[0001] 本发明涉及胶原蛋白加工技术领域，具体涉及一步法安全高效制备胶原蛋白的方法。

背景技术
[0002] 胶原蛋白是动物结缔组织中的主要成分，也是哺乳动物体内含量最多、分布最广的功能性蛋白，占蛋白质总量的25%~30%。与组织的形成、成熟、细胞间信息的传递、以及关节润滑、伤口愈合、钙化作用、血管凝固和衰老等有着密切的关系。胶原蛋白也是生物科技产业最具关键性的原材料之一，在医学材料、化妆品、食品工业等均有广泛应用。如今运用的最广泛的是女性保养品和美容产品。
[0003] 由于氨基酸组成和交联度等方面的差异，使得水产动物尤其是其加工废弃物及皮、骨、鳞中所含有的丰富的胶原蛋白具有很多牲畜胶原蛋白所没有的优点，如一定的凝胶性、高度的分散性、低粘度性、吸水性、持水性以及乳化性等，另外人们发现来源于海洋动物的胶原蛋白在一些方面明显优于陆生动物的胶原蛋白，比如具有低抗原性、低过敏性、变性温度低、可溶性高、易被蛋白酶水解等特性。因此水产胶原蛋白可能逐步替代陆生动物胶原蛋白。
[0004] 鱼皮中含有丰富的胶原蛋白，已经成为提取胶原蛋白的主要来源。目前，普遍使用的鱼皮胶原蛋白的加工方法是先将鱼皮加工成明胶，然后将明胶加工成可服用的胶原蛋白，这种方法的不足之处在于：1)产品质量的稳定性难以保证；2)产品生产周期长，能耗成本高；3)产品的安全性不能得到保证。

发明内容
[0005] 为克服现有技术的缺陷，本发明的在于提供一种一步法安全高效制备胶原蛋白的方法，保证产品质量的稳定的同时，提高产品纯度和安全性，并降低加工过程中的能耗，降低加工成本。
[0006] 为实现上述目的本发明所采用的技术方案如下：
[0007] 一步法安全高效制备胶原蛋白的方法，其依次包括以下步骤：
[0008] 1)原料处理：将新鲜的鱼皮洗净后切割成小块，用浓度为10~15g/L的稀硫酸浸泡5~8小时，然后用去离子水清洗浸泡后的鱼皮3~5次；
[0009] 2)热水提取：步骤1)处理后的鱼皮放入到提取罐中，用热水熬煮提取，得到粗提液；
[0010] 3)过滤纯化：将上述粗提液用硅藻土或活性炭过滤纯化，得到纯化提取液；
[0011] 4)去离子化处理：上述纯化提取液再用阴阳离子交换器进行离子交换处理；
[0012] 5)浓缩蒸发：将步骤4)处理后纯化提取液蒸发掉水分，得到浓缩液；
[0013] 6)酶解：经过步骤5)的浓缩液用质量浓度为1-3%的胃蛋白酶液进行酶解，并调整pH值为2~3，温度控制为35~40℃；
说明书

[0014] 7) 高温灭菌：在138°C的温度下进行瞬时灭菌；

[0015] 8) 喷雾干燥：灭菌后的胶原蛋白通过喷雾干燥后即的产品。

[0016] 上述方案中，通过阴阳离子交换后，把溶液里的重金属离子和非金属离子用OH-和H根置换出来，提高产品纯度。采用硅藻土或活性炭过滤纯化提取液，既能达到纯化的目的，又能取出鱼皮本身的鱼腥味。

[0017] 作为本发明的一种优选的方案，步骤2）中热水提取依次经历四个阶段，第一个阶段：H55-65°C热水熬煮4-8小时；第二阶段：65-75°C热水熬煮4-6小时；第三阶段：75-85°C热水熬煮4-6小时；第四阶段：85°C以上热水熬煮4-6小时。分段水提可以使将鱼皮中的胶原蛋白被充分提取出来，最大限度地利用原料，而且较长一段时间的提高温度控制在85°C以下，有利于保护胶原蛋白的完整性。

[0018] 为了使提取后的产物中的胶原蛋白充分解，作为本发明的一种优选的方案，步骤6）酶解过程中胃蛋白酶液与浓缩液的质量比为1：(8-12)。

[0019] 作为本发明的一种优选的方案，在本发明中步骤6）是通过乙酸调整pH值，提高了胶原蛋白的安全性。

[0020] 作为本发明的一种优选的方案，本发明步骤7）酶解的时间为6-8小时。

[0021] 作为本发明的一种优选的方案，本发明步骤7）采用超过高温瞬时灭菌方式在150-165°C的高压蒸汽下浓缩液的温度上升至138°C以上并维持4-7秒，瞬时内完成灭菌，将能引起物料腐败和变质的微生物和芽孢和酶彻底杀灭，极大的保存了胶原的营养成分，有效地防止了胶原蛋白的二次污染，大大延长了产品的保质期。

[0022] 作为本发明的一种优选的方案，本发明步骤8）喷雾干燥于干燥箱的进风温度140-180°C，出风温度70-85°C，物料温度30-60°C。采用该方法不仅能达到干燥产品水分的目的，还保证了产品的各项指标稳定性。

[0023] 相比现有技术，本发明的有益效果在于：

[0024] 1. 通过本发明的方法能有效保证提取率和产品质量，获得质量的稳定、纯度高产品；

[0025] 2. 本发明的方法能有效取出鱼皮中的鱼腥味，得到无色无味的胶原蛋白产品，改善了胶原蛋白的风味；

[0026] 3. 本发明的方法通过离子交换处理之后，去除了原料中可能含有的重金属和非金属离子，提高了产品的安全性；

[0027] 4. 本发明的方法极大的保存了胶原的营养成分，有效地防止了胶原蛋白的二次污染，大大延长了产品的保质期。

[0028] 下面结合具体的实施方式对本发明作进一步详细说明。

具体实施方式

[0029] 以下是本发明研究过程中所涉及的具体的实施例中的优选案例。

[0030] 实施例1

[0031] 一步法安全高效制备胶原蛋白的方法，其依次包括以下步骤：

[0032] 1) 原料处理：将新鲜的鱼皮洗净后切割成小块，用浓度为10g/L的稀硫酸浸泡5小时，然后用去离子水清洗浸泡后的鱼皮3次；
[0033] 2)热水提取：步骤1)处理后的鱼皮放入提取罐中，分四个阶段水提，第一个阶段：55℃热水煮5小时；第二阶段75℃热水煮5小时，第三阶段85℃热水煮5小时；第四阶段90℃以上热水煮4小时用热水煮提得，得到粗提液；

[0034] 3)过滤纯化：将上述粗提液用活性炭过滤纯化，得到纯化提取液；

[0035] 4)去离子化处理：上述纯化提取液再用阴阳离子交换器进行离子交换处理；

[0036] 5)浓缩蒸发：将步骤4)处理后纯化提取液蒸发掉水分，得到浓缩液；

[0037] 6)酶解：经过步骤5)的浓缩液用质量浓度为1%的胃蛋白酶液进行酶解6小时，胃蛋白酶液与浓缩液的质量比为1:8，并用醋酸调整pH值为2.0，温度控制为40℃；

[0038] 7)高温灭菌：采用超过高温瞬时灭菌机在150℃的高压蒸汽下使浓缩液的温度上升至138℃以上并维持4秒；

[0039] 8)喷雾干燥：灭菌后的胶原蛋白通过喷雾干燥，喷雾干燥时干燥塔的进风温度140℃，出风温度70℃，物料温度30℃，即得到产品。

[0040] 实施例2

[0041] 一步法安全高效制备胶原蛋白的方法，其依次包括以下步骤：

[0042] 1)原料处理：将新鲜的鱼皮洗净后切割成小块，用浓度为12g/L的稀硫酸浸泡4小时，然后用去离子水清洗浸泡后的鱼皮5次；

[0043] 2)热水提取：步骤1)处理后的鱼皮放入到提取罐中，分四个阶段水提，第一个阶段：60℃热水煮5小时；第二阶段70℃热水煮6小时；第三阶段：80℃热水煮5小时；第四阶段：90℃热水煮4小时用热水煮提得，得到粗提液；

[0044] 3)过滤纯化：将上述粗提液用活性炭过滤纯化，得到纯化提取液；

[0045] 4)去离子化处理：上述纯化提取液再用阴阳离子交换器进行离子交换处理；

[0046] 5)浓缩蒸发：将步骤4)处理后纯化提取液蒸发掉水分，得到浓缩液；

[0047] 6)酶解：经过步骤5)的浓缩液用质量浓度为2%的胃蛋白酶液进行酶解7小时，胃蛋白酶液与浓缩液的质量比为1:10，并用醋酸调整pH值为3.0，温度控制为37℃；

[0048] 7)高温灭菌：采用超过高温瞬时灭菌机在160℃的高压蒸汽下使浓缩液的温度上升至138℃以上并维持5秒；

[0049] 8)喷雾干燥：灭菌后的胶原蛋白通过喷雾干燥，喷雾干燥时干燥塔的进风温度150℃，出风温度80℃，物料温度45℃，即得到产品。

[0050] 实施例3

[0051] 一步法安全高效制备胶原蛋白的方法，其依次包括以下步骤：

[0052] 1)原料处理：将新鲜的鱼皮洗净后切割成小块，用浓度为15g/L的稀硫酸浸泡4小时，然后用去离子水清洗浸泡后的鱼皮5次；

[0053] 2)热水提取：步骤1)处理后的鱼皮放入到提取罐中，分四个阶段水提，第1个阶段：65℃热水煮4小时；第二阶段65℃热水煮8小时，第三阶段75℃热水煮4小时；第四阶段90℃以上热水煮4小时用热水煮提得，得到粗提液；

[0054] 3)过滤纯化：将上述粗提液用活性炭过滤纯化，得到纯化提取液；

[0055] 4)去离子化处理：上述纯化提取液再用阴阳离子交换器进行离子交换处理；

[0056] 5)浓缩蒸发：将步骤4)处理后纯化提取液蒸发掉水分，得到浓缩液；

[0057] 6)酶解：经过步骤5)的浓缩液用质量浓度为1%的胃蛋白酶液进行酶解8小时，胃蛋
白酶液与浓缩液的质量比为1:12，并用醋酸调整pH值为3.0，温度控制为35℃；
[0058] 7) 高温灭菌：采用超过高温瞬时灭菌机在165℃的高压蒸汽下使浓缩液的温度上升至138℃以上并维持4秒；
[0059] 8) 喷雾干燥：灭菌后的胶原蛋白通过喷雾干燥，喷雾干燥时干燥塔的进风温度180℃，出风温度85℃，物料温度60℃，即得到产品。
[0060] 对比例1
[0061] 按照传统的方法将新鲜鱼皮经过切割分选、酸处理、水洗、热水提胶、过滤纯化、浓缩蒸发、热风干燥、破碎研磨加工成明胶，再将明胶经过溶解、调节PH、酶解、灭酶、干燥后加工成胶原蛋白产品。
[0062] 效果比较
[0063] 对实施例1-3和对比例1进行比较，具体项目及比较结果见表1。
[0064] 表1

<table>
<thead>
<tr>
<th>项目</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
<th>对比例1</th>
</tr>
</thead>
<tbody>
<tr>
<td>生产周期</td>
<td>31小时</td>
<td>32小时</td>
<td>33小时</td>
<td>49小时</td>
</tr>
<tr>
<td>产品得率</td>
<td>67.1%</td>
<td>69.3%</td>
<td>65.9%</td>
<td>47.6%</td>
</tr>
</tbody>
</table>

[0066] 产品特性

| 产品特性 | 纯白色、无异味 | 纯白色、无异味 | 纯白色、无异味 | 色暗黄、无异味 |

[0067] 上述实施方式仅为本发明的优选实施方式，不能以此来限定本发明保护的范围，本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。