A fat composition having the following fatty acid content: from 2 to 5% C8:0 - from 1 to 5% C10:0 - from 2 to 10% C12:0 - from 1 to 5% C14:0 - from 15 to 30% C16:0 - from 1 to 7% C18:0 - from 25 to 45% C18:1 - from 15 to 30% C18:2, and from 0.5 to 5% C18:3, said percentages being by weight based on total C8 to C24 fatty acids present in the fat composition, wherein at least 33% of total C16:0 is bound to the sn-2 position in a glyceride. The fat composition may be used in an infant formula.
FAT COMPOSITION

This invention relates to a fat composition, a process for its production and its use in an infant formula.

Fat compositions containing similar amounts of the principal fatty acids found in human milk fat may be derived from oils and fats of vegetable origin. However, there remains a significant difference in composition between milk replacement fats, derived from natural sources, and that of human milk fat. This difference arises because most glycerides of vegetable origin are unsaturated in the 2-position. In contrast, a substantial amount of palmitic acid occupies the 2-position of glycerides in human milk fat. The triglyceride 1,3-dioleoyl-2-palmitoyl glyceride (OPO) is an important glyceride component of human milk fat.

The difference in the distribution of bound fatty acids along the glyceride positions is believed to have important dietary consequences. In order to most closely match the chemical and/or physical properties of triglyceride fats or oils obtained from natural sources, to that of human milk fat, therefore, it is necessary to control the distribution of the fatty acid residues on the glyceride positions.

EP-A-0209327 discloses milk replacement fat compositions comprising the triglyceride 1,3-dioleoyl-2-palmitoyl glyceride (OPO). According to EP-A-0209327, these fat compositions can be obtained by subjecting fatty mixtures comprising glycerides consisting substantially of more saturated 2-palmitoyl glycerides to a rearrangement catalyst, such as a lipase, which is regiospecific in activity in the 1- and 3-positions of the glycerides. Enzymatic processes of this kind are also described in GB 1577933. Under the influence of the catalyst, unsaturated fatty acid residues may be introduced into the 1- and 3-positions of the 2-palmitoyl glycerides by exchange with unsaturated free fatty acids or their alkyl esters.

WO 2005/036987 discloses a process for producing a fat base by reacting a palmitic rich oil with unsaturated fatty acids such as oleic acid. The total palmitic acid residue content of the fat base is at most 38% and at least 60% of the fatty acid moieties are in the 2-position of the glyceride backbone. A related disclosure can be found in WO 2005/037373, filed on the same day.
US 5,658,768 describes a process for the production of human milk fat replacers by enzymatic conversion of triglycerides. The process converts trisaturated triglycerides using a 1,3-specific enzyme to add unsaturated fatty acids at the 1- and 3- positions of the triglyceride.

WO 94/26855 relates to human milk fat replacers obtained by 1,3-specific enzymatic conversion of triglyceride mixtures to produce a triglyceride composition in which at least 10% of the 1,3- positions are occupied by C₈ to C₁₄ fatty acids.

There remains a need to provide new fat compositions that are better suited to replace human milk fat in various parts of the world. There is also a need for such compositions that can be produced cheaply from vegetable sources. There is also a need for fat compositions that can be blended with dairy products (e.g., cow’s milk).

According to the invention, there is provided a fat composition having the following fatty acid content:

- from 2 to 5% C₈:0
- from 1 to 5% C₁₀:0
- from 2 to 10% C₁₂:0
- from 1 to 5% C₁₄:0
- from 15 to 30% C₁₆:0
- from 1 to 7% C₁₈:0
- from 25 to 45% C₁₈:1
- from 15 to 30% C₁₈:2, and
- from 0.5 to 5% C₁₈:3,

said percentages being by weight based on total C₈ to C₂₄ fatty acids present in the fat composition,

wherein at least 33% of total C₁₆:0 is bound to the sn-2 position in a glyceride.

Also provided by the invention is a process for producing the fat composition of the invention, which comprises blending a mixture of fats including an OPO-rich fat, palm kernel oil and a medium chain triglyceride oil.
Further provided by the invention is the use of a fat composition of the invention in an infant formula.

In another aspect, the invention provides an infant formula comprising a fat composition of the invention together with protein, carbohydrate, minerals and vitamins.

The invention also provides a fat blend comprising a fat composition of the invention and milk fat derived from cow's milk.

Yet another aspect of the invention is a process for preparing an infant formula comprising combining a fat composition of the invention with protein, carbohydrate, minerals and vitamins.

The invention is based on the finding of a fat composition that can be produced by blending vegetable fats and oils and that can match the composition of human milk fat in various parts of the world, including, for example, East Asia.

The fat composition of the invention comprises fatty acids. The term fatty acid, as used herein, refers to straight chain saturated or unsaturated (including mono- and poly-unsaturated) carboxylic acids having from 8 to 24 carbon atoms. The term is used herein to refer to the carboxylic acid residues bound to the glycerol moiety as acyl groups in glycerides. Thus, the fat composition contains the fatty acids in glycerides, predominantly triglycerides but also in diglycerides and monoglycerides.

The terms "fat" and "oil" as used herein refer to glyceride compositions containing fatty acyl groups. Oils are generally lower melting than fats but the two terms are used to some extent interchangeably.

Preferably, the fat composition of the invention comprises greater than 95 % by weight triglycerides and less than 5 % by weight, more preferably from 0.1 to 3 % by weight, total diglycerides and monoglycerides, based on the weight of the fat composition.

The notation Cx:y is standard in the art and refers to fatty acids having x carbon atoms and y double bonds. For example, C18:1 refers to oleic acid and C16:0 refers to palmitic acid. C18:2 is linoleic acid and C18:3 is linolenic acid.
All percentages of fatty acids used herein refer to fatty acids bound as acyl groups in glycerides and are by weight based on total C8 to C24 fatty acids present in the fat composition.

The levels of fatty acids present in the compositions of the invention can be determined by methods well-known to those skilled in the art such as GC-FAME.

Preferably, the fat composition of the invention comprises from 33 to 40% C18:1.

Preferably, the fat composition of the invention comprises from 20 to 30% C18:2.

More preferably, the fat composition of the invention comprises from 33 to 40% C18:1 and from 20 to 30% C18:2.

Preferably, at least 37%, more preferably at least 40%, of total C16:0 is bound to the sn-2 position in a glyceride. These percentages are based on total palmitic acid present. Thus, the fat composition of the invention has more palmitic acid at the sn-2 position in the fat composition than would be expected from a random distribution of this fatty acid.

Preferably, the fat composition of the invention comprises from 3 to 5% C8:0.

Preferably, the fat composition of the invention comprises from 3 to 4% C10:0.

Preferably, the fat composition of the invention comprises from 5 to 8% C12:0.

Preferably, the fat composition of the invention comprises from 2 to 4% C14:0.

Preferably, the fat composition of the invention comprises from 17 to 25% C16:0.

Preferably, the fat composition of the invention comprises from 2 to 4% C18:0.

Preferably, the fat composition of the invention comprises from 30 to 40% C18:1.

Preferably, the fat composition of the invention comprises from 20 to 25% C18:2.

Preferably, the fat composition of the invention comprises from 1 to 3% C18:3.
The weight ratio of \(C_{12} : C_{14} \) fatty acids in the compositions of the invention is preferably greater than 1:1, more preferably greater than 1.5:1.

The fat composition may contain minor amounts of other fatty acids to make the total fatty acid content up to 100%. For example, the fat composition of the invention may comprise from 0.1 to 1% by weight of C20:0, C20:1 and C22:0.

In one embodiment, the fat composition of the invention has the following fatty acid content:

- from 3 to 5% C8:0
- from 2 to 5% C10:0
- from 5 to 10% C12:0
- from 1 to 5% C14:0
- from 15 to 25% C16:0
- from 1 to 5% C18:0
- from 25 to 45% C18:1
- from 20 to 25% C18:2, and
- from 0.5 to 5% C18:3.

The fat composition of the invention is preferably a blend of fats and oils of vegetable origin. Fats and oils of vegetable origin are obtained directly or indirectly from vegetable sources. The vegetable fats are preferably refined. The term "refined", as used herein, refers to processes in which the purity of an oil or fat is increased by a process which comprises at least the steps of bleaching, followed by filtering and deodorising (such as by steam refining). The fats are typically not hydrogenated.

Since vegetable fats do not contain significant amounts of cholesterol, the fat compositions of the invention preferably contain less than 1%, more preferably less than 0.5%, by weight of cholesterol.

Also, since non-hydrogenated vegetable fats do not contain significant amounts of trans-fats, the fat compositions of the invention preferably contain less than 1%, more preferably less than 0.5%, by weight of trans fatty acids.
Preferably, the composition of the invention is a blend comprising an OPO-rich fat, palm kernel oil and from 5 to 10% by weight of a medium chain triglyceride oil comprising at least 90% by weight total C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil.

The term OPO-rich fat refers to fats that comprise at least 10% by weight of the triglyceride OPO (1,3-dioleoyl-2-palmitoyl glyceride), preferably at least 15% by weight OPO, more preferably at least 20% by weight OPO, based on the total weight of the fat. Such fats are commercially available, for example as Betapol® from Loders Croklaan BV, Wormerveer, The Netherlands such as Betapol® B-55.

The OPO-rich fat preferably has a fatty acid composition with one or more of the following features:

- C12:0 content of up to 0.5% by weight;
- C16:0 content of from 30 to 45%, more preferably 35 to 40%, by weight;
- C18:0 content of from 1 to 5% by weight;
- C18:1 content of from 40 to 60%, more preferably 45 to 55%, by weight;
- C18:2 content of from 5 to 12% by weight;
- any other fatty acids being present in an amount of less than 0.5% by weight each, and all of the percentages being based on total C8 to C24 fatty acids in the OPO-rich fat.

The OPO-rich fat may be produced by a method comprising:

(i) subjecting one or more palm oil stearin fractions to enzymic transesterification with oleic acid or a non-glyceride ester thereof using an enzyme having selectivity for the 1- and 3- positions of a glyceride; and

(ii) separating palmitic acid or palmitic non-glyceride esters from the product obtained in (i).

The palm oil stearin fractions may be a single palm oil stearin or a mixture of palm oil stearins, for example obtained in different fractionation processes and/or having different physical and/or chemical properties, such as different melting temperatures or different iodine values (IVs). Preferably, the one or more palm oil stearin fractions is or are bleached and deodorised before the interesterification step. Bleaching and deodorising can be carried out using techniques that are well known in the art.
The term "stearin" refers to a triglyceride mixture or fat blend from which at least 10 % by weight of the lower melting constituents have been removed by some kind of fractionation, e.g., dry fractionation or solvent fractionation.

The optional bleaching of the palm oil stearin is typically performed above 95 °C, more preferably above 100 °C (such as at from 105 °C to 120 °C). In the deodorising step, volatile impurities are removed from the palm oil stearin to yield deodorised palm oil stearin, typically at temperatures above 200 °C. The impurities removed in the deodorising step commonly include free fatty acids, aldehydes, ketones, alcohols and other hydrocarbon impurities. The bleaching and deodorising may be carried out in a single process step or two or more process steps. For example, the steps may be carried out at reduced pressures (e.g., 10 mm Hg or below), wherein the palm oil stearin is contacted with steam to help vaporise the impurities. Bleaching and deodorising the palm oil stearin may help to improve the yield.

Preferably, the one or more palm oil stearins is or are provided by fractionating palm oil or a derivative thereof. Although fractionation may be carried out with or without a solvent, it is preferred that the fractionation of the palm oil comprises dry fractionation. Thus, the process of fractionation is preferably carried out in the absence of a solvent.

The palm oil stearin preferably has an iodine value (IV) from about 2 to about 40, more preferably from about 6 to about 35. Palm oil stearin having an iodine value of from 8 to 18 is particularly preferred. The iodine value is determined according to standard methods known in the art (e.g., ASTM D5554-95 (2001)).

The palm oil stearin may comprise a mixture of at least two palm oil stearins having different iodine values. For example, the palm oil stearin may comprise a mixture of a first palm oil stearin having an iodine value of from about 10 to about 20 and a second palm oil stearin having an iodine value of from about 25 to 50.

Optionally, the one or more palm oil stearins are interesterified to form a randomly interesterified palm oil stearin before step (i). This may be carried out using any method that effects random interesterification of the triglycerides in the one or more palm oil stearins.

In step (i), the palm oil stearin is selectively transesterified with oleic acid or an oleoyl ester. This reaction preferentially replaces residues at the 1- and 3- positions of the
glyceride relative to those at the 2-position. Thus, the product has greater amounts of the oleoyl residue at the 1- and 3-positions than at the 2-position. In the enzymatic transesterification of step (i), the fatty acids on the 2-position of the triglycerides typically do not change (for example, less than 40% by moles (or weight) of fatty acyl groups in the 2-position, more preferably less than 20%, such as less than 5% or less than 1%, change during the process). The conditions of the process are selected so as to provide the desired degree of selectivity from the enzyme. Preferred enzymes for use in step (i) are lipases from *Rhizopus delemar* and *Rhizomucor miehei*. The transesterification reaction is typically performed to reach or approach equilibrium at a conversion ratio of a minimum of at least 50%, preferably at least 60%, most preferably at least 70%.

Preferably, in the transesterification reaction of step (i), palm oil stearin is mixed with an oleic acid concentrate (comprising free oleic acid at a concentration of greater than 65% by weight, preferably greater than 70% by weight, most preferably greater than 75% by weight). Alternatively, the oleic acid may be provided as a mixture comprising oleic acid (preferably in an amount of greater than 65% by weight), linoleic acid and, optionally, one or more other fatty acids. The ratio of palm oil stearin to oleic acid concentrate is preferably from 0.1:1 to 2:1, more preferably from 0.4:1 to 1.2:1, even more preferably from 0.4:1 to 1:1, most preferably from 1:1.1 to 1:2 on a weight basis. The reaction is preferably carried out at a temperature of from 30°C to 90°C, preferably from 50°C to 80°C, such as about 60°C to 70°C, and may be conducted batchwise or in continuous fashion, with or without a water-immiscible organic solvent.

Before the enzyme transesterification reaction of step (i), the humidity is preferably controlled to a water activity between 0.05 and 0.55, preferably between 0.1 and 0.5, depending on the type of biocatalyst enzyme system used. The reaction may be performed, for example, at 60°C in a stirred tank or in a packed bed reactor over biocatalysts, based on concentrates of Lipase D (*Rhizopus oryzae*, previously classified as *Rhizopus delemar*, from Amano Enzyme Inc., Japan) or immobilised concentrates of *Rhizomucor miehei* (Lipozyme RM IM from Novozymes A/S, Denmark).

The non-glyceride esters of oleic acid that are optionally used, in addition to or as an alternative to, oleic acid, are preferably alkyl esters. The term "alkyl", as used herein, includes straight chain or branched saturated hydrocarbons having from 1 to 12, more preferably 1 to 6, carbon atoms.
In step (ii), palmitic acid or palmitic non-glyceride esters are separated from the desired OPO glyceride product. It will be appreciated that the separation is not usually complete and that both the materials separated and the product that remains will be mixtures. Also, the separation of the palmitic acid or palmitic non-glyceride esters will normally also separate other fatty acids or fatty acid non-glyceride esters from the product. The term "fatty acid", as used herein, refers to straight chain, saturated or unsaturated, carboxylic acids having from 12 to 24 carbon atoms.

In order to separate palmitic acid and other fatty acids or palmitic non-glyceride esters and other glycerides from OPO in step (ii), the transesterified mixture (optionally after further treatment, such as isolation of the fat phase) is preferably distilled. Distillation is preferably carried out at low pressure (e.g., lower than 10 mbar) and elevated temperatures (e.g., greater than 200 °C) to remove the fatty acids from the product triglyceride fraction.

The process for making the OPO-rich fat may further comprise the step of dry fractionating the product obtained in (ii) to form a fraction comprising an increased amount of OPO. The dry fractionation step may be repeated i.e., the product may have been doubly fractionated to produce the OPO-rich fat. However, this step may not be required depending on the purity of the final product and the desired end use of the product.

Typically, the process further comprises blending the triglyceride composition of (ii) with at least one liquid oil. Suitable liquid oils include those mentioned above for use in the fat blend. The fat blend formed is preferably bleached and deodorised. Bleaching and deodorising can be carried out by methods well known in the art.

A preferred blend of vegetable fats for the composition of the invention comprises (more preferably consists of):

- from 20 to 40% by weight of an OPO-rich fat
- from 20 to 40% by weight soybean oil
- from 10 to 20% by weight palm kernel oil
- from 5 to 15% by weight sunflower oil
- from 5 to 10% by weight of a medium chain triglyceride oil comprising at least 90% by weight C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil,
The medium chain triglyceride (MCT) oil comprises at least 90% by weight C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil. Preferably, the MCT oil comprises from 50 to 58% by weight C8:0 and from 42 to 50% by weight C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil. The MCT oil is preferably obtained from palm kernel oil fatty acids by esterification with glycerol.

Preferably, the composition of the invention comprises from 25 to 35% by weight of an OPO-rich fat.

Preferably, the composition of the invention comprises from 25 to 35% by weight soybean oil.

Preferably, the composition of the invention comprises from 13 to 18% by weight palm kernel oil.

Preferably, the composition of the invention comprises from 8 to 13% by weight sunflower oil.

Preferably, the composition of the invention comprises from 6 to 9% by weight of a medium chain triglyceride oil comprising at least 90% by weight C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil.

Preferably, the composition of the invention comprises from 2 to 6% by weight high oleic sunflower oil.

Preferably, the composition of the invention comprises from 0.5 to 1.5% by weight flaxseed oil.

It is particularly preferred that the composition of the invention comprises:

- from 10 to 20% by weight palm kernel oil, and
- from 5 to 10% by weight of a medium chain triglyceride oil comprising at least 90% by weight C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil.

A particularly preferred blend of vegetable fats for the composition of the invention comprises (more preferably consists of):

- from 25 to 35% by weight of an OPO-rich fat
- from 20 to 40% by weight soybean oil
- from 10 to 20% by weight palm kernel oil
- from 6 to 14% by weight sunflower oil
- from 6 to 9% by weight of a medium chain triglyceride oil comprising at least 90% by weight C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil,
- from 2 to 8% by weight high oleic sunflower oil, and
- from 0.1 to 2% by weight flaxseed oil.

The composition of the invention may further comprise C4:0 i.e., butyric acid. The C4:0 content is typically at least 1% by weight based on total C8 to C24 fatty acids in the composition. The C4:0 can be derived from cow's milk. Thus, the composition of the invention may be a blend of vegetable fats with cow's milk or fat derived therefrom (such as full cream milk powder), preferably comprising from 25 to 35 % by weight of the milk fat based on the weight of the fats present in the blend.

The fat blends or fat compositions are particularly suitable for use in an infant formula. The present invention therefore also contemplates the use of the fat compositions in an infant formula or in the preparation of an infant formula.

The fat composition is suitable for replacing at least a part of the fat in infant formula. Infant formula may comprise the fat composition of the invention together with one or more of protein, carbohydrate, minerals and vitamins. The infant formula may be in liquid form or in the form of a dry formulation, such as a powder or granules. The present invention also therefore contemplates a method for the production of infant formula comprising fat, protein and carbohydrate components, for example in the approximate relative weight proportions (2 to 3):(0.5 to 1.5):(4 to 6), wherein at least a part of the fat normally used in such formulations is replaced by the fat composition or fat
blend made. Dry formulations containing this mixture, together with additional components customary in such formulations such as protein, carbohydrate, minerals and vitamins, may be dispersed for use in sufficient water to produce an emulsion of approximately 2 to 5 grams of fat per 100 ml of dispersion.

The infant formula of the present invention can be prepared in a variety of product forms. Typically, the infant formula is prepared in the form of a ready-to-feed liquid, a liquid concentrate for dilution prior to consumption, or a powder that is reconstituted prior to consumption. It will appreciated by those skilled in the art that the liquid concentrates or powders may be reconstituted ready for use in any suitable liquid medium, for example, cow's milk (preferably full fat cow's milk) and/or water.

In a preferred embodiment, the infant formula is in the form of a powder, which is adapted to be reconstituted prior to consumption. The infant formula in the form of a powder preferably has a total fat content of from 20 to 40% by weight, more preferably from 25 to 35% by weight.

The following non-limiting examples illustrate the invention and do not limit its scope in any way. In the examples and throughout this specification, all percentages, parts and ratios are by weight unless indicated otherwise.

EXAMPLES

Example 1

32.4% of neutralized OPO-rich fat (such as Betapol® B-55) having the fatty acid composition (FAME) shown in Table 1 below and produced by a 1,3- selective enzymatic reaction of oleic acid with palm oil stearin having an iodine value of 10, followed by double fractionation and neutralization, was blended with 29.1% by weight refined soybean oil, 15.8% by weight refined palm kernel oil, 10.8% by weight refined sunflower oil, 4.2% by weight refined high oleic sunflower oil and 0.8% by weight refined flaxseed oil. The blend was bleached, deodorized and sparged with nitrogen.
Then 7% by weight refined medium chain triglycerides (MCT oil) having a fatty acid methyl ester (FAME) composition corresponding to 53.8% by weight caprylic acid and 46.1% by weight capric acid (available from Stemchemie) and 0.025% Tocoblend L-50 IP (available from Vitablend) were added to the refined blend to form the fat blend of the invention.

The fat blend had the fatty acid composition (FAME) shown in Table 2.

Table 1: Fatty acid composition of the OPO-rich fat

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Amount of fatty acids in fat blend in % by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0</td>
<td>0.1</td>
</tr>
<tr>
<td>C14:0</td>
<td>0.5</td>
</tr>
<tr>
<td>C16:0</td>
<td>37.6</td>
</tr>
<tr>
<td>C18:0</td>
<td>2.7</td>
</tr>
<tr>
<td>C18:1</td>
<td>50.3</td>
</tr>
<tr>
<td>C18:2</td>
<td>8.0</td>
</tr>
<tr>
<td>C20:0</td>
<td>0.2</td>
</tr>
<tr>
<td>C22:0</td>
<td>0.3</td>
</tr>
<tr>
<td>others</td>
<td>To 100 %</td>
</tr>
</tbody>
</table>

Table 2: Fatty acid composition of the fat blend

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Amount of fatty acids in fat blend in % by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8:0</td>
<td>4.2</td>
</tr>
<tr>
<td>C10:0</td>
<td>3.7</td>
</tr>
<tr>
<td>C12:0</td>
<td>7.1</td>
</tr>
<tr>
<td>C14:0</td>
<td>2.7</td>
</tr>
<tr>
<td>C16:0</td>
<td>19.0</td>
</tr>
<tr>
<td>C18:0</td>
<td>2.9</td>
</tr>
<tr>
<td>C18:1</td>
<td>34.0</td>
</tr>
<tr>
<td>C18:2</td>
<td>23.1</td>
</tr>
<tr>
<td>C18:3</td>
<td>2.3</td>
</tr>
<tr>
<td>C20:0</td>
<td>0.4</td>
</tr>
<tr>
<td>C20:1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>C22:0</td>
<td>0.1</td>
</tr>
<tr>
<td>others</td>
<td>To 100 %</td>
</tr>
<tr>
<td>Sn-2 (C16:0 content in sn-2 position based on total C16:0)</td>
<td>41.0</td>
</tr>
</tbody>
</table>
A fat composition having the following fatty acid content:

- from 2 to 5% C8:0
- from 1 to 5% C10:0
- from 2 to 10% C12:0
- from 1 to 5% C14:0
- from 15 to 30% C16:0
- from 1 to 7% C18:0
- from 25 to 45% C18:1
- from 15 to 30% C18:2, and
- from 0.5 to 5% C18:3,

said percentages being by weight based on total C8 to C24 fatty acids present in the fat composition,

wherein at least 33% of total C16:0 is bound to the sn-2 position in a glyceride.

2. Composition as claimed in Claim 1, comprising from 33 to 40% C18:1.

3. Composition as claimed in Claim 1 or Claim 2, comprising from 20 to 30% C18:2.

4. Composition as claimed in any one of the preceding claims, wherein at least 37%, more preferably at least 40%, of total C16:0 is bound to the sn-2 position in a glyceride.

5. Composition as claimed in any one of the preceding claims which is a blend of fats of vegetable origin.

6. Composition as claimed in Claim 5, wherein the fats are refined.

7. Composition as claimed in any one of the preceding claims, which is a blend comprising an OPO-rich fat, palm kernel oil and from 5 to 10% by weight of a medium chain triglyceride oil comprising at least 90% by weight total C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil.
8. Composition as claimed in any one of the preceding claims, comprising:
 - from 20 to 40% by weight of an OPO-rich fat
 - from 20 to 40% by weight soybean oil
 - from 10 to 20% by weight palm kernel oil
 - from 5 to 15% by weight sunflower oil
 - from 5 to 10% by weight of a medium chain triglyceride oil comprising at least 90% by weight C8:0 and C10:0 based on total C8 to C24 fatty acids present in the medium chain triglyceride oil,
 - from 1 to 10% by weight high oleic sunflower oil, and
 - from 0.1 to 2% by weight flaxseed oil.

9. Composition as claimed in any one of Claims 1 to 8, which further comprises C4:0.

10. Composition as claimed in Claim 9, wherein the C4:0 content is at least 1% by weight based on total C8 to C24 fatty acids in the composition.

11. Composition as claimed in Claim 9 or Claim 10, wherein the C4:0 is derived from cow's milk

12. Fat blend comprising the composition of any one of Claims 1 to 8 and milk fat derived from cow's milk.

13. Fat blend as claimed in Claim 12 comprising from 25 to 35% by weight milk fat.

14. A process for producing the fat composition of any one of Claims 1 to 11, which comprises blending a mixture of fats including an OPO-rich fat, palm kernel oil and a medium chain triglyceride oil.

15. Use of a composition of any one of Claims 1 to 11 in an infant formula.

16. An infant formula comprising a fat composition of any one of Claims 1 to 11 together with protein, carbohydrate, minerals and vitamins.

17. A process for preparing an infant formula comprising combining a fat composition of any one of Claims 1 to 11 with protein, carbohydrate, minerals and vitamins.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>A23D9/00</th>
<th>A23L1/29</th>
<th>C11C3/08</th>
</tr>
</thead>
</table>

ADD.

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Minimum documentation searched</th>
<th>(classification system followed by classification symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A23D A23L C11C</td>
<td></td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2011/135564 Al (ENZYMOTEC LTD [IL]; BAR-YOSEPH FABIANA [IL]; MANOR YONATAN [IL]; COHEN) 3 November 2011 (2011-11-03) page 18, line 9 - page 19, line 32 page 22, line 29 - line 32 claims; examples</td>
<td>1-13, 15-17</td>
</tr>
<tr>
<td>X</td>
<td>RONIT LUBETZKY MD ET AL: "Human Milk fatty acids Profile changes during prolonged lactation: a cross-sectional study", IMAJ, vol. 14, 1 January 2012 (2012-01-01), pages 7-10, XP055093734, table 2</td>
<td>1-7, 9, 10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z document member of the same patent family

Date of the actual completion of the international search

18 December 2013

Date of mailing of the international search report

07/01/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Popa, Mari an

Form PCT/ISA2/10 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 000 975 A (TOMARELLI RUDOLPH M [US])</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>19 March 1991 (1991-03-19) claims ; table I I</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>SHEILA M. INNIS: "Human milk and formula fatty acids", THE JOURNAL OF PEDIATRICS, vol 120, no. 4, 1 April 1992 (1992-04-01), pages S56-S61, XP055093171, ISSN: 0022-3476, DOI: 10.1016/0022-3476(92)90193-2 the whole document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>WO 94/26855 A1 (LODERS CR0KLAAN BV [NL] ; CAIN FREDERICK WILLIAM [NL] ; QUINLAN PAUL TH0) 24 November 1994 (1994-11-24) cited in the application on claims ; examples ; tables</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 5 709 888 A (GI L ANGEL H [ES] ET AL)</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>20 January 1998 (1998-01-20) tables 6,7,8,9, 10, 11</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 6 248 909 BI (AKIMOTO KENGO [JP] ET AL)</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>19 June 2001 (2001-06-19) the whole document</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 201135564 A</td>
<td>03-11-2011</td>
<td>AU 2011246912 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2792353 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102843921 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2563167 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013525421 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130028904 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 184349 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013041029 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013289110 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011135564 A</td>
</tr>
<tr>
<td>us 5000975 A</td>
<td>19-03-1991</td>
<td>AR 244048 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 627532 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4732189 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2006136 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68914426 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68914426 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 670289 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG 18568 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0376628 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2050824 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2226569 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 25294 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 211990 A9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 64314 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 92809 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H02231037 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 165950 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 231919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 27306 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 92681 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 25188 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5000975 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 8909975 A</td>
</tr>
<tr>
<td>wo 9426855 A</td>
<td>24-11-1994</td>
<td>AT 157117 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 699683 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6721794 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2161329 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69405096 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69405096 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0698078 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0698078 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2105712 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H08509621 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 9426855 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9403032 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1488395 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8884791 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2054409 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0484266 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2033193 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 915084 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 913687 A</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>IL 99854 A</td>
<td>23-07-1996</td>
<td></td>
</tr>
<tr>
<td>IS 3775 A7</td>
<td>01-05-1992</td>
<td></td>
</tr>
<tr>
<td>JP H05304927 A</td>
<td>19-11-1993</td>
<td></td>
</tr>
<tr>
<td>MA 22333 A1</td>
<td>01-07-1992</td>
<td></td>
</tr>
<tr>
<td>NZ 240346 A</td>
<td>25-03-1994</td>
<td></td>
</tr>
<tr>
<td>PT 99359 A</td>
<td>30-09-1992</td>
<td></td>
</tr>
<tr>
<td>US 5709888 A</td>
<td>20-01-1998</td>
<td></td>
</tr>
<tr>
<td>ZA 9108443 A</td>
<td>29-07-1992</td>
<td></td>
</tr>
<tr>
<td>US 6248909 Bl</td>
<td>19-06-2001</td>
<td>CA 2275060 Al</td>
</tr>
<tr>
<td>DE 69906875 Dl</td>
<td>22-05-2003</td>
<td>DE 69906875 T2</td>
</tr>
<tr>
<td>DE 69906875 T2</td>
<td>11-12-2003</td>
<td>DK 0965578 T3</td>
</tr>
<tr>
<td>ES 2197582 T3</td>
<td>01-01-2004</td>
<td>JP 4175698 B2</td>
</tr>
<tr>
<td>US 6248909 Bl</td>
<td>19-06-2001</td>
<td></td>
</tr>
</tbody>
</table>